
NATO UNCLASSIFIED

BY

M.W. Mak

March 1996

NATO UNCLASSIFIED

Abstract

This paper introduces a flexible and easy way to integrate views of heterogeneous
databases into an application. The purpose of this project is to develop an interface
between external databases and an application called Crisis Response Prototype
(CRESP). CRESP is a prototype developed by SHAPE Technical Centre (STC) to
support military situation monitoring. This interface enables the usage of data from
different external databases within CRESP. Two solutions will be examined, firstly
the integration of all databases into one global scheme, secondly the use of a
federation of databases. Finally a combination of those solutions will lead to the best
way to solve this particular problem. The interface will use a formal specification of
the mappings between the attributes to implement the data transfer in a declarative
style.

NATO UNCLASSIFIED

Table of contents:
1. INTRODUCTION ...5

2. CURRENT INTERFACE DESCRIPTION ..5

2.1 THE GOB1 INTERFACE...5
2.1.1 General interface description...5
2.1.2 View definition...6
2.1.3 File structure...7

2.2 THE GOB3 INTERFACE...7

3. PROBLEMS AND ISSUES..7

3.1 NEW VIEWS..8
3.2 DATA ELEMENT MAPPING ...8
3.3 INCOMPLETE DATA...8
3.4 SYNTACTICALLY ERRONEOUS DATA..8

4. OBJECTIVE ...8

5. PROPOSED SOLUTIONS...9

5.1 INTEGRATING DATABASES INTO ONE GLOBAL SCHEME..9
5.2 GET SOME CO-ORDINATION BY USING A FEDERATION OF DATABASES...9
5.3 THE CHOSEN SOLUTION..10

6. A MAPPING DICTIONARY ...10

6.1 0-1 MAPPING..11
6.1.1 Mapping a constant onto an attribute...11
6.1.2 Mapping a function onto an attribute...11

6.2 1-1 MAPPING..11
6.2.1 The simple case..11
6.2.2 Value conversion..11

6.3 N-1 MAPPING...11
6.4 1-N MAPPING...11
6.5 OTHER MAPPINGS...12
6.6 THE RESULTING MAPPING DICTIONARY FOR THE GOB1 VIEW ...12

7. MAPPING PROCESS..13

7.1 SQL..14
7.2 AN EVALUATION FUNCTION FOR STRING EXPRESSIONS..14
7.3 GET THE BEST IMPLEMENTATION..15
7.4 IMPROVEMENT OF THE SQL STATEMENT...15

8. THE RESULTING INTERFACE ..16

8.1 EXECUTION OF THE IMPORT INTERFACE...17
8.2 DEFINITION OF NEW VIEWS...18

8.2.1 Naming conventions...18

9. CASE STUDIES..18

9.1 CASE STUDY 1: DEFINING A NEW VIEW...18
9.2 CASE STUDY 2: USING THE SAME VIEW WITH A DIFFERENT DATABASE...19
9.3 CASE STUDY 3: KEY MAPPING PROBLEMS..20

10. ACHIEVEMENTS AND OPEN ISSUES...21

10.1 ACHIEVEMENTS...21
10.2 OPEN ISSUES..22

10.2.1 Importing erroneous data (section 3.4)...22
10.2.2 The mandatory data problem (section 3.3)..22

NATO UNCLASSIFIED

10.2.3 The incremental data transfer..22
10.2.4 Unique key generation...22
10.2.5 Composite keys..22

11. LIST OF TABLES AND FIGURES ...23

12. REFERENCES..23

13. INTERESTING INTERNET ADDRESSES...23

14. USED ABBREVIATIONS ..24

APPENDIX A SOURCE CODE...25

APPENDIX B THE DICTIONARY ...37

B.1 THE INTERFACE DICTIONARY ...37
B.2 THE CRESP DATA DICTIONARY ..38
B.3 THE MAPPING DICTIONARY ...39

NATO UNCLASSIFIED

1. Introduction
CRESP is a package developed at STC that supports monitoring crisis response operations. It supports
interoperability and serves as a common database system for all NATO Commands involved in crisis
operations. It includes an interface to foreign databases, and it allows to import data from these
different databases. CRESP will exchange data with other CRESP’s or display the data. The display
can be tabular or on a map. CRESP is distributed over a wide area network. The foreign databases
used by CRESP are mostly relational (e.g. Oracle databases). Their conceptual schemes are different
from each other. To be able to compare the entities in these foreign databases to each other in CRESP
there has to be a standard format for the data. Because the databases are part of existing external
systems it is not possible to change them. CRESP only uses predefined views on the databases. At this
moment it is only necessary to import data into CRESP. However, exporting data to foreign databases
will be required in the future.

2. Current interface description
Currently one interface, the GOB1, has been implemented, which supports only one view of the
THISTLE database for CRESP. THISTLE is an Army Tactical Prototype System developed by
Cranfield University (UK).

2.1 The GOB1 interface

2.1.1 General interface description

The GOB1 interface exports data from a THISTLE database to CRESP. The export can be
incremental, that is it transfers only new and updated data. Otherwise the export is full and it deletes
all pre-existing data concerning the units in the new export files before it imports all data from text
files into dBaseIV tables. This export/import action is demand driven. The programming language of
the interface is Access Basic. It uses for each table of GOB1 an ASCII file, two MS Access tables and
a dBaseIV table. The first MS Access table is used to store the foreign data in and the second to store
the converted data temporarily. The interface has the following structure:
• The interface gets flat ASCII files from the foreign export module.
• The interface transfers the data from the ASCII files to MS Access tables. These tables are part of

the interface and contain data in the format of the foreign database. Each table corresponds to an
ASCII file. The interface definition specifies its attribute names.

• Some conversion on the data takes place to get the data in the format specified by the destination
database. Look-up tables accomplish this. A function in the interface maps every element of the
foreign tables onto an element of the corresponding destination tables. These are temporary tables
to store the new data in until one can check whether it handles about an already known unit or a
new one. The look-up tables are hard-coded.

• At last the interface transfers the data to dBaseIV tables, the final destination tables. The
application attaches the dBaseIV tables, removes the old data of newly imported units and
transfers the data using SQL statements.

The complete data transfer is denoted in figure 1, while figure 2 shows the import part in more detail.

Figure 1 The data transfer from foreign databases to CRESP

NATO UNCLASSIFIED

 A SCII
 fil e

 dBaseIV
 Table
 fil e

 M S A ccess
 Table

 M S A ccess
 Table

 conversion

exported fil e CRESP

export import

 Interface

Figure 2 The import part of the data transfer

2.1.2 View definition

THISTLE provides the following exported view of the units and their locations to CRESP:
• A UNITS table, which identifies the units. The UNITS record is a prerequisite for the following

tables.
• A UNIT-STS table, which gives the status, strength and current location of the units.
• A UNIT-EQP table, which records the unit’s equipment holdings.
• A CMD-REL table, which records the unit’s command subordination relationship.
From now on this view will be referred to as “GOB1” and the supporting interface the “GOB1
interface”. An attribute update-time keeps track of the history of the unit. Another view that will
identify the movements of units will use this attribute. This view is not yet implemented. The
attributes with “No” in the Null-field in the following tables are mandatory for a correct data transfer.

UNITS
Field Null Format Size Description
update-time char(12) Fix ZULU Date-Time when information was last updated
source char(8) Var command/system sending data
unit-id No char(15) Var originator-specific unique unit identifier
orbat-type char(3) Var type of orbat (Air, Ground, Naval, Missile...)
name char(55) Var full unit name or nick-name
category char(10) Var main categorisation of unit
en-friend char(3) Var friend or enemy discriminator
country char(2) Fix country code
organisation char(8) Var abbreviation for the organisation the unit is assigned to
arms char(15) Var unit type
command-level char(5) Var level or size of command
symbol char(6) Var code for graphic symbol
comments char(255) Var any short comment

Table 1 GOB1: Units table

UNIT-STS
Field Null Format Size Description
update-time char(12) Fix ZULU Date-Time when information was last updated
source char(8) Var command/system sending the data
unit-id No char(15) Var originator-specific unique unit identifier
activity char(8) Var type of activity being performed by the unit
ce num(2) Fix combined pers./eqp. combat effectiveness/readiness code
pers-strength num(7) Var current total number of personnel of any type
location-name char(30) Var name of site/town for current unit location
location-lat char(7) Fix latitude co-ordinate of current unit location
location-lon char(8) Fix longitude co-ordinate of current unit location
effective-time char(12) Fix ZULU Date-Time when information was effective
verific-code char(4) Var verification code for information
comments char(255) Var any short comment on the status

Table 2 GOB1: Units-Sts table

NATO UNCLASSIFIED

UNIT-EQP
Field Null Format Size Description
update-time char(12) Fix ZULU Date-Time when information was last updated
source char(8) Var command/system sending the data
unit-id No char(15) Var originator-specific unique unit identifier
equip-type-categ char(20) Var type-category of equipment reported
equip-type-name char(40) Var type-name (model) of equipment reported
quantity num(7) Var current holding for specified equipment of specified unit
verific-code char(4) Var verification code for information
effective-time char(12) Fix ZULU Date-Time when information was effective

Table 3 GOB1: Unit-Eqp table

CMD-REL
Field Null Format Size Description
update-time char(12) Fix ZULU Date-Time when information was last updated
source char(8) Var command/system sending the data
sup-unit-id char(15) Var originator-specific unique unit identifier of superior unit
sub-unit-id No char(15) Var orig.-specific unique unit identifier of subordinate unit
cmd-rel char(6) Var command relationship
verific-code char(4) Var verification code for information
effective-time char(12) Fix ZULU Date-Time when information was effective

Table 4 GOB1: Cmd-Rel table

2.1.3 File structure

The data is exported by ASCII files. There is one file for each table in the view. The files have the
following structure:
• Each file contains zero or more records. For an empty table the file contains only a carriage

return.
• A record is one line in the file. Records are of variable length and separated by a carriage return.
• A record contains one or more fields. The field separator is “@” (the at sign). The interface

specifies the order of the fields. Null fields are fields with zero length. Not-null fields should be of
not-zero length and fixed-size fields should be of the specified length from the interface
specification.

In Backus-Naur Form this can be constructed as follows:
<file> ::= CR | <record> {CR <record>}
<record> ::= <field> {@ <field>}
<field> ::= {<char>}
<char> ::= A | B | C |

2.2 The GOB3 interface
For another interface, called GOB3, only the definition exists, but the interface itself is not yet
implemented. This interface will support one view from STAFOR for CRESP. STAFOR, Status of
Forces, is an operational database system containing the agreed status of forces allocated to NATO,
maintained at SHAPE. The interface definition from STAFOR to CRESP is similar to the GOB1
interface definition because they are based on the same view. The big difference is that there are
several attributes of THISTLE not used with the STAFOR interface and vice versa. Overall the idea is
the same. The databases themselves are very different from each other.

3. Problems and issues
We have described the current state of the project. The improvement or extension of its current
functionality is the objective for my master thesis. Now we will discuss some limitations of the
existing interface and some possible solutions.

NATO UNCLASSIFIED

3.1 New views
There are two options to define another view for the destination database. When a database can
provide the same data as required for an existing view, an option is to use the same view definition to
import data from this other database. Another option is to define a completely new view on any
database to insert into the application.

To include the data of an existing view from another database, a new interface has to be written for
each foreign database view that will be imported. The same effort has to be performed because the
interfaces are hard-coded within the program. Moreover, the interfaces should be adapted each time
the view definitions are changing. This could lead to inconsistency.

A similar problem is the creation of a new view on a foreign database to insert into the destination
database. In this case it does not matter whether this foreign database already supports views for the
destination database or not. Presently this problem must be solved also with writing a new interface.

3.2 Data element mapping
Mostly the mapping of data elements within one interface is one on one. An attribute of the foreign
database maps onto an attribute of the destination database with the same domain. Sometimes the
domain values of the foreign attribute differ from the domain values of the corresponding destination
attribute. Now a specific translation from one value to another is necessary. Another mapping
possibility is to map several foreign attributes together onto one destination attribute and the other
way around.

3.3 Incomplete data
Data that is mandatory in the destination database might not be provided by the import interface.
Using an algorithm or look-up table is not possible. A solution might be user intervention, which has
to be avoided as much as possible, or deleting the record with missing data. This implies that non-
mandatory data is lost as well, which is preferable over missing mandatory data. Another solution
could be introducing a special value, like a null value, to indicate that the value should exist but it
does not. This solution cannot be used when (a part of) the key is missing.

3.4 Syntactically erroneous data
The importable data could be in a spreadsheet instead of in a database. A database has constraints on
the data. When a date field is required the database will complain when the date is not filled in in the
correct format. Errors are easily made in spreadsheets while data is entered manually and not checked
automatically. So the data can be imprecise. Spelling errors have to be corrected and may even lead to
corruption of data and thus processing.

4. Objective
The plan now is to concentrate on the problems in section 3.1. These problems are slightly different
from each other, but that does not matter for the solution. The problems in sections 3.2 and 3.3 are
related to the problems in section 3.1, so we try to solve them too. The mapping problem has to be
solved to get an interface that imports data from several foreign databases into a destination database,
just as all mandatory data has to be available. For the moment we do not look into the problem of
section 3.4.

Concerning the first problem writing a new interface for each new database or view that is going to be
imported is a huge task. Therefore the objective is to develop a “smart and flexible” software agent to
support the data import for CRESP. The result will enable the import of all kinds of views. It will
support the import of data from one view of different databases, as well as the import of data from
different views of a foreign database. Figure 1 denotes the complete data transfer. Our prime focus
will be the import part of the data transfer. The correctness of exported data and the definitions of new
views are not within the scope of this project. However, the latter will be discussed briefly.

NATO UNCLASSIFIED

5. Proposed solutions
Most of the databases used by companies were “stand-alone” databases. One database was used for
one application, while another database was used for another application. So there was some freedom
in their design because they did not have to communicate with each other. In databases that are in use
for several years it is difficult to make changes. Interoperability among different applications
developed in this manner is difficult. There are different proposals in literature to solve this problem.
Two approaches have been investigated:
• the integration of databases into a global scheme
• and the creation of a federation of databases.
These approaches will be discussed in the next sections.

5.1 Integrating databases into one global scheme
Some authors describe the building of a global scheme over the existing schemes. Examples are
Multibase [1] and Mermaid [2]. For the user the database looks like one database with one query
language, although there are several different databases with different DBMS’s and query languages.
The database schemes of the different databases are translated to relational schemes. These schemes
are integrated into one global scheme over which one can define views. The result is a tightly coupled
system.

In this manner the existing databases and their applications do not need to change. All database
schemes have to be integrated into one global scheme however and that requires an enormous effort.
The process is expensive and difficult. It also tends to be hard to change. This full integration of the
databases is not always necessary for an application. In our case it is not useful because CRESP will
only use simple views of very complex foreign databases that are varying extremely.

5.2 Get some co-ordination by using a federation of databases
Another solution could be autonomously working systems with import/export modules between them.
The databases have to negotiate about using each other's data, but a global database scheme with all
the available information is not necessary. This results in a loosely coupled federation of databases.
Each database determines what information it wants to export (a kind of view on the database), and
puts this in a dictionary. The application uses this dictionary to look up where the required
information resides. It distinguishes from composing a global scheme because the dictionary does not
contain all available information, only the information the databases want to share with the rest.
Examples are the Schooner Interconnecting system [3] and the Remote-Exchange system [4].

The Schooner Interconnecting system sees databases as independently developed components. Each
component has a code block and an interface. By using these interfaces the components can
communicate with each other. In this case the interfaces form the dictionary. Remote-Exchange uses a
sharing advisor to collect the exportable data. This sharing advisor has a semantic dictionary that is a
federated knowledge base about sharable information. An application also contacts the sharing
advisor when it needs information from a certain database.

 Global scheme

 Local scheme Local scheme Local scheme

 Foreign scheme Foreign scheme Foreign scheme

 View 1 View 2 View n

Figure 3 Architecture of integrated database schemes

NATO UNCLASSIFIED

5.3 The chosen solution

A solution to our problem could be a combination of those two by defining a simple view with all the
information CRESP users need. This view is actually a global view over the views the foreign
databases export and not a global scheme over all integrated databases. The complexity of the
different databases causes an extreme effort for defining a global scheme, while we can express the
information needed from the foreign databases in a simple view. Therefore we have chosen for the
simple and efficient method. An interface between the foreign databases and the destination database
contains the definition of the view. It gets the data of the foreign databases by export modules of those
databases. Then it transforms the data into a format the destination database can use and it imports
the data using this view.

To get a flexible interface the existing interfaces between the foreign databases and the destination
database will be specified formally. The result will be a flexible system in which it is easy to add a
new database. With a formal description the system is more consistent and complete and it can be a
basis for a tool to automate integrating databases. It will be sufficient to describe the export part of a
new foreign database in this formal manner to integrate a new view easily into the existing system.
The THISTLE and STAFOR databases give a good start for this.

6. A mapping dictionary
To make the proposed interface more flexible the different types of mapping that occur in the GOB1
interface are analysed. If it is possible to identify a pattern in the mappings it will be easy to define a
mapping dictionary. Such a mapping dictionary provides flexibility as one only has to update this
dictionary and possibly add tables for a new view. It is better to use a mapping table per view instead
of one mapping table for all views. A global mapping table will include many mappings of attributes
that are not present in the view of which the data is going to be imported. The interface has to check
these mappings also when transferring the data, although this is superfluous. With a new mapping
table for each view the interface can transfer the data faster, because it only has to check the attributes
of this particular view. To introduce a new database that exports an already existing view one only has
to add this view to the list of available views, but now exported from this database. The implemented
mappings are always from one foreign record to one corresponding record of a destination table. The
mappings of the attributes of those records can be of six interesting types: 0-1, 1-0, 1-1, 1-N, N-1 and

 DB 1 DB 2 DB n

 Interconnection: sharing and transmission

 Sharing advisor

Figure 4 The Remote-Exchange architecture

 Destination database

 Interface

 View 1 View 2 View n

 Foreign db 1 Foreign db n Foreign db 2

 Mapping Dictionary

Figure 5 Proposed architecture of CRESP interface

NATO UNCLASSIFIED

M-N mapping. Sections 6.1 - 6.4 describe the mappings of GOB1 for the THISTLE database, while in
section 6.5 the remaining mappings are discussed.

6.1 0-1 mapping
With 0-1 mapping a constant or a function without parameters maps onto an attribute of the
destination database. No foreign attributes are involved.

6.1.1 Mapping a constant onto an attribute

This is easy to implement by using a Copy-function and putting quotation marks around the input
value in the mapping table. Now the interface can recognise the value as a constant instead of an
attribute name, like qnty_eval = Copy(“HOLD”).

6.1.2 Mapping a function onto an attribute

To map a function onto an attribute one has to write the function that performs the essential actions.
For example PatchCreateTime() computes the current system time used as value for the attribute
createtime in the destination database.

6.2 1-1 mapping
Here there are also two possibilities. The attribute domains correspond to each other or a special value
conversion is required.

6.2.1 The simple case

When the attribute domains correspond to each other there is no conversion necessary. The interface
only needs to know which foreign attribute corresponds to which destination attribute. Fortunately this
holds for most of the attributes. In the mapping table the Copy-function maps these attributes.

6.2.2 Value conversion

In the other case the attributes also map one on one but the values of the attribute in the foreign
database are different from the corresponding values in the destination database. This is for example
the case with the orbat_type/obtype attribute. When the value of orbat_type in the foreign database is
“G” this corresponds with the value “GOB” for obtype in the destination database. An explicit
translation is necessary for each value. The Translate-function uses a translation table as a dictionary.
It compares for this attribute all FromValues in the table with the found foreign value until a match is
found. When there is no match the found foreign value is also the returned value. An update of the
translation table is enough to translate another attribute. The translation table has the following
format:

6.3 N-1 mapping
The Concatenate-function maps several attributes of the foreign table to a single attribute of the
destination table. For the time being this function uses two attributes as parameters, but it is easy to
enlarge this number when concatenation of more attributes is desired. Two foreign attributes are
written as one into an attribute of the destination table. For example locekey is the concatenation of
the foreign attributes source and unit_id.

6.4 1-N mapping
The foreign attribute has to split into two or more parts with the Part-function when it maps onto two
or more attributes of the destination database. Each part is a value of an attribute of the destination
table. This happens for example with the longitude and latitude attributes. The foreign database stores

TRANSLATION
FieldName FromValue ToValue
orbat_type G GOB
...

Table 5 Format of the translation table

NATO UNCLASSIFIED

this information in one attribute (location_lon and location_lat, respectively) while the destination
database has separate degree, minute, second and direction attributes.

6.5 Other mappings
The mappings that are not present in the GOB1 data import are 1-0 and M-N mapping. 1-0 mapping
denotes the foreign attributes that are not used in the destination database and that are of no further
interest for this application. However, they can get interesting when implementing the data transfer
the other way around. M-N mapping is not looked for at the moment, but it is possible that in other
views this will occur. One could think of data out of two or more foreign tables that has to map onto
two or more attributes in the destination database.

6.6 The resulting mapping dictionary for the GOB1 view
To create a table to map every foreign attribute onto his corresponding destination attribute for the
GOB1 view the following functions are required:
• value1 := Copy(value2) - value2 is the foreign attribute that is copied into value1, the attribute in

the destination database. This is one of the functions that implements the 1-1 mapping. When
value2 is a constant instead of an attribute the function is used for 0-1 mapping.

• value1 := SourceDB() - returns the database the data is imported from, another option for 0-1
mapping.

• value1 := PatchCreateTime() - returns the current system time, also used for 0-1 mapping.
• value1 := Concatenate(value2, value3) - value2 and value3 are foreign attributes that form the

destination attribute value1 by concatenating value2 and value3, which implements N-1 mapping.
• value1 := Part(value2, start, length) - value2 is a foreign attribute that is copied from start to

start + length into value1, the destination attribute, where start and start + length indicate
positions in a string. This is the implementation of the 1-N mapping.

• value1 := Translate(“attr”, value2) - converts attribute attr with foreign value value2 to an
explicit destination value, value1. This is the other implementation of the 1-1 mapping.

One can nest these functions, write extra user defined functions and when necessary one can also use
the MS Access functions to map attributes.

When the table name precedes the attribute name, the attribute name exists in two or more tables, but
is mapped differently. For example the cc-field in the Units table is mapped onto the country attribute,
whereas the cc-field in the My_Eq table is not mapped at all. When a table name contains a hyphen
(-) one has to put the name between square brackets ([]).

Because of the declarative style of the mapping dictionary it is very easy to adapt the interface making
the import an export of data. Only the table and attribute names have to be exchanged and the
functions have to be reversed to obtain an export from CRESP into a foreign database. Currently only
the import from foreign databases into CRESP will be used.

This leads to the following table:

NATO UNCLASSIFIED

MAPPING
DestAttr Function
activity Copy(activity)
arms Translate(“Units.arms”, arms)
asat Copy(effective_time)
categ Copy(category)
cmd_rel Copy(cmd_rel)
CmdRel.sup_id Concatenate(SourceDB(), [GOB1_Cmd-Rel].sup_unit_id)
CmdRel.ver_code Copy([GOB1_Cmd-Rel].verific_code)
com_level Translate(“Units.command_level”, command_level)
comb_eff Copy(ce)
confidence Copy(verific_code)
createtime PatchCreateTime()
curflag Copy(1)
en_friend Translate(“Units.en_friend”, en_friend)
eq_type Copy(Left(equip_type_categ, 20))
GobRep.rep_txt Copy([GOB1_Unit-Sts].comments)
GobRep.ver_code Copy([GOB1_Unit-Sts].verific_code)
lat_deg Part(location_lat, 1, 2)
lat_dir Part(location_lat, 7, 1)
lat_min Part(location_lat, 3, 2)
lat_sec Part(location_lat, 5, 2)
location Copy(location_name)
locekey Concatenate(SourceDB(), unit_id)
lon_deg Part(location_lon, 1, 3)
lon_dir Part(location_lon, 8, 1)
lon_min Part(location_lon, 4, 2)
lon_sec Part(location_lon, 6, 2)
model Copy(equip_type_name)
My_Eq.rep_txt Copy([GOB1_Unit-Eqp].comments)
My_Eq.ver_code Copy([GOB1_Unit-Eqp].verific_code)
name Copy(name)
no_curr Copy(quantity)
object_id Copy(unit_id)
obtype Translate(“Units.orbat_type”, orbat_type)
org Copy(organisation)
pers_str Copy(pers_strength)
qnty_eval Copy(“HOLD”)
react_time Copy(0)
source SourceDB()
sub_ id Concatenate(SourceDB(), sub_unit_id)
symbol Translate(“symbol”, symbol)
Units.cc Copy(GOB1_Units.country)
updatetim Copy(update_time)

Table 6 The mapping table of GOB1

7. Mapping process
Table 6 is the definition of a mapping dictionary. The interface, written in Access Basic, imports the
data from the foreign data files into the destination database using this mapping dictionary. It
retrieves the mapping specifications, for each attribute in the destination database, in the mapping
table. Then it imports the data from the foreign tables, after the specified conversion has taken place,
into the tables of the destination database. Executing code directly from a table is not possible in

NATO UNCLASSIFIED

Access. In the following some options are described for the implementation of the mappings specified
in the dictionary.

7.1 SQL
An option to transfer data is to use SQL. The only restriction is that record by record processing is not
possible. The query will transfer the whole table at once. The query would look like this:

Here M is the mapping table and (i) denotes the record number in the mapping table. The following
routine describes the Access Basic function TransferData(ForeignTable, DestTable, MappingTable)
with the last implementation. TransferData(ForeignTable, DestTable, MappingTable) has to be
executed for all tables defined in the view.

7.2 An evaluation function for string expressions
The Access Basic function Eval(stringexpr) is another option. This function evaluates the expression
“stringexpr” and returns its value. When the mapping table stores the function and its argument(s) as
strings, the interface first looks up the values of the arguments in the current record of the foreign
table. Then it puts those together with the function name in a string, so Eval can evaluate it. The
result will be the value of the in the mapping table specified attribute of the current record of the
destination table. For this implementation the mapping table needs a different format than Table 6. To
be able to find the values of the arguments of the foreign table the format has to be the following:

MAPPING
DestAttr Function Arg1 Arg2 Arg3
activity Copy activity
arms Translate arms
locekey Concatenate source unit_id
lat_deg Part location_lat 0 2
....

Table 7 Format of mapping table when not using SQL to transfer the data

It implies that for a function with four or more arguments, the entire table has to be adapted to this
function. This is not a practical solution.

This computation of the values of the attributes of the destination database tables will be done for all
records in the foreign table. The following routine describes the data transfer from the foreign table to
the corresponding destination table. The description is in a high level:

INSERT INTO DestTable({ M.DestAttr(1), M.DestAttr(2),, M.DestAttr(n)}+)
SELECT {M.Function(1), M.Function(2), ..., M.Function(n)}
FROM ForeignTable;

TransferData(ForeignTable, DestTable, MappingTable)
 Temp1 := empty_string
 Temp2 := empty_string
 For Each DestAttr Of DestTable
 Select MappingRecord M From MappingTable Where M.DestAttr = DestAttr
 Add M.DestAttr To Temp1
 Add M.Function With Available Arguments To Temp2
 End For
 Execute “INSERT INTO TempTable(Temp1) SELECT Temp2 FROM ForeignTable;”
End Routine

NATO UNCLASSIFIED

With this implementation one adds a new record to the destination table for each existing foreign
record. This means that one needs the temporary destination tables again, because one only wants to
keep the latest data of each unit.

One can implement this function in different ways.
• For... Next construction,
• Seek method.
With the for... next construction each record of the mapping table is compared to the attribute in the
destination table whose value is searched until a match is found for all attributes of the destination
table. One has to do a linear search on the whole table. So on average halve the number of records has
to be searched. The seek method uses an index on the key of the table to find the searched record, so
just a small part of the records has to be checked. For this option the index has to be available, but
that is no problem.

7.3 Get the best implementation
We have analysed three options for implementing the data transfer. To investigate the best one, we
compared the execution times of the routine TransferData(ForeignTable, DestTable, MappingTable).
The results are in the following table:

20 records 40 records 80 records 320 records
For... Next ± 24 seconds ± 49 seconds ± 95 seconds <no use>
Seek Method ± 5 seconds ± 7 seconds ± 14 seconds ± 52 seconds
SQL Statement ± 2 seconds ± 2 seconds ± 4 seconds ± 5 seconds

Table 8 A performance comparison of different implementations

The Seek Method and the SQL statement are much faster than the For... Next construction. It is
obvious that the SQL statement is the best solution. It achieves the fastest results and the mapping
table keeps the same format no matter how many arguments a function needs. All the
implementations transfer the data from the foreign tables to the temporary tables. After that the data
has to be transferred to the final destination tables, which will take an extra 2 or 3 seconds.

7.4 Improvement of the SQL statement
Currently the SQL implementation only uses insert queries. To make sure that the final destination
tables contain the latest information on units the data is stored in temporary tables first. Then the old
data on units is removed from the destination tables and all data is transferred with an insert query.
Another solution is to use update queries as well as insert queries. The temporary tables are redundant
now, while first the existing records will be updated and only new records will be inserted. This
solution is also required for the problems discussed later in section 9.3, so from now on we will use
the application that uses first the following update query and then the insert query from above:

TransferData(ForeignTable, DestTable, MappingTable)
 For Each ForeignRecord Of ForeignTable
 Add New DestRecord To DestTable
 For Each DestAttr Of DestRecord
 Select MappingRecord M From MappingTable Where M.DestAttr = DestAttr
 If M Is Found Then
 Select ForeignAttr1 From ForeignRecord where ForeignAttr1 = M.Arg1
 Select ForeignAttr2 From ForeignRecord where ForeignAttr2 = M.Arg2
 Select ForeignAttr3 From ForeignRecord where ForeignAttr3 = M.Arg3
 tempvalue := M.Function With Attributes ForeignAttr1, ForeignAttr2,

 ForeignAttr3 When Available
 DestAttr := Eval(“tempvalue”)

 End If
 End For
 End For
End Routine

NATO UNCLASSIFIED

The function TransferData(ForeignTable, DestTable, MappingTable) has to be adapted to the
following:

The only disadvantage of this implementation is that update queries take a long time. When all
records have to be updated (the insert query is superfluous in this special case) the former test gives
the following results:

20 records 40 records 80 records 320 records
For... Next ± 24 seconds ± 49 seconds ± 95 seconds ± 434 seconds
SQL Statement ± 29 seconds ± 55 seconds ± 96 seconds ± 269 seconds

Table 9 A performance comparison of different implementations

These results are even worse than the For... Next method. However, one only gets these results in the
worst case and this implementation has the following advantages:
• This method is the best solution for the problems that will be discussed in section 9.3.
• The format of the mapping table does not change.
• The temporary tables are superfluous, the data is transferred directly into the dBaseIV tables.
Besides, one has to keep in mind that indexes might speed up the update queries, which cannot be
tested at the moment while this application is only tested on a local system. So from now on we will
only use the application implemented by the two SQL statements.

8. The resulting interface
The interface allows to import data into the destination database using multiple views of multiple
databases. The following is sufficient for specifying the entire interface:
• The interface dictionary - specifies the structure of the exported foreign text files;
• The CRESP data dictionary - specifies the destination tables into which the interface has to

import the data;
• The mapping dictionary consisting of:

• The translation table - specifies the attribute translations for the Translate-function;
• The view map - specifies the connection of tables and views;
• The source map - specifies the connection of foreign databases and views;
• The mapping tables - specify the correspondences of foreign and destination attributes.

The foreign tables have the same structure as the text files exported by the foreign databases. The
mapping table and the translation table keep the same structure. Only new records have to be added to
these tables. For the definition of available views there are two tables. The first is a ViewMap table
that identifies which tables belong to which view and what attributes are the keys in those tables. The
second is a SourceMap table that determines the origin of the data. With the ViewMap table the

UPDATE DestTable INNER JOIN ForeignTable
ON DestKey = ForKey
SET M.DestAttr(1) = M.Function(1), M.DestAttr(2) = M.Function(2),,
 M.DestAttr(n) = M.Function(n);

TransferData(ForeignTable, DestTable, ForKey, DestKey, KeyMapAttr, MappingTable)
 Temp1 := empty_string
 Temp2 := empty_string
 Temp3 := empty_string
 For Each DestAttr Of DestTable
 Select MappingRecord M From MappingTable Where M.DestAttr = DestAttr
 Add M.DestAttr To Temp1
 Add M.Function With Available Arguments To Temp2
 End For
 Execute “UPDATE DestTable INNER JOIN ForeignTable ON DestKey = ForKey

 SET Temp3;”
 Execute “INSERT INTO DestTable(Temp1) SELECT Temp2 FROM ForeignTable;”
End Routine

NATO UNCLASSIFIED

ForeignTable column identifies the foreign text file and the foreign table, whereas the DestTable
column identifies the dBaseIV table. Also the keys in the foreign table as well as the destination table
have to be remembered and the attributes that identify the relationship between the tables. The two
tables have the following format:

ViewMap
ViewName ForeignTable ForKey DestTable DestKey DestAttr
GOB1 GOB1_Units Concatenate(SourceDB(),

unit_id)
Units Units.locekey locekey

GOB1 GOB1_Unit-Sts Concatenate(SourceDB(),
unit_id)

GobRep GobRep.locekey locekey

GOB1 GOB1_Unit-Eqp Concatenate(SourceDB(),
unit_id)

My_Eq My_Eq.locekey locekey

GOB1 GOB1_Cmd-Rel Concatenate(SourceDB(),
sub_unit_id)

CmdRel CmdRel.sub_id sub_unit_id

....

Table 10 Format of the ViewMap table

SourceMap
Name SourceNode SourceDatabase
GOB1 ARRC THISTLE
....

Table 11 Format of the SourceMap table

8.1 Execution of the import interface
The user interface of the application will ask the user for the following variables and execute the
correct actions. The description is in high level in correspondence with the code above for the
TransferData-function.

In this application the user interface will look like this:

Choose SourceNode /* The node where the database resides */
Choose SourceDatabase/* The database, to import the data from */
Compute Available Views/* Let the user select only from views of the selected */

/* SourceNode and SourceDatabase */
Choose View
Choose DestinationDatabase /* The database, to import the data into */
Choose Import Option /* Selection of a full or incremental import, currently only the */

/* full import is implemented */
Import Data /* The actual import action of the data */

Figure 6 The user interface of the application

NATO UNCLASSIFIED

The actual data transfer from text files into dBaseIV tables will then be:

8.2 Definition of new views
To import data from an already existing view from another database one only has to add the record
{ViewName, SourceNode, SourceDatabase} to the SourceMap table. However, it must be sure that it
is exactly the same view. Otherwise a completely new view has to be added to the application, even if
there are minor differences to an existing view.

To create a new view the following actions have to be taken:
• Ensure that the required dBaseIV tables are present in the correct directory. This is the same

directory as CRESP program is installed in. The interface itself will make the attachments.
• Create the necessary foreign tables.
• Create a new mapping table.
• Update the translation table with new values.
• Add the names of the foreign and dBaseIV tables to the ViewMap table accompanied by the key

attributes of those tables and the attribute in the destination table that identifies the mapping
between the foreign and the destination table (DestAttr). Also add a new view name.

• Update the SourceMap table with the correct source node and database and the new view name.

8.2.1 Naming conventions

Naming conventions are essential keeping the application consistent. The following convention is
suggested for adding a new view to the interface.
• For the foreign tables: <ViewName> underscore <Foreign TextFile>, i.e. GOB1_Units for view

GOB1 and foreign textfile Units.ful.
• For the mapping table: <ViewName> underscore “MappingTable”, i.e. GOB1_MappingTable.
MS Access is case insensitive, so it does not matter whether upper or lower case or a mix is used.

9. Case studies
To test whether this interface is as flexible as is assumed the following case studies are examined:
• defining a new view;
• using the same view with a different database;
• key mapping problems.
These will be discussed in the following sections.

9.1 Case study 1: defining a new view
Another view of the THISTLE database could be the GOB2 view. This is a view that contains the
minimum of information needed to display a unit on a map. With this view there is a new concept.
GOB1 maps all attributes from a certain foreign table to one destination table. The GOB2 view maps
one to many, one foreign table has to be spread over more destination tables. The GOB2 view exists of
one Gob table that is transferred to the Units and GobRep tables of the destination database. The Gob
table has the following format:

Routine TransferFromTextFileToDBaseIV()
 For Each Record in View V With V.ViewName = ChosenView
 Get Name Of ForeignTextFile
 Attach V.DestTable /* Attach the dBaseIV table to the application */
 ImportText(V.ForeignTable, ForeignTextFile)

/* Transfer data from text file to foreign table */
 TransferData(V.ForeignTable, V.DestTable, V.ForeignKey, V.DestKey, V.DestAttr,

 MappingTable) /* Transfer data from foreign table to dest. table */
 End For
End Routine

NATO UNCLASSIFIED

GOB
Field Null Format Size Description
update-time char(12) Fix ZULU Date-Time when information was last updated
source char(8) Var command/system sending the data
unit-id N char(15) Var originator-specific unique unit identifier
en_friend char(3) Var friend or enemy discriminator
country char(2) Fix country code
organisation char(8) Var abbreviation for the organisation the unit is assigned to
arms char(15) Var unit type
command_level char(5) Var level or size of command
location_name char(30) Var name of site/town of current unit location
location_lat N char(7) Fix latitude co-ordinate of current unit location, DDMMSSH
location-lon N char(8) Fix longitude co-ordinate of current unit location, DDDMMSSH
comments char(255) Var free comment field

Table 12 GOB2: Gob table

This view has the following mapping table in which all attributes are preceded by their table names to
compel the correct data transfer.

MAPPING
DestAttr Function
GobRep.lat_deg Part(GOB2_Gob.location_lat, 1, 2)
GobRep.lat_dir Part(GOB2_Gob.location_lat, 7, 1)
GobRep.lat_min Part(GOB2_Gob.location_lat, 3, 2)
GobRep.lat_sec Part(GOB2_Gob.location_lat, 5, 2)
GobRep.location Copy(GOB2_Gob.location_name)
GobRep.locekey Concatenate(SourcDB(), GOB2_Gob.unit_id)
GobRep.lon_deg Part(GOB2_Gob.location_lon, 1, 3)
GobRep.lon_dir Part(GOB2_Gob.location_lon, 8, 1)
GobRep.lon_min Part(GOB2_Gob.location_lon, 4, 2)
GobRep.lon_sec Part(GOB2_Gob.location_lon, 6, 2)
GobRep.source SourceDB()
Units.arms Copy(GOB2_Gob.arms)
Units.cc Copy(GOB2_Gob.country)
Units.com_level Copy(GOB2_Gob.command_level)
Units.locekey Concatenate(SourceDB(), GOB2_Gob.unit_id)
Units.name Copy(GOB2_Gob.name)
Units.org Copy(GOB2_Gob.organisation)
Units.source SourceDB()

Table 13 The mapping table of GOB2

9.2 Case study 2: Using the same view with a different database
To add GOB1 from the STAFOR database to the interface one normally can use the existing tables for
this view. The only thing to be done is adding the record {GOB1, ARRC, STAFOR} to the
SourceMap table. However GOB1 from THISTLE is not exactly the same as GOB1 from STAFOR.
The STAFOR and THISTLE databases are very different from each other and therefore it is not
possible to retrieve an identical view from the two databases. So it is better to treat GOB1 from
THISTLE and the similar view from STAFOR as separate cases. Therefore this view from STAFOR
will be called GOB3 and will be treated as a completely new view. The destination tables already
present in the application can be used. A new mapping table will be added and of course the foreign
tables for this data transfer. Also an extra mapping function is necessary.
• value1 := ConcatenateIf(value2, value3, value4, value5), which concatenates STAFOR attribute

value2 with value3 or value4 into value1, the destination attribute, depending on value5;

NATO UNCLASSIFIED

This leads to the following mapping table:

MAPPING
DestAttr Function
arms Translate(“arms”, arms)
asat Copy(effective_time)
ass_status Copy(com_stat)
categ Copy(category)
cmd_rel Copy(cmd_rel)
com_level Translate(“command_level”, command_level)
comb_eff Concatenate(readiness_pers, Concatenate(readiness_mat , readiness_trng))
createtime PatchCreateTime()
CmdRel.sup_id ConcatenateIf(SourceDB(), [GOB3_Cmd-Rel].opcom_unit_id,

 [GOB3_Cmd-Rel].opcon_unit_id, [GOB3_Cmd-Rel].cmd_rel)
Units.cc Copy(GOB3_Units.country)
eff_time Copy(effective_time)
eq_type Copy(equip_type_categ)
lat_deg Part(location_lat, 1, 2)
lat_dir Part(location_lat, 7, 1)
lat_min Part(location_lat, 3, 2)
lat_sec Part(location_lat, 5, 2)
location Copy(location_name)
locekey Concatenate(SourceDB(), unit_id)
lon_deg Part(location_lon, 1, 3)
lon_dir Part(location_lon, 8, 1)
lon_min Part(location_lon, 4, 2)
lon_sec Part(location_lon, 6, 2)
name Copy(name)
obtype Translate(“orbat_type”, orbat_type)
org Copy(“NATO”)
qnty Copy(quantity)
qnty_eval Copy(“HOLD”)
source SourceDB()
sub_id Concatenate(SourceDB(), sub_unit_id)
updatetim Copy(update_time)

Table 14 The mapping table of GOB3

9.3 Case Study 3: Key mapping problems
In the previous two case studies it has not been necessary to remember which attributes are keys for
which tables, because the mapping between the keys of the foreign tables and the destination tables is
identical. This means that the relations are preserved without paying special attention to the mappings
of the keys. For example, in the foreign database the GOB1 view has a 1-N relationship between the
GOB1_Units table and the GOB1_Unit-Sts table, which must stay the same relationship for the Units
table and the GobRep table.

NATO UNCLASSIFIED

In this case it is very easy. The unit_id maps 1-1 onto locekey, which is the key in the destination
tables. Also when more attributes form the key each separate foreign attribute is mapped 1-1 onto an
attribute that is part of the key in the destination table. For example unit_id denotes the relation
between the units and their status, but the key between the unit status and the equipment is formed by
the attribute unit_id together with update_time, both mapped 1-1 onto the key attributes of the
destination table, locekey and updatetim respectively.

A difficulty arises when in the foreign database a different attribute becomes the key, for example the
attribute name. Now one has to preserve the same relationships, but cannot just map all attributes. If
this is the case one has to check for each name in GOB1_Units whether this name already exists in
Units. If the name is present one has to use the corresponding locekey as a key in all destination tables
for this particular unit, otherwise generate a new unique locekey. For this reason one has to
remember the key attributes and the attribute that denotes the relationship between the tables.

For the other tables on the foreign side one has to look up the value of the locekey in the Units table to
make sure that one uses for a new unit the same generated key in all destination tables. Instead of
deleting all former data and inserting the new data, one has to update the existing records and append
the records of new units. With this construction the data transfer works for the identical key mapping
as well as a different key mapping.

10. Achievements and open issues

10.1 Achievements
With my application the integration of views has become much easier. This applies to the integration
of existing views from new databases as well as to new views. With the developed application it is
easy to import an existing view from a new database. Importing a new view takes a little longer, but is
still easy to do. So the problems discussed in section 3.1 have been solved in such a way that insertion
of multiple external views into an application by a single program has been achieved.

The main difference between my application and the old application is the introduction of the
mapping dictionary; the old application has the mappings hard-coded in the program. Using such a
mapping dictionary makes it much easier to adapt the mappings and it furthermore, solves the
problem discussed in section 3.2. Also by using update queries as well as insert queries instead of
insert queries only, one does not need the temporary destination tables as used in the old application.
One can transfer the data immediately from the foreign tables into the target database tables. A
drawback is that my application is slower most of the time. The old application takes about 136
seconds to transfer 750 records regardless the state of the dBaseIV tables, while the execution time of
my application depends on the number of updatable records. When the interface has to insert new
records only (no pre-existence in the destination tables of any record in the data set) the interface
takes about 93 seconds to transfer the same data set of 750 records. However, when all records have to
be updated, it takes more than six minutes. This is the worst case though and because flexibility is
more important than speed, this is not insurmountable. This difference is mainly due to the poor
efficiency of the update query. Indexes might improve this performance.

 GOB1_Units
 * unit_id
 * name
 *

 GOB1_Unit-Sts
 * unit_id
 *

 Units
 * locekey
 * name
 *

 GobRep
 * locekey
*

Figure 7 Key mapping between tables

NATO UNCLASSIFIED

10.2 Open issues
There are still some unsolved items that still require some analysis and research.

10.2.1 Importing erroneous data (section 3.4)

It is possible that the importable data contains errors, for example in text fields or with the use of data
from spreadsheets. One can import data from spreadsheets by transferring the data of a spreadsheet in
the same way as data from text files. Now one has foreign data in a table that has to be transferred to
one or more destination tables. This can be handled in the same way as the import of the data of
GOB2. However, the restriction is that this approach assumes that the spreadsheet contains correct
data, which cannot be taken for granted. Data of spreadsheets is imprecise and therefore it has to be
checked on typo’s. One can think of using a similar concept as the spelling checker included in MS
Word. There is a dictionary that contains words already approved by a user. When the spelling
checker finds a word that it does not find in this dictionary it asks the user what to do with it. The
spelling checker will give several options. The user can type a correct word, choose one of the
suggestions of the spelling checker or ignore the error. One should also be able choosing to add the
word to the dictionary, so that the spelling checker recognises the word as a correct one the next time.
To complicate the problem further, it is not enough to have a list of all approved words in a
dictionary, because one needs to know the approved words for a certain attribute. As the fact that a
value is correct for one attribute does not imply that it is correct for another attribute a special solution
has to be found.

10.2.2 The mandatory data problem (section 3.3)

At the moment only the unit_id is mandatory and a record without a unit_id is of no use to the
application. The current approach is to neglect such a record, which will be a too simple approach in
the long term. User intervention, for example, could be considered as well.

10.2.3 The incremental data transfer

The incremental data transfer is not yet implemented. To do this the used update query has to be
changed. Now the update query updates all fields in the table whether the foreign record contains data
or not. With the incremental data transfer this would lead to loss of data. So one has to check whether
the foreign attribute contains data or just null values before adding the destination attribute and its
conversion to the list of updatable attributes in the function TransferData.

10.2.4 Unique key generation

Also the unique key generation is not yet implemented. For the time being a random number is chosen
as the key for an unknown unit. But this will not necessarily become always a unique number. It
cannot be too difficult finding an algorithm to do this and implement the unique key generation very
shortly.

10.2.5 Composite keys

Composite keys have not been taken into consideration. Each table has only one attribute (unit_id or
locekey) as key at the moment.

NATO UNCLASSIFIED

11. List of Tables and figures
TABLE 1 GOB1: UNITS TABLE..6
TABLE 2 GOB1: UNITS-STS TABLE...6
TABLE 3 GOB1: UNIT-EQP TABLE..7
TABLE 4 GOB1: CMD-REL TABLE ..7
TABLE 5 FORMAT OF THE TRANSLATION TABLE...11
TABLE 6 THE MAPPING TABLE OF GOB1...13
TABLE 7 FORMAT OF MAPPING TABLE WHEN NOT USING SQL TO TRANSFER THE DATA..........................14
TABLE 8 A PERFORMANCE COMPARISON OF DIFFERENT IMPLEMENTATIONS...15
TABLE 9 A PERFORMANCE COMPARISON OF DIFFERENT IMPLEMENTATIONS...16
TABLE 10 FORMAT OF THE VIEWMAP TABLE...17
TABLE 11 FORMAT OF THE SOURCEMAP TABLE...17
TABLE 12 GOB2: GOB TABLE ..19
TABLE 13 THE MAPPING TABLE OF GOB2...19
TABLE 14 THE MAPPING TABLE OF GOB3...20
TABLE 15 GOB1: STRUCTURE OF FILE UNITS.FUL ...37
TABLE 16 GOB1: STRUCTURE OF FILE UNIT-EQP.FUL ...37
TABLE 17 GOB1: STRUCTURE OF FILE UNIT-STS.FUL ..37
TABLE 18 GOB1: STRUCTURE OF FILE CMD-REL.FUL ..37
TABLE 19 GOB1: STRUCTURE OF MY_EQ TABLE..38
TABLE 20 GOB1: STRUCTURE OF UNITS TABLE ..38
TABLE 21 GOB1: STRUCTURE OF CMDREL TABLE ..38
TABLE 22 GOB1: STRUCTURE OF GOBREP TABLE...38
TABLE 23 THE TRANSLATION TABLE ..39
TABLE 24 THE VIEWMAP TABLE ..39
TABLE 25 THE SOURCEMAP TABLE...39
TABLE 26 THE GOB1_MAPPINGTABLE ..40

FIGURE 1 THE DATA TRANSFER FROM FOREIGN DATABASES TO CRESP...5
FIGURE 2 THE IMPORT PART OF THE DATA TRANSFER...6
FIGURE 3 ARCHITECTURE OF INTEGRATED DATABASE SCHEMES...9
FIGURE 4 THE REMOTE-EXCHANGE ARCHITECTURE..10
FIGURE 5 PROPOSED ARCHITECTURE OF CRESP INTERFACE...10
FIGURE 6 THE USER INTERFACE OF THE APPLICATION...17
FIGURE 7 KEY MAPPING BETWEEN TABLES..21

12. References
[1] Smith, J. M., Bernstein, P. A., Dayal, U., Goodman, N., Landers, T., Lin, K. W. T. and Wong, E.

Multibase -- integrating heterogeneous distributed database systems, Computer Corporation of
America, Cambridge, Massachusetts, March 1981.

[2] Templeton, M., Brill, D., Dao, S. K., Lund, E., Ward, P., Chen, A. L. P. and MacGregor, R.
Mermaid -- A front-end to distributed heterogeneous databases, Proceedings of the IEEE, vol. 75,
no. 5, May 1987.

[3] Homer, P. T. and Schlichtling, R. D. Configuring scientific applications in a heterogeneous
distributed system, Proceedings of the 2nd International Workshop on Configurable Distributed
Systems, 159-168, Pittsburgh PA, March 1994.

[4] Hammer, J., McLeod, D. and Si, A. An intelligent system for identifying and integrating non-
local objects in federated database systems, Proceedings of the 27th Hawaii International
Conference on System Sciences, pages 389-407, Computer Society of the IEEE, University of
Hawaii, USA, January 1994.

[5] CRESP Technical Specifications

13. Interesting internet addresses
Most of the used articles are found at the internet using Netscape Navigator 1.22 for Windows. The
following addresses contain useful information. This can be a collection of interesting links or a list of

NATO UNCLASSIFIED

publications. At most of the pages with publications one can download the articles immediately in
postscript format.
• • http://ccs-www.cs.umass.edu/db.html, the database page of the University of Massachusetts.
• http://www-db.stanford.edu/pub/, the list of publications on databases from the Stanford

University, where one can find articles on the Remote-Exchange project at the page of Joachim
Hammer.

• http://bunny.cs.uiuc.edu/publications.html, the ACM SIGMOD Index of Database Publication
Servers, where one can find many addresses with information on database research.

• http://www.cs.arizona.edu/schooner/index.html, where one can find all information about
research on the Schooner Interconnecting System at the University of Arizona.

14. Used abbreviations
CRESP -- Crisis Response Prototype
GOB -- Ground Orbat
NATO -- North Atlantic Treaty Organisation
Orbat -- Order of Battle (identification, location, strenght of units)
SHAPE -- Supreme Headquarters Allied Powers Europe
STAFOR -- Status of Forces
STC -- SHAPE Technical Centre

NATO UNCLASSIFIED

Appendix A Source Code
'==
' Module: Declarations
' This module contains all declarations of global variables and constants. In this way it is easier to change values
' that are used a lot when necessary. The module also contains some functions necessary to run the application in
' a windows environment.
'==
Option Compare Database 'Use database order for string comparisons.
Option Explicit ‘Used to force explicit declaration of all variables.

' User & Kernel Library Functions:
Declare Sub SetWindowText Lib "User" (ByVal hWnd As Integer, ByVal lpString As String)
Declare Function GetActiveWindow Lib "User" () As Integer
Declare Function GetPrivateProfileString Lib "Kernel" (ByVal lpApplicationName As String, ByVal lpKeyName As String,

 ByVal lpDefault As String, ByVal lpReturnedString As String,
 ByVal nSize As Integer, ByVal lpFileName As String) As Integer

' QPRO200.DLL Library Function
Declare Function WinDir Lib "QPRO200.DLL" () As String

' Global variables:
Global MyDB As Database ‘Used so much that it is better to use a global declaration
Global MyWorkspace As WorkSpace ‘Used so much that it is better to use a global declaration
Global A_Datadir As String

' Global constants:
Global Const SUPERTITLE = "CRESP PROTOTYPE V1.X" ‘Title that appears in header bar at start of application
Global Const DTFORMAT = "yymmddhhnnss" ‘Format of date and time for data in the database
Global Const DTGFORMAT = "ddhhnnmmmyy" ‘Format of date and time for application
Global Const ENVIRONMENT = "Environment"
Global Const ARRC_DATADIR = "ARRC Operational DataDirectory"
Global Const CRESP_DATADIR = "CRESP DataDirectory"
Global Const FORM1 = "FORM1" ‘Name of form which starts the application
Global Const PATH = "C:\CRESP\IMPORT\" ‘Directory name that has to be followed by database name to

‘identify the place the input data has to reside
Global Const DATADIR = "C:\CRESP\" ‘Directory in which the CRESP application has to reside as well

‘as this application
Global Const DELIMITER = "AT_SIGN_DELIMITER"

'==
' ConnectString provides information about the source of a database used in an attached table.
'==
Function ConnectString (DATADIR As String) As String
 ConnectString = "dBASE IV; DATABASE=" + DATADIR + ";"
End Function

'==
' ImportAgent identifies the initialisation file for using this application in a windows environment.
'==
Function ImportAgent () As String
 ImportAgent = WinDir() + "\IMPAGENT.INI"
End Function

NATO UNCLASSIFIED

'==
' Module: Mapping Functions
' This module contains all user defined functions to map the foreign attributes onto their matching destination
‘ attributes. All functions have a specific value of an attribute as input and return the corresponding destination
‘ value as output.
'==
Option Compare Database 'Use database order for string comparisons

'==
' Concatenate pastes two string values into one; nest Concatenate functions for more than two input values.
'==
Function Concatenate (Arg1 As String, Arg2 As String, Arg3 As String) As String
 Concatenate = Arg1 & Arg2 & Arg3
End Function

'===
' ConcatenateIf concatenates the source with the correct unit_id depending on the input value of Arg4 (OPCOM
' or OPCON).
'===
Function ConcatenateIf (Arg1 As String, Arg2 As String, Arg3 As String, Arg4 As String)
 If Arg4 = "OPCOM" Then
 ConcatenateIf = Arg1 & Arg2
 Else 'Arg4 = “OPCON”
 ConcatenateIf = Arg1 & Arg3
 End If
End Function

'==
' Copy just returns the input string.
'==
Function Copy (Arg1 As String)
 Copy = Arg1
End Function

'==
' GenerateKey checks whether the destination key for a certain foreign record already exists or not. This key is
' returned if it exists, otherwise a new key is returned. This function has to be adapted still. Now it returns a
' random number as a new key instead of an unique one.
'==
Function GenerateKey (fkey As String, dkey As String, dattr As String, ftbl As String, dtbl As String)
 Dim KeySet As Recordset

 Set KeySet = MyDB.OpenRecordset(SelectKey(ftbl, dtbl, fkey, dkey, dattr), DB_OPEN_SNAPSHOT)
 If Not KeySet.EOF Then
 KeySet.MoveFirst
 GenerateKey = KeySet.Fields(0)
 Else
 GenerateKey = SourceDB() & CStr(Int(100 * Rnd))
 End If
 KeySet.Close
End Function

'==
' Part returns the string value of arg1 starting at "start" and ending at "start+length".
'==
Function Part (Arg1 As String, start As Long, length As Long)
 If Not IsNull(Arg1) Then
 Part = Mid(Arg1, CLng(start), CLng(length))
 Else
 Part = Arg1
 End If
End Function

'==
' PatchCreateTime returns the current system time.
'==
Function PatchCreateTime ()
 PatchCreateTime = Format(Now, DTFORMAT)
End Function

NATO UNCLASSIFIED

'==
' SourceDB returns the name of the foreign database.
'==
Function SourceDB ()
 SourceDB = UCase(Forms![Form1]![source db])
End Function

'==
' Translate gets a foreign value and determines which value is the corresponding CRESP value of an attribute
' using the Translation table
'==
Function Translate (FromField As String, Arg As String) As String
 Dim tempset As Recordset

 Set tempset = MyDB.OpenRecordset(SelectTransVal(FromField, Arg))
 If Not tempset.EOF Then 'value has to be translated to a value specified in the translation table.
 tempset.MoveFirst
 Translate = tempset![TOVALUE]
 Else 'value does not exist in translation table, so it can be returned without a translation.
 Translate = Arg
 End If
 tempset.Close
End Function

'==
' Module: SQL Library
' This module contains all SQL statements in the program. The statements are kept as global as possible to
' prevent problems with a new view definition as much as possible.
'==
Option Compare Database 'Use database order for string comparisons
Option Explicit

'==
' DeleteEmptyRows removes all rows in table ‘tbl’ where the key ‘fld’ is missing.
'==
Function DeleteEmptyRows (tbl As String, fld As String)
 DeleteEmptyRows = "DELETE FROM [" & tbl & "] WHERE " & fld & " = Null;"
End Function

'==
' DeleteRecords deletes all records in table ‘tbl’.
'==
Function DeleteRecords (tbl As String)
 DeleteRecords = "DELETE FROM [" + tbl + "];"
End Function

'==
' InsertIntoDestTable adds all converted data which has not been imported yet from foreign table ‘tbl2’ to
' destination table ‘tbl1’.
'==
Function InsertIntoDestTable (tbl1 As String, tbl2 As String, ForKey As String, DestKey As String, set1 As String,

 set2 As String)
 InsertIntoDestTable = "INSERT INTO [" & tbl1 & "](" & set1 & ") " &

 "SELECT DISTINCTROW " & set2 & “ “ &
 "FROM [" & tbl1 & "], [" & tbl2 & "]” &
 “WHERE NOT " & ForKey & " IN (SELECT " & DestKey & “ “ &

 "FROM [" & tbl1 & "]);"
End Function

'==
' SelectKey determines the key value in the destination table corresponding to the value of the foreign key.
'==
Function SelectKey (FromTable As String, ToTable As String, ForKey As String, DestKey As String, DestAttr As String)
 SelectKey = "SELECT " & DestKey & " FROM UNITS WHERE “ & DestAttr & “ = '" & ForKey & "';"
End Function

NATO UNCLASSIFIED

'==
' SelectLastImport selects last import of View from SourceNode, SourceDatabase and Orbat
'==
Function SelectLastImport (View As String, SourceNode As String, SourceDatabase As String, Orbat As String)
 SelectLastImport = "SELECT DTSERIAL

 FROM IMPORTLOG
 WHERE TRIM(VIEW) = '" + Trim(View) + "' AND TRIM(SOURCENODE) = '" +

Trim(SourceNode) + "' AND TRIM(SOURCEDATABASE) = '" +
Trim(SourceDatabase) + "' AND TRIM(ORBAT) = '" + Trim(Orbat) +
"' AND DTSERIAL = (SELECT MAX(DTSERIAL)

 FROM IMPORTLOG
 WHERE TRIM(SOURCENODE) = '" + Trim(SourceNode) +

 "' AND TRIM(SOURCEDATABASE) = '" +
 Trim(SourceDatabase) + "' AND TRIM(ORBAT) = '" +
 Trim(Orbat) + "');"

End Function

'==
' SelectTransVal determines the destination value of an attribute that is converted with the Translate function.
'==
Function SelectTransVal (FromField As String, Arg As String)
 SelectTransVal = "SELECT TOVALUE

 FROM TRANSLATION
 WHERE FIELDNAME = '" & FromField & "' AND FROMVALUE = '" & Arg & "';"

End Function

'==
' SQLSelectViews returns all views from a given source node and database
'==
Function SQLSelectViews (SourceNode As String, SourceDatabase As String)
 SQLSelectViews = "SELECT NAME

 FROM SOURCEMAP
 WHERE TRIM(SOURCENODE) = """ + Trim(SourceNode) +

""" AND TRIM(SOURCEDATABASE) = """ + Trim(SourceDatabase) + """;"
End Function

'==
' UpdateDestTable is used for all units that already existed in the destination tables before the import started.
' The fields of those records will be updated with the new values.
'==
Function UpdateDestTable (tbl1 As String, tbl2 As String, ForKey As String, DestKey As String, vallist As String)
 UpdateDestTable = "UPDATE [" & tbl1 & "] INNER JOIN [" & tbl2 & "]

 ON " & DestKey & " = " & ForKey & "
 SET " & vallist & ";"

End Function

NATO UNCLASSIFIED

'==
' Module: Utilities
' This module contains some useful functions used with the data transfer. It contains functions to send messages
' to the user of the application and to add information to a log table when data of a certain view is imported into
' CRESP.
'==
Option Compare Database 'Use database order for string comparisons

'==
' AddToLog adds current import action to the Importlog table
'==
Sub AddToLog ()
 Dim SourceNode As String
 Dim SourceDatabase As String
 Dim View As String
 Dim Orbat As String
 Dim TempSet As Recordset

 SourceNode = Forms.[Form1]![source node]
 SourceDatabase = Forms.[Form1]![source db]
 View = Forms.[Form1]![view]
 Orbat = Forms.[Form1]![target db]

 Set TempSet = MyDB.OpenRecordset("IMPORTLOG")
 If Not TempSet.EOF Then
 TempSet.MoveLast
 End If
 TempSet.AddNew
 TempSet![SOURCENODE] = SourceNode
 TempSet![SOURCEDATABASE] = SourceDatabase
 TempSet![VIEW] = View
 TempSet![ORBAT] = Orbat
 TempSet![DTSERIAL] = Now
 TempSet.Update
 TempSet.Close
End Sub

'==
' Attached determines whether the destination table is already attached to the application or not.
'==
Function Attached (tablename As String) As Integer
 Dim i As Integer

 For i = 0 To MyDB.TableDefs.count - 1
 'Check all tables to see if the table with name “tablename” is already attached.
 If MyDB.TableDefs(i).name = tablename Then
 Attached = True
 Exit For
 End If
 Next i
End Function

NATO UNCLASSIFIED

'==
' DataSourceAndOrbat_OK checks whether the input parameters are filled in by the user.
'==
Function DataSourceAndOrbat_OK () As Integer
 DataSourceAndOrbat_OK = True
 If IsNull(Forms.[Form1]![source node]) Then
 DataSourceAndOrbat_OK = False
 Exit Function
 End If
 If IsNull(Forms.[Form1]![source db]) Then
 DataSourceAndOrbat_OK = False
 Exit Function
 End If
 If IsNull(Forms.[Form1]![view]) Then
 DataSourceAndOrbat_OK = False
 Exit Function
 End If
 If IsNull(Forms.[Form1]![target db]) Then
 DataSourceAndOrbat_OK = False
 Exit Function
 End If
End Function

'==
' System: CRESP V0.9
' Module: Utilities
' Developed by: AEB/IS
' SHAPE Technical Centre
' The Hague
' Date: April '95
' Notes:
'==
Function GetImportAgentParams (Chapter As String, Param As String, Value As String) As Integer
 Dim SpaceHolder As String
 Dim ReturnLen As Integer
 SpaceHolder = String(255, 0)

 GetImportAgentParams = True
 On Error GoTo ErrorHandler
 Open ImportAgent() For Input As #1
 Close #
 ReturnLen = GetPrivateProfileString(Chapter, Value, Space(0), SpaceHolder, 255, ImportAgent())
 Param = Left$(SpaceHolder, ReturnLen)
 Exit Function

ErrorHandler:
 Select Case Err
 Case 53: MsgBox "Error 53: IMPAGENT.INI not found"
 Case Else
 End Select
 GetImportAgentParams = False
 Exit Function
End Function

'==
' LastImport returns the string with the message when the last import of this particular view took place
'==
Function LastImport (View As String, SourceNode As String, SourceDatabase As String, Orbat As String,

 DTG As String) As String
 LastImport = "Last Import of " + View + " from " + SourceNode + " (" + SourceDatabase + ") into Database " + Orbat

 + " was " + UCase(DTG)
End Function

NATO UNCLASSIFIED

'==
' Messagebox puts a message box on the screen on top of the application. One has to remove this message box
' before one can go on with the application.
'==
Sub MessageBox (message As String)
 Dim Warning As Integer, MsgDialog As Integer
 Const MB_OK = 0
 Const MB_ICONEXCLAMATION = 48
 Const MB_DEFBUTTON1 = 0

 MsgDialog = MB_OK + MB_ICONEXCLAMATION + MB_DEFBUTTON1
 Warning = MsgBox(message, MsgDialog, "Warning")
End Sub

'==
' RefreshLastRetrieved finds date and time of last import of the view that is going to be imported.
'==
Sub RefreshLastRetrieved ()
 Dim TempSet As Recordset
 Dim SourceNode As String
 Dim SourceDB As String
 Dim View As String
 Dim DTG As String
 Dim Orbat As String
 Const BLACK = 8388608

 'Check if data source & orbat are selected. If not go & Exit
 If Not DataSourceAndOrbat_OK() Then
 Exit Sub
 End If

 SourceNode = Forms.[Form1]![source node]
 SourceDB = Forms.[Form1]![source db]
 View = Forms.[Form1]![view]
 Orbat = Forms.[Form1]![target db]
 Set TempSet = MyDB.OpenRecordset(SelectLastImport(View, SourceNode, SourceDB, Orbat))
 If Not TempSet.EOF Then
 TempSet.MoveFirst
 DTG = Format(TempSet![DTSERIAL], DTGFORMAT)
 Forms.[Form1]![Text5].Forecolor = BLACK
 Forms.[Form1]![Text5].Caption = LastImport(View, SourceNode, SourceDB, Orbat, DTG)
 Else
 Forms.[Form1]![Text5].Forecolor = BLACK
 Forms.[Form1]![Text5].Caption = "Data retrieval originated by selected Source has not been registered yet"
 End If
 TempSet.Close
End Sub

'==
' RefreshToImporting gives a message that import has started. This message will stay on screen during the
' whole import operation and will be removed when the import is finished.
'==
Sub RefreshToImporting ()
 Forms![Form1]![Text5].Forecolor = 128
 Forms![Form1]![Text5].Caption = "IMPORTING"
 DoEvents
End Sub

'==
' RemoveTableName strips table name of arg to get the sole attribute name when ‘arg’ has the following form:
' tablename.attributename. If ‘arg’ is only an attribute name, arg itself will be returned.
'==
Function RemoveTablename (arg As Field) As String
 RemoveTablename = Right$(arg, Len(arg) - InStr(arg, "."))
End Function

NATO UNCLASSIFIED

'==
' SelectViews computes available views from chosen SourceNode and SourceDatabase. Is called after update of
' SourceDatabase
'==
Sub SelectViews ()
 Dim TempSet1 As Recordset
 Dim TempSet2 As Recordset
 Dim SourceNode As String
 Dim SourceDB As String

 'Check if Data Source is selected. If not, exit sub.
 If IsNull(Forms.[Form1]![source node]) Then
 Exit Sub
 Else
 SourceNode = Forms.[Form1]![source node]
 End If
 SourceDB = Forms.[Form1]![source db]

 Set TempSet1 = MyDB.OpenRecordset(SQLSelectViews(SourceNode, SourceDB))
 Set TempSet2 = MyDB.OpenRecordset("CurrentViews")

 DoCmd RunSQL DeleteRecords("CurrentViews")
 If Not TempSet1.EOF Then
 TempSet1.MoveFirst
 End If
 Do Until TempSet1.EOF
 TempSet2.AddNew
 TempSet2.fields(0) = TempSet1.fields(0)
 TempSet1.MoveNext
 TempSet2.Update
 Loop
 TempSet1.Close
 TempSet2.Close
End Sub

'==
' Module: Main Module
' This module contains all functions that do the actual data transfer. For the transfer the following routines will
' be called:
' - Initialise at the opening of Form1
' - ImportText at the click on the "import" button, which uses the following routines:
' - TransferFromTextFilesToDBaseIV, the actual data transfer
' - some functions to do some administration work
' - TransferFromTextFilesToDBaseIV uses the following routines:
' - ImportText to transfer the data from text files to tables
' - AttachdBaseIVTable to make sure the attachment of the destination table exists
' - TransferData which performs the actual transfer from foreign tables to the dBaseIV tables.
'==
Option Compare Database 'Use database order for string comparis
Option Explicit 'Force explicit variable declaration

'==
' AttachDBaseIVTable finds out if the attached dBaseIV data files are connected already. If not, attach them as
' specified in the impagent.ini file
'==
Sub AttachdBASEIVTable (tablename As String)
 Dim MyTableDef As TableDef

 If Attached(tablename) Then
MyDB.TableDefs.Delete tablename

 End If

 Set MyTableDef = MyDB.CreateTableDef(tablename)
 MyTableDef.Connect = ConnectString(DataDir)
 MyTableDef.SourceTableName = tablename
 MyDB.TableDefs.Append MyTableDef
End Sub

NATO UNCLASSIFIED

'==
' ImportOnce imports data only once, actual trigger to start import
'==
Sub ImportOnce ()
 'Check if all selection criteria are specified
 If DataSourceAndOrbat_OK() Then

'Inform User about start of import
Call RefreshToImporting

'transfer data from text files via foreign tables to destination tables
Call TransferFromTextFilesToDBaseIV

'Register the Activity
Call AddToLog
Call RefreshLastRetrieved
Forms![Form1]![Text5].Caption = ""
DoEvents

 End If
End Sub

'==
' ImportText removes data out of FromTable and inserts data out of ImportFile into it. ImportFile is a text file
' with the full path name specified.
'==
Sub ImportText (FromTable As String, ImportFile As String)
 DoCmd RunSQL DeleteRecords(FromTable)
 DoCmd TransferText A_IMPORTDELIM, DELIMITER, FromTable, ImportFile
End Sub

'==
' Initialise checks whether the impagent.ini file is in the correct directory and then opens the form.
'==
Sub Initialise ()
 'Get Input Parameters from IMPAGENT.INI (Windows Directory)
 If Not GetImportAgentParams(ENVIRONMENT, A_DataDir, ARRC_DATADIR) Then

DoCmd Close A_FORM, Form1
Exit Sub

 End If
 If Not GetImportAgentParams(ENVIRONMENT, DataDir, CRESP_DATADIR) Then

DoCmd Close A_FORM, Form1
Exit Sub

 End If

 Set MyDB = DBEngine(0)(0)

 'create temporary table to store the views of selected source node and source database in.
 DoCmd RunSQL "CREATE TABLE CurrentViews([Name] TEXT)"
End Sub

NATO UNCLASSIFIED

'==
' TransferData does the actual data transfer from "FromTable" to "ToTable". It uses the MappingTable to look
' up the mappings, converts the values from the foreign format to the destination format when necessary and puts
' the data in the "ToTable" by using updates for existing units and inserts for new ones.
'==
Sub TransferData (FromTable As String, ToTable As String, ForKey As String, DestKey As String, DestAttr As String,

 MappingTable As String)
 Dim i As Integer
 Dim value1 As String
 Dim value2 As String
 Dim value3 As String
 Dim ToSet As Recordset
 Dim MapSet As Recordset

 Set ToSet = MyDB.OpenRecordset(ToTable) 'open ToTable
 Set MapSet = MyDB.OpenRecordset(MappingTable) 'open MappingTable

 MapSet.Index = "PrimaryKey"
 value1 = ""
 value2 = ""
 value3 = ""

 'For each attribute of ToSet find correct value
 For i = 0 To ToSet.Fields.count - 1

'Find correct conversion for attribute i in mapping table.
MapSet.Seek "=", ToSet.Fields(i).name
If MapSet.NoMatch Then
 'check whether attribute is preceded by its table name in case there are different mappings for this
 'attribute
 MapSet.Seek "=", ToSet.name & "." & ToSet.Fields(i).name
End If
If Not MapSet.NoMatch Then
 'list of destination attributes for insert query
 value1 = value1 & ", " & RemoveTablename(MapSet.DestAttr)
 'list of foreign attributes and conversions for the insert query
 value2 = value2 & ", " & MapSet.Function
 'list of attributes and their conversion for the update query
 If Not (MapSet.DestAttr = DestAttr Or MapSet.DestAttr = DestKey) Then

'attribute has nothing to do with the key in the destination table
value3 = value3 & ", " & MapSet.DestAttr & " = " & MapSet.Function

 End If
End If

 Next
 If InStr(value1, DestKey) = 0 Then

value1 = DestKey & value1
If InStr(DestAttr, DestKey) = 0 Then
 value2 = "GenerateKey(" & ForKey & ", """ & DestKey & """, """ & DestAttr & “””, “”” & FromTable & """, """ &

 ToTable & """)" & value2
Else
 value2 = ForKey & value2
End If
If InStr(DestAttr, DestKey) = 0 Then
 value3 = DestAttr & " = " & ForKey & value3
Else
 value3 = Right(value3, Len(value3) - 2)
End If

 Else
value1 = Right(value1, Len(value1) - 2)
value2 = Right(value2, Len(value2) - 2)
value3 = Right(value3, Len(value3) - 2)

 End If
 'transfer data from foreign table to cresp table using SQL
 DoCmd RunSQL UpdateDestTable(ToTable, FromTable, ForKey, DestAttr, value3)
 DoCmd RunSQL InsertIntoDestTable(ToTable, FromTable, ForKey, DestAttr, value1, value2)

 ToSet.Close
 MapSet.Close
End Sub

NATO UNCLASSIFIED

'==
' TransferFromTextFilesToDBaseIV gets data from text files, transforms data according to the specifications
' and transfers data to dBaseIV tables.
'==
Sub TransferFromTextFilesToDBaseIV ()
 Dim i As Integer
 Dim ViewSet As Recordset
 Dim FileName, ForDB, DestDB, View, TextName As String

 ForDB = Forms![Form1]![source db]
 View = Forms![Form1]![view]
 DestDB = Forms![Form1]![target db]

 Set ViewSet = MyDB.OpenRecordset("ViewMap", DB_OPEN_SNAPSHOT)

 'transfer data from text files via foreign tables to cresp tables for chosen view.
 ViewSet.MoveFirst
 Do Until ViewSet.EOF

If View = ViewSet.viewname Then
 'import text files into foreign tables, first derive filename from foreign tablename
 FileName = Right(ViewSet.ForeignTable, Len(ViewSet.ForeignTable) - (Len(View) + 1))
 Select Case Forms![Form1]![Field5].value

Case 1
 TextName = PATH + UCase$(ForDB) + "\" + FileName + ".FUL"
Case Else
 'only necessary when IncrementalToDBase is implemented
 'TextName = PATH + UCase$(ForDB) + "\" + FileName + ".INC"
 Call MessageBox("IncrementalToDBase is not implemented yet")
 Exit Sub

 End Select
 Call ImportText(CStr(ViewSet.ForeignTable), TextName)

 'remove records where key is missing
 DoCmd RunSQL DeleteEmptyRows(CStr(ViewSet.ForeignTable), CStr(ViewSet.ForeignKey))

 'attach dBaseIV tables
 Call AttachdBASEIVTable(CStr(ViewSet.DestTable))

 'transfer data from foreign tables to destination tables
 Call TransferData(CStr(ViewSet.ForeignTable), CStr(ViewSet.DestTable), CStr(ViewSet.ForeignKey),

CStr(ViewSet.DestKey), CStr(ViewSet.DestAttr), View & "_MappingTable")
End If
ViewSet.MoveNext

 Loop
 ViewSet.Close
End Sub

'==
' Form: Form1
' This file contains all event procedures for Form1. Unlike the rest of the code these routines are not stored in a
‘ module, but are hidden behind the form. One can find them by looking at the property sheets of the elements
‘ on the form in design view. These routines execute certain actions when for example the form is opened or a
‘ button is pushed.
'==
Option Compare Database 'Use database order for string comparisons

'==
' exit_Click closes the database and the form when one clicks on the Exit button.
'==
Sub exit_Click ()
 MyDB.Close
 DoCmd Close A_FORM, "Form1"
End Sub

NATO UNCLASSIFIED

'==
' Form_Close deletes the temporary table CurrentViews in which during the application the views on the chosen
' source node and source database are stored at the closing of the form.
'==
Sub Form_Close ()
 DoCmd DeleteObject A_TABLE, "CurrentViews"
End Sub

'==
' Form_Open calls some initialising functions for the application.
'==
Sub Form_Open (Cancel As Integer)
 Call SetWindowText(GetActiveWindow(), SuperTitle)
 DoCmd SetWarnings False
 Call Initialise
End Sub

'==
' once_Click triggers the actual import. It checks whether there are no compilation errors and then calls the
' routine to import the data of the chosen view into the chosen database.
'==
Sub once_Click ()
 On Error GoTo Err_once_Click
 ‘no errors found
 Call ImportOnce
Exit_once_Click:
 Exit Sub
Err_once_Click:
 MsgBox Error$
 Resume Exit_once_Click
End Sub

'==
' source_db_AfterUpdate computes the views that are defined on the chosen source node and source database,
so
' that the user can only choose a view defined on this particular source node and database.
'==
Sub source_db_AfterUpdate ()
 Call SelectViews
End Sub

'==
' source_db_Change empties the temporary table in which the views are stored from which the user can choose
‘ and does the computation from source_db_AfterUpdate again after the user has changed his mind.
'==
Sub source_db_Change ()
 DoCmd RunSQL DeleteRecords("CurrentViews")
 Call SelectViews
End Sub

'==
' target_db_AfterUpdate tells the user what was the last time this particular view was imported after the
database
' into which one wants to import the data is chosen and all other options are filled in as well.
'==
Sub target_db_AfterUpdate ()
 Call RefreshLastRetrieved
End Sub

'==
' view_Enter requeries the database to show the user the views he can choose from.
'==
Sub view_Enter ()
 DoCmd Requery view.name
End Sub

NATO UNCLASSIFIED

Appendix B The Dictionary
As an example the complete dictionary will be specified for the GOB1 view. This dictionary consists
of the following parts:
• The Interface Dictionary - specifies the structure of the exported foreign text files;
• The CRESP Data Dictionary - specifies the destination tables into which the interface has to

import the data;
• The Mapping Dictionary - specifies the mappings between the foreign and destination attributes.

B.1 The Interface Dictionary
GOB1 uses foreign text files with the following structure:

UNITS
Field Null Format Size
update-time char(12) Fix
source char(8) Var
unit-id No char(15) Var
orbat-type char(3) Var
name char(55) Var
category char(10) Var
en-friend char(3) Var
country char(2) Fix
organisation char(8) Var
arms char(15) Var
command-level char(5) Var
symbol char(6) Var
comments

Table 15 GOB1: Structure of file Units.ful

UNIT-EQP
Field Null Format Size
update-time char(12) Fix
source char(8) Var
unit-id No char(15) Var
equip-type-categ char(20) Var
equip-type-name char(40) Var
quantity num(7) Var
verific-code char(4) Var
effective-time char(12) Fix

Table 16 GOB1: Structure of file Unit-Eqp.ful

UNIT-STS
Field Null Format Size
update-time char(12) Fix
source char(8) Var
unit-id No char(15) Var
activity char(8) Var
ce num(2) Fix
pers-strength num(7) Var
location-name char(30) Var
location-lat char(7) Fix
location-lon char(8) Fix
effective-time char(12) Fix
verific-code char(4) Var
comments char(255) Var

Table 17 GOB1: Structure of file Unit-Sts.ful

CMD-REL
Field Null Format Size

update-time char(12) Fix
source char(8) Var

sup-unit-id char(15) Var
sub-unit-id No char(15) Var

cmd-rel char(6) Var
verific-code char(4) Var

effective-time char(12) Fix

Table 18 GOB1: Structure of file Cmd-Rel.ful

NATO UNCLASSIFIED

B.2 The CRESP Data Dictionary
The CRESP Data Dictionary specifies the structure of the destination tables (the dBaseIV tables of
CRESP). The required tables for the GOB1 view are:

MY_EQ
Field Format
locekey char(23)
source char(8)
createtime char(12)
mat_seqno char(2)
aa_seqno char(2)
class char(3)
confidence char(4)
eq_type char(20)
model char(40)
ser_num char(20)
sub_ord char(4)
asat char(10)
role char(10)
role2 char(10)
supply_uom char(3)
allegiance char(2)
object_id char(27)
updatetim char(10)
cc char(2)
qnty_eval char(4)
no_curr double
no_depart double
no_added double
no_lost double
no_auth double
status char(10)
comments char(254)
usage char(1)

Table 19 GOB1: Structure
of My_Eq table

UNITS
Field Format
locekey char(23)
object_id char(29)
obtype char(3)
name char(54)
parent_id char(54)
sup_id char(23)
categ char(10)
react_time double
en_friend char(3)
color_code char(1)
cc char(2)
org char(8)
ass_status char(1)
unit_no char(10)
arms char(15)
com_level char(5)
display double
ver_code char(4)
com_status char(5)
symbol char(6)
ace_uic char(9)

Table 20 GOB1:
Structure of Units table

CMDREL
Field Format
createtime char(12)
sub_id char(23)
sup_id char(23)
cmd_rel char(6)
updatetim char(10)
updater char(12)
asat char(10)
source char(8)
ver_code char(4)
rep_txt char(254)

Table 21 GOB1:
Structure of CmdRel
table

GOBREP
Field Format
locekey char(23)
createtime char(12)
source char(8)
updatetim char(10)
asat char(10)
updater char(12)
allegiance char(2)
commander char(30)
infosource char(12)
activity char(8)
dir char(2)
pce double
comb_eff char(5)
unit_count double
pers_str double
report_id char(10)
location char(30)
lat_deg double
lat_min double
lat_sec double
lat_dir char(1)
lon_deg double
lon_min double
lon_sec double
lon_dir char(1)
utm char(15)
xcoord double
ycoord double
curflag double
ver_code char(4)
i_ver_code char(4)
rep_txt char(255)

Table 22 GOB1: Structure
of GobRep table

NATO UNCLASSIFIED

B.3 The Mapping Dictionary
The Mapping Dictionary for the GOB1 view consists of the following tables:
• The Translation table - specifies the attribute translations for all views;
• The ViewMap table - specifies the connection of all tables and all views;
• The SourceMap table - specifies the connection of all foreign databases and all views;
• The GOB1_MappingTable - specifies the correspondences of foreign and destination attributes of

the GOB1 view.
So the first three tables are global tables for all integrated views, while the last table is specifically for
the GOB1 view. There is also a difference with the former mentioned dictionaries (B.1 and B.2) in the
sense that not the structure of the tables but the values in the tables define the Mapping Dictionary.
For the GOB1 view the tables contain the following values:

FIELDNAME FROMVALUE TOVALUE

UNITS.ARMS ARMRD ARMR

UNITS.ARMS AVN AAVN

UNITS.ARMS HOSP SURG

UNITS.ARMS MIL/CA CIMIC

UNITS.ARMS ORD OD

UNITS.ARMS PC POST

UNITS.ARMS PSYCH PSYOP

UNITS.ARMS SUP SUPLY

UNITS.COMMAND_LEVEL AG GROUP

UNITS.COMMAND_LEVEL PL PLT

UNITS.COMMAND_LEVEL REGT RGT

UNITS.EN_FRIEND AS_FR AF

UNITS.EN_FRIEND AS_HO AH

UNITS.EN_FRIEND AS_IN AI

UNITS.EN_FRIEND AS_NE AN

UNITS.EN_FRIEND FR F

UNITS.EN_FRIEND HOST H

UNITS.EN_FRIEND INVOLV I

UNITS.EN_FRIEND NEUT N

UNITS.EN_FRIEND NOTKN NK

UNITS.ORBAT_TYPE G GOB

Table 23 The Translation table

ViewNam

e

ForeignTable ForeignKey DestTable DestAttr DestKey

GOB1 GOB1_Units Concatenate(SourceDB(),

 GOB1_Units.unit_id)

UNITS UNITS.locekey locekey

GOB1 GOB1_Unit-

Eqp

Concatenate(SourceDB(),

 [GOB1_Unit-Eqp].unit_id)

MY_EQ MY_EQ.locekey locekey

GOB1 GOB1_Cmd-

Rel

Concatenate(SourceDB(),

 [GOB1_Cmd-Rel].sub_unit_id)

CMDREL CMDREL.sub_id sub_id

GOB1 GOB1_Unit-Sts Concatenate(SourceDB(),

 [GOB1_Unit-Sts].unit_id)

GOBREP GOBREP.loceke

y

locekey

....

Table 24 The ViewMap table

name sourcenod

e

sourcedatabase

GOB1 ARRC THISTLE

....

Table 25 The SourceMap table

NATO UNCLASSIFIED

DestAttr Function

asat Copy(effective_time)

categ Copy(category)

CmdRel.cmd_rel Copy([GOB1_Cmd-Rel].cmd_rel)

CmdRel.source SourceDB()

CmdRel.sup_id Concatenate(SourceDB(), [GOB1_Cmd-

CmdRel.ver_code Copy([GOB1_Cmd-Rel].verific_code)

com_level Translate("Units.command_level", command_level)

comb_eff Copy(ce)

confidence Copy(verific_code)

createtime PatchCreateTime()

curflag Copy(1)

eq_type Copy(Left(equip_type_categ,20))

GobRep.activity Copy([GOB1_Unit-Sts].activity)

GobRep.rep_txt Copy([GOB1_Unit-Sts].comments)

GobRep.source SourceDB()

GobRep.ver_code Copy([GOB1_Unit-Sts].verific_code)

lat_deg Part(location_lat, 1, 2)

lat_dir Part(location_lat, 7, 1)

lat_min Part(location_lat, 3, 2)

lat_sec Part(location_lat, 5, 2)

location Copy(location_name)

locekey Concatenate(SourceDB(), unit_id)

lon_deg Part(location_lon, 1, 3)

lon_dir Part(location_lon, 8, 1)

lon_min Part(location_lon, 4, 2)

lon_sec Part(location_lon, 6, 2)

model Copy(Left(equip_type_name, 40))

My_Eq.rep_txt Copy([GOB1_Unit-Eqp].comments)

My_Eq.source SourceDB()

My_Eq.ver_code Copy([GOB1_Unit-Eqp].verific_code)

no_curr Copy(quantity)

object_id Copy(unit_id)

obtype Translate("Units.orbat_type", orbat_type)

org Copy(organization)

pers_str Copy(pers_strength)

qnty_eval Copy("HOLD")

react_time Copy(0)

sub_id Concatenate(SourceDB(), sub_unit_id)

Units.arms Translate("Units.arms", GOB1_Units.arms)

Units.cc Copy(GOB1_Units.country)

Units.en_friend Translate("Units.en_friend", GOB1_Units.en_friend)

Units.name Copy(GOB1_Units.name)

Units.symbol Copy(GOB1_Units.symbol)

updatetim Copy(update_time)

Table 26 The GOB1_MappingTable

