
AbstractGoal of the thesis was to make an inventory of the required functionality for a future environmentfor creating and using SOCCA models.Usually such an inventory is made with use cases, which describe the functionality informally.However, because a description of SOCCA models was already at hand, we �rst tried to describeaccurately which models and model fragments are used in SOCCA and more important: whichrelationships exist between those models and model fragments. This resulted in the meta modelfor SOCCA.Certain fragments of this meta model provide an idea for future system components. This,because those fragments represent certain concepts of SOCCA, which will have to be supportedby the future environment. Besides these components, other expected system components can beintroduced as well.As the expected system components are known to us, we can model their expected functionalityin use cases. This functionality is partially already de�ned by the concepts from the meta modelwhich they are responsible for. The use cases do now not just provide starting ideas, but presentfunctionality which is more or less a consequence of the way a process is modelled in SOCCA.All this results in a document useful as a starting point for modelling the future system moreprecisely: for example in a SOCCA model.

2

AcknowledgmentsI would like to thank dr. Luuk Groenewegen and ir. Ed van der Winden for their guidance andsupport during my thesis. Also thanks to the SEIS projectgroup for their insights and support.Many thanks to my mother and father for making it possible for me to study (not only �nancially)and motivating me. I would also like to thank the rest of my family and friends for their love andsupport.Last but certainly not least, I would like to thank my girlfriend Maureen for putting up with mefor over two years now, which is not always an easy task. Maureen, I love you.I could not have done it without you all...

4

ContentsAbstract 1Acknowledgements 31 Introduction 91.1 Goal . 91.2 Contents . 91.3 A (very) small introduction to SOCCA . 101.4 Terms and abbreviations used in this thesis . 102 The meta model for SOCCA models 132.1 Introduction . 132.1.1 The notation used for the meta model . 142.2 Perspectives within a SOCCA model . 162.3 The data perspective . 172.3.1 A class diagram . 182.3.2 An import/export diagram . 202.4 Back to the data perspective . 222.5 The behaviour perspective . 232.6 Linking the behaviour perspective to the data perspective 242.7 The communication perspective . 272.8 Linking the communication perspective to the other perspectives 292.9 The complete meta model . 302.10 Conclusion. 303 Analysing the meta model 333.1 Introduction . 333.2 Internal representation and the database . 333.3 Splitting up the meta model . 343.3.1 Split up in diagram types . 343.3.2 Split up in groups of diagrams . 383.3.3 Dependencies between the model pieces . 403.4 The editors . 413.4.1 Diagram editors . 413.4.2 Chunk editor . 433.4.3 Link editor . 443.5 Other system components . 463.5.1 Analysis engine . 463.5.2 Database browser . 473.5.3 Simulator/enactor . 473.6 Additions to the meta model towards implementation 483.6.1 Graphical information . 48

6 CONTENTS3.6.2 Chunks . 493.6.3 Links . 503.6.4 Version management . 513.6.5 Multi user environment . 513.6.6 Security . 513.7 From system components to the use cases . 514 Introduction on the use cases 534.1 Use cases . 534.2 The use cases for our future system . 544.3 Notation used in describing the use cases . 554.3.1 Steps in the use cases . 554.3.2 Additional constructs in the descriptions . 564.4 Structure of the chapters on the use cases . 585 The DiagramBuilder use cases 615.1 Introduction . 615.1.1 The use cases . 615.1.1.1 The use case: Specify diagram . 615.1.1.2 The use case: Analyse diagram . 615.1.1.3 The use case: Browse SOCCA model database 615.1.2 List of use cases and sub use cases . 625.2 DiagramBuilder use cases . 63U1 DiagramBuilder use case: Specify diagram . 63U1.1 Open new (empty) diagram . 63U1.2 Generate diagram part(s) . 64U1.3 Apply generic editing operation . 64U2 DiagramBuilder use case: Analyse diagram . 64U3 DiagramBuilder use case: Browse SOCCA model database 64U3.1 Change view on diagram . 64U3.2 Search within chunks . 65U3.3 Browse through chunks . 65U3.4 Follow links . 655.3 Discussion on DiagramBuilder use cases . 67D1 Discussion on: Specify diagram . 67D1.1 Open new (empty) diagram . 68D1.2 Generate diagram part(s) . 68D1.3 Apply generic editing operation . 68D2 Discussion on: Analyse diagram . 69D3 Discussion on: Browse SOCCA model database . 69D3.1 Change view on diagram . 69D3.2 Search within chunks . 70D3.3 Browse through chunks . 70D3.4 Follow links . 715.4 System notes on DiagramBuilder use cases . 73S1 System notes on: Specify diagram . 73S1.1 System notes on: Generate diagram part(s) 74S2 System notes on: Analyse diagram . 75S3 System notes on: Browse SOCCA model database 75S3.1 Change view on diagram . 75S3.2 Search within chunks . 76S3.3 Browse through chunks . 77S3.4 Follow links . 77

CONTENTS 76 The ModelIntegrator use cases 796.1 Introduction . 79S1 The use cases . 79S1.1 The use case: Manage chunks . 79S1.2 The use case: Manage links . 79S1.3 The use case: Analyse chunk . 79S1.4 The use case: Simulate chunk . 80S1.5 The use case: Browse SOCCA model database 80S2 List of use cases and sub use cases . 806.2 ModelIntegrator use cases . 81U1 ModelIntegrator use case: Manage chunks . 81U1.1 Specify chunk . 81U2 ModelIntegrator use case: Manage links . 82U2.1 Specify link . 82U3 ModelIntegrator use case: Analyse chunk . 836.3 Discussion on ModelIntegrator use cases . 85D1 Discussion on: Manage chunks . 85D1.1 Specify chunk . 85D2 Discussion on: Manage links . 87D2.1 Specify link . 87D3 Discussion on: Analyse chunk . 886.4 System notes on ModelIntegrator use cases . 91S1 System notes on: Manage chunks . 91S1.1 Specify chunk . 91S2 ModelIntegrator use case: Manage links . 92S2.1 Specify link . 93S3 System notes on: Analyse chunk . 947 Results and future work 957.1 Inventarory of the functionality . 957.2 Working method . 957.3 Structured use case description . 967.4 Basis for implementation . 967.5 Future work . 96A The meta model 97

8 CONTENTS

Chapter 1IntroductionThis document contains the master's thesis from Ezra Schuitema, done under supervision of dr.Luuk Groenewegen, ir. Ed van der Winden and with support of all members of the SEIS projectgroup.1.1 GoalThe goal of this thesis was to make an inventory of the required functionality for a future envir-onment for creating and using SOCCA models (refer to 1.3 for a small introduction on SOCCA),with the emphasis on the part of the environment responsible for the creation of SOCCA models.This has resulted in a document in which the expected functionality is listed and which is anapproach towards the future SOCCA environment (especially a requirements de�nition document(RDD)). Besides this, some interesting ideas regarding editors and similar environments as wellas ideas on the way to make an inventory of the required functionality itself are presented. Moreon this can be found in chapters 5 and 6.1.2 ContentsWe want to describe the functionality for the future environment for SOCCA with use cases. Thisis usually the �rst step for describing new environments, when little is known about the expectedfunctionality. In our case, however, we already have a little knowledge, because an informaldescription of SOCCA models is at hand. A good description of SOCCA models could provide uswith a better understanding of the required functionality of the environment. Therefore, we needa more formalized description of SOCCA models.A more formalized description (or meta model) of SOCCA is created in chapter 2. This metamodel describes the dependencies between the di�erent diagrams and concepts in SOCCA.The information in the meta model provides some ideas on some system components whichcan be expected in the future system. Chapter 3 discusses this. Besides the system componentswhich can be derived from the meta model, other expected system components are introduced aswell.In order to provide a detailed description of the required functionality for the system compon-ents introduced in chapter 3, use cases are introduced in chapter 4. An enhancement to the wayto describe use cases is introduced and the link between the use cases and the system componentsis made.The use cases for our future system are actually given in chapter 5 and chapter 6. The �rst ofthese two chapters focuses on the functionality of system components related to a user which buildsdiagrams. Chapter 6 focuses on a user which takes diagrams together and builds (sub) modelswith them. Both chapters not only contain the use cases, but also a discussion on these use casesan notes on possible implementation is provided. The discussion provides some alternatives and

10 Introductionpresent some choices which have to be made, while the system notes focuses on possible ways toimplement the functionality into the future system.The conclusion to the work done is given in chapter 7.1.3 A (very) small introduction to SOCCASOCCA (Speci�cation Of Coordinated and Cooperative Activities) is a speci�cation formalismfor modelling software processes created by prof. dr. Gregor Engels and dr. Luuk Groenewegenat the University of Leiden (the Netherlands).SOCCA uses three perspectives to model a process: the data perspective, the behaviour per-spective and the process perspective.1 The best from di�erent formalisms is used in SOCCA tomodel the di�erent perspectives. This is called eclectic modelling ([GE95]). Di�erent formalismsare used, because each formalism is can be used best to model only one of the perspectives. Theformalisms are integrated in SOCCA to supply a model which covers all perspectives. It is thisseparation in components according to the perspectives, which provides the decrease in complexityin modelling software processes and the increase in the changeability and evolvability of such asoftware process model.In SOCCA, the data perspective of a process is modeled by class diagrams with uses relation-ships added to them. The behaviour perspective is modeled by STDs modelling the external andinternal behaviour of classes and the communication perspective is modeled by PARADIGM ontop of these STDs.For a far more detailed explanation of SOCCA, examine [EG94]. For information on PARADIGM,look at [Gro91]. Examples of SOCCA speci�cations are given in [Wul95], [Rij95] and [H�op94].1.4 Terms and abbreviations used in this thesisIn this thesis, some terms used could lead to some confusion. This, because sometimes the sameterm could refer to two di�erent concepts. We have tried to avoid this by introducing specializedterms for every concept.Besides terms which could be interpreted di�erently, also other terms need some introductionbefore use. In the list below, all often used terms and abbreviations are explained:1As the process perspective is in development, this thesis will not take it into account. The behaviour perspectivecan be split up in a part only involved with behaviour and a part involved with communication: the (new) behaviourperspective and the communication perspective. This thesis will use these two perspectives instead of the one`behaviour perspective'.

1.4 Terms and abbreviations used in this thesis 11building block The smallest element of a visual language which can beused to draw a diagram [HW96]. The element representsa concept used in the visual language.building block class A meta model class which represents a building block. Seesection 3.3.1 for more details.chunk A group of SOCCA diagrams, which are grouped togetherfor a particular reason. Refer to section 3.4.2 for moredetails.class diagram A modelling formalism to model object oriented systems.The class diagrams used in SOCCA are the same asused in the UML (Uni�ed Modelling Language). Referto [BRJ97] for a description of UML notation. In thisthesis, the notation for the class diagrams used for themeta model is somewhat di�erent. Refer to section 2.1.1for explanation.constraint A dependency between two or more classes which cannotbe expressed by a relationship in a class diagram.dependency Used to indicate some kind of relationship between partsof SOCCA models. Dependencies often involve severalrelationships and constraints.diagram A diagram as it is used in SOCCA.diagram class A meta model class which represents a diagram type inSOCCA. See 3.3.1 for more details.grouping class A meta model class which represents groups of diagrams.See 3.3.2 for more details.grouping relationship A meta model relationship concerned with grouping dia-grams. See section 3.3.2 for more details.inter-diagram relationship A meta model relationship which relates classes of two ormore di�erent diagram types. See section 3.3.1 for moredetails.intra-diagram relationship A meta model relationship which relates classes withinone diagram type. See section 3.3.3 for more details.link An instance of an inter-diagram relationship. See section3.4.3 for more details.meta model The meta model describes what a well-formed SOCCAmodel looks like in a class diagram.meta model class A class in the meta model.meta model constraint A constraint in the meta model.meta model relationship A relationship in the meta model.plug Plugs are points on building blocks where other buildingblocks can be connected. For a detailed description referto section 3.4.1 on page 41.relationship A direct dependency between two or more classes in a classdiagram. Denoted by a connection between the involvedclasses.SOCCA model A model `written' in the SOCCA formalism.STD (State Transition Diagram) A modelling formalism formodeling behaviour. Refer to [EG94] for more detail.submodel A part of a SOCCA model containing all three perspect-ives. A submodel is a SOCCA model, but does only modela part of the process which needs to be modeled.

12 Introduction

Chapter 2The meta model for SOCCAmodels2.1 IntroductionWe want to make a system in which SOCCA models can be created. For this, we need to de�newhat a correct SOCCA model is. Informally, the de�nition of a SOCCA model is already known(look at [EG94] for example). However, this de�nition has never been formalized. If the envisionedsystem should support SOCCA to the fullest extend, the formalisation of the relationships betweenthe diagrams is needed.SOCCA uses existing formalisms, namely object-oriented modelling based on class diagrams,state transition diagrams (STD) together with PARADIGM and object
ow diagrams. Theseformalisms have all been formalized (for example: class diagrams in [BRJ97], PARADIGM in[Gro91] and object
ow diagrams also in [BRJ97]) and so this will not have to be done again.However, the dependencies between the models from these formalisms in SOCCA have never beenformalized. In this chapter, we will try to create a class diagram in which all existing relationshipsbetween those diagrams are given. Whenever the class diagram cannot cover all the properties ofsome dependency, we will add these properties in separate constraints. The constraints are writtenin a style resembling Z, in order to avoid di�culties in interpretation. We have chosen to addas few constraints as possible and thus we try to model as much as we can in the class diagram.Apart from formalizing the dependencies between the diagrams, the class diagram brings with itanother bene�t: it can be used for implementing the system, it provides the basis of an internalrepresentation of SOCCA models.The class diagram is created top-down. We �rst identify large and complex parts of a SOCCAmodel and then try to break these parts down in smaller pieces. These pieces can often besplit up in parts as well, and so on. This way, we get a class diagram with most classes eithergrouping di�erent other classes (part-of relationships) or describing a similarity between otherclasses (inheritance). An instance of the class at the top of this aggregation is identi�ed withthe real world notion of a SOCCA model, while the leafs (or bottom) of it represent the buildingblocks within the di�erent formalisms. Note, that information about the layout of the diagramsand building blocks will not be included in the class diagram. Such information is not neededto understand a SOCCA model and thus not needed to model the dependencies between thediagrams.In order to get a class diagram which is intuitively correct, we try to identify each class withsome real world concept or object. This is not always easy. We also strive for the relationships inthe class diagram to have meaningful names.We have chosen not to model labels and names as separate classes. This was done in orderto keep the class diagram smaller and therefore more clear. The correspondences between labels

14 The meta model for SOCCA modelswhich are sometimes used in SOCCA, are modeled as relationships between the concepts whichthe labels label.We have also not added attributes and operations to the classes. As the expected operationswere not clear at the time when we created the meta model. They were not necessary as we werenot creating the internal model for the system, but only a meta model for SOCCA. In the nextstep after this thesis, the attributes and operations will be necessary for a useful internal model.2.1.1 The notation used for the meta modelIn this subsection, we will describe the notations used for our meta model, shortly.The class diagramThe notation for class diagrams used in this chapter, is a frequently used one. But, because nogeneral accepted notation for class diagrams exist, we will explain this notation shortly.Classes are drawn in rectangle. The name of the class is put inside the rectangle. See �gure2.1. Figure 2.1: The way classes are drawnWe distinguish three types of relationships between classes: part-of relationships, inheritance(or is-a) relationships and common relationships (common relationships actually are all otherpossible relationships). These three types have their own notation, which is displayed in �gure2.2. The relationship types in that �gure are as follows:� From class A to class B: common relationship.� From class D to class E: part-of relationship. (Class E is a part of the class D)� From class G to class H: inheritance relationship. (Class H inherits from class G)Note, that a name for the relationship only is supplied with the common relationships. Alsonote, that the direction is important with part-of and inheritance relationships.Figure 2.2: Relationships between classesRelationships can also involve more than two classes. Figure 2.3 shows three of such relation-ships:� Common relationship between class A, B and C;� Part-of relationship from class D to class E and F;� Inheritance relationship from class G to class H and I.

2.1 Introduction 15Note, that a common relationship between three or more classes uses a new graphical notation(the diamond). Like with the relationships between two classes, the direction of the relationshipis again important with part-of and inheritance relationships.Figure 2.3: Relationships between more than two classesFor the common and the part-of relationships cardinalities can be provided to denote howmany object of the class can or must participate in the relationship. The way cardinalities aredrawn is shown in �gure 2.4.The meaning of these cardinalities is as follows:� cardinality of the relationship to class A: Exactly one object of class A is related to theobject on the other side.� cardinality of the relationship to class B: Either zero or one objects of class B are related tothe object on the other side.� cardinality of the relationship to class C: Zero or more objects of class C are related to theobject on the other side.� cardinality of the relationship to class D: One or more objects of class D are related to theobject on the other side.
Figure 2.4: The cardinalities of the relationshipsThere are two concepts important with inheritance relationships. These concepts are:� disjoint versus overlapping: An overlapping inheritance relationship allows objects ofthe `general' class to be objects of several `inheriting' classes at the same time. A disjointinheritance relationship only allows objects of the `general' class to be an object of one`inheriting' class.� totality versus in-totality: A total inheritance relationship requires every object of the`general' class to be an object of one (or more) `inheriting' class(es). With an in-totalinheritance relationship, an object of the `general' class does not have to be an object of an`inheriting' class.In �gure 2.5 four kinds of inheritance relationships are displayed:

16 The meta model for SOCCA models� a: disjoint and not total;� b: disjoint and total;� c: overlapping and not total;� d: overlapping and total.Figure 2.5: The four kinds of inheritance relationshipsThe constraintsAs stated, the constraints are written in style resembling Z. Generally, a constraint looks like this:de�nition restricted quanti�ers j pre-condition � conditionAn example of such a constraint is the following:8u : uses; c : class; o : operation j(u calls o) �(u to c), (o part-of c)Here, you can see that the de�nition of the restricted quanti�ers is done with classes. `8u:uses'means something like: \for all objects u from class uses...".The pre-conditions are written like the conditions. Used in those conditions are existences ofinstances of relationships: `(u calls o' means something like: \an instance of relationship callsrelates object u and object o". In the (pre-)conditions these `instances' can be connected withlogical connectives.Interpretation of the constraint above results in something like:\For all objects from the classes uses, class and operations for which an instance of the rela-tionship calls exist between the object from class uses and the object from class operation: itmust be true, that when an instance of the relationship to exists between the object from the classuses and the object from the class class then an instance of the part-of relationship from theobject from class operation and the class class must exist and vice versa"...or in clear English:\For all uses-relationships which call an operation: if the uses-operation points to some class, thenthe operation called by that uses-relationship must be part of that class.For an introduction on Z refer to [Dil94].2.2 Perspectives within a SOCCA modelLet us �rst identify the class at the top of the hierarchy. This class represents SOCCA models,so it is called socca model. An instance of this class groups all objects and relationships fromone SOCCA model together and thus represents that SOCCA model. So, we have class diagramfragment 2.6 on the next page.

2.3 The data perspective 17Figure 2.6: Class diagram fragment of SOCCA modelA process can be viewed and described from three perspectives. These are the data perspective,the behaviour perspective and the communication perspective. Another perspective, called theprocess perspective, does not play a very important role in SOCCA and so is not introduced asan explicit perspective.Three classes are added to the class diagram fragment of �gure 2.6: data perspective,behaviour perspective and communication perspective. We would like to identify realworld objects with all classes, but it is not very intuitive to speak of some perspective as anobject. Instances of these classes are sets of diagrams from the SOCCA model. An instance ofdata perspective represents all the class diagrams used in the data perspective of the SOCCAmodel. An instance of behaviour perspective represents all the internal and external STDsused in the SOCCA model. And an instance of communication perspective represents all themanagers, employees and subprocesses used in the SOCCA model.Figure 2.7: Class diagram fragment of SOCCA modelIn �gure 2.7 the three perspectives have been added to the class diagram. They are all partof the class SOCCA model, indicating that it is possible to distinguish the three perspectivesfor each SOCCA model. Because it is not possible for one process to have more than one of eachof the perspectives, the cardinality of the part of relationships is `exactly one'. So, each SOCCAmodel has one data perspective, one behaviour perspective and one communication perspective.The dashed lines labeled by `rel?' between the classes concerning the perspectives indicate theexistence of some intuitive dependency between those classes. In this case, the perspectives arerelated, because they are three di�erent viewpoints on the same model; a change in one perspectivewill change the other perspectives. When the class diagram is complete, these relationships willhave been made explicit.2.3 The data perspectiveWe now proceed with de�ning how the data perspective of a process is modeled in SOCCA. Fornow, we leave out the classes concerning other perspectives and the class socca model and wezoom in on the class data perspective.In SOCCA, the data perspective of some process is modelled by a class diagram. This classdiagram models the classes which are important to the modelled process and the relationshipsbetween them. An important relationship between classes in SOCCA is the uses relationship. Itmodels which operations can be imported from one class to another. This uses relationship can bemodeled in class diagrams, but because it is so important, a special type of diagram is also used.

18 The meta model for SOCCA modelsThis type is known as an import/export diagram. An import/export diagram focuses only on theclasses and the uses relationships between them and is thus a special view on the class diagram.To add this to the meta model, we need two new classes: class diagram and import/exportdiagram. An instance of the class class diagram represents a class diagram and an instance ofimport/export diagram represents a import/export diagram.Figure 2.8: Class diagram fragment of data perspectiveSee the class diagram fragment in �gure 2.8. We have added the class class diagram and theclass import/export diagram. As mentioned previously, each data perspective has one classdiagram and one import/export diagram (which is a view on the class diagram). Again, a depend-ency exists between the class diagram and the import/export diagram for some data perspective:for a SOCCA model the import/export diagram contains the classes which are modeled in theclass diagram. In section 2.4 this dependency is made explicit.We could imagine the data perspective to be modeled by several class diagram fragments andseveral import/export diagram fragments. Then these fragments taken together would span upthe whole class diagram. It might be useful to include this in the meta model, if such a thing isreally wished for. In our opinion, the inclusion would not involve so many changes to the model.2.3.1 A class diagramNow, let us zoom in on the class class diagram. A class diagrammodels classes and relationshipsbetween those classes. The �rst idea is to model class diagrams as in �gure 2.9. The classesclass and relationship are new. The class class represents classes used in class diagrams andimport/export diagrams. The class relationship represents any kind of relationship used in aclass diagram. Figure 2.9: Class diagram fragment of class diagramIn the class diagram fragment in �gure 2.9 the new classes have been added. Apart from thesenew classes, two new relationships called from and to have been added too. The class diagramfragment says the following:A class diagram can have one or more classes and one or more relationships. An empty classdiagram (without any classes) cannot be stored in this representation and is thus not seen as avalid class diagram. A relationship connects at least two classes, at least one at the `from'-side(the side where the relationship originates) and at least one at the `to'-side (the side where it isheaded). This distinction between the `from'- and `to'-side is needed for inheritance and the partof relationship; if A is part of B, then B is not part of A.

2.3 The data perspective 19As modeled here, we need to specify a direction for common relationships as well. Althoughthis is not usual, it is more of an advantage than a limitation. Most of the time, the name ofa relationship implies a direction anyway. And if a relationship involves the same class at bothsides, such a direction is needed to indicate the roles of the classes.From the cardinalities, we can also conclude that a class must have a relationship connectedto it. This is because a class with no uses relationship connected to it is not useful in SOCCA.Attributes and operations of classes are important in SOCCA. They are de�ned in class dia-grams as well. Therefore, the classes operation and attribute must be included.Figure 2.10: Class diagram fragment of classIn the class diagram fragment in �gure 2.10, the new classes are added to the class diagram.Because operations and attributes are de�ned for a speci�c class, we have made these classes partof the class class. The cardinality of the part of relationship involving the class operation is`one or more', because a class is not useful in SOCCA, if it does not specify any new operations.The cardinality of the part of relationship involving the class attribute is `zero or more'. A classwithout any attributes can be useful in SOCCA.Back to the class diagram fragment in �gure 2.9 on the facing page. We focus now on theclass relationship. The di�erent types of relationships are important in SOCCA as well. Wecan identify four types of relationships used in the class diagrams of SOCCA. These types are theinheritance relationship, the part-of relationship, the common relationship and the uses relation-ship. We introduce the classes inheritance relationship, part-of relationship, commonrelationship and uses relationship to model them. We add them to the diagram as classesthat inherit from the class relationship, because they merely are di�erent types of relationships..Figure 2.11: Class diagram fragment of relationshipIn the class diagram fragment in �gure 2.11 the four classes are added. By making the inher-itance from relationship to the four new classes total, it is modeled that every relationship ina class diagram is either an inheritance, a part-of, a common or a uses relationship. And becausethe inheritance is disjoint, no relationship can be of two types simultaneously.Now, let's put the diagram fragments concerning class diagrams in SOCCA into one completeclass diagram for class diagrams. We do this by taking the class diagram fragments in �gures 2.9on the facing page, 2.10 and 2.11 together. The class diagram fragment in �gure 2.12 on the nextpage displays the result. It shows a class diagrammodeling the relevant concepts of class diagramswithin SOCCA.

20 The meta model for SOCCA models
Figure 2.12: Class diagram fragment of class diagramThe relationship calls has been added to the class diagram fragment. This relationship isexplained in the next section, as we discuss the import/export diagram and the uses relationship.2.3.2 An import/export diagramThe next step is to focus on the class import/export diagram from the class diagram fragmentin �gure 2.8 on page 18 and then relate it to �gure 2.12 by means of the complete class diagramfor the data perspective.An import/export diagram from a SOCCA model displays classes with their operations andattributes and the uses relationships between those classes. The classes which are displayed areexactly the classes from the class diagram from that SOCCA model. Therefore, an import/exportdiagram is nothing more than a limited view on the class diagram of a SOCCA model. The reasonwhy this view is mentioned explicitly is that a lot of people like to de�ne their uses relationshipsin an import/export diagram and not in the class diagram.To model the import/export diagrams, we do not need any new classes. The classes involvedare all de�ned in section 2.3.1, where all classes involving the class diagrams were introduced.Figure 2.13: Class diagram fragment of import/export diagramIn the class diagram fragment of �gure 2.13 the classes class and uses relationship havebeen added. Because classes and uses relationships are part of import/export diagrams, bothclasses are part of the class import/export diagram. An import/export diagram contains atleast one class, because a class diagram contains at least one class. An import/export diagramshould also contain at least one uses relationship, because a class with no uses relationships is notuseful in a SOCCA model.A dependency exists between classes and uses relationships. However, it does not only involvethe classes in the diagram fragment of �gure 2.13. We also need the class operation. It isincluded in the class diagram fragment in �gure 2.14 on the facing page.

2.3 The data perspective 21
Figure 2.14: Class diagram fragment of import/export diagramTo model the dependency between classes and uses relationships we need three relationships:from, to and calls. The relationships from and to express the direction of the uses relationship.As the relationship calls, indicates which operations are called from the class to which the usesrelationship is pointing. Because every useful operation of some class should be called somewhere,the cardinality of calls is `one or more' at the side of uses relationship. The cardinality of callsat the side of operation is `one or more' also, because a uses relationship should always importat least one operation. The cardinalities from the relationships from and to are not surprising.Each uses relationship should originate from one class and point to another, so the cardinalitiesat the side of class are `exactly one'. Each class can be connected to several uses relationshipsand should be connected by at least one. So the cardinalities from from and to at the side of usesrelationship are `one or more'.You might expect the operations to be exported from the class related to the uses relationshipby from and imported into the class related by to. It is indeed the other way around. This is notas illogical as it seems. Look at �gure 2.15. Class A uses the operations from class B, while theuses relationship is drawn from A to B. The class related to the uses relationship by from is thusnot the class from which operations are called, but the class from which the relationship is drawn.

Figure 2.15: The uses relationshipIn the meta model, �gure 2.15 would be translated as �gure 2.16 on the following page. Thismeans: A uses B $ A uses some of the operations of B.There is something which we cannot conclude from �gure 2.14, but which is required for theuses relationship; We need to make sure that if an operation is called by a uses relationship, it isfrom the class to which the relationship is pointing. This cannot be done in the class diagram andso this has to be forced by means of a constraint. Constraint 2.1 on the following page does this.

22 The meta model for SOCCA models
Figure 2.16: Translation of the uses relationship to the meta model8u : uses; c : class; o : operation j(u calls o) �(u to c), (o part-of c) (2.1)2.4 Back to the data perspectiveNow, we can compose the class diagram fragment for the whole data perspective. This is doneby taking the class diagram fragments of �gures 2.8 on page 18, 2.12 on page 20 and 2.14 on thepage before together.

Figure 2.17: Class diagram fragment of data perspectiveIn the class diagram fragment in �gure 2.17, the unde�ned relationship from �gure 2.8 onpage 18 has been de�ned. It is a relationship via the class class. Intuitively: a class diagramfrom some SOCCA model should contain exactly the same classes as the import/export diagramfrom that SOCCA model. This, because the import/export diagram is only a view on the classdiagram. Unfortunately, this cannot be expressed in the class diagram of the meta model. It tellsus that each class is part of some class diagram and part of some import/export diagram whichboth are part of some data-perspective. But it cannot be concluded, that the class diagram andimport/export diagram are part of the same data-perspective (of some SOCCA model). Therefore,another constraint is needed.

2.5 The behaviour perspective 238cl : class; cd : class diagram; ie : import/export diagram; �(9dp : data perspective � (cd part-of dp ^ ie part-of dp)) ,((cl part-of cd) , (clpart-of ie)) (2.2)Constraint 2.2 expresses what we want. From right to left: if a class is part of both a classdiagram and a import/export diagram, then a data perspective exists, from which that classdiagram and import/export diagram are both part. The constraint also implies another thing.From left to right: if a data perspective exists from which both some class diagram and someimport/export diagram are part, then if a class is part of that class diagram, it is part of theimport/export diagram as well (and vice versa). This is the correct way to enforce that everyclass in some class diagram is present in the corresponding import/export diagram. This couldnot be extracted from the meta model as well.Note, that on �gure 2.17 on the preceding page, apart from constraint 2.2, also constraint 2.1on the preceding page applies.2.5 The behaviour perspectiveBecause the data perspective modeling has been �nished, we now proceed with modeling thebehaviour perspective (recall the class diagram fragment in �gure 2.7 on page 17). In SOCCAthis perspective is modeled with STDs. So we need to model STDs in the meta model.A class std is needed, which represents STDs in SOCCA. States and transitions are theimportant parts of STDs and thus two other classes are modeled: state and transition. Statesand transitions are both part of STDs. In order to get a valid STD, each transition needs to beconnected to a state on either side.Figure 2.18: Class diagram fragment of STDSee the class diagram fragment of �gure 2.18. It shows a way to model STDs in a class diagram.A STD in SOCCA should have at least one state and at least one transition too. Each type ofSTD in SOCCA requires at least one transition (and thus one state) to exist. Two relationships,called from and to have been added to model that a transition originates from one state and endsat one state. Each state can have several transitions going in and out.In SOCCA, there are two types of STDs which model the behaviour: external and internalSTDs. External STDs model the behaviour of classes and the internal STDs model the behaviourof operations. Every class should be modeled by at least one external STD and every operation byat least one operation. The behaviour perspective consists of these two types of STDs. The classesexternal std and internal std will represent external STDs and internal STDs, respectively.See the class diagram fragment of �gure 2.19 on the following page. The two new classes havebeen added as classes which are part of the class behaviour perspective and inherit from std.Because there exists at least one class in the SOCCA model (at least one class is required in theclass diagram), at least one external STD should exist as well. In that one class, at least oneoperation should exist. So at least one internal STD should exist as well. This is seen in thecardinalities of the part-of relationship.

24 The meta model for SOCCA models
Figure 2.19: Class diagram fragment of behaviour STDBecause internal and external STDs are not the only STDs used in SOCCA and the otherSTDs are not part of the behaviour perspective, we cannot make the class std part of behaviourperspective.2.6 Linking the behaviour perspective to the data perspect-iveWe have both modeled the data and the behaviour perspective in SOCCA. As implied in theprevious section, these two perspectives are linked, because external STDs model the classes fromthe data perspective and the internal STDs model the operations. To link the two perspectiveswe need to know exactly what the relationships between the two perspectives are.External STDs model the behaviour of classes by letting the transitions refer to operations ofthat class. That way only sequences of operations speci�ed by the external STD are allowed. So,apart from relationships between external STDs and classes, relationships between a transitionsof external STDs and operations exist too. These relationships are modeled in the class diagramfragment in �gure 2.20.

Figure 2.20: Class diagram fragment of linking the two perspectivesIn the class diagram fragment in �gure 2.20 the new relationships have been added.1 The �rstcalled speci�es denotes which external STDs specify the class. Multiple external STDs can together1Only the relevant classes for external STDs are modeled.

2.6 Linking the behaviour perspective to the data perspective 25specify one class and every external STD speci�es a class. This is modeled by the cardinalities ofthe relationship.The other relationship, called refers-to, indicates which transition of an external STD refers towhich operation. A transition of an external STD does not have to refer to an operation, but eachoperation should be referred to by a transition of the external STD which models its class. For asmall part this is modelled by the cardinalities. But not all can be modeled in the class diagramfragment. There is no way of modelling that an operation has to be referred to by some transitionof the external STD which models its class. Or the other way around: If an operation is referredto by some transition of an external STD modelling a class, there is no way to model that theoperation is part of the modeled class. These two requirements are captured by constraint 2.3.8o : operation; c : class �(o part-of c), 9es : external std; t : transition �t part-of es ^ es speci�es c ^ t refers-to o (2.3)Besides the dependencies between the two perspectives involving the external STDs, there arealso dependencies involving the internal STDs. Internal STDs model the behaviour of operations.This by prescribing speci�c orders of doing internal operations2 and calling other operations.Transitions in internal STDs can thus refer to some internal operation (not modeled) or to someother operation. They also could refer to something called an act-operation. This is an operationthat initiates the operation itself. It re
ects some communication with the external STD which isnot modeled here.
Figure 2.21: Class diagram fragment of linking the two perspectivesIn the class diagram fragment in �gure 2.21, the two dependencies are added as two rela-tionships: speci�es and refers-to. The cardinalities are like with the external STD: an operationcan be modeled by multiple internal STDs and every internal STD models (part of) exactly oneoperation. A transition of an internal STD can refer to an operation, but does not have to. Inorder to be useful an operation should at least be called once (like with the uses relationship).The classes class, relationship and uses relationship are included for the followingreason: Only operations available for calling can be called. Which operations are available isde�ned by uses relationships in the data perspective. In the class diagram there is no way toenforce this, so another constraint is needed.2These internal operations are internal to the operations themselves.

26 The meta model for SOCCA models8o1; o2 : operation; c1; c2 : class j (o1 part-of c1 ^ o2 part-of c2) �(9u : uses relationship � (u from c1 ^ u to c2 ^ u imports o2),(9is : internal std; t : transition �(is speci�es o1 ^ ct part-of is ^ t refers-to o2))) (2.4)Constraint 2.4 states that if there exists a uses relationship, that calls some operation of aclass, then there exists a transition in an internal STD, that models an operation from that class,which refers to that operation (and vice versa).You might have noticed, that there exist two relationships called refers-to from transitionto operation. This is not a problem, as both are just references to some operation. For clarity,it could be useful to rename both relationships, but as both have compatible cardinalities this isnot necessary and both can be combined in one relationship, which only denotes a reference froma transition in a STD to an operation.The classdiagram fragment in �gure 2.22 shows the whole data and behaviour perspectivelinked to each other.

Figure 2.22: Class diagram fragment of linking the two perspectives

2.7 The communication perspective 272.7 The communication perspectiveThe last perspective left to model is the communication perspective. Communication in SOCCA ismodeled with PARADIGM on top of the STDs of the behaviour perspective. In PARADIGM, thereare three types of STDs which are important: managers, employees and subprocesses. Althoughsubprocesses are not really STDs, but rather STDs with some added functionality (they contain`traps'), we will model them as STDs anyway.We introduce the classes manager, employee and subprocess as classes that inherit fromstd and are part of communication perspective. This is done in the class diagram fragmentin �gure 2.23.3
Figure 2.23: Class diagram fragment of the communication perspectiveThe dashed relationships in the class diagram fragment in �gure 2.23 express the existence ofa dependency between the three classes. This dependency is the whole idea PARADIGM is basedon. It is best described by the following four steps taken from [EG94]:1. The sequential behaviour of each process is described by an STD.2. Within each STD, signi�cant subdiagrams (called subprocesses) with respect to coordinationwith other processes (also described by STDs) are identi�ed.3. Within each subprocess, (sets of) states, or so-called traps, are identi�ed. These describesituations where an object is ready to switch from one subprocess to another.4. The possible transitions between subprocesses of all objects, the behaviours of which haveto be coordinated, are once more described by a STD, or a so-called manager process.PARADIGM also supplies us with the concept of a partition. A partition is a set of subprocessesfor one employee which are managed by one manager. It is useful to use this concept in SOCCAas well and we will model it in the meta model.The class diagram fragment in �gure 2.24 on the following page de�nes the relationshipsbetween the PARADIGM concepts as accurate as possible in a class diagram. This fragmentis used as the communication perspective in the meta model. A class partition must be intro-duced, as this has not yet been done. This class represents the SOCCA concept of a partition.In the class diagram fragment of �gure 2.24 on the next page, the relationshipmanages denotesthe described dependency between a manager, an employee and the partitions. The cardinalityof this relationship is `one or more' for each side. A manager can manage multiple employeesand thus multiple partitions. An employee can be managed by multiple managers. For everypartition, there is only one employee. This cannot be extracted from the class diagram, so weneed a constraint. This constraint is given in constraint 2.5.8p : partition; 91e : employee � e manages p (2.5)3The cardinalities and the disjoint inheritance in that class diagram fragment will be explained later.

28 The meta model for SOCCA models
Figure 2.24: Class diagram fragment of communication perspectiveTwo other relationships in the class diagram fragment of �gure 2.24 are requires and prescribes.The relationship prescribes speci�es which subprocesses are prescribed by a state of the manager.Each subprocess should be prescribed at least once, thus the cardinality of prescribes at the sideof state is `one or more'. If a subprocess is not prescribed at least once, then it is uselessand it should not be in the SOCCA model. Each state of a manager should prescribe as manysubprocesses as there are employees managed by the manager containing that state. To be exact,for every partition/employee couple managed by the manager, one subprocess is prescribed fromthat partition for each state of that manager. To describe this, constraints 2.7 and 2.8 are included.Although at least one subprocess is prescribed by each state of a manager, not every STD is amanager. And thus every state is not a manager state. Therefore, the cardinality of prescribes atthe side of subprocess is `zero or more'. Constraint 2.6 is needed to enforce that every state ofa manager prescribes at least one subprocess.8m : manager; s : state js part-of m � (9sp : subprocess � s prescribes sp) (2.6)8s : state; m : manager; p : partition j(s part-of m ^m manages p) �91sp : subprocess(sp part-of p ^ s prescribes sp) (2.7)8s : state; m : manager; sp : subprocess j(s part-of m ^ s prescribes sp) �9p : partition(m manages p ^ sp part-of p) (2.8)The relationship requires speci�es which traps are required by which transitions. Every trapde�ned has to be required at some transition of a manager (else it is useless), so the cardinality

2.8 Linking the communication perspective to the other perspectives 29on the side of transition is `one or more'. Every transition of a manager has to require at leastone trap, but because not all transitions are transitions of a manager the cardinality of requires atthe side of trap is `zero or more'. Constraint 2.9 states the every transition of a manager requiresat least one trap. Constraint 2.10 has been included to make sure that every trap required bysome transition, is a trap from a subprocess which was prescribed in the state from where thattransition originates.8m : manager; t : state; jt part-of m � (9tp : trap � t requires tp) (2.9)8s : state; t : transition; tp : trap j(t from s ^ t requires tp) �91sp : subprocess(tp part-of sp ^ s prescribes sp)) (2.10)Now, we want to make clear that subprocesses are speci�c views on employees with trapsadded to them. The new constraints 2.11 and 2.12 say that every state or transition from somesubprocess is a state or transition of the associated employee.8sp : subprocess; p : partition; e : employee; s : state j(p manages e ^ sp part-of p ^ s part-of sp) � (s part-of e) (2.11)8sp : subprocess; p : partition; e : employee; t : transition j(p manages e ^ sp part-of p ^ t part-of sp) � (t part-of e) (2.12)2.8 Linking the communication perspective to the otherperspectivesThe communication perspective now needs to be linked to the other perspectives. As mentionedin the beginning of 2.7 the communication in SOCCA is modeled by PARADIGM on top of theSTDs of the behaviour perspective. So we need to link the concepts of PARADIGM to the STDsof the behaviour perspective. As is stated in [EG94], the external STDs serve as useful managersand internal STDs serve as useful employees. Therefore we need to identify the two concepts.In the meta model this corresponds to identifying the classes external std and internalstd with the classes manager and employee respectively. This however leads to a problem. InSOCCA, employees which are not really internal STDs must be allowed to exist. Take a look atthe following example:A class can have several external STDs specifying it. Each of these external STDs correspondsto a manager. However, there is a need for a manager to manage these managers for the class.This manager is then also an external STD specifying the class. The managers that are managedby this manager are really employees of this manager. These employees do not correspond to aninternal STD.Likewise, an example in which an operation would have multiple internal STDs can be con-structed. In this case, the employees can be managers to (such a manager manages the di�erentemployees for the operation). Such a manager does not correspond to an external STD.So the classes from both perspectives cannot be identi�ed, although most of the time theyrepresent the same concepts. The solution is to let the classes external std and internal stdinherit from the classes manager and employee respectively. Both inheritance relationships

30 The meta model for SOCCA modelsmust not be total. That way, an external STD is always a manager, but a manager not alwaysan external STD. And an internal STD is always an employee, but an employee not always aninternal STD.The classdiagram fragment in �gure 2.25 shows the communication perspective and the beha-viour perspective linked together.

Figure 2.25: Classdiagram fragment of linking the two perspectives.Because the behaviour perspective is linked to the data perspective, the communication isindirectly linked to the data perspective as well. This does not have to be done separately.2.9 The complete meta modelAs we have linked the perspectives, the complete meta model has been �nished. This meta modelalso includes all constraints introduced in this chapter. Figure 2.26 on the facing page displaysthe whole meta model. All constraints mentioned in this chapter apply to this meta model.For a two page version of the meta model see appendix A. The constraints are repeated theretoo.2.10 Conclusion.This concludes the creation of the class diagram for SOCCA models. In the next chapter, thisclass diagram (and its constraints) will be used to extract demands on the way a SOCCA modelis built. The class diagram itself and its constraints already tell what a SOCCA model should

2.10 Conclusion. 31

Figure 2.26: The complete class diagram.

32 The meta model for SOCCA modelsconsist of, if it should be correct. However, a SOCCA model in construction will seldom meet thedemands forced on it by this class diagram. Therefore, in the next chapter, the demands fromthis chapter will be weakened somewhat.

Chapter 3Analysing the meta model3.1 IntroductionThe meta model created in the previous chapter was created to formalize the dependencies betweenthe diagrams used in SOCCA. The result is a meta model which can be used to check whethersome collection of diagrams is a syntactically correct SOCCA model or not: if a SOCCA model issyntactically correct, then it `�ts' in the meta model.Besides being a formalization of the dependencies in SOCCA models, the meta model can alsobe used as a basis for the internal representation and the database. Such an internal representationneeds to be build and maintained a system component, usually called an editor.This chapter analyses the meta model and splits it up in a natural way. This split resultsin smaller pieces of meta model with dependencies between these pieces. Therefore, it also leadsto smaller editors responsible for smaller fragments of the internal representation and editorsresponsible for the dependencies between these fragments. These editors are identi�ed and de-scribed in this chapter too. Besides these editors, other components of the future system areintroduced as well. These components cannot be identi�ed with a part of the meta model (likethe editors). They are introduced as components which are necessary to examine the internalrepresentations/database and use their contents.Although the meta model is a useful basis for the internal representation and the database,there are some notions which were not important in the meta model, but are in the internalrepresentation/database. These are discussed in section 3.6.The functionality of the editors and other components is described only a little in this chapter.The exact functionality of the system (and thus its components) is described by the use cases inthe following chapters. Therefore, the use cases are identi�ed with the system components in thelast section of this chapter.3.2 Internal representation and the databaseIf we examine the needs for the future system, then the �rst thing we come across is the need fora way to represent (parts of) SOCCA models in a data structure. Such a data structure is calledan internal representation. The meta model can serve as the basis for this internal representation,because it contains all needed and useful concepts within SOCCA.Also needed in the system is a place to store the (parts of) SOCCA models for inde�nitetime. A place to store data is usually called a database, so we will call our place to store modelsa database as well. The internal representation serves as a useful `blueprint' for this database,because it must be possible for the system to get information from the database and convert it tothe internal representation. If the structures of the database and the internal representation arelargely the same, there is no need for di�cult conversion steps.

34 Analysing the meta modelFor now, we will assume that the meta model is also a model for the internal representationand the database. In reality, at least some additions to the meta model are needed in order for itto be a useful internal representation and/or database (see section 3.6). But, for the identi�cationof the useful editors we do not need this.3.3 Splitting up the meta modelThe meta model from the previous chapter is thus also the model for the internal representationof SOCCA models for the system. For creating and editing SOCCA models we need editors.These editors translate the diagrams drawn by the users to a SOCCA model in the internalrepresentation. These SOCCA models will later be stored in the database.The meta model is quite large. Therefore, we are going to split it up in smaller fragments,with these fragments representing concepts which are more or less independent of the conceptsrepresented in other fragments. For these fragments we can use separate editors. Each of theseeditors is only responsible for a fragment of the meta model. These editors are easier to de�neand build than an editor, which is responsible for the complete meta model. Sections 3.3.1 and3.3.2 present useful split ups of the meta model which will be used to de�ne the system.By splitting up the meta model in fragments, some relationships and constraints, that areconnecting these fragments in the original meta model, come to disappear. Although these re-lationships and constraints are not visible to the fragments, they still need to be edited andmaintained by some part of the system. Section 3.3.3 discusses this.3.3.1 Split up in diagram typesA SOCCA model models a process by means of various types of diagrams. It is possible to split upany SOCCA model in diagrams according to these diagram types. The basic diagram types whichSOCCA uses, are class diagrams and STDs. Furthermore, because SOCCA uses PARADIGM ontop of its STDs for specifying the communication, a special kind of STD called subprocess is usedas well. No other diagram types are used in SOCCA. Because import/export diagrams are onlyviews on class diagrams and add no special graphical constructs, they are not a diagram type. TheSTDs used in SOCCA regarding PARADIGM, thus the internal, external, employee and managerSTDs are no separate diagram types as well. Although used for di�erent purposes, these kindsof STDs only represent a special view on `normal' STDs. The graphical constructs used in thoseviews are the same as those used in `normal' STDs. A partition is no diagram type as well, butonly a special way of looking at a special group of subprocesses, thus a view.If a SOCCA model is split up in diagrams of di�erent diagram types, then the editor which isresponsible for the internal representation can be split up in smaller editors. Each of the smallereditors is then responsible for one diagram type and thus for only a small part of the internalrepresentation. So, the internal representation must be split up in parts corresponding to the dif-ferent diagram types. The meta model serves as a basis for the internal representation, thereforewe will split up the meta model according to these parts.Let us �rst introduce some classi�cation of the classes used in the meta model. This to makethe discussion in this chapter a little easier. The meta model contains three types of classes: classeswhich represent a diagram, classes which represent building blocks of a diagram and classes whichrepresent groups of diagrams. We will call these classes: diagram classes, building block classesand grouping classes, respectively.The fragments of the meta model corresponding to the diagram types are constructed in thefollowing way. First, the diagram class representing the diagram type is included. For eachdiagram type, there exist building blocks. These building blocks are represented by building blockclasses in the meta model. These building block classes are included in the fragment as well. Allthe relationships which existed in the meta model between the included classes are then made part

3.3 Splitting up the meta model 35of the fragment as well. These relationships are relationships which are involved with the speci�cdiagram type only. Therefore, we will call them intra-diagram relationships.Class diagramsThe �rst basic diagram type we want to discuss is the class diagram. The meta model classrepresenting the class diagrams is the diagram class class diagram. The construction process,described earlier, results in the fragment of the meta model given in �gure 3.1.
Figure 3.1: The meta model for class diagramsThe building block classes and intra-diagram relationships for class diagrams are the metamodel classes (apart from the diagram class class diagram) and relationships in the fragmentof �gure 3.1, they are listed in the table 3.1 too.building block classclassattributeoperationrelationshipuses relationshipinheritance relationshippart-of relationshipcommon relationship relationship class classpart-of class diagram classpart-of class diagram relationshippart-of class diagram attributepart-of class diagram operationfrom class relationshipto class relationshipinheritance relationship uses relationshipinheritance relationship inheritance relationshipinheritance relationship part-of relationshipinheritance relationship common relationshipcalls uses relationship operationTable 3.1: The building block classes and intra-diagram relationships for class diagramsBecause import/export diagrams are only a special view on class diagrams, we have modeledthem as such in the meta model. Although import/export diagrams are not really a special typeof diagram, we can identify the fragment of the meta model which models the import/exportdiagrams just as we did with the class diagrams. Figure 3.2 on the following page shows thisfragment. The meta model class representing the import/export diagrams is the diagram classimport/export diagram.Note, that in the meta model the class relationship appears between the meta model classuses relationship and the meta model class class. Because the uses relationship is the onlytype of relationship existing in the import/export diagrams, this generalization has been left out.In the meta model the class uses relationship inherits from relationship. Therefore, in the

36 Analysing the meta model
Figure 3.2: The meta model for import/export diagramsfragment of �gure 3.2, the class uses relationship has inherited the meta model relationshipsfrom and to as well.The building block classes and intra-diagram relationships for import/export diagrams aregiven in the table 3.2.building block classclassuses relationshipoperationattribute relationship class classpart-of import/export diagram classpart-of import/export diagram uses relationshippart-of class operationpart-of class attributefrom uses relationship classto uses relationship classcalls uses relationship operationTable 3.2: The building block classes and intra-diagram relationships for import/export diagrams.STDsSTDs are the other basic type of diagrams used in SOCCA. Figure 3.3 shows the fragment ofthe meta model which is responsible for modelling STDs. It exists of three classes and fourrelationships of which only two classes and two relationships represent the building blocks and therelationships between them. The small number of classes and relationships involved is a result ofthe simple structure of a STD.Figure 3.3: The meta model for STDsThe diagram class representing STDs in the meta model is the class std. The building blockclasses and intra-diagram relationships for STDs are listed in the table 3.3.In SOCCA, STDs are used for modelling the behaviour and the communication perspective.For this purpose, several kinds of STDs with di�erent functionality have been introduced: external

3.3 Splitting up the meta model 37building block classstatetransition relationship class classpart-of std statepart-of std transitionfrom transition stateto transition stateTable 3.3: The building block classes for STDsSTDs, internal STDs, managers and employees. Although the transitions and states of these STDshave a di�erent meaning for each kind, the syntax of diagrams are the same: they are normalSTDs. Therefore, the diagram classes corresponding with these kinds of STDs inherit from themeta model class std. These diagram classes are: external std, internal std, manager andemployee. The fragment of the meta model in �gure 3.4 shows the inheritance. This fragmentis responsible for modelling all the kinds of STDs.
Figure 3.4: The meta model for all kinds of STDsThe meta model fragment in �gure 3.4 shows that every special kind of STD is a STD. There-fore, the part-of relationships from the meta model class std to its building block classes arealso inherited by the diagram classes representing the special kinds of STDs. These STDs thusalso have states and transitions part of them. Therefore, the building block classes for STDsare building block classes for every kind of STD as well. The same is true for the intra-diagramrelationships.SubprocessesIn the meta model, the class subprocess inherits from std too. Therefore, subprocesses containstates and transitions as well. The reason why subprocesses were not discussed in the previoussection is that a special construct is used in the syntax of subprocesses. This construct is called atrap and is not part of the general syntax of STDs.Figure 3.5 displays the meta model fragment which is responsible for modelling the subpro-cesses. Like the diagram classes modelling the di�erent kinds of STDs, the class subprocessalso inherits from std. Therefore, the building block classes and intra-diagram relationships forsubprocesses include those of the STDs. However, the meta model class subprocess also has theclass trap part of it. This class is a building block class too. There are also more intra-diagramrelationships. The part-of relationship from subprocess to trap for example.In the table 3.4 all building block classes and intra-diagram relationships for subprocesses arelisted.

38 Analysing the meta model
Figure 3.5: The meta model for subprocessesbuilding block classstatetransitiontrap relationship class classpart-of std statepart-of std transitionpart-of subprocess trapfrom transition stateto transition statepart-of trap statepart-of trap transitionTable 3.4: The building block classes and intra-diagram relationships for subprocesses.3.3.2 Split up in groups of diagramsInstead of splitting a SOCCA model in diagrams of the di�erent diagram types, it is also possibleto split it in groups of diagrams. Such a split up is only useful, if it is useful to group somediagrams together. We can think of two di�erent purposes of grouping diagrams together:The �rst purpose for making a special group of diagrams is to focus on a limited parts of themodel. Such a focus could be on some special class in the model or on some special behaviour,for example. For this purpose, the group of diagrams must be more or less `complete'. Completein the sense, that the group of diagrams is a small SOCCA model on its own: it is possible tosimulate and analyse it. Therefore, a group of diagrams for this purpose should contain diagramsfrom all three perspectives.Because in a SOCCA model all diagrams are related, taking a special group of diagrams fromit will result in some dependencies not being satis�ed in that group. Simply, because some relateddiagrams are not included in it. While analysing or simulating such a group, these dependenciesshould be disregarded or at least not result in errors.In the meta model as it is now, there is no room for these kind of groups yet.The other purpose for grouping diagrams is to catalogue diagrams in groups. A few examplesare: grouping diagrams according to SOCCA model, grouping diagrams according to author,grouping diagrams according to class, etc. Because the user will de�ne these groups, any criteriawill do. For this purpose, the groups do not have to contain diagrams of all of the three perspectivesand thus will not always be useful to analyse or simulate.In the meta model, some of these `cataloguing' groups can already be distinguished. Thesegroups are:� The SOCCA model group type, grouping diagrams together which belong to one SOCCAmodel.

3.3 Splitting up the meta model 39� The data perspective group type, grouping diagrams together which belong to the dataperspective of one SOCCA model.� The behaviour perspective group type, grouping diagrams together which belong to thebehaviour perspective of one SOCCA model.� The communication perspective group type, grouping diagrams together which belong tothe communication perspective of one SOCCA model.� The partition group type, grouping subprocesses together to partitions.We will call the classes and relationships associated with these groups grouping classes and group-ing relationships, respectively. These types of groups are special in the way, that they can onlycontain a few types of diagrams and sometimes also only a limited number of them. This is shownin �gure 3.6.
Figure 3.6: The grouping classes, diagram classes and the grouping relationshipsAlthough presented as two di�erent purposes for grouping, there seems to be some overlap:what if the user wishes to catalogue the diagrams according to special focuses on the SOCCAmodel? Or how about de�ning other catalogues then already presented in the meta model?It seems useful to allow the user to group diagrams in every way desired. In that light, thegroups belonging to the two purposes are only two possible ways to group diagrams. By allowingevery kind of group to exist, the number of ways to group diagrams is in�nite. It must be possibleto analyse these general groups. Simulation must also be possible, but only with group which canbe simulated.In �gure 3.7, a small example of possible groups is given.In �gure 3.7, the small �lled squares represent the diagrams used in some SOCCA model.The ellipses, rounded squares and circle containing the diagrams represent examples of groups ofdiagrams. These groups can overlap and contain each other, which means that some diagrams arepart of more than one group. Note, that in this �gure only one SOCCA model (the large circle)can be seen. In the system, several SOCCA models coexist in the database and diagrams can bepart of several SOCCA models as well.In this �gure, it might be possible to simulate group I and II, as they contain diagrams of allof the three perspectives. This of course, is also true for the SOCCA model group represented bythe circle. Group III might be a class diagram with an external STD for one class of that classdiagram and group IV might be a group of diagrams which have been made by one speci�c author.As mentioned above, apart from grouping diagrams according to perspective and groupingsubprocesses in partitions, there is no way to represent these groups of diagrams in the meta modelas it is now. However, there should be a component of the system which is responsible for creatingand maintaining groups of diagrams. For now, this component would only be responsible for thegrouping classes and grouping relationships. More discussion on the groups and the limitation ofthe current meta model is given in sections 3.4.2 and 3.6.2.

40 Analysing the meta model
Figure 3.7: Splitting up a SOCCA model in useful pieces3.3.3 Dependencies between the model piecesIf we split up a SOCCA model in smaller pieces (like diagrams or groups of diagrams), we disregardsome dependencies between these pieces. The dependencies which are disregarded, are those whichcross the border of the pieces: the two parts of model dependent on each other are part of di�erentpieces of the model.As each SOCCA model is modeled by the meta model, each possible dependency is modeled inthis meta model as well. If we split up the SOCCA model in its diagram types (as in subsection3.3.1), the relationships from the meta model presented in table 3.5 are disregarded as they do notappear in any of the meta model fragments presented in section 3.3.1. These relationships repres-ent dependencies between di�erent diagrams and therefore do not �t in a meta model fragmentwhich is responsible for only one diagram type. Because we will reference to these relationshipsfurther in this thesis, we will give these relationships a speci�c name: inter-diagram relationships.Other dependencies between two diagrams are represented by the constraints belonging to themeta model. These constraints are listed in appendix A.If a split up is made in groups of diagrams (as in subsection 3.3.2), again certain similar re-lationships and constraints are disregarded. In this case, the inter-diagram relationships, whichconnect diagrams belonging to one group, will also be part of the piece of model represented bythat group of diagrams. Only those inter-diagram relationships and constraints which connectdiagrams that are not in the same group are disregarded in the split up.A separate component of the system is responsible for these inter-diagram relationships andconstraints connecting diagrams or di�erent groups of diagrams. This component is thus alsoresponsible for the inter-diagram relationships and for the constraints of the meta model as awhole. This component is discussed in subsection 3.4.3.

3.4 The editors 41relation class submodel class submodelspeci�es external std external std class classdiagram +import/export diagramspeci�es internal std internal std operation classdiagram +import/export diagramrefers-to transition std (external or internal) operation classdiagram +import/export diagramprescribes state std (manager) subprocess subprocessrequires transition std (manager) trap subprocessmanages manager manager ternaryemployee employee relationshippartition subprocessesTable 3.5: The inter-diagram relationships3.4 The editorsAs a result of the proposed split ups of SOCCA models, the editor for SOCCA models can be splitup in smaller editors. Each of these smaller editors is responsible for a part of the meta model.These parts have been presented in 3.3. Although the di�erent editors will have to cooperate inorder to get a complete and correct SOCCA model, most of the time they can work independentlyof each other. Therefore, the process of creating a SOCCA model is facilitated. Besides for beingsmaller, the editors are also less restrictive as they are not responsible for all of the restrictionslaid upon a SOCCA model by the meta model, but only for some of them.These editors and their functionality are discussed in this section. Some important conceptsregarding these editors are also introduced.Note, that the descriptions of the functionality of the di�erent editors is rather limited. In thefollowing chapters concerning the use cases, this functionality and ideas on possible implementationare discussed in much more detail.3.4.1 Diagram editorsThe fragments of the meta model presented in section 3.3.1 are meta models for the separatediagram types. As the meta model more or less de�nes the database which will be used, each ofthese fragments can be identi�ed with a small part of this database. In such a part of the databaseit is possible to store diagrams of one speci�c type. As there are parts for every diagram type usedin SOCCA, it is possible to store all diagrams necessary for a SOCCA model. The other partsof the whole meta model only indicate how the di�erent diagrams relate to each other and groupthem together in perspectives and models.To make use of these meta models for diagram types an interface with the user is needed. Suchan interface must supply the user with possibilities to create diagrams of each type and translatethem to the meta model. Such an interface is usually called an editor. And because this editor isused for diagrams, it is common to call it a diagram editor.An important concept in diagram editing is: syntax directed editing. A syntax directed editoris an editor which uses the syntax of the diagram created to guide and force the user. Syntaxdirection can be very restrictive, but also more mild forms are used. Syntax directed editing isused in editors for visual languages.In the master's thesis of A. Hartog and M. Wijnakker ([HW96]), a syntax directed editor fora whole range of diagrams is described and created. Their editor can be used for every typeof diagram which can be described by a special grammar language. The thesis also describes apossible user interface for the editor. Because their editor provides a lot of functionality which isuseful for our future diagram editors, their ideas are used as a basis for our future diagram editors

42 Analysing the meta modelin this thesis.The editor uses building blocks and plugs. The term building block has been introduced before,but the term plug has not. This is done in the following subsection. Both the building block andthe plug concept will be used further on in this thesis.The plug conceptIn a diagram editor we need to manage the connections between the di�erent building blocks ofthe speci�c diagram type we are editing. We need to make sure that only building blocks whichare allowed to be connected, can be connected by the user. Therefore, we introduce the conceptof plugs.Plugs are points on building blocks where other building blocks can be connected. Plugs canbe positively or negatively charged. A positively charged plug can only connect to a negativelycharged plug and vice versa. For every type of connection a separate type of plug exists. Onlyplugs of the same type can connect. With these two limitations (only plugs which are oppositelycharged and of the same type can connect), it can be achieved that only building blocks which areallowed to be connected, can be connected.1Some building blocks require some plug to be connected. If all plugs, which need to be connec-ted actually are connected, the diagram is a correct diagram (according to the syntax). Checkingfor problems in the layout of a diagram is thus as easy as checking for unconnected plugs.In the meta model, we have encountered the building blocks as objects from the building blockclasses. Plugs are optional connections to other building blocks and can be identi�ed with theintra-diagram relationships. These relationships relate two building blocks, whereas connectedplugs do the same. An unconnected plug is a possible intra-diagram relationship which has notbeen created yet.Because we want to identify the plugs with the intra-diagram relationships presented earlier,we need to change the original de�nition from [HW96] slightly. Besides being points on buildingblocks where other building blocks can be connected, they must also be used for connectionsbetween building blocks and the diagrams.Functionality of the diagram editorsDiagram editors are needed for creation of diagrams in the SOCCA system. They can be maderesponsible for the parts of the meta model which involve diagrams of one type. These partsconsist of diagram classes, building block classes and intra-diagram relationships.The functionality of the diagram editors should resemble the functionality of most graphicaleditors. Like all editors, the diagram editors must provide options to create, open and closediagrams. It must of course be possible to add, edit and remove building blocks of the diagramtype to the diagram on the canvas and it must also be possible to connect and disconnect thesebuilding blocks. Also, it must be possible to reuse parts of diagrams by cutting, copying andpasting.As mentioned before, syntax directed editing is an important concept in diagram editing. Theeditor from [HW96], which serves as an example for our future editor, makes use of this concept.There are other things which also make it easier to work with an editor. A few examples are:spell checking, scrolling, right click menus with every type of building block, etc. Some of thisfunctionality is presented in chapter 5, which discusses the use cases. In [HW96] some other ideason functionality are presented as well. We have chosen only to include the most basic and themost special functionality in our descriptions of the editor. Other useful functionality can alwaysbe added later.1Instead of the opposite charges, an analogy with the opposite sexes was made in the original de�nition of in[HW96]. We think the analogy with positive and negative charges is more appropriate.

3.4 The editors 433.4.2 Chunk editorThe split up of a SOCCA model in interesting groups of diagrams described in section 3.3.2 callsfor an editor which allows the user to create and maintain groups of diagrams. This editor we willcall the chunk editor and is discussed here.As the chunk editor will be responsible for all groups of diagrams, it will also be responsible forthe groups of diagrams represented by the grouping classes and the grouping relationships. If weadapt the meta model to let it also represent every group of diagrams (as proposed in subsection3.3.2 and discussed in section 3.6.2), the chunk editor is responsible for the new grouping classesand diagrams as well.To understand the functionality of the chunk manager we must �rst explain the concept ofchunks.The chunk conceptThe concept of `chunks' arose with the idea of allowing the user to create every group of diagramsuseful to him. These groups of diagrams are called: `chunks'. General chunks can contain everykind of diagram in any number. This way the user is completely free to group whatever diagramswished for. However, there are some special types of chunk constituting certain prede�ned groupingclasses. These chunks are:� SOCCA model;� data perspective;� behaviour perspective;� communication perspective;� partition.These chunks can only contain the diagrams which can be grouped by the according to theirprede�ned type. Chunks of these speci�c types are special in the way that they represent somespeci�c part of the SOCCA model (or the SOCCA model itself).Apart from diagrams, chunk can contain other chunks as well. This way a hierarchical structureexists, which could be used for browsing. Browsing is discussed in section 3.5.2.It is important that the chunks only contain references to the diagrams and other chunksthey group in order to make it possible for one diagram or chunk to be part of di�erent chunks.These references can be compared to the grouping relationships in the meta model. Deletion ofsome chunk results in deletion of the references (the grouping relationships), but not the diagramsthemselves.Apart from grouping diagrams for the speci�c groups mentioned above, the chunks can also beused for analysing, simulating and browsing. The concept can also be used for resolving clashesregarding version management or multiple users. In version management, it could be possible togive each chunk some version number and allow newer versions of the same chunk to contain theold version and new versions of some of the diagrams. With multiple users it is possible to giveeach user working on the same chunk or diagram, a copy of the original chunk. If at the endboth copies clash, that is: they cannot be resolved in one chunk, then both copies would stay intoexistence. Meanwhile, a so-called `choice-chunk' is used to let users who use the changed chunkmake a choice between the di�erent versions. This way we get multiple versions for some part ofthe SOCCA model. These versions could also split up themselves and so on. A tree-like versioningstructure can be recognized. This, however, is outside the scope of this thesis. More on versionmanagement and environments in which multiple users can work together can be found in [C+93].

44 Analysing the meta modelFunctionality of the chunk editorThe chunk editor must allow the user to create, edit and maintain chunks. So it should provide theuser with the possibility to group the diagrams in particular chunks. It should have user friendlyinterface in which it is possible to manage all kinds of chunks. Important functions for this editorare:� Creation of a chunk: It must be possible to create all special types of chunks. Also, itmust be possible to create general chunks. The chunk editor must also be involved in thecreation of the choice-chunks, although this must not be an explicit option for the user.� Change of a chunk: The user must be able to add and remove diagrams and chunks toand from each user-de�ned chunk. In the speci�c chunks, the chunk editor must check if thediagrams are allowed for that kind of chunk.� Removal of a chunk: Removal of chunks must also be possible.3.4.3 Link editorWith the diagram editors and the chunk editor we have provided the user with the possibility tocreate and manipulate diagrams and groups of diagrams (chunks). In the database for SOCCAmodels, we still need a system component to manage the inter-diagram relationships between(parts of) diagrams. This system component, which we will also call an editor, is responsible forthe dependencies between the di�erent diagrams and thus also responsible for the dependenciesbetween the di�erent groups (which is actually the same thing). In this editor it must be possibleto relate (parts of) diagrams which are meant to be dependent on each other and also tell thesystem in what manner these dependencies must be enforced on the database. This editor will becalled the link editor and is responsible for the inter-diagram relationships and the constraints inthe meta model. Therefore, it is responsible that parts of SOCCA models actually become relatedin the database.Let us �rst introduce the concept of links, before discussing the functionality of the link editorThe link conceptLike plugs are optional connections between building blocks, links are optional connections betweendi�erent diagrams and/or building blocks of di�erent diagrams. Like with plugs, links allow onlyparts of SOCCA models to be related, which are allowed to be related according to the metamodel. Just like a plug, a link can be connected or not connected. A connected link correspondsto an instance of an inter-diagram relationship. It indicates which parts of the SOCCA model arerelated to each other in the SOCCA model. Therefore, it implies that some consistency should existbetween these parts (just like plugs do with building blocks within one diagram). This consistencycan involve label equivalence between two building blocks, but also large constraints, like everyoperation from some class having to occur as a label of some transition from the correspondingexternal STD, are involved.Like with plugs, there are parts which need to be linked to other parts, and there are partswhich can be linked to other parts. This can be useful while checking the consistency of a (partof a) SOCCA model: required, unconnected links are always errors in consistency.The idea behind links and plugs is thus largely the same, but with links linking larger objectsand forcing larger consistency demands across di�erent diagrams. Therefore, the links can be seenas a more general version of the plugs.There are six types of links. This number corresponds to the number of inter-diagram rela-tionships which exist in the meta model. For each type of link, there are di�erent dependencieswhich need to hold in order for the parts to be consistent with each other.Although a connected link implies that two parts of some SOCCA model are dependent on eachother in some way, it might be useful to allow the two linked parts to be temporarily inconsistent

3.4 The editors 45with each other. This makes the system more
exible. If consistency between linked parts wereenforced at all times, most changes to some diagramwould imply errors, because temporarily somelabel is non-existent or di�erent. On the other hand is must also be possible to tell the systemthat the dependencies between the two parts need to be satis�ed. In that case, the system mustnot allow inconsistencies to exist between the linked parts any longer.The manner in which the system allows inconsistencies to exist, we will call the level of con-sistency enforcement. There should at least be the following levels of consistency enforcementpossible with every link:� Enforce consistency: At all times, the dependencies between the two parts of the SOCCAmodel must be hold. This enforcement can thus only be set if the constraints are ful�lled tobegin with.How the constraints are being kept ful�lled is a matter of change propagation. This isexplained later.� Warn for violation of consistency: Consistency is allowed to be violated, but every timea (part of a) dependency is violated, the system warns the user.� Allow violation of consistency: Consistency can be violated. Note, that although it isnot necessary for the two parts to be consistent with each other, the two parts are linked.This means, that at some moment in creating the SOCCA model, the consistency must hold.Like mentioned, change propagation is an important concept here. Change propagation statesif an object linked to another object must change if the �rst changes. If the link is set to `enforceconsistency' then a change on one side would inevitably imply a change on the other side.If we want to enforce consistency, it is important to know in what way the system can keepthe parts consistent with each other. This, because it needs to know how to change the connectedparts in order to keep the link consistent. If the system cannot do this automatically, the user willhave to do it or it might be that the system disallows changes at both sides of the link.Here are some possible settings for change propagation:� Enforce change propagation: A change in one of the link objects propagates throughthe link. The object on the other side of the link is thus also changed. This is of course onlytrue if the changes violate the consistency demands.Such propagation can only be done, if the system can automatically change the other sideof the link. For example, with links that link two labels that must be equivalent. It is moredi�cult, maybe impossible, for links involving di�cult constraints to propagate changes.It could be possible to disallow the change or let the user change the other object so it isconsistent with the �rst one.Important here too, is that a change on the other side of the link must be a allowed changeand a change wished for. It could be possible, that we would not want to change the otherside, because it represents a �nished part of the model. Or that the change is not allowed,because it is not permitted by security (more on security in subsection 3.6.6). If this is thecase, it must not be allowed to set the system to enforce change propagation for this link.� Disallow changes: No changes are allowed that violate the constraints.Change propagation can be set independently from the constraint enforcement for each link.This way the system could try to propagate changes, but does not need to to keep the constraintsful�lled.Change propagation involves two directions for each link. It can be so that one direction fora link enforces change propagation, whereas the opposite direction does not. Constraint enforce-ment is set for a link in general and not for each direction in the link, because a violation of theconstraints always involves both sides of the link: one side is not consistent with the other andvice versa.

46 Analysing the meta modelLinks are used for analysis of chunks and browsing too. Refer to 3.5.1 and 3.5.2 for thesetopics.Functionality of the link editorThe link editor must provide a user-friendly interface for creating and maintaining links. Therefore,it needs to be able to visualize links. Also, the interface must provide a way to change the settingsfor the links. Default settings can be used for di�erent types of links.The link editor must only allow the linking of objects which can be linked according to the metamodel (this is already stated in the de�nition of links). Furthermore, it should use the analysisengine to check whether the linked objects are consistent or not. If constraint enforcement is setfor the linked objects, then the system or the user should immediately make the link consistent,if it is not consistent already.A separate link editor window can be implemented and could be very useful to keep the linksorganized, but it must also be possible to link and un-link building blocks and diagrams from thediagram editors and chunk editor, and maybe even from the database browser.3.5 Other system componentsApart from the editors which are responsible for the contents of the internal representation, wecan think of some useful system components which only examine the contents of the database.These components of the system are presented in sections 3.5.1 till 3.5.3.Like with the editors, the descriptions of the functionality of the other system components islimited. This, because in the following chapters concerning the use cases, this functionality andideas on possible implementation are discussed in more detail.3.5.1 Analysis engineAnother very important component of the system is the analysis engine. It is used for checkingwhether diagrams and chunks and the dependencies between them are correct. Therefore, it mustbe capable of determining if the syntax of each part of a SOCCA model is correct or not. Forthis, the analysis engine needs to know about every dependency which should hold between partsof a SOCCA model. These dependencies have been modelled in the meta model by means ofrelationships, cardinalities and constraints. So, what really needs to be checked is if the (part ofthe) SOCCA model `�ts' in the meta model presented.The analysis engine gets its information from the internal representation where all informationon every part of the SOCCA models is stored. The contents of the internal representation is notchanged by the analysis engine. It only `reads' information from it.An important responsibility of the analysis engine is to inform the user what is wrong withthe (part of the) SOCCA model, so the user can correct the problems the analysis engine hasencountered. In this context, a possible advise on how to correct the problem is useful too.The following notions are important for the analysis engine:� Input: The user must be able to de�ne which chunk or diagram is to be checked.Maybe, it is useful to allow the user to check multiple chunks together. This may requiresome additional functionality. However, such a check corresponds to a check of a chunkcontaining only these multiple chunks and thus could be implemented as such.� Output: The user must be able to de�ne how the output is presented.Possible ideas:{ list of errors/warnings;

3.5 Other system components 47{ visualisation of errors/warnings: for example, it is possible to light up the con
ictingparts of the model;{ : : :� Settings: The user must tell the system what to check for.Normally, all dependencies will be checked. But there could be situations in which the userdesires only a partial check: some dependencies should not be checked in that case.To provide the user with the possibility to change these options, a user interface is needed in whichthe options can be set. Although the output and the settings can be of some default value, theinput must be speci�ed by the user.Apart from such an explicit user interface, it must also be possible to start an analysis fromother components in the system, for example from the diagram editors or the database browser.3.5.2 Database browserThe database browser is another important component of the system. It is responsible for makingthe contents of the database visible. Besides this, the browser is also used for allowing the userto make selections from the database. These selections can be used for reusing information, likeparts of diagrams, names of classes and operations, etc.The database browser does not change the contents of the database, but only `reads' informa-tion from it.The database browser must provide a nice interface for looking at the database. In this interfaceit must be possible to look at the contents of chunks, diagrams and perhaps building blocks. Thepart-of relationships are important in this context. Furthermore, the other relationships must bemade visible as well.The contents of chunks consists of diagrams and/or other chunks. The database browser couldcooperate with the chunk editor, because both the browser and the chunk editor must provide anice view on the hierarchy of chunks and diagrams present in the database.2The contents of diagrams consists of building blocks. The database browser could cooperatewith the diagram editors to make these building blocks and the (intra-diagram) relationshipsbetween these diagrams visible. A view on some diagram in the editor is just a view on thecontents of some diagram. The browser could thus be made responsible for the displaying of thebuilding blocks and the relationships in the diagram editor. If that is done, the diagram editorsand the database browser should work together.The links (or inter-diagram relationships) must also be made visible by the database browser.Just like they must be made visible in the link editor]. Here too, an intensive cooperation betweenthe link editor and the database browser is required.In general it can be said that the database browser is responsible for the visualisation of thecontents of the database. It does not matter for which component the contents must be madevisible. If it must, the database browser does it.3.5.3 Simulator/enactorThe simulator/enactor is needed for simulatingor enacting the model. For simulation and enacting,information is needed on how to make `runs' through (part of) the model. The interface for thiscomponent must provide the user with the possibility to give this information.2Note, that it is still useful to separate the di�erent components for browsing and chunk management. Althoughboth might use (part of) the same interface. If you would not allow di�erent components to make use of thesame interface, you would end up with a number of similar looking interfaces in which only a little functionality isimplemented. If you would not distinguish the di�erent components, it would be harder to identify the functionality.

48 Analysing the meta modelApart from information on how to make runs, other information for simulating and enactingis needed too. (For example, for enacting some information about the context is needed). This ishowever beyond the scope of this thesis and will thus not be examined.3.6 Additions to the meta model towards implementationAlthough a database build according to the current meta model could contain SOCCA models,there are still some ideas which are useful (if not necessary) to include in a newer version ofthe meta model. These ideas are not part of SOCCA models, they are involved with using theSOCCA models in the future system. Therefore, if these ideas are added to a newer version of themeta model, then this newer meta model would rather be a meta model for the system (includingSOCCA models) than a meta model for SOCCA models (as it is now). Such a meta model isneeded for the system, but was not the scope of this thesis. Therefore, we only present the ideasand a few solutions on how to change the meta model for some of them.3.6.1 Graphical informationUp till now, the meta model is not suitable for representing graphical information for the diagrams.Although it is possible to store which building blocks belong to which diagrams, it is not possibleto store where the building blocks should be displayed in the diagrams. It is on purpose, that thishas not been done in chapter 2. The focus was mainly on the parts of SOCCA models an thedependencies between them. We had no use for graphical information on the diagrams. However,if the meta model is used for an internal representation, this information must be included in it.For this, the meta model must be adapted.The �rst idea was to include the layout information as attributes for the building block classes.This way every building block would have attributes for their x- and y-coordinates, their widthand height. Other optional attributes like color and style could also be added. It is possible tolet all building block classes inherit from some class called building block with all of theseattributes. See �gure 3.8
Figure 3.8: Inheritance from the class building blockThis solution would be correct, were it not true that we can have the same building block ex-isting in two or more diagrams. Take for example a state from some internal STD/employee. Thesame state exists in several subprocesses. Although the state is the same, the graphical informa-tion associated with it might not. It could be possible that the state could have di�erent positionsor other sizes in di�erent diagrams. In the solution presented, it can have only one position andone size in all of the diagrams, which is not acceptable.For a building block it must thus be possible to have di�erent graphical information associatedwith it for every diagram it appears in. The solution is to make the graphical information attributesof the part-of relationship from the diagram classes to the building block classes (see �gure 3.9.

3.6 Additions to the meta model towards implementation 49This way, every building block has it s own graphical information at every diagram, as for everybuilding block part of some diagram, there exists a part-of relationship from the diagram classobject to it.
Figure 3.9: The graphical information with the part-of relationshipHow about the building block classes attribute and operation? These building block classesare not directly part of some diagram class. This is not a problem, because these classes are partof the class class. If any graphical information is needed, it can be stored in those part-of rela-tionships. Note, that in that case, it is not any di�erent to store the information in the classesthemselves or with the relationships.So, changes to the meta model for supporting graphical information is nothing more thanadding attributes to some relationships.3.6.2 ChunksAlthough there is room for the speci�c types of chunks in the meta model (as they correspondwith the grouping classes), general chunks cannot be stored in it. Therefore the class chunk isintroduced. The class chunk represents chunks and thus from it part-of relationships must becreated to the di�erent diagram classes. Because the grouping classes represent speci�c chunks,they should inherit from chunk. After this, there is no need for the grouping relationshipsanymore, so they can be erased. To allow chunks to contain other chunks a part-of relationshipfrom chunk to itself is created. The result is displayed in �gure 3.10

Figure 3.10: First try to add chunks to the meta modelAlthough this change to the meta model allows for all types of chunks to exist, it also limits

50 Analysing the meta modelthe expressiveness of the meta model, because now it is possible for any types of diagrams to bepart of the speci�c types of chunks. For example, it is possible to add STDs to a data perspectivechunk or three class diagrams to one SOCCA model chunk. It is even possible to let a partitionchunk contain a SOCCA model chunk. We do not want these possibilities and we thus need tolook for another solution.A better solution might be to leave the original grouping relationships intact and discard thepart-of relationships from chunk to the diagram classes. But because chunks can contain chunks,this would not solve the problem.We could also add another class general chunk as another special type of chunk, like in�gure 3.11. The problem of the special chunks containing diagrams which are not allowed, issolved here. The inheritance is total and disjoint. This way all chunks can be classi�ed in onespecial type (also general) of chunk.
Figure 3.11: Adding chunks to the meta modelAlthough the solution presented is acceptable, it still does not allow for a SOCCA modelchunk to immediately contain diagrams. This is done via three perspective chunks. Also, it is notpossible to de�ne a SOCCA model chunk to contain several general chunks, which together couldspan the model intended. The �rst solution (presented in �gure 3.10) was more suitable for thatpurpose. In that case, the problem of the special types of chunks containing diagrams which arereally not allowed in such a chunk, must be solved by constraints.3.6.3 LinksAlthough the inter-diagram relationships can be identi�ed with links, the meta model does notshow any possibility to store settings on constraint enforcement and change propagation. This iseasily solved by adding attributes to the inter-diagram relationships which would represent thesesettings. One attribute for constraint enforcement and two attributes for change propagation (onefor each direction) should be su�cient. Other future settings regarding links can be stored asattributes for the relationships as well.Note, that the ternary relationship manages involves six attributes for change propagation:one for each direction between two classes.

3.7 From system components to the use cases 513.6.4 Version managementVersion management cannot be distinguished in the meta model either. The question is whetherversion management needs to be present in the meta model. Newer versions of diagrams andchunks are normal diagrams and chunks too, so they `�t' in the meta model as it is now.It is possible to add attributes to the diagram classes and grouping classes (now including theclasses chunk and general chunk) regarding version numbers, but this is not the only thinginvolved in version management. In version management it is also important to keep track ofchanges: which part is a revision of which other part and what has changed regarding the earlierversion. Also important are the dependencies the newer versions are involved in. Say a newerversion A2 of some diagramA1 is created. If A2 is changed, it is possible that a dependent diagramB1 must be changed as well. This dependent diagram B1 could now violate dependencies withA1. In this case, should a new version of B1 be made or should all dependencies regarding earlierversion be disregarded?This problem and a lot of other problems are part of version management. If the future systemshould include all possible functionality regarding version management, this must be studied.That is however beyond the scope of this thesis. For now, we think that a simple part of versionmanagement can be included in the meta model by adding some attributes to the diagram classesand grouping classes. For more complicated version management it is suspected that larger changesare necessary.More on version management can be found in [C+93].3.6.5 Multi user environmentLike with version management, if a multi user environment is to be part of the future system, itneeds to be studied separately. Implementation of a multiple user environment would de�nitelychange the meta model. It might be possible to include a small part of it as attributes in the metamodel as it is now, but addition of classes and relationships are most likely needed as well.More on multi user environments can be found in [C+93] as well.3.6.6 SecurityIf the system is going to be used by multiple users, either at once or one at a time, security is animportant issue. If part of a model is correct, you would not want another person to change it ormaybe even see it. So in the system it should be possible to secure parts of models.Although it's de�nitely useful to allow a user to secure diagrams, it might be also useful toallow a user to secure building blocks, chunks and even inter-diagram relationships. For example,some class might be �nished modelling, but not the whole class diagram. A user then must beallowed to change the class diagram, but not the name, operations and attributes of the speci�cclass. In general, it is preferable that some stable part of a model, whether that is a chunk, adiagram or a building block, cannot be changed by a person who should not do that.The meta model does not contain any notions of security, it only presents a way to store aSOCCA model in a data structure and the relationships which should hold between parts of thatSOCCA model. To add security to the meta model, you would have to add the concept of usersto it (with a class called user for example). Furthermore, you would need to add attributes to allclasses indicating which users are allowed to view or change a model.3.7 From system components to the use casesIn the following chapters, use cases are provided for the expected components in the system. Foran introduction to these use cases refer to chapter 4.These use cases have been created to present the expected functionality for the future system.As the future system consists of the various system components introduced in this chapter, the usecases present the functionality of these components. Also notes on possible implementation and

52 Analysing the meta modeluser interface are given. The description of the system components is therefore far more detailedthen in sections 3.4 and 3.5.The system components are identi�ed with the use cases as follows:� diagram editors $ use case \specify diagram" for DiagramBuilder� chunk editor $ use case \manage chunks" for ModelIntegrator� link editor $ use case \manage links" for ModelIntegrator� analysis engine $ use cases \analyse diagram" for DiagramBuilder and \analyse chunk" forModelIntegrator� database browser $ use case \browse SOCCA model" for all actors� simulator/enactor$ no use cases yet

Chapter 4Introduction on the use cases4.1 Use casesIn [JEJ95], use cases are de�ned as \sequences of transactions in a system whose task is to yield ameasurable value to an individual actor of the system". To better understand this de�nition, wehave taken the following de�nitions from [Ber96]:� a use case is \a speci�c
ow of events through the system, that is, an instance" ([JEJ95]).Using the concept of a class as the set of all items which share a collection of similar char-acteristics, it is suggested that many similar courses of events be grouped into a \use-caseclass." (Note that this de�nition, i.e., a class is a set of instances, is not the same de�nitionof class that is used in a Smalltalk, C++, or Ei�el context.)� an actor is \a role that someone or something in the environment can play in relation to thebusiness" ([JEJ95]). Further, the same person (or other item) can assume more than onerole.� \transactions in a system" implies that the system will make available to its actors a set ofcapabilities that will both allow the actors to communicatewith the system and to accomplishsome meaningful work (i.e., meaningful value).� \a measurable value" implies that the performance of the task has some visible, quanti�able,and/or quali�able impact on those things which lie outside of the system, and, in particular,the actor who initiated the task.� a transaction is de�ned as \an atomic set of activities that are performed either fully ornot at all. It is invoked by a stimulus from an actor to the system or by a point in timebeing reached in the system. A transaction consists of actions, decisions and transmissionof stimuli to the invoking actor or to some other actor(s)." (See [JEJ95].)Three main reasons for creating use cases presented at [Ber96] are:� gaining an understanding of the problem,� capturing an understanding of the proposed solution, and� identifying candidate objects.In our case, we will indeed use the use cases to gain an understanding of the problems involvedin the process of creating and using SOCCA models in an environment. The use cases (in ourcase too) provide a proposed solution to these problems. Because of the informal description, itnot so hard to understand the solutions. The last reason lies outside the scope of this thesis, butwill certainly be used if the system as proposed here is going to be implemented.

54 Introduction on the use cases4.2 The use cases for our future systemFor our future system, we have de�ned the following actors:� DiagramBuilder: A DiagramBuilder builds the diagrams that eventually will make up aSOCCA model.� ModelIntegrator: A ModelIntegrator integrates diagrams and submodels (represented bychunks) in larger submodels. This integration also includes linking of diagrams.� EnactmentCoordinator: An EnactmentCoordinator uses some complete model to set upa system in which the model is used (enacted).The use cases for the di�erent actors can be seen in the use case diagram in �gure 4.1.
Figure 4.1: The use case diagram for our future systemA short description of these use cases:� Specify diagram: (Used by DiagramBuilder) Allows for a diagram to be edited. Either anew diagram or an existing diagram can be edited.� Analyse diagram: (Used by DiagramBuilder) Allows for a diagram to be analysed. Ana-lysis is limited to one diagram only.� Browse SOCCA model database: (Used by DiagramBuilder, ModelIntegrator and En-actmentCoordinator) Allows for the database to be browsed and make all information visible,either graphical (e.g. for diagrams) or text.� Manage links: (Used by ModelIntegrator) Allows links to be created and removed betweendiagrams. Also allows the settings for the links to be changed.� Manage chunks: (Used by ModelIntegrator and EnactmentCoordinator) Allows chunks tobe created and removed.� Analyse chunk: (Used by ModelIntegrator and EnactmentCoordinator) Allows for chunksto be analysed.� Simulate chunk: (Used by ModelIntegrator and EnactmentCoordinator) Allows for achunk to be simulated. Not discussed in the next chapters as it falls outside the scopeof this thesis.

4.3 Notation used in describing the use cases 55� Enact chunk: (Used by EnactmentCoordinator) Allows a chunk to be enacted as a workingmodel. Also not discussed in the next chapters.It is possible that research in the future might show the need for more use cases. For example,the EnactmentCoordinator might need a use case for setting the context for some enactment.These use cases will then have to be added. In our opinion, no other actors will be needed, asthese actors cover all phases in creating in a SOCCA model.In the next two chapters the use cases are described in detail and alternatives and notes onpossible implementation are given. We have described the use cases to the point of the functionalitywished for by the user. We have not modeled in the use cases, what the user exactly has (or wants)to do in order to receive that functionality. For most cases, the system notes for the use casesinvolved describe this. The border between what is and what is not modeled in the use cases ismade more clear in the following example:A DiagramBuilder can create building blocks in the diagram. This is indeed modeled in theuse case \Specify diagram" (see step B in use case U1 in the next chapter). However, this isthe lowest level in the use case, which is involved with the creation of building blocks. It is notdescribed in the use case, what the user should do in order to create a building block. The systemnotes on use case U1 describe this.4.3 Notation used in describing the use cases4.3.1 Steps in the use casesIn [JEJ95] the identi�ed use cases were described by a simple list descriptions of events. Thesedescription of events are called: steps. An example taken from [JEJ95] is provided in �gure 4.2.Serving DinnerA. The use case begins when the actor Guest enters the restaurant.B. The actor Guest has the possibility of leaving his/her coat in the cloakroom, after whichhe/she is shown to a table and given a menu.C. When the actor Guest has had su�cient time to make up his/her mind, he/she is asked tostate his/her order. Alternatively, Guest can attract the waiter's attention so that the ordercan be placed.D. When the Guest has ordered, the kitchen is informed what food and beverages the ordercontains.E. In the kitchen, certain basic ingredients, such as sauces, rice, and potatoes, have alreadybeen prepared. Cooking therefore involves collecting together these basic ingredients, addingspices and so on and sorting out what needs to be done just before the dish is served. Also,the required beverages are fetched from the refrigerator.F. When the dish is ready, it is served to the actor Guest. When it has been eaten, the actoris expected to attract the waiter's attention in order to pay.G. Once payment has been made, Guest can fetch his/her coat from the cloakroom and leavethe restaurant. The use case is then complete."Figure 4.2: Example of the original way to describe the use cases

56 Introduction on the use casesThe descriptions are very informal and could possibly lead to more interpretations. For ex-ample, is it in the above case possible for the customer to order two entrees?4.3.2 Additional constructs in the descriptionsAs described in the previous section, use cases were originally described by a sequence of informaldescriptions of steps. In order to describe the use cases in a more systematic manner and makethem easier to read, we have enhanced the original notation somewhat. These enhancementsintroduce some extra notation to replace often reoccurring concepts which originally would havebeen described in words only.Our new notation involves: sub use cases, choices, options which can be repeated and precon-ditions. By giving these concepts their own notation, the use cases are easier to read and theirstructure becomes much clearer. The following four sections introduce the additional notationused in our description of the use cases.Note, that our additions replace the need to describe these concepts in text. So, the additionsdo not add to the expressiveness of the descriptions of the use cases. They merely make thedescriptions much more easier to read.Splitting up the description of a use caseThe description of a use case is usually divided in steps. Most of the time, it is possible to �nda useful split up of the events in steps. Sometimes these steps can also be divided in steps andso on, indicating some kind of re�nement. In the original descriptions of the use cases, only onelevel of steps was possible. If a step could be divided in multiple smaller steps, it just had to bedescribed informally in the text or a new use case for the step had to be introduced. This newuse case could then be `used' by the original use case. This results in use cases which are de�nedon a di�erent level and are only used by other use cases and not by actors.In order to avoid these use cases on di�erent levels, we have called these use cases which areonly used by other use cases: sub use cases. As sub use cases are only used by `real' use cases orother sub use cases and not by actors immediately, they are nothing more then steps within stepsin a use case. We now do not have to refer to these sub use cases as `normal' use cases and we donot have to describe steps within steps as this can be done in the sub use cases.The notation used with the description of these sub use cases is shown in �gure 4.3.U1 Actor use case: `Real' use caseA. First step in the use case;B. `Name of sub use case'; (reference to the sub use case and page)C. : : :U1.1 `Name of sub use case'A. First step in the sub use case (really �rst step within step B. of the `real' use case);B. Second step in the sub use case;C. : : : Figure 4.3: Sub use casesNote, that sub use cases can contain references to sub use cases as well (sub-sub use cases).

4.3 Notation used in describing the use cases 57Choices in
ow of eventsIn trying to describe the
ow of events through parts of the system, we encountered the problemthat we often needed to describe very many alternatives within one step in a (sub) use case. Thetraditional way of doing this, was by specifying the alternatives separately at the bottom of thedescription of the use case. This can easily be done with just one or a few alternatives, but withmultiple alternatives possible to an actor it became unclear. Therefore, we have introduced anotation to give di�erent alternatives within one step. It is presented in �gure 4.4.X. General description on the kind of choice;- First choice;- Second choice;- ...- ...Y. ... Figure 4.4: Choices in the use case descriptionsIt means the actor can do either \First choice", or either \Second choice" and so on. Afterhaving �nished one choice (which can mean �nishing a sub use case), the following step in the(sub) use case is regarded. Thus, it is not possible to do multiple choices within one step in a runthrough a (sub) use case.Repeating choicesAlthough we have now a useful notation to represent choices, we still have no way to present anactor with an option, which he/she can do zero or as many times as requested. For example,while editing, the actor could want to change the zoom of the diagram several times, betweenediting parts of the diagram. In the original use case model, this could be done by telling the usecase to \proceed at" some point in the use case. If, we would have told the use case to proceedat a step, before the current step, we had modeled some kind of iteration. With this iterationand alternatives like described in the previous subsection, we could have modeled such repeatingchoices in the original descriptions. However, it would have resulted in a description which wouldhave been much more di�cult to read than a description with the notation presented here.The notation introduced in �gure 4.5 makes repeatable options much more easier to describe.X. General description on the kind of repeating choice;� First choice;� Second choice;� ...� ...Y. ... Figure 4.5: Repeating choices in the use case descriptions

58 Introduction on the use casesThe notation represents the following. When entering step X the actor can do \First choice"as many times as he/she likes. The same goes for \Second choice" and all other choices. It isalso possible to do \First choice", then \Second choice" and then again \First choice" and so on.When the actor decides that he does not want to do any more options, the (sub) use case proceedsto step Y.PreconditionsSometimes, it is useful to know whether some condition has been ful�lled, before entering doinga step. For example, a trap can only be entered to a diagram if the diagram is a subprocess.These preconditions could only be described in the original descriptions by sentences like: \If asubprocess is being edited, then...". By introducing a new notation, such preconditions can bedistinguished immediately.The notation is introduced in �gure 4.6.X. fthis is a preconditiong Only do this when pre-condition is met;Y. : : : Figure 4.6: Preconditions in use case descriptionsSo, step X is only done if the precondition is true. If it is not, step X is simply not possibleand in this case the model would proceed with step Y.4.4 Structure of the chapters on the use casesBesides the descriptions of the use cases for our future system, the following chapters also containdiscussions and system notes on these use cases. The discussions describe possible alternatives forthe use cases and motivation for the choice of the current use cases. The system notes on the usecases describe implementation issues, which we encountered while creating the use cases.By letting the parts start on an empty page on the right side, it is possible to separate thethree parts and read them simultaneously. This is particularly useful if the use cases are studiedin detail and discussion on them and issues regarding implementation are needed as well.The same numbering of the use cases and sub use cases has been used in each of the threeparts. This way, it is easy to reference to the same (sub) use case in another part. Furthermore,the numbering of the (sub) use cases is done in a depth-�rst way: so if a re�nement of a (sub) usecase occurs at some level, then the re�nement will occur one level deeper and follow the original(sub) use case as soon as possible. Figure 4.7 will make this clear. With this numbering it is easiestto track re�nements of (sub) use cases. To make it even easier, the page number is included inthe references to the re�nements.

4.4 Structure of the chapters on the use cases 59
U1 First use caseU1.1 First re�nement within �rst use caseU1.2 Second re�nement within �rst use caseU1.2.1 First re�nement within second re�nement : : :U1.2.2 Second re�nement within second re�nement : : :U1.2.3 : : :U2 Second use caseU2.1 : : :Figure 4.7: The numbering used in the chapter on the use cases

60 Introduction on the use cases

Chapter 5The DiagramBuilder use cases5.1 IntroductionThis chapter contains the use cases for the actor DiagramBuilder. As mentioned in chapter 4,this chapter contains four sections: the introduction, the use cases, the discussion on the use casesand the system notes.5.1.1 The use casesThe actor DiagramBuilder is responsible for creating and maintaining diagrams for the SOCCAmodels. In order to do this, the DiagramBuilder will at least need a use case for specifyingdiagrams. This use case should provide the DiagramBuilder with the possibility to load andsave diagrams and do all sorts of editing operations on them. In order to check diagrams, theDiagramBuilder should be provided with a use case for analysing a diagram. Also a use case forbrowsing the database is to be provided. This to examine other parts of the model and possiblyreuse those parts in the current diagram.A short description of the use cases is given in the following sections.5.1.1.1 The use case: Specify diagramThis use case provides the DiagramBuilder with all functionality regarding the creation and editingof diagrams. All types of diagrams used in SOCCA can be created. Copies and new versions ofexisting diagrams can be made. For editing the diagram, the DiagramBuilder can create andmanipulate building blocks. Automatic generation of diagram parts is also included. Finally, thediagram can be stored in the database.5.1.1.2 The use case: Analyse diagramWith this use cases, the DiagramBuilder can analyse a diagram. This analysis is limited to thediagram only. Thus, it does not check consistency with other diagrams. The diagrams can thusonly be checked on their own syntax.5.1.1.3 The use case: Browse SOCCA model databaseThis use case provides all functionality concerning viewing information from the SOCCA modeldatabase. It provides ways to `walk' through the database, search it, and make all concepts fromSOCCA models visible to the actor. Furthermore, it allows the actor to change views on thediagrams.

62 Introduction5.1.2 List of use cases and sub use casesWith the help of the following list, it is easy to �nd the use cases and sub use cases in thisdocument. After each (sub) use case, three page numbers are listed. The �rst page number is thatof the (sub) use case. The second page number is that of the discussion on the particular (sub)use case. And the third is that of the system notes on the particular (sub) use case. Sometimesno page number is listed. In that case no discussion or system notes are given on the (sub) usecase.number name usecasepage dis-cus-sionpage systemnotespage1 DiagramBuilder use case: Specify diagram 63 67 731.1 Open new (empty) diagram 63 68 -1.2 Generate diagram part(s) 64 68 741.3 Apply generic editing operation 64 68 -2 DiagramBuilder use case: Analyse diagram 64 69 753 DiagramBuilder use case: Browse SOCCAmodel database 64 69 753.1 Change view on diagram 64 69 753.2 Search within chunks 65 70 763.2.1 Specify range of search 65 70 763.2.2 Specify type of search 65 70 763.3 Browse through chunks 65 70 773.4 Follow links 65 71 773.4.1 Narrow link choices 65 71 77

63Section 5.2DiagramBuilder use casesThe use cases for the DiagramBuilder actor are the following:� Specify diagram; (See U1)� Analyse diagram; (See U2 on the next page)� Browse SOCCA model database. (See U3 on the next page)U1 DiagramBuilder use case: Specify diagramA. Open diagram;- Open new (empty) diagram; (See U1.1)- Load speci�c diagram;- Open copy of speci�c diagram;- Open new version of speci�c diagram.B. Change diagram.� Create building block;� fcurrent diagram type is `subprocess'g Specify traps;� Generate diagram part(s); (See U1.2 on the next page)� Apply generic editing operation. (See U1.3 on the next page)C. Save diagram.U1.1 Open new (empty) diagram- Open new (empty) EER diagram;- Open new (empty) external STD;- Open new (empty) internal STD;- Open new (empty) manager;- Open new (empty) employee;- Open new (empty) subprocess;- Open new (empty) general STD;

64 DiagramBuilder use casesU1.2 Generate diagram part(s)A. Select building block(s) to generate from;B. Initiate generating of diagram part(s).U1.3 Apply generic editing operation- Move building block;- Delete building block;- Scale building block;- Stretch building block;- Rotate building block;- Exchange building block;- Connect plugs;- Disconnect plugs.U2 DiagramBuilder use case: Analyse diagramA. Select diagram;B. Initiate analysis.U3 DiagramBuilder use case: Browse SOCCA model data-baseA. Types of browsing;� Change view on diagram; (See U3.1)� Search within chunks; (See U3.2 on the next page)� Browse through chunks; (See U3.3 on the next page)� Follow links. (See U3.4 on the next page)U3.1 Change view on diagramA. Select diagram;B. Select view operation;� Zoom diagram;� Move the view port;� Select parts to view and hide.

U3 DiagramBuilder use case: Browse SOCCA model database 65U3.2 Search within chunksA. Specify search options;� Specify text to search for;� Specify range of search; (See U3.2.1)� Specify type of search; (See U3.2.2)B. Initiate search.U3.2.1 Specify range of search� Specify chunks to search in;� Specify diagram types to search in;� Specify building block types to search in.U3.2.2 Specify type of search� Toggle `match case' on/o�;� Toggle `match complete string' on/o�;� Toggle `fuzzy search' on/o�.U3.3 Browse through chunks� Choose current chunk;� Expand chunk hierarchy;� Collapse chunk hierarchy.U3.4 Follow linksA. Select diagram;B. Narrow link choices; (See U3.4.1)C. Select link to follow;D. Initiate following of link.U3.4.1 Narrow link choices� Select building block;� Select target type;

66 DiagramBuilder use cases

67Section 5.3Discussion on DiagramBuilder usecasesThe comments on the di�erent use cases for the DiagramBuilder actor can be found on thefollowing pages:� Specify diagram; (See D1)� Analyse diagram; (See D2 on page 69)� Browse SOCCA model database. (See D3 on page 69)D1 Discussion on: Specify diagramA. Open diagram: To (further) specify a diagram, you �rst have to pick the diagram. Adiagram will also have to be picked in the use cases \Analyse diagram" and \Animatediagram". In those use cases there is no need for copies or new diagrams, so only the \Loadspeci�c diagram" is used there.Because there are several types of diagrams used in SOCCA, the DiagramBuilder will haveto specify what type of diagram he or she wishes to create when choosing the option \Opennew (empty) diagram". Refer to D1.1 on the next page for the di�erent types possible.The di�erence between "Open copy : : : " and "Open new version : : : " is that in the formera diagram is copied without taking the links with other diagrams into consideration. Whenopening a new version however, the links to other diagrams are maintained. Note that thisintroduces the problem of links with more than one source or destination. This problem willbe handled by the version management component of the SOCCA environment (see section3.6.4).The choices "Open copy : : : " and "Open new version : : : " can functionally be handled interms of "Open new (empty) diagram" followed by "Generate diagram part(s)". However,from a user's point of view, this is not an obvious thing to have to do. The current solutionis much clearer.B. Change diagram: The term building block has a very speci�c meaning. It is introducedin [HW96].� Create building block: Building blocks can be created in the editor. What buildingblocks can be created depends on the type of diagram which is being edited.� fcurrent diagram type is `subprocess'g Specify traps: This option should providefor the creation, editing and removal of traps in a subprocess. Because a trap does not

68 Discussion on DiagramBuilder use casesmeet the current de�nition of a building block, it cannot be created with the previousoption. A building block has a �xed layout, whereas a trap does not. This might notbe a problem, if the de�nition of a building block is adjusted.� Generate diagram part(s): Refer to D1.2 for discussion.� Apply generic editing operation: Refer to D1.3 for discussion.C. Save diagram: The diagram must be saved explicitly.D1.1 Open new (empty) diagramThe following types of diagrams can be created:- EER diagram:- external STD;- internal STD;- manager;- employee;- subprocess;- general STD;The option to create a general STD is added for
exibility towards the user.D1.2 Generate diagram part(s)The idea about generating diagram parts is that you �rst specify particular building blocks. Thesebuilding blocks should have a particular relationship with the part that you want to generate.Therefore, some diagram parts can be generated by the system itself.A. Select building block(s) to generate from: The building blocks can be chosen from theSOCCA model browser as described in the use case \Browse SOCCA model". The selectedbuilding blocks must have some relationship to the diagram worked on, so generation ispossible.B. Initiate generating of diagram part(s): The parts of the diagram are generated. Thelinks from the generated part to the part generated from will be created too. These links willall be of some default type (possibly the identity relationship) and some default permissionswill be set for it. This way, the DiagramBuilder does not have any control over the links.The ModelIntegrator is allowed to change link-types and thus the responsibility is for thatrole only.D1.3 Apply generic editing operationThis list of choices is based on the generic, graphic editor which uses building blocks and plugs.It is important to appreciate the exact meanings of those terms. See [HW96] for this.

D2 Discussion on: Analyse diagram 69D2 Discussion on: Analyse diagramAnalysis of the diagram is limited to the diagram itself. No links will be followed to check otherconsistencies. That kind of analysis is done in in the use case \Analyse chunk" discussed in subuse caseU3 of chapter 6.All things that could make a general diagram faulty can be checked here. Most of these possiblechecks, have to do with whether some building blocks are connected or not. Connections betweenbuilding blocks can be done via plugs. The concept of plugs is introduced in section 3.4.1 and in[HW96]. It is through this concept, that it is not possible to make connections between buildingblocks, which are not allowed in a diagram. Therefore, the analysis engine in the system will nothave to check the connections between the building blocks. It only needs to check if the plugswhich should be connected are indeed connected.Other checks which could be possible are the check for cycles in inheritance and part-of relation-ships in EER diagrams. Also, warnings could be generated if for example an inherited operationhas the same name as an operation from the class itself. For STDs, the analysis engine could alsocheck for parts which cannot be reached from every state.A. Select diagram: To analyse a diagram, it �rst has to be selected.B. Initiate analysis: Starts the analysis of the diagram.D3 Discussion on: Browse SOCCA model databaseBrowsing a SOCCA model involves viewing operations on di�erent types of diagrams used inSOCCA, search operations within the SOCCA model and exploring it in several ways. Theviewing operations are explained in D3.1, the discussion involving the search operations is atD3.2 and exploring SOCCA models is discussed at the end of this section.A. Types of browsing:� Change view on diagram: Refer to D3.1 for discussion on this subject.� Search within chunks: Refer to D3.2 on the next page for discussion on this subject.� Browse through chunks: Refer to D3.3 on the next page for discussion on thissubject.� Follow links: Refer to D3.4 on page 71 for discussion on this subject.D3.1 Change view on diagramA. Select diagram: First a diagram must be selected. This diagram is not opened by this usecase, so it should already be open. We do not allow an DiagramBuilder to open a diagram,because this is no browsing as we see it. Opening a diagram could for example be done inOpen diagram.B. Select view operation:� Zoom diagram: Zooming is supported in most editors. The zooming option for thiseditor must supply a method to change the zooming-factor of the diagram.� Move the view port: If the diagram is larger than the screen, there should be a wayto move to parts of the diagram, which cannot be seen.� Select parts to view and hide: This is not really a standard option for editors,but it could prove rather useful for our purpose. Building blocks and types of buildingblocks can be hidden and made to reappear as wished. This is particularly useful if thediagram is clutters with building blocks and relationships.� ...: Other operations on the view on diagrams (so no operations which actually changethe diagrams) could be added.

70 Discussion on DiagramBuilder use casesD3.2 Search within chunksSearching for all kinds of objects, like chunks, diagrams, building blocks and even links must bepossible.A. Specify search options:� Specify text to search for: The text (which is usually a name from some buildingblock or diagram) can be speci�ed. It is possible to search for nothing, which wouldlist all objects speci�ed by the range of search.� Specify range of search: See D3.2.1 for discussion.� Specify type of search: See D3.2.2 for discussion.B. Initiate search: Starts the search.D3.2.1 Specify range of search� Specify chunks to search in: In these chunks the object(s) speci�ed will be searched for.With this option, the search can also be limited to one diagram. This because one diagramis also a chunk.� Specify diagram types to search in: The types of diagrams speci�ed here will be searchedfor the object(s) speci�ed. Something like: `in all external STDs' can be speci�ed here.� Specify building block types to search in: Here, the types of building blocks which willbe searched in are de�ned. This way you could search just the names of classes or commonrelationships, for example.D3.2.2 Specify type of search� Toggle `match case' on/o�: If `match case' is on, the search engine searches for objectswith exactly the same case as the search string speci�ed.� Toggle `match complete string' on/o�: If `match complete string' is on, the searchengine will not look for a string in which the search string occurs, but only those stringswhich match the whole search string are seen as successful.� Toggle `fuzzy search' on/o�: Fuzzy search means that the search engine will search forstrings which match the search string closely, but not totally. For example, if one characteris di�erent, the search engine will still accept the discovered string as successful.D3.3 Browse through chunksBrowsing through chunks means that the DiagramBuilder can explore the database using theideas of chunks. This can be useful if some particular diagram or chunk is searched for, or if animpression of the database is wanted.Because chunks can group chunks, a hierarchical structure is available. At the bottom of thisstructure the diagrams are situated, at the top the SOCCA models. The DiagramBuilder can nowbrowse through the hierarchy of chunks by means of the following operations. Together with theoption to follow links in the Browse SOCCA model database use case, this would result in avery
exible browser.In this browser, the concept of the current chunk is used. This `current chunk' is the chunkwhich the browser is focussed on; The browser displays the contents of it.� Choose current chunk: Make selected chunk the current chunk (leave the previous currentchunk) From this chunk the browsing can continue (compare: the current directory in a �le-browser).

D3 Discussion on: Browse SOCCA model database 71� Expand chunk hierarchy: Show all chunks and diagrams one level deeper (compare:expanding a directory-tree).� Collapse chunk hierarchy: Show all chunks and diagram one level less deep (compare:collapsing a directory-tree).D3.4 Follow linksThis part of the use case allows the DiagramBuilder to follow links between diagrams. Togetherwith the browsing through chunks it allows for a
exible browser within the SOCCA environment.The DiagramBuilder can now explore the SOCCA models through the links, because they can befollowed to reach other diagrams and from these diagrams other chunks can be reached.A. Select diagram: First, a diagram from which the link has to be followed has to be speci�ed.This can be done by clicking its window, but also by selecting the name in the model browser.B. Narrow link choices: See D3.4.1 for comments.C. Select link to follow: There still could be several links left to choose from, this must bedone here.D. Initiate following of link: Follows the link. If this is done from the model browser, thediagram on the other side of the link will become the new current diagram in the browser;browsing will resume from another node. If this operation is done from some open diagram,this would result in opening the diagram on the other side of the link.D3.4.1 Narrow link choicesThese are optional choices to narrow down the possible links.� Select building block: Some links are from building blocks to other building blocks, othersare from building blocks to diagrams and there are also links from diagram to diagram.Therefore, sometimes a building block can be speci�ed. This to select from the links, whichare from that particular building block.If no building block is speci�ed, all links involving the diagram (and its building blocks) areavailable for following.� Select target type: There are several types of diagrams and building blocks involved inlinks. If the type of the diagram or building block at the other side of the link is speci�ed,this narrows down the choices of links to follow.Note, that with such a target choice (together with the source), the type of link is almostspeci�ed. There will not be much links with the same source and target (possibly none).� : : : : Other options might follow.

72 Discussion on DiagramBuilder use cases

73Section 5.4System notes on DiagramBuilderuse casesThe system notes on the di�erent use cases for the DiagramBuilder actor can be found on thefollowing pages:� Specify diagram; (See S1)� Analyse diagram; (See S2 on page 75)� Browse SOCCA model database. (See S3 on page 75)S1 System notes on: Specify diagramA. Open diagram: Opening a diagram is something that will have to be done for analysis andanimation of a diagram as well. In an actual information system this part will be handledby the familiar windowing interface. In such a system traditionally there is a �le menu withoptions such as New, Open and Close. The system will have to maintain the notion ofcurrent diagram/window.Note that a command like Close does not have a direct counterpart in the use case speci�c-ation. The Close command just ends a particular sequence of actions, corresponding to ause case. In the actual system it is necessary because several use case sequences interact; inthe use case speci�cation it is implicit.To specify a diagram the user will have to enter some kind of identi�cation. A properidenti�cation consists of a name string and a version number. In a lot of cases the user willnot have to enter a version number, as the latest version can often be used for a default here.Of course, specifying a diagram's name may be accomplished by picking a name from a list.- Open new (empty) diagram: This corresponds to the command New. Whenopening a new diagram, the user will have to supply a name. The system may eitherask for this on opening the new diagram, or when closing the diagram. It is commonpractice nowadays to specify �le names for new �les on saving. In the meantime,generic, unique names are used. From that perspective, this may also be the rightthing to do for the SOCCA environment. It is also the view that �ts nicely with theidea of making the system as inobtrusive as possible. However, this may interfere withdatabase management issues. A decision should be taken on this in detailed design.Apart from a name, the diagram type must be speci�ed as well. This must happenbefore editing the diagram, because the editor will contain commands speci�c for thedi�erent diagram types. Therefore, it might be nicer to de�ne both name and type

74 System notes on DiagramBuilder use caseswhen opening the diagram. The type of the diagram should of course be chosen froma list of possible types.- Load speci�c diagram: This corresponds to the command Open.- Open copy of speci�c diagram: This corresponds to the command Open Copy.Links to other diagrams are not taken into consideration.- Open new version of speci�c diagram: This corresponds to the command OpenNew Version. Links to other diagrams are taken into consideration. Creating of anew version thus adds a choice to the process of integrating a SOCCA model from itscomponents: either choose the new version or one of the old.B. Change diagram: Changing an diagram closely follows the ideas that formed the basis ofthe prototype for the structured, generic, graphical editor ([HW96]). This editor does notcontain functionality for the generation of diagram parts.� Create building block: Building blocks can be created using special-purpose buttonsthat have been generated from a user's description of diagrams.It must also be possible to drag labels from other windows onto the canvas. This waythe labels are used as building blocks as well. For example, operation names can bedragged to a class, to add them to it.� fcurrent diagram type is `subprocess'g Specify traps: If the diagram beingedited is a subprocess, there must be a way to create, edit and remove traps.Creation of traps would most preferably be done by selecting the states and transitionswanted in the trap and then select an option `create trap' from some menu or button.The selection could be made by simply clicking on the states and transitions in thediagram. The trap should be provided with a name, which could be prompted for.Editing a trap would involve adding and removing states and transitions from it. Againa selection of the states and transition wished to be removed or added is needed. If thisselection is made, an option for removal from or addition to the trap must be chosenfrom some menu or button.Removal of a trap could be done by selecting it (by a mouse click or a name) and issuinga remove command.� Generate diagram part(s): (See S1.1)� Apply generic editing operation: Once building blocks have been created, theyare handled like any other graphical primitive. The plug semantics take care of thecoupling of di�erent building blocks. Apart from the commands to (dis)connect plugs,the commands are thus very simple and can be found in any graphical editor.It is important to note that in the existing prototype, the integration of these commandsand the building block and plug concepts is not yet fully accomplished.C. Save diagram: When closing the diagram, it should be saved explicitly. When changesto a diagram have been made, the system could inform the user if the changes should becommitted to the underlying database. This way, it is possible to dismiss all changes.S1.1 System notes on: Generate diagram part(s)The use case here describes how one diagram part can be generated. In an actual system theremay also be a need of features that allow the user to generate several diagram parts at the sametime. To do this it is necessary to have some kind of mechanism to specify bulk generation. Foreach part that is generated it is necessary to be able to specify source, link and destination.Careful thought should be given to the decision whether features for bulk generation are ne-cessary, how strong these features need be, and what form the speci�cation should take.Because, there are only a limited number of types of generations possible, it might be possibleto provide a step by step interface for all of them. Such an interface should provide the same steps

S2 System notes on: Analyse diagram 75presented here, but it would be rather strict on the selections of building blocks: only buildingblocks for the speci�ed generation-type would be available for selection.A. Select building block(s) to generate from: To select building blocks (or even wholediagrams) the browser part of the system should be used to �nd the building block(s) andselect them in some way.The system could check if it is possible to generate from the selected building blocks. Maybeonly useful selections should be allowed.B. Initiate generating of diagram part(s): The diagram parts that are generated shouldalways be placed in the current diagram, unless the user speci�cally speci�ed otherwise.S2 System notes on: Analyse diagramThis use case is used to analyse a diagram.A. Select diagram: Selecting a diagram is done in the familiar windowing interface as de-scribed in S1 or by simply clicking in its window (if its already open).B. Initiate analysis: The system analyses the speci�ed EER diagram.The system can have several possibilities to feed the information acquired from the analysisof the diagram back to the user. We have come up with the following notions:� Some kind of graphical feedback: building blocks which are involved in some problemlight up;� A textual description of all the errors and the building blocks involved in them puttogether in one �le;� A user-interface in which all errors can be displayed and from which the involved build-ing blocks can be reached for edit.Each error will have some static information linked to it, which will describe the possibleproblem and what could be done to �x the error. This information should be available fromthe di�erent feedback options.S3 System notes on: Browse SOCCA model databaseA. There are three kinds of browsing operations:� Change view on diagram: Refer to S3.1 for system notes on this.� Search within chunks: Refer to S3.2 on the next page for system notes.� Browse through chunks: Refer to S3.3 on page 77 for system notes.� Follow links: Refer to S3.4 on page 77 for system notes.S3.1 Change view on diagramThe view operations should be embedded in the editors for the di�erent diagrams. No specialinterface is needed for them. Browsing in this sense is nothing more than adding some functionalityto the editor.A. Select diagram: A diagram is selected by making the window active.B. A few notes on the di�erent view operations:

76 System notes on DiagramBuilder use cases� Zoom diagram:: This can be done in several ways (all known from well known designprograms), like specifying a zoom-percentage, specifying an area on which to zoom, etc.For all there exist well known interfaces.� Move the view port: Again, there are several ways to accomplish this. The one mostused is the implementation by scrollbars, but also the dragging of the view port can bedone.� Select parts to view and hide: This is no standard option for editors. A windowcould be provided to select the types of building blocks to hide and to view. If it shouldbe possible to select the building blocks individually, this should be done in the editordirectly, for example as a right mouse click option.S3.2 Search within chunksThe search engine used for searching the SOCCA model must recognize all objects by means ofstrings. So, diagrams and chunks are recognized by their name and states and transitions by theirlabels, etc. Its interface should include all options speci�ed in the following sections.A. Specify search options: The search options must be speci�ed in an easy to comprehendinterface.� Specify text to search for: No comments.� Specify range of search: Refer to S3.2.1 for system notes.� Specify type of search: Refer to S3.2.2 for system notes.B. Initiate search: The search engine will be fed with the options speci�ed and will try tocome with results. The results can be presented in several ways. This is an option for theuser. It has not been added to the use case, because it is just a way of presenting results, nota way of getting them. Apart from a textual result, graphical feedback could be provided:diagrams and chunks searched for could lit up in the exploring-interface described earlierand building blocks could lit up in diagrams.S3.2.1 Specify range of search� Specify chunks to search in: To specify the range of the search some kind of exploringinterface can be used. This time it must be possible to select branches of the chunk-structure.For example, by means of check-boxes.� Specify diagram types to search in: There are only several types of diagrams used inSOCCA, so it cannot be a problem to allow the user to select or deselect the types.� Specify building block types to search in: A useful interface for selecting or deselectingtypes of building blocks searched for must be created. Note, that if some diagram types aredeselected in the previous option, the building block types, which are unique for that diagramtype will not have to be included in this interface.S3.2.2 Specify type of searchThe options in for the types of search are all toggle options. They could be include in an interfaceas simple check boxes, which can be on or o�.

S3 System notes on: Browse SOCCA model database 77S3.3 Browse through chunksA user-interface should be supplied for exploring the SOCCA-model. This user-interface mustsupply a clear way to go from one part of the SOCCA-model to another. Because the chunk-mechanism provides a kind of hierarchical structure within a SOCCA-model, it can be used foran exploring interface resembling a �le-browser, with the chunks resembling directories and thediagrams resembling �les. This way all options speci�ed can be implemented as mouse-clicks andbuttons on the browser.S3.4 Follow linksBecause the diagrams are linked to each other by means of links, these links could be used forexploring to. In the �le-like browsing interface described in S3.3, but also from within otherdiagrams, when the user wants to look at a linked diagram.A. Select diagram: In the model browser this can be accomplished simply by clicking on thename of the diagram, if it is visible in the browser interface. If it is not, the chunks shouldbe browsed and expanded to make the name visible.For open diagrams (which have their own window) the selection is merely making theirwindow active. For example, by a mouse click.B. Narrow link choices: Refer to S3.4.1 for system notes.C. Select link to follow: In both the model browser and open diagrams, a list of possiblelinks to follow should be displayed. These links are the links linked to the selected buildingblock. If no building block is selected, all links regarding the diagram are displayed.A selection can be made by a simple mouse click on the link which should be followed. Ifonly one link can be associated with a building block or diagram, a simple double click onit can be used to select the link.D. Initiate following of link: This is done automatically by the choice of the link.S3.4.1 Narrow link choices� Select building block: In the model browser it could be possible to display all the buildingblock names, if the current node is a diagram. So, if a diagram is clicked on in the modelbrowser, it is made the current node in the browser and the building blocks are displayed.This way, the building blocks from the diagram can be selected.In an open diagram the building blocks are visible, so a click with the mouse to select thebuilding block could be enough.� Select target type: Because there are a limited number of possible types, it is possible tomake these selections from some kind of list.

78 System notes on DiagramBuilder use cases

Chapter 6The ModelIntegrator use cases6.1 IntroductionThis chapter contains the use cases for the actor ModelIntegrator. As mentioned in chapter4, this chapter contains four sections: the introduction, the use cases, the discussion on the usecases and the system notes.S1 The use casesThe actor ModelIntegrator is responsible for chunking and linking diagrams in order to create submodels: small pieces of SOCCA models which contain all of the three perspectives. To do this,use case for managing links and chunks are provided. The ModelIntegrator must also be ableto analyse and check these sub models (chunks), for these purposes other use cases need to beprovided. Like, the DiagramBuilder, the ModelIntegrator must also be able to browse throughthe SOCCA model database. The same use case as the one presented in the previous chapter canbe used for this.A short description of the use cases is given in the following sections.S1.1 The use case: Manage chunksThis use case o�ers all functionality regarding the creation, editing and deletion of chunks. Generalchunk as well as special chunks (referring to special groups of diagrams) can be created. Diagramsbut also chunks can be added and removed from the chunks.S1.2 The use case: Manage linksWith this use case, the ModelIntegrator can create and remove links between chunks, diagramsand building blocks. Only some types of links can be created. The use case also provides thepossibility to specify permissions and propagations with each link.S1.3 The use case: Analyse chunkThis use case provides the ModelIntegrator with the possibility to analyse chunks. In the analysisof the chunks, all possible and required links are taken into consideration. Therefore, this analysismust be able to check whether the chunk is a correct (part of a) SOCCA model or not.

80 IntroductionS1.4 The use case: Simulate chunkThe use case \Simulate chunk" should be able to do a simulation run on the chunk. Simulationwas not in the scope of this thesis, so the use case is not presented here. It is only mentioned inorder to make the picture somewhat more complete.S1.5 The use case: Browse SOCCA model databaseThis use case must be the same as the use case \Browse SOCCA model database" for the Diagr-amBuilder. Refer to section 5.1.1.3 for a short description.S2 List of use cases and sub use casesWith the help of the following list, it is easy to �nd the use cases and sub use cases in thisdocument. After each (sub) use case, three page numbers are listed. The �rst page number is thatof the (sub) use case. The second page number is that of the discussion on the particular (sub)use case. And the third is that of the system notes on the particular (sub) use case. Sometimesno page number is listed. In that case no discussion or system notes are given on the (sub) usecase.number name usecasepage dis-cus-sionpage systemnotespage1 ModelIntegrator use case: Manage chunks 81 85 911.1 Specify chunk 81 85 911.1.1 Open new (empty) chunk 81 86 -1.1.2 Add diagram(s) to chunk 82 86 921.1.3 Remove diagram(s) from chunk 82 86 922 ModelIntegrator use case: Manage links 82 87 922.1 Specify link 82 87 932.1.1 Specify node for link 82 87 932.1.2 Specify link permissions 82 88 932.1.3 Specify link propagations 83 88 943 ModelIntegrator use case: Analyse chunk 83 88 94ModelIntegrator use case: Browse SOCCAmodel database 64 69 75

81Section 6.2ModelIntegrator use cases� ModelIntegrator use case: Manage chunks; (See U1)� ModelIntegrator use case: Manage links; (See U2 on the next page)� ModelIntegrator use case: Analyse chunk; (See U3 on page 83)� ModelIntegrator use case: Browse SOCCA model database. (See U3 on page 64)U1 ModelIntegrator use case: Manage chunks� Specify chunk; (See U1.1)� Remove chunk.U1.1 Specify chunkA. Open chunk.- Open new (empty) chunk; (See U1.1.1)- Open speci�c chunk;- Copy speci�c chunk.B. Change chunk.� Add diagram(s) to chunk; (See U1.1.2 on the next page)� Remove diagram(s) from chunk; (See U1.1.3 on the next page)U1.1.1 Open new (empty) chunkA. Specify type of chunk;- Open new general chunk;- Open new SOCCA model chunk;- Open new data perspective chunk;- Open new behaviour perspective chunk;- Open new partition chunk;- : : :B. Initiate creation.

82 ModelIntegrator use casesU1.1.2 Add diagram(s) to chunk� Add diagram to chunk;� Add chunk to chunk;� Add chunk as diagrams to chunk.U1.1.3 Remove diagram(s) from chunk� Remove diagram from chunk;� Remove chunk from chunk.U2 ModelIntegrator use case: Manage links� Specify link; (See U2.1)� Remove link.U2.1 Specify linkA. Open link.� Open new link;� Open existing link;B. Change link;� Specify node for link; (See U2.1.1)� Specify link type;� Specify link permissions; (See U2.1.2)� Specify link propagations. (See U2.1.3 on the next page)C. fLink fully speci�edg Initiate link.U2.1.1 Specify node for linkA. Select which node of link to specify;B. Narrow down choices.� Select chunk;� Select diagram;� Select link type;C. Select node;U2.1.2 Specify link permissions� Set analysis allowance;� Set browse allowance;� : : :

U3 ModelIntegrator use case: Analyse chunk 83U2.1.3 Specify link propagations� Set change propagation;� : : :U3 ModelIntegrator use case: Analyse chunkA. Select chunk;B. Initiate analysis.

84 ModelIntegrator use cases

85Section 6.3Discussion on ModelIntegrator usecases� ModelIntegrator use case: Manage chunks: See D1 for discussion.� ModelIntegrator use case: Manage links: See D2 on page 87 for discussion.� ModelIntegrator use case: Analyse chunk: See D3 on page 88 for discussion.� ModelIntegrator use case: Browse SOCCA model database: See D3 on page 69 fordiscussion.D1 Discussion on: Manage chunksThe de�nition of chunks and the concept of chunking is explained in section 3.4.2. The choice-chunks explained there will not return in these use cases. These choice chunks are used to resolveclashes in a multi-user environment and version management. The choice has been made to leaveout these problems till a later date.Chunks are the responsibility of the ModelIntegrator. So, he or she must be able to create,remove and maintain them.� Specify chunk: Refer to D1.1 for the discussion on this.� Remove chunk: A chunk can be deleted. This does not imply that the diagrams andchunks, that are present in the chunk are deleted. This should never be done by removingchunks. Diagrams and chunks must be removed explicitly themselves.D1.1 Specify chunkA. Open chunk: To change a chunk it �rst has to be opened. If a new chunk is created, it ishandled as a chunk with no diagrams in it and then opened. For a new chunk a name hasto be provided.An option to open a copy of some speci�c chunk is also provided. A new name has to beprovided for this chunk, but the hierarchy is exactly the same as in the original chunk.There are some groups of diagrams, which have a special purpose in SOCCA models. Thesegroups all have their own type of chunk. Such a chunk can only contain diagrams whichful�ll some requirements. Refer to D1.1.1 on the next page for the types of chunks available.B. Change chunk.

86 Discussion on ModelIntegrator use cases� Add diagram(s) to chunk: Refer to D1.1.2 for discussion on this.� Remove diagram(s) from chunk: Refer to D1.1.3 for discussion on this.D1.1.1 Open new (empty) chunkThere are several types of chunks available, these are:- General chunks: General chunks can contain all types of diagrams and any number of them.This is the most
exible type of chunk.- SOCCA model chunks: SOCCA model chunks should be used for grouping all diagrams of aSOCCA model together. A useful way to do this, is by grouping the data perspective chunkand the behaviour perspective chunk for that SOCCA model.A SOCCA model chunk can also contain all types of diagrams and any number of them.Except, that only one classdiagram is allowed in such a chunk.- Data perspective chunks: Data perspective chunks should be used for grouping the diagramsfrom some data perspective of some SOCCA model. Only one classdiagram and any numberof import/export diagrams can be grouped in such a chunk.- Behaviour perspective chunks: Behaviour perspective chunks are chunks for grouping dia-grams from behaviour perspectives of SOCCA models. Any number and any type of STDscan be grouped in a chunk of this type. Also, subprocesses can be (or rather should be) ad-ded to this type of chunks. For the subprocesses, several partition chunks could be includedin the chunks.- Partition chunk: Partition chunks group subprocesses of one partition in SOCCA.Partition chunks are di�erent from all the other types of chunks. This, because they are alsoused as being partitions and thus links are created to these chunks. Therefore, whenever apartition is mentioned in the rest of this document, we are talking about a partition chunk.- : : : : Maybe other types of chunks could be useful too. If discovered, they will be addedhere later on.D1.1.2 Add diagram(s) to chunkTo an open chunk, diagrams can be added. Apart from diagrams, chunks can be added to otherchunks as well. This way a hierarchy of chunks can be created. This hierarchy can then be usedfor browsing. An example for a useful hierarchy could be the following: a SOCCA model chunkgrouping a data perspective chunk and a behaviour perspective chunk which group the diagramsof that SOCCA model. The system does not enforce such a hierarchy, it is just a possibility.To allow the ModelIntegrator to add diagrams and chunks to some chunk, the system mustprovide a possibility to select them. The SOCCA model browser could be used for this.To make the interface more
exible, the ModelIntegrator is allowed to include a chunk asdiagrams into a chunk. All the diagrams from the selected chunk are then added directly to thechunk. So, the hierarchy of the selected chunk is not copied.To chunks of some types only some types of diagrams can be added. The ModelIntegratormust not be able to add diagrams of types, which are not allowed (anymore).D1.1.3 Remove diagram(s) from chunkIt should be possible to remove diagrams or whole chunk hierarchies from chunks. Compare thiswith the possibilities to remove �les and directories from some directory in a �le browser. If adiagram is removed from a chunk, the diagram does not disappear from the database. Chunksonly provide links to diagrams, not diagrams themselves.

D2 Discussion on: Manage links 87D2 Discussion on: Manage linksThis use case involves the managing of links. Links are also the responsibility of the ModelInteg-rator. All things involved with the managing of links should be done from here.� Specify link: For discussion, see D2.1.� Remove link: The selected link will be removed from the database.D2.1 Specify linkA. Open link: A link has to be selected in order to further specify or remove it. A new linkcan be created by the option \Open new link". An existing link can be selected by theoption \Open existing link".The choice of the term `open' has been made to show the correspondence between links andthe other concepts, like chunks and diagrams. All these concepts have a similar step in theiruse cases, namely that of opening a new or existing one.B. Change link;� Specify node for link: To specify a link, the system �rst needs to know what willbe linked. Links can involve diagrams, building blocks and even groups of diagrams. Anode of a link is thus either a diagram, a building block or a group of diagrams.To specify a link, all nodes of it need to be speci�ed. Almost all links involve two nodes,but at least one involves three nodes. This is why we have made this a repeatable option.Note, that because of this it is possible to skip this step, which could result to no nodesbeing de�ned. This should not be possible for a new link, but an existing link does nothave to have its nodes speci�ed again.See D2.1.1 for more discussion on this topic.� Specify link type: The type of link is the type of dependency between the nodes ofthe link. For each type of link, some kind of dependency between its nodes exists. Thisdependency can involve equality of labels, but also more complex dependencies can beexpected.If the selection of the nodes does not fully specify the type of link, it has to be providedby the user. However, in almost all cases the selection of the nodes specify the type oflink.� Specify link permissions: See D2.1.2 on the next page for discussion.� Specify link propagations: See D2.1.3 on the next page for discussion.C. fLink is fully speci�edgInitiate link: Link is actually created (or changed) by this option.In order to do this, the type of link and the nodes of the link need to have been provided.A possible check of consistency could follow after this.D2.1.1 Specify node for linkA. Select which node of link to specify: First, the ModelIntegrator has to select whichnode of the link he or she wants to specify. If the type of nodes are available, such a selectionis a selection of the node type. If it is not, the selection only states if some node needs tobe overwritten or if a new one should be added.B. Narrow down choices: The system should assist the user in linking two (or more) nodesto the fullest extent. Therefore it should assist the ModelIntegrator in selecting the nodes.This can be done by showing: the links needed, the links possible, the links created, etc. Itshould also provide a user-friendly way to choose the nodes involved. This is done in thisstep. Several options to limit the choice of node are given below.

88 Discussion on ModelIntegrator use cases� Select chunk: The choice is limited to the chunk selected.� Select diagram: The choice is limited to the diagram selected; Only building blocksof the selected diagram can be chosen from.� Select link type: By explicitly selecting a link type, the node types are de�ned too.So, if a link type is provided, the system can limit the choice to the allowed nodes only.C. Select node: The node still needs to be selected.D2.1.2 Specify link permissionsSome sorts of permissions can be set for links. Although it is not yet clear what types of permissionsshould be possible, some ideas are presented below. What permissions should be implemented isa decision, which still has to be made.The general idea behind the permissions is, that some users are allowed to do some operationson or via the links, and some are not.� Set analysis allowance: Allow or disallow analysis with this link.� Set browse allowance: Allow or disallow the use of this link with browsing.� : : :D2.1.3 Specify link propagationsLinks always denote a dependency between two or more parts of a SOCCA model. Therefore, achange at one side of the link could (and perhaps should) enforce a change at the other side(s) ofa link. However, such a change is not wished for in every case. Therefore, we need to provide theModelIntegrator with options to con�gure what happens if one side of the link is altered.� Set change propagation: The ModelIntegrator must be able to de�ne if a change ispropagated through the link. Maybe a warning is wished for, or should this change beforbidden. Note, that a such a propagation setting for a link can be di�erent for di�erentdirections. It might be useful to have a link propagate changes from one side to the other,but not the other way around. For example, if a piece of model is added to a large part,changes in the little piece should not enforce changes in the large part. The other way aroundcould however be useful.� : : :D3 Discussion on: Analyse chunkAnalysis of chunks is like checking if the chunk is a correct SOCCA model itself. So, the analysisengine checks for all dependencies which should exist between the diagrams in the chunk. Thesedependencies can be extracted from the meta model for SOCCA models and involve links. Forsome diagram, it is possible that some required link does not exist in the chunk. This can be fortwo reasons:� It was indeed forgotten. This is indeed a real error.� The link was created between two diagrams of which only one is present in the chunk. Thisis a special kind of error: although the chunk is not a SOCCA model on it's own, it could beuseful to check all possible dependencies between only the diagrams in the chunk. Therefore,this error must be handled di�erently.When analysing whether a chunk is correct, the diagrams of that chunk must also be checkedfor layout. This can be done with the help of the use case \Analyse diagram" presented in sectionU2 of chapter 5.

D3 Discussion on: Analyse chunk 89A. Select chunk: To analyse a particular chunk, it �rst must be selected.B. Initiate analysis: Starts the analysis.

90 Discussion on ModelIntegrator use cases

91Section 6.4System notes on ModelIntegratoruse cases� ModelIntegrator use case: Manage chunks: See S1 for system notes.� ModelIntegrator use case: Manage links: See S2 on the next page for system notes.� ModelIntegrator use case: Analyse chunk: See S3 on page 94 for system notes.� ModelIntegrator use case: Browse SOCCA model database: See S3 on page 75 forsystem notes.S1 System notes on: Manage chunksBecause the chunk hierarchy is used in the SOCCA model browser, it could be useful to use thesame browser to add, remove and edit chunks. Compare this with the idea of managing directoriesin a �le-browser.Some kind of button or menu option from the browser could allow the user to add a newchunk in the current one or at the top of the hierarchy. The same goes for removing some chunk.To edit a chunk, diagrams and chunks can be dragged to it (to add them) or deleted from it.The diagrams and chunks could be displayed in another window of the browser or in a wholenew browser all together. Remember that a chunk only contains links to diagrams and not thediagrams themselves. If a diagram is added to a chunk, in reality a link to that diagram is addedto it. This way the diagrams can all be stored at one place (or in one database) and no carelessbehaviour will accidentally change them.� Specify chunk: (See S1.1)� Remove chunk: No further comments.S1.1 Specify chunkA. Open chunk.- Open new (empty) chunk: A new chunk can be created in the current one bypressing a `new chunk'-button or by a menu option. The chunk is created in thecurrent chunk, if the SOCCA model browser is open. The browser should make thenew chunk the current node in the hierarchy. If the browser is not open, the chunk willbe added at the top level of the hierarchy and the browser will be opened and makethe new chunk the current node.There are several types of chunks. The type for a new chunk must be speci�ed as well.

92 System notes on ModelIntegrator use cases- Open speci�c chunk: A new chunk can be opened by making it the current node ina browser. This should also be possible by typing the name of the chunk.- Copy speci�c chunk: If a speci�c chunk has been selected, an option to copy it mustbe available. This option could be implemented as a button or a menu-item. A newname has to be provided for the new chunk.B. Change chunk: Chunks can be speci�ed by adding (links to) diagrams and chunks to themor by removing (links to) diagrams and chunks from them. Refer to the following sectionsfor more speci�c system notes.� Add diagram(s) to chunk; (See S1.1.1)� Remove diagram(s) from chunk; (See S1.1.2)S1.1.1 Add diagram(s) to chunk� Add diagram to chunk: Can be done by dragging the name of the diagram to the chunk.The name of the diagram can come from another part of the browser or a whole otherwindow. Compare this with dragging a �le to some directory in a �le browser. Although ina �le browser this would result in a copy or a move most of the time, in the SOCCA modelbrowser, this would have to result in a link to the speci�ed diagram.Only diagrams which are admitted by the chunk type of the chunk can be added to thechunk and only in the numbers in which they are allowed. The system thus has to checkwhether the type of diagram is allowed for this chunk and if there are not to many of thediagram type in the chunk already (this is only a problem with classdiagrams, for now).� Add chunk to chunk: Like with the diagrams, the selected chunk can just be dragged tothe chunk in order to add it. Here too, only a link to the chunk is used. Original chunksalways resite in some database or at the highest level of the hierarchy. This too is for safety.The system should check if the chunk which is added, does not contain diagrams which arenot admissible to the chunk edited as its leaves. If this is the case, the chunk cannot beadded as a whole. It could be useful then, to add only the diagrams and hierarchy admissible.Although it should also be possible to dismiss the operation totally.� Add chunk as diagrams to chunk: As with both previous options, the diagrams cannotbe added, if the chunk type won't allow it. The ModelIntegrator might choose to add onlythe diagrams allowed or none at all.S1.1.2 Remove diagram(s) from chunkDiagram and chunks, or rather: links to diagrams and chunks, can be removed from chunks bydragging them from the chunk (the current node in the browser) to outside the browser. Anotherway to remove diagrams and chunks from chunks is to select them and choosing an option: delete.This option could be in some menu from the browser or associated with a combination of keys onthe keyboard.S2 ModelIntegrator use case: Manage links� Specify link: See S2.1 on the next page for more speci�c system notes.� Remove link: The system should communicate the consequences of the removal of theselected link to the ModelIntegrator. Con�rmation should be required for this action.

S2 ModelIntegrator use case: Manage links 93S2.1 Specify linkA. Open link: The system should provide ways to select existing links and creating new ones.Like similar concepts, the interface must be able to display the links in order to allow theModelIntegrator to select from them. For a new link a separate button could be created inthis interface.If a useful way for displaying links can be produced, such an interface would again resemblethe usual interface for opening, creating and saving. Only instead of �les, diagrams orchunks, the issue here is links. A useful way to display links is to display the type of linkand the nodes connected to it.B. Change link.� Select which node of link to specify: If the types of nodes, which need to bespeci�ed are known, the system can present a view of the link involved. This viewwould involve the nodes. A click on one of them, could indicate which node is going tobe speci�ed. Such a view can also be created for a general link.How the view on one link looks exactly is not important. It must provide, however, anice view on the link and its nodes and a way to select these nodes.� Specify node for link: See S2.1.1 for more speci�c system notes.� Specify link type: There are only a limited number of link types. So, it is possibleto select the link type from a list.If nodes have already been speci�ed for the link, only a limited number of link typeswill be possible. This, because the link type and the type of its nodes are stronglyrelated. The system should support this relation to the fullest extent. For example,by limiting the choices for a link type as a result of the speci�ed nodes for some link.Limiting the choice for nodes of the link as a result of a de�ned link type is possible aswell.� Specify link permissions: See S2.1.2 for more speci�c system notes.� Specify link propagations: See S2.1.3 on the next page for more speci�c systemnotes.C. fLink fully speci�edg Initiate link: A link is fully speci�ed, if all of its nodes and itstype have been speci�ed. The permissions and propagations must also be set for each link,but some default value for both concepts could be used, if no permissions or propagationshave been speci�ed.S2.1.1 Specify node for linkThe types of nodes of a link are strongly related to the type of the link. For a speci�c type oflink, the types of the nodes are already determined. Therefore, if for a link the type has alreadybeen speci�ed, the choices for the nodes can be limited drastically. However, if such a type hasnot been speci�ed, the step \Narrow down choices" allows for the user to limit the possiblechoices.The interface used for the selection of the nodes would be similar (or perhaps equal) to thebrowser interface. This interface provides way to focus on chunks and diagrams and allows theuser to select chunks, diagrams and building blocks. Building blocks and diagrams can of coursealso be selected from an open diagram on screen. This can be useful for linking the diagram (andits building blocks), while the user is working on it.S2.1.2 Specify link permissionsThese are nothing more than options which can be set for each link in particular. For every typeof allowance only a limited number of possibilities exists. A well-known way to choose such a

94 System notes on ModelIntegrator use casespossibility is by radio buttons. These radio buttons should be available on a properties sheet foreach link.S2.1.3 Specify link propagationsLike in system notes on sub use case S2.1.2 on the preceding page.S3 System notes on: Analyse chunkAs discussed in section D3, there should be support for various kinds of errors and warnings. Someideas on presenting these errors and warnings to the user are:� Graphical indication: Show the diagram(s) involved and points out where something ismissing. This by coloring the constructs involved.� Textual indication: Tell the user what is wrong textually. This can more clear as thesystem can tell you what the problem is.� Advise: Advise the user on how to correct the problem, if that is necessary. Indicate howsevere the problem is.A. Select chunk: A chunk must be selected. This can be accomplished by selecting it in thebrowsing interface or chunk editor.B. Initiate analysis: Accomplished by selection of a menu-item or a button.

Chapter 7Results and future workThis thesis has lead to various results. These results are described in following sections.7.1 Inventarory of the functionalityThe goal of this thesis was to make an inventory of the required functionality for a future environ-ment for creating and using SOCCA models, with the emphasis on the creation of SOCCA models(see section 1.1). This has resulted in a description of the required functionality in several usecases presented in chapters 4 till 6 and a meta model describing the dependencies between certainmodel fragments and diagrams in SOCCA. The use cases represent all of the major componentswhich can be expected in the future system. This has been achieved by our working method whichis presented in section 7.2.The use cases describe the required functionality to the level on what a user must be able to do,not on how he/she should do it. Ideas on how to implement some of the expected functionality arepresented as well. The description of the required functionality is rather complete, but decisions onsome issues should still be made when the environment is going to be implemented. We have triedto point out these issues and sometimes we have also provided some possible ideas and solutions.Together with the meta model, the use cases provide a basis for the a future meta model forthe complete SOCCA environment. That meta model will be probably a SOCCA model. Referto section 7.5 for more discussion on this.7.2 Working methodAnother result of this thesis is an idea for a working method for creating an inventory of the func-tionality of systems that will be build. Most of the time, when a system's expected functionalityis inventorized, the process is started with an informal method of modelling, such as use cases.This is not strange, as most of the time nothing formal on such an environment can be stated.In our case, however, something formal could be said about the environment. As the envir-onment should be responsible for creating (and using) SOCCA models, it was decided to �rstdescribe accurately what dependencies exist between model fragments and diagrams in SOCCA.An informal description of SOCCA models was already at hand. If this informal description couldbe converted to a formal description, it was likely to give us more insight in the required compon-ents of the system. So, we �rst created a meta model for SOCCA models in chapter 2. This metamodel was in the form of a class diagram with separate constraints written in Z.As expected, the meta model provided us with some concepts which would have to be supportedby the future environment. Some components could be identi�ed in order to o�er this support.These components were introduced in chapter 3. Other expected components were also introducedin that chapter.

96 Results and future workAs the expected components were known, it was now easier to make an inventory of the func-tionality of the environment with the use cases. Because some components were identi�ed withsome special concepts from the meta model, their functionality also depended largely on theseconcepts. The ideas for the other components' functionality were largely fed by comparable com-ponents of other environments. The functionality was described in the use cases in chapters 4 till6. Also ideas on possible implementation were presented there.The idea of starting with a formal way of modelling in order to have a starting point fordescribing the required functionality informally, might seem strange. On the other hand, if it ispossible to de�ne some particular concepts which the environment should support with the help ofa formal model, then the required functionality can be described more accurately and the informaldescription is more precise. A more accurate informal description of the required functionality of asystem is likely to lead to a more e�cient implementation phase for that system. Simply, becauseit is more accurate.7.3 Structured use case descriptionIn the e�ort to describe the functionality of the system in the use cases, we stumbled uponsome di�culties in expressing some often reoccurring constructs. In the original way to describethe use cases, all these constructs would normally be described in text only. As this resulted indescription which were di�cult to read and understand, we have developed a notation to structureuse case descriptions and facilitate the use of some often reoccuring constructs. This notation wasintroduced in chapter 4.7.4 Basis for implementationThe ideas on how to implement the functionality in the use cases are provided in the system notessections of chapters 5 and 6. Besides these ideas, the meta model provides a basis for the internalrepresentation and database of the future system. Therefore, this document provides a basis forimplementation.However, at the moment only ideas on implementation and a basis for the internal repres-entation is given. These ideas and the meta model should be expanded in a much more detaileddescription of the requirements for the system. Such a description is usually called a RequirementsDe�nition Document. Look at section 7.5 for more on this topic.7.5 Future workThis document only provides an inventory of the required functionality for a SOCCA environment.It does not provide an exact description of the requirements of a future system, but it presentsideas on the possible functionality and concepts which will be important in the system. In orderto describe the requirements exactly, �rst some decisions on the required functionality should bemade: there are points which need discussion, but also it must be decided that the presentedfunctionality is indeed the functionality wished for. It is plausible that some functionality willhave to be added and other functionality is not needed (or temporarily discarded).If the functionality is precisely bounded, a meta model which describes the future system canand should be made. It would be logical to use SOCCA for this purpose.This results in fully speci�ed requirements for the system (a Requirements De�nition Docu-ment), after which implementation can be started.

Appendix AThe meta model8u : uses; c : class; o : operation j(u calls o) �(u to c), (o part-of c) (A.1)8cl : class; cd : class diagram; ie : import/export diagram; �(9dp : data perspective � (cd part-of dp ^ ie part-of dp)) ,((cl part-of cd) , (clpart-of ie)) (A.2)8o : operation; c : class �(o part-of c), 9es : external std; t : transition �t part-of es ^ es speci�es c ^ t refers-to o (A.3)8o1; o2 : operation; c1; c2 : class j (o1 part-of c1 ^ o2 part-of c2) �(9u : uses relationship � (u from c1 ^ u to c2 ^ u imports o2),(9is : internal std; t : transition �(is speci�es o1 ^ ct part-of is ^ t refers-to o2))) (A.4)8p : partition; 91e : employee � e manages p (A.5)8m : manager; s : state js part-of m � (9sp : subprocess � s prescribes sp) (A.6)8s : state; m : manager; p : partition j(s part-of m ^m manages p) �91sp : subprocess(sp part-of p ^ s prescribes sp) (A.7)8s : state; m : manager; sp : subprocess j(s part-of m ^ s prescribes sp) �9p : partition(m manages p ^ sp part-of p) (A.8)

98 The meta model

99

Figure A.1: The meta model.

100 The meta model8m : manager; t : state; jt part-of m � (9tp : trap � t requires tp) (A.9)8s : state; t : transition; tp : trap j(t from s ^ t requires tp) �91sp : subprocess(tp part-of sp ^ s prescribes sp)) (A.10)8sp : subprocess; p : partition; e : employee; s : state j(p manages e ^ sp part-of p ^ s part-of sp) � (s part-of e) (A.11)8sp : subprocess; p : partition; e : employee; t : transition j(p manages e ^ sp part-of p ^ t part-of sp) � (t part-of e) (A.12)

Bibliography[Ber96] Edward V. Berard. Be careful with use cases, The Object Agency, Inc., 1996,http://www.toa.com/pub/html/use case.html.[BRJ97] Booch, Rumbauch and Jacobson. UML v1.0 Notation Guide. Rational Software Corpor-ation, 1997. http://www.rational.com.[C+93] Per Cederqvist et al. Version Management with CVS. Signum Support AB. 1992-1993,ftp://ftp.nluug.nl/vol/1/linux-debian/unstable/sources/rcs*.tar.gz.[Dil94] Antoni Diller. Z: an introduction to formal methods. John Wiley & Sons Ltd., 1994,ISBN 0-471-93973-0.[EG94] Gregor Engels and Luuk P.J. Groenewegen. SOCCA: Speci�cations of Coordinated andCooperative Activities, pages 71{102. Research Studies Press Ltd. / John Wiley & SonsInc., 1994, ISBN 0863801962 / 0471952060. Taunton 1994. Also: department of ComputerScience, Leiden University technical report 94-10.[GE95] Luuk P.J. Groenewegen and Gregor Engels. Coordination by BehaviouralViews and Communication Patterns. In W. Sch�afer, editor, Proceedings ofthe Fourth European Workshop on Software Process Technology (EWSPT '95),number 913, pages 189{192, Noordwijkerhout, The Netherlands, April 1995.ftp://ftp.wi.LeidenUniv.nl/pub/CS/SEIS/ewspt95.ps.gz.[Gro91] L.P.J. Groenewegen. Parallel Phenomena, 1986{91.A series of technical reports: 86-20, 87-01, 87-05, 87-06, 87-11, 87-18, 87-21, 87-29, 87-32, 88-15,88-17, 88-18, 90-18 and 91-19.[H�op94] J.J. H�oppener. The Merlin Process Transactions, Speci�ed with SOCCA.Master's thesis, Department of Computer Science, Leiden University, 1994.ftp://ftp.wi.LeidenUniv.nl/pub/CS/MScTheses/hoppener.95.ps.gz.[HW96] Antoinette Hartog and Michael Wijnakker. The syntax of a visual language generatesits editor. Master's thesis, Department of Computer Science, Leiden University, August1996. Internal Report 96-31.[JEJ95] I. Jacobson, Ericsson and A. Jacobson. The object advantage: Business process reengin-eering with object technology. Addison-Wesley, 1995, ISBN 0-201-42289-1.[Rij95] M. Rijnbeek. Modelling a Software Process Using SOCCA. Master's thesis, Departmentof Computer Science, Leiden University, 1995.[Wul95] Alex P. Wulms. Adaptive Software Process Modelling with SOCCA and PARADIGM.Master's thesis, Department of Computer Science, Leiden University, April 1995,ftp://ftp.wi.LeidenUniv.nl/pub/CS/MScTheses/wulms.95.ps.gz.

