
Graph Rewrite Systems

and

Visual Database Languages

Marc Andries

ii

Graph Rewrite Systems
and

Visual Database Languages

Proefschrift
ter verkrijging van de graad van Doctor

aan de Rijksuniversiteit te Leiden,
op gezag van de Rector Magnificus Dr. L. Leertouwer,

hoogleraar in de faculteit der Godgeleerdheid,
volgens besluit van het College van Dekanen
te verdedigen op woensdag 14 februari 1996

te klokke 15.15 uur

door

Marc Adolf Annie Andries

geboren te Wilrijk (België) in 1968

Promotiecommissie

Promotores: Prof. dr. G. Engels
Prof. dr. J. Paredaens (Universiteit Antwerpen (UIA), België)

Referenten: Prof. dr. M. Gyssens (Limburgs Universitair Centrum, België)
Prof. dr. H.-J. Kreowski (Universität Bremen, Duitsland)

Overige leden: Prof. dr. H.A.G. Wijshoff
Prof. dr. G. Rozenberg
Prof. dr. J.N. Kok

Contents

1 Introduction 1
1.1 A Need for Visual Languages : 1
1.2 A Need for Formally Defined Visual Languages : 2
1.3 Topic of this Thesis: Defining Visual Database Languages with Graph Rewriting : : : 4

1.3.1 A Query Language Defined Using Graph Rewriting : : : : : : : : : : : : : : 4
1.3.2 Choosing a Graph Grammar Formalism: PROGRES : : : : : : : : : : : : : 7
1.3.3 From Graphical to Hybrid Languages : 8
1.3.4 Database Manipulation Defined as Graph-Rewriting : : : : : : : : : : : : : 10

1.4 Organization of this Thesis : 12

2 The Extended Entity-Relationship Model 13
2.1 Informal Introduction to the EER Model : 13
2.2 Formal Definition of the EER Model : 16
2.3 A Textual Query Language : SQL/EER : 22

3 An Introduction to PROGRES 27
3.1 On Formal Graph Representations : 27
3.2 PROGRES specifications : 29

3.2.1 Graph Schemes : 30
3.2.2 Productions : 33
3.2.3 Transactions : 37

4 A Query Language Defined Using Graph-Rewriting 41
4.1 GOQL/EER: A Graph-Oriented Query Language for the EER Model : : : : : : : : : 41
4.2 Formal Specification of GOQL/EER : 47

4.2.1 A Graph Model for GOQL/EER : 51
4.2.2 The Syntax of GOQL/EER : 54
4.2.3 The Semantics of GOQL/EER : 74
4.2.4 Executing the Specification : 84

4.3 A Hybrid Query Language: HQL/EER : 87
4.3.1 Examples of Hybrid Queries : 88
4.3.2 On the Semantics of Hybrid Queries : 92
4.3.3 Towards a Formal Definition of HQL/EER : : : : : : : : : : : : : : : : : : 94

v

vi CONTENTS

5 Database manipulation defined as graph-rewriting 97
5.1 The Entity-Relationship Model : 97
5.2 GOOD/ER: a Graph-Oriented Object Database language : : : : : : : : : : : : : : : 101

5.2.1 Patterns and Embeddings : 103
5.2.2 Basic Operations : 106
5.2.3 GOOD/ER Programs : 121

5.3 On the Expressive Power of GOOD/ER : 129

6 Conclusions 149
6.1 Lessons Learned from GOQL/EER : 150
6.2 Lessons Learned from GOOD/ER : 151
6.3 Open Issues for Future Research : 152

A Notational Conventions 155

B EBNF-grammar for SQL/EER 157

C The PROGRES specification for GOQL/EER 161

Samenvatting 193

Curriculum Vitae 197

Bibliography 199

Chapter 1

Introduction

1.1 A Need for Visual Languages

Wherever large amounts of structured data are to be stored for retrieval and manipulation, database
management systems, also referred to as information systems, have found their way over the past few
decades. As a consequence, as well as through recent evolutions in telecommunication technology, a
growing number of unexperienced and untrained users are confronted with information systems. Un-
fortunately, the functionality and outlook of the user interfaces of these systems quite often seem more
geared towards knowledgeable computer experts, rather than towards their intended users.

In response to this problem, much research effort has been put into user interface design in general,
and the development of user-friendly information systems interfaces in particular. Within this area, a
major line of research (subsuming the topic of this thesis) aims at fully exploiting the two-dimensional
nature of the computer screen, by visualizing various aspects of the information systems user interface:

1. One aspect is the definition of the structure of the database, leading to graphical scheme nota-
tions, the most well-known of which is undoubtedly Chen’s Entity-Relationship model [Che76].

2. Another important aspect of information systems suitable for visualization are languages for
querying and manipulating the database, leading (among others) to database languages based
on Shneiderman’s direct manipulation paradigm [Shn83]. Systems built according to this par-
adigm allow the user to directly manipulate the objects of interest in the form of a visual rep-
resentation, as opposed to systems offering access to these objects indirectly, e.g., by means of
some textual language. In [Shn83], Shneiderman mentions the following advantages of direct
manipulation interfaces:

(a) Continuous representation of the object of interest,

(b) Physical actions instead of complex syntax,

(c) Rapid, incremental, reversible operations whose impact on the object of interest is imme-
diately visible,

(d) Layered approach to learning that permits usage with minimal knowledge.

1

2 CHAPTER 1. INTRODUCTION

3. A final aspect which lends itself most naturally to visualization concerns the results of manipula-
tions of and queries to the database. Research on this topic is part of the broader research area of
information visualization [LG94]. Research in this area aims at developing methods to present
in a comprehensible manner huge and complex structured data sets to information systems users
by means of techniques such as three-dimensional rendering.

The research reported on in this thesis concerns the second of the above aspects, namely visual
database query and manipulation languages. The applicability of the notion of direct manipulation
to database manipulation languages was already recognized by Shneiderman in the aforementioned
article [Shn83]. Based on a study of various kinds of direct manipulation interfaces, he ascertains that

Graphic representations can be especially helpful when there are multiple relationships
among objects and when the representation is more compact than the detailed object.

This statement most clearly applies to database manipulation.
Also, in his introduction to the impressive collection [Gli90a, Gli90b] of influential and represen-

tative articles on visual programming environments, Glinert remarks that

The computer’s ability to represent in a visible manner normally abstract and ephemeral
aspects of the computing process such as recursion, concurrency, and the evolution of data
structures has had a remarkable and positive impact on both the productivity of program-
mers and their degree of satisfaction with the working environment.

One of the articles included in [Gli90b] supports this claim on the basis of real-life experiments.
In [GR87], Gerstendörfer and Rohr ascertain that

Structural tasks are difficult to comprehend if not presented in pictures or more gener-
ally by means of visual aids. (.. .) Tasks with structural characteristics we find e.g., in all
database applications.

It is therefore not surprising that these insights in human-computer interaction, together with the
ongoing evolution of hardware, has triggered the development of a range of formalisms and tools for
visual interaction with information systems, including, among many others, [Mar89, ACS90, CM90,
LP91, PPT91, Hou92, WMS+92].

1.2 A Need for Formally Defined Visual Languages

Remarkably, many proposals, though visually attractive, lack any kind of formal definition [Kan88,
ADD+91, Sch91a, SBOO95]. In other cases, pseudo-formal constructions are presented, which barely
deserve to be called formal definitions [GG87, CTYY89].

There is however, a clear and widely recognized need for clearly and unambiguously defining any
computer language in general, and visual database languages in particular, since

� it forces the language designer to think clearly about both the major concepts as well as the minor
details of the language,

1.2. A NEED FOR FORMALLY DEFINED VISUAL LANGUAGES 3

� it enables truthful implementation,

� it guarantees to the user a unique and clearly determined semantics for any sentence in the lan-
guage he cares to write down, and

� it offers the possibility to formally study properties of the language (without having to implement
it). One important such property is a language’s expressive power (cf. Section 5.3 of this thesis),
a characterization of which in turn allows the comparison of different languages.

Fortunately, numerous proposals of visual database languages are indeed formally defined. Within
this range of definitions, two main streams may be distinguished:

1. definitions using various logics, such as G-Log [PPT95] and GraphLog [CM90] based on first-
order logic, the Categorial Graphs model [Haa95] based on modal logic, DOODLE [Cru92]
based on F-logic [KL89], and VQL [VAO93] based on Datalog [CGT90].

2. definitions using various extensions of string grammars, such as context-free positional gram-
mars [CTODL95], constraint multiset grammars [Mar94], and picture layout grammars [GR89].

In such grammars, special (textual) symbols and operators as well as special-purpose attributes
are used to indicate (spatial) interrelationships between the symbols used in the grammars pro-
ductions. For instance, the following expression is a production from a positional grammar for
logic circuits [OPT+92]:

Circuit ! AND 3

0

1 NOT

It captures the fact that the start-symbol Circuit of the grammar may be rewritten to an AND-
gate, whose third “attaching point” (representing its output) is linked to a NOT-gates first attach-
ing point (representing its input), i.e., the logic circuit

1 23
1
2

The superscript “0” indicates that the link concerns the immediately preceding gate. A super-
script n 6= 0 would refer to the n-th preceding gate.

Definitions from the first category deal almost exclusively with the logical aspects of the consid-
ered languages, i.e., their semantics, and include no formalization of syntax, i.e., the correspondence
between rules and their visual representation.

The strange thing about the latter category of definitional mechanisms is that string grammars were
intended for (and have been successfully applied to) the definition of textual languages. In contrast,
over 25 years ago, a counterpart for formally defining graph languages was introduced in the form of
graph grammars and graph rewrite systems [PR69, Sch70].

A graph grammar basically consists of an “initial” graph and a set of graph rewrite rules. Such a
rewrite rule in turn basically consists of two graphs, called its left- and right-hand side. A rule may
be applied to a graph by looking for an isomorphic occurrence of the left-hand side in the graph, and
rewriting it into an isomorphic occurrence of the right-hand side. The grammar defines the language

4 CHAPTER 1. INTRODUCTION

of all graphs that may be obtained by applying an arbitrary sequence of graph rewrite rules to the initial
graph. In graph grammars (as well as in textual grammars) a distinction is often made between terminal
and non-terminal symbols. Terminal symbols are the elements of the graphs that are actually part of
the defined language, while non-terminal symbols are not allowed to occur in these graphs, but are
merely used in intermediate stages of their construction.

A graph rewrite system consists of a structured collection of graph rewrite rules, and can be used
to transform one instance of a given class of graphs into another instance of the same class. 1

Since 1969, the theory of graph grammars has become a well-researched area [GG90]. Mainly in
the seventies, some work was already done on applying results obtained in this area to various aspects
of database management, such as conceptual modeling and the description of concurrency [EK76,
GF79, ADS80, EK80], all in the context of relational databases. Only in the early nineties, this line of
research was picked up again [GPVG90a, GPVG90b, Eng90, BM90, Cou91, EF94], this time mainly
in the context of object-based models.

1.3 Topic of this Thesis: Defining Visual Database Languages with
Graph Rewriting

In this thesis, we investigate how graph rewrite systems may be used to formally define both syntax
and semantics of visual database languages. We present two possible ways to do so.

1.3.1 A Query Language Defined Using Graph Rewriting

In a first approach, we start from the following well-known technique [EL85, Kan88, Mar89] to “de-
rive” a fully graphical query language from a given database model which includes a graphical repre-
sentation for database schemes (such as the aforementioned Entity-Relationship model). Intuitively,
formulation of a query in such a language primarily consists of composing graphical components from
a concrete database scheme into a pattern, describing the desired information. Again intuitively, this
pattern then has to be matched against the database instance to retrieve this information.

As an example, consider Figure 1.1. On one hand, this diagram may be seen as the graphical rep-
resentation of an (extremely simple) ER scheme, also called an ER diagram. In this case, the diagram
models a world of customers and cash-cards, as indicated by the rectangular nodes, representing so-
called entity types. Customers can have cash-cards, as indicated by the diamond-shaped node linked to
both rectangles, representing a relationship type. Customers are characterized by a name, while cash-
cards are characterized by a password (both of which are strings). This is indicated with oval-shaped
nodes, representing so-called attributes of the entity types.

On the other hand, the diagram may also be read as a query, expressing an interest in the names of
customers and the passwords of cash-cards these customers have. Czejdo et al. [CERE87] list (among
others) the following advantages of query languages in which queries are composed of graphical com-
ponents from a database scheme:

1Despite the differences outlined above, the terms “graph grammar” and “graph rewrite system” are often used as syn-
onyms. Since in this thesis, both formalisms are used, we make a conscious effort to use the appropriate term in each
context.

1.3. DEFINING VISUAL DATABASE LANGUAGES WITH GRAPH REWRITING 5

CASH CARDCUSTOMER has
password

name
stringstring

owner card

Figure 1.1: A diagram with a double purpose

1. The query language is two dimensional. Diagrams that depict a view of the database schema
are displayed and can be manipulated interactively.

2. Query formulation is flexible. A query can be formulated in many different ways since the order
in which the diagram manipulating operators are invoked is often immaterial.

3. The user always has a convenient frame of reference. The current diagram reflects the current
status of query formulation and is always a valid query.

4. The approach is applicable to a wide range of semantic data models.

5. The intended query can be specified in several different ways (.. .) The strategy to be used can
be selected by the user.

Based on the Extended Entity-Relationship model [EGH+92] (which is, as the name suggests, an
extended version of Chen’s Entity-Relationship model [Che76]) we present in this thesis the Graph-
Oriented Query Language GOQL/EER, in which queries may be expressed graphically using elements
from a given EER diagram. The word “diagram” rightfully suggests that GOQL/EER falls within the
category of visual query languages using the diagrammatic representation paradigm, according to the
taxonomy introduced by Batini et al. in their comprehensive survey of visual query systems [BCCL91].
According to this taxonomy, the representation paradigm of a visual query language may be either

tabular : using a visualization of prototypical tables (typically used in the context of the relational
database model);

diagrammatic : using a fixed set of symbols, each representing a specific type of concepts, as well as
a fixed set of allowed connections, each representing a specific logical relationship type between
concepts;

iconic : using icons denoting entities of the real world as well as functions offered by the system,
which are combined into a query; or

hybrid : using any combination of the other three approaches.

The main topic of Chapter 4 of this thesis is an investigation of how both syntax and semantics of
GOQL/EER may be formally defined by means of a graph grammar. As for the syntax of the language,
we concentrate on the abstract syntax. Defining the abstract syntax of a graph-oriented language boils
down to specifying the structural characteristics a graph must satisfy in order to represent a syntacti-
cally correct GOQL/EER-query.

6 CHAPTER 1. INTRODUCTION

The exact correspondence between a graph and the query it represents would be the topic of a study
of the concrete syntax. The latter basically establishes the concrete visual representation of language
elements, stating for instance that an entity should be represented by a rectangle, as well as their layout
and spatial relationships, stating for instance that one endpoint of an edge representing a role should
lie on the boundary of a rectangle, while the other should coincide with the corner of a diamond (rep-
resenting the relationship). The topic of concrete syntax of visual languages is in turn closely related
to the research area of visual parsing [Wit92], which in a sense studies the recognition of concrete
syntax elements, and the transition from concrete to abstract syntax. It is currently being investigated
to what extent graph grammars may also be used for this aspect of visual language definition [RS95].
Conversely, the research area of visualization [LG94] in a sense studies the transition from abstract to
concrete syntax.

For defining the languages semantics, we take the following approach. The EER model includes
a fully textual query language SQL/EER [HE92]. We exploit the availability of this formally defined
language by defining the semantics of GOQL/EER queries by translating them to SQL/EER queries.
Intuitively, this means that graph increments are associated to elements of the textual language. For
instance, the CUSTOMER- and CASH CARD-entities in Figure 1.1 can be seen as the “graphical equiv-
alent” of the declaration of variables (say, c of type CUSTOMERand cc of type CASHCARD) in the
textual language. Likewise, the string -labeled nodes in the figure can be seen as the graphical equiv-
alents of the terms c.name and cc.password . Finally, the has -relationship expresses the formula
c has cc .

One of the main contributions of this thesis is the observation that the definition of both syntax
and semantics (in the way described above) may be integrated seemlessly into one and the same graph
grammar specification. In a sense, this idea may be seen to follow naturally from the above mentioned
association between components of respectively graphical and textual queries. Indeed, consider once
more the graphical increment

CUSTOMER
name

string

in which (as mentioned above) the string -labeled node should be seen as the graphical equivalent of
the term c.name . In the EBNF grammar defining the syntax of the textual query language SQL/EER,
the fact that c.name is indeed a correct part of a textual query is captured in the rule

TERM ::= VARIABLE “.” ATTRIBUTE

expressing the fact that a variable, followed by a dot, followed by an attribute name, is a syntactically
correct term.

Likewise, the fact that the above depicted graphical increment is indeed a correct part of a graphical
query may be captured in the graph rewrite rule

attribute
::=EntityType EntityType ValueType

capturing the fact that given a node labeled with an EntityType , a node labeled with a ValueType
may be linked to it by means of an attribute -edge.

Rather than to define the semantics of the graph-oriented query language by formalizing this asso-
ciation between EBNF-rules and graph rewrite rules (a language definition technique known as Pratt’s

1.3. DEFINING VISUAL DATABASE LANGUAGES WITH GRAPH REWRITING 7

pair-grammars [Pra71]) we chose to integrate this association into the graph grammar specification
by extending the latter with attributes,2 thus obtaining an attributed graph grammar. This technique
of attributing a grammar is also used quite frequently for defining the semantics of textual languages.
When the syntax of a textual language is defined using an EBNF grammar, then this grammar may be
extended into an attributed one, defining the semantics of the language as follows:

1. attributes (in the formal language sense of the word!) are associated to the non-terminal symbols
of the EBNF grammar and

2. attribute derivation rules are associated to the EBNF rules, which compute (in the attributes)
an expression in some other formally defined language, which is then considered to define the
semantics of the expression in the original textual language.

This technique has been known since long in the context of defining the semantics of textual languages.
It was introduced in [Knu68, Knu71] by Knuth under the name of attribute translation grammars. In
these two papers, Knuth applies the technique to the translation of a toy-language “turingol” to Turing
Machines, and to the reduction of �-calculus expressions to some canonical form. More examples on
applications of attribute translation grammars may be found in [Pag81].

The same technique is used in [HE92], in which SQL/EER is formally defined by mapping its state-
ments to corresponding formulas in a previously defined calculus for the EER model [HG88]. For in-
stance, an attribute derivation rule associated to the rule “TERM ::= VARIABLE “.” ATTRIBUTE”
translates such a term into an expression in the EER calculus.

Likewise, in a graph grammar specification, attributes (once more in the formal language sense)
may be associated to rewrite rules. Informally, the graph rewrite rule depicted above then becomes

transfer

attribute
::=EntityType EntityType ValueType

ValueType.Term := EntityType.Term ‘‘.’’ attribute

capturing the fact that, given the Term corresponding to the node labeled with an Entity- Type , the
Term corresponding to the newly added node labeled with a ValueType is obtained by appending
(a string-representation of) the attribute to the former Term with a dot.

1.3.2 Choosing a Graph Grammar Formalism: PROGRES

From the above ideas clearly follows our need for an expressive graph grammar formalism. At this mo-
ment, the most expressive specification formalism based on graph rewrite rules is Schürr’s PROgram-
med Graph REwriting System language [Sch90a, Sch91b] (in brief, PROGRES).

A graph language is specified in PROGRES by means of a two step process:

1. In a graph scheme, the types of nodes and edges that may occur in a graph of the considered
language are declared. Additionally, node attributes (i.e., values representing non-structural in-
formation concerning nodes) are declared and initialized.

2Note that the word “attribute” is now used in two different meanings: one in the context of graphs, and the other in
the context of the EER-model!

8 CHAPTER 1. INTRODUCTION

2. A set of graph rewrite rules or productions, obeying the type restrictions imposed by the graph
scheme, captures those structural integrity constraints not expressible in a graph scheme. Addi-
tionally, productions also incorporate attribute computations.

Even though, besides the features mentioned above, the PROGRES language also includes a wide
variety of nondeterministic control structures [ZS92], we use mainly the powerful pattern matching
and replacement facilities, as well as attribute derivation mechanism offered by its graph rewrite rules,
to specify both syntax and semantics of GOQL/EER as described previously.

An additional motivation for choosing the PROGRES formalism was the availability of an inte-
grated set of language-specific tools supporting editing, analyzing, and debugging of specifications
[NS90]. The specification of GOQL/EER has been entered using this toolsets syntax-directed edi-
tor [Sch90b], which allowed them to be analyzed by the incrementally working type-checker and tested
using the integrated interpreter.

1.3.3 From Graphical to Hybrid Languages

However successful visual query languages may appear to be, visual representations also have their
limitations. Especially when looking at the ever increasing collection of fully graphical query lan-
guages, one gets the impression that some of this research overshoots its mark in the sense that a purely
graphical formulation of a query quite often becomes even more complex than its textual equivalent.

As an example, consider the query that retrieves (from some financial information system) the
names of those banks that manage only and exactly all accounts with a balance over 1.000.000. Fig-
ure 1.2 shows an expression of this query in SQL/EER, while Figure 1.3 shows the same query in
the fully graphical query language GRAQULA [SBMW93]. The (implies) -box on the left corre-
sponds to the condition that if an account has a balance over a million, the considered bank should man-
age the account. An (and) -box contains the consequent of an implication (in this case, the manages-
relationship). Likewise, the (implies) -box on the right corresponds to the condition that if the bank
manages some account, the account’s balance should be over a million.

select name
from b in BANK
where for all a in ACCOUNT

with balance � 1.000.000 : (b manages a)
and for all a in ACCOUNT with b manages a :
(balance � 1.000.000)

Figure 1.2: Names of banks that manage exactly all accounts with a balance over 1.000.000 (in
SQL/EER)

Similar highly expressive yet visually unattractive fully graphical query languages are introduced
in [Miu94, Hou92]. To say the least, one could doubt that both formulating and deciphering such a
nested structure of boxes corresponding to logical primitives, is easier than doing the same with its
textual equivalent.

1.3. DEFINING VISUAL DATABASE LANGUAGES WITH GRAPH REWRITING 9

(and)

(implies)(implies)

name

(and)

���≥ 1.000.000ÿ���≥ 1.000.000ÿ

BANKACCOUNT ACCOUNT

balance balance

int int

manages manages

Figure 1.3: The query of Figure 1.2 in GRAQULA

In support of this observation, the aforementioned collection of articles on visual programming
[Gli90b] includes an experience report [Gra90] intriguingly entitled “Visual Programming and Visual
Languages: Lessons Learned in the Trenches”. The fifth lesson in this report is briefly summarized as
“Quit While Winning”, a statement which is clarified as follows:

(.. .) a system (...) ends up cumbersome and difficult to use (.. .) when the extension of
the visual language begins creating more problems than it solves. (.. .) Shift to another
presentation mode (usually text) as soon as appropriate.

The second lesson of the report supports this claim, by stating that a

(.. .) visual language should be based on a minimum of icons and constructs.

Likewise, in his introduction to [Gli90a, Gli90b], Glinert prophesies

(.. .) would it not be more pleasant and productive to work in multiparadigm environments
which could support, within a single program, both textual and graphical representations
for all sorts of computing objects (.. .) ?

In the context of databases, the question then arises whether it is possible to combine the “best
of both worlds”, that is, to develop a hybrid query language that allows those parts of a query that
are most clearly specified graphically respectively textually, to be indeed specified graphically respec-
tively textually.3 In a sense, Zloof’s Query-By-Example [Zlo77], which is commonly considered to
be one of the first attempts at “two-dimensional” query languages, already offers facilities along this
line. Indeed, while join conditions and selections are entered “graphically” (that is, in table skeletons),
complex conditions involving e.g., aggregate functions, have to be entered in plain text in a so-called
“condition box”. Similar facilities are offered in prototype interfaces for semantic database models,
like SNAP’s “node restriction” [BH86]. In other proposals, like [Kun92, KM89], tools are presented

3The term “hybrid” was inspired by hybrid editors, where the user can freely choose between a syntax-directed and a
free style of editing [ELN+92].

10 CHAPTER 1. INTRODUCTION

which give the user a (limited) choice between graphical and textual specification of operations, lim-
ited in the sense that graphics and text may not be mixed within the same operation.

We answer the above question positively by merging GOQL/EER and SQL/EER into a Hybrid
Query Language for the EER-model, in brief HQL/EER. This language has both GOQL/EER and
SQL/EER as sublanguages, but it also allows the expression of queries by means of a mixture of graph-
ical elements from GOQL/EER and textual elements from SQL/EER.

1.3.4 Database Manipulation Defined as Graph-Rewriting

In a second approach towards the definition of visual database languages by means of graph rewrit-
ing, we shift our attention towards database manipulation languages. On one hand, when we intro-
duced GOQL/EER, we already mentioned an intuitive way to interpret GOQL/EER queries, namely
by looking upon them as patterns that are to be matched against (a graph-representation of) the data-
base instance. On the other hand, when recalling the notion of a graph grammar, we mentioned that
pattern-matching is precisely the mechanism underlying the application of graph rewrite rules. An
intuitively natural idea would therefore be to use graph rewriting as database manipulation paradigm.

However, SQL’s update-command illustrates the fact that a database manipulation generically
consists of a query together with the specification of some modification to be performed on the out-
come of the query [ACPB95]. Consequently, if we wish to use graph rewrite rules for the specification
of database manipulations, we have to attribute a particular semantics to graph rewrite rule applica-
tion, allowing rules to be applied to various parts of a graph at the same time, rather than to a single
subgraph. More precisely, we need the possibility to apply a rule exhaustively, which means that it is
to be applied to every possible matching of its left-hand side in the graph representation of the database
instance [And94].

As an example, part of the pattern of Figure 1.1 can be used to graphically express the database
update that the password of all cash-cards should be set to the name of their owner (assuming for the
sake of simplicity that a card has at most one owner).

CASH CARDCUSTOMER has

password

name
string

owner card

Figure 1.4: A graph rewrite rule expressing a database update

Using the terminology introduced formerly, the part of this diagram drawn in thin lines corresponds
to the left-hand side of the rewrite rule. On applying this rule to some graph representing a database
instance, this left-hand side matches the names of all customers having a cash-card. The diagram as a
whole (i.e., including the thick line) corresponds to the right-hand side of the rewrite rule. On applying
the rule to a database instance, the password of each cash-card matching the left-hand side is set to the
name of the customer occurring in that same matching (i.e., the customer having that cash-card).

Conversely, suppose we wish to revoke ownership for those cash-cards whose password equals
precisely the name of their owner. This manipulation may be performed using the graph rewrite rule

1.3. DEFINING VISUAL DATABASE LANGUAGES WITH GRAPH REWRITING 11

depicted in Figure 1.5.

CASH CARDCUSTOMER has

password

name
string

owner card

Figure 1.5: Another graph rewrite rule expressing a database update

This time, the diagram as a whole corresponds to the left-hand side of the rewrite rule. On applying
this rule to some graph representing a database instance, this left-hand side matches the names of all
customers having a cash-card the password of which equals their name. The diagram excluding the
parts indicated with double lines (i.e., the has -relationship and its two incident edges) corresponds
to the right-hand side of the rewrite rule. On applying the rule to a database instance, these are the
elements to be removed from the database.

Since in general, it is impossible to express any conceivable database manipulation by means of a
single rewrite rule, we need the ability to structure a number of rules into a program. Such a program is
commonly called a graph rewrite system. For instance, applying the rules depicted in the Figures 1.4
and 1.5 in that order would remove (among others) all has -relationships from the database.

We incorporate the above ideas in a third language introduced in this thesis, called the Graph-
Oriented Object Database language GOOD/ER. For reasons of succinctness, we do not present this
language in terms of the EER model, but rather use (a slightly modified version of) the original ER
model as a framework. In summary, the GOOD/ER language allows the expression of database ma-
nipulations as graph rewrite systems. Note the contrast with the use of graph rewrite rules in the defini-
tion of GOQL/EER: whereas the semantics of GOOD/ER programs is defined as graph rewriting, both
syntax and semantics of GOQL/EER queries are defined using graph grammar productions. Besides,
whereas the graph rewriting mechanism used for defining GOQL/EER is incorporated within the def-
inition of PROGRES, for the definition of GOOD/ER we define our own graph rewriting mechanism.

Characterizing GOOD/ER’s Expressive Power

Besides formally defining GOOD/ER, we also formally study the expressive power of the language,
in support of our claim made earlier on that the possibility of such a formal study is precisely one
of the main reasons why one should formally define computer languages. This study is furthermore
facilitated by the fact that the semantics definition of GOOD/ER is “self-contained”, in the sense that
the definitions incorporate a description of the way in which GOOD/ER programs are to be applied.4

Studying the expressive power of GOOD/ER boils down to answering the question: which cate-
gory of manipulations can be performed using the GOOD/ER language? To answer this question, we
use a so-called completeness-criterion, a well known technique in the area of database languages. A
completeness-criterion provides a necessary and sufficient condition which a pair of database instances

4As opposed to the semantics of GOQL/EER, defined by means of a translation to some other language.

12 CHAPTER 1. INTRODUCTION

must satisfy in order for one instance to be transformable by means of the language into the other in-
stance. This condition is necessarily independent of the considered language, and may therefore be
used to compare the relative expressive power of different languages.

The criterion used to characterize GOOD/ER’s expressive power is an adaptation of the criterion
called BP-completeness [CH80], originally introduced in the context of the relational database model,
to object-based database models.

1.4 Organization of this Thesis

In Chapter 2, we recall those aspects of the Extended Entity-Relationship model to be used in the defi-
nition of graph-oriented languages further on in the thesis. After an informal presentation (Section 2.1)
we recall the formal definitions of the EER data model (Section 2.2), including the definitions of EER
schemes and instances. In Section 2.3, we (informally) recall the textual query language SQL/EER.

In Chapter 3, we recall the aspects of the PROGRES graph rewriting formalism needed further
on in this thesis. After some considerations on formal graph representation, we present the various
aspects which constitute the PROGRES specification of a graph language. As a running example, we
present a PROGRES specification for EER diagrams, i.e., graphical representations of EER schemes.

In Chapter 4, we introduce and define both the Graph-Oriented and Hybrid Query Languages for
the EER model (abbreviated respectively GOQL/EER and HQL/EER). Following an example-based
presentation of GOQL/EER (Section 4.1), we formally define this language by means of a PROGRES
specification (Section 4.2). In Section 4.3, we then introduce HQL/EER.

In Chapter 5, we introduce the Graph-Oriented Object Database language GOOD/ER based on a
slightly modified version of the original ER model, presented in Section 5.1. A formal definition of
GOOD/ER is presented in Section 5.2. In Section 5.3, we then characterize GOOD/ER’s expressive
power (i.e., the set of transformations expressible by the language) in terms of the BP-completeness
criterion.

In Chapter 6, we contrast the languages studied in Chapters 4 and 5, and discuss the outcome of
our study on the applicability of graph rewrite systems to the definition of visual database languages.
We also present some open issues for future research.

In Appendix A, we summarize some notational conventions. Appendix B presents the full syntax
of SQL/EER by means of an EBNF-grammar, while Appendix C includes the full PROGRES speci-
fication of GOQL/EER.

Chapter 2

The Extended Entity-Relationship Model

In this chapter we recall some aspects of the database formalism we will use as a vehicle for the def-
inition of visual languages in the sequel of this thesis. For this purpose, we chose one of the numer-
ous extensions made over the past two decades to Chen’s original Entity Relationship model [Che76],
namely the Extended Entity-Relationship model [EGH+92], hereafter referred to as the EER model.

The chapter is organized as follows. In Section 2.1, we informally present the EER data model,
including data type signatures, schemes, and instances. All concepts are introduced by means of an
elaborate example. In Section 2.2, we recall the formal definitions of the EER data model [Hoh93,
Gog94]. Finally, in Section 2.3, we (informally) recall a query language for the EER model, called
SQL/EER [HE90, HE92].

2.1 Informal Introduction to the EER Model

We start with an informal sketch of the main concepts of the EER data model. As universe of dis-
course (to be used as a running example throughout the remainder of this thesis), we use a network of
automatic teller machines. The following description was adopted and adapted from [RBP+91].

A computerized banking network includes both human cashiers and automatic teller ma-
chines (ATMs) to be shared by a consortium of banks. Each bank maintains its own ac-
counts. Cashier stations are owned by individual banks. Human cashiers, employed by
banks, enter account and transaction data. An automatic teller machine accepts a cash
card from a customer, and carries out the required (remote) transaction on the account
associated to the cash card.

The structural characteristics of data relevant to an application area such as the one described above,
may be expressed by means of an EER scheme. The formal (i.e., mathematical) definition of EER
schemes is presented in Section 2.2. Although such a formal definition is a prerequisite for unam-
biguously capturing the precise syntax and semantics of schemes, a mathematical structure is surely
not a very suitable tool to work with in, e.g., the process of deriving a scheme from a given informal
requirements specification, like the one presented above for ATMs. Therefore, the EER model (like
many other object models) offers the possibility to visually represent a scheme, by means of an EER

13

14 CHAPTER 2. THE EXTENDED ENTITY-RELATIONSHIP MODEL

diagram. Figure 2.1 shows a (partial) EER diagram to model our running example. We now briefly
discuss the various components of an EER scheme that may be distinguished in this diagram.

CASHIER
TRANSACTION

ENTRY
STATION TRANSACTION

ATM CASHIER
STATION

CONSORTIUM BANK

ACCOUNT

REMOTE
TRANSACTION

CASHIER CASH CARD

CUSTOMER

list

set

singleton

money

eo_es eo_t

teller

owner

eb_ct

eb_c

sb_rt

concerns

c_t

c_a

accesses

a_a

a_cc

has

ha_cc

ha_c

holdsho_a
ho_c

owns

employs

proper_acct
issues

balance

owned
 by

entered
 on

∈

∈

list ∈

entered
 by

sb_cc

started
 by

list ∈

list

∈∈

consists of

list

∈
address

residence

manages

part1 part2

Figure 2.1: An EER diagram, modeling a network of automatic teller machines

The basic building block of an EER scheme is the entity type. An entity type provides the name for
a collection of real world things (called entities) that share certain characteristics. E.g., in the world of
ATMs, banks play an important part, hence the considered EER scheme includes the entity type BANK.
In an EER diagram, an entity type is drawn using a rectangular box.

Possible real world associations between entities of given entity types are modeled using relation-
ship types. E.g., an ATMis owned by a CONSORTIUM. The entity types ATMrespectively CONSORT-
IUM are said to play the role of respectively teller and owner in the relationship type owned by .
Visually, a diamond-shaped node is used to denote a relationship type. An undirected edge linking a
diamond representing a relationship type with a rectangle representing an entity type (like the edge
labeled owner) denotes a role. We wish to stress the fact that, although the names of relationship
types often contain verbs, a relationship denotes a static fact recorded in the database. Although our
example only contains binary relationship types, any non-zero number of entity types may participate
in a relationship type.

Besides relationships, one can also establish component-links between entities. Relationships and
components are the EER equivalents of modeling mechanisms which in many object-oriented model-

2.1. INFORMAL INTRODUCTION TO THE EER MODEL 15

ing techniques are referred to as associations respectively aggregations. While aggregation is used to
express the fact that entities of one type are a property of entities of some other type, an association is
used to model a more general correspondence between entities of two or more types.

In our example EER scheme, a CONSORTIUM consists of a number of BANKs, ordered in a
list. In the diagram, this is indicated using an extra node labeled list , linked to the node labeled
CONSORTIUM, respectively BANK, by means of an edge labeled consists of , respectively 2.
Components are either singletons, lists, sets or bags (i.e., multisets).

Both entities and relationships are characterized by means of attributes. Attributes are either single
values or collections of values (i.e., sets, lists or bags) describing properties of the pertaining entities
or relationships. In Figure 2.1, we can see that ACCOUNTs have a balance , which is of type money,
while CUSTOMERs have a list of address es as their residence .

Attributes are indicated in an EER diagram by an undirected edge, labeled with the attribute name,
linking the rectangle corresponding to the entity (or relationship) type to an oval labeled with the do-
main of the attribute (in case of a single-valued attribute) or the keyword list , set or bag (in case
of a complex attribute).

Entity type Attribute Data type

ENTRY STATION location address
TRANSACTION entry time time

amount money
ATM cash on hand money

dispensed money
CASHIER name string
BANK name string

location address
CONSORTIUM name string
CUSTOMER name string

residence list(address)
CASH CARD password string

serial number int
limit money

ACCOUNT blocked bool
balance money

Table 2.1: Attributes for the EER diagram for the automatic teller machine example

The complete collection of attributes of our running example EER scheme is shown in Table 2.1
in a tabular format. Imagine that all of the attributes in this table would be represented graphically in
the diagram of Figure 2.1. The resulting diagram would obviously become quite incomprehensible.
Therefore we opted for a “hybrid” representation of the EER scheme, by presenting the attributes in a
tabular format, and all other parts of the scheme in the diagram (cf. our motivation of the use of hybrid
representations in Chapter 1).

16 CHAPTER 2. THE EXTENDED ENTITY-RELATIONSHIP MODEL

Data types, including operations and predicates applicable to their data values, are defined in a data
type signature. E.g., the data type signature underlying our example EER scheme includes a definition
for the data type money (used e.g., as the domain of the attribute dispensed of the entity type ATM).
This definition states that all rational numbers with at most two decimals are allowed as values. To
money values, the function compute interest is applicable. This function takes an integer value
as input as interest rate, and returns a new money value, including the interest. Predicates applicable
to money values include typical mathematical comparison such as <money, �money,. . . . Note that
these predicates are subscripted with the name of the type in order to distinguish them from similar
predicates applicable to e.g., integer values.

Finally, by means of the notion of type constructions, the EER model also incorporates inheritance,
another well-known from many object-oriented modeling technique. It allows the specification of new
entity types as special cases of existing ones. The EER model uses a particular terminology in this
context. A type construction takes a number of input entity types, and redistributes some of the entities
of these types over a number of output types. In common object-oriented terminology, input types are
called superclasses, while output types are called subclasses. In our example, the types of ATMs and
CASHIER STATIONs are “constructed” from the type of ENTRY STATIONs by means of the type
construction part1 .

Output types of a type construction inherit all properties (i.e., attributes, components and roles in
relationships) from the input types of that construction. In our example, this means that both CASHIER
TRANSACTIONs and REMOTE TRANSACTIONs (which are specializations of TRANSACTION) con-
cern ACCOUNTs.

2.2 Formal Definition of the EER Model

In this section, we formally define the EER model, following the definitions of [Hoh93].
The EER model consists essentially of two levels. The top level consists of a formalism for mod-

eling database schemes and instances. Below is a level that allows the specification of arbitrary data
types to be used as attribute domains in the specification of EER schemes. The presence of this lower
level solves the problem of e.g., traditional relational database management systems which offer only a
fixed set of predefined data types (such as string, money, date,.. .) over which relations can be defined.

A collection of data types is declared in a data type signature, which, besides the names of a number
of sorts, also provides the signatures of operations and predicates defined on these sorts. Formally:

Definition 2.1 (Data type Signature) A data type signature DT is a sixtuple
(SORTDT;OPERDT;PREDDT; source; dest; arg) where

� SORTDT;OPERDT and PREDDT are finite sets of names of respectively sorts, operations, and
predicates.

� source; dest and arg are functions with respective signatures source : OPERDT ! SORT�DT,
dest : OPERDT ! SORTDT, and arg : PREDDT ! SORT+

DT.

2.2. FORMAL DEFINITION OF THE EER MODEL 17

Notation 2.2 If ! is an operation name with source(!) =< D

1

; : : : ; D

n

> and dest(!) = D, then
we write ! : D

1

� : : :�D

n

! D and call it the operation signature of !.
If � is a predicate name with arg(�) =< D

1

; : : : ; D

n

>, then we write � : D

1

� : : :�D

n

and call
it the predicate signature of �.

As an illustration, we present part of the data type signature underlying our example EER scheme.
The set SORTDT contains the sort names address, bool, int, money, string and time .
As mentioned in Section 2.1, the set OPERDT contains the operation name compute interest ,
with the functions source and dest defined on it as follows:

source(compute interest) = (money,int)

dest(compute interest) = money

The set PREDDT contains among others the predicate name “�money” with the function arg defined
on it as follows:

arg(�money) = (money,money)

Hence compute interest has operation signature

compute interest : money� int ! money

while “�money” has predicate signature

�money : money�money

Actual (sets of) values are associated to the sorts of a data type signature by means of an interpre-
tation. At the same time, an interpretation assigns a function to each operation and a relation to each
predicate, respecting their respective signatures.

Definition 2.3 (Interpretation of a Data type Signature) An interpretation of a data type signature
DT is a three-tuple �[DT] = (�[SORTDT]; �[OPERDT]; �[PREDDT]) of functions where

� �[SORTDT] assigns a (possibly infinite) set of values to each sort name in SORTDT;

� �[OPERDT] assigns to each operation name in OPER with signature ! : d

1

� : : : � d

n

! d a
function �[OPERDT](!) : �[SORTDT](d1)� : : :� �[SORTDT](dn)! �[SORTDT](d);

� �[PREDDT] assigns to each predicate name in PRED with signature � : d

1

� : : :�d

n

a relation
such that �[PREDDT](�) � �[SORTDT](d1)� : : :� �[SORTDT](dn).

In the interpretation of the data type signature underlying our running example EER scheme, the
function �[SORTDT] assigns to the sort name money the set of all rational numbers with at most two
decimals. The function �[PREDDT] assigns to the predicate name “�money” the binary relation, con-
taining those pairs (m;m

0

) of money values for which m is indeed less than or equal to m0.

18 CHAPTER 2. THE EXTENDED ENTITY-RELATIONSHIP MODEL

The above definitions already allow one to specify arbitrary data types. Note in particular that the
actual structure of the data is totally encapsulated and is only accessible through the use of the provided
operations and predicates. Looking back at the attributes of the scheme for our example application of
ATMs in Table 2.1, we see that the domain of the residence -attribute of the entity type CUSTOMER
is in fact explicitly specified as a list of addresses. Hence one should also be able to specify some of
the structure of attributes outside the data type signature.

As the same type constructors used for complex attributes (i.e., list, set, and bag) are also used
for components, it should not only be possible to explicitly specify complex structured values, but
the model should also offer the possibility to build such a structure on top of entities. Therefore, the
following definition will be stated in more general terms than just the context of data types. More
precisely, we define sort expressions based on some unspecified set of abstract symbols:

Definition 2.4 (Sort expressions) Let S be a set of symbols with a mapping �[S] which maps each
element of S to a finite set. The set expr(S) of sort expressions over S is defined recursively as follows:

1. S � expr(S);

2. if s 2 expr(S), then fset(s); bag(s); list(s)g � expr(S);

3. if s
1

; : : : ; s

n

2 expr(S)(n > 1), then prod(s

1

; : : : ; s

n

) 2 expr(S).

�[S] induces a mapping �[expr(S)] on expr(S) as follows:

1. �[expr(S)](s) := �[S](s) for s 2 S;

2. �[expr(S)](set(s)) := F(�[expr(S)](s));

3. �[expr(S)](bag(s)) := B(�[expr(S)](s));

4. �[expr(S)](list(s)) := (�[expr(S)](s))

�;

5. �[expr(S)](prod(s
1

; : : : ; s

n

)) := �[expr(S)](s

1

)� : : :� �[expr(S)](s

n

).

The reason for defining sort expressions in terms of abstract symbols is that the collection of types
(i.e., entity types, relationship types, data types,.. .) on which actual sort expressions can be based,
depends on whether they are used in a query or in the definition of an EER scheme. E.g., an interpre-
tation �[DT] of a data type signatureDT induces an interpretation �[expr(SORTDT)] on the set of sort
expressions over DT , where SORTDT then plays the role of the set of symbols S.

Besides, in Section 2.3, we introduce a query language for EER databases in which the outcome
of a query may be an arbitrarily complex type built using entity types, relationship types, data types,
and type constructors. Therefore, we define sort expressions to any level of depth, rather than to just
one level as required for the modeling of EER schemes.

As an example, consider the query “Give the serial numbers and limits of all cash cards”. The an-
swer to this query is a subset of the interpretation of the sort expression prod(int;money). Another ex-
ample is the domain of the residence -attribute of entity type CUSTOMER, being list(address) .

2.2. FORMAL DEFINITION OF THE EER MODEL 19

Since the above definition allows sort expressions to be nested to any depth, more “exotic” expressions
such as set(list(time, money)) , which could be used to represent the attributes of the entity
type TRANSACTIONin a tabular format, are also allowed.

Definition 2.4 concludes the formalization of the first layer of the EER data model, namely that of
data types. We now turn our attention to EER schemes and instances. As mentioned in the introduction
to this section, an EER scheme is defined over a fixed data type signature. It is formalized as a number
of sets containing the names of each of the basic building blocks such as entity types, attributes etc.
Connections between these building blocks are formalized by means of functions, satisfying a number
of constraints to be explained following the definition.

Definition 2.5 (EER Scheme) Let DT be a data type signature. An EER scheme S
DT

over DT con-
sists of

� six disjoint finite sets E-TYPE;R-TYPE;ROLE;ATTR;COMP;CONS

� seven functions with the following signatures:

participants : R-TYPE ! E-TYPE+

relship : ROLE ! R-TYPE

entity : ROLE ! E-TYPE

owner : ATTR ! F(E-TYPE [R-TYPE)

COMP ! F(E-TYPE)

domain : ATTR ! fD

0

j 9D 2 SORTDT : D

0

2 fD; set(D); bag(D); list(D)gg

COMP ! fE

0

j 9E 2 E-TYPE : E

0

2 fE; set(E); bag(E); list(E)gg

input; output : CONS ! F(E-TYPE)� ;

satisfying the following constraints:

1. For eachR 2 R-TYPE with participants(R) =< E

1

; : : : ; E

m

>, there must bem different
P

i

2 ROLE(1 � i � m) with relship(P

i

) = R and entity(P

i

) = E

i

.

2. For T
1

; T

2

2 CONS holds that if T
1

6= T

2

, then output(T

1

) \ output(T

2

) = ;.

3. Let E 2 E-TYPE. Then (E;E) should not be in the transitive closure of the relation
f(I; O) j 9T 2 CONS; I 2 input(T); O 2 output(T)g.

The fact that relship respectively entity are functions that map a role to one single relationship
type respectively entity type, implies that role names must be unique within an EER scheme.

Likewise, each attribute or component is assigned a unique domain by the corresponding function.
In contrast, the function owner maps each attribute (respectively component) to a set of entity and
relationship types (respectively entity types). Consequently, entities and relationships (respectively
entities) can have attributes (respectively components) with the same name, on the condition that they

20 CHAPTER 2. THE EXTENDED ENTITY-RELATIONSHIP MODEL

all have the same domain. For instance, in the example EER scheme (cf. Table 2.1), both BANKs,
CASHIERs, CONSORTIUMs and CUSTOMERs have names, all of which are string s.

By constraint 1, a unique role exists for each participation of an entity type in a relationship type
(cf. Notation 2.6 below).

Constraint 2 prevents entity types from being constructed in two different ways. Constraint 3 pre-
vents an entity type from being part of its own construction.

As an illustration, we present part of the EER scheme corresponding to the EER diagram in Fig-
ure 2.1.

E-TYPE = fBANK, CASHIER, ACCOUNT,: : :g
R-TYPE = faccesses, holds, has, : : :g

ROLE = fteller, owner, : : :g

ATTR = fbalance, location, amount, name, : : :g

COMP = fmanages, issues, : : :g

CONS = fpart1, part2 g

participants(owned by) = (ATM, CONSORTIUM)
relship(teller) = owned by
entity(teller) = ATM
owner(balance) = fACCOUNTg
domain(balance) = money
owner(residence) = fCUSTOMERg
domain(residence) = list(address)
owner(employs) = fBANKg
domain(employs) = list(CASHIER)
owner(name) = fBANK,CASHIER,CUSTOMER,CASHIERg
domain(name) = string
input(part1) = fENTRY STATIONg
output(part1) = fATM, CASHIER STATIONg

Notation 2.6 For R 2 R-TYPE with participants(R) =< E

1

; : : : ; E

m

>, and P
i

2 ROLE(1 � i �

m) with relship(P

i

) = R and entity(P

i

) = E

i

, we denote R(P
1

: E

1

; : : : ; P

m

: E

m

) 2 R-TYPE and
P

i

: R! E

i

2 ROLE.
For A 2 ATTR with owner(A) 3 S and domain(A) = D we denote A : S ! D and likewise, for

C 2 COMP with owner(C) 3 E and domain(C) = E

0 we denote C : E ! E

0.
For T 2 CONS with input(T) = fI

1

; : : : ; I

n

g and output(T) = fO

1

; : : : ; O

m

g we denote
T (I

1

; : : : ; I

n

;O

1

; : : : ; O

m

) 2 CONS.

Finally, an EER instance consists of a number of functions, assigning among others actual entities
to each entity type.

Definition 2.7 (Universe of Entities) Let S be an EER scheme. E =

S

E2E-TYPE EE is a countably
infinite set, called the universe of entities. It includes for each entity type E in S a countably infinite
set E

E

of entities of type E.

2.2. FORMAL DEFINITION OF THE EER MODEL 21

For different entity types E and E 0, E
E

\ E

E

0

= ;.

Definition 2.8 (EER Instance) Let S
DT

be an EER scheme over a data type signature DT. An EER
instance I over S

DT

consists of the following six functions:

� �[E-TYPE], which maps each entity type E 2 E-TYPE to a finite subset of E
E

;

� �[R-TYPE], which maps each relationship type R(P
1

: E

1

; : : : ; P

m

: E

m

) 2 R-TYPE to a finite
set of tuples of entities called relationships, such that �[R-TYPE](R) � �[E-TYPE](E

1

)� : : :�

�[E-TYPE](E
m

);

� �[ROLE], which maps each role P

i

: R ! E

i

to the function �[ROLE](P
i

) : �[R-TYPE]
! �[E-TYPE] satisfying �[ROLE](P

i

)(r) = e

i

(1 � i � m) for each r = (e

1

; : : : ; e

m

) 2

�[R-TYPE](r);

� �[ATTR], which maps each attribute A : E ! D

0 respectively A : R! D

0 to a function
�[ATTR](A) : �[E-TYPE](E)! �[expr(SORTDT)](D

0

) respectively
�[ATTR](A) : �[R-TYPE](R)! �[expr(SORTDT)](D

0

);

� �[COMP], which maps each component C : E ! E

0 to a function
�[COMP](C) : �[E-TYPE](E)! �[expr(E-TYPE)](E 0

):

� �[CONS], which maps each construction T (I
1

; : : : ; I

n

;O

1

; : : : ; O

m

) to a function
�[CONS](T) : [m

j=1

�[E-TYPE](O
j

)! [

n

k=1

�[E-TYPE](I
k

).

As an illustration, we present part of an EER instance over our running example EER scheme.

�[E-TYPE](ATM) = fe

1

; e

2

; e

3

g

�[E-TYPE](CONSORTIUM) = fe

4

g

�[E-TYPE](BANK) = fe

5

; e

6

; e

7

g

�[E-TYPE](ENTRY STATION) = fe

8

; e

9

; e

10

g

�[R-TYPE](owned by) = f(e

1

; e

4

); (e

2

; e

4

)g

�[ROLE](owner)(e
1

; e

4

) = e

1

�[ROLE](teller)(e

1

; e

4

) = e

4

�[ATTR](dispensed)(e

1

) = 1234:50

�[COMP](consists of)(e

4

) = (e

5

; e

6

)

�[CONS](part1)(e

1

) = e

8

�[CONS](part1)(e

2

) = e

9

�[CONS](part1)(e

3

) = e

10

This instance includes a consortium owning two ATMs. From a third ATM, which apparently has
no owner, an amount of 1234.50 has been dispensed. The consortium consists of two banks. A third
bank is not part of any consortium. As required by the construction part1 , all three ATMs are con-
structed from an entry station.

22 CHAPTER 2. THE EXTENDED ENTITY-RELATIONSHIP MODEL

2.3 A Textual Query Language : SQL/EER

As the original Entity-Relationship model [Che76] was primarily intended for database design pur-
poses, it consisted mainly of a formalism for describing conceptual database schemes. An ER scheme
resulting from a database design process is therefore traditionally translated into e.g., a relational data-
base scheme. Consequently, queries on the actual database have to be formulated in terms of a model
(namely the relational model) quite different from that in which the database was originally specified
(namely the ER model).

Remarkably enough, Chen remarks in [Che76, Section 3.4]:

The semantics of information retrieval requests become very clear if the requests are based
on the entity-relationship model of data.

In the same section, Chen also introduces (albeit by means of a single example) a query language in
which queries may be expressed directly in terms of the ER formalism, i.e., by referring to entity and
relationship types of a given ER scheme, rather than to tables and columns of its relational equivalent.
Perhaps inspired by this remark, several ER-specific query languages, such as ERROL [MR83] and
CLEAR [MP80] (to name just a few from the “early days” of ER research) were developed.

The Extended ER model presented in Section 2.2 eventually became the core of an integrated DB
design environment called CADDY [EHH+89]. Even in a database design environment, a query lan-
guage has its importance e.g., as the basis for a tool which allows browsing a prototype. This obser-
vation motivated the development of a query language for the EER model, named SQL/EER [HE90].
Two of the major characteristics of this language are that

� it directly supports all concepts of the EER model, such as attributes of relationships, compo-
nents and type constructions, and takes into account features well known from nowadays query
languages (exceeding those of relational SQL [CAE+76]), such as arithmetic, aggregate func-
tions, output nesting and subqueries as variable domains;

� its syntax as well as its semantics are formally defined.

The context free syntax is defined in the usual way, by means of an Extended Backus Naur Form
grammar. To describe context sensitive conditions formally, the EBNF grammar is extended to an
attribute grammar by adding attributes and attribute evaluation rules. Definition of the languages se-
mantics is realized using a special case of the operational approach to language specification, namely
by means of translation. An extension of the attribute grammar is used to formally map an SQL/EER
query into an equivalent expression of the EER calculus [HG88]. This calculus is in term described
using the denotational approach to language specification : the semantics of each calculus expression
is described as an associated input/output function.

As they are of no relevance to the contribution of this thesis, we do not discuss the EER calculus,
neither do we elaborate on the attribute mechanism used for mapping SQL/EER into the calculus. The
interested reader is referred to [HG88, HE91, HE90]. Besides an informal introduction to most (but
not all) of SQL/EER’s characteristics, we limit ourselves in the remainder of this section to those parts
of the EBNF grammar which describe the context free syntax of SQL/EER (also collected in Appen-
dix B).

2.3. A TEXTUAL QUERY LANGUAGE : SQL/EER 23

Analogous to relational SQL, SQL/EER uses the select-from-where clause. This is captured in
the following EBNF grammar rule.

SFW-TERM ::= select TERMLIST
from DECLLIST
[where FORMULA]

As a first example, consider the SQL/EER query of example 2.9 (over the scheme of Figure 2.1).
It retrieves the serial number of all CASH CARDs with the trivial password “password” and
a (credit) limit less than or equal to 100.000.

Example 2.9

select cc.serial number
from cc in CASH CARD
where cc.password = ”password” and cc.limit �money 100.000

In the result of a query, duplicates are not eliminated (the reason for which will become clear when
we discuss aggregate functions in Example 2.12), hence the above query returns a bag of integers.

In this query, the variable “cc” is declared. It ranges over the set of currently stored CASH CARDs.

DECL ::= VARIABLE in ENTITYTYPE

The variable cc can be used to build terms like “cc.password” and “cc.limit”, designating the pass-
word and limit of the CASH CARD“cc”, respectively.

TERM ::= VARIABLE
j TERM ’.’ ATTRIBUTE

The formula “cc.limit�money 100.000” uses the predicate “�money”, defined for the money data
type.

FORMULA ::= TERM DATAPRED TERM

Besides entity types and relationship types, any multi-valued term can also be used as range in a
declaration.

RANGE ::= TERM

For instance, in the SQL/EER query of Example 2.10, the variable a1 is bound to the finite list of
addresses being the residence of person p1.

Example 2.10

select c1.name
from a1 in p1.residence, c1 in CUSTOMER, a2 in p2.residence, c2 in CUSTOMER
where a1 = a2 and p2.name = “John ”

24 CHAPTER 2. THE EXTENDED ENTITY-RELATIONSHIP MODEL

This query retrieves the names of all CUSTOMERs who share one of their residence s with a
CUSTOMERcalled “John ”. Note that the result of an SQL/EER is a bag. This means that the same
name may appear several times in the answer to this query. By placing the reserved word distinct in
front of the term list in the select-clause, a set of distinct names is computed.

Note that since we do not require the customers c1 and c2 to be different, the answer to this query
will also include all customers named John themselves.

The next example shows the use of relationship types as predicates in SQL/EER. Suppose we want
to know the names of those CUSTOMERs who have a CASH CARDthat accesses ACCOUNTs which
they also hold. Example 2.11 shows the corresponding SQL/EER query.

Example 2.11

select c.name
from ac in ACCOUNT, cc in CASH CARD, cu in CUSTOMER
where cu holds ac and cc accesses ac and cu has cc

Relationship types can be used as predicate names in formulas. In the case of relationships with
more than two participating entity types, prefix notation is used instead of infix.

FORMULA ::= PARTICIPANT RELSHIPTYPE PARTICIPANT
j RELSHIPTYPE ’(’ PARTLIST ’)’

PARTICIPANT ::= TERM
PARTLIST ::= PARTICIPANT [’,’ PARTLIST]

The query of example 2.12 returns the names of those CUSTOMERs holding an ACCOUNTfor
which the following holds: if the balance of their ACCOUNTis raised with a five percent interest,
then the new balance becomes higher than the average of all balance s of all ACCOUNTs with a
positive balance.

Example 2.12

select cu.name
from ac1 in ACCOUNT, cu in CUSTOMER
where cu holds ac1 and

compute interest(ac1.balance,5) �money avg (select ac2.balance
from ac2 in ACCOUNT)
where ac2 �money 0)

This example first of all illustrates the use of data operations. An application of the function com-
pute interest (cf. Section 2.1) may be used as a term. Second, the example shows the use of
subqueries in the where-clause of an SQL/EER query (used to retrieve the bag of balance s of all
ACCOUNTs). In general, a select-from-where block may be used like any other (bag-valued) term.
Third, the example shows how SQL/EER incorporates aggregate functions as known from relational
SQL. Aggregate functions, such as avg (standing for “average”), min (standing for “minimum”) and
sum may be applied to bags of values on which addition and mathematical comparison are defined
(such as int eger and money).

2.3. A TEXTUAL QUERY LANGUAGE : SQL/EER 25

TERM ::= DATAOPNS ’(’ TERMLIST ’)’
j ’(’ SFW-TERM ’)’
j AGGROPNS ’(’ TERM ’)’

Example 2.13 illustrates the handling of lists, as well as the occurrence of multiple terms in the
select-clause. The query of this example enumerates the names of bank s which are part of the CON-
SORTIUM named “Banks United”.

Example 2.13

select i, co.consists of[i].name
from i in ind(co.consists of), co in CONSORTIUM
where co.name = ‘Banks United’

The (integer) variable i ranges over the set of all indices occurring in the list co.consists of ,
containing the bank s which are part of the CONSORTIUM named “Banks United” (assuming for the
sake of simplicity that banks have a uniquely identifying name). This set of indices is retrieved using
the built-in function ind. A particular element of a list is specified using rectangular braces “[” and
“]”.

TERM ::= TERM ’[’ INTEGER ’]’
j ind ’(’ TERM ’)’

Since this query has two terms in its select-clause, it returns a bag of two-tuples, consisting of an inte-
ger value and a string. In general, if a query has n terms in its select-clause, it returns a bag of n-tuples.
This gives us two special cases, namely those where n is either zero or one:

� If a query has only one term in its select-clause, then it formally returns a bag of one-tuples, but
one-tuples are considered equal to their single element.

� If a query has no terms in its select-clause, then it formally returns a bag of tuples of length zero.
Hence there are two possibilities:

1. If the from- and where-clauses of the query “return” an empty result (for instance, if we
look for CASH CARDs whose limit is both strictly positive and negative), then the query
returns the empty bag.

2. Otherwise, the query returns the bag consisting of the (empty) tuple of length zero.

In the (rather theoretical) case of an SQL/EER query with an empty from-clause, an empty bag is also
returned.

Suppose we want to retrieve the names of those CASHIERs who only enter CASHIER TRANS-
ACTIONs of more than 100.000, or CASHIER TRANSACTIONs concerning an ACCOUNTwith a
balance over 100.000. In Example 2.14, this query is formulated in SQL/EER.

Example 2.14

26 CHAPTER 2. THE EXTENDED ENTITY-RELATIONSHIP MODEL

select ca.name
from ca in CASHIER
where for all ct in CASHIER TRANSACTION : (ct entered by ca) implies

((ct.amount �money 100.000) or
(exists ac in ACCOUNT : (ct concerns ac and

ac.balance �money 100.000))
)

This example illustrates the use of inheritance in queries. Both the relationship concerns and the
attribute amount are defined on the entity type TRANSACTION, but since CASHIER TRANSACTION
is a subtype of TRANSACTION, concerns and amount also apply to CASHIER TRANSACTIONs.

Next, this example also illustrates how SQL/EER supports quantifiers and logical connectives such
as “or” and “implies”.

FORMULA ::= ’(’ FORMULA implies FORMULA ’)’
j ’(’ FORMULA or FORMULA ’)’
j ’(’ FORMULA and FORMULA ’)’
j not ’(’ FORMULA ’)’
j exists DECLLIST ’:’ FORMULA
j forall DECLLIST ’:’ FORMULA

A final example (Ex.2.15) illustrates the use of subqueries in the select- and from-clauses of an
SQL/EER query. A subquery in the select-clause is used to structure the output of a query. The ex-
ample query returns, for each password of some CASH CARD(retrieved using a subquery in the
from-clause), the serial number s of the CASH CARDs having this password .

Example 2.15

select pwd, (select cc.serial number
from cc in CASH CARD
where cc.password = pwd))

from pwd in distinct (select cc.password
from cc in CASH CARD)

This query returns a bag of two-tuples, the first component of which is a string, while the second
is in turn a bag of integers.

Chapter 3

An Introduction to PROGRES

3.1 On Formal Graph Representations

In this thesis, we present graph-based definitions for both the EER data model (in this chapter) and
a query language for this model (see Chapter 4). In a graph-based definition of a graphical formal-
ism (such as that of EER diagrams), each “instance” of the formalism is formally represented by an
attributed,1 directed labeled graph.

As an example, consider the part of the EER diagram of Figure 2.1 shown in Figure 3.1. Figure 3.2
shows a representation of this partial EER diagram as a formal graph. Table 3.1 shows the attributes
of this graph.

CASHIER
STATION

CONSORTIUM BANK

ATM

ENTRY
STATION

list

owned
 by

teller

owner
consists_of

dispensed

cash_on_hand

money

address

∈

location

money

part1

Figure 3.1: Part of the EER diagram of Figure 3.1

1Note that the word “attribute” is now used in two different meanings : one in the context of graphs, and the other in
the context of the EER-model.

27

28 CHAPTER 3. AN INTRODUCTION TO PROGRES

Figure 3.2: Graph representation of the EER diagram of Figure 3.1

Id. Label Att.Name Attribute Value

76 component Name consists of
140 role Name owner
136 role Name teller
96 attribute Name dispensed
86 attribute Name cash on hand
141 construction Name part1
81 attribute Name location
72 list Name
63 entity Name BANK
61 entity Name CONSORTIUM
64 relship Name owned by

Arity 2
101 atomic value Name money
49 entity Name ATM
91 atomic value Name money
57 entity Name CASHIER STATION
33 entity Name ENTRY STATION
85 atomic value Name address

Table 3.1: Attributes of some nodes from Figure 3.2

3.2. PROGRES SPECIFICATIONS 29

In this formal graph representation, each element of the EER diagram (such as a role, an entity
type or a data type) is represented by a node, shown as a black rectangle in Figure 3.2. Within each
node are shown an icon (which has only a decorative purpose), a unique node-identifier and a label.
Every node has a Name-attribute, which contains the name of the corresponding element in the EER
diagram. For instance, the node with identifier 33 corresponds to the entity type ENTRY STATION
in the EER diagram, while the node with identifier 81 corresponds to the location attribute (not
the attribute’s domain !) of this entity type. In addition, nodes representing relationship types have an
Arity -attribute. Since owned by is a binary relationship type, the Arity -attribute of the corre-
sponding node has the value 2.

The interrelationships between the various elements are represented in the formal graph represen-
tation by means of directed labeled edges. For instance, an edge labeled attribute2er links the
node corresponding to the location attribute to the node corresponding to the ENTRY STATION
entity type.

Note that all labels used in the graph are independent of any particular EER scheme: all EER
scheme dependent information is stored in node attributes.

3.2 PROGRES specifications

From the above ideas clearly follows our need for an expressive graph model, i.e., a formalism that
allows the specification of a family of graphs. To this end, we chose to use the graph rewriting for-
malism PROGRES [Sch89, Sch91b], a very high level operational specification language based on
PROgrammed Graph REwriting Systems.

A major motivation for choosing the PROGRES formalism was that the specifications presented
in this thesis could consequently be made using the PROGRES-system [NS90]. Concretely, the spec-
ifications were entered using this systems syntax-directed editor [Sch90b], which allowed them to be
analyzed by the system’s incrementally working type-checker and executed by the system’s integrated
interpreter. For instance, the graph depicted in Figure 3.2 was generated using EDGE [New91], a
generic graph browser which has been incorporated into the PROGRES system.

In this chapter we present an informal overview of those features of the PROGRES language to
be used in the remainder of this thesis, by means of an example specification for the set of all syn-
tactically correct EER diagrams. Basically, the PROGRES language allows the specification of the
static structure of a family of directed, node-attributed, and labeled graphs, together with a collection
of operations on graphs in this family. Recalling Section 1.2, a PROGRES specification is therefore a
graph rewrite system (as the languages name rightfully suggests). Demonstrating the fact that graph
rewrite systems in general, and PROGRES specifications in particular, may be used to formally spec-
ify visual database languages is the main contribution of this thesis. This chapter therefore offers an
introduction specifically to the way in which we propose to use PROGRES to formally specify visual
(database) languages (and not to the PROGRES formalism in general).

A PROGRES specification of a graph grammar consists basically of two parts. In the graph scheme,
the types of nodes and edges as well as node attributes, which may occur in a graph, are declared. For
instance, the graph scheme from the specification of EER diagrams contains node type declarations

30 CHAPTER 3. AN INTRODUCTION TO PROGRES

stating that there may be nodes labeled relship , construction and entity ,2 all of which have
a Nameattribute. Additionally, the scheme contains edge type declarations stating that edges labeled
either construction2i or construction2o may go from nodes labeled construction to
nodes labeled entity .

Although the collection of declarations in a graph scheme already defines a family of graphs, not
all possible structural integrity constraints one would like to impose on such a family can be expressed
in such a scheme. For instance, it is impossible to express the acyclicity constraint on entity type con-
structions using only graph scheme declarations. Such a constraint may be captured in the second part
of a PROGRES specification, being a set of graph rewrite rules or productions, obeying the type re-
strictions imposed by the graph scheme. In our example, such a production specifies that, given two
nodes labeled entity , a new node labeled construction may be added, linked to the two given
nodes with edges labeled respectively construction2i and construction2o , on the condi-
tion that this addition would not violate the acyclicity constraint. How exactly such a constraint is
modeled in a PROGRES production is explained further on in this chapter.

Together, a graph scheme and a set of productions constitute an operational specification of a graph
grammar: a syntactically correct graph in the language defined by this grammar is yielded by applying
a sequence of productions to an initial empty graph. In the remainder of this chapter, we elaborate on
respectively graph schemes (Section 3.2.1), productions (Section 3.2.2), and the notion of applying
production sequences (Section 3.2.3).

3.2.1 Graph Schemes

The basis of a PROGRES specification is a graph scheme. The following components of a graph
scheme are distinguished:

� type declarations: these are used to introduce labels for nodes and edges in the considered col-
lection of graphs, as well as to initialize node attributes;

� class declarations: these denote coercions of node types with common properties by means of
multiple inheritance, hence they play the role of second order types. Class declarations include
attribute declarations.

The section GraphScheme of the specification EER(as shown in Figure 3.3) contains all type and
class declarations of the specification. Note that sections are merely a syntactical way of structuring a
specification, and have no semantical meaning whatsoever.

The root of the node class hierarchy of the example specification is NODE. Essentially, the only pur-
pose of this class is the definition of the string-valued attribute Name, in which all names from the EER
scheme corresponding to the EER diagram (such as names of entity types, attributes,.. .) may be stored.
Since these names are “proper” to a node, as opposed to attributes which are derived from other infor-
mation present in the graph (see further on), the attribute Nameis declared as being an intrinsic
one. In the same declaration, the attribute is initialized with the empty string.

The next two node classes in the specification do not correspond directly to some component of
EER diagrams, but must be seen as coercions of other node classes that share some common properties.

2Note that “node label” and “node type” are used as synonyms.

3.2. PROGRES SPECIFICATIONS 31

section GraphScheme
node class NODE

intrinsic
 Name : string := "";

end;
node class ENT_REL is a NODE end;
node class ENTITY is a ENT_REL end;
node type entity : ENTITY end;
node class CONSTRUCTION is a NODE end;
node type construction : CONSTRUCTION end;
edge type construction2i : CONSTRUCTION -> ENTITY [1:n];
edge type construction2o : CONSTRUCTION -> ENTITY [1:n];
node class RELSHIP is a ENT_REL

derived
 Arity : integer;

end;
node type relship : RELSHIP

redef derived
 Arity = card (self.<-role2r-);

end;
node class ROLE is a NODE end;
node type role : ROLE end;
edge type role2e : ROLE -> ENTITY [1:1];
edge type role2r : ROLE [1:n] -> RELSHIP [1:1];
node class VALUE is a NODE end;
node class ATOMIC_VALUE is a VALUE end;
node type atomic_value : ATOMIC_VALUE end;
node class COMPLEX_VALUE is a VALUE end;
edge type contains : COMPLEX_VALUE -> NODE;
node class SET is a COMPLEX_VALUE end;
node type _set : SET end;
node class SINGLETON is a COMPLEX_VALUE end;
node type singleton : SINGLETON end;
node class MVALUE is a COMPLEX_VALUE end;
node class BAG is a MVALUE end;
node type bag : BAG end;
node class LIST is a MVALUE end;
node type list : LIST end;
node class ATTRIBUTE is a NODE end;
node type attribute : ATTRIBUTE end;
edge type attribute2er : ATTRIBUTE -> ENT_REL [1:1];
edge type attribute2v : ATTRIBUTE -> VALUE [1:1];
node class COMPONENT is a NODE end;
node type component : COMPONENT end;
edge type component2e : COMPONENT -> ENTITY [1:1];
edge type component2c : COMPONENT -> COMPLEX_VALUE [1:1];

end;

Figure 3.3: A PROGRES specification for EER diagrams, graph scheme

32 CHAPTER 3. AN INTRODUCTION TO PROGRES

For example, the node class ENT RELis the common superclass of the classes ENTITY and RELSHIP
since entities and relationships share the property of being able to have attributes (in the EER sense of
the word) defined on them.

The node class ENTITY (which is a subclass of ENT REL) has a single type entity . Likewise,
the node class CONSTRUCTIONhas a single type construction . The reason for declaring these
types is that actual nodes have to belong to a unique type, and cannot belong directly to a class. For
simplicity however, in the sequel we will often refer to “nodes of a certain class” rather than to “ nodes
of a type of a certain class”.

By means of edges of type construction2i (respectively construction2o) constructions
are linked to their input entity types (respectively their output entity types). In addition to specifying
the label, source class and target class of edges, an edge type declaration may also put cardinality
constraints on edges of that type. For example, the expression [1:n] in the edge type declarations
construction2i and construction2o ensures that no construction is ever created which has
no input and/or no output types. Other allowed cardinality constraints are [0:1] , [1:1] and [0:n]
(with the latter indicating the “absence” of a cardinality constraint).

In the node class RELSHIP and its single node type relship we demonstrate the second kind
of attributes, namely derived attributes (as opposed to intrinsic ones). Derived attributes are
those attributes whose value may be computed by means of a derivation rule. In the declaration of the
node class RELSHIP, a single derived attribute Arity is declared, whose value will at any time equal
the number of entity types that play a role in the considered relationship type. This derivation rule is ex-
pressed in the declaration of the node type relship . The expression “card (self .<-role2r-
) ” counts (card stands for “cardinality”) the number of edges of type role2r entering (hence the
arrowhead to the left of the edge type name) self , that is, the considered relationship type.

A third kind of attributes (not exemplified in the EER specification) are so-called meta-attributes.
These are attributes of node types, rather than nodes. In the PROGRES specification which is the main
theme of Chapter 4, meta-attributes always take a node-type (or a set of node-types) as value. For
instance, given the declaration “meta a meta attribute : type in NODE”, the attribute
a meta attribute could take any type in the graph scheme of Figure 3.3 as value. The need for
this kind of attributes will be extensively motivated in Chapter 4.

The edge type role2r (as well as its counterpart role2e) are declared following the declaration
of the node class ROLEand its single node type role . Comparable to the situation with constructions,
edges of type role2r (respectively role2e) link a role to its corresponding relationship type (re-
spectively the entity type that plays the role in that relationship type). Note the cardinality constraints
: to each role corresponds exactly one relationship type as well as exactly one entity type, while for
each relationship type, at least one role must be defined (cf. Definition 2.5).

The node class VALUEis the common superclass of the node classes ATOMICVALUEand COM-
PLEX VALUE. Edges of type contains link a node of class COMPLEXVALUEto its “component
type”. COMPLEXVALUEhas in turn three direct subclasses, being SET, SINGLETONand MVALUE.

The node class SEThas a single type set .3 Nodes of class SINGLETONare used for modeling
“simple” components, i.e., components which are not lists, bags or (general) sets.

3The reason for the underscore in set is technical: “set” is a reserved word in the PROGRES language!

3.2. PROGRES SPECIFICATIONS 33

The node class MVALUEis the common superclass of the node classes BAGand LIST , which are
the data types in which an element may occur multiple times, hence the name MVALUE.

Finally, the node classes ATTRIBUTEand COMPONENTas well as their corresponding edge types
are declared similarly to for instance the node class CONSTRUCTION. Note how the declaration of the
edge type attribute2v motivates the declaration of the node class VALUE.

3.2.2 Productions

We now turn our attention to the Productions section of the specification. Productions specify
how graphs are constructed/manipulated/modified by substituting an occurrence in this graph of the
left-hand side of the production (which is itself an ‘’extended” graph (see further on)) by a copy of the
right-hand side of the production (which is just a graph). As can be seen in the production Add ERas
depicted below, left- and right-hand side of the graph part of a production are separated with the sign
“::= ”. The production Add ERhas an empty left-hand side, and is therefore applicable to any graph.
From the right-hand side, it follows that the production adds a single node of type ERtype , which is
a type-valued input parameter.

production Add_ER
 (ERname : string ; ERtype : type in ENT_REL ; out ER : ENT_REL) =

 ::=

transfer 1’.Name := ERname;
return ER := 1’;

end;

1’ :ERtype

From the fact that a class may have an arbitrary number of types, it follows that nodes which are
created by a production (i.e., nodes that are in the productions right-hand side but not in its left-hand
side) must be labeled with a node type and not with a node class.

In general, productions are parametrized by

� atomic values : for instance, the first parameter of the production Add ER(called ERname) is
of type string ;

� node types : for instance, the second parameter of the production Add ER(called ERtype) is
a type of class ENT REL.

� nodes : for instance, the third parameter of the production Add ER(called ER) is a node of class
ENT REL.

34 CHAPTER 3. AN INTRODUCTION TO PROGRES

The first two parameters of the production Add ERare input parameters, while the third parameter is
an output parameter (indicated with the keyword out). The output parameter is set in the return -
clause of the production.

Besides manipulating nodes and edges of the graph, productions also affect node attributes. Attri-
bute-computations are performed in the transfer-clause. In the production Add ER, the Nameat-
tribute of the newly added node is assigned the input parameter ERname. Note how a number followed
by a single quote (e.g., 1’) is used to refer to a node in the right-hand side of a production. Likewise
numbers preceded by a single backquote refer to nodes in the left-hand side of a production.

Both kinds of quoted numbers are used in the production Add Construction , which also il-
lustrates two additional features of productions.

path Is_Constructed_From : ENTITY -> ENTITY =
 (<-construction2o- & -construction2i->) +
end;

production Add_Construction
 (E1 : ENTITY ; E2 : ENTITY ; CName : string ; out C : CONSTRUCTION) =

 ::=

condition card (‘2.<-construction2o-) = 0;
transfer 3’.Name := CName;
return C := 3’;

end;

‘2 =E2

Is_Constructed_From

‘1 =E1

2’ = ‘2

1’ = ‘1
construction2i

construction2o

3’ : construction

Add Construction allows the addition of a construction (in the EER sense of the word) with
a given input and output entity type. In determining an isomorphic occurrence of the left-hand side,
three phases are distinguished:

1. First, the nodes ‘1 and ‘2 are given as input parameters, which is indicated with the expressions
“‘1=E1 ” and ”‘2=E2 “ labeling the rectangles. Another possibility for labeling rectangles in
the left-hand side of a production is by means of expressions of the form “‘3:a node type ”,
which means that a node of the type a node type should be sought for in the graph.

3.2. PROGRES SPECIFICATIONS 35

2. Next, an application condition is checked. This condition is specified in the condition -clause,
and is stated in terms of structural and attribute properties of (the isomorphic occurrence of) the
left-hand side. In the production Add Construction , the application condition ensures that
the node ‘2 has no incoming edges of type construction2o . Therefore, we first compute
the set of all such edges by means of the path-expression ‘2.<-construction2o- (the ar-
rowhead “<” indicates incoming edges, whereas an expression of the form -edge type->
would indicate outgoing edges). Next, we compute the cardinality of this set of edges using the
function card , and check if this cardinality is indeed equal to zero. Note how this condition
corresponds to item 2 in Definition 2.5 of EER schemes.

3. Finally, the path Is Constructed From is used to enforce condition 3 in Definition 2.5 of
EER schemes, which prevents the specification of “circular” constructions. Intuitively, paths
are “virtual edges”: they are declared in terms of edges and other paths, and are computed “on
demand”, rather than stored explicitly in a graph (as is the case for “ordinary” edges).

A path Is Constructed From (specified prior to the production Add Construction)
exists between two nodes of class ENTITY (as shown in the signature ENTITY �> ENTITY)
if there exists a non-empty (indicated by the sign “+”) path of incoming edges of type cons-
truction2o , alternating (indicated by the sign “&”) with outgoing edges of type construct-
ion2i . The cross over the double arrow in the left-hand side of the production indicates that
such a path should not be present between the two input nodes.

Path expressions serve the same purpose in the productions Add Input and Add Output , which
allow the addition of an extra input respectively output entity type to a construction. It would have been
possible to give a production that would allow the addition of a construction, taking as input all input
and output entity types at once. However, since the number of input and output entity types is arbitrary,
this would have implied the use of set valued input parameters, a PROGRES feature not used in the
sequel of this thesis, and hence not used in this specification either.

The production Add Input only allows the addition of a given entity type as input to a given con-
struction, if the entity type is not yet (directly or indirectly) in the output of the construction. This con-
dition is checked using the path E Is Output of C. Starting from a node of class CONSTRUCTION,
this path consists of an outgoing edge of type construction2o , followed by a sequence of incom-
ing edges of type construction2i alternating with outgoing edges of type construction2o .
The fact that the latter sequence may be of length zero, is indicated by the symbol “*”. (as opposed
to the symbol “+” denoting a non-empty sequence). A violation of this application condition would
result in a cycle in the graph of entity type constructions, which is clearly forbidden by Definition 2.5
of EER schemes.

The four remaining productions allow the addition of attributes, components and roles to the graph:

� The production Add Atomic Attribute allows the addition of an atomic attribute to an en-
tity or relationship type. Both the name of the attribute as well as the name of the domain of the
attribute are passed to the production as strings in respectively the input parameters AttName
and DomName.

� The production Add Complex Attribute allows the addition of a set -, bag - or list -
valued attribute to an entity or relationship type. Since singleton is also a type of class

36 CHAPTER 3. AN INTRODUCTION TO PROGRES

path E_Is_Output_Of_C : CONSTRUCTION -> ENTITY =
 -construction2o-> & (<-construction2i- & -construction2o->) *
end;

production Add_Input (C : CONSTRUCTION ; E : ENTITY) =

 ::=

end;

path E_Is_Input_Of_C : CONSTRUCTION -> ENTITY =
 -construction2i-> & (<-construction2o- & -construction2i->) *
end;

production Add_Output (C : CONSTRUCTION ; E : ENTITY) =

 ::=

condition card (‘2.<-construction2o-) = 0;
end;

‘2 =E

E_Is_Output_Of_C

‘1 =C

2’ = ‘2
construction2i

1’ = ‘1

‘2 =E

E_Is_Input_Of_C

‘1 =C

2’ =‘2
construction2o

1’ =‘1

3.2. PROGRES SPECIFICATIONS 37

COMPLEXVALUEand since “singleton” attributes have to be added using Add Atomic At-
tribute , we have to exclude the possibility of calling this production with input parameter
Atype equal to singleton , by means of the condition -clause.

� The production Add Component allows the addition of a component relationship between two
entity types already in the graph.

By default, all nodes in the left-hand side of a production should be mapped to different nodes
in the graph. However, in the production Add Component , it should be allowed to map the
nodes with identifiers ‘1 and ‘2 to the same node, since an entity and one a component of this
entity may well have the same type. This is specified in the folding -clause of the production
as “folding f`1; `2g”.

� The production Add Role may be used to add a given entity type as participant in a given
relationship type.

A final feature of productions (not illustrated in the specification for EER diagrams) is the embed-
ding -clause, which is used to affect entire sets of edges. The only case of an embedding -clause
used elsewhere in this thesis, has the form “embedding redirect <-edge type- from ‘1
to 2’ ”. The result of such a clause is that all edges of type edge type entering the node ‘1 in the
isomorphic occurrence of the left-hand side are simultaneously redirected to node 2’ .

By default, edges whose type is not mentioned in the embedding -clause, and which are adja-
cent to a node that is both part of the left- and right-hand side, are not affected by the application of a
production.

3.2.3 Transactions

We finally turn our attention to the Transactions section of the EER specification. In a sense,
a PROGRES transaction is a program, the basic steps of which are calls to productions and/or other
transactions. Although the PROGRES language offers a wide variety of programming language con-
structs (such as loops and conditional statements) to be used in the specification of transactions, in the
remainder of this thesis we only use one simple kind of statement. This statement has the form

use v1 : type1;
...;
vN : typeN

do production call1 (in p1,...,in pP, out out p1,...,out out pQ)
& ...
& production callR (in p1,...,in pS, out out p1,...,out out pT)

end;

In the part preceding the keyword “do”, local variables are declared. Their type is either a node
class, or an atomic value type. The keyword “do” is followed by a sequence (indicated with the sym-
bols “&”) of production calls. Naturally, productions must be called with the appropriate number and
type of parameters. Output parameters must be preceded by the keyword “out ” and must be variables.

38 CHAPTER 3. AN INTRODUCTION TO PROGRES

production Add_Atomic_Attribute
 (ER : ENT_REL ; AttName : string ; DomName : string) =

 ::=

transfer 2’.Name := AttName;
 3’.Name := DomName;
end;

production Add_Complex_Attribute
 (ER : ENT_REL ; AttName : string ; Atype : type in COMPLEX_VALUE ;
 DomName : string) =

 ::=

condition not (Atype = singleton);
transfer 2’.Name := AttName;

 4’.Name := DomName;
end;

‘1 = ER

3’ :atomic_value

1’ =‘1
attribute2er

attribute2v

2’ :attribute

‘1 =ER

4’ : atomic_value

1’ = ‘1
attribute2er

attribute2v

2’ : attribute

contains
3’ : Atype

3.2. PROGRES SPECIFICATIONS 39

production Add_Component
 (E : ENTITY ; CName : string ; Ctype : type in COMPLEX_VALUE ;
 C : ENTITY)
 =

 ::=

folding { ‘1, ‘2 };
transfer 3’.Name := CName;

end;

production Add_Role (R : RELSHIP ; RoleName : string ; E : ENTITY) =

 ::=

transfer 3’.Name := RoleName;
end;

‘2 =C‘1 =E

2’ = ‘2

1’ = ‘1
component2e

component2c

3’ : component

contains
4’ : Ctype

‘2 =E‘1 =R

2’ = ‘2

1’ = ‘1
role2r

role2e

3’ : role

40 CHAPTER 3. AN INTRODUCTION TO PROGRES

section Transactions
transaction MAIN =

use e1, e2, e3, e4, e5, r : ENT_REL;
 c : CONSTRUCTION

do
 Add_ER ("ENTRY STATION", entity, out e1)
 & Add_ER ("ATM", entity, out e2)
 & Add_ER ("CASHIER STATION", entity, out e3)
 & Add_ER ("CONSORTIUM", entity, out e4)
 & Add_ER ("BANK", entity, out e5)
 & Add_ER ("owned by", relship, out r)
 & Add_Role ((r : RELSHIP), "teller", (e2 : ENTITY))
 & Add_Role ((r : RELSHIP), "owner", (e4 : ENTITY))
 & Add_Construction ((e1 : ENTITY), (e2 : ENTITY), "part1", out c)
 & Add_Output (c, (e3 : ENTITY))
 & Add_Component ((e4 : ENTITY), "consists of", list, (e5 : ENTITY))
 & Add_Atomic_Attribute ((e1 : ENTITY), "location", "address")
 & Add_Atomic_Attribute ((e2 : ENTITY), "cash on hand", "money")
 & Add_Atomic_Attribute ((e2 : ENTITY), "dispensed", "money")

end
end;

end;

The transaction MAIN in the EER specification creates a graph corresponding to the EER diagram
of Figure 2.1. For instance, the production Add ER is first called with the constant string "ENTRY
STATION" and the type entity as input parameters, and the variable e1 as output parameter. Since
this production returns a node of class ENT REL, we have to explicitly cast e1 to class ENTITY if we
want to pass it as input to for instance the production Add Construction , which indeed expects a
node of class ENTITY as first input parameter.

Figure 3.2 shows the graph resulting from the execution of the MAINtransaction by the PROGRES
system.

Chapter 4

A Query Language Defined Using
Graph-Rewriting

In this chapter, we introduce and define the Graph-Oriented and Hybrid Query Languages for the EER
model (abbreviated respectively GOQL/EER and HQL/EER). Following an example-based introduc-
tion to GOQL/EER (Section 4.1), we formally define this language by means of a PROGRES specifi-
cation (Section 4.2). In Section 4.3, we then introduce HQL/EER.
This chapter is based on [AE94, AE97].

4.1 GOQL/EER: A Graph-Oriented Query Language for the EER
Model

In this Section, we introduce the Graph-Oriented Query Language for the EER model (GOQL/EER)
by means of examples. A query in GOQL/EER basically consists of graphical symbols used in EER-
diagrams. For instance, variables for a customer and a cash card may be declared by drawing two
(rectangular) nodes labeled respectively CUSTOMERand CASH CARD. Note that these rectangles now
represent entities rather than entity types, as in EER-diagrams. The structural constraints applying to
the construction of EER schemes, apply to graphical queries as well. That is,

� an entity playing a role in a relationship is represented as a rectangle connected to a diamond by
means of an undirected edge;

� an attribute of an entity (respectively a relationship) is represented as an oval connected to a
rectangle (respectively a diamond) by means of an undirected edge;

� membership of a complex attribute is represented by means of two ovals connected by means
of a directed edge from the attribute to its element;

� a component of an entity is represented as an oval, connected to the rectangle representing the
entity by means of an undirected edge, and connected to the rectangle representing the compo-
nent by means of a directed edge. If the component is a list, a set or a bag, then multiple entities
may be connected to the oval by means of directed edges.

41

42 CHAPTER 4. A QUERY LANGUAGE DEFINED USING GRAPH-REWRITING

In summary, a composition of subgraphs of an EER diagram may be used to describe configurations
of entities, relationships and values in which one is interested. For instance, the condition that we
are only interested in pairs of a customer and a cash card such that the customer has the cash card, is
indicated by drawing a (diamond shaped) node labeled has with (appropriately labeled) edges to both
other nodes (see Figure 4.1).

CUSTOMER CASH_CARDhas
ha_ccha_c

Figure 4.1: A sample partial GOQL/EER query

Reconsidering the graph pattern of Figure 1.1 in the Introduction (which in includes the one from
Figure 4.1, expressing an interest in the names of customers and the passwords of cash-cards these
customers have, one may note how such a pattern may be seen to correspond to the from- and where-
clause of an SQL/EER query. In such a textual query, the select-clause is then used to indicate those
elements of the query that actually have to be retrieved from the database. As EER diagrams offer no
natural means of indicating such a “selection” on a query pattern, we have to introduce some additional
notation. For the sake of clarity, we choose to draw selected nodes using bold lines, but any other way
to distinguish one kind of nodes from the rest would do. As an example, suppose we want to retrieve
the names of all customers registered in our database, together with the passwords of the cash cards
they have. Then Figure 4.2 shows a possible expression of this query in SQL/EER, while Figure 4.3
shows a possible expression of this query in GOQL/EER.

select c.name, cc.password
from c in CUSTOMER, cc in CASH CARD
where c has cc

Figure 4.2: Names of customers and passwords of the cash cards which they have (SQL/EER version)

Note how the graphical representation of this query is obtained by simply selecting two of the nodes
in the graph pattern of Figure 1.1. Indeed, in the introduction to this chapter, we described how this
graph could be read as a description of precisely the information we need for this query. The only thing
that was still missing from the graph pattern of Figure 1.1 in order to match the given query precisely,
is an indication of what information should be returned as a result of the query, i.e., the names and
passwords. This is indicated in Figure 4.3 by drawing the string -labeled nodes representing this
information in bold.

In the graphical query depicted in Figure 4.3, the underlying pattern equals a subgraph of an EER
diagram. As soon as a query involves for instance multiple entities of the same type, a simple subgraph
of an EER diagram is no longer sufficient for graphically expressing the query. Therefore, we allow
the pattern underlying a graphical query to be constructed by “joining” multiple subgraphs of an EER
diagram by identifying some of their nodes. Two nodes in different subgraphs may be identified if
either

4.1. GOQL/EER: A GRAPH-ORIENTED QUERY LANGUAGE FOR THE EER MODEL 43

string CASH CARD CUSTOMERhas
ha_cha_cc

password
name

string

Figure 4.3: Names and passwords of customers and the cash cards which they have (GOQL/EER ver-
sion)

1. they have the same label; or

2. they are both entities, and the type of one entity is a subtype of the other entity’s type. In this
case, the “identified” node is labeled with the subtype.

As an example, suppose we wish to retrieve the names of those pairs of banks that employ one and the
same cashier. Then Figure 4.4 shows a possible expression of this query in SQL/EER, while Figure 4.5
shows a possible expression of this query in GOQL/EER. Note that since we do not require that ba1
differs from ba2, this query will at least return all identical pairs of banks.

select ba1.name, ba2.name
from ba1 in BANK, ba2 in BANK, ca in ba1.employs
where ca in ba2.employs

Figure 4.4: Names of banks employing one and the same cashier (SQL/EER version)

The graph of Figure 4.5 may be seen to consist of two copies of one and the same subgraph of
Figure 2.1 (each consisting of four nodes, labeled respectively string , BANK, list , and CASHIER,
linked by three edges) which have been joined on the node labeled CASHIERto express sharing of
this entity. Since nothing prevents us from matching the two BANK-nodes to one and the same bank,
this query, just like its textual equivalent, will at least return all identical pairs of banks.

name

string

BANK BANK

name

string

employs
list CASHIER list

employs ∈ ∈

Figure 4.5: Names of banks employing one and the same cashier (GOQL/EER version)

The query depicted in both Figure 4.4 and Figure 4.5 also illustrates what constitutes in our view,
a major advantage of graphical over textual expression of queries. Consider namely the SQL/EER
statement depicted in Figure 4.6, which is semantically equivalent to that of Figure 4.4, and hence to
the GOQL/EER query of Figure 4.5. While the SQL/EER query of Figure 4.4 uses the in-predicate to
express the “crucial” condition in the query (namely the sharing of a cashier by two banks), the query
in Figure 4.6 introduces an extra variable and uses the equality predicate. This possibility to express

44 CHAPTER 4. A QUERY LANGUAGE DEFINED USING GRAPH-REWRITING

one and the same concept (in this case, sharing) in a variety of ways, is often mentioned as a major
cause of confusion for users of a language. Looking at Figure 4.5, the reader will notice that in a graph-
oriented language such as GOQL/EER, the notion of sharing is expressed in a most straightforward
manner, namely by one and the same node representing the shared item.

select ba1.name, ba2.name
from ba1 in BANK, ba2 in BANK, ca1 in ba1.employs,

ca2 in ba2.employs
where ca1 = ca2

Figure 4.6: Names of banks employing one and the same cashier (SQL/EER version II)

An additional example illustrates in an even more convincing way the advantage of graphical over
textual formulation of certain aspects of a query, especially when it comes to interrelationships be-
tween the elements of interest. Suppose we wish to retrieve the names of those customers who hold
an account, and also have a cash card which accesses that same account. In the SQL/EER formulation
(Figure 4.7), three variables have to be introduced, each of which occurs twice in the where-clause.
It requires a conscious effort while studying this query, to detect the interrelationships between the
elements of interest.

select c.name
from c in CUSTOMER, cc in CASH CARD, a in ACCOUNT
where c has cc and c holds a and cc accesses a

Figure 4.7: Names of customers who hold an account and have a cash card which accesses that account
(SQL/EER version)

In contrast, in the GOQL/EER formulation of this query (Figure 4.8), these interrelationships may
be directly derived from the picture, since all conditions imposed on a single element, are visualized in
the element’s direct vicinity. For instance, concentrating on the CUSTOMER-entity in the picture, one
can immediately see that we wish to retrieve the name of CUSTOMERs participating in a has - and a
holds -relationship. In contrast, to deduce this information from the SQL/EER version of this query,
one has to search for four different occurrences of the variable c , once in the select-clause, once in the
from-clause, and twice in the where-clause. Likewise, the conditions imposed on the CASH CARDre-
spectively the ACCOUNTentity may be found by concentrating on the respective corresponding nodes.

As mentioned earlier on in this section, a query in GOQL/EER should consist basically of graphical
symbols used in EER diagrams. By simply composing these symbols into patterns, already a large
variety of conditions may be expressed graphically, as shown in the above examples. As motivated
in Section 1.3.3, it is most certainly not our intention to introduce a query language in which every
possible condition may be expressed graphically. Just for the sake of illustrating how even more kinds
of conditions may be incorporated seemlessly into our language, we now add some minor features to
the language as discussed so far:

4.1. GOQL/EER: A GRAPH-ORIENTED QUERY LANGUAGE FOR THE EER MODEL 45

name
stringCUSTOMER

has

CASH CARD ACCOUNT

ho_a

ho_c

a_aa_cc

ha_cc

ha_c

accesses

holds

Figure 4.8: Names of customers who hold an account and have a cash card which accesses that account
(GOQL/EER version)

� the condition that an attribute should have a particular value is indicated by writing this value
next to the node representing the attribute;

� the condition that an element should occur at a specific place in a list is indicated by writing the
index in square brackets next to the arrow linking the list to the element.

As an example, suppose we wish to know the name of the second bank of the “General Banking”
consortium. Figure 4.9 shows an expression of this query in SQL/EER.

select b.name
from b in BANK, c in CONSORTIUM
where c.consists of[2] = b and c.name = “General Banking”

Figure 4.9: The second bank of the General Banking consortium (SQL/EER version)

In the graphical formulation of this query (see Figure 4.10), the required consortium name is added
to the leftmost string -node, while the required index is added to the 2-labeled edge.

BANKlist
∈

consists of
CONSORTIUM

[2]

string

name

General Banking

string

name

Figure 4.10: The second bank of the General Banking consortium (GOQL/EER version)

With the language introduced so far, we are only able to graphically express queries corresponding
to “flat” SQL/EER queries, i.e. queries not involving subqueries. However, reconsidering the seman-
tics of SQL/EER (sub)queries, it appears that EER diagrams offer a natural representation for sub-
queries ! Indeed, since subqueries return a bag (of e.g. entities or values), we may as well use the

46 CHAPTER 4. A QUERY LANGUAGE DEFINED USING GRAPH-REWRITING

graphical convention used in EER-diagrams for depicting a bag, namely an oval with bag inscribed
in it. The graphical equivalent of the subquery is put inside the oval, indicating the fact that this sub-
query defines the bag. Furthermore, there are basically two ways of connecting such a “subquerybag”
to the remainder of the graphical query:

1. Nodes of the graph pattern underlying a (sub)query may be identified (according to the “identifi-
cation-rules” given above) with nodes of the graph pattern underlying any (direct or indirect)
subquery, analogous to the fact that variables declared in a certain SQL/EER query may be used
in subqueries.

2. A node may be linked to a subquerybag by means of a directed 2-labeled edge from the sub-
querybag to the node, indicating that the node corresponds to a variable ranging over the result
of the subquery. In this case, only one node may be selected in the graph pattern underlying the
superquery, and the type of this node should either be identical to or, in case of an entity type, it
should be a supertype of that of the target of the 2-labeled edge.

Let us have a look at how these ideas are used in some example queries. Figure 4.11 presents a
textual and Figure 4.12 a graphical version of the query which retrieves, for each address of a bank
recorded in the database, the bag of names of banks that have this address as their location.

select ad, (select b.name
from b in BANK
where b.location = ad)

from ad in (select ba.location
from ba in BANK)

Figure 4.11: For each address of a bank recorded in the database, the bag of names of banks that have
this address as their location (SQL/EER version)

Although Figure 4.12 at first glance does not look much like an EER diagram, a closer look reveals
that it is indeed still composed of nothing but graphical primitives also present in EER diagrams. The
large oval in the bottom right corner of the picture corresponds to the subquery in the from-clause
of the SQL/EER query. Indeed, the query depicted inside this oval selects the location -attribute
(indicated with the bold address -oval) of every bank in the database. The 2-labeled directed edge
starting at the border of this large oval denotes the fact that the address depicted in the top left corner
of the picture (which, as indicated superficially in the picture, corresponds to the variable ad in the
SQL/EER-query) ranges over the result of this subquery.

The large oval in the top right corner of the picture corresponds to the subquery in the select-clause
of the SQL/EER-query. The fact that the node labeled string is drawn in bold, indicates that this sub-
query selects a bag of names. The location -labeled edge connecting the node labeled BANK(which
corresponds to the variable b in the SQL/EER query) to the address depicted in the top left corner of
the picture, expresses precisely the condition “b.location = ad ” in the SQL/EER-query.

In the outermost SQL/EER query, the address ad as well as the bag of names is selected. Like-
wise, the address -node, corresponding to the variable ad as well as the bag -node in the top right

4.2. FORMAL SPECIFICATION OF GOQL/EER 47

corner, corresponding to this bag of names, are selected in the GOQL/EER query, which is indicated
by drawing them in bold. Remember that the fact that the string -node in the top right corner as well
as the address -node in the bottom right corner are also drawn in bold, indicates that these nodes are
selected in the subqueries and not in the outer query (which is impossible anyway, since they are not
within the scope of the outer query).

nameBANK

∈

bag

stringaddress locationad

BANK addresslocation

bag

Figure 4.12: For each address of a bank recorded in the database, the names of banks located at this
address (GOQL/EER version)

For clarity, the table depicted in Figure 4.13 visualizes once more the correspondence between
elements of the textual and graphical representation of the above query.

A final example query illustrates nesting of subqueries to more than one level. The query depicted
textually in Figure 4.14 and graphically in Figure 4.15 returns the name of each consortium, together
with a bag of pairs, one for each bank the consortium consists of. Each such pair consists of the bank’s
name together with the bag of names of cashiers the bank employs.

The GOQL/EER version of this query is structured as follows:

� In the outermost query, the name of the CONSORTIUMis selected, as well as the bag depicted
by means of the largest oval in the picture.

� In this bag, the BANKranges over the consists of attribute of the CONSORTIUM. The name
of the BANKis selected, as well as the bag depicted by means of the second largest oval in the
picture.

� In that bag, the CASHIERranges over the employs attribute of the BANK. Only the name of
the CASHIERis selected in this subquery.

4.2 Formal Specification of GOQL/EER

In Section 4.1, we introduced the ideas and concepts behind GOQL/EER by means of examples. In
this section, we formally define syntax and semantics of GOQL/EER in graph-theoretical terms. Our

48 CHAPTER 4. A QUERY LANGUAGE DEFINED USING GRAPH-REWRITING

nameBANK

∈

bag

stringaddress location

BANK addresslocation

bag

BANK

BANK addresslocation

ba
ba in BANK

ba.location

BANKb
b in BANK

b.name nameBANK string

b.location = ad BANKaddress location

select b.name
from b in BANK
where b.location = ad nameBANK

bag

stringaddress location

select ba.location
from ba in BANK

BANK addresslocation

bag

ad in (select ba.location
 from ba in BANK)

∈

address

BANK addresslocation

bag

select ad, (select b.name
 from b in BANK
 where b.location = ad)
from ad in (select ba.location
 from ba in BANK)

GOQL/EER fragmentsSQL/EER fragments

Figure 4.13: Correspondence between fragments of graphical and textual queries

4.2. FORMAL SPECIFICATION OF GOQL/EER 49

select co.name, (select b.name, (select ca.name
from ca in b.employs)

from b in co.consists of)
from co in CONSORTIUM

Figure 4.14: The name of each consortium, together with the bag consisting of a pair for each bank
the consortium consists of, with the bank’s name together with the bag of names of cashiers the bank
employs (SQL/EER version)

name

BANK
∈

bag

string

list
consists of

employs
CASHIERCONSORTIUM

string

name

∈
list

string

name

bag

Figure 4.15: The name of each consortium, together with the bag consisting of a pair for each bank
the consortium consists of, with the bank’s name together with the bag of names of cashiers the bank
employs (GOQL/EER version)

50 CHAPTER 4. A QUERY LANGUAGE DEFINED USING GRAPH-REWRITING

need for an expressive graph model motivates our choice of the graph grammar formalism PROGRES,
an informal overview of which was presented in Chapter 3.

The PROGRES specification is obtained in a three step process. In a first step (see Section 4.2.1)
we show how GOQL/EER queries may be represented by means of labeled, attributed graphs. In a
second step (see Section 4.2.2), the class of all graphs that correspond to GOQL/EER queries is defined
by means of a PROGRES specification. In other words, this specification captures the syntactic struc-
ture of GOQL/EER. The specification obtained in the second step is then extended in a third step (see
Section 4.2.3) to define also the semantics of GOQL/EER. This is done by introducing additional node
attributes and attribute derivation rules. These rules translate the GOQL/EER query into an SQL/EER
query, defining the semantics of the graph-oriented query.

Looking from a different perspective, the PROGRES specification for GOQL/EER may be seen to
consist of the following four parts (cf. Figure 4.16):

use declarations from

call

4. PROGRES transactions3. EER scheme dependent part of
 PROGRES graph scheme

1. EER scheme independent part of
 PROGRES graph scheme

2. PROGRES productions

extends

are declared in terms of

Figure 4.16: Structure of the PROGRES specification for GOQL/EER

1. an EER scheme independent part of a graph scheme, which for instance formalizes the fact that
there are nodes for representing entities and nodes for representing values;

2. a set of productions, specified in terms of the EER scheme independent part of the graph scheme.
For instance, some production formalizes the fact that given an entity, a value of a given type
may be linked to it, indicating that the value represents one of the entities attributes.

Together, these two parts actually define the language of all syntactically correct GOQL/EER-
graphs. A graph is part of this language if it may be obtained by applying any correct (in the PRO-
GRES sense) sequence of productions to an initial empty graph. What exactly constitutes a “correct”
sequence of productions is the topic of Section 4.2.4.

The fact that PROGRES is an operational specification language, plus the presence of an inter-
preter in the PROGRES environment inspired us to incorporate a scheme dependent part in the PRO-
GRES specification, mainly for the purpose of testing the specification. This scheme dependent part
of the specification consists of

3. an EER scheme dependent part of the graph scheme, extending the EER scheme independent
part with additional node classes and node types. Among others, this part of the graph scheme
formalizes the fact that there are entities of type BANK, and values of type address .

4.2. FORMAL SPECIFICATION OF GOQL/EER 51

Figure 4.17: Graph representation of the graphical query of Figure 4.10

4. some transactions, i.e., sequences of production calls. Each transaction creates the formal graph
representation of a particular GOQL/EER query over the EER scheme of Figure 2.1.

4.2.1 A Graph Model for GOQL/EER

Formalization of GOQL/EER is based on the representation of graphical queries as labeled, attributed
graphs. In informal terms, the figures of Section 4.1 correspond to what a user would see on the screen
of a tool supporting GOQL/EER, while the graphs correspond to the internal representation of such
queries. These graphs serve a double purpose:

� On one hand, such a graph represents the (abstract) syntactical structure of a query. Node labels
in the graph correspond either to EER scheme elements (such as entity types, relationship types
or roles) or to “query elements” (such as queries or subqueries). Node attributes1 are used for the
storage of non-structural information which is part of the query, such as concrete atomic values
(used in predicates such as “b.name = ’General Banking’ ”) and list indices (used in
terms such as “co.consists of[2] ”).

� On the other hand, such a graph also incorporates the semantics of the corresponding query:
extra attributes are used to store (SQL-)declarations, formulas and terms corresponding to nodes.
A unique node in the graph corresponds to the query itself, and has associated to it (in one of its
attributes) a complete SQL/EER-query, whose semantics is said to define the semantics of the
graphical query.

1Note once more that the word “attribute” is used in two different meanings: one in the context of graphs, and the other
in the context of the EER-model.

52 CHAPTER 4. A QUERY LANGUAGE DEFINED USING GRAPH-REWRITING

As an example, consider Figure 4.17, which shows the graph corresponding to the graphical query
of Figure 4.10. Some of the attributes of nodes in the graph of Figure 4.17 are shown in Table 4.1. On
one hand, the attributes Output (indicating whether a node has been selected for output), Value (con-
taining the actual value of a node corresponding to an atomic value), and Index (containing a position
in a list) are part of the representation of the query’s syntax in the graph. On the other hand, the at-
tributes SFW-Term, Term Declaration, and Formula (all containing SQL/EER-statements) are part of
the representation of the query’s semantics in the graph.

Id. Label Att.Name Attribute Value

129 sqb SFW-Term (select co.consortium consists of[2].bank name
from co in consortium
where co.consortium name = ’General Banking’)

249 constituent Term co.consortium consists of
273 constituent Term co.consortium consists of[2]
337 constituent Term co.consortium consists of[2].bank name

Output TRUE
313 constituent Term co.consortium name

Output FALSE
Formula co.consortium name = ’General Banking’

297 string Value ’General Banking’
225 constituent Declaration co in consortium

Term co
277 mmember Index 2

Table 4.1: Attributes of some nodes of the graph in Figure 4.17

As already mentioned, a major motivation for our choice to work with the PROGRES formalism
was that the specification of GOQL/EER could consequently be made using the PROGRES-system.
Among others, this allowed us to execute the specification2 using the systems integrated interpreter.
The graph shown in Figure 4.17 is the result of such an interpretation and was generated using the
PROGRES system.

Within each node of the graph, its (unique) node identifier and its node type are depicted. This
graph clearly illustrates the different aspects of the correspondence between a GOQL/EER query, de-
picted using the conventions introduced in Section 4.1, and its representation as a formal attributed
labeled graph:

� The nodes in the formal graph representation (and their types) are obtained from the GOQL/EER
query as follows:

– All EER scheme dependent names occurring in the graphical query occur as node types in
the graph representation, either

2The precise meaning of “executing a PROGRES specification” is elaborated on in Section 4.2.4.

4.2. FORMAL SPECIFICATION OF GOQL/EER 53

� directly, as is the case with the bank and consortium nodes in Figure 4.17;
� prefixed with an underscore in case the name coincides with a reserved word of the

PROGRES language, as is the case with the string node;
� prefixed or affixed with “related” names to ensure unique naming of PROGRES types.

This is illustrated with the name-attributes of the entity types CONSORTIUMand BANK.
Since these attributes have to be mapped onto different and hence uniquely named
PROGRES types, they have to be prefixed with the name of the entity (or relationship)
type to which they apply, resulting in the PROGRES types bank name respectively
consortium name.
Likewise, the consists of attribute of the consortium is represented with a node
of type consortium consists of .
Because of the same uniqueness requirement, the list -labeled node in Figure 4.10 is
represented in the formal graph with the list of bank -node, since this node indeed
represents a list of banks.

– The single EER scheme independent name which may occur in a GOQL/EER query is
“2”. Remember that 2-labeled edges are used to link a list, set or bag to its elements. For
representing such edges in a formal graph, a distinction is made between the following two
cases:

1. if the source of the edge is a set, the2-labeled edge is simply represented with an edge
labeled cont (rather than 2, since PROGRES does not allow special symbols as type
names).

2. if the source of the edge is a list or bag, it means that the target of the edge (which
is a value or entity) may occur multiple times in this list or bag, and hence may be
connected to this list or bag through multiple edges. In PROGRES however, it is im-
possible to have multiple edges with the same label between two given nodes. Hence
an additional type of nodes is introduced, namely mmember, which stands for multi-
member. This is illustrated with bank being an mmemberof list of bank . The
introduction of these mmember-nodes has the additional advantages that they offer a
convenient place to store index-values, in case the query specifies at what particular
place in the list or bag the element should occur.

– The query and its subqueries are represented by nodes of type sqb , which stands for sub-
querybag. The nodes “constituting” the query are linked to the node corresponding to this
query by means of a sequence of an is defined by -edge, a constituent -node and a
cons is n-edge. The reason for this auxiliary constituent -node is explained further
on in this section.

� Besides edges of types cont , is defined by and cons is n (whose purposed is explained
above), eight more types of edges are used to link the various nodes of a formal graph represen-
tation together:

– A node of type mmemberis linked to a list or bag by means of an incoming contains mm-
edge, and to the element of the list or bag by means of an outgoing mmis poc -edge (where
poc stands for “part of complex value”.

54 CHAPTER 4. A QUERY LANGUAGE DEFINED USING GRAPH-REWRITING

– A node corresponding to a role is linked to a relationship by means of a role2r -edge and
to an entity by means of a role2e -edge.

– A node corresponding to an attribute is linked to a relationship or entity by means of an
attribute2er -edge and to a value by means of an attribute2v -edge

– A node corresponding to a component is linked to the owning entity by means of a compo-
nent2e -edge and to the component entity by means of a component2c -edge.

� In Table 4.1, two major categories of attributes may be distinguished, which correspond to the
double purpose of the formal graph representation as outlined above:

1. The attributes Value , Index and Output contain non-structural information which is
also present in the GOQL/EER query itself. The use of the Value and Index attributes
has been explained previously, while the boolean Output attribute is true for those nodes
that correspond to an element of the GOQL/EER query drawn in bold.

2. The attributes SFW-Term, Term, Declaration and Formula are used in defining the
semantics of the query. In our example, Table 4.1 formalizes the correspondence between
nodes of the graph in Figure 4.17 (and hence graphical elements of the GOQL/EER query
depicted in Figure 4.10) with elements of the query’s textual equivalent depicted in Fig-
ure 4.9. For instance, the node in Figure 4.17 with identifier 253 (labeled list of bank)
on one hand corresponds to the list -labeled node in the graphical query of Figure 4.9. On
the other hand, the Term-attribute of the constituent -node through which it is linked
to the sqb -labeled node (i.e., the node with identifier 249) shows that it also corresponds
to the term co.consists of in the textual query of Figure 4.9.3

In the following two sections, we discuss how the graph model outlined above, is formally captured
in a PROGRES specification. The full specification may be found in Appendix C.

4.2.2 The Syntax of GOQL/EER

We now define the syntax of GOQL/EER by means of a PROGRES specification. As outlined in the
introduction to this section, such a specification consists of a graph scheme and a set of productions.
We first discuss the graph scheme in detail.

Graph Scheme of the GOQL/EER specification

The node class QUERYELEMis the superclass of those node classes that actually constitute an element
of a query, such as an entity, relationship or value. The node class PARTOF COMPLEXis the common
superclass of ENTITY and ATOMICVALUE. From Definition 2.5 of EER schemes, we know that it
are precisely entities and atomic values that may be part of sets, lists or bags, respectively in the case
of components and (complex) attributes, hence the name of the node class.

3The need for the prefix consortium in this term is explained above.

4.2. FORMAL SPECIFICATION OF GOQL/EER 55

node class QUERY_ELEM end;
node class PART_OF_COMPLEX is a QUERY_ELEM end;
node class ENT_REL is a QUERY_ELEM end;
node class ENTITY is a ENT_REL, PART_OF_COMPLEX end;
node class RELSHIP is a ENT_REL end;
node class ROLE

meta rel : type in RELSHIP [1:1];
 ent : type in ENTITY [1:n];

end;
edge type role2e : ROLE -> ENTITY [1:1];
edge type role2r : ROLE -> RELSHIP [1:1];

Similarly, the node class ENT REL is the common superclass of ENTITY and RELSHIP, which
share the property of being able to have attributes. Consequently, the node class ENTITY is a di-
rect subclass of both PARTOF COMPLEXand ENT REL. In Figure 4.17, the nodes labeled bank and
consortium are nodes of this class.

The following four declarations in the graph scheme concern roles and relationships. A role2r -
edge links a ROLEto the (unique, hence the “[1:1]” cardinality constraint) RELSHIP to which it be-
longs, while a role2e -edge links a ROLEto the (unique) ENTITY that plays the role.

To understand why roles (as well as attributes and components, see further on) are modeled by
means of nodes rather than edges, consider for instance the production that allows the addition of a
new role to a given (existing) relationship (for instance, a relationship of type owned by).4 This
production expects the role-“type” (for instance, teller) as input. However, in PROGRES it is im-
possible to pass an edge type as input to a production (since there is no such thing as an “edge class
hierarchy”). Hence one has to model roles by means of nodes, such that the role type can be passed to
a production by means of the corresponding node type.

Unfortunately, the modeling of roles by means of nodes rather than edges, introduces an additional
problem. Suppose we would have modeled the role teller by means of an edge type with owned
by as source and ATMas target. Then it would be a type error to try and add a teller role to for
instance a concerns relationship. However, since the edge types role2r and role2e are now
independent of the EER scheme, this error may no longer be recognized by the type system, so we
have to introduce explicit checks for this situation. This is done using the meta attributes ent and
rel declared for node class ROLE.

As explained in Section 3, a meta attribute applies to a node type, and may have (an)other node
type(s) as value. For any node type of class ROLE, the meta attribute rel is supposed to refer to the
node type corresponding to the relationship type to which the role belongs. The meta attribute ent is
supposed to refer to the set of all node types corresponding to the entity types that can play the given
role in the given relationship. To this end, the declaration of ent is qualified with “[1:n]” which makes
it a set-valued attribute.

In general, the need for meta attributes in this and other parts of the specification, comes from the
fact that not all “type-related” characteristics of GOQL/EER (such as the relation between relationship
types and entity types playing their roles) may be modeled in and enforced by the PROGRES type
system.

4See the production Add Role further on in this section.

56 CHAPTER 4. A QUERY LANGUAGE DEFINED USING GRAPH-REWRITING

The precise usage of these (and other) meta attributes is explained in more detail when the relevant
productions are discussed.

node class VALUE is a QUERY_ELEM end;
node class ATOMIC_VALUE is a VALUE, PART_OF_COMPLEX

intrinsic Value : string;
end;
node class COMPLEX_VALUE is a VALUE

derived Elem_Type : type in QUERY_ELEM;
end;
node class SET_VALUE is a COMPLEX_VALUE

intrinsic Singleton : boolean := false;
end;
edge type cont : SET_VALUE -> PART_OF_COMPLEX;
node class MVALUE is a COMPLEX_VALUE end;
node class BAG_VALUE is a MVALUE end;
node class LIST_VALUE is a MVALUE end;
node class MMEMBER

intrinsic Index : integer := 0;
end;
node type mmember : MMEMBER end;
edge type contains_mm : MVALUE -> MMEMBER;
edge type mm_is_poc : MMEMBER -> PART_OF_COMPLEX [1:1];

The class VALUEis a direct subclass of QUERYELEM, and has the classes ATOMICVALUEand
COMPLEXVALUEas direct descendants. Nodes of class ATOMIC VALUEhave an attribute Value
in which the “actual value” is stored. For simplicity, we assume all values are stored as texts (which is
the PROGRES type for “lengthy” strings). In Figure 4.17, the two nodes labeled string are nodes
of class ATOMIC VALUE.

SET VALUEis one of COMPLEXVALUEs direct subclasses. It’s attribute Singleton is set to
true in the case of a singleton component (such as the proper account of a BANK). Edges of type
cont link a set to its elements, which must be of class PARTOF COMPLEX. As subclass of COMPLEX-
VALUE, SET VALUE(as well as BAGVALUEand LIST VALUE) inherits the attribute Elem Type ,

which serves a similar purpose as the attributes of class ROLE. Indeed, since edges of type cont are
used both for linking a CASHIERSTATION to a set of CASHIERSTATIONs, as well as for link-
ing an address to a set of address es, the PROGRES type system cannot prevent the linking of
an address to a set of CASHIERSTATIONs. Hence the need for the attribute Elem Type , which
may be used to check if the type of a complex value, and the type of a value to be added to it are
compatible.

The other direct subclass of COMPLEXVALUEis MVALUE, whose name stands for Multi-VALUE.
This name is explained by its two subclasses, namely LIST VALUEand BAGVALUE: one and the
same value or entity may be an element of a list or bag multiple times. As mentioned in Section 4.2.1,
this fact motivates the introduction of auxiliary nodes, both for representing membership of multi-
values and for storing index values. Their node class is called MMEMBER, and nodes of this class have
an integer Index attribute. Edges of type contains mmlink a multi-value to its multi-members,
while edges of type mmis poc link a multi-member to the element, the membership of which it rep-
resents. As this must be a unique element (of class PARTOF COMPLEX, as in the case of sets) we

4.2. FORMAL SPECIFICATION OF GOQL/EER 57

impose the cardinality constraint [1:1].
The usage of the classes MVALUEand MMEMBERand the edge types contains mmand mmis-

poc is exemplified in Figure 4.17 with the bank as a member of the list of bank s.

node class DERIVED_SQL end;
node class SQB is a BAG_VALUE, DERIVED_SQL

redef derived Elem_Type =
 ((self.=OutCons=>:CONSTITUENT[1:1]).-cons_is_n->:QUERY_ELEM[1:1]). type;

end;
node type sqb : SQB end;
node class CONSTITUENT

intrinsic Output : boolean := false;
end;
node type constituent : CONSTITUENT end;
edge type is_defined_by : SQB [1:1] -> CONSTITUENT;
edge type cons_is_n : CONSTITUENT -> QUERY_ELEM [1:1];
node class SQB_CONS is a CONSTITUENT, DERIVED_SQL end;
node type sqb_cons : SQB_CONS end;

Nodes of class CONSTITUENT(together with edges of type is defined by and cons is n)
are used to link a subquerybag to node that constitute part of its definition. In Figure 4.17, one can see
that five nodes constitute the query, namely the two string s, the bank , the consortium and the
list of bank s.

The Output -attribute of a CONSTITUENTis set to true if the node reachable by means of the
outgoing cons is n-edge is selected in the query corresponding to the node reachable by means of
the outgoing is defined by edge (cf. the attributes of constituent 337 in Table 4.1). Since
nodes may be constituents of more than one (sub)querybag (in case of subqueries), selection for output
has to be indicated on the constituent -nodes, rather than on the query elements themselves.

The class SQB(which stands for SubQueryBag) is used to represent (sub)queries. Since a query re-
turns a bag, SQBis declared a subclass of BAGVALUE. The derivation rule for the attribute Elem Type
inherited from BAGVALUE, uses the path OutCons . A path of type OutCons exists between a node
of class SQBand any of its CONSTITUENTs whose Output -attribute is true.

path OutCons : SQB -> CONSTITUENT =
 ‘1 => ‘2 in

condition ‘2.Output;
end;

‘2 :CONSTITUENT
is_defined_by

‘1 :SQB

Figure 4.18: Declaration of the path OutCons

58 CHAPTER 4. A QUERY LANGUAGE DEFINED USING GRAPH-REWRITING

There are two possibilities:

1. A unique constituent is selected for output. In that case, the constraint that the path expression
=OutCons=> should return exactly one constituent (indicated with CONSTITUENT [1:1])
is satisfied. From Section 4.1, we know that it are exactly such subquerybags that may be used
as a range for a variable with a type compatible to the unique selected constituent. The attribute
Elem Type can then be used to check the latter condition, as we will see when discussing the
production which is used to let a variable range over a bag.

2. More than one constituent is selected. In that case, the constraint that =OutCons=> should
return exactly one constituent is not satisfied, hence the evaluation of this derivation rule fails,
and the attribute Elem Type is undefined. Consequently the subquerybag cannot be used as a
variable domain.

The fact that a subquery is itself a constituent of its superquery explains why SQBis declared a
subclass of QUERYELEM. However, in this case, nodes of class SQBCONSare used to link a sub-
query to its superquery, rather than nodes of class CONSTITUENT. The need for this special class
is explained by the fact that SQL/EER-terms associated to such constituents, and to the SQB-nodes
representing the queries themselves (see Section 4.2.3 on the semantics of GOQL/EER) are derived
automatically, rather than computed in productions. This also explains the need for (and the name of)
the class DERIVEDSQL, which is the common superclass of SQBand SQBCONS.

In Section 4.2.3, it is shown how in an attribute of nodes of class SQB, information (that is, decla-
rations, terms and formulas) is “collected” from its constituents, which is combined into an SQL/EER
query.

node class ATTRIBUTE
meta entrel : type in ENT_REL [1:n];

 val : type in VALUE [1:1];
end;
edge type attribute2er : ATTRIBUTE -> ENT_REL [1:1];
edge type attribute2v : ATTRIBUTE -> VALUE [1:1];
node class COMPONENT

meta cent : type in ENTITY [1:n];
 comp : type in COMPLEX_VALUE [1:1];

end;
edge type component2e : COMPONENT -> ENTITY [1:1];
edge type component2c : COMPONENT -> COMPLEX_VALUE [1:1];

The usage of node class ATTRIBUTEas well as of the edge types attribute2er and attrib-
ute2v is exemplified in Figure 4.17 with the names of respectively the bank and the consortium .
The meta attributes of ATTRIBUTEserve an identical purpose as those of ROLE.

The node class COMPONENTand the two edge types component2e and component2c are
used for modeling components, in the same way as explained above for roles. Their usage is exem-
plified in Figure 4.17 with the consortium consisting of a list of bank s.

Besides the node classes and edge types discussed above, the graph scheme also contains four node
types sqb , sqb cons , mmemberand constituent of respectively the classes SQB, SQBCONS,
MMEMBERand CONSTITUENT. The need for these node types is explained when we discuss the pro-
ductions of the specification, which is what we are about to do right now.

4.2. FORMAL SPECIFICATION OF GOQL/EER 59

Productions of the GOQL/EER specification

The collection of declarations in the graph scheme described above, is in itself insufficient to com-
pletely describe the syntax of graphical queries. Indeed, the part of the specification given so far, for
instance, does not yet use the various meta-attributes declared in the graph scheme to enforce type cor-
rectness. Hence in general, we still need to specify in more detail which configurations of nodes and
edges are allowed. As PROGRES is an operational specification language, this is done by means of a
set of productions. GOQL/EER graphs are those graphs that are obtained as a result of the application
of any correct sequence of these productions to an initial empty graph.

The complete specification includes fifteen productions, most of which are discussed below.
First, reconsider Figure 4.17, depicting the graph representation of the graphical query of Fig-

ure 4.10. Construction of this (and of any other) graph representing a GOQL/EER query starts with
the creation of an sqb -labeled node, representing the query. This is done by means of the production
Add first SQB.

production Add_first_SQB (out NewS : SQB) =

 ::=

return NewS := 2’;
end;

‘1 :sqb

2’ : sqb

The left-hand side of this production consists of a single crossed node of type sqb . A cross over a
node or edge indicates negation. In this case, the left-hand side of this production matches the graph
to which the production is applied, if it contains no nodes of type sqb . The fact that the specification
contains no productions that allow the deletion of nodes of this type, implies that this production may
be applied at most once to any graph. If not, it would be possible to create a query featuring various
unrelated (sub)queries.

Together with the fact that the left-hand side of all other productions in the specification contains
at least one “non-negated” node, this implies that this production must be applied exactly once to any
graph, namely at the start of any sequence of production applications (i.e., when the graph is still
empty).

All other nodes of type sqb must be added using the production Add SQB. This production takes
an existing sqb -node S as input, and links a new sqb -node to it by means of an sqb cons -node.
Both new nodes are returned as output parameters.

60 CHAPTER 4. A QUERY LANGUAGE DEFINED USING GRAPH-REWRITING

production Add_SQB (S : SQB ; out NewS : SQB ; out SC : SQB_CONS) =

 ::=

return NewS := 2’;
 SC := 3’;

end;

‘1 =S

2’ :sqb

is_defined_by

1’ =‘1

cons_is_n
3’ :sqb_cons

The fact that Add first SQBand Add SQBare the only two productions that allow the addition
of sqb -nodes, ensures that these nodes are always arranged in a tree-structure, which corresponds pre-
cisely to the allowed relations between super- and subqueries in SQL/EER. This is illustrated in Fig-
ure 4.19, which shows the tree of sqb -nodes in the formal graph representation of some GOQL/EER
query which has two subqueries, one of which has in turn a single subquery.

Looking back at the graph of Figure 4.17, we could now add the required entities to the query, i.e.,
the bank and the consortium . This is done using the production Add ER, which adds a new entity
(or relationship, hence the use of the class ENT REL) to a given (sub)querybag by means of a consti-
tuent. Both new nodes are returned as output parameters, so they can be used by other productions.
For instance, selection for output of the newly created entity must be indicated on its corresponding
constituent, hence the need for returning also the newly created constituent.

The following observation can be made on the graph-part of this production. From Chapter 3,
we know that nodes which are created by a production (i.e., nodes that are in the productions right-
hand side but not in its left-hand side) must be labeled with a node type. In general, there are two
possibilities for labeling a node in the the right-hand side of a production with a node type, both of
which are illustrated in Add ER:

1. A node type may be provided as input to the production. This is the case for the node with iden-
tifier 3’ in Add ER, which is labeled with the input type ERtype . On calling this production,
a concrete EER scheme dependent type (such as bank or consortium) must be provided.

2. A concrete node type from the graph scheme may be used. This is the case for the node with

4.2. FORMAL SPECIFICATION OF GOQL/EER 61

Figure 4.19: Arrangement of sqb -nodes in the formal graph representation of a GOQL/EER query

production Add_ER
 (S : SQB ; ERtype : type in ENT_REL ;

out E : ENT_REL ; out C : CONSTITUENT) =

 ::=

return E := 3’;
 C := 2’;

end;

‘1 = S

:ERtype

is_defined_by

=‘1

cons_is_n
:constituent 3’

1’

2’

62 CHAPTER 4. A QUERY LANGUAGE DEFINED USING GRAPH-REWRITING

identifier 2’ in Add ER, labeled with the type constituent , which is not EER scheme de-
pendent. This explains why this type had to be added to the graph scheme presented above. The
same holds for the types mmember, sqb and sqb cons .

Given a relationship (created using Add ER), an entity may be added to it as a role, using the pro-
duction Add Role . This production takes the following input:

production Add_Role
 (R : RELSHIP ; Etype : type in ENTITY ; Rtype : type in ROLE ;

out E : ENTITY ; out C : CONSTITUENT) =

 ::=

condition Rtype.rel = R. type;
 Etype in Rtype.ent;

return E := 4’;
 C := 7’;

end;

‘1 =R

is_defined_by

cons_is_n
‘2 :constituent

InLowerScopeThan

‘3 :sqb

4’ : Etype

1’ = ‘1

is_defined_by

cons_is_n
2’ = ‘2

role2r

role2e

5’ : Rtype

cons_is_n
7’ : constituent

is_defined_by

3’ = ‘3

� The only node that is passed to the production is the relationship R to which a role must be added.
The (sub)query to which the newly created entity must be linked as a constituent is not passed as
input (as was the case with Add ER) but may be computed in the left-hand side of the production
itself. In general, a relationship (or entity or value) may be a constituent of any non-zero num-
ber of (sub)queries. This is the case when relationships declared in different subqueries, have

4.2. FORMAL SPECIFICATION OF GOQL/EER 63

been identified to express an equality condition in the query at hand. However, among these
(sub)queries, one must be a (direct or indirect) superquery of all the others (except itself). If this
were not the case, this would mean that the relationship is used in two incomparable scopes,
which is a clear violation of scoping rules. The entity that has to be created by this production,
must be linked as a constituent to this “highest” subquery, since this entity must be known in all
scopes in which the relationship in which it plays a role is known.

In the left-hand side of Add Role , the sqb -node corresponding to this “highest” (sub)query of
which R is a constituent, is determined as the single sqb -node of which R is a constituent, but
for which there is no InLowerScopeThan -path leading to R.

path InLowerScopeThan : SQB -> QUERY_ELEM =
 (<-cons_is_n- & instance of SQB_CONS & <-is_defined_by-) + &
 -is_defined_by-> & -cons_is_n->
end;

Indeed, since starting from the given sqb -node, this path leads to an sqb -node which is a su-
perquery of the given node (by means of the expression (<-cons is n- & instance of
SQBCONS & <-is defined by-) +) and of which R is a constituent (obtained by the ex-
pression -is defined by-> & -cons is n->). Clearly, if such a path would exist, then
the considered sqb -node did not correspond to this “highest” query. This is exemplified in Fig-
ure 4.20, in which the situation is depicted where R is a constituent of both a query and a direct
subquery. It may be verified that there is an InLowerScopeThan -path from the bottom sqb -
node to R, but not from the top sqb -node to R.

� The remaining two input parameters to the production are the node types of respectively the
entity and the role to be added to R. In the condition-clause, it is checked whether these types
and R are all “mutually compatible”. First it is checked whether the type of R (obtained using
the built-in function type) precisely matches the meta attribute rel of the given role-type (cf.
the discussion of roles in Section 4.2.1). Next it is checked if the given entity type is an element
of the meta attribute ent of the given role-type. Remember that the ent attribute is indeed
set-valued, and contains precisely all types, nodes of which may play the considered role in the
given relationship R.

In our running example, this allows for instance the participation of an ATMin an entered on
relationship, since ATMis a subclass of ENTRYSTATION, which in the scheme of our running
example is declared as the entity type corresponding to the es eo role of entered on .

Construction of the graph of Figure 4.17 could be continued with the addition of the name at-
tributes (in the EER sense of the word) to the bank and consortium entities. This is done using
the production Add Attribute , which works completely analogous to Add Role .

Likewise, the consists of component of the consortium is added to the graph of Figure 4.17
using the production Add Component , which in turn works completely analogous to Add Attri-
bute , and is therefore omitted here (but may be found in Appendix C).

64 CHAPTER 4. A QUERY LANGUAGE DEFINED USING GRAPH-REWRITING

Figure 4.20: A relationship in different scopes

4.2. FORMAL SPECIFICATION OF GOQL/EER 65

production Add_Attribute
 (Er : ENT_REL ; Att : type in ATTRIBUTE ; Val : type in VALUE ;

out v : VALUE ; out C : CONSTITUENT)
=

 ::=

condition Er. type in Att.entrel;
 Att.val = Val;

return v := 4’;
 C := 5’;
end;

‘1 = Er
cons_is_n

‘3 : CONSTITUENT

is_defined_by

InLowerScopeThan

‘2 : sqb

4’ :Val

1’ =‘1
cons_is_n

3’ =‘3

is_defined_by

is_defined_by

2’ =‘2

cons_is_n
5’ :constituent

attribute2er

attribute2v

6’ :Att

66 CHAPTER 4. A QUERY LANGUAGE DEFINED USING GRAPH-REWRITING

The following three productions of the specification allow the addition of elements to complex
values such as sets or bags. First, the production Add to Set allows the addition of an element (that
is, a node of class PARTOF COMPLEX) to a set.

production Add_to_Set
 (Sv : SET_VALUE ; S : SQB ; POCtype : type in PART_OF_COMPLEX ;
 VarName : string ; out POC : PART_OF_COMPLEX ; out C : CONSTITUENT) =

 ::=

condition POCtype in Sv.Elem_Type;
 ‘1.Singleton => (card (‘1.-cont->) = 0);

return POC := 4’;
 C := 5’;

end;

‘2 =S

‘1 =Sv
cons_is_n

InHigherScopeThan

‘3 :CONSTITUENT

4’ : POCtype

cons_is_n
3’ = ‘3

cons_is_n
5’ : constituent

is_defined_by

2’ = ‘2cont

1’ = ‘1

In this production, the (sub)query to which the newly created element must be linked as a consti-
tuent cannot be computed by the production itself, as was the case with Add Role , but must be passed
to the production as input. The reason for this lies in the following basic difference between on one
hand the act of adding an entity as role to a relationship, or a value as attribute to an entity, and on the
other hand the act of letting a value or entity range over a set, list or bag:

� The connection between a relationship and the entity that plays one of its roles (or between an

4.2. FORMAL SPECIFICATION OF GOQL/EER 67

entity and a value that is one of its attributes,.. .), is essentially one to one. Hence any refer-
ence made to a certain role of a certain relationship, be it in the query where this relationship is
declared, or in any subquery of this query, refers to the same entity.

Consequently, the entity created by the production Add Role should be linked as a constituent
to the “highest” query of which the given relationship is a constituent, so it can be used in any
subquery of this query.

� The connection between a set and an entity ranging over this set (or between a bag and a value
ranging over this bag,.. .) is clearly one to many. Hence the semantics of the query changes,
depending on which (sub)query this entity is linked to as a constituent.

For instance, the graphical queries of Figures 4.21 and 4.22 both return the names of all banks,
together with the locations of the cashier stations they own. In Figure 4.21, the CASHIER STAT-
ION entity as well as the set belong to the same query. In terms of the graph model, this is the
situation that would occur if the production Add to Set would associate an element of a set
to the “highest” query of which the set is a constituent. Since this query is “flat”, it returns a bag
of pairs, each consisting of a string and an address .

BANK CASHIER
STATION

set
owns ∈

name

string

location

address

Figure 4.21: Banks and their cashier stations, Version I

In Figure 4.22, the CASHIER STATIONentity is part of a subquery of the query in which the
set occurs. Hence this query returns a bag of pairs, each consisting of a string and a bag
of addresses. In terms of the graph model, this situation can only be obtained if it is possible to
tell the production Add to Set explicitly to which subquery the element should be linked as
a constituent.

BANK CASHIER
STATION

set
owns ∈

name

string

location

address

bag

Figure 4.22: Banks and their cashier stations, Version II

The set Sv, the subquery Sand the element type POCtype passed to the production Add to Set
still have to obey some additional constraints:

68 CHAPTER 4. A QUERY LANGUAGE DEFINED USING GRAPH-REWRITING

� The subquery S must either be equal to some (sub)query of which Sv is a constituent, or it must
be a (direct or indirect) subquery of such a query. In the left-hand side of Add to Set , this
condition is expressed by looking for a CONSTITUENT-node corresponding to Sv, such that
there exists an InHigherScopeThan -path from this node to S.

path InHigherScopeThan : CONSTITUENT -> SQB =
 <-is_defined_by- &
 (-is_defined_by-> & instance of SQB_CONS & -cons_is_n-> & instance of SQB)*
end;

This path goes from a CONSTITUENTto the SQBit is linked to (by following an incoming
is defined by -edge), and then follows zero or more alternating outgoing is defined by -
and cons is n-edges, thereby going from the SQBto any SQB-node that corresponds to one of
its (direct or indirect) subqueries. For instance, in Figure 4.20, a path of type InHigherScope-
Than exists between the lowest of the two constituent -nodes and the top sqb -node.

� The element type POCtype must equal the Elem Type meta attribute of (the node type of) the
set Sv (cf. the condition -clause).

� If the set Sv is a Singleton , then it should not yet contain any elements (which is expressed
using the condition that the card inality of the set of its outgoing cont -edges should be zero).

Two productions offer the possibility of adding an element to a bag or list (i.e., a node of class
MVALUE). The production Add to Mvalue differs from Add to Set only in the absence of the
condition on the Singleton -attribute, which is not relevant to multi-values, hence the production is
not shown here. Note that the multi-value may be itself a subquerybag, in which case the derivation
rule for the Elem Type -attribute of class SQBis triggered.

In the case of the GOQL/EER-query of Figure 4.10, we need the possibility to add an element at a
specific position in a multi-value. This can be done using the production Add Indexed to Mvalue .

The graph part of this production is analogous to that of Add Role . The condition -clause
contains the usual comparison between the element-type of the multi-value and the component type
passed to the production. In the transfer -clause, the Ind ex passed to the production is stored in
the Index -attribute of the newly created mmember-node.

In order to complete the graph-representation in Figure 4.17 of the query in Figure 4.10, we still
have to add two more “non-graphical” features besides the list-index. First, we have to be able to select
the string representing the name of the BANKfor output. In terms of the graph model, this means
setting its Output attribute to true. This can be done using the Select production.

The condition -clause of this production takes care of a problem related to entities or values
ranging over a subquery. If a subquery is used as a range, then exactly one of the subquery’s con-
stituents should be selected for output. In other words, the situation depicted in Figure 4.23 is not
allowed. The subquery on the left returns a bag of pairs (each consisting of an address and a string),
so there is no way to label the value ranging over this subquery.5

5Unless we would allow “(address, string)” as node label, which would contradict our intention to use only elements
from the representation of EER diagrams.

4.2. FORMAL SPECIFICATION OF GOQL/EER 69

production Add_Indexed_to_Mvalue
 (Mv : MVALUE ; POCtype : type in PART_OF_COMPLEX ; Ind : integer ;

out P : PART_OF_COMPLEX ; out C : CONSTITUENT) =

 ::=

condition POCtype in ‘1.Elem_Type;
return P := 4’;

 C := 5’;
end;

‘1 = Mv
cons_is_n

‘3 : CONSTITUENT

is_defined_by

InLowerScopeThan

‘2 : sqb

4’ :POCtype

cons_is_n
3’ =‘3

contains_mm

1’ =‘1

mm_is_poc

6’ :mmember

is_defined_by

cons_is_n
5’ :constituent

is_defined_by

2’ =‘2

70 CHAPTER 4. A QUERY LANGUAGE DEFINED USING GRAPH-REWRITING

production Select (C : CONSTITUENT) =

 ::=

condition card (‘1.<-is_defined_by-.-contains_mm->) = 0;
transfer 1’.Output := true;

end;

‘1 =C

1’ = ‘1

BANK

bag

employs
CASHIER

∈
list

string

namelocation

address

?∈

Figure 4.23: Multiple selections in a subquery serving as variable range

4.2. FORMAL SPECIFICATION OF GOQL/EER 71

In terms of the graph model, this means that a constituent of some subquery may only be selected
for output if it satisfies the condition that nothing ranges over the subquery, in other words, that there
are no targets of outgoing contains mm-edges.

In order to complete the graph-representation in Figure 4.17 we still have to assign the atomic value
“General Banking” to the string representing the nameof the CONSORTIUM. We therefore use the
production Assign Value which allows the assignment of an actual Val ue to the Value -attribute
of a given ATOMICVALUEnode AV.

production Assign_Value (AV : ATOMIC_VALUE ; Val : string) =

 ::=

transfer
 1’.Value := Val;
end;

‘1 =AV

1’ = ‘1

A final category of productions allows the merging of various kinds of query elements, in order
to express equality conditions. The specification contains five such “merging” productions, namely
for merging entities, relationships, atomic, set- and multi-values. In summary, all query elements can
be merged, with the exception of subqueries, since it would be rather difficult to visualize merged
subqueries.

As all five merging productions are quite similar, we only discuss the one for merging entities. The
production Merge Entities accepts as input two entities, which must obey two conditions.

1. The condition -clause checks if their types are equal. This prevents the merging of e.g., an
ATMwith a CASHIER, which would obviously be an undesirable merge. Note however that this
condition also prevents the merging of e.g., an ATMwith an ENTRY STATION, even though
these types are “compatible”. The reason why we do not have to allow the merging of entities
with compatible types is that all productions that allow the addition of an entity to the graph (i.e.,
Add ER, Add to Set, Add to MValue, Add Indexed to MValue and Add Role)
already allow the addition of entities of a subtype of the “expected” type, so if two entities have
to be merged at some point, they can always be created with equal types.

2. The left-hand side of the production checks if no scoping rules are violated. More precisely, two
entities E1 and E2 may only be merged (that is, compared) if either

72 CHAPTER 4. A QUERY LANGUAGE DEFINED USING GRAPH-REWRITING

production Merge_Entities (E1, E2 : ENTITY) =

 ::=

condition E1. type = E2. type;
embedding redirect <-role2e- from ‘2 to 1’;

redirect <-mm_is_poc- from ‘2 to 1’;
redirect <-cons_is_n- from ‘2 to 1’;
redirect <-attribute2er- from ‘2 to 1’;
redirect <-component2e- from ‘2 to 1’;

end;

‘2 = E2‘1 = E1

Within_Scope_of

cons_is_n

‘3 : CONSTITUENT

cons_is_n

‘4 : CONSTITUENT

1’ = ‘1

cons_is_n

3’ = ‘3

cons_is_n

4’ = ‘4

4.2. FORMAL SPECIFICATION OF GOQL/EER 73

� there exists a (sub)query of which both are constituents; or

� there exist (sub)queries S1 and S2 such that E1 is a constituent of S1 and E2 is a constituent
of S2, and such that S1 is a direct or indirect subquery of S2. This situation is illustrated
in Figure 4.24.

sqb_cons

is_defined_by

cons_is_n

constituent

sqb

sqb

constituent
is_defined_by

cons_is_n is_defined_by

cons_is_n

E1.type

E2.type

Figure 4.24: “Comparable” entities

Both possibilities are checked together, by looking for CONSTITUENT-nodes linked to the input
entities, such that a Within Scope of -path exists between them.

path Within_Scope_of : CONSTITUENT -> CONSTITUENT =
 <-is_defined_by- & (<-cons_is_n- & <-is_defined_by-) * & -is_defined_by->
end;

By comparing the body of the Within Scope of -path to the graph of Figure 4.24, it may eas-
ily be verified that this path indeed leads from a constituent of some (sub)query to a constituent
of a superquery of that query.

The effect of the production Merge Entities is that the second input entity is removed (as
shown in the right-hand side) and that all edges involving the removed entity, are redirected to the
remaining entity. It may be verified in the graph scheme of the specification that the edge types listed
in the redirect -clause of this production are indeed the types of all edges that could possibly involve
a node of class ENTITY.

The difference between the production Merge Entities and the productions for merging rela-
tionships, atomic, set- and multi-values lies mainly in the set of edge-types in the redirect -clause.
The latter productions redirect, in the case of

relationships : incoming edges of types role2r , attribute2er and cons is n

atomic values : incoming edges of types cont , mmis poc , attribute2v and cons is n

set values : incoming edges of types component2c , attribute2v and cons is n and outgo-
ing edges of type cont

bag values : incoming edges of types component2c , attribute2v and cons is n and outgo-
ing edges of type contains mm

74 CHAPTER 4. A QUERY LANGUAGE DEFINED USING GRAPH-REWRITING

In addition, the condition -clause of the production for merging multi-values uses the expression
not (‘1.type = sqb) to prevent its application to (sub)querybags, as motivated earlier on.

This concludes the discussion of those parts of the productions concerning the syntax of GOQL/EER
queries. In the following section, most productions discussed above, as well as the graph scheme are
extended (with among others additional attributes and attribute transfers) to incorporate also the se-
mantics of GOQL/EER (that is, its translation to SQL/EER).

4.2.3 The Semantics of GOQL/EER

We now define the semantics of GOQL/EER queries in terms of the (formally defined) semantics
of SQL/EER [HE92]. This mainly involves extending the PROGRES specification presented so far,
with additional attribute declarations and corresponding attribute derivation rules, which translate the
graphical query into an SQL/EER query. This SQL/EER query is then said to define the semantics of
the GOQL/EER query.

As remarked in Section 2.3, in which we recalled SQL/EER, the basic building blocks of SQL/EER
queries are (variable) declarations, formulas and terms. In Figure 4.13, it was already shown infor-
mally how fragments of graphical and textual queries may be seen to correspond, for instance:

� a node labeled with the entity type BANKcorresponds both to the declaration of a variable (say
ba) of this type, as well as to any occurrence of such a variable, as (part of) a term

� an address -node linked to this BANKentity by means of a location -edge, corresponds to
the term ba.location

� if the address -node is also selected for output, then the entire graph corresponds to the query
“select ba.location from ba in bank ”

� another address -node linked to an oval surrounding this graph, corresponds to a variable, say
ad , that ranges over the result of this (sub)query

� the fact that this same address -node is also linked to another BANK-node (corresponding to
the variable b) by means of a location -edge, corresponds to the formula b.location =
ad .

In summary, certain nodes as well as certain subgraphs of the graphical query correspond to terms. For
certain nodes, this term is simply a variable, in which case the node also corresponds to this variable’s
declaration. Subgraphs may correspond to complete select-from-where-statements. In addition, cer-
tain “configurations” correspond to formulas. In the remainder of this section, we discuss how this
correspondence is formalized in the PROGRES specification for GOQL/EER.

First of all, let us consider the part of the above introduced PROGRES graph scheme which is to
be extended with (parts of) declarations to capture the semantics of GOQL/EER.

In the specification of node class CONSTITUENT, attributes of type text are declared for storing
Formula s, Declaration s and Terms that correspond to the (unique) QUERYELEMent linked to
the CONSTITUENT(by means of a cons is n-edge). The reason for storing this information in
the CONSTITUENTrather than in the QUERYELEMent itself, is that this information really depends

4.2. FORMAL SPECIFICATION OF GOQL/EER 75

section FixedGraphScheme
node class CONSTITUENT

intrinsic
 Formula : text := Text ("true");
 Declaration : text := EmptyText;
 Term : text := EmptyText;
 Output : boolean := false;

end;
node class DERIVED_SQL is a QUERY_ELEM

derived SFW_Term : text = EmptyText;
end;
node class SQB_CONS is a CONSTITUENT, DERIVED_SQL

redef derived SFW_Term = self.(-cons_is_n-> : SQB [1:1]).SFW_Term;
end;
node class SQB is a BAG_VALUE, DERIVED_SQL

redef derived
 Elem_Type =
 ((self.=OutCons=>:CONSTITUENT[1:1]).-cons_is_n->:QUERY_ELEM[1:1]). type;
 SFW_Term =
 Concat(
 Concat(
 Concat (
 Text ("(select "),
 concom (concom (EmptyText, all self.=OutCons=>.Term),
 concom (EmptyText, all self.=OutSQB_Cons=>.SFW_Term))),
 Concat(
 Text (" from "),
 concom (EmptyText, all self.-is_defined_by->.Declaration))),
 Concat(
 Text (" where "),
 conand (Text ("true"), all self.-is_defined_by->.Formula)))
 && ")" ;

end;
end;

76 CHAPTER 4. A QUERY LANGUAGE DEFINED USING GRAPH-REWRITING

on the “context” in which the QUERYELEMent is seen, that is, the unique (sub)query to which the
CONSTITUENTis linked (by means of an is defined by -edge). For instance, an ENTITY-node
linked to both a query and one of its subqueries, may have one variable as Term in the context of the
query, and another variable in the context of the subquery.

The reason for using the imported data type text (implemented in MODULA2) is that the built-in
PROGRES data type string only supports strings of very limited length.

from LongStrings import

types
 text;

functions
 EmptyText : -> text,
 Text : (string) -> text,
 && : (text, string) -> text,
 == : (text, string) -> boolean,
 Concat : (text, text) -> text;

end;

The following operations concern text s:

EmptyText : returns an empty text
Text : converts a string to a text
&& : concatenates a text and a string into a text
== : compares a text with a string
Concat : concatenates two text s into a text

The default Formula is “true”, while the default Terms and Declaration s are the empty
text. All three attributes are declared as intrinsic attributes since they have to be computed in
the transfer -clause of various productions, among others because they may depend on “externally
provided” information, such as variable names.

Terms corresponding to subqueries, however, may be derived by means of a derivation rule.
This explains the name of the class DERIVEDSQL, whose sole purpose is the declaration of the at-
tribute SFWTerm, which stands for Select-From-Where Term, since terms corresponding to sub-
queries are always select-from-where-statements.

The node class DERIVEDSQLhas two subclasses SQBand SQBCONS, each of which has its own
derivation rule for the SFWTerm-attribute.

The value of the SFWTerm-attribute of a node of class SQBCONS(which is used to link a sub-
query to its superquery) simply equals the value of the SFWTerm-attribute of the (unique) node of
class SQBthat may be reached by following the outgoing cons is n-edge.

Probably the single most important expression in the entire specification of GOQL/EER (as far as
semantics is concerned) is the derivation rule for the attribute SFWTerm as given in the declaration
of the node class SQB. By means of this rule, information gathered from all over the graph is com-
bined into an SQL/EER query. Basically, the “cascade” of applications of the Concat -function in
this derivation rule results in a select -from -where -statement (in brackets, since it is also used for
subqueries), the three parts of which are computed as follows:

4.2. FORMAL SPECIFICATION OF GOQL/EER 77

� The select -clause consists of a comma-separated list of terms selected for output. Comma-
separated lists are obtained using the function concom . This function takes two text s as argu-
ments. If one of the arguments is empty, then the other argument is returned, otherwise a text
is returned which consists of both arguments, separated by a comma.

function concom : (S1 : text ; S2 : text) -> text =
 [S1 == "" :: S2
 | S2 == "" :: S1
 | Concat (S1 && ", ", S2)]
end;
function conand : (S1 : text ; S2 : text) -> text =
 [S1 == "true" :: S2
 | S2 == "true" :: S1
 | Concat (S1 && " and ", S2)]
end;

The select -clause consists first of all of the Term-attributes of those CONSTITUENTs that
are not of type sqb cons , and that have been selected for output. These CONSTITUENTs are
retrieved using the path expression OutCons , used earlier on for determining the value of the
Elem Type attribute. The reason why we do not have to use an extended version of this path,
excluding nodes of type sqb cons is that the Term-attribute of the later kind of nodes is empty
anyway. The set of all these attributes is passed to the function concom as a whole, using the
all -operator. This operator specifically allows the second argument of a binary, associative and
commutative6 function to be replaced with a set of values. The result of applying a function f
to a value v and a set of values v

1

through v
n

is then defined as

f(v; fv

1

; : : : ; v

n

g) = f(: : : f(f(v; v

1

); v

2

); : : : ; v

n

)

The select -clause furthermore consists of the SFWTerm-attributes of those SQBCONS-nodes
that have been selected for output. These nodes are retrieved using the path OutSQB Cons.

path OutSQB_Cons : SQB -> SQB_CONS =
 ‘1 => ‘2 in

condition ‘2.Output;
end;

‘2 :SQB_CONS
is_defined_by

‘1 :SQB

6Note that when it comes to computing the select -clause of an SQL/EER query, concom is indeed commutative,
since in GOQL/EER there is no way of indicating the order in which things should be selected, so it doesn’t matter in what
order the corresponding terms appear in the select -clause.

78 CHAPTER 4. A QUERY LANGUAGE DEFINED USING GRAPH-REWRITING

� The from -clause consists of a comma-separated list of all Declaration -attributes of CONS-
TITUENT-nodes reachable from the considered SQB-node by means of outgoing is defined-
by -edges.

� The where -clause consists of an “and”-separated list of all Formula -attributes of CONSTI-
TUENT-nodes reachable from the considered SQB-node by means of outgoing is defined-
by -edges. The function conand is used to generate this “and”-separated list.

We now discuss how the intrinsic attributes of CONSTITUENT-nodes, that is, Term, Declarat-
ion and Formula , are computed in the productions of the specification. If we look at the affected
attributes, the fifteen productions of the specification can be divided into four categories:

1. Add first SQBand Add SQBdo not affect these attributes, since they simply do not involve
CONSTITUENTs (on the exception of nodes of class SQBCONS, whose intrinsic attributes are
not used).

2. Add Role , Add Attribute , Add Component and Add Indexed to Mvalue all add a
single constituent to a given (sub)query. The Term-attribute of this newly created constituent
is computed using the Term-attribute of other given nodes, hence its Declaration -attribute
is not affected.

3. Add ER, Add to Set and Add to Mvalue also add a single constituent to a given (sub)query,
which however corresponds to a new variable in SQL/EER. Hence this variable is assigned to
the Term-attribute of this newly created constituent, while the Declaration -attribute is set
accordingly.

4. Assign Value as well as the five productions for merging QUERYELEMents express formu-
las. Hence each of them affects only the Formula -attribute of some constituent.

We now discuss the productions from the last three categories in detail. For a complete overview of
all productions, we refer to Appendix C.

Adding an entity or relationship (i.e., a node of class ENT REL) of a certain type (in the EER sense
of the word) to the graphical representation of a GOQL/EER query by means of the production Add ER
corresponds to the declaration of a variable of this type in SQL/EER. Hence the production Add ER,
part of which was presented in Section 4.2.2, needs an additional input parameter VarName for the
name of this variable. This variable is assigned to the Term-attribute of the CONSTITUENTby means
of which the new entity or relationship is linked to the given subquery. The Declaration -attribute
of the CONSTITUENTis set to the concatenation of the variable name, the keyword “in” and the type
of the new entity or relationship (converted to a string using the function string). As an exam-
ple, the node with identifier 225 in Figure 4.17 has “co” as Term-attribute and “co in consortium” as
Declaration -attribute.

In order to avoid name clashes, we require that no variable name is used in two different declara-
tions. The condition -clause enforces this by comparing VarName to the Term-attributes of all
CONSTITUENTs found in the graph. To obtain the set of all these CONSTITUENTs, we have to start
from the outermost query. This query is determined in the left-hand side of the production, by look-
ing for the SQB-node that satisfies the restriction OuterQuery . This restriction simply checks if the

4.2. FORMAL SPECIFICATION OF GOQL/EER 79

production Add_ER
 (S : SQB ; VarName : string ; ERtype : type in ENT_REL ;

out E : ENT_REL ; out C : CONSTITUENT) =

 ::=

folding { ‘1, ‘4 };
condition not (Text(VarName) in ‘4.=recCons=>.Term);
transfer 2’.Term := Text (VarName);

 2’.Declaration := Text(VarName) && " in " && string(ERtype);
return E := 3’;

 C := 2’;
end;

‘4 : SQB‘1 = S

OuterQuery

4’ = ‘4

3’ : ERtype

is_defined_by

1’ = ‘1

cons_is_n
2’ : constituent

80 CHAPTER 4. A QUERY LANGUAGE DEFINED USING GRAPH-REWRITING

given SQB-node has no incoming cons is n-edges. In the folding -clause of the production, it
is indicated that this SQB-node may be identical to the input parameter S. To this SQB-node, we then
apply the path expression recCons , which rec ursively looks for all Constituents in the graph.

restriction OuterQuery : SQB =
not with <-cons_is_n-

end;

path recCons : SQB -> CONSTITUENT =
 -is_defined_by-> & (-cons_is_n-> & instance of SQB & -is_defined_by->) *
end;

The productions Add to Set (not shown here) and Add to Mvalue differ from Add ERonly
in the computation of the Declaration -attribute of the new CONSTITUENT. Add to Set uses
as range the Term-attribute of the CONSTITUENT(whose choice was explained in Section 4.2.2)
linked to the given. Depending on whether or not the multi-value given as input to Add to Mvalue
is a (sub)querybag or not, the latter production uses the SFWTerm-attribute or the Term-attribute for
this purpose.

Adding an attribute to an entity or relationship with the production Add Attribute corresponds
to stating a term in SQL/EER, namely the concatenation of the Term of the given entity or relationship,
a dot and the string representation of the given attribute type. As an example, the node with identifier
313 in Figure 4.17 has “co.consortium name” as Term-attribute.7

Add Component and Add Role are completely analogous to Add Attribute (and hence not
shown here). The production Add Indexed to Mvalue concatenates the Term of the given multi-
value with the given index enclosed in square braces. As an example, the node with identifier 273 in
Figure 4.17 has “co.consortium consists of[2]” as Term-attribute.

Assigning a concrete value to an ATOMICVALUEwith Assign Value corresponds to express-
ing the condition (or formula) that the term corresponding to this ATOMICVALUEshould equal the
concrete value. Hence the production Assign Value appends this formula to the Formula -attribute
of some constituent linked to the ATOMICVALUE, using the function conand . As an example, the
node with identifier 313 in Figure 4.17 has “co.consortium name = ‘General Banking’ ” as Formula -
attribute.

It does not matter which constituent is chosen by this production, since if there exists more than one
constituent linked to an ATOMICVALUE, then this must be the result of (an) application(s) of the pro-
duction Merge Atomic Values . Applying this production to two ATOMICVALUEs corresponds
to expressing the condition (or formula) that the terms corresponding to these ATOMICVALUEs should
be equal. Hence the production Merge Atomic Values appends this formula to the Formula -
attribute of some constituent linked to the remaining ATOMICVALUE, using the function conand .8

The other four productions for merging query elements are totally analogous to Merge Atomic -
Values .

7The need for prepending the entity type name consortium to the attribute name name is explained in Section 4.2.1.
8The choice of the latter constituent was discussed in Section 4.2.2.

4.2. FORMAL SPECIFICATION OF GOQL/EER 81

production Add_to_Mvalue
 (Mv : MVALUE ; s : SQB ; POCtype : type in PART_OF_COMPLEX ;
 VarName : string ; out c : PART_OF_COMPLEX ; out C : CONSTITUENT)
=

 ::=

folding { ‘2, ‘7 };
condition POCtype in ‘1.Elem_Type;

not (Text (VarName) in ‘7.=recCons=>.Term);
transfer 5’.Term := Text (VarName);

 5’.Declaration := Concat (Text (VarName & " in "),
 [‘3. type = sqb_cons :: (‘3 : SQB_CONS).SFW_Term
 | ‘3.Term]);

return c := 4’;
 C := 5’;
end;

‘7 :SQB

‘2 =s

‘1 =Mv
cons_is_n

InHigherScopeThan

‘3 :CONSTITUENT

OuterQuery

7’ = ‘7

4’ : POCtype

cons_is_n
3’ = ‘3

contains_mm

1’ = ‘1

mm_is_poc

6’ : mmember

is_defined_by

2’ = ‘2

cons_is_n
5’ : constituent

82 CHAPTER 4. A QUERY LANGUAGE DEFINED USING GRAPH-REWRITING

production Add_Attribute
 (Er : ENT_REL ; Att : type in ATTRIBUTE ; Val : type in VALUE ;

out v : VALUE ; out C : CONSTITUENT)
=

 ::=

condition Er. type in Att.entrel;
 Att.val = Val;

transfer 5’.Term := ‘3.Term && "." && string (Att);
return v := 4’;

 C := 5’;
end;

‘1 = Er
cons_is_n

‘3 : CONSTITUENT

is_defined_by

InLowerScopeThan

‘2 : sqb

4’ :Val

1’ =‘1
cons_is_n

3’ =‘3

is_defined_by

is_defined_by

2’ =‘2

cons_is_n
5’ :constituent

attribute2er

attribute2v

6’ :Att

4.2. FORMAL SPECIFICATION OF GOQL/EER 83

production Add_Indexed_to_Mvalue
 (Mv : MVALUE ; POCtype : type in PART_OF_COMPLEX ; Ind : integer ;

out P : PART_OF_COMPLEX ; out C : CONSTITUENT) =

 ::=

condition POCtype in ‘1.Elem_Type;
transfer 6’.Index := Ind;

 5’.Term := ‘3.Term && "[" && string (Ind) && "]";
return P := 4’;

 C := 5’;
end;

‘1 = Mv
cons_is_n

‘3 : CONSTITUENT

is_defined_by

InLowerScopeThan

‘2 : sqb

4’ :POCtype

cons_is_n
3’ =‘3

contains_mm

1’ =‘1

mm_is_poc

6’ :mmember

is_defined_by

cons_is_n
5’ :constituent

is_defined_by

2’ =‘2

84 CHAPTER 4. A QUERY LANGUAGE DEFINED USING GRAPH-REWRITING

1

production Assign_Value(AV : ATOMIC_VALUE ; Val : string) =

 ::=

transfer
 2’.Formula := conand
 (‘2.Formula, Concat (‘2.Term && " = ", Text (Val)));
 1’.Value := Val;

end;

‘1 = AV
cons_is_n

‘2 : CONSTITUENT

1’ = ‘1
cons_is_n

2’ = ‘2

4.2.4 Executing the Specification

As mentioned in the introduction to this chapter, the choice of an executable graph grammar specifica-
tion language, allows the execution of the specification using the PROGRES systems integrated inter-
preter. We now elaborate on how the specification presented so far is extended with an EER scheme
dependent part in order to allow this execution.

This extension consists of two parts. First, the graph scheme of the specification is extended with
additional node classes and types, modeling the various elements of the given EER scheme. Fig-
ure 4.25 shows part of the PROGRES graph scheme corresponding to the EER scheme depicted in
Figure 2.1.

The extra node classes are introduced to cope with inheritance relationships between entity types,
present in the EER scheme. On one hand it is not possible to specify inheritance relationships between
node types, so we have to use a class for each entity type in the EER scheme. More precisely, if entity
type A is an input type of some type construction, while entity type B is an output type of this type
construction, then the graph scheme must contain a declaration node class B is a A. On the
other hand, actual nodes have to belong to a type, so for each class we have to declare a type of each
of these classes. The other node types are obtained from the EER scheme as follows:

� For each n-ary relationship type, a node type of class RELSHIP together with n node types
of class ROLEare added. E.g., for the relationship type entered on , we add the node type
entered on (of class RELSHIP) as well as node types eo es and eo t (of class ROLE).
The rel meta attribute of the latter two node types is set to entered on . Note that the ent
meta attribute of eo es is set to the node class ENTRYSTATION rather than to the node type
entry station . Since the name of a node class stands for the set of all its types, this means
that nodes of the types atm and cashier station may also play the eo es -role in relation-

4.2. FORMAL SPECIFICATION OF GOQL/EER 85

section VariableGraphScheme
section NodeClasses

node class ENTRY_STATION is a ENTITY end;
node class ATM is a ENTRY_STATION end;
node class CASHIER_STATION is a ENTRY_STATION end;
node class CONSORTIUM is a ENTITY end;
node class BANK is a ENTITY end;
node class ACCOUNT is a ENTITY end;
node class GENERIC_TRANSACTION is a ENTITY end;
node class CASHIER_TRANSACTION is a GENERIC_TRANSACTION end;
node class REMOTE_TRANSACTION is a GENERIC_TRANSACTION end;
node class CASHIER is a ENTITY end;
node class CASH_CARD is a ENTITY end;
node class CUSTOMER is a ENTITY end;

end;
section NodeTypes

node type entry_station : ENTRY_STATION end;
node type atm : ATM end;
node type cashier_station : CASHIER_STATION end;
node type set_of_cashier_station : SET_VALUE

redef derived Elem_Type = CASHIER_STATION;
end;
node type bank : BANK end;
node type list_of_bank : LIST_VALUE

redef derived Elem_Type = BANK;
end;
node type account : ACCOUNT end;
node type account_s : SET_VALUE

redef intrinsic Singleton := true;
redef derived Elem_Type = ACCOUNT;

end;
node type entered_on : RELSHIP end;
node type eo_es : ROLE

redef meta rel := entered_on ;
 ent := ENTRY_STATION ;

end;
node type eo_t : ROLE

redef meta rel := entered_on ;
 ent := TRANSACTION ;

end;
node type money : ATOMIC_VALUE end;
node type address : ATOMIC_VALUE end;
node type list_of_address : LIST_VALUE

redef derived Elem_Type = address;
end;
node type entry_station_location : ATTRIBUTE

redef meta entrel := ENTRY_STATION ;
 val := address ;

end;
node type consortium_consists_of : COMPONENT

redef meta cent := CONSORTIUM ;
 comp := list_of_bank ;

end;
end;

end;

Figure 4.25: EER scheme dependent part of the PROGRES graph scheme for GOQL/EER

86 CHAPTER 4. A QUERY LANGUAGE DEFINED USING GRAPH-REWRITING

ships of type entered on (cf. the condition -clause of production Add Role).

� For each set, list, bag or singleton of entities occurring as a component, a corresponding node
type is added, and its Elem Type meta attribute is initialized. In the case of a singleton, a node
type of class SET VALUEis added, and the Singleton -attribute is set to true. For instance,
since the owns-component of a BANKis a set of CASHIERSTATIONs, we add the node type
set of cashier station , and initialize its Elem Type -attribute to CASHIERSTATION.

� For each set, list or bag of atomic values occurring as attribute domain, a corresponding node
type is added. E.g., since the residence of a customer is a list of address es, we add the
node type list of address of class LIST VALUE, and initialize its Elem Type -attribute
to address .

� For each atomic value type occurring as attribute domain or as element type of a complex value,
a corresponding node type of class ATOMICVALUEis added. E.g., since the location of an
entry station is an address , we add a node type address .

� For each attribute, a corresponding node type of class ATTRIBUTE is added. E.g., we add the
node type entry station location , and initialize its entrel meta attribute to ENTRY-
STATIONand its val meta attribute to address .

� For each component, a corresponding node type of class COMPONENTis added. E.g., we add
the node type consortium consists of , and initialize its cent meta attribute to CON-
SORTIUMand its comp meta attribute to list of bank .

Looking back at Figure 4.16, this EER dependent part of the graph scheme can be used to call
productions, generating the graph representation of GOQL/EER queries (including their translation to
SQL/EER).

transaction MAIN =
use s : SQB;

 e1 : ENT_REL;
 e2 : PART_OF_COMPLEX;
 c1, c2, c3, c4, c5, c6 : CONSTITUENT;
 av1, av2 : VALUE;
 cv1 : COMPLEX_VALUE

do
 Add_first_SQB (out s)
 & Add_ER (s, "co", consortium, out e1, out c1)
 & Add_Component
 ((e1 : ENTITY), consortium_consists_of, list_of_bank, out cv1, out c2)
 & Add_Indexed_to_Mvalue ((cv1 : MVALUE), bank, 2, out e2, out c3)
 & Add_Attribute (e1, consortium_name, _string, out av1, out c4)
 & Assign_Value ((av1 : ATOMIC_VALUE), "General Banking")
 & Add_Attribute ((e2 : ENTITY), bank_name, _string, out av2, out c6)
 & Select (c6)

end
end;

As an example, the transaction MAIN creates the graph of Figure 4.17. As mentioned earlier, the
creation of the graph representation of a GOQL/EER query always starts with a single application

4.3. A HYBRID QUERY LANGUAGE: HQL/EER 87

of Add first SQB. Next, a consortium is added, with (SQL/EER) variable name “co”. To this
consortium , a consortium consists of component is added, which is of type list of -
bank . In the application of this production, the variable e1 (referring to the consortium) has to be
cast to the node class ENTITY, since this is what Add Component expects, whereas Add ERreturns
nodes of class ENT REL. Next, a bank is added in position 2 to the list of banks. The consortium
then gets a consortium name attribute of type string , which is assigned the value “General
Banking”. Likewise, the bank gets a bank name attribute of type string , which is selected for
output.

At this point we come back to a statement made at the very beginning of Section 4.2, namely that a
graph is part of the language of graph representations of GOQL/EER queries, if it may be obtained by
applying any correct sequence of productions to an initial empty graph. A careful examination of the
productions of the specification reveals that indeed any sequence of production calls that is correctly
specified and successfully executable, results in the graph representation of some GOQL/EER query.

As an example, note that even the transaction which consists of merely an application of the pro-
duction Add first SQBcorresponds to the empty GOQL/EER query, whose semantics is defined
by the “trivial” SQL/EER query “select from where true”.

A “correctly specified” production is production which is called with sufficient parameters of the
correct type, where variables used as input-parameters must be initialized by some previous produc-
tion application, and cast to the correct class where necessary. A “successfully executable” produc-
tion is a production which is called in such a way that its pre-conditions (as expressed in its header, its
condition -clause and its left-hand side) are not violated.

Consequently, the notion of correctness depends solely on the semantics of PROGRES, and not on
the semantics of GOQL/EER.

4.3 A Hybrid Query Language: HQL/EER

In the language GOQL/EER as introduced in Section 4.1, we consciously restricted the set of language
constructs (such as declarations, atomic formulas,.. .) which may be represented graphically to the
set of symbols used for graphically representing EER schemes. The fact that consequently, concepts
such as negation and aggregate functions cannot be expressed in a GOQL/EER query, implies that the
expressive power of this language is strictly less than that of SQL/EER. One possible way to go in order
to give GOQL/EER the full expressive power of SQL/EER would be to invent graphical counterparts
for all language constructs of SQL/EER. As argued in Chapter 1, however, graphical expressions in the
resulting language would most probably be equally hard to understand and use as their counterparts
in the textual language.

The other way to go is to merge the textual and the graphical language into a hybrid language,
which allows the use of both textual and graphical elements in the formulation of one and the same
query. Or, in other words, given the fact that GOQL/EER offers graphical counterparts for only those
language elements of SQL/EER which (in our view) are worth representing graphically, such a hybrid
language allows the graphical formulation of those parts of a query that are more easily formulated
graphically than textually.

Concretely, in this section we discuss the Hybrid Query Language for the Extended Entity Relation-

88 CHAPTER 4. A QUERY LANGUAGE DEFINED USING GRAPH-REWRITING

ship model (in brief, HQL/EER). Syntactically, a query in HQL/EER consists first of all of a (possibly
empty) GOQL/EER query, possibly involving subqueries. To this query and each of its subqueries,
(possibly incomplete) SQL/EER queries may be associated. In a (partial) SQL/EER query associated
to a graphical (sub)query, whenever a term of a certain type is expected, an identifier of a node of that
type in the graphical query (or its super-queries) may be used. These identifiers are the mechanism by
means of which the textual parts of a hybrid query are linked to the graphical part.

The semantics of a hybrid query is obtained by combining (in a sense to be made precise) the
SQL/EER-query corresponding to the graphical part of the hybrid query (obtained by means of the
specification discussed in Section 4.2) with the textual parts into a full SQL/EER-query.

4.3.1 Examples of Hybrid Queries

We clarify the ideas presented above by providing hybrid “versions” for most of the SQL/EER queries
used in the recapitulation of SQL/EER in Section 2.3. First, reconsider Example 2.9, retrieving the
serial number s of all CASH CARDs with the trivial password “password” and a (credit) limit
less than or equal to 100.000. Since the latter condition involves an inequality, this query cannot
be represented in GOQL/EER. However, Figure 4.26 shows a hybrid representation of this query in
HQL/EER.

CASH CARD money

password

serial_number

limit

int

string

l l 100.000 ≤ where

password

Figure 4.26: Serial numbers of cash cards with trivial password and limit under 100.000 (HQL/EER
version)

The graphical part of this hybrid query already indicates that we want to retrieve the serial
number of all CASH CARDs with the trivial password “password”. To the money-node, represent-
ing the CASH CARDs limit , the identifier l has been associated. This identifier is used in the textual
part of the hybrid query to express the additional condition that only those CASH CARDs should be
considered whose limit is less than or equal to 100.000.

Note that the graphical part of this hybrid query, including the money-node, is indeed a syntacti-
cally correct GOQL/EER query. Looking back at the formal specification of GOQL/EER presented in
Section 4.2, it may easily be seen that nothing prevents the addition of “obsolete” nodes such as the
money-node of the example, using in this case the production Add Attribute . If such a node is
neither selected for output, nor merged with some other node to express an equality condition, then it
simply will not influence the semantics of the (GOQL/EER) query.

Figure 4.27 shows an HQL/EER version of the query of Example 2.13, which enumerates the
names of bank s which are part of the CONSORTIUM named “Banks United”. The identifier cco,
associated to the consists of attribute of the CONSORTIUM, is used both in the select-clause and

4.3. A HYBRID QUERY LANGUAGE: HQL/EER 89

in the from -clause of the textual part of the query. Note that the BANK-node serves no actual purpose,
but has been added merely for clarity.

name list
∈

string CONSORTIUM

Banks United

consists of

cco

select
from i (cco) in ind

BANK

i, cco[i].name

Figure 4.27: Enumeration of the names of banks which are part of the consortium named “Banks
United” (HQL/EER version)

In the foregoing examples, we put as many elements of the queries in the graphical part as pos-
sible. In many cases, however, there exists a wide range of possibilities to express one and the same
query in HQL/EER, since any element of the query that can be expressed graphically, can also be repre-
sented textually. We illustrate this fact by providing four hybrid versions of the textual query of Exam-
ple 2.10. This query retrieves the names of all CUSTOMERs who share one of their residence s with
a CUSTOMERcalled “John ”. The SQL/EER query of Example 2.10 is itself already an HQL/EER
query, since any textual query is itself a hybrid query with an empty graphical part.

As shown in Figure 4.28, this same query may easily be represented in GOQL/EER, and hence in
HQL/EER, since any graphical query is itself a hybrid query with an empty textual part!

CUSTOMER
residence

name

list address
∈

string

list
∈

CUSTOMERresidence

name

string

John

Figure 4.28: Names of customers sharing an address with John (HQL/EER version I, or GOQL/EER
version)

Figure 4.29 shows a “real” hybrid version of still the same query. In comparison to the GOQL/EER
version depicted in Figure 4.28, the selection has now been moved to the textual part, and is connected
to the graphical part by means of the identifier c1 corresponding to one of the CUSTOMERs.

Finally, Figure 4.30 shows another hybrid version of the same query. In this version, also the con-
dition that the other CUSTOMERshould be named John has been moved to the textual part, which
is now also connected to the graphical part by means of the identifier c2 corresponding to this other
CUSTOMER.

We now turn our attention towards queries involving subqueries. Consider the following variation
on the SQL/EER query depicted in Figure 4.11. Suppose we wish to retrieve for each address of a
BANKrecorded in the database, the number of BANKs located at this address (rather than the names
of all these BANKs). Figure 4.31 shows an SQL/EER version of this query.

Comparing Figures 4.12 (depicting the GOQL/EER version of the original query) and 4.32 (depict-
ing the HQL/EER version of the modified query), we see that they only differ in the subquery depicted

90 CHAPTER 4. A QUERY LANGUAGE DEFINED USING GRAPH-REWRITING

CUSTOMER
residence

list address
∈

list
∈

CUSTOMERresidence

name

string

John

select c1.name

c1

Figure 4.29: Names of customers sharing an address with John (HQL/EER version II)

where
c1.nameselect
c2.name = "John"

CUSTOMERCUSTOMER
residence

list address
∈

c1

∈
list

residence

c2

Figure 4.30: Names of customers sharing an address with John (HQL/EER version III)

select ad, cnt (select b
from b in BANK
where b.location = ad)

from ad in (select ba.location
from ba in BANK)

Figure 4.31: For each address of a bank recorded in the database, the number of banks located at this
address (SQL/EER version)

4.3. A HYBRID QUERY LANGUAGE: HQL/EER 91

in the top right corner (which in both cases corresponds to the subquery in the select-clause of the cor-
responding SQL/EER query). In Figure 4.32, this subquery simply computes the bag of all BANKs in
the database located at the address ad. Selection of the cardinality of this bag is done in the textual
part of the hybrid query.

BANK

∈

bag

address locationad

BANK addresslocation

bag

select cnt

x

(x)

Figure 4.32: For each address of a bank recorded in the database, the number of banks located at this
address (HQL/EER version)

In the previous example, a textual part was only associated to the outermost query. As an example
of a textual part associated to a subquery, we present a hybrid version of the SQL/EER query from
Example 2.12. This query returns the names of those CUSTOMERs holding an ACCOUNTfor which
the following holds: if the balance of the ACCOUNTis raised with a five percent interest, then the
new balance becomes higher than the average of all balance s of all ACCOUNTs with a positive
balance. The elements of this query that cannot be represented graphically are the inequality�money,
the aggregate function avg and the data operation compute interest .

0b2where money ≥

holds CUSTOMER
ho_a ho_c

ACCOUNT

balance name

string

b1 b2

bag

ACCOUNT

balance

x
where money ≥compute_interest(b1, 5) (x) avg

moneymoney

Figure 4.33: A hybrid query with text associated to a subquery

Figure 4.33 shows a hybrid version of this query. The “hybrid subquery” depicted on the right
corresponds precisely to the subquery in the SQL/EER version: the declaration of the ACCOUNTand
the selection of its balance are formulated graphically, while the condition that the balance should
be positive is formulated textually. The textual and graphical part are linked using the identifier b2.

92 CHAPTER 4. A QUERY LANGUAGE DEFINED USING GRAPH-REWRITING

In the graphical part on the left, a CUSTOMERand an ACCOUNTare declared. The condition that
the CUSTOMERmust hold the ACCOUNTis expressed, and the CUSTOMERs name is selected. Addi-
tionally, the ACCOUNTs balance is also depicted graphically, and the identifier b1 is associated to
it. This identifier, as well as the identifier x associated to the subquery are then used to express the re-
maining condition that if the balance of the ACCOUNTis raised with a five percent interest, then the
new balance becomes higher than the average of all balance s of all ACCOUNTs with a positive
balance.

Note that in the graphical representation of this query, the subquery is “disconnected” from the
graphical part of the outer query, a peculiarity which perfectly fits the PROGRES specification pre-
sented previously, just like the addition of “obsolete” nodes.

4.3.2 On the Semantics of Hybrid Queries

Remember that an HQL/EER query consists of a GOQL/EER query, with a SQL/EER query associated
to some of its subqueries. In an SQL/EER query associated to a graphical (sub)query, whenever a term
of a certain type is expected, an identifier of a node of that type in the graphical query (or its super-
queries) may be used.

The PROGRES specification presented in Section 4.2 associates SQL/EER terms, declarations and
formulas to nodes in the formal graph representation of the GOQL/EER query. The combination of
this information with the textual parts of the hybrid query into a complete SQL/EER-query, defines
the semantics of the hybrid query.

We illustrate how all these bits and pieces of SQL/EER queries can be combined into one complete
textual query, using the HQL/EER query of Figure 4.33. Figure 4.34 shows the graph representation
of the graphical part of this query, while Table 4.2 shows the attributes of the relevant nodes of this
graph. Composing the SQL/EER query corresponding to this hybrid query starts with the subquery.
The textual part associated to this subquery is “where b2 �money 0”. The identifier b2 refers to the
money-node in the graphical part of the subquery.

In the formal graph representation, this money-node is represented by the node with identifier 339
(of type money). The term “ac.account balance” corresponding to this node is stored in the consti-
tuent with identifier 355. In the general case, finding this term is not as straightforward as in this
example, since an element of a query (i.e., a node of class QUERYELEM) may be linked to several
sqb -nodes by means of constituent -nodes. The following question then naturally arises: given
a query element linked to several constituent s (by means of cons is n-edges), whose Term-
attribute should we use in replacement of an identifier referring to this query element?

In Section 4.2.2 (in the discussion of the input parameters of the production Add Role), it was
already noted that among all the (sub)queries of which a query element is a constituent, one is a (direct
or indirect) superquery of all the others. If this were not the case, this would mean that the query
element is used in two incomparable scopes, which is a clear violation of traditional scoping rules.

By the above reasoning, the constituent to be used is the one connecting the query element
to the (sub)query which is a (direct or indirect) superquery of all the other subqueries of which the
query element is a constituent . Indeed, the Term associated to this constituent is ”known”
in all scopes in which the query element is used. In addition, it has the same semantics in all these
scopes. Indeed, the only way in which a query element can become a constituent of more than one

4.3. A HYBRID QUERY LANGUAGE: HQL/EER 93

Figure 4.34: Graph representation of the graphical part of the hybrid query of Figure 4.33

Id. Label Att.Name Attribute Value

131 sqb SFW-Term (select ho.ho c.customer name
from ho in holds
where true)

199 constituent Term ho.ho a
275 constituent Term ho.ho a.account balance
187 constituent Declaration ho in holds

Term ho
235 constituent Term ho.ho c
299 constituent Term ho.ho c.customer name

Output TRUE
163 sqb SFW-Term (select ac.account balance

from ac in account
where true)

319 constituent Declaration ac in account
Term ac

355 constituent Term ac.account balance
Output TRUE

Table 4.2: Attributes of some nodes of the graph in Figure 4.34

94 CHAPTER 4. A QUERY LANGUAGE DEFINED USING GRAPH-REWRITING

(sub)query, is by the application of the appropriate “merging” production. In the transfer -clause
of these merging productions, the “semantics” of the node resulting from this merging is defined as
the formula expressing the equality of the terms corresponding to the two merged nodes.

Returning to our example, the term “ac.account balance” is substituted for the identifier b2 in the
textual part of the subquery, resulting in the condition “where ac.account balance �money 0”. This
condition is added (using and) to the where-clause of the SQL/EER-query stored in the SFW-Term
attribute of the sqb -node corresponding to the subquery (that is, the node with identifier 163). This
results in the (sub)query

select ac.account balance
from ac in ACCOUNT
where ac.account balance �money 0

The same procedure is now applied to the outer query. The textual part of this query is the con-
dition “where compute interest(b1, 5) �money avg(x)”. The identifier b1 refers to the money-node
in the outer query. The term “ho.ho a.account balance” corresponding to this node is stored in the
constituent -node with identifier 275. The identifier x refers to the subquery, hence it is replaced
with the SQL/EER query corresponding to this subquery, as computed above. All this results in the
condition

where compute interest(ho.ho a.account balance,5) �money
avg (select ac.account balance

from ac in ACCOUNT)
where ac.account balance �money 0)

This condition is appended to the where-clause of the SQL/EER corresponding to the outer query,
which may be found in the SFW-Term attribute of the sqb -node with identifier 131. This results in
the SQL/EER query of Example 2.12.

4.3.3 Towards a Formal Definition of HQL/EER

So far we have illustrated by means of examples both the syntax (i.e., the representation as a formal
graph) and the semantics (i.e., the translation to SQL/EER) of HQL/EER queries. To conclude this
section, we present these ideas on a somewhat higher level of abstraction.

Syntactically, a query in HQL/EER consists of a GOQL/EER query, together with an SQL/EER
query associated to this query and each of its subqueries. We assume without loss of generality that at
least the “trivial” SQL/EER query “select from where true” is associated to any graphical (sub)query.
In an SQL/EER query associated to a graphical (sub)query, “identifiers” of nodes in that graphical
query (or its super-queries) may be used wherever a term is expected. The node referred to by the
identifier must have the correct type (which equals its label, cf. the correspondence between the pic-
torial representation of a GOQL/EER query and its formal graph representation as discussed in Sec-
tion 4.2.1).

The semantics of an HQL/EER query is defined by translating it to SQL/EER, using the following
algorithm:

4.3. A HYBRID QUERY LANGUAGE: HQL/EER 95

1. The formal graph representation G (including the node attributes) of the graphical part of the
hybrid query is determined, according to the PROGRES specification discussed in Section 4.2.

2. The formal graph G obtained as a result of the foregoing step includes a tree T of sqb -nodes
(cf. Figure 4.19), corresponding to the subqueries of the graphical query, with the root corre-
sponding to the query itself. Each node q in G which is of class QUERYELEMis linked to one
or more nodes of class SQBby means of a node of class CONSTITUENT(and edges of type
is defined by and cons is n). Among all the SQB-nodes to which q is linked, one is an
ancestor (in T) of all the others. Let us denote with a(q) the CONSTITUENT-node which links
q to the latter SQB-node.

The SQL/EER query corresponding to the given hybrid query is computed by traversing T in
postorder (that is, a node of the tree is visited after its children), applying the following two
operations to each node n with associated SQL/EER query s(n):

(a) Each identifier i occurring in s(n), referring to some query element q of n, is replaced as
follows:

i. If q is of type sqb , then i is replaced by the SFWTerm-attribute of q (which may have
been “recomputed” by an earlier application of step 2b of this algorithm).

ii. If q is not of type sqb , then i is replaced by the Term-attribute of the constituent -
node a(q).

(b) The select-from-where-statement resulting from step 2a is “merged” with the SFWTerm-
attribute of n by joining the select- respectively the from-clauses with a comma, and the
where-clauses with an and. In subsequent iterations of this algorithm, the resulting “identi-
fier-free” SQL/EER-query is used in replacement of the SFWTerm-attribute of n.

This iteration eventually results in an “identifier-free” replacement of the SFWTerm-attribute
of the root node of T , which is considered to define the semantics of the original hybrid query.

We conclude this Chapter with the observation that since

� each HQL/EER query can (by definition) be translated into an equivalent SQL/EER query, and

� each SQL/EER query is (by definition) itself an HQL/EER query

HQL/EER and SQL/EER have indeed precisely the same expressive power.

96 CHAPTER 4. A QUERY LANGUAGE DEFINED USING GRAPH-REWRITING

Chapter 5

Database manipulation defined as
graph-rewriting

In Section 1.2, we informally described a graph rewrite rule as a pair of graphs called its left- and
right-hand side. Basically, the left-hand side describes a configuration to be matched to some part of
the graph to which the rule is to be applied, while the right-hand side (or more precise, the way in which
the right-hand side differs from the left-hand side) describes the desired modification to be performed
on the chosen matching of the left-hand side.

If we now consider database manipulations (as opposed to database queries, the topic of Chapter 4)
on a very general level, we see that a database manipulation generically consists of a query together
with the specification of some modification to be performed on the outcome of the query. When in
addition, we look upon a database instance as a network or graph of objects or data items, the question
arises quite naturally whether graph rewriting is a suitable database manipulation paradigm.

In this chapter, we answer this question positively by introducing the Graph-Oriented Object Data-
base language GOOD/ER in which database manipulations may indeed be expressed as rewritings of a
database graph. GOOD/ER is based on a slightly modified version of the original ER model, formally
defined in Section 5.1.1 A formal definition of GOOD/ER is presented in Section 5.2. In Section 5.3,
we characterize GOOD/ER’s expressive power (i.e., the set of transformations expressible in the lan-
guage) in terms of a completeness criterion.

Section 5.2 of this chapter is based on [AGP+92, PVdBA+92], while Section 5.3 is based on [AP92,
AP96].

5.1 The Entity-Relationship Model

In this section, we briefly discuss a restricted version of the EER model as discussed in Chapter 2. We
call this version “the” Entity-Relationship Model, even though it does not exactly match the ER model
as introduced by Chen in [Che76].2

1As noted in Chapter 1, the reason for presenting this language in terms of this ER model rather than the EER model is
merely one of succinctness: it would be perfectly possible to define a GOOD/EER language, but this would only enlarge
and complicate all definitions and results, and not add anything to the point we wish to make in this chapter.

2Most notably, we do not consider cardinality constraints on roles.

97

98 CHAPTER 5. DATABASE MANIPULATION DEFINED AS GRAPH-REWRITING

As an illustration, Figure 5.1 shows an ER version of part of the EER diagram shown in Figure 2.1.
Table 5.1 shows the attributes of this ER diagram. The ER version differs from the EER version mainly
by the absence of inheritance (i.e., type constructions), components and complex attributes:

� Inheritance has been eliminated by “replacing” a superclass and its subclasses either by one of
the subclasses (e.g., ENTRY STATIONand its subclass CASHIER STATIONwere replaced
by its subclass ATM) or by the superclass (e.g., the subclasses CASHIER TRANSACTIONand
REMOTE TRANSACTIONof TRANSACTIONhave been removed).

� Components have either been replaced by relationships (e.g., manages), or have simply been
removed (e.g., proper acct).

� Complex attributes as well as relationship attributes have been removed all together (e.g., resi-
dence).

ATM

BANK

ACCOUNT

CASH CARD

CUSTOMER

eo_es eo_t

teller

owner

sb_rt

concerns

c_t

c_a

accesses

a_a

a_cc

has

ha_cc

ha_c

holdsho_a
ho_c

issues

owned
 by

entered
 on

sb_cc

started
 by

ba_is cc_is

TRANSACTION

manages

ma_ba

ma_ac

Figure 5.1: An ER diagram, modeling a network of automated teller machines

The formal definition of ER schemes is just a “restriction” of Definition 2.5 of EER schemes to
those elements still present in ER schemes, i.e., entity types, relationship types, roles, attributes and
data types:

Definition 5.1 (ER Scheme) An ER scheme S consists of

� five disjoint finite sets E-TYPE, R-TYPE, ROLE, ATTR and D-TYPE;

� five functions with signatures:

participants : R-TYPE ! E-TYPE+

5.1. THE ENTITY-RELATIONSHIP MODEL 99

Entity type Attribute Data type

TRANSACTION entry time time
amount money

ATM cash on hand money
location address
dispensed money

BANK name string
location address

CUSTOMER name string
residence address

CASH CARD password string
serial number int
limit money

ACCOUNT blocked bool
balance money

Table 5.1: Attributes for the ER diagram for the automated teller machine example

relship : ROLE ! R-TYPE

entity : ROLE ! E-TYPE

owner : ATTR ! F(E-TYPE)

domain : ATTR ! D-TYPE

such that 8R 2 R-TYPE with participants(R) =< E

1

; : : : ; E

m

> it holds that 81 � i �

m; 9P

i

2 ROLE : relship(P

i

) = R ^ entity(P

i

) = E

i

.

As in the case of EER instances (cf. Definition 2.8), for the definition of ER instances we need a
universe of entities (cf. Definition 2.7). Additionally, since complex values are no longer allowed as
attribute value, there is no longer a need for data type signatures. In replacement, we assume that for
each data type in a given ER scheme, a (countably infinite) set of values of that type is given. Formally:

Definition 5.2 Given an ER schemeS, the function�[D-TYPE] assigns to each data typeD 2 D-TYPE
a countably infinite set of values, such that different members of D-TYPE are mapped to disjoint sets.
For any D 2 D-TYPE, �[D-TYPE](D) includes a typed null value ?

D

.

Null values are used as default attribute values by the GOOD/ER operation that allows the addition
of new entities to an ER instance.

The following shorthand notation for relationships and attributes is a simplification of the one for
EER schemes:

100 CHAPTER 5. DATABASE MANIPULATION DEFINED AS GRAPH-REWRITING

Notation 5.3 For R 2 R-TYPE with participants(R) =< E

1

; : : : ; E

m

>, and P
i

2 ROLE(1 � i �

m) with relship(P

i

) = R and entity(P

i

) = E

i

, we denote R(P
1

: E

1

; : : : ; P

m

: E

m

) 2 R-TYPE and
P

i

: R! E

i

2 ROLE.
For A 2 ATTR with owner(A) 3 E and domain(A) = D we denote A : E ! D.

Apart from the absence of inheritance, components and complex attributes, ER instances differ
in one more significant aspect from EER instances, namely in the way relationships are formalized.
In the EER model, relationships are just n-tuples of entities, hence they do not contain any informa-
tion about roles (apart from the fact that the role which a given entity plays, may be derived from the
entity’s position in the n-tuple). As a consequence, one and the same relationship can belong to mul-
tiple relationship types. Consider for instance the (E)ER diagram depicted in Figure 5.2. Let us first
consider this diagram as an EER diagram. Let e

1

be an entity of type E1, and let e
2

be an entity of
type E2. According to Definition 2.8, the pair (e

1

; e

2

) may be an element of both �[R-TYPE](R1) and
�[R-TYPE](R2).

E1 E2

R1

R2

r1 r2

r3 r4

Figure 5.2: An (E)ER diagram with multiple relationship types between entity types

Further on in this chapter, however, we want to be able to look upon ER instances (to be defined
shortly) as graphs. If an ER instance contains two different relationships, then this graph should con-
tain two clearly distinct nodes, one for each relationship. If, however, one and the same n-tuple of
entities may belong to an arbitrary number of relationship types (as illustrated above), then this is not
the case. Hence there is a need to incorporate information about roles explicitly into the relationships.
Note that this does not mean that relationships are “objectified” in the ER variant used in this chapter.
Even with role names incorporated into them, relationships still do not have an identity of their own.
It is for instance not possible to have two or more relationships of the same type in which the same
entities play the same roles.

All of the above is formalized in the following definition of ER instances:

Definition 5.4 (ER Instance) An ER instance I over an ER scheme S consists of the following four
functions:

� �[E-TYPE], which maps each entity type E 2 E-TYPE to a finite subset of E
E

;

� �[R-TYPE], which maps each relationship type R(P
1

: E

1

; : : : ; P

m

: E

m

) 2 R-TYPE to a fi-
nite set of relationships, such that �[R-TYPE](R) � fP

1

g � �[E-TYPE](E
1

) � : : : � fP

m

g �

�[E-TYPE](E
m

);

� �[ROLE], which maps each role P
i

: R ! E

i

to a function �[ROLE](P
i

) : �[R-TYPE] (R) !
�[E-TYPE](E) such that for each r = (P

1

; e

1

; : : : ; P

m

; e

m

) 2 �[R-TYPE](R) and for each 1 �

i � m, �[ROLE](P
i

)(r) = e

i

;

5.2. GOOD/ER: A GRAPH-ORIENTED OBJECT DATABASE LANGUAGE 101

� �[ATTR], which maps each attribute A 2 ATTR to a function
�[ATTR](A) :

S

E2owner(A)

�[E-TYPE](E)! �[D-TYPE](domain(A)).

We introduce the following alternative notation for relationships:

Notation 5.5 A relationship (P

1

; e

1

; : : : ; P

m

; e

m

) 2 �[R-TYPE](R) for some relationship type R(P
1

:

E

1

; : : : ; P

m

: E

m

) 2 R-TYPE is also denoted (P

1

: e

1

; : : : ; P

m

: e

m

)

As an illustration, we present part of an ER instance over the example ER scheme.

Example 5.6

�[E-TYPE](ATM) = fe

1

; e

2

g

�[E-TYPE](BANK) = fe

3

; e

4

g

�[R-TYPE](owned by) = f(teller : e

1

; owner : e

3

);

(teller : e

2

; owner : e

4

)g

�[ROLE](teller)((teller : e

1

; owner : e

3

)) = e

1

�[ROLE](owner)((teller : e

1

; owner : e

3

)) = e

3

�[ROLE](teller)((teller : e

2

; owner : e

4

)) = e

2

�[ROLE](owner)((teller : e

2

; owner : e

4

)) = e

4

�[ATTR](dispensed)(e

1

) = 1234:50

In this instance, two ATMs are present, each of which is owned by a different bank. From one of
these ATMs, an amount of 1234.50 has been dispensed.

5.2 GOOD/ER: a Graph-Oriented Object Database language

In this Section, we present and formally define the Graph-Oriented Object Database language for the
ER model, in brief, GOOD/ER. GOOD/ER is a database programming language.

A program in GOOD/ER consists of a sequence of operations, to be applied to an ER instance. A
GOOD/ER operation in turn consists basically of two parts:

1. a pattern, describing the configurations of entities, relationships and values to which the op-
eration should be applied. Note the close correspondence to GOQL/EER queries, which also
include a pattern, describing configurations, parts of which should be returned as the result of
the query.

2. a manipulation to be performed on all parts of the database instance that match the pattern of
the operation. Such a manipulation consists of the addition or the deletion of certain entities,
relationships, values, attributes, and/or roles.

102 CHAPTER 5. DATABASE MANIPULATION DEFINED AS GRAPH-REWRITING

Even though both operations in GOOD/ER and queries in GOQL/EER have a pattern as their ba-
sic constituent, the notion of pattern matching in GOQL/EER is merely an intuitive one. Indeed, in
Section 4.2 the actual semantics of GOQL/EER queries is defined by means of a translation to the tex-
tual query language SQL/EER. In other words, the actual evaluation of queries is not treated in the
definition of GOQL/EER, since this is taken care of in the definition of SQL/EER.

In GOOD/ER however, we incorporate this notion of pattern matching explicitly in the definition
of the language. Concretely, patterns are formalized as attributed, directed, node- and edge-labeled
graphs, which, when executing the operation of which they are part, are to be matched (in the formal
graph-theoretical sense of the word) against the database instance. This in turn shows the need for a
“graph-oriented look” on ER instances.

Before formalizing the latter, however, we first formally define the kind of graphs used in formaliz-
ing both this graph-oriented look on ER instances as well as (ER) patterns. Whereas the kind of graphs
used in formalizing GOQL/EER queries was defined in an operational manner, namely by means of
a PROGRES specification, the graphs used in this chapter for formalizing both ER instance graphs
as well as the syntax of GOOD/ER operations are defined declaratively, by means of the following
definition:

Definition 5.7 (Graph) Let NL be a countably infinite set of node labels, EL a countably infinite set
of edge labels, and AV a countably infinite set of attribute values. A graph over (NL,EL,AV) is a four-
tuple (V;W; �; �), where V is the set of nodes, W � V � EL � V the set of edges, � : V ! NL the
node labeling function, and � : V !+ AV the (partial) node attribution function. The labeling function
� is extended to W as �((v

1

; �; v

2

)) := �.

Notation 5.8 The components of a given graph G are denoted respectively V
G

, W
G

, �
G

and �
G

.

Given this definition of graphs, we now capture, by means of the definition of ER instance graphs,
how an ER instance may be looked upon as a graph. Briefly, entities, relationships and values play the
part of nodes, while attributes and roles correspond to edges between the appropriate nodes.

Definition 5.9 (ER Instance Graph) Given an ER instance I over an ER scheme S , the instance
graph corresponding to I is the graph (V;W; �; �) over (E-TYPE [R-TYPE [D-TYPE;ROLE [

ATTR;
S

d2D-TYPE �[D-TYPE](d)) with

�

V =

[

E2E-TYPE
�[E-TYPE](E) [

[

R2R-TYPE
�[R-TYPE](R) [

[

A2ATTR
rng(�[ATTR](A))

� � is defined on V as

– e 2 �[E-TYPE](E)) �(e) = E

– r 2 �[R-TYPE](R)) �(r) = R

– d 2 rng(�[ATTR](a)) � �[D-TYPE](D)) �(d) = D

5.2. GOOD/ER: A GRAPH-ORIENTED OBJECT DATABASE LANGUAGE 103

� W = f(r; P; e) j �[ROLE](P)(r) = eg [f(e; A; d) j �[ATTR](A)(e) = dg

� � is the identity on
S

A2ATTR rng(�[ATTR](A)), and is undefined elsewhere.

The attribution function � is in a sense obsolete in this definition (being merely the identity on the
values of the ER instance), but will turn out to be useful in the subsequent definition of embeddings
of patterns, in which unattributed nodes labeled with a data type represent an “unknown” (or “don’t-
care”) value of that type.

Because of the one-to-one correspondence between ER instances and ER instance graphs, in the
remainder of this chapter we treat both terms as synonyms (e.g., in phrases such as “the nodes of an
instance” or “the entities in a graph”).

As an example, Figure 5.3 shows the ER instance graph corresponding to the ER instance of Ex-
ample 5.6. In this graphical representation of ER instance graphs, the same conventions are used as
in (E)ER diagrams, i.e., nodes corresponding to entities are shown as rectangles, nodes corresponding
to relationships are shown as diamonds, and nodes corresponding to values are shown as ovals. In the
case of the latter kind of nodes, the value itself is shown near the node, thereby “visualizing” the attri-
bution function �. In Figure 5.3, this is illustrated with the money-labeled oval, and the actual value
1234.50. For clarity, null values are omitted both from this ER instance graph as well as from most
other instance graphs used in the remainder of this chapter.

To show the correspondence between this figure and Example 5.6, the “identifiers” used in Exam-
ple 5.6 are shown near the entities they correspond to.

ATM

BANK

teller

owner

owned
 by

ATM

BANK

teller

owner

owned
 by

money
dispensed

1234.50e1 e2

e3 e4

Figure 5.3: An ER instance graph corresponding to the ER instance of Example 5.6

5.2.1 Patterns and Embeddings

As mentioned previously, the basic component of an operation in GOOD/ER is a pattern, describing
the configuration(s) in the instance (graph) to which the operation is to be applied. A pattern is basi-
cally a graph, with an “abstract” set of nodes (as opposed to the nodes of an ER instance graph, which
are the “actual” entities, relationships and values in the corresponding ER instance) and labeled in ac-
cordance with a given ER scheme:

Definition 5.10 (ER Pattern) A pattern over an ER scheme S is a graph (V;W; �; �) over (E-TYPE[
R-TYPE [D-TYPE;ROLE [ATTR;

S

D2D-TYPE �[D-TYPE](D)) such that 8(n; �;m) 2 W :

104 CHAPTER 5. DATABASE MANIPULATION DEFINED AS GRAPH-REWRITING

1. � 2 ROLE) (�(n) = relship(�) ^ �(m) = entity(�))

2. � 2 ATTR) (�(n) 2 owner(�) ^ �(m) = domain(�))

The correspondence between the pattern of an operation and the parts of an ER instance graph
which it matches, is formalized by the notion of an embedding of a pattern in an instance graph. Such
an embedding is a mapping from the nodes of the pattern to the nodes of the instance graph, preserving
typing (i.e., labels) and structure of the pattern.

We define embeddings in a somewhat more general context, namely for graphs in general, since
further on, we also need the possibility to embed one instance into another.

Definition 5.11 (Embedding) An embedding of a graph G in a graphH is a total function m : V

G

!

V

H

that satisfies

1. 8v 2 V

G

: �

H

(m(v)) = �

G

(v)

2. 8v 2 V

G

: �

G

(v) is defined) �

H

(m(v)) = �

G

(v)

3. 8(n; �;m) 2 E

G

: (m(n); �;m(m)) 2 E

H

An embedding is extended to E
G

as m((n; �;m)) := (m(n); �;m(m)).

As an illustration, Figure 5.4 shows an ER pattern over the ER scheme depicted in Figure 5.1. It
may be easily verified that this ER pattern may be embedded exactly once in the ER instance graph
depicted in Figure 5.3, namely by mapping the ATM-node, the BANK-node and the money-node in
the pattern to respectively the ATM-node with identifier e1, the BANK-node with identifier e3 and the
single money-node in the instance graph.

ATM

BANK

teller

owner

owned
 by

money
dispensed

1234.50

Figure 5.4: An ER pattern (I)

The ER pattern shown in Figure 5.5 on the other hand, may be embedded twice in the ER instance
graph depicted in Figure 5.3. The first embedding maps the ATM-node and the BANK-node in the pat-
tern to respectively the ATM-node with identifier e1 and the BANK-node with identifier e3 in the in-
stance graph. The second embedding maps the ATM-node and the BANK-node in the pattern to respec-
tively the ATM-node with identifier e2 and the BANK-node with identifier e4 in the instance graph.

5.2. GOOD/ER: A GRAPH-ORIENTED OBJECT DATABASE LANGUAGE 105

ATM

BANK

teller

owner

owned
 by

Figure 5.5: An ER pattern (II)

Note that the latter embedding may be extended to the embedding of the pattern depicted in Fig-
ure 5.4. Extending embeddings is a key notion in the definition of the GOOD/ER operations. To for-
malize this notion, we first have to define subgraphs:

Definition 5.12 (Subgraph) A graphG = (V;W; �; �) is a subgraph of a graphG0

= (V

0

;W

0

; �

0

; �

0

)

if V � V

0, W � W

0, � = �

0

j

V

and � = �

0

j

V

.

Since both ER instance graphs and ER patterns are graphs, we use the terms subinstance and sub-
pattern as synonyms for subgraph, wherever appropriate.

Definition 5.13 (Embedding Extension) Let I be an ER instance graph, and P and P 0 be ER pat-
terns such that P is a subpattern of P 0. Let m and m0 be embeddings of respectively P and P 0 in I.
Then m0 is an extension of m if m0

j

V

P

= m.

As a third example of embeddings, Figure 5.6 shows a pattern that may be embedded four times
in the ER instance graph depicted in Figure 5.3. This fact follows readily from the observation that
an embedding is not necessarily an injective mapping (as was the case with the embeddings of the
patterns in Figures 5.4 and 5.5). Concretely, an embedding of this pattern in the considered instance
may either

� map the leftmost ATM-node to the ATM-node with identifier e1 and the rightmost ATM-node to
the ATM-node with identifier e2;

� map the leftmost ATM-node to the ATM-node with identifier e2 and the rightmost ATM-node to
the ATM-node with identifier e1;

� map both ATM-nodes to the ATM-node with identifier e1;

� map both ATM-nodes to the ATM-node with identifier e2.

The effect of these four embeddings on the remaining four nodes of the pattern follows straightfor-
wardly from their effect on the ATM-nodes.

106 CHAPTER 5. DATABASE MANIPULATION DEFINED AS GRAPH-REWRITING

ATM

BANK

teller

owner

owned
 by

ATM

BANK

teller

owner

owned
 by

Figure 5.6: An ER pattern (III)

5.2.2 Basic Operations

We now illustrate and formally define the six basic operations offered by GOOD/ER. Three of these
operations allow the addition of certain elements to an ER instance, one allows the update of attributes,
while the remaining two allow the deletion of certain elements from an ER instance.

By means of an entity addition, new entities may be added to an ER instance, with given attribute
values and relationships with entities already present in the ER instance. As an example, suppose we
wish to represent in the database the fact that all customers living in Antwerp get a new cash card with
an initial limit of 5000, and the customers name as default password. This is done using the entity
addition depicted in Figure 5.7.

CUSTOMER

password

name
string

5000

Antwerp

address

location

limit
CASH CARD

has

ha_cc

ha_c

money

Figure 5.7: An entity addition

Just as any other GOOD/ER operation, an entity addition consists basically of two parts: a pattern,
and a part indicating the operation to be performed, in this case, the elements to be added to the ER
instance. In the example entity addition of Figure 5.7, the pattern consists of all nodes and edges in thin
lines. This pattern matches all customers living in Antwerp, together with their name and location.

The operation part of this (and any) entity addition consists of the parts drawn in bold lines. It indi-
cates that, for each CUSTOMER-entity matching the pattern, a CASH CARD-entity should be added to
the considered ER instance, linked by means of a has -relationship to the CUSTOMER-entity. In addi-
tion, the password -attribute of any newly added CASH CARD-entity should be set to the CUSTOMERs
name, while its limit -attribute should be set to the money value 5000.

Note that the latter money value should not be included in the pattern, since this would make the
effect of the entity addition depend on the presence or absence of this money value (as attribute-value

5.2. GOOD/ER: A GRAPH-ORIENTED OBJECT DATABASE LANGUAGE 107

of some other entity or relationship) in the considered ER instance. Indeed, since if the money value
would be part of the pattern, then on application of the operation, no entities would be added if the
money value 5000 was absent from the considered ER instance. This would clearly be an undesirable
semantics for this operation, since its effect should solely depend on the presence (or absence) in the
ER instance of customers living in Antwerp.

We are now ready for the formal definition of entity additions:

Definition 5.14 (Entity Addition (syntax)) Given an ER scheme S , an entity addition over S is de-
noted syntactically as ENTADD[P ; E;VA;AT;RE;RO] with the following input parameters:

� an ER pattern P = (V;W; �; �) over S

� E 2 E-TYPE

� VA = f(A

1

; v

1

); : : : ; (A

m

; v

m

)g � ATTR � V such that 81 � i � m : domain(A

i

) = �(v

i

) ^

owner(A

i

) 3 E

� AT = f(A

m+1

; v

m+1

); : : : ; (A

m+l

; v

m+l

)g � ATTR�
S

D2D-TYPE �[D-TYPE](D) such that81 �
i � l; 9D

i

2 D-TYPE : v

m+i

2 �[D-TYPE](D
i

) ^ domain(A

m+i

) = D

i

^ owner(A

m+i

) 3 E

� RE =< R

1

; : : : ; R

n

>2 R-TYPE+ such that 81 � i � n : E 2 participants(R

i

)

� RO = f(< (P

1

1

; e

1

1

); : : : ; (P

1

s

1

; e

1

s

1

) >;P

1

t

1

); : : : ; (< (P

n

1

; e

n

1

); : : : ; (P

n

s

n

; e

n

s

n

) >;P

n

t

n

)g

2 F((ROLE � V)

+

� ROLE) such that 81 � i � n; relship

�1

(R

i

) = fP

i

1

; : : : ; P

i

s

i

; P

i

t

i

g and
participants(R

i

) =< �(e

i

1

); : : : ; �(e

i

s

i

) > with E inserted at the position corresponding to role
P

i

t

i

.

In terms of the notation of Definition 5.14, Figure 5.7 shows the entity addition
ENTADD[P; E;VA;AT;RE;RO] with

� the pattern P = (V;W; �; �) consisting of

– V = fe

1

; v

1

; v

2

g

– W = f(e

1

; name; v
1

); (e

1

; location; v
2

)g

– � is defined by the following table:

node label
e

1

CUSTOMER
v

1

string
v

2

address

– � maps v
2

to the string “Antwerp”

� the entity type E equal to CASH CARD, being the type of the entities to be added

� the set VA of (attribute, value)-pairs with values taken from P equal to f(password; v
1

)g

� the set AT of (attribute, value)-pairs with values which are not part of P equal to f(limit; 5000)g

108 CHAPTER 5. DATABASE MANIPULATION DEFINED AS GRAPH-REWRITING

� the list RE of types of relationships in which the newly created entities participate equal to <

has >

� the set RO containing both the roles played by the newly created entities in the relationships of
RE, as well as the entities in the pattern that play the remaining roles, equal to f(< (ha c; e

1

) >

; ha cc)g.

Definition 5.15 (Entity Addition (semantics)) Let ENTADD[P; E;VA;AT;RE;RO] be an entity ad-
dition over an ER scheme S as in Definition 5.14.

Let P 0 be the ER pattern (V

0

;W

0

; �

0

; �

0

) where

� V

0 equals V extended with 1+n+ l new nodes3 e; r
1

; : : : ; r

n

; v

0

m+1

; : : : ; v

0

m+l

, labeled by �0 with
respectively E;R

1

; : : : ; R

n

; d

1

; : : : ; d

l

. On V , �0 equals �.

� W

0 equals W extended with role edges from the nodes r
1

; : : : ; r

n

to the nodes e; e1
1

; : : : ; e

n

s

n

, as
well as attribute edges from e to the nodes v

1

; : : : ; v

m

; v

0

m+1

; : : : ; v

0

m+l

.

� �

0 attributes v0
m+1

; : : : ; v

0

m+l

with respectively v
m+1

; : : : ; v

m+l

and equals � on V .

The result of applying the entity addition ENTADD[P ; E;VA;AT;RE;RO] to an ER instance I over
S is defined as one possible outcome of the following algorithm:

I

0

:= I;
for each embedding m of P in I do

if not exists an embedding m0 of P 0 in I which extends m
then add to V

I

0 a new entity et 2 E
E

� V

I

0 of type E
the values v

m+1

; : : : ; v

m+l

the relationships (P 1

1

: e

1

1

; : : : ; P

1

t

1

: et; : : : ; P 1

s

1

: e

1

s

1

) through
(P

n

1

: e

n

1

; : : : ; P

n

t

n

: et; : : : ; P n

s

n

: e

n

s

n

)

add to E
I

0 the edges (et; a
1

; v

1

) through (et; a
m+l

; v

m+l

)

the role-edges of the newly added relationships
for each a 2 ATTR such that E 2 owner(a) and a 62 fa

1

; : : : ; a

m+l

g,
add (et; a;?

domain(a)

)

return (I

0

)

The ER pattern P 0

= (V

0

;W

0

; �

0

; �

0

) from Definition 5.15 is obtained by extending the pattern P
with nodes and edges for the parts to be added by the entity addition. In the case of the example, P 0

consists of

� V

0

= fe

1

; e

2

; r

1

; v

1

; v

2

; v

3

g

� W

0

= f(e

1

; name; v
1

); (e

1

; location; v
2

); (r

1

; ha c; e
1

); (r

1

; ha cc; e
2

); (e

2

; password; v
1

);

(e

2

; limit; v
3

)g

3That is, nodes not already present in V.

5.2. GOOD/ER: A GRAPH-ORIENTED OBJECT DATABASE LANGUAGE 109

� �

0 is defined by the following table:

node label
e

1

CUSTOMER
e

2

CASH CARD
r

1

has
v

1

string
v

2

address
v

3

money

� �

0 is defined by the following table:
node attribute
v

2

Antwerp
v

3

5000

The definition of the semantics of entity additions may best be explained by applying the example
entity addition of Figure 5.7 to the sample ER instance shown in Figure 5.8.

location

CUSTOMER
name

string

Antwerp

address

location
JohnPete

Frank

Willy

CUSTOMER
name

string

CUSTOMER
name

string

location

CUSTOMER
name

string

address

location

Leiden

password

5000

limitCASH CARD

has

ha_cc

ha_c

password

limitCASH CARD

has

ha_cc

ha_c

4999

money

money

Figure 5.8: Input instance to the example entity addition of Figure 5.7

It may be verified that the pattern of the entity addition of Figure 5.7 has three embeddings in this
ER instance, namely for the customers named Pete, John and Frank, since they all live in Antwerp.
The pattern doesn’t match the customer named Willy, since he lives in Leiden.

These three embeddings are treated by the algorithm defining the semantics of an entity addition
in some arbitrary order. Since this algorithm uses the set of embeddings of the pattern in the input
instance, and the condition on the extendibility of the pattern of the operation is also checked on the
input instance (and not on the intermediate result I 0), the algorithm is clearly independent of the cho-
sen order. Suppose that on applying the considered sample entity addition, the algorithm starts with
the embedding corresponding to customer Frank. Then the condition on embedding extensions in the
algorithm will fail, since Frank already has a cash card with his name as password, and a limit of 5000.
Next, the algorithm might consider the embedding corresponding to customer John. Since John has a

110 CHAPTER 5. DATABASE MANIPULATION DEFINED AS GRAPH-REWRITING

cash card with his name as password, but with a limit of 4999, he is assigned a new cash card. Like-
wise, Pete is assigned a new cash card, since he did not have one in the input instance.

In summary, an application of the entity addition of Figure 5.7 to the input instance of Figure 5.8
(the resulting instance of which is shown in Figure 5.9) adds (among others) two new entities of type
CASH CARDto the instance. The fact that these entities are taken “at random” from the universe of
entities E explains the phrase “...one possible outcome of the following algorithm...”. Indeed, since
the algorithm does not specify which entities are taken from E , the outcome of this algorithm is a priori
non-deterministic.

location

CUSTOMER
name

string

Antwerp

address

location
JohnPete

Frank

Willy

CUSTOMER
name

string

CUSTOMER
name

string

location

CUSTOMER
name

string

address

location

Leiden

password

5000

limitCASH CARD

has

ha_cc

ha_c

password

limitCASH CARD

has

ha_cc 4999password

limit

CASH CARD

has

ha_cc

ha_c

password

limit

CASH CARD

has

ha_cc

ha_c

ha_c

money

money

Figure 5.9: Output instance of the example entity addition

However, two possible outcomes of the algorithm are strongly related. On one hand, they both
include the input instance. On the other hand, they indeed only differ in the “identity” of the newly
added entities. This similarity between possible outcomes of an entity addition may be formally cap-
tured as follows. First, the intuitive notion of ER instances differing only in the identity of their entities
is formalized by means of the notion of isomorphism:

Definition 5.16 (Isomorphism) Two graphs I and I 0 are isomorphic, if I can be embedded injec-
tively in I 0 and vice versa. An injective embedding of a graph into an isomorphic graph is called an
isomorphism.

Next, the similarity between two possible outcomes of an entity addition may be formalized using
the notion of I-isomorphism. As opposed to general isomorphism, I-isomorphism captures the fact
that two ER instances are identical on some common subinstance I , and differ elsewhere only in the
identity of their entities:

5.2. GOOD/ER: A GRAPH-ORIENTED OBJECT DATABASE LANGUAGE 111

Definition 5.17 (I-isomorphism) Let I be a graph. Two graphs J and J 0 are I-isomorphic if there
exists an isomorphism from J to J 0 that is the identity on I \J , and whose inverse is the identity on
I \ J

0.

Given this notion, the following lemma may be easily verified:

Lemma 5.18 Any two outcomes of the application of an entity addition to some instance I are I-
isomorphic. Conversely, if an instance I

1

is I-isomorphic to an instance I
2

which is the outcome of
the application of an entity addition to some instance I , then I

1

itself is also a possible outcome of
the application of that entity addition to I .

A special case of isomorphisms, namely isomorphisms of an instance onto itself, may be used to
gain some insight into the set of embeddings of a pattern in an instance.

Definition 5.19 (Automorphism) Let I be a graph. An automorphism of I is an isomorphism from
I onto itself. Aut(I) is the group of all automorphisms of I .

Using the notion of automorphisms, the following lemma may be easily seen to hold:

Lemma 5.20 The composition of an embedding of a graph I 0 in a graph I and an automorphism of
I, is itself an embedding of I 0 in I .

Proof The proof follows readily from the fact that isomorphisms, and hence automorphisms, are
themselves embeddings, and the fact that the composition of two embeddings is also an embedding.

This lemma will turn out to be of crucial importance to the study of the expressive power of the
GOOD/ER language in Section 5.3.

Besides adding relationships involving newly added entities, it should also be possible to simply
add relationships involving only entities already present in an instance. Hence we define the following
GOOD/ER operation:

Definition 5.21 (Relationship Addition) Given an ER schemeS , a relationship addition overS takes
as input

� an ER pattern P = (V;W; �; �) over S

� R 2 R-TYPE

� RO =< e

1

; : : : ; e

q

>2 V

+ such that R(P
1

: �(e

1

); : : : ; P

q

: �(e

q

)) 2 R-TYPE

Let P 0 be the ER pattern (V

0

;W

0

; �

0

; �) where

� V

0 equals V extended with a new node r labeled R by �0. On V , �0 equals �.

112 CHAPTER 5. DATABASE MANIPULATION DEFINED AS GRAPH-REWRITING

� W

0 equals W extended with role-edges from r to the nodes in RO.

The result of applying the relationship addition RELADD[P; R;RO] to an ER instance I over S
is defined as the outcome of the following algorithm:

I

0

:= I;
for each embedding m of P in I do

V

I

0

= V

I

0

[f(r

1

: m(e

1

); : : : ; r

q

: m(e

q

))g

W

I

0

= W

I

0

[fthe role-edges of the newly added relationshipg
return (I

0

)

Figure 5.10 shows an example relationship addition over the scheme of Figure 5.1. The result of
this operation applied to some ER instance is that, if some customer has a cash card and holds an ac-
count, the cash card is “granted access” to the account.

ACCOUNT

CASH CARD

CUSTOMER

accesses

a_a

a_cc

has

ha_cc

ha_c

holds
ho_a ho_c

Figure 5.10: An example relationship addition

In terms of the notation of Definition 5.21, Figure 5.10 shows the relationship addition
RELADD[P; R;RO] with

� the pattern P = (V;W; �; �) consisting of

– V = fe

1

; e

2

; e

3

; r

1

; r

2

g

– W = f(r

1

; ha cc; e
1

); (r

1

; ha c; e
2

); (r

2

; ho c; e
2

); (r

2

; ho a; e
3

)g

– � is defined by the following table:

node label
e

1

CASH CARD
e

2

CUSTOMER
e

3

ACCOUNT
r

1

has
r

2

holds

– � is undefined on V .

� the relationship type R equal to accesses , being the type of the relationships to be added

5.2. GOOD/ER: A GRAPH-ORIENTED OBJECT DATABASE LANGUAGE 113

� the list RO containing the entities in the pattern that are to play the roles of the newly added
relationships, equal to < e

1

; e

3

>.

The pattern P 0 is obtained in a similar way as with the example entity addition.
The semantics of the operation is that for each embedding of the pattern in the given ER instance,

mapping the CASH CARDand ACCOUNTnodes in the pattern to respectively entities e0 and e00 in the
instance, the accesses -relationship (a cc; e0; a a; e00) is added. Note that since this relationship is
uniquely determined by the combination of the roles and the entities in the input instance, there is no
non-determinism involved in the algorithm defining the semantics of a relationship addition, as op-
posed to the definition of entity additions. In addition, there is no need for a check on the extensibility
of the considered embedding, since adding a relationship to an instance in which it is already present,
simply has no effect.

We now turn our attention towards attributes. Since attributes are always defined (even if they are
set to the null value?

d

) it makes no sense to consider either attribute deletions or additions. The only
operation on attributes that does make sense is a modification or update of the value of some attribute:

Definition 5.22 (Attribute Update) Given an ER scheme S , an attribute update over S takes as input

� an ER pattern P = (V;W; �; �) over S

� A 2 ATTR

� e 2 V such that owner(A) 3 �(e)

� one of the following:

1. v 2 V such that domain(A) = �(v) and �(v) is defined

2. v 2 �[D-TYPE](domain(A))

If v 2 V , then the result of applying the attribute update ATTUPD[P ; A; e; v] to an ER instance I
over S is defined as the outcome of the following algorithm:

I

0

:= I;
for each embedding m of P in I do

W

I

0

= W

I

0

� f(m(e); A; x)g (for some x 2 V

I

)
W

I

0

= W

I

0

[f(m(e); A;m(v))g

V

I

0

= V

I

0

� fv j �

I

(v) 2 D-TYPE^ 6 9e 2 V

I

0

; A

0

2 ATTR : (e; A

0

; v) 2 W

I

0

g

return (I

0

)

If v 62 V , then the result of applying the attribute update ATTUPD[P ; A; e; v] to the instance I is
defined as the outcome of the following algorithm:

I

0

:= I;
for each embedding m of P in I do

W

I

0

= W

I

0

� f(m(e); A; x)g (for some x 2 V

I

)
W

I

0

= W

I

0

[f(m(e); A; v)g

114 CHAPTER 5. DATABASE MANIPULATION DEFINED AS GRAPH-REWRITING

V

I

0

= V

I

0

[fvg

V

I

0

= V

I

0

� fv j �

I

(v) 2 D-TYPE^ 6 9e 2 V

I

0

; A

0

2 ATTR : (e; A

0

; v) 2 W

I

0

g

return (I

0

)

By the one but last statement of each algorithm, isolated values (i.e., values that no longer occur
as attribute of some entity) are deleted, since otherwise, the resulting graph of the algorithm would no
longer correspond to an ER instance.

In a sense, an attribute addition may also be used both to “delete” an attribute, by supplying?
d

as
the new value, or to “add” an attribute, if the old value happened to be equal to ?

d

.
In the above definition, a distinction is made between two kinds of attribute updates: either the

attribute value is taken from the pattern, or it is provided separately. We illustrate both kinds by means
of an example.

Figure 5.11 shows an attribute update in which the attribute value is taken from the pattern. More
precisely, this operation sets to zero the limit of all cash cards that access an account with a zero bal-
ance.

money
balance

ACCOUNT

CASH CARD

accesses

a_cc

a_c

limit

0

Figure 5.11: An example attribute update (I)

In terms of the notation of Definition 5.22, Figure 5.11 shows the attribute update
ATTUPD[P ; A; e; v] with

� the pattern P = (V;W; �; �) consisting of

– V = fe

1

; e

2

; v

1

; r

1

g

– W = f(r

1

; a cc; e
1

); (r

1

; a a; e
2

); (e

2

; balance; v
1

)g

– � is defined by the following table:

node label
e

1

CASH CARD
e

2

ACCOUNT
r

1

accesses
v

1

money

– � maps v
1

to 0.

� the attribute type A equal to limit , being the type of the attributes to be updated

5.2. GOOD/ER: A GRAPH-ORIENTED OBJECT DATABASE LANGUAGE 115

� the entity e equal to e
1

, being the entity whose attribute is to be updated

� the value v equal to the node v
1

, being the new value of the updated attributes.

This example may also be used to illustrate the need for the requirement that � must be defined on
the node v taken from the pattern as the new value of the updated attribute. Indeed, suppose � were
undefined on the money-node in the pattern of the update addition in Figure 5.11. Now consider the
ER instance graph depicted in Figure 5.12. Then the pattern would clearly have two embeddings in the
instance of Figure 5.12. The outcome of the (first) algorithm in Definition 5.22 would now depend on
the order in which these embeddings were treated! Indeed, if the embedding mapping the money-node
in the pattern to the value 1234 is treated first, then in the instance resulting from the algorithm, the
cash card gets the limit 5678, and vice versa. The only way to avoid this clearly undesirable semantics
is to require that the target node of a newly added attribute edge is a uniquely specified value in the
pattern.

money
balance

ACCOUNT

CASH CARD

accesses

a_c

money
balance

ACCOUNT

accesses

a_cc

a_c

1234 5678

a_cc

Figure 5.12: An ER instance graph

Figure 5.13 shows an attribute update in which the attribute value is provided separately. More
precisely, this operation blocks all accounts with a zero balance.

money
balance

0

ACCOUNTbool

true

blocked

Figure 5.13: An example attribute update (II)

In terms of the notation of Definition 5.22, Figure 5.13 shows the attribute update
ATTUPD[P ; A; e; v] with

� the pattern P = (V;W; �; �) consisting of

– V = fe

1

; v

1

g

– W = f(e

1

; balance; v
1

)g

– � is defined by the following table:
node label
e

1

ACCOUNT
v

1

money

116 CHAPTER 5. DATABASE MANIPULATION DEFINED AS GRAPH-REWRITING

– � maps v
1

to 0.

� the attribute type A equal to blocked , being the type of the attributes to be updated

� the entity e equal to e
1

, being the entity whose attribute is to be updated

� the value v equal to “true”, being the new value of the updated attributes.

The result of applying this attribute update to any ER instance is that the blocked -attribute of all
ACCOUNTs with a zero balance is set to “true”, regardless of the value of the blocked -attribute
in the input instance.

Previously, we have introduced GOOD/ER operations that allow the addition of entities and/or
relationships. For both operations, we now introduce a “deleting counterpart”, i.e., operations that
allow the deletion of either entities or relationships.

The first operation, called entity deletion, allows the deletion of entities, together with all their
attributes and the relationships in which they participate:

Definition 5.23 (Entity Deletion) Given an ER scheme S, an entity deletion over S takes as input

� an ER pattern P = (V;W; �; �) over S

� e 2 V such that �(e) 2 E-TYPE

The result of applying the entity deletion ENTDEL[P ; e] to an ER instance I over S is defined as
the outcome of the following algorithm:

I

0

:= I;
for each embedding m of P in I do

V

I

0

= V

I

0

� fm(e)g � fall relationships involving eg
E

�(e)

:= E

�(e)

� fm(e)g;
W

I

0

= W

I

0

j

V

I

0

V

I

0

= V

I

0

� fv j �

I

(v) 2 D-TYPE^ 6 9e0 2 V

I

0

; A

0

2 ATTR : (e

0

; A

0

; v) 2 W

I

0

g

return (I

0

)

By removing a deleted entity from the universe of entities, the tricky situation is avoided where
one and the same entity is deleted from an instance, and subsequently reinserted by an entity addition
(or abstraction, see furtheron). This is motivated by the fact that the actual identity of entities is of no
concern when basic GOOD/ER operations are executed. Hence one cannot and should not be able to
make any assumptions about the identity of a newly added entity.

Figure 5.14 shows an example entity deletion. The pattern of this operation consists of the entire
picture, whereas the part (the image of which under embeddings is) to be deleted (in this case, the CASH
CARD-entity) is indicated with double lines. This operation removes all cash cards of the customer
named “John Smith”, as well as all has -, started by -, accesses - and issues -relationships
in which these CASH CARD-entities are involved. The algorithm of Definition 5.23 takes care of the

5.2. GOOD/ER: A GRAPH-ORIENTED OBJECT DATABASE LANGUAGE 117

CASH CARD CUSTOMER string

John Smith

name
has

ha_cc ha_c

Figure 5.14: An example entity deletion

deletion of all attribute and role edges entering or leaving the deleted entities, by simply restricting the
edge set of the ER instance graph to those edges involving nodes which are still in the graph after the
removal of the entities and the relationships in which they participate.

The second kind of deleting operations allows the deletion of relationships:

Definition 5.24 (Relationship Deletion) Given an ER scheme S , a relationship deletion over S takes
as input

� an ER pattern P = (V;W; �; �) over S

� r 2 V such that �(r) 2 R-TYPE

The result of applying the relationship deletion RELDEL[P ; r] to an ER instanceI overS is defined
as the outcome of the following algorithm:

I

0

:= I;
for each embedding m of P in I do

V

I

0

= V

I

0

� fm(r)g

W

I

0

= W

I

0

j

V

I

0

return (I

0

)

Figure 5.15 shows an example relationship deletion. This operation expresses the fact that no cash
cards should be allowed to access blocked accounts. The operation therefore looks for embeddings of
the pattern consisting of a CASH CARDwhich accesses an ACCOUNTwhose blocked -attribute
is set to “true”, and deletes the accesses -relationship.

ACCOUNTCASH CARD accesses
a_cc a_a blocked

bool

true

Figure 5.15: An example relationship deletion

A major characteristic of all GOOD/ER operations is that, by the mechanism of pattern matching,
operations can only use information stored explicitly in the ER instance. Examples of such explicitly
stored information are

� the (non)-existence of entities or relationships of a certain type;

118 CHAPTER 5. DATABASE MANIPULATION DEFINED AS GRAPH-REWRITING

� the presence/absence of certain values;

� a value (not) being an attribute of a certain entity;

� an entity (not) playing a certain role in a relationship.

Examples of information not accessible through pattern matching are

� specific properties of values (e.g., an integer being positive);

� the identity of entities (e.g., the presence of a particular entity e).

In Section 5.3, we formally prove that the GOOD/ER language is capable of expressing all possible
transformations using only explicitly stored information (in a sense to be made precise). With the five
GOOD/ER operations introduced so far, however, the above claim does not hold. Concretely, using
these five operations, it is for instance not possible to group entities that are indistinguishable on the
basis of explicitly stored information (of a certain type) concerning them. We clarify this kind of ma-
nipulation (i.e., the grouping of such “indistinguishable” entities) by means of an example.

Consider the (partial) ER instance graph depicted in Figure 5.16. It shows a number of cash cards
(the identifiers e1 through e4 are used further on to distinguish the various nodes), accessing a number
of accounts. If we restrict our view on cash cards to the information of type accesses concerning
them (i.e., we don’t take into account their attributes, or any other relationships in which they might
participate), then we can say that the two leftmost cash cards are indistinguishable, since they both
access both accounts shown in the ER instance graph, whereas the third cash card accesses only one
of them, and the fourth cash card doesn’t access any account.

ACCOUNT

CASH CARD

accesses

a_cc

accesses accesses accesses accesses

ACCOUNT

CASH CARD CASH CARD

a_cc a_cc a_cc a_cc

a_aa_aa_aa_aa_a

CASH CARD

e1 e2 e3 e4

Figure 5.16: The input instance for the example entity abstraction

Hence an operation that groups (or, to be precise, partitions the set of) cash cards based on this
similarity, should have the effect shown in the ER instance graph of Figure 5.17.

We implicitly assume that the ER scheme includes an entity type CC-SET (used for representing
sets of cash cards, hence its name) as well as a relationship type contains , used for linking CC-SETs
to the CASH CARDs contained in them. The resulting instance of the grouping operation contains three
additional entities, each representing a set of cash cards, the elements of which are indistinguishable
on the basis of the accesses -relationships they participate in.

In [VdBP91], it was shown that this operation cannot be performed using only the five GOOD/ER
operations introduced so far. Hence we define the following additional operation:

5.2. GOOD/ER: A GRAPH-ORIENTED OBJECT DATABASE LANGUAGE 119

ACCOUNT

CASH CARD

accesses

a_cc

accesses accesses accesses accesses

ACCOUNT

CASH CARD CASH CARD

a_cc a_cc a_cc a_cc

a_aa_aa_aa_aa_a

CC−SET

co_set

co_cc

contains

CC−SET

containscontains

co_set

co_cc

co_set

co_cc

CASH CARD

CC−SET

co_set

contains

co_cc

Figure 5.17: The output instance for the example entity abstraction

Definition 5.25 (Entity Abstraction (syntax)) Given an ER scheme S , an entity abstraction over S
is denoted syntactically as ENTABS[P ; e; E; R;RE] with the following input parameters:

� an ER pattern P = (V;W; �; �) over S

� e 2 V such that �(e) 2 E-TYPE

� E 2 E-TYPE

� R 2 R-TYPE such that participants(R) =< E; �(e) >, with roles P
1

: R ! E and P
2

: R !

�(e)

� RE 2 R-TYPE such that participants(RE) =< P

3

; P

4

>, with P
3

: RE ! �(e)

4

Figure 5.18 shows the entity abstraction which, when applied to the ER instance shown in Fig-
ure 5.16, results in the ER instance shown in Figure 5.17.

CASH CARD accesses
a_cc

CC−SET
co_set co_cc

contains

Figure 5.18: An example entity abstraction

In terms of the notation of Definition 5.25, Figure 5.18 shows the entity abstraction
ENTABS[P; e; E;R;RE] with

4The reason for considering entity abstraction only over binary relationships is merely one of succinctness: it is per-
fectly possible to define abstraction over arbitrary n-ary relationships, but as Section 5.3 shows, this would not add to the
expressive power of the GOOD/ER language.

120 CHAPTER 5. DATABASE MANIPULATION DEFINED AS GRAPH-REWRITING

� the pattern P = (V;W; �; �) consisting of

– V = fe

1

g

– W = ;

– � maps e
1

to CASH CARD

– � is undefined on V .

� the entity e equal to e
1

� the entity type E equal to CC-SET, being the type of the entities that (will) represent sets of
cash cards

� the relationship type R equal to contains , being the type of the relationships used to link the
sets to their elements

� the relationship type RE equal to accesses , indicating which relationship type should be con-
sidered for partitioning the cash cards

In Figure 5.18, one can see that the pattern and the “addition part” of an entity abstraction are denoted
as usual (i.e., using plain lines for the pattern, and bold lines for the addition part). The role and the
relationship type used for partitioning the cash cards are indicated with dotted lines.

Definition 5.26 (Entity Abstraction (semantics)) Let ENTABS[P; e; E;R;RE] be an entity abstrac-
tion over an ER scheme S as defined in Definition 5.25, and let I be an ER instance over S .

Let S be the set fm(e) j m : P ! I is an embeddingg, and let � be the partition of S, defined by
the equivalence relation

p � q , (8t 2 V

I

: (P

3

; p; P

4

; t) 2 V

I

, (P

3

; q; P

4

; t) 2 V

I

)

Then the result of applying the entity abstraction ENTABS[P ; e; E;R;RE] to I is defined as one
possible outcome of the following algorithm:

I

0

:= I;
for each T 2 � do

if not exists v
1

2 V

I

: �

I

(v

1

) = E ^ fv

2

j (P

1

; v

1

; P

2

; v

2

) 2 V

I

g = T

then add to V
I

0 a new entity et 2 E
E

� V

I

0 of type E
the relationships (P

1

; v

1

; P

2

; v

2

) (8v

2

2 T)

add to W
I

0 the role-edges of the newly added relationships
for each A 2 ATTR such that E 2 owner(A), add (e; A;?

domain(A)

)

return (I

0

)

5.2. GOOD/ER: A GRAPH-ORIENTED OBJECT DATABASE LANGUAGE 121

The set S of embeddings of the pattern P 0 in the ER instance graph of Figure 5.16 obviously con-
tains four elements, since the single node ofP 0 may be mapped to each of the four CASH CARD-nodes
in the graph. The partition � of S equals ffm1; m2g; fm3g; fm4gg, as explained above. Given this
partition, the algorithm of Definition 5.26 then works similarly to that of Definition 5.15 of entity addi-
tions, with the single difference that whereas the algorithm for entity addition operates on the images of
the pattern under the embeddings, the algorithm for entity abstraction operates on the elements of the
partition �. In summary, the result of applying the entity abstraction of Figure 5.18 to the ER instance
shown in Figure 5.16 is shown in Figure 5.17.

5.2.3 GOOD/ER Programs

In order to obtain a language based on the six basic GOOD/ER operations, we still have to intro-
duce programming primitives that allow the grouping of basic operations into programs. In [AP91,
GPVdBVG94], a programming language is discussed, consisting of fourteen programming constructs
(including typical ones such as conditional statements and while-loops) which may be used to group
into programs basic graph rewriting operations (strongly reminiscent to those introduced in this sec-
tion). Twelve of these programming constructs are actually “macros”, defined in terms of two pro-
gramming primitives, allowing the sequencing respectively the grouping of basic operations. As defin-
ing programming constructs in terms of each other has little to do with graph rewriting (and hence with
the topic of this thesis), we restrict ourselves in this section to introducing these two programming
primitives.

The simplest programming construct allows the sequencing of any number of basic GOOD/ER
operations or method applications (to be defined further on):

Definition 5.27 (GOOD/ER program) A GOOD/ER program is a sequence of basic GOOD/ER op-
erations (i.e., entity addition, relationship addition, attribute update, entity deletion, relationship dele-
tion and entity abstraction) or method applications. The result of the application of a GOOD/ER pro-
gram to an instance is obtained by sequentially applying the operations constituting the program to
the instance, in the order given by the sequence.

Figure 5.19 shows a GOOD/ER program consisting of five basic GOOD/ER operations. The five
operations are separated by dotted lines in the figure, and the sequence should be read from top to
bottom. Under the assumption that its input instance does not contain any entities of type CC-SET,
this program removes from its input instance all CASH CARDs that do not access any ACCOUNT.

By means of the first three operations of the program, all the CASH CARDs that are to be removed,
are grouped by linking them to an entity of type CC-SET. First we create this entity, by means of an
entity addition with an empty pattern. An entity addition with an empty pattern creates exactly one
entity of the given type, unless the input instance already contains entities of that type. By means of
the second operation, a relationship addition, we link all CASH CARDs to the newly created entity, by
means of relationships of type contains . The CC-SET-entity may now be considered to represent
the set of all CASH CARDs in the instance. By means of the third operation, a relationship deletion,
we remove from this set the CASH CARDs that do access one or more ACCOUNTs. Finally we delete

122 CHAPTER 5. DATABASE MANIPULATION DEFINED AS GRAPH-REWRITING

CC−SET
co_set co_cc

contains

CC−SET

CASH CARD

accessesCC−SET
co_set co_cc

contains CASH CARD ACCOUNT
a_aa_cc

CC−SET
co_set co_cc

contains CASH CARD

CC−SET

Figure 5.19: An example GOOD/ER program

the CASH CARDs that are still in the set, as well as the set (i.e., the CC-SET-entity) itself by means
of two entity deletions.

Note how in this program, deletion is used to express negation, which cannot be expressed with a
single ordinary pattern.

The second programming construct we introduce allows to name and parametrize a sequence of
GOOD/ER operations. Such a sequence is called a GOOD/ER method, according to the terminology
of object-orientation. If supplied with the required actual parameters (in the form of an ER pattern)
the sequence may be applied by means of the method’s name.

Formally, let L be a countably infinite universe of parameter names.

Definition 5.28 (GOOD/ER method (syntax)) Let S be an ER scheme. Syntactically, a GOOD/ER
methodM over S is a pair (S

M

; B

M

) consisting of the method’s signature S
M

and the method’s body
B

M

:

� The signature is a three-tuple S
M

= (r

M

; L

M

; p

M

) with

– r

M

2 E-TYPE the method’s receiver type;

– L

M

� L a finite set containing names for the method’s parameters;

– p

M

: L

M

! E-TYPE[D-TYPE a function indicating the types of the method’s parameters;

� The body is a list B
M

=< O

1

; : : : ; O

n

> in which 81 � i � n, O
i

is either

– an ordinary basic GOOD/ER operation or a method application (see further on); or

– a basic GOOD/ER operation or a method application with as additional parameters

� a set si
M

which is either empty or contains a single entity of type r
M

in P 0 (where P 0

is the operation’s pattern), distinguishing the receiver;

5.2. GOOD/ER: A GRAPH-ORIENTED OBJECT DATABASE LANGUAGE 123

� p

i

M

: L

M

!+ V

P

satisfying 8l 2 L

M

: �

P

(p

i

M

(l)) = p

M

(l), distinguishing the formal
parameters.

Suppose it frequently occurs that a bank blocks all accounts of a given customer which are managed
by that bank, while at the same time setting the passwords of all cash cards owned by that customer
and which access those accounts to some string only known to the bank’s system administration. This
complex database manipulation may be accomplished with the GOOD/ER method block , the signa-
ture of which is depicted graphically in Figure 5.20, and the body of which is shown in Figure 5.21.

BANK CUSTOMER

string

rec

newpw

cust
block

Figure 5.20: An example GOOD/ER method signature

The method’s name is shown in the hexagon, which is linked to nodes labeled with the receiver and
parameter types by means of edges labeled with respectively rec and the parameter names. In terms of
the notation of Definition 5.28, Figure 5.20 shows the method signature Sblock = (rblock ; Lblock ;

pblock) where

� rblock , the method’s receiver type, equals BANK;

� Lblock , the set containing names for the method’s parameters, equals fnewpw; cust g

� pblock the function indicating the types of the method’s parameters, maps newpw to the data
type string and maps cust to the entity type CUSTOMER.

The body consists of a sequence < O

1

; O

2

> of two attribute updates, both with additional para-
meters.

The first attribute update blocks the accounts managed by the given bank and held by the given
customer. The formal parameters are distinguished graphically using the same conventions as in the
graphical depiction of the method’s signature, that is, by means of a hexagon linked to these various
parameters. In terms of the notation of Definition 5.28, the set s1

block

contains the entity of type BANK.
The partial function p

1

block

maps the parameter name cust to the entity of type CUSTOMER, and is
undefined on the parameter name newpw(since the latter parameter is irrelevant to this first operation).

The second attribute update sets the password of the cash cards issued by the given bank and owned
by the given customer to the given string. In terms of the notation of Definition 5.28, the set s2

block

contains the entity of type BANK. The function p2
block

is total, and maps the parameter name cust to
the entity of type CUSTOMER, and the parameter name newpw to the value of type string .

Given what methods look like syntactically, we can now define how they can be applied and what
the semantics of such an application is, in a way similar to the application of the basic GOOD/ER oper-
ations. Informally, the semantics of the method call is that the operations in the body of the method are

124 CHAPTER 5. DATABASE MANIPULATION DEFINED AS GRAPH-REWRITING

BANK CUSTOMER
rec cust

block

string

newpw

ACCOUNT

has
ha_cc

ha_c

holds
ho_a

ho_c

issues

ba_is

cc_is

bool

true

manages

ma_be

ma_ac

blocked

BANK CUSTOMER
rec cust

block

CASH CARD

password

Figure 5.21: An example GOOD/ER method body

applied consecutively, but with the matchings of their patterns restricted according to their additional
parameters indicating the actual receiver entity and parameters. Formally:

Definition 5.29 (GOOD/ER method (semantics)) Let M = (S

M

; B

M

) be a method over an ER
scheme S as defined in Definition 5.28, with signature S

M

= (r

M

; L

M

; p

M

) and body B

M

=<

O

1

; : : : ; O

n

>. Let I be an ER instance and P an ER pattern over S .
Let e be an entity in V

P

of type r
M

, called the receiver entity.
Let g : L

M

! V

P

be a function that identifies actual parameters in the pattern P , satisfying 8l 2
L

M

: �

P

(g(l)) = p

M

(l).
Assume that �

M 2 E-TYPE, rec 2 R-TYPE, rec1 : rec ! �

M; rec2 : rec ! r

M

2 ROLE and
8l 2 L

M

:

� if p
M

(l) 2 E-TYPE, then let R
l

2 R-TYPE with participants(R

l

) =<

�

M; p

M

(l) > and roles
r

1

l

: R

l

!

�

M and r2
l

: R

l

! p

M

(l);

� if p
M

(l) 2 D-TYPE, then let A
l

:

�

M! p

M

(l) 2 ATTR.

Then the result of applying the methodM[P; e; g] to the instance I is defined as one possible out-
come of the following sequence of GOOD/ER operations:

1. First, the entity addition ENTADD[P;

�

M; f(A

l

; g(l)) j l 2 L

M

; p

M

(l) 2 D-TYPEg; ;; fR
l

j l 2

L

M

; p

M

(l) 2 E-TYPEg [frecg; f(< (r

2

l

; g(l)) >; r

1

l

) j l 2 L

M

g [f(< (rec2; e) >; rec1)g],
marking the embeddings of the pattern of the method application.

5.2. GOOD/ER: A GRAPH-ORIENTED OBJECT DATABASE LANGUAGE 125

2. Next, for each 1 � i � n:

� If O
i

is an ordinary basic GOOD/ER operation or method application, then apply this op-
eration after having augmented its pattern with a single entity of type �

M;

� Otherwise, apply O
i

after having augmented its pattern with

– a single entity e0 of type �

M;

– the relationships f(r1
l

: e

0

; r

2

l

: p

i

M

(l)) j l 2 L

M

; p

i

M

(l) defined, p
M

(l) 2 E-TYPEg [
f(rec1 : e

0

; rec2 : e

i

) j s

i

M

= fe

i

gg together with the roles corresponding to these
relationships;

– the attributes f(A
l

; p

i

M

(l)) j l 2 L

M

; p

i

M

(l) defined, p
M

(l) 2 D-TYPEg.

3. Finally, the entity deletion ENTDEL[P 0

; fe

00

g] where P 0 is a pattern consisting of a single entity
e

00 of type �

M, removing the markings introduced by the first operation of this sequence.

Suppose an employee of the “General Savings” bank wishes to block both the accounts and cash
cards of customer John Smith, using the password “secret”. He can do this using the method applica-
tion depicted in Figure 5.22.

string

newpw

BANK CUSTOMER
rec cust

block

stringstring

General Savings John Smith
secret

name name

Figure 5.22: An example GOOD/ER method application

Graphically, a method application is represented by a boldface hexagon, linked to the actual para-
meters in the pattern by means of edges labeled with the parameter’s names, as well as an edge labeled
rec to the actual receiver entity in the pattern.

In terms of the notation of Definition 5.29, Figure 5.22 shows the method application block [P ; e; g]

where

� the pattern of the method application depicted in Figure 5.22 consists of the nodes and edges
drawn in plain lines;

� the receiver entity e is the entity of type BANK;

� the function g identifying the actual parameters maps the parameter name cust to the entity of
type CUSTOMER, and the parameter name newpw to the value of type string .

126 CHAPTER 5. DATABASE MANIPULATION DEFINED AS GRAPH-REWRITING

Figure 5.23 shows the actual sequence of basic GOOD/ER operations to be executed as a result of
the method application depicted in Figure 5.22. The initial entity addition marks the embeddings of
the pattern of the method application by means of entities of type block . These entities are linked
by means of relationships to the parameters which are entities, and have as attributes the parameters
which are values. These entities are then used in replacement of the hexagons in the operations from
the body of the method. The final operation removes them from the ER instance.

BANK CUSTOMER

string

ACCOUNT

has
ha_cc

ha_c

holds
ho_a

ho_c

issues

ba_is

cc_is

bool

true

manages

ma_be

ma_ac

blocked

BANK CUSTOMER

CASH CARD

string

BANK CUSTOMERrec

stringstring

General Savings John Smithsecret

name name

rec

rec

rec 1 rec 2

newpwA

custR

newpwA

newpwA

custR

custR

rec 1 rec 2

rec 1 rec 2

cust
r 1

cust
r 2

cust
r 1

cust
r 2

cust
r 1

cust
r 2

password

block

block

block

block

Figure 5.23: An example GOOD/ER method

A single feature from Definition 5.29 is not illustrated in this example, namely that of operations
in the body that do not use parameters. In this case, Definition 5.29 nevertheless enforces the addition
of an isolated entity (of type block in the case of the example) to their pattern. This ensures that
nothing happens if there are no embeddings of the pattern of the method application, since in this case,
the initial entity addition has no effect.

What the example does illustrate is how GOOD/ER methods offer the possibility to group and
parametrize a sequence of basic GOOD/ER operations for purposes of reuse and encapsulation. But

5.2. GOOD/ER: A GRAPH-ORIENTED OBJECT DATABASE LANGUAGE 127

besides these advantages, the method mechanism also adds to the expressive power of the GOOD/ER
language, since they introduces recursion into the language.

As an illustration, we conclude this section by modeling a version of the well-known transitive
closure problem (which is clearly not expressible by means of a simple fixed-length sequence of ba-
sic GOOD/ER operations) using a GOOD/ER method. Suppose our example ER scheme includes a
relationship type for modeling child-relationships between customers (cf. Figure 5.24).

CUSTOMER

has
child

parent child

Figure 5.24: A relationship type for modeling child-relationships between customers

Suppose we wish to explicitly represent descendancy-relationships between customers: one cus-
tomer is a descendant of another customer, if he is a child of that customer, or a child of a child of
that customer, and so on. In other words, the descendants-relationships represent the transitive clo-
sure of the child-relationships. This operation can be performed using the method TC (for Transitive
Closure), the signature and body of which are depicted in respectively Figures 5.25 and 5.26.

CUSTOMER

rec arg

TC

Figure 5.25: Signature of the GOOD/ER method expressing transitive closure

The method TC takes two customers as input, one as receiver and the other as argument.
It adds a descendant -relationship between the receiver and argument, and then calls itself on

the receiver and any child of the argument.
The program depicted in Figure 5.27 first “doubles” the childs -relationships with descendant -

relationships, after which it initiates the actual computation of the transitive closure by calling the
method TC on any customer with any child of a descendant of that customer as argument. Note that this
method loops forever in case the input instance contains cycles of has child -relationships. This
could be taken care of in the body of the method, by checking for the presence of a has ancestor -
relationship between the receiver and the argument, prior to recursively calling the method.

In [Eng90, Sch91a], another manipulation language was introduced for the EER model, called the
Visual Action Language. The definition of this language consists of three levels:

1. basic actions affect single elements (such as an entity or relationship) of an EER instance. They
operate on a graph-representation of a database instance, which includes among others an en-

128 CHAPTER 5. DATABASE MANIPULATION DEFINED AS GRAPH-REWRITING

CUSTOMER

descendanthas
ancestor

ancestor

CUSTOMER

CUSTOMER
descendanthas

ancestor

ancestor
CUSTOMER

has
child

parent

child

CUSTOMER

rec

arg
TC

TC
rec arg

TC

rec

arg

Figure 5.26: Body of the GOOD/ER method expressing transitive closure

CUSTOMER
has

child
parent

descendanthas
ancestor

child

ancestor

CUSTOMER

CUSTOMER
descendanthas

ancestor

ancestor
CUSTOMER

has
child

parent

child

CUSTOMER

rec

arg
TC

Figure 5.27: Program including an application of the GOOD/ER method expressing transitive closure

5.3. ON THE EXPRESSIVE POWER OF GOOD/ER 129

coding of the database scheme. Basic actions may be derived automatically from the database
scheme;

2. elementary actions consist of several basic actions, but respect the integrity constraints from the
database scheme. Such actions may therefore also be derived automatically from the database
scheme;

3. complex actions consist of several elementary actions, and are specified by the user. In order to
indicate the database elements to which the action should be applied, pre-computed queries are
used, represented by a special graphical symbol.

The following basic differences between the Visual Action Language and GOOD/ER may be de-
rived from this:

� the three-level definition of the actions in the Visual Action Language, as opposed to the two-
level definition (i.e., rules and programs) of graph rewrite systems in GOOD/ER;

� the automatic derivation of elementary actions from the scheme;

� the use of pre-computed queries as opposed to GOOD/ER’s patterns;

� the use of an encoding of the database scheme in the representation of the database instance.

5.3 On the Expressive Power of GOOD/ER

In Section 5.2, the introduction of the entity abstraction (Definitions 5.25 and 5.26) operation was mo-
tivated by the observation that a certain kind of operations (namely the grouping of entities based on
common properties) cannot be expressed as a sequence of the other basic GOOD/ER operations. This
raises the question whether, given the GOOD/ER language consisting of all six basic operations plus
the mechanism of sequencing, there are still other kinds of operations that cannot be expressed. Or,
to put things more positive: which category of operations can be expressed using the GOOD/ER lan-
guage as introduced in Section 5.2?

More generally, to demonstrate the viability of any newly proposed (and formally defined) lan-
guage, its expressive power should be compared to that of other languages. A possible approach to-
wards such a comparison of languages is the use of so-called completeness-criteria, a technique well
known in the area of database languages. Indeed, already in [Cod72], Codd proposed to call a lan-
guage for the relational database model complete if its expressive power could be shown equivalent
to that of some “standard” query language, like the relational calculus.

However, in [Ban78] Bancilhon argued that a completeness-criterion, in order to be sufficiently
meaningful, should be language independent. In [Ban78] respectively in [Par78] Bancilhon and Pare-
daens therefore (independently) introduced a similar criterion, stating when a query language for re-
lational databases deserves to be called complete.The criterion says that, in order to be complete, a
query language should express exactly the transformations from a database (i.e., a set of relations) D
to a relation R that satisfy the following two conditions. First, no new values may be added by the
transformation. Second, each domain permutation that maps D to itself, must also map R to itself. A

130 CHAPTER 5. DATABASE MANIPULATION DEFINED AS GRAPH-REWRITING

transformation satisfying these conditions is called a generic transformation. These conditions can be
summarized by saying that every automorphism of D must be an automorphism of R, or yet in other
words, every query in the considered language should commute with every automorphism of the input
database D.

It is also shown in the aforementioned articles that the relational calculus [Ban78] and algebra
[Par78] indeed express exactly these transformations, thereby providing an a posteriori justification
for Codds choice of the relational calculus as a reference language for testing completeness for rela-
tional query languages.

But what does the above criterion intuitively signify? The presence of a (non-trivial) automor-
phism for some database D can be interpreted as follows: for every value in D, there exists another
value which can “take its place” in the database. Indeed, when each value in D is substituted by its
image under the automorphism, D itself is obtained. Consequently, a value and its image under some
automorphism are indistinguishable on the basis of those relationships between them which are stored
explicitly in D. The criterion states that if such a resemblance exists in the input database of a query,
it should still exist in the resulting relation. Violating this is only possible by manipulating values
through more than just their relationships with other values (as stored explicitly in the relations of the
database), in other words by interpreting them. Consequently, this criterion is really very natural and
unrestrictive, since it merely prohibits interpreting values, or in other words, to perform calculations
on them.

Apart from its theoretical importance, the validity of the criterion for a certain language can also
have a practical usage if it is possible to readily check it for two given instances, since this is equivalent
to the existence of a transformation between them in the language under consideration.

In [CH80], the above criterion was named BP-completeness (after its inventors). Briefly, a lan-
guage is BP-complete if it can express exactly all generic transformations. Since its introduction, the
notion of genericity has been used frequently in the context of other database models. Naturally, if we
want to generalize it to other formalisms besides the relational one, we first have to appropriately define
concepts such as “transformation” and “automorphism”. An example may be found in [GPVG89], in
which BP-completeness is adapted and applied successfully to the nested relational database model.

The recent shift of attention of the database research community from the relational model to object-
oriented models raised the question if the BP-completeness criterion could also be applied to the as-
sessment of the expressive power of object-oriented query languages. It soon became clear, however,
that one particular characteristic of such languages would considerably complicate such an application.
First, remember from the above discussion that a first condition to be satisfied by a transformation ex-
pressed in a language satisfying the BP-completeness criterion, is that it may add no new values to the
input database. In object-oriented query languages, however, it is common practice to incorporate the
result of a query in the database, by creating (a) new object(s) for it.

So how does this influence the second condition of the BP-completeness criterion, namely that
transformations should commute with the automorphisms of the input database? On one hand, auto-
morphisms may still be looked upon as permutations of the basic elements of the database (in this case,
the objects), that preserve the structure of the instance (in this case, the relationships represented ex-
plicitly in the instance). In the course of a transformation, however, new objects may be created, while
others may be removed. Consequently, we can no longer impose an inclusion relationship on the sets
of automorphisms of the input- and output-instance of the transformation. The most natural translation

5.3. ON THE EXPRESSIVE POWER OF GOOD/ER 131

of such a relationship to the context of automorphism groups for object-base instances would therefore
be to require the existence of a mapping between the respective automorphism groups of two instances,
with the additional constraint that an automorphism and its image under the given mapping should co-
incide on the objects still in common to the input- and output-instance. This correspondence is crucial
for the understanding of the remainder of this section: database transformations for value-based data
models commuting with permutations corresponds to database transformations for object-based data
models preserving automorphisms.

This, however, does not yet solve all problems with applying the BP-completeness criterion to ob-
ject databases. In [AK89], the Identity Query Language IQL (which is a language involving object
creation) is introduced and shown to be very general and powerful. In the same article however, IQL is
shown unable to express exactly the class of transformations that satisfy the modified BP-completeness
criterion as discussed in the previous paragraph. In this section, we therefore introduce an adjusted
version of the criterion — in terms of mappings between automorphism groups, since it was shown
above that this is the most natural way to go in an attempt to translate BP-completeness criterion to
the context of languages involving object creation — and show that it allows us to precisely character-
ize the set of transformations expressible by means of GOOD/ER programs (i.e., sequences of basic
GOOD/ER operations excluding method applications).

In other words, we provide a language independent characterization for the set of pairs of ER in-
stances (I; I 0) for which there exists a GOOD/ER program mapping I to I 0.

Definition 5.30 (GOOD/ER-implication) Let I and I 0 be ER instances. I
GOOD/ER

=) I

0 holds if there ex-
ists a GOOD-program (i.e., a sequence of basic GOOD/ER operations excluding method applications)
that maps I to I 0.

One might wonder why we so explicitly exclude the powerful mechanism of methods from this
study. The reason for this is that for the problem we study in this section, this power is not needed. As
mentioned before, the additional power offered by methods comes solely from their ability to model
recursion. In this section, we study the problem of expressive power on “instance-level”, that is, given
two instances, we consider the problem of finding necessary and sufficient conditions for the existence
of a GOOD/ER program that maps one to the other. Suppose there is indeed a GOOD/ER program,
involving recursive methods, mapping one given instance to another given instance. Since both in-
stances are known in every possible detail, we also know exactly how many times (say, n) these recur-
sive methods will call themselves when the program is applied to the given input instance. Hence we
can simply replace the initial application of any recursive method in the given program by n copies of
the method’s body.

However, when studying the expressive power of database manipulations defined as mappings
from one set of instances to another set of instances, rather than between individual instances, the
power of methods is indeed needed, as shown in [VdBVGAG92, VdB93], where the main result of
this section is used to characterize the expressive power of database manipulations defined as map-
pings.

Returning to the problem to be dealt with in this section, remember that the characterization should
be stated in terms of a mapping between the respective automorphism groups of I and I 0, with the con-

132 CHAPTER 5. DATABASE MANIPULATION DEFINED AS GRAPH-REWRITING

straint that an automorphism and its image under the given mapping should coincide on the intersection
of I and I 0. In [AK89], it was shown that a condition based on an “ordinary” mapping between the
automorphism groups is too weak to precisely characterize the expressive power of an object creating
query language. Hence we strengthen the condition by demanding the existence of a homomorphism
between the automorphism groups, as captured in the following definition:

Definition 5.31 (Extension morphism) Let I and I 0 be two ER instances. An extension morphism
of type (I; I 0) is a group homomorphism h : Aut(I)! Aut(I

0

) such that

8v 2 V

I

\ V

I

0

; 8a 2 Aut(I) : a(v) = h(a)(v) (5.1)

We refer to property 5.1 as the extension property. To understand the meaning of this name, con-
sider the case where I is a subinstance of I 0. The condition then simply says that the image under h
of any automorphism should coincide with that automorphism on I .

The step from extension morphisms to an adapted BP-completeness criterion is simple. We re-
call that a language is BP-complete if it can express exactly all generic transformations. Hence the
following definition:

Definition 5.32 (Generic Transformations) Let I and I 0 be two ER instances. The pair (I; I 0) is a
generic transformation if there exists an extension morphism of type (I; I 0).

We are now ready to state the main result of this section, being that GOOD/ER expresses precisely
all generic transformations.

Theorem 5.33 Let I and I 0 be two ER instances. Then the following are equivalent:

1. I
GOOD/ER

=) I

0.

2. (I; I

0

) is a generic transformation.

A first proposition shows that GOOD/ER only expresses generic transformations.

Proposition 5.34 If for two ER instances I and I 0, I
GOOD/ER

=) I

0 holds, then (I; I

0

) is a generic transfor-
mation.

Proof The fact that I
GOOD/ER

=) I

0 holds, implies the existence of a GOOD/ER-program that maps I to
I

0. We prove the existence of an extension morphism h of type (I; I

0

) by induction on the length of
this program.

Let us first assume that the GOOD/ER-program consists of zero operations, so I equals I 0. The
identity-function on Aut(I) is then the required extension morphism of type (I; I 0).

5.3. ON THE EXPRESSIVE POWER OF GOOD/ER 133

For the general case, the induction-hypothesis is as follows: for each pair of instances for which

I

GOOD/ER

=) I

0, such that the GOOD/ER-program, mapping I to I 0 consists of at most ` basic GOOD/ER-
operations, there exists an extension-morphism of type (I; I 0).

Given a GOOD-program r consisting of `+ 1 basic GOOD/ER operationsr
1

; : : : ;r

`+1

, which
maps an instance I to an instance H0, we now have to prove the existence of an extension-morphism
h

0 of type (I;H0

).
Let I 0 be the result of applying the first ` operations of r to I . By the induction-hypothesis, we

know that there exists an extension-morphism h of type (I; I 0).
We now show how to change the extension-morphism h into an extension-morphism h

0 of type
(I;H

0

), depending on which kind of basic GOOD/ER operationr
`+1

actually is. Note first of all that
the behavior of an automorphism on an instance is completely determined by its behavior on the enti-
ties in that instance. Indeed, a relationship (P

1

: e

1

; : : : ; P

k

: e

k

) must be mapped by an automorphism
a to the relationship (P

1

: a(e

1

); : : : ; P

k

: a(e

k

)), whereas a value must obviously be mapped to itself.
Hence, when describing automorphisms in the remainder of this proof, we shall suffice with describing
their behavior on entities.

� Supposer
`+1

is an entity addition or abstraction. If no entities are actually added, the definition
of h0 is obvious. If an entity e is added as a “result” of an embeddingm of the pattern of the entity
addition in I 0, then for all a 2 Aut(I), an entity e

a

is also added as a result of the embedding
h(a) �m (cf. Lemma 5.20). We define h00(a)(e) = e

a

. Furthermore, we define h00(a) = h(a) on
V

I

0.

To see that h0 is an extension-morphism of type (I;H

0

), let m be an embedding of the pattern
of r

`+1

in I 0, and let a
1

and a

2

be two automorphisms of I . Suppose three entities e
1

; e

2

and
e

3

are added to I 0 as a result of the respective embeddings m; h(a

1

) �m and h(a
2

) � h(a

1

) �m.
Then h

0

(a

1

)(e

1

) = e

2

and h

0

(a

2

)(e

2

) = e

3

, so h

0

(a

2

) � h

0

(a

1

)(e

1

) = e

3

. But since the entity
added by h(a

2

) � h(a

1

) � m is e
3

, h0(a
2

� a

1

)(e

1

) = e

3

. The same reasoning holds for newly
added relationships and values, hence h0 is a group homomorphism. Since it is an extension of
h, h0(a) equals a on I \ H0, for all a 2 Aut(I).

� Supposer
`+1

is a relationship addition. If no relationships are actually added, the definition of
h

0 is obvious. If a relationship r is added as a “result” of an embedding m of the pattern of the
relationship addition in I 0, then for all a 2 Aut(I), a relationship r

a

is also added as a result of
the embedding h(a) � m. We define h0(a)(r) = r

a

. Furthermore, we define h0(a) = h(a) on
V

I

0.

The proof that h0 is an extension-morphism of type (I;H0

) is totally analogous to the case where
r

`+1

is an entity addition.

� Suppose r
`+1

is an attribute update. Then for any attribute edge (e; A; v), to be updated to
(e; A; v

0

) and for all a 2 Aut(I), the attribute edge (h(a)(e); A; h(a)(v)) is updated to (h(a)(e);
A; h(a)(v

0

)) = (h(a)(e); A; v

0

). Consequently, every automorphism of I 0 is also an automor-
phism of H0,5 so we can take h0 = h.

5Unless v0 is a value not in I , in which case each automorphism of I 0 may be straightforwardly extended to an auto-
morphism of H0.

134 CHAPTER 5. DATABASE MANIPULATION DEFINED AS GRAPH-REWRITING

� Suppose r
`+1

is an entity deletion. Then for any deleted entity e, and for all a 2 Aut(I), the
entity h(a)(e) is also deleted. The same holds for all relationships involving either e or h(a)(e).
As a result, the restriction of an automorphism of I 0 toH0 is an automorphism ofH0, so we can
take h0(a) equal to h(a) restricted to H0, for each a 2 AUT(I).

� Suppose r
`+1

is a relationship deletion. Then for any deleted relationship r and for all a 2

Aut(I), the relationship h(a)(r) is also deleted. As a result, the restriction of an automorphism
of I 0 to H0 is an automorphism of H0, so we can take h0(a) equal to h(a) restricted to H0, for
each a 2 AUT(I).

Next, we show that the GOOD/ER language can express any generic transformation (I; I 0). This is
proved in two steps. First we study the special case where I 0 is a superinstance of I (i.e., of monotonic
transformations). We give a GOOD/ER program that, when applied to I, results in a superinstance hI 0i
of I 0, which contains information derived from the extension morphism h. Then we state how this
superinstance may be restricted to I 0 by means of another GOOD/ER program (cf. Proposition 5.44).

In the second step, we consider arbitrary instances I 0. We therefore first describe an extension of I
that also includes I 0, as well as an adaptation of the extension morphism h to this superinstance. This
way we can apply the result of the first step, showing that I GOOD/ER-implies this superinstance.
Finally we show how this superinstance can be restricted to I 0 by means of yet another GOOD/ER
program (cf. Proposition 5.46).

In prepartion of the introduction of the superinstance hI 0i mentioned above, we first review some
graph-theoretical notions (see for instance [Hof82, Section 1.4]).

First, the orbit of a node in a graph is usually defined as the set of all nodes in that graph that are
the image of that node under some automorphism of the graph. We slightly adapt this definition using
the notion of extension-morphism:

Definition 5.35 (Orbit) Let I be a subinstance of I 0, and let h be an extension morphism of type
(I; I

0

). Let n be a node of I 0. The orbit of n w.r.t. h is defined as the set

orb
h

(n) = fn

0

2 V

I

0

j 9a 2 Aut(I) : h(a)(n) = n

0

g

In each orbit, an arbitrary but fixed node is chosen, called the representative of the orbit. Orbits
h

(I

0

�

I) is the set of all the orbits of nodes of I 0 � I w.r.t. h.

It can easily be seen that Orbits

h

(I

0

� I) is a partition of V
I

0

�I

.
Second, the stabilizer of a node in a graph is usually defined as the set of all automorphisms of the

graph that fix this node. We also adapt this definition to the notion of extension-morphism:

Definition 5.36 (Stabilizer) Let I be a subinstance of I 0, and let h be an extension morphism of type
(I; I

0

). Let n 2 V

I

0

�I

. The stabilizer of n w.r.t. h is defined as the set

st
h

(n) = fa 2 Aut(I) j h(a)(n) = ng

5.3. ON THE EXPRESSIVE POWER OF GOOD/ER 135

It can easily be seen that st
h

(n) is a subgroup of Aut(I).
The group-theoretical notion of (left) coset allows us to “characterize” nodes of a graph in terms

of orbits and stabilizers.

Definition 5.37 (Coset) Let G be a subgroup of Aut(I) and let a 2 Aut(I). A coset of G is defined
as a �G = fa � b j b 2 Gg. CosetAut(I) is the set of all cosets of all subgroups of Aut(I).

The following lemma is of crucial importance to the proof of the main result of this section. It
establishes a one-to-one correspondence between nodes added by a generic transformation (I; I

0

) on
one hand, and orbits and cosets of stabilizers on the other hand:

Lemma 5.38 Let I be a subinstance of I 0, and let h be an extension morphism of type (I; I 0). Let O
be an orbit in I 0 � I with representative n

O

. Then there exists a one-to-one correspondence between
O and the set of cosets of st

h

(n

O

).

Proof First, let n be a node of O. Then by definition, there is an automorphism a of I such that
h(a)(n

O

) = n. We claim that a�st
h

(n

O

) is a unique coset corresponding to n. To show that a�st
h

(n

O

)

indeed determines a unique coset, we have to prove that it is independent of the chosen automorphism
a. Indeed, suppose there is some other automorphism b of I such thath(b)(n

O

) = n. Then h(a)(n
O

) =

h(b)(n

O

). Applying h(b�1) to both sides of this equation yields h(b�1 � a)(n
O

) = n

O

, so b�1 � a is a
member of st

h

(n

O

). As a result, (b�1 � a) � st
h

(n

O

) = st
h

(n

O

). Applying b to both sides of the latter
equation yields a � st

h

(n

O

) = b � st
h

(n

O

).
Second, to a coset a � st(n

O

), corresponds the unique node h(a)(n
O

).
With this result, we are ready to define the instance hI 0i, which extends the “target”-instance I 0 of a

generic transformation (I; I

0

) with information derived from the corresponding extension morphism.

Definition 5.39 Let I be a subinstance of I 0, and let h be an extension morphism of type (I; I 0). We
define the extension hI 0i of I 0 w.r.t. I and h as follows.

� hI

0

i includes all entities of I 0, as well as

– the elements of Orbits
h

(I

0

� I) considered as entities, each of a unique type;

– the elements of Aut(I) considered as entities, all of type AUT;

– the elements of CosetAut(I) considered as entities, each typed by a unique name for the
subgroup corresponding to the coset.

We assume that all these entities and their types do not occur in I 0.

� hI

0

i includes all relationships and roles of I 0, as well as

– for each pair of different entities e
1

; e

2

in I of the same type, the relationship (�

�(e

1

)

1

:

e

1

; �

�(e

1

)

2

: e

2

) of type diff �(e

1

), as well as its corresponding roles;

136 CHAPTER 5. DATABASE MANIPULATION DEFINED AS GRAPH-REWRITING

– for each automorphisma 2 Aut(I) and each entity e inI , the relationship (��(e)
1

: a; �

�(e)

2

:

a(e)) of type e, as well as its corresponding roles, assuming that
S

E2E-TYPE �[E-TYPE](E)

� R-TYPE;

– for each coset b � G 2 CosetAut(I) and each automorphism a 2 b � G, the relationship
(

�(G)

1

: b �G;

�(G)

2

: a) of type ��(G), as well as its corresponding roles;

– for each orbit O 2 Orbits
h

(I

0

� I) and each entity e 2 O, the relationship (�

�(O)

1

:

O; �

�(O)

2

: e) of type 2�(O), as well as its corresponding roles;

– For each orbit-representative n
O

and each automorphism a 2 Aut(I), the relationship

(�

(�(st
h

(n

O

));�(n

O

))

1

: a � st
h

(n

O

); �

(�(st
h

(n

O

));�(n

O

))

2

: h(a)(n

O

)) of type �

(�(st
h

(n

O

));�(n

O

)),
as well as its corresponding roles.

We assume that all these relationship types and role names do not occur in I 0. The set of roles
of types �E

1

for all E 2 E-TYPE is referred to as the set of roles of type �
1

. The same holds for
all other roles and relationships.

� hI

0

i includes no attributes or values besides those of I 0.

The motivation behind this definition of the instance hI 0imay be found in the structure of the proof
of the forthcoming Proposition 5.44. In this proof it is shown how, given a pair of instances (I; I 0)
for which there exists an extension-morphism, a GOOD/ER program can be constructed that maps
I to I 0. In a first phase, this program adds to I its automorphisms (the “functionality” of which is
represented by means of the relationships labeled with entities), subgroups of Aut(I) and their cosets
(linked to their members by means of the �-relationships), as well as the orbits of I 0�I . We choose to
add these mappings and sets themselves to the instance I , since the alternative would be to add nodes
representing them, which would just clutter up all forthcoming definitions and proofs. In a second
phase, the GOOD/ER program then adds the nodes of I 0 together with the relationships of types �
and 2. These relationships link it to the coset and the orbit by which it is uniquely identified as a result
of Lemma 5.38.

Other particularities in the definition of hI 0i (such as the need for labeling relationships with en-
tities, or the presence of the diff -relationships) are explained in the course of the proof of Proposi-
tion 5.44.

In the following definition, a given extension-morphism of type (I; I

0

) is extended to a mapping
(which we show to be a group isomorphism) from Aut(I) to Aut(hI 0i):

Definition 5.40 Let I be a subinstance of I 0 and let h be an extension morphism of type (I; I

0

). Let
hI

0

i be the extension of I 0 according to Definition 5.39.
The group homomorphism hh

0

i : Aut(I)! Aut(hI 0i) is defined as follows. Let a 2 Aut(I).

1. hh0i(a)(n) = h(a)(n), for each node n of I 0;

2. hh0i(a)(O) = O, for O 2 Orbits
h

(I

0

� I);

5.3. ON THE EXPRESSIVE POWER OF GOOD/ER 137

3. hh0i(a)(b) = a � b, for b 2 Aut(I);

4. hh0i(a)(b �G) = a � b �G, for b �G 2 CosetAut(I).

The behavior of hh0i(a) on the relationships of hI 0i is defined as hh0i(a)((P
1

: n

1

; : : : ; P

k

: n

k

)) :=

(P

1

: hh

0

i(a)(n

1

); : : : ; P

k

: hh

0

i(a)(n

k

)).

Lemma 5.41 hh

0

i is a group isomorphism.

Proof We first have to show that hh0i is a well-defined mapping, i.e., that it maps automorphisms of
I to automorphisms of hI 0i. Let d be an automorphism of I. It follows directly from the definition
that hh0i(d) is a one to one function of V

hI

0

i

onto itself, preserving all node labels. We now show that
hh

0

i(d) also preserves all relationships in hI 0i.

� By the first item of its definition, hh0i(d) preserves all relationships of I 0;

� Since hh0i(d) is a one to one function, it preserves the diff -relationships;

� If, for some a 2 Aut(I) and e 2 V

I

, (��(e)
1

: a; �

�(e)

2

: a(e)) is a relationship in hI 0i, then
(�

�(e)

1

: hh

0

i(d)(a); �

�(e)

2

: hh

0

i(d)(a)(e)) = (�

�(e)

1

: d � a; �

�(e)

2

: d � a(e)) is also a relationship
in hI 0i;

� If (
�(G)
1

: c �G;

�(G)

2

: a) is a relationship in hI 0i, then a 2 c � G, so d � a 2 d � c � G. As a
result, (
�(G)

1

: hh

0

i(d)(c � G);

�(G)

2

: hh

0

i(d)(a)) = (

�(G)

1

: d � c � G;

�(G)

2

: d � a) is also a
relationship in hI 0i;

� If (��(O)
1

: m; �

�(O)

2

: O) is a relationship in hI 0i, then m 2 O. Consequently, by the definition
of orbits, (��(O)

1

: hh

0

i(d)(m); �

�(O)

2

: hh

0

i(d)(O)) = (�

�(O)

1

: h(d)(m); �

�(O)

2

: O) is also a
relationship in hI 0i;

� If (�(�(st
h

(n

O

));�(n

O

))

1

: h(a)(n

O

); �

(�(st
h

(n

O

));�(n

O

))

2

: a � st
h

(n

O

)) is a relationship in hI 0i, then
(�

(�(st
h

(n

O

));�(n

O

))

1

: hh

0

i(d)(h(a)(n

O

)); �

(�(st
h

(n

O

));�(n

O

))

2

: hh

0

i(d)(a � st
h

(n

O

))) =

(�

(�(st
h

(n

O

));�(n

O

))

1

: h(d � a)(n

O

); �

(�(st
h

(n

O

));�(n

O

))

2

: d � a � st
h

(n

O

)) is also a relationship in
hI

0

i.

To show that hh0i is a group homomorphism, it can be trivially verified that for every node n of
hI

0

i and for every a; b 2 Aut(I), hh0i(a � b)(n) = (hh

0

i(a) � hh

0

i(b))(n).
We now show that hh0i is injective. If a 6= b 2 Aut(I), there is a noden in I for which a(n) 6= b(n).

Since h is an extension-morphism, hh0i(a)(n) = a(n) 6= b(n) = hh

0

i(b)(n), so hh0i(a) 6= hh

0

i(b).
Finally, we prove that hh0i is surjective. Let therefore ha0i 2 Aut(hI 0i). Because ha0i has to pre-

serve relationships of type 2, and each entity of I 0 � I participates in precisely one relationship of
type 2, ha0i must map entities (and hence also relationships and values) of I 0 � I to entities (respec-
tively relationships and values) of I 0 � I . As a result, ha0i maps nodes of I to nodes of I , and hence
ha

0

ij

V

I

2 Aut(I). We claim that ha0i = hh

0

i(ha

0

ij

V

I

).

138 CHAPTER 5. DATABASE MANIPULATION DEFINED AS GRAPH-REWRITING

� Since orbits (as nodes of hI 0i) have a label which is unique to hI 0i, they must be fixed by ha0i
as well as by hh0i(ha0ij

V

I

);

� Let n be a node of I . Since h is an extension-morphism, h(ha0ij
V

I

)(n) = ha

0

ij

V

I

(n) = ha

0

i(n),
so ha0i = hh

0

i(ha

0

ij

V

I

) on I;

� Let b be an automorphism of I . By the definition of hh0i, hh0i(ha0ij
V

I

)(b) = ha

0

ij

V

I

� b. The im-
age under the automorphism ha

0

i(b) of a node n of I must equal the target of the n-labeled edge
leaving the node ha0i(b). Since ha0i is an automorphism of hI 0i, this target must in turn equal
the node ha0i(b(n)) = ha

0

ij

V

I

(b(n)). We conclude that ha0i(b) and hh0i(ha0ij
V

I

)(b) represent the
same automorphism, so ha0i and hh0i(ha0ij

V

I

) map b to the same node;

� Let G 2 CosetAut(I) such that G = fb

1

; : : : ; b

n

g � Aut(I). By the relationships of type
�, an automorphism c of hI 0i must map G to the coset fc(b

1

); : : : ; c(b

n

)g. In other words, the
behavior of an automorphism of hI 0i on Aut(I), determines its behavior on CosetAut(I). Since
ha

0

i = hh

0

i(ha

0

ij

V

I

) on Aut(I), ha0i also equals hh0i(ha0ij
V

I

) on CosetAut(I);

� By Lemma 5.38, the behavior of an automorphism of hI 0i on I 0-I is determined by its behavior
on Orbits

h

(I

0

�I)[CosetAut(I). Since hh0i(ha0ij
V

I

) and ha0i are equal on Orbits
h

(I

0

� I)[

CosetAut(I), they are also equal on I 0 � I .

� By the definition of hh0i, ha0i and hh0i(ha0ij
V

I

) obviously coincide on the relationships and val-
ues of hI 0i.

This proof concludes the extension of I into a superinstance hI 0i of I 0, using information derived
from the extension-morphism h. Note that this extension is stated in a purely descriptive way, inde-
pendent of the GOOD/ER language. On the other hand, in the proof of Proposition 5.44, I is extended
to hI 0i by means of a GOOD/ER program. In preparation of this proof, the following definition intro-
duces a series of subinstances of hI 0i, as well as corresponding morphisms relating their automorphism
groups to Aut(I). In the proof of Proposition 5.44, these subinstances will turn out to be the “interme-
diate” results of the GOOD/ER program extending I to hI 0i.

Definition 5.42 Let I be a subinstance of I 0, and let h be an extension morphism of type (I; I 0). Let
hI

0

i be the extension of I 0 w.r.t. I and h as defined in Definition 5.39.
Then the instances K0

1

; : : : ;K

0

7

are defined as follows:

1. K0

1

equals I

2. K0

2

equals K0

1

extended with the diff -relationships of hI 0i

3. K0

3

equals K0

2

extended with Aut(I) and the e-relationships
(with e 2

S

E2E-TYPE �[E-TYPE](E)) of hI 0i

4. K0

4

equals K0

3

extended with CosetAut(I) and the �-relationships of hI 0i

5. K0

5

equals K0

4

extended with Orbits
h

(I

0

� I)

5.3. ON THE EXPRESSIVE POWER OF GOOD/ER 139

6. K0

6

equals K0

5

extended with the entities of I 0 and the 2- and �-relationships of hI 0i

7. K0

7

equals hI 0i.

The mappings hh0i
1

; : : : ; hh

0

i

7

are defined as:

hh

0

i

j

: Aut(I)! Aut(K0

j

) : a 7! hh

0

i(a)j

V

K

0

j

(1 � j � 7)

Lemma 5.43 The mappings hh0i
j

(1 � j � 7) as defined in Definition 5.42 are group isomorphisms.

Proof This proof is structured as follows. We first show that each hh0i
j

is a well-defined, injective
group homomorphism. For each pair of instances K0

i

and K0

i+1

(1 � i � 6), we then give a bijection
between their automorphism groups. Given the property that an injective group homomorphism be-
tween two finite groups with equal cardinality is a group isomorphism, it follows that each hh0i

j

is a
group isomorphism.

We first prove that hh0i
1

is well-defined, in other words, that for each a 2 Aut(I), hh0i
1

(a) =

hh

0

i(a)j

V

K

0

1

is in Aut(K0

1

). To show that hh0i
1

(a) is well-defined, note that, because hh0i(a) 2 Aut(hI 0i),
it has to preserve relationships of type 2. Since each entity of I 0 � I participates in precisely one
relationship of type 2, hh0i(a) must map entities (and hence also relationships and values) of I 0 � I

to entities (respectively relationships and values) of I 0 � I. As a result, hh0i
1

(a) maps nodes of I to
nodes of I . Since hh0i(a) is an automorphism, hh0i

1

(a) is also injective and surjective, and preserves
node labels. To show that hh0i

1

(a) also preserves edges, let (x; �; y) be an edge in K0

1

, i.e. in I . As
already shown, hh0i(a)(x) and hh0i(a)(y) are still nodes ofK0

1

. But by the definition of hh0i and since
h is an extension morphism, hh0i(a)(x) = a(x) and hh0i(a)(y) = a(y). Since a is an automorphism
of I, (a(x); �; a(y)) is still an edge of K0

1

. So hh0i
1

is well-defined.
We next show that hh0i

j

is also well-defined for 1 < j � 7. Since for all 1 < j � 6, a node in
K

0

j

�K

0

j�1

has either a node label not inK0

j�1

, or an outgoing edge with a label not inK0

j�1

, whileK0

j

always contains all nodes or edges of hI 0i with these new labels, hh0i
j

(a) always maps nodes of K0

j

to nodes of K0

j

, and also preserves edges. K0

7

equals hI 0i, so hh0i
7

(a) equals hh0i, which has already
been shown a group-isomorphism.

To prove that for all 1 � j � 7, hh0i
j

is injective, let a 6= b 2 Aut(I). Consequently, there is a
node n of I (and thus ofK0

j

for each j) for which a(n) 6= b(n). By Definitions 5.31 (of extension mor-
phisms) and 5.40 (of hh0i), it follows that hh0i(a)(n) 6= hh

0

i(b)(n), and thus hh0i(a)
j

(n) 6= hh

0

i(b)

j

(n).
Since 8a; b 2 Aut(I), hh0i

j

(a � b) = hh

0

i(a � b) = hh

0

i(a) � hh

0

i(b) = hh

0

i

j

(a) � hh

0

i

j

(b), hh0i
j

is
a group homomorphism for all j.

Recall that the only thing left to be done, is to give a bijection between the automorphism groups
of all pairs of instances K0

i

and K0

i+1

(1 � i � 6). We only give details for the first two pairs of
instances. The other bijections can be constructed analogously.

Since in K0

2

, only diff -relationships are added to I , an automorphism a of I can be extended
straightforwardly to an automorphism of K0

2

by letting it map a relationship (�

1

: e

1

; �

2

: e

2

) to the
relationship (�

1

: a(e

1

); �

2

: a(e

2

)). Since the automorphism a is an injective mapping, this extension
is an automorphism of K0

2

. Obviously, the restriction of an automorphism of K0

2

to the nodes of I is
a unique automorphism of I .

140 CHAPTER 5. DATABASE MANIPULATION DEFINED AS GRAPH-REWRITING

An automorphism a ofK0

2

can be extended so it maps an AUT-node b inK0

3

to the AUT-node a�b.
This extension is obviously unique. Conversely, if an automorphism of K0

3

maps an AUT-node a to a
node b, it means that b = c � a, where c is the restriction of that automorphism to I . Consequently, if
two automorphisms of K0

3

are equal on K0

2

, they must be equal, so restricting such an automorphism
yields a unique automorphism of K0

2

.

Recall that our current aim is to show that GOOD/ER can express any “increasing” generic trans-
formation, in other words, that the existence of an extension morphism for an instance I and a superin-
stance I 0 is a sufficient condition for the existence of a GOOD/ER program that, when applied to I,
results in I 0. The GOOD/ER program to be constructed in the proof of the following Proposition has
hI

0

i as an intermediate result, hence the proof contains a “constructive” definition for hI 0i.

I I

0

hI

0

i K

0

j

- � �

� �

6

� GOOD/ER

GOOD/ER

�

Figure 5.28: An overview of instances, used in the proof of Proposition 5.44

Proposition 5.44 Let I be a subinstance of I 0 for which there exists an extension-morphism h of type

(I; I

0

). Then I
GOOD/ER

=) I

0.

Proof This proof is structured as follows. We build a GOOD/ER program that, when applied to I , re-
sults in instance hI 0i as defined in Definition 5.39. It is shown that the intermediate resulting instances
of this stepwise construction equal the instances K0

j

(where j indicates the number of the step) from
Definition 5.42. We then give a GOOD/ER program that, when applied to hI 0i, results in the instance
I

0 (cf. Figure 5.28).

Step 1 : The input to the program is the instance I, which equals K0

1

.

Step 2 : We next add the diff -relationships. First, for each entity type E, we add a diff E-
relationship between any two entities of type E. Next, we delete any diff -relationships with iden-
tical participants. Figure 5.29 shows the pictorial representation of these operations. Obviously, the
instance resulting from the application of these operations to K0

1

equals the instance K0

2

.

Step 3 : We next add AUT-nodes together with relationships typed with the entities of I . This oper-
ation can be accomplished with the single entity addition ENTADD[K

0

2

;AUT; ;; ;; fe 2 V

I

j �(e) 2

E-TYPEg; f(< (�

�(e)

2

; e) >; �

�(e)

1

) j e 2 V

I

; �(e) 2 E-TYPEg]. It uses K0

2

as pattern, and adds enti-
ties of type AUT, with for each entity e in K0

2

a relationship of type e linking the AUT-node to e (cf.
Figure 5.30).

To see that this operation has the desired effect, reconsider Lemma 5.20. Since the identity func-
tion on K0

2

is an embedding of the pattern of this operation, each automorphism of K0

2

is in fact an

5.3. ON THE EXPRESSIVE POWER OF GOOD/ER 141

E diff
α1

E
2α
E

E

E

α1
E

2α
E

diff

Figure 5.29: The GOOD/ER operations of Step 2 for the entity type E

AUT

β1 2β
e κ ’

2

...

)eλ()eλ(

λ()e

Figure 5.30: The GOOD/ER operation of Step 3

embedding. By the presence of the diff -edges, these automorphisms are all the possible embeddings
of the pattern. Hence precisely one AUT-node will be added for each element of Aut(K0

2

), which by
Lemma 5.43 is isomorphic to Aut(I). We may assume without loss of generality that these newly
added nodes are the elements of Aut(I) themselves. By the choice of the pattern and the relationship
types of the entity addition, if a relationship (��(e)

1

: a; �

�(e)

2

: e

0

) is added as the result of an embedding
a 2 Aut(I), then indeed a(e) = e

0. Consequently, the result of this operation indeed equals K0

3

.

Step 4 : We next add the elements of CosetAut(I) together with the �-relationships. Therefore,
for each subgroup G = fa

1

; : : : ; a

n

g of Aut(I), the following four GOOD/ER operations are applied
consecutively to K0

3

(cf. Figure 5.31):

1. an entity addition with K0

3

as pattern, of entities of type X (which we assume to be a “new”
entity type), linked by means of relationships of type �X to all the automorphisms of G;

2. an entity abstraction of the �

X-relationships ENTABS[P ; e;�X ; �(G);�

Y

] where the pattern P
contains a single entity e of type X;

3. a relationship addition of relationships of type �G, for each �

Y -relationship and �X -relationship
“sharing” an entity of type X as participant;

4. an entity deletion of all X-entities.

By the observation used in the explanation of the correctness of Step 3, one can see that the first
GOOD/ER operation of this step results in the addition of an entity of type X for each subgroup G

(linked by means of �X -relationships to the members of G), but also in the addition of an entity for

142 CHAPTER 5. DATABASE MANIPULATION DEFINED AS GRAPH-REWRITING

... κ ’
3

γ1
AUT

a1

na

γ1 AUT

...

AUT

Γ
G

γ1 γ2
G G

X

X

X

Γ
X

Γ
X

γ2
X

γ2
X

γ1
Y

Γ
Y

γ2
Y

X
γ1

X

Γ
X

γ1
Y

Γ
Y

γ2
Y

X
γ1

X

Γ
X

γ2
X

X

Gλ()

Gλ()

Figure 5.31: The GOOD/ER operations of Step 4 for the subgroup G = fa

1

; : : : ; a

n

g

5.3. ON THE EXPRESSIVE POWER OF GOOD/ER 143

each a 2 Aut(K0

3

) (which is (group-)isomorphic to Aut(I)), linked by means of �X -relationships to
the members of a � G. By the semantics of entity additions, however, in general several entities are
added for one such coset: e.g., if some subgroup contains n automorphisms, then the entity addition
for that particular subgroup adds n entities, since an embedding from the pattern followed by an au-
tomorphism of that subgroup, results in the addition of another entity of type X , corresponding to the
same subgroup.

However, the resulting instance should contain exactly one entity for each coset. Recalling De-
finition 5.25, entity abstraction allows grouping entities according to common relationships. Hence
the following three GOOD/ER operations group X-entities that represent the same set (with the �

X-
relationships indicating the “elements”), thereby create a unique �(G)-entity for each coset. Without
loss of generality, we may assume that the entity abstractions add the elements of CosetAut(I) them-
selves. Consequently, the result of this step equals K0

4

.
We conclude this step with a calculation, which is used later on in this proof.

8a 2 Aut(I); 84 � j � 7; 8G subgroup of Aut(I) : hh0i
j

(a)(G) = hh

0

i(a)(G) = a �G (5.2)

Step 5 : We next add the elements of Orbits
h

(I

0

� I). An isolated entity can be added easily by
means of an entity addition using an empty pattern. So we apply one entity addition to K0

4

, using
an empty pattern, for each element of O of Orbits

h

(I

0

� I), of an entity typed by a unique name
for that orbit. Without loss of generality, we may assume that these entity additions add the orbits O
themselves. Consequently, the result of this step equals K0

5

.
We also conclude this step of the construction with a calculation, which is used later on in the proof.

8a 2 Aut(I); 85 � j � 7; 8O 2 Orbits
h

(I

0

� I) : hh

0

i

j

(a)(O) = hh

0

i(a)(O) = O (5.3)

Step 6 : We now add the entities of I 0�I together with their attributes and the�- and2-relationships.
Therefore, one entity addition is applied to K0

5

for each element of Orbits
h

(I

0

� I) (cf. Figure 5.32).
Given the representative n

O

of an orbit O, the entity addition has K0

5

as pattern, and adds entities
of type �(n

O

), together with two relationships. A relationship of type 2�(O) links the newly added
entity to the orbit O, while the other relationship, of type �

(�(st
h

(n

O

));�(n

O

)), links the newly added
entity to the stabilizer st

h

(n

O

). Additionally, the entity addition adds the attributes of n
O

, which are
identical for all entities in O. In summary, if A

1

through A

n

are all attributes in ATTR such that
n

O

2 owner(A

i

)(1 � i � n), then the entity addition for Step 6 is ENTADD[K

0

5

; �(n

O

);

f(A

1

; �[ATTR](A
1

)(n

O

)); : : : ; (A

n

; �[ATTR](A
n

)(n

O

))g; ;; f2

�(O)

;�

(�(st
h

(n

O

));�(n

O

))

g;

f(< (�

�(O)

2

; O) >; �

�(O)

1

); (< (�

(�(st
h

(n

O

));�(n

O

))

2

; st
h

(n

O

)) >; �

(�(st
h

(n

O

));�(n

O

))

1

)g]

To see that these operations have the desired effect, recall that hh0i
5

is surjective (cf. Lemma 5.43),
so for each b 2 Aut(K0

5

), there is an a 2 Aut(I) such that hh0i
5

(a) = b. As a result, if n
O

is

added with relationships (�

�(O)

1

: n

O

; �

�(O)

2

: O) and (�

(�(st
h

(n

O

));�(n

O

))

1

: n

O

; �

(�(st
h

(n

O

));�(n

O

))

2

:

st
h

(n

O

)), then an entity n

b

O

is also added with relationships (�

�(O)

1

: n

b

O

; �

�(O)

2

: hh

0

i(a)(O)) and

(�

(�(st
h

(n

O

));�(n

O

))

1

: n

b

O

; �

(�(st
h

(n

O

));�(n

O

))

2

: hh

0

i(a) (st
h

(n

O

))). The notation n

b

O

indicates that this
is the entity, added by the same entity addition as n

O

as a result of the automorphism b of K0

5

. Re-
calling the equations (5.2) and (5.3), the relationships involving nb

O

equal (��(O)
1

: n

b

O

; �

�(O)

2

: O) and

144 CHAPTER 5. DATABASE MANIPULATION DEFINED AS GRAPH-REWRITING

(st ())

() κ ’
5

λ O...

λ Oh

∈
ε

2
ε

1
1

n

1

n

δ2
(...)

δ1
(...) ∆(...)

1

nA

λ()O

λ()O

Oλ()λ()OA)domain(

A)domain(

µ
O

[ATTR]()()A n

µ
O

[ATTR]()()A n

A

 n

 n

Figure 5.32: The GOOD/ER operations of Step 6 for the orbit O

(�

(�(st
h

(n

O

));�(n

O

))

1

: n

b

O

; �

(�(st
h

(n

O

));�(n

O

))

2

: a(st
h

(n

O

))). Consequently, we have added an entity for
each pair consisting of an orbit and an arbitrary coset of the stabilizer of the representative of that or-
bit. We now want to apply Lemma 5.38 toK0

6

. In fact, this Lemma concerns the instance hI 0i, but the
only difference between hI 0i and K0

6

, is that K0

6

lacks the relationships of I 0 � I . Since the absence
of these relationships does not invalidate the proof of Lemma 5.38, we may apply it here. It follows
that for each entity of I 0 � I exactly one entity is added. Without loss of generality, we may assume
that these entity additions add the nodes of I 0 � I themselves. Consequently, the result of this step
equals K0

6

.

Step 7 : Finally, we add the relationships of I 0�I . For each such relationship, say (P
1

: e

1

; : : : ; P

n

:

e

n

), a relationship addition is applied with K0

6

as pattern, of a relationship (P

1

: e

1

; : : : ; P

n

: e

n

).
Obviously, these operations add at least enough relationships. To see that they do not add too many
relationships, note that for each such relationship and for each b 2 Aut(K0

6

), a relationship (P

1

:

b(e

1

); : : : ; P

n

: b(e

n

)) is also added. Since hh0i
6

is surjective (cf. Lemma 5.43), there exists an auto-
morphism a of I such that b = hh

0

i

6

(a), so the relationship is actually (P

1

: hh

0

i

6

(a)(e

1

); : : : ; P

n

:

hh

0

i

6

(a)(e

n

)), or, by the definition of hh0i
6

and hh0i, (P
1

: h(a)(e

1

); : : : ; P

n

: h(a)(e

n

)). Since h(a) is
an automorphism of I 0, this relationship must be present in I 0, and hence in hI 0i. Consequently, the
resulting instance is K0

7

, which equals hI 0i.

Summarizing, the application to I of the six GOOD programs described above, results in hI 0i.
Restricting hI 0i to the given instance I 0 can be done very easily by deleting all entities typed AUTor
by some identifier for an orbit or a subgroup of Aut(I), as well as all diff -relationships.

We still have to prove that GOOD/ER is able to express all generic transformations (I; I 0), even
those where I 0 is not a super-instance of I. Proving this becomes easy if we use Proposition 5.44.
Before stating the final Proposition, leading to the proof of Theorem 5.33, we define a kind of superin-
stance for two instances, containing (almost) all “information” of both these instances.

Definition 5.45 Let I and I 0 be ER instances. We define the instance J
I;I

0 as follows:

V

J

I;I

0

= V

I

[V

I

0

[

fl; an entity not in V
I

[V

I

0

g [

f(P

K

1

: l; P

K

2

: e) j e 2 V

I�I

0

; �

I

(e) = K 2 E-TYPEg [

5.3. ON THE EXPRESSIVE POWER OF GOOD/ER 145

f(P

:

1

: e

1

; : : : ; P

:

n

: e

n

) j (P

1

: e

1

; : : : ; P

n

: e

n

) 2 V

I�I

0

g

W

J

I;I

0

= W

I

[

f(x; �; y) 2 W

I

0

j � 62 ATTRg [

fall roles corresponding to the relationships in V
J

I;I

0

g

�

J

I;I

0

(n) = �

I

(n) (n 2 V

I

)

= �

I

0

(n) (n 2 V

I

� V

I

0

)

= difference (n = l)

= R

K

(n 2 f(P

K

1

: l; P

K

2

: e) j e 2 V

I�I

0

; �

I

(e) = K 2 E-TYPEg)

= R

:

(n 2 f(P

:

1

: e

1

; : : : ; P

:

n

: e

n

) j (P

1

: e

1

; : : : ; P

n

: e

n

) 2 V

I�I

0

;

�

I

((P

1

: e

1

; : : : ; P

n

: e

n

)) = Rg)

�

J

I;I

0

= �

I

0

We assume that difference is a new entity type, that for each entity type K, RK is a new relation-
ship type that for each relationship type R, R: is a new relationship type, and that for each role P ,
P

K and P: are new roles.

Besides containing all entities and relationships of both I and I 0,J
I;I

0 also indicates which entities
and relationships of I are absent in I 0. For entities, say of type K, this is indicated by linking them
to the “auxiliary” entity l by means of relationships of type RK . For relationships (say of type R),
this is indicated by adding relationships of type R: with the same participants. Not incorporating the
attributes of I 0 in the instance J

I;I

0 ensures that the superinstance is indeed a well-defined instance,
since the union of two instances is in general not an instance: conflicts may arise with the unique-
ness of attributes (cf. Definition 5.4). Attributes are therefore dealt with separately in the proof of the
following proposition, which concludes the proof of the Theorem 5.33:

Proposition 5.46 Let I and I 0 be instances such that (I; I 0) is a generic transformation.

Then I
GOOD/ER

=) I

0.

Proof In this proof, we give (or prove the existence of) three GOOD/ER programs. The first one
maps I to the instance J

I;I

0, the second maps J
I;I

0 to I 0 but with the attributes of I , and the third
maps the latter instance to I 0.

The existence of the first transformation is shown using Proposition 5.44. Therefore we define the
following mapping h0 from Aut(I) to Aut(J

I;I

0

). Let a 2 Aut(I). Let h be the extension-morphism
corresponding to the generic transformation (I; I

0

).

1. h0(a)(n) = a(n), for n 2 V

I

;

2. h0(a)(n) = h(a)(n), for n 2 V

I

0;

3. h0(a)(l) = l;

146 CHAPTER 5. DATABASE MANIPULATION DEFINED AS GRAPH-REWRITING

4. the behavior of h0 on the relationships of J
I;I

0 is defined as h0(a)((P
1

: n

1

; : : : ; P

k

: n

k

)) :=

(P

1

: h

0

(a)(n

1

); : : : ; P

k

: h

0

(a)(n

k

)).

We omit the tedious but straightforward verification that h0 is indeed an extension morphism of
type (I;J

I;I

0

). Applying Proposition 5.44, we know that there exists a GOOD/ER program that maps
I to J

I;I

0.
The second GOOD/ER program deletes from J

I;I

0 all entities and relationships not in I 0 (cf. Fig-
ure 5.33). It first deletes all relationships of some typeR for which there exists a relationship of typeR:

with the same participants. Next, all relationships of type R: are deleted. Then all nodes are deleted
which are linked to l, which is supposed to be the single entity of type difference . Finally the
entity l itself is deleted. Let �I be the outcome of this second GOOD/ER program.

1

1
E

r
R

¬r

R

E
n

n¬
¬

1
r r

n

Edifference

R¬

r
E
2r 1

E

R
E

difference

...

Figure 5.33: The GOOD/ER operations for the proof of Proposition 5.46 for the relationship type R
and the entity type E

The only difference left between �

I and the instance I 0 is that entities which were also present in
I, still have their attribute values from I. Therefore, let e be an entity in I \ I 0 whose �-attribute
has the value d

1

in I (and hence in �

I) and the value d
2

in I 0. Then we apply to �

I the attribute update
ATTUPD[

�

I; �; e; d

2

]. Such an attribute update is performed for each attribute to be modified. The
reasoning which shows that all these attribute updates together have the desired effect, is similar to
the proof of Step 7 in the proof of Proposition 5.44.

Combining the above three GOOD/ER programs, we get the desired GOOD/ER program mapping
I to I 0.

Combining Propositions 5.34 and 5.46, Theorem 5.33 easily follows.
We conclude this section with a few corollaries, in which some simple “classes” of transformations

are shown to be computable in GOOD/ER.

Corrolary 5.47 If I and I 0 are instances with empty intersection, then I
GOOD/ER

=) I

0.

5.3. ON THE EXPRESSIVE POWER OF GOOD/ER 147

Indeed, the homomorphism mapping each automorphism of I to the identity on I 0 always satisfies
the extension property.

Corrolary 5.48 Let I be the empty ER instance, and I 0 an arbitrary instance. Then I
GOOD/ER

=) I

0.

This is just a specialization of the previous Corollary. It shows that any ER instance can be gener-
ated by a GOOD/ER program, starting from scratch.

Corrolary 5.49 Let I be an instance such that Aut(I) = fid

I

g, and let I 0 be an arbitrary instance.

Then I
GOOD/ER

=) I

0.

The intuition behind this Corollary is the fact that in an instance which has only the identity map-
ping as automorphism, any node is clearly distinguishable from any other node by means of some
pattern (e.g., the instance itself), and hence any conceivable transformation on it may be expressed by
a GOOD/ER transformation.

148 CHAPTER 5. DATABASE MANIPULATION DEFINED AS GRAPH-REWRITING

Chapter 6

Conclusions

In this thesis, we studied the applicability of the theory of graph grammars and graph rewrite systems
to the definition of syntax and semantics of visual database languages. In Chapters 4 and 5, we suc-
cessfully demonstrated the theory’s applicability in two different ways. In this concluding chapter, we
contrast these two approaches, and discuss the outcome of our study.

The major differences between the definitions of respectively GOQL/EER (cf. Section 4.2) and
GOOD/ER (cf. Section 5.2) may be summarized as follows (cf. Table 6.1):

syntax semantics
GOQL/EER constructive attribute operational

(graph rewrite rules) evaluations (translation)
GOOD/ER descriptive graph rewriting denotational (I/O pairs)

Table 6.1: Contrasting GOQL/EER to GOOD/ER

Syntax : The syntax of GOQL/EER is defined in a constructive way, namely by means of the graph
rewrite rules of a graph grammar.

In contrast, the syntax of GOOD/ER is defined in a purely declarative manner, namely by sum-
ming up the constituents of “sentences” in the language. The latter is clearly illustrated in e.g.,
Definition 5.14 of entity addition syntax.

Semantics : The semantics of GOQL/EER is defined in an operational way, namely by providing
a translation from GOQL/EER queries to SQL/EER queries, in the form of attribute evalua-
tions within the graph rewrite rules of the graph grammar. Note that the actual evaluation of
GOQL/EER queries on a database instance is not incorporated in the definition.

In contrast, the semantics of GOOD/ER is defined in a denotational manner, by an algorithmic
description of the resulting instance of the application of a basic GOOD/ER operation to a given
input instance.

Hence the most prominent difference lies in the role played by graph rewrite rules in the respective
definitions: whereas both syntax and semantics of GOQL/EER queries are defined by means of graph

149

150 CHAPTER 6. CONCLUSIONS

rewrite rules, basic GOOD/ER operations are themselves graph rewrite rules. The latter is easily mo-
tivated: looking upon database manipulation as graph rewriting follows quite naturally from looking
upon database instances as graphs. In contrast to what is suggested by the table of contents of this the-
sis, the study of the GOOD/ER language chronologically preceded the study of GOQL/EER. Having
defined the semantics of GOOD/ER as graph rewriting, the question then arose whether graph rewrite
rules could also be used to define a graph-based language, the semantics of which has basically nothing
to do with graph rewriting. The (positive) answer to this question is the graph grammar specification
of GOQL/EER, as listed in Appendix C.

Another difference between GOQL/EER and GOOD/ER lies in their respective expressive power.
Even though GOQL/EER is a query language, while GOOD/ER is a database manipulation language,
we can still compare them on the basis of their capacity to “identify” information within a database.
As an example, the GOOD/ER program shown in Figure 5.19 deletes all cash cards that do not access
any account. But before this can happen, the program first has to identify these accounts. From the
fact that a negative condition cannot be expressed in a GOQL/EER pattern, it follows readily that no
GOQL/EER query can possibly perform such an identification, while in GOOD/ER, negation is in a
sense “simulated” using deletion.

On a more general level, GOOD/ER is a generically complete language (as discussed extensively
in Section 5.3) while GOQL/EER can only express conjunctive queries (i.e., queries whose equiv-
alent in logic consists simply of a conjunction of atomic conditions). Intuitively, this major differ-
ence in expressive power between the two languages discussed in this thesis, stems from the fact that
while GOOD/ER uses pattern matching combined with the powerful paradigm of graph rewriting,
GOQL/EER uses only pattern matching.

6.1 Lessons Learned from GOQL/EER

From the act of specifying GOQL/EER by means of a graph grammar, some important lessons may be
drawn. First, we have shown that the use of an attributed graph grammar allows the seemless integra-
tion of the definition of both (abstract) syntax and semantics of a graph-based language into one sin-
gle specification, in the same way the use of attributed string grammars enables a similarly integrated
specification of textual languages. Second, when defining graph-based, and particularly diagrammatic
languages, the ability to work with graphs as “basic primitives” in the graph rewrite rules surely has
its advantages over having to work with some general purpose specification language in which these
graphs first have to be (sometimes cryptically) encoded themselves. It allows one to concentrate on
the essentials of the graph-based language itself, rather than on the details of the applied specification
language.

Besides, the specification process of GOQL/EER also taught us a few general lessons on how to
write specifications in PROGRES, or, more generally, in an operational specification language based
on programmed graph rewrite systems. Most importantly, both the process of writing, as well as the
structure of the resulting specification, allowed us to derive the following rudimentary “life-cycle” for
the construction of a graph grammar specification for a visual language:

1. the given visual representation of the language must first be mapped onto a graph model (cf.
Section 4.2.1). This correspondence is called a visual metaphor by Haber et al. [HIL94], who

6.2. LESSONS LEARNED FROM GOOD/ER 151

applied this idea to the visual representation of database schemes. The major motivation they
offer for making a clear separation between the visual representation of a database scheme and
the database scheme itself, is that as a consequence, the visual model becomes more flexible.
Recently it was argued by Cattarci et al. [CCM95] that the idea of a visual metaphor should be
extended to visual query languages as well, thereby providing an a posteriori motivation for the
work presented in this thesis.

2. Next, the basic components of this graph model, i.e., the nodes, edges, and non-structural char-
acteristics should be recognized, and mapped to a graph scheme, i.e., a collection of node classes,
node types, and edge types, including attribute declarations.

3. Certain restrictions on the way in which these basic components may be composed into syntac-
tically correct graphs (such as the fact that the graph should be acyclic), cannot be captured in a
graph scheme alone. These restrictions should be reflected in a set of graph rewrite rules.

4. If an operational definition of the semantics of the language is to be incorporated into the graph
grammar specification, then the foregoing three steps should be reiterated. Concretely, the de-
sign of the graph model should be reevaluated, resulting in the addition and/or modification of
both the graph scheme and the set of graph rewrite rules.

As mentioned in Chapter 1, going through this life-cycle is most certainly facilitated by the operational
character of the PROGRES specification language in addition to the availability of the PROGRES
environment supporting the editing, analysis and execution of PROGRES specifications.

Besides the at times unstable character of this environment (within six months, four different re-
leases of the system were used!), the most significant problem encountered while applying the life-
cycle described above to the PROGRES specification of GOQL/EER was caused by the diverging way
in which nodes and edges are treated in the PROGRES formalism. The exact problem was extensively
covered in Section 4.2. In summary, by the absence of an edge class hierarchy, productions cannot take
edge types as parameters. Consequently, language elements such as attributes and roles, which in the
visual representation of GOQL/EER have a clear “edge-like“ character, have to be modeled by nodes.
This in turn imposes the use of meta-attributes for the enforcement of crucial structural integrity con-
straints, which surely does not add to the clarity and understandability of the resulting specification.

A secondary problem encountered in the process of writing the GOQL/EER specification was the
absence of mechanisms for structuring this specification. Indeed, as remarked in Chapter 3, PRO-
GRES’ “sections” are merely a syntactical way of structuring a specification, and have no semanti-
cal meaning whatsoever. In principle, all declarations (of node types, paths, productions,.. .) in the
GOQL/EER specification could be included in the specification in any arbitrary order. Structuring
mechanisms for graph grammar based specification languages are therefore currently a topic of active
research [EE94].

6.2 Lessons Learned from GOOD/ER

The most prominent lesson to be learned from the definition of GOOD/ER is the fact that with their
typical form of an action to be performed on the outcome of a query, manipulations on a database

152 CHAPTER 6. CONCLUSIONS

representable as a graph may be naturally represented by graph rewrite rules. As a major benefit, this
representation offers an equally natural graphical syntax. The benefits of the Graph-Oriented Object
Database model are demonstrated in an experimental environment called xgood [GPT93, GPTVdB93],
supporting the editing and execution of GOOD programs.

Instead of developing a general purpose graph rewrite formalism (such as PROGRES) it appeared
to be more suitable to define a number of categories of rules specially tailored towards typical database
manipulations such as the addition of entities or the update of attributes. Forcing the user to apply only
rewrite rules that fall within these categories, allows the enforcements of structural integrity constraints
on the database instance. At the end of Section 5.2, it was also shown how on top of these tailored
graph rewrite rules, the usual collection of typical programming constructs (such as sequences and
procedures) traditionally found textual languages, may be superimposed.

Another major benefit of formalizing a graph-oriented database manipulation language by means
of graph-theoretical notions was clearly illustrated in Section 5.3, in which we formally characterized
the expressive power of the GOOD/ER language. Formalizing the expressive power of object-creating
query languages was, at the time of writing, considered a tough and open problem, as e.g., mentioned
by Abiteboul and Kanellakis in their influential paper on object identity and query languages [AK89,
p.161]. In the proof of Theorem 5.33, in which we present a solution to this problem, the graph-
theoretical characteristics of GOOD/ER are most prominently used. This first of all supports the claim
made in Section 1.2 that the formal definition of a language enables the formal study of properties of
that language. More specifically, the fact that the results presented in Section 5.3, and especially their
proofs, rely so heavily on the graph-based nature of the GOOD/ER model, generally argues in favor
of a graph-based look on object-oriented databases, being (at least from the structural point of view)
networks of objects.

6.3 Open Issues for Future Research

Any research activity raises questions, perhaps even more than it answers. The issue of formally defin-
ing visual languages by means of graph rewriting, being part of the currently very active area of re-
search in visual language formalization, certainly makes no exception to this rule. We therefore con-
clude this thesis with a series of open problems, raised, but not answered, in the course of preparing
and writing this thesis:

� How does the work presented in this thesis compare precisely to other work on visual language
definition, done in the visual language research community? Are definitions using graph rewrite
systems easier to write, more readable, more compact,. . .? This should be verified experimen-
tally, by defining one and the same visual language by means of graph rewrite systems, as well
as by means of some other technique.

Can we eventually conclude from such a comparison that graph rewrite systems may eventu-
ally replace attributed string grammars grammars as the standard mechanism for formalizing
languages in general?

� The borderline between the concrete and abstract syntax (discussed in Section 1.3) is not that
clear cut, especially in the context of visual languages. Would it be desirable and/or feasible

6.3. OPEN ISSUES FOR FUTURE RESEARCH 153

to incorporate layout information, spatial relationships, or other aspects from the definition of a
visual language into a graph grammar-based specification for them?

� How can graph rewrite systems be used to define visual languages outside the realm of data-
bases? Is the applicability of graph rewrite systems restricted to diagrammatic languages, or
can they also cope with iconic ones?

� If PROGRES would offer mechanisms for structuring a specification, for instance a modulariza-
tion concept [EE94], would this allow for improved specifications of visual languages? Would
it for instance be possible to specify modules, reusable in the definition of different languages?

� . . .

154 CHAPTER 6. CONCLUSIONS

Appendix A

Notational Conventions

F(S) the set of all finite sets with elements from the set S
fx

1

; : : : ; x

n

g the set containing the elements x
1

through x
n

; the empty set
B(S) the set of all finite bags or multisets with elements from the set S
S

� the set of all finite lists of elements from the set S
S

+ the set of all finite non-empty lists of elements from the set S
< x

1

; : : : ; x

n

> a list with elements x
1

through x
n

S

1

� : : :� S

n

the cartesian product of the sets S
1

through S
n

f : S

1

� : : :� S

n

! T a total function from with domain S
1

� : : :� S

n

and range T
f : S

1

� : : :� S

n

!+ T a partial function from with domain S
1

� : : :� S

n

and range T
f j

V

the restriction of the function f to the subset V of its domain

E;E

n

entity types
e; e

n

entities
R;R

n

relationship types
r; r

n

relationships
P; P

n

roles
D;D

n

data types
d; d

n

(data) values
A;A

n

attributes
C;C

n

components
T; T

n

constructors

V; V

G

set of vertices (or nodes) (of a graph G)
v; v

n

vertices or nodes
W;W

G

set of edges (of a graph G)
�; �; : : : edge labels
m;m

n

embeddings
i; h isomorphism, homomorphism
a; b automorphisms

155

156 APPENDIX A. NOTATIONAL CONVENTIONS

Appendix B

EBNF-grammar for SQL/EER

Auxiliary Production Rules

STRING ::= CHAR [STRING]
CHAR ::= Aj . . .j Zj aj . . .j zj 0j . . .j 9j . . .
DATAOPNS ::= STRING
ATTRIBUTE ::= STRING
ROLE ::= STRING
AGGROPNS ::= STRING
ENTITYTYPE := STRING
INTEGER := STRING
DATAPRED := STRING
COMPONENT := STRING
CONSTRUCTION := STRING
RELSHIPTYPE := STRING
VARIABLE := STRING

Queries

QUERY ::= SFW-TERM
j TERM

SFW-TERM ::= [select TERMLIST] [from DECLLIST] [where FORMULA]
TERMLIST ::= TERM [, TERMLIST]
DECLLIST ::= DECL [, DECLLIST]

Declarations

DECL ::= VARIABLE in ENTITYTYPE
j VARIABLE in RELSHIPTYPE
j VARIABLE in RANGEUNION

157

158 APPENDIX B. EBNF-GRAMMAR FOR SQL/EER

Ranges

RANGEUNION ::= RANGE [union RANGEUNION]
RANGE ::= ENTITYTYPE

j RELSHIPTYPE
j TERM

Terms

TERM ::= VARIABLE
j STRING
j DATAOPNS TERM
j ’(’ TERM DATAOPNS TERM ’)’
j DATAOPNS ’(’ TERMLIST ’)’
j TERM ’.’ ATTRIBUTE
j TERM ’.’ COMPONENT
j ATTRIBUTE
j COMPONENT
j TERM ’.’ ROLE
j TERM ’.’ ENTITYTYPE
j distinct TERM
j TERM ’[’ INTEGER ’]’
j ind ’(’ TERM ’)’
j AGGROPNS ’(’ TERM ’)’
j TERM ’.’ INTEGER
j ’(’ SFW-TERM ’)’

Formulas

FORMULA ::= DATAPRED TERM
j TERM DATAPRED TERM
j DATAPRED ’(’ TERMLIST ’)’
j TERM ’=’ TERM
j TERM in TERM
j TERM is null
j TERM is-a ENTITYTYPE
j RELSHIPTYPE ’(’ PARTLIST ’)’
j PARTICIPANT RELSHIPTYPE PARTICIPANT
j TERM
j not ’(’ FORMULA ’)’
j ’(’ FORMULA and FORMULA ’)’
j ’(’ FORMULA or FORMULA ’)’
j exists DECLLIST ’:’ FORMULA
j forall DECLLIST [with FORMULA] ’:’ FORMULA

PARTLIST ::= PARTICIPANT [’,’ PARTLIST]

159

PARTICIPANT ::= ROLE ’:’ TERM
j TERM

160 APPENDIX B. EBNF-GRAMMAR FOR SQL/EER

Appendix C

The PROGRES specification for GOQL/EER

The transactions GOQL1 through GOQL14 at the end of this specification generate the abstract syntax
graphs of almost all (partial) GOQL/EER queries, as well as of the graphical part of the HQL/EER
queries presented in Chapter 4. The precise correspondence is as follows:

GOQL1 Figure 4.3
GOQL2 Figure 4.5
GOQL3 Figure 4.8
GOQL4 Figure 4.10
GOQL5 Figure 4.12
GOQL6 Figure 4.15
GOQL7 Figure 4.20
GOQL8 Figure 4.21
GOQL9 Figure 4.22
GOQL10 Figure 4.26
GOQL11 Figure 4.27
GOQL12 Figure 4.28
GOQL13 Figure 4.32
GOQL14 Figure 4.33

161

162 APPENDIX C. THE PROGRES SPECIFICATION FOR GOQL/EER

spec GOQL

from LongStrings import

types
 text;

functions
 EmptyText : -> text,
 Text : (string) -> text,
 && : (text, string) -> text,
 == : (text, string) -> boolean,
 Concat : (text, text) -> text;

end;

function concom : (S1 : text ; S2 : text) -> text =
 [S1 == "" :: S2
 | S2 == "" :: S1
 | Concat (S1 && ", ", S2)]

end;

function conand : (S1 : text ; S2 : text) -> text =
 [S1 == "true" :: S2
 | S2 == "true" :: S1
 | Concat (S1 && " and ", S2)]

end;

section FixedGraphScheme

node class QUERY_ELEM end;

node class PART_OF_COMPLEX is a QUERY_ELEM end;

node class ENT_REL is a QUERY_ELEM end;

node class ENTITY is a ENT_REL, PART_OF_COMPLEX end;

node class RELSHIP is a ENT_REL end;

node class ROLE
meta

 rel : type in RELSHIP [1:1];
 ent : type in ENTITY [0:n];

end;

edge type role2e : ROLE -> ENTITY [1:1];

edge type role2r : ROLE -> RELSHIP [1:1];

node class VALUE is a QUERY_ELEM end;

node class ATOMIC_VALUE is a VALUE, PART_OF_COMPLEX
intrinsic

 Value : string;
end;

163

node class COMPLEX_VALUE is a VALUE
derived

 Elem_Type : type in QUERY_ELEM [0:n];
end;

node class ATTRIBUTE
meta

 entrel : type in ENT_REL [0:n];
 val : type in VALUE [1:1];

end;

edge type attribute2er : ATTRIBUTE -> ENT_REL [1:1];

edge type attribute2v : ATTRIBUTE -> VALUE [1:1];

node class COMPONENT
meta

 cent : type in ENTITY [0:n];
 comp : type in COMPLEX_VALUE [1:1];

end;

edge type component2e : COMPONENT -> ENTITY [1:1];

edge type component2c : COMPONENT -> COMPLEX_VALUE [1:1];

node class SET_VALUE is a COMPLEX_VALUE
intrinsic

 Singleton : boolean := false;
end;

edge type cont : SET_VALUE -> PART_OF_COMPLEX;

node class MVALUE is a COMPLEX_VALUE end;

node class BAG_VALUE is a MVALUE end;

node class LIST_VALUE is a MVALUE end;

node class MMEMBER
intrinsic

 Index : integer := 0;
end;

node type mmember : MMEMBER end;

edge type contains_mm : MVALUE -> MMEMBER;

edge type mm_is_poc : MMEMBER -> PART_OF_COMPLEX [1:1];

node class DERIVED_SQL
derived

 SFW_Term : text = EmptyText;
end;

164 APPENDIX C. THE PROGRES SPECIFICATION FOR GOQL/EER

node class SQB is a BAG_VALUE, DERIVED_SQL, QUERY_ELEM
redef derived

 Elem_Type =
 ((self.=OutCons=> : CONSTITUENT [1:1]).
 -cons_is_n-> : QUERY_ELEM [1:1]). type;
 SFW_Term =
 Concat (
 Concat (
 Concat (
 Text ("(select "),
 concom (
 concom (EmptyText, all self.=OutCons=>.Term),
 concom (EmptyText, all self.=OutSQB_Cons=>.SFW_Term))),
 Concat (
 Text (" from "),
 concom (EmptyText,

all self.-is_defined_by->.Declaration))),
 Concat (
 Text (" where "),
 conand (Text ("true"),

all self.-is_defined_by->.Formula)))
 && ")" ;

end;

node type sqb : SQB end;

node class CONSTITUENT
intrinsic

 Formula : text := Text ("true");
 Declaration : text := EmptyText;
 Term : text := EmptyText;
 Output : boolean := false;

end;

node type constituent : CONSTITUENT end;

edge type is_defined_by : SQB -> CONSTITUENT;

edge type cons_is_n : CONSTITUENT -> QUERY_ELEM [1:1];

node class SQB_CONS is a CONSTITUENT, DERIVED_SQL
redef derived

 SFW_Term = self.(-cons_is_n-> : SQB [1:1]).SFW_Term;
end;

node type sqb_cons : SQB_CONS end;

path OutCons : SQB -> CONSTITUENT [0:n] =
 ‘1 => ‘2 in

condition ‘2.Output;
end;

‘2 : CONSTITUENT
is_defined_by

‘1 : SQB

165

path OutSQB_Cons : SQB -> SQB_CONS [0:n] =
 ‘1 => ‘2 in

condition ‘2.Output;
end;

end;

section Productions

production Add_first_SQB (out NewS : SQB) =

 ::=

return NewS := 2’;
end;
(* Add_first_SQB *)

‘2 :SQB_CONS
is_defined_by

‘1 :SQB

‘1 :sqb

2’ : sqb

166 APPENDIX C. THE PROGRES SPECIFICATION FOR GOQL/EER

production Add_SQB (S : SQB ; out NewS : SQB ; out SC : SQB_CONS) =

 ::=

return NewS := 2’;
 SC := 3’;

end;
(* Add_SQB *)

restriction OuterQuery : SQB =
not def <-cons_is_n-

end;

path recCons : SQB -> CONSTITUENT =
 -is_defined_by-> & (-cons_is_n-> & instance of SQB & -is_defined_by->) *

end;

‘1 =S

2’ : sqb

is_defined_by

1’ = ‘1

cons_is_n
3’ : sqb_cons

167

production Add_ER
 (S : SQB ; VarName : string ; ERtype : type in ENT_REL ;

out E : ENT_REL ; out C : CONSTITUENT) =

 ::=

folding { ‘1, ‘4 };
condition not (Text (VarName) in ‘4.=recCons=>.Term);
transfer 2’.Term := Text (VarName);

 2’.Declaration := Text (VarName) && " in "
 && string (ERtype);

return E := 3’;
 C := 2’;

end;
(* Add_ER *)

path InLowerScopeThan : SQB -> QUERY_ELEM =
 (<-cons_is_n- & instance of SQB_CONS & <-is_defined_by-) +
 & -is_defined_by-> & -cons_is_n->

end;

‘4 : SQB‘1 = S

OuterQuery

4’ = ‘4

3’ : ERtype

is_defined_by

1’ = ‘1

cons_is_n
2’ : constituent

168 APPENDIX C. THE PROGRES SPECIFICATION FOR GOQL/EER

production Add_Role
 (R : RELSHIP ; Etype : type in ENTITY ; Rtype : type in ROLE ;

out E : ENTITY ; out C : CONSTITUENT)
 =

 ::=

condition Rtype.rel = R. type;
 Etype in Rtype.ent;

transfer 7’.Term := ‘2.Term && "." && string (Rtype);
return E := 4’;

 C := 7’;
end;
(* Add_Role *)

‘1 =R

is_defined_by

cons_is_n
‘2 :constituent

InLowerScopeThan

‘3 :sqb

4’ :Etype

1’ =‘1

is_defined_by

cons_is_n
2’ =‘2

role2r

role2e

5’ :Rtype

cons_is_n
7’ :constituent

is_defined_by

3’ =‘3

169

production Add_Attribute
 (Er : ENT_REL ; Att : type in ATTRIBUTE ; Val : type in VALUE ;

out v : VALUE ; out C : CONSTITUENT)
 =

 ::=

condition Er. type in Att.entrel;
 Att.val = Val;

transfer 5’.Term := ‘3.Term && "." && string (Att);
return v := 4’;

 C := 5’;
end;
(* Add_Attribute *)

‘1 =Er
cons_is_n

‘3 :CONSTITUENT

is_defined_by

InLowerScopeThan

‘2 :sqb

4’ :Val

1’ =‘1
cons_is_n

3’ =‘3

is_defined_by

is_defined_by

2’ =‘2

cons_is_n
5’ :constituent

attribute2er

attribute2v

6’ :Att

170 APPENDIX C. THE PROGRES SPECIFICATION FOR GOQL/EER

production Add_Component
 (E : ENTITY ; Comp : type in COMPONENT ; Cv : type in COMPLEX_VALUE ;

out e : COMPLEX_VALUE ; out C : CONSTITUENT) =

 ::=

condition E. type in Comp.cent;
 Comp.comp = Cv;

transfer 5’.Term := ‘3.Term && "." && string (Comp);
return e := 4’;

 C := 5’;
end;
(* Add_Component *)

path InHigherScopeThan : CONSTITUENT -> SQB =
 <-is_defined_by- &
 (-is_defined_by-> & instance of SQB_CONS & -cons_is_n->
 & instance of SQB) *

end;
(* InHigherScopeThan *)

‘1 =E
cons_is_n

‘3 :CONSTITUENT

is_defined_by

InLowerScopeThan

‘2 :sqb

4’ :Cv

1’ =‘1
cons_is_n

3’ =‘3

is_defined_by

cons_is_n
5’ :constituent

component2e

component2c

6’ :Comp

is_defined_by

2’ =‘2

171

production Add_to_Set
 (Sv : SET_VALUE ; S : SQB ; POCtype : type in PART_OF_COMPLEX ;
 VarName : string ; out POC : PART_OF_COMPLEX ;

out C : CONSTITUENT) =

 ::=

folding { ‘2, ‘6 };
condition POCtype in Sv.Elem_Type;

 ‘1.Singleton implies (card (‘1.-cont->) = 0);
not (Text (VarName) in ‘6.=recCons=>.Term);

transfer 5’.Term := Text (VarName);
 5’.Declaration := Concat (Text (VarName)
 && " in ", ‘3.Term);

return POC := 4’;
 C := 5’;

end;
(* Add_to_Set *)

‘6 :SQB

‘2 =S

‘1 =Sv
cons_is_n

InHigherScopeThan

‘3 :CONSTITUENT

OuterQuery

6’ =‘6

4’ :POCtype

cons_is_n
3’ =‘3

cons_is_n
5’ :constituent

is_defined_by

2’ =‘2cont

1’ =‘1

172 APPENDIX C. THE PROGRES SPECIFICATION FOR GOQL/EER

production Add_to_Mvalue
 (Mv : MVALUE ; s : SQB ; POCtype : type in PART_OF_COMPLEX ;
 VarName : string ; out c : PART_OF_COMPLEX ; out C : CONSTITUENT)
 =

 ::=

folding { ‘2, ‘7 };
condition POCtype in ‘1.Elem_Type;

not (Text (VarName) in ‘7.=recCons=>.Term);
transfer 5’.Term := Text (VarName);

 5’.Declaration :=
 Concat
 (Text (VarName & " in "), [‘3. type = sqb_cons ::
 (‘3 : SQB_CONS).SFW_Term
 | ‘3.Term]);

return c := 4’;
 C := 5’;

end;
(* Add_to_Mvalue *)

‘7 :SQB

‘2 =s

‘1 =Mv
cons_is_n

InHigherScopeThan

‘3 :CONSTITUENT

OuterQuery

7’ = ‘7

4’ : POCtype

cons_is_n
3’ = ‘3

contains_mm

1’ = ‘1

mm_is_poc

6’ : mmember

is_defined_by

2’ = ‘2

cons_is_n
5’ : constituent

173

production Add_Indexed_to_Mvalue
 (Mv : MVALUE ; POCtype : type in PART_OF_COMPLEX ; Ind : integer ;

out P : PART_OF_COMPLEX ; out C : CONSTITUENT) =

 ::=

condition POCtype in ‘1.Elem_Type;
transfer 6’.Index := Ind;

 5’.Term := ‘3.Term && "[" && string (Ind) && "]";
return P := 4’;

 C := 5’;
end;
(* Add_Indexed to Mvalue *)

‘1 =Mv
cons_is_n

‘3 :CONSTITUENT

is_defined_by

InLowerScopeThan

‘2 :sqb

4’ : POCtype

cons_is_n
3’ = ‘3

contains_mm

1’ = ‘1

mm_is_poc

6’ : mmember

is_defined_by

cons_is_n
5’ : constituent

is_defined_by

2’ = ‘2

174 APPENDIX C. THE PROGRES SPECIFICATION FOR GOQL/EER

production Select (C : CONSTITUENT) =

 ::=

condition card ((‘1.<-is_defined_by- : SQB [1:1]).-contains_mm->) = 0;
transfer 1’.Output := true;

end;
(* Select *)

production Assign_Value (AV : ATOMIC_VALUE ; Val : string) =

 ::=

transfer
 2’.Formula := conand (‘2.Formula,
 Concat (‘2.Term && " = ", Text (Val)));
 1’.Value := Val;

end;
(* Assign_Value *)

path Within_Scope_of : CONSTITUENT -> CONSTITUENT =
 <-is_defined_by- & (<-cons_is_n- & <-is_defined_by-) *
 & -is_defined_by->

end;
(* Within_Scope_of *)

‘1 =C

1’ = ‘1

‘1 =AV
cons_is_n

‘2 :CONSTITUENT

1’ = ‘1
cons_is_n

2’ = ‘2

175

production Merge_Entities (E1, E2 : ENTITY) =

 ::=

condition E1. type = E2. type;
embedding redirect <-role2e- from ‘2 to 1’;

redirect <-mm_is_poc- from ‘2 to 1’;
redirect <-cons_is_n- from ‘2 to 1’;
redirect <-attribute2er- from ‘2 to 1’;
redirect <-component2e- from ‘2 to 1’;
redirect <-cons_is_n- from ‘2 to 1’;

transfer
 3’.Formula := conand (‘3.Formula,
 Concat (‘3.Term && " = ", ‘4.Term));

end;
(* Merge_Entities *)

‘2 =E2‘1 =E1

Within_Scope_of

cons_is_n

‘3 :CONSTITUENT

cons_is_n

‘4 :CONSTITUENT

1’ =‘1

cons_is_n

3’ =‘3

cons_is_n

4’ =‘4

176 APPENDIX C. THE PROGRES SPECIFICATION FOR GOQL/EER

production Merge_Relationships (R1, R2 : RELSHIP) =

 ::=

condition ‘2. type = ‘1. type;
embedding redirect <-role2r- from ‘2 to 1’;

redirect <-attribute2er- from ‘2 to 1’;
redirect <-cons_is_n- from ‘2 to 1’;

transfer
 3’.Formula := conand (‘3.Formula,
 Concat (‘3.Term && " = ", ‘4.Term));

end;
(* Merge_Relationships *)

‘2 =R2‘1 =R1

Within_Scope_of

cons_is_n

‘3 :CONSTITUENT

cons_is_n

‘4 :CONSTITUENT

1’ =‘1

cons_is_n

3’ =‘3

cons_is_n

4’ =‘4

177

production Merge_Atomic_Values (V1, V2 : ATOMIC_VALUE) =

 ::=

condition ‘2. type = ‘1. type;
embedding redirect <-cont- from ‘2 to 1’;

redirect <-mm_is_poc- from ‘2 to 1’;
redirect <-attribute2v- from ‘2 to 1’;
redirect <-cons_is_n- from ‘2 to 1’;

transfer
 3’.Formula := conand (‘3.Formula,
 Concat (‘4.Term && " = ", ‘3.Term));

end;
(* Merge_Atomic_Values *)

‘2 = V2‘1 = V1

Within_Scope_of

cons_is_n

‘3 : CONSTITUENT

cons_is_n

‘4 : CONSTITUENT

1’ =‘1

cons_is_n

3’ =‘3

cons_is_n

4’ =‘4

178 APPENDIX C. THE PROGRES SPECIFICATION FOR GOQL/EER

production Merge_Set_Values (S1, S2 : SET_VALUE) =

 ::=

condition ‘2. type = ‘1. type;
embedding redirect -cont-> from ‘2 to 1’;

redirect <-attribute2v- from ‘2 to 1’;
redirect <-component2c- from ‘2 to 1’;
redirect <-cons_is_n- from ‘2 to 1’;

transfer
 3’.Formula := conand (‘3.Formula,
 Concat (‘3.Term && " = ", ‘4.Term));

end;
(* Merge_Set_Values *)

‘2 = S2‘1 = S1

Within_Scope_of

cons_is_n

‘3 : CONSTITUENT

cons_is_n

‘4 : CONSTITUENT

1’ =‘1

cons_is_n

3’ =‘3

cons_is_n

4’ =‘4

179

production Merge_MValues (Mv1, Mv2 : MVALUE) =

 ::=

condition ‘2. type = ‘1. type;
not (‘1. type = sqb);

embedding redirect -contains_mm-> from ‘2 to 1’;
redirect <-attribute2v- from ‘2 to 1’;
redirect <-component2c- from ‘2 to 1’;
redirect <-cons_is_n- from ‘2 to 1’;

transfer
 3’.Formula := conand (‘3.Formula,
 Concat (‘3.Term && " = ", ‘4.Term));

end;
(* Merge_MValues *)

end;
(* Productions *)

section VariableGraphScheme

section NodeClasses

node class ENTRY_STATION is a ENTITY end;

node class ATM is a ENTRY_STATION end;

node class CASHIER_STATION is a ENTRY_STATION end;

node class CONSORTIUM is a ENTITY end;

node class BANK is a ENTITY end;

‘2 =Mv2‘1 =Mv1

Within_Scope_of

cons_is_n

‘3 :CONSTITUENT

cons_is_n

‘4 :CONSTITUENT

1’ = ‘1

cons_is_n

3’ = ‘3

cons_is_n

4’ = ‘4

180 APPENDIX C. THE PROGRES SPECIFICATION FOR GOQL/EER

node class ACCOUNT is a ENTITY end;

node class GENERIC_TRANSACTION is a ENTITY end;

node class CASHIER_TRANSACTION is a GENERIC_TRANSACTION end;

node class REMOTE_TRANSACTION is a GENERIC_TRANSACTION end;

node class CASHIER is a ENTITY end;

node class CASH_CARD is a ENTITY end;

node class CUSTOMER is a ENTITY end;
end;

section NodeTypes

node type entry_station : ENTRY_STATION end;

node type atm : ATM end;

node type cashier_station : CASHIER_STATION end;

node type set_of_cashier_station : SET_VALUE
redef derived

 Elem_Type = CASHIER_STATION;
end;

node type consortium : CONSORTIUM end;

node type bank : BANK end;

node type list_of_bank : LIST_VALUE
redef derived

 Elem_Type = BANK;
end;

node type account : ACCOUNT end;

node type account_s : SET_VALUE
redef intrinsic

 Singleton := true;
redef derived

 Elem_Type = ACCOUNT;
end;

node type list_of_account : LIST_VALUE
redef derived

 Elem_Type = ACCOUNT;
end;

node type generic_transaction : GENERIC_TRANSACTION end;

node type cashier_transaction : CASHIER_TRANSACTION end;

node type remote_transaction : REMOTE_TRANSACTION end;

181

node type cashier : CASHIER end;

node type list_of_cashier : LIST_VALUE
redef derived

 Elem_Type = CASHIER;
end;

node type cash_card : CASH_CARD end;

node type list_of_cash_card : LIST_VALUE
redef derived

 Elem_Type = CASH_CARD;
end;

node type customer : CUSTOMER end;

node type entered_on : RELSHIP end;

node type eo_es : ROLE
redef meta

 rel := entered_on ;
 ent := ENTRY_STATION ;

end;

node type eo_t : ROLE
redef meta

 rel := entered_on ;
 ent := GENERIC_TRANSACTION ;

end;

node type owned_by : RELSHIP end;

node type teller : ROLE
redef meta

 rel := owned_by ;
 ent := ATM ;

end;

node type owner : ROLE
redef meta

 rel := owned_by ;
 ent := CONSORTIUM ;

end;

node type entered_by : RELSHIP end;

node type eb_ct : ROLE
redef meta

 rel := entered_by ;
 ent := CASHIER_TRANSACTION ;

end;

node type eb_c : ROLE
redef meta

 rel := entered_by ;
 ent := CASHIER ;

end;

node type started_by : RELSHIP end;

182 APPENDIX C. THE PROGRES SPECIFICATION FOR GOQL/EER

node type sb_rt : ROLE
redef meta

 rel := started_by ;
 ent := REMOTE_TRANSACTION ;

end;

node type sb_cc : ROLE
redef meta

 rel := started_by ;
 ent := CASH_CARD ;

end;

node type concerns : RELSHIP end;

node type c_t : ROLE
redef meta

 rel := concerns ;
 ent := GENERIC_TRANSACTION ;

end;

node type c_a : ROLE
redef meta

 rel := concerns ;
 ent := ACCOUNT ;

end;

node type accesses : RELSHIP end;

node type a_a : ROLE
redef meta

 rel := accesses ;
 ent := ACCOUNT ;

end;

node type a_cc : ROLE
redef meta

 rel := accesses ;
 ent := CASH_CARD ;

end;

node type has : RELSHIP end;

node type ha_cc : ROLE
redef meta

 rel := has ;
 ent := CASH_CARD ;

end;

node type ha_c : ROLE
redef meta

 rel := has ;
 ent := CUSTOMER ;

end;

node type holds : RELSHIP end;

183

node type ho_c : ROLE
redef meta

 rel := holds ;
 ent := CUSTOMER ;

end;

node type ho_a : ROLE
redef meta

 rel := holds ;
 ent := ACCOUNT ;

end;

node type money : ATOMIC_VALUE end;

node type time : ATOMIC_VALUE end;

node type address : ATOMIC_VALUE end;

node type list_of_address : LIST_VALUE
redef derived

 Elem_Type = address;
end;

node type _string : ATOMIC_VALUE end;

node type int : ATOMIC_VALUE end;

node type bool : ATOMIC_VALUE end;

node type entry_station_location : ATTRIBUTE
redef meta

 entrel := ENTRY_STATION ;
 val := address ;

end;

node type generic_transaction_entry_time : ATTRIBUTE
redef meta

 entrel := GENERIC_TRANSACTION ;
 val := time ;

end;

node type generic_transaction_amount : ATTRIBUTE
redef meta

 entrel := GENERIC_TRANSACTION ;
 val := money ;

end;

node type atm_cash_on_hand : ATTRIBUTE
redef meta

 entrel := ATM ;
 val := money ;

end;

node type atm_dispensed : ATTRIBUTE
redef meta

 entrel := ATM ;
 val := money ;

end;

184 APPENDIX C. THE PROGRES SPECIFICATION FOR GOQL/EER

node type cashier_name : ATTRIBUTE
redef meta

 entrel := CASHIER ;
 val := _string ;

end;

node type bank_name : ATTRIBUTE
redef meta

 entrel := BANK ;
 val := _string ;

end;

node type bank_location : ATTRIBUTE
redef meta

 entrel := BANK ;
 val := address ;

end;

node type consortium_name : ATTRIBUTE
redef meta

 entrel := CONSORTIUM ;
 val := _string ;

end;

node type customer_name : ATTRIBUTE
redef meta

 entrel := CUSTOMER ;
 val := _string ;

end;

node type customer_residence : ATTRIBUTE
redef meta

 entrel := CUSTOMER ;
 val := list_of_address ;

end;

node type cash_card_password : ATTRIBUTE
redef meta

 entrel := CASH_CARD ;
 val := _string ;

end;

node type cash_card_serial_number : ATTRIBUTE
redef meta

 entrel := CASH_CARD ;
 val := int ;

end;

node type cash_card_limit : ATTRIBUTE
redef meta

 entrel := CASH_CARD ;
 val := money ;

end;

node type account_blocked : ATTRIBUTE
redef meta

 entrel := ACCOUNT ;
 val := bool ;

end;

185

node type account_balance : ATTRIBUTE
redef meta

 entrel := ACCOUNT ;
 val := money ;

end;

node type consortium_consists_of : COMPONENT
redef meta

 cent := CONSORTIUM ;
 comp := list_of_bank ;

end;

node type bank_owns : COMPONENT
redef meta

 cent := BANK ;
 comp := set_of_cashier_station ;

end;

node type bank_proper_acct : COMPONENT
redef meta

 cent := BANK ;
 comp := account_s ;

end;

node type bank_manages : COMPONENT
redef meta

 cent := BANK ;
 comp := list_of_account ;

end;

node type bank_employs : COMPONENT
redef meta

 cent := BANK ;
 comp := list_of_cashier ;

end;

node type bank_issues : COMPONENT
redef meta

 cent := BANK ;
 comp := list_of_cash_card ;

end;
end;

end;

186 APPENDIX C. THE PROGRES SPECIFICATION FOR GOQL/EER

section Transactions

transaction GOQL1 =
use s : SQB;

 av1, av2 : VALUE;
 r, e1, e2 : ENT_REL;
 c1, c2, c3, c4, c5 : CONSTITUENT

do
 Add_first_SQB (out s)
 & Add_ER (s, "h", has, out r, out c1)
 &
 Add_Role ((r : RELSHIP), cash_card, ha_cc, out e1, out c2)
 & Add_Role ((r : RELSHIP), customer, ha_c, out e2, out c3)
 & Add_Attribute
 ((e1 : ENTITY), cash_card_password, _string, out av1,

out c4)
 & Add_Attribute
 ((e2 : ENTITY), customer_name, _string, out av2, out c5)
 & Select (c4)
 & Select (c5)

end
end;
(* GOQL1 *)

transaction GOQL2 =
use s : SQB;

 cv1, cv2 : COMPLEX_VALUE;
 e1, e2 : ENT_REL;
 e3, e4 : PART_OF_COMPLEX;
 c1, c2, c3, c4, c5, c6, c7, c8 : CONSTITUENT;
 av1, av2 : VALUE

do
 Add_first_SQB (out s)
 & Add_ER (s, "ba1", bank, out e1, out c1)
 & Add_ER (s, "ba2", bank, out e2, out c2)
 & Add_Component
 ((e1 : ENTITY), bank_employs, list_of_cashier, out cv1,

out c3)
 & Add_Component
 ((e2 : ENTITY), bank_employs, list_of_cashier, out cv2,

out c4)
 & Add_to_Mvalue
 ((cv1 : MVALUE), s, cashier, "ca1", out e3, out c5)
 & Add_to_Mvalue
 ((cv2 : MVALUE), s, cashier, "ca2", out e4, out c8)
 & Merge_Entities ((e4 : ENTITY), (e3 : ENTITY))
 & Add_Attribute (e1, bank_name, _string, out av1, out c6)
 & Add_Attribute (e2, bank_name, _string, out av2, out c7)
 & Select (c6)
 & Select (c7)

end
end;
(* GOQL2 *)

187

transaction GOQL3 =
use s : SQB;

 r1, r2, r3 : ENT_REL;
 e1, e2, e3, e4, e5, e6 : ENTITY;
 c1, c2, c3, c4, c5, c6, c7, c8, c9, c10 : CONSTITUENT;
 av1 : VALUE

do
 Add_first_SQB (out s)
 & Add_ER (s, "acc", accesses, out r1, out c1)
 & Add_ER (s, "has", has, out r2, out c2)
 & Add_ER (s, "hol", holds, out r3, out c3)
 & Add_Role ((r1 : RELSHIP), account, a_a, out e1, out c4)
 &
 Add_Role ((r1 : RELSHIP), cash_card, a_cc, out e2, out c5)
 &
 Add_Role ((r2 : RELSHIP), customer, ha_c, out e3, out c6)
 & Add_Attribute
 (e3, customer_name, _string, out av1, out c10)
 & Add_Role
 ((r2 : RELSHIP), cash_card, ha_cc, out e4, out c7)
 &
 Add_Role ((r3 : RELSHIP), customer, ho_c, out e5, out c8)
 & Add_Role ((r3 : RELSHIP), account, ho_a, out e6, out c9)
 & Merge_Entities (e1, e6)
 & Merge_Entities (e2, e4)
 & Merge_Entities (e3, e5)
 & Select (c10)

end
end;
(* GOQL3 *)

transaction GOQL4 =
use s : SQB;

 e1 : ENT_REL;
 e2 : PART_OF_COMPLEX;
 c1, c2, c3, c4, c5 : CONSTITUENT;
 av1, av2 : VALUE;
 cv1 : COMPLEX_VALUE

do
 Add_first_SQB (out s)
 & Add_ER (s, "co", consortium, out e1, out c1)
 & Add_Component
 ((e1 : ENTITY), consortium_consists_of, list_of_bank,

out cv1, out c2)
 & Add_Indexed_to_Mvalue
 ((cv1 : MVALUE), bank, 2, out e2, out c3)
 & Add_Attribute
 (e1, consortium_name, _string, out av1, out c4)
 & Assign_Value ((av1 : ATOMIC_VALUE), "General Banking")
 & Add_Attribute
 ((e2 : ENTITY), bank_name, _string, out av2, out c5)
 & Select (c5)

end
end;
(* GOQL4 *)

188 APPENDIX C. THE PROGRES SPECIFICATION FOR GOQL/EER

transaction GOQL5 =
use s, s1, s2 : SQB;

 sc1, sc2 : SQB_CONS;
 av1, av2, av3 : VALUE;
 av4 : PART_OF_COMPLEX;
 e1, e2 : ENT_REL;
 c1, c2, c3, c4, c5, c6 : CONSTITUENT

do
 Add_first_SQB (out s)
 & Add_SQB (s, out s1, out sc1)
 & Add_SQB (s, out s2, out sc2)
 & Add_ER (s1, "b1", bank, out e1, out c1)
 & Add_ER (s2, "b2", bank, out e2, out c2)
 & Add_Attribute
 ((e1 : ENTITY), bank_name, _string, out av1, out c3)
 & Add_Attribute
 ((e1 : ENTITY), bank_location, address, out av3, out c5)
 & Add_Attribute
 ((e2 : ENTITY), bank_location, address, out av2, out c4)
 & Select (c4)
 & Add_to_Mvalue (s2, s, address, "a", out av4, out c6)
 & Merge_Atomic_Values
 ((av3 : ATOMIC_VALUE), (av4 : ATOMIC_VALUE))
 & Select (c3)
 & Select (c6)
 & Select (sc1)

end
end;
(* GOQL5 *)

transaction GOQL6 =
use s, s1, s2 : SQB;

 e1 : ENT_REL;
 cv1, cv2 : COMPLEX_VALUE;
 e2, e3 : PART_OF_COMPLEX;
 c1, c2, c3, c4, c5 : CONSTITUENT;
 sc1, sc2 : SQB_CONS

do
 Add_first_SQB (out s)
 & Add_SQB (s, out s1, out sc1)
 & Add_SQB (s1, out s2, out sc2)
 & Add_ER (s, "co", consortium, out e1, out c1)
 & Add_Component
 ((e1 : ENTITY), consortium_consists_of, list_of_bank,

out cv1, out c2)
 & Add_to_Mvalue
 ((cv1 : MVALUE), s1, bank, "b", out e2, out c3)
 &
 Add_Component
 ((e2 : ENTITY), bank_owns, set_of_cashier_station, out cv2,

out c4)
 & Add_to_Set

189

 ((cv2 : SET_VALUE), s2, cashier_station, "cs", out e3,
out c5)

 & Select (sc1)
 & Select (sc2)
 & Select (c5)
 & Select (c3)
 & Select (c1)

end
end;
(* GOQL6 *)

transaction GOQL7 =
use s, s1, s2, s3 : SQB;

 sc1, sc2, sc3 : SQB_CONS
do

 Add_first_SQB (out s)
 & Add_SQB (s, out s1, out sc1)
 & Add_SQB (s, out s2, out sc2)
 & Add_SQB (s1, out s3, out sc3)

end
end;
(* GOQL7 *)

transaction GOQL8 =
use s, s1 : SQB;

 sc1 : SQB_CONS;
 r1, r2 : ENT_REL;
 c1, c2 : CONSTITUENT

do
 Add_first_SQB (out s)
 & Add_SQB (s, out s1, out sc1)
 & Add_ER (s1, "r1", R, out r1, out c1)
 & Add_ER (s, "r2", R, out r2, out c2)
 & Merge_Relationships ((r1 : RELSHIP), (r2 : RELSHIP))

end
end;
(* GOQL8 *)

transaction GOQL9 =
use s : SQB;

 e1 : ENT_REL;
 sv : COMPLEX_VALUE;
 e2 : PART_OF_COMPLEX;
 av1, av2 : VALUE;
 c1, c2, c3, c4, c5 : CONSTITUENT

do
 Add_first_SQB (out s)
 & Add_ER (s, "e1", bank, out e1, out c1)
 &
 Add_Component
 ((e1 : ENTITY), bank_owns, set_of_cashier_station, out sv,

out c2)
 &

190 APPENDIX C. THE PROGRES SPECIFICATION FOR GOQL/EER

 Add_to_Set
 ((sv : SET_VALUE), s, cashier_station, "cs", out e2, out c3
)
 & Add_Attribute (e1, bank_name, _string, out av1, out c4)
 & Add_Attribute
 ((e2 : ENTITY), entry_station_location, address, out av2,

out c5)
end

end;
(* GOQL9 *)

transaction GOQL10 =
use s, s1 : SQB;

 sc : SQB_CONS;
 e1 : ENT_REL;
 sv : COMPLEX_VALUE;
 e2 : PART_OF_COMPLEX;
 av1, av2 : VALUE;
 c1, c2, c3, c4, c5 : CONSTITUENT

do
 Add_first_SQB (out s)
 & Add_SQB (s, out s1, out sc)
 & Add_ER (s, "e1", bank, out e1, out c1)
 &
 Add_Component
 ((e1 : ENTITY), bank_owns, set_of_cashier_station, out sv,

out c2)
 & Add_to_Set
 ((sv : SET_VALUE), s1, cashier_station, "cs", out e2,

out c3)
 & Add_Attribute (e1, bank_name, _string, out av1, out c4)
 & Add_Attribute
 ((e2 : ENTITY), entry_station_location, address, out av2,

out c5)
end

end;
(* GOQL10 *)

transaction GOQL11 =
use s : SQB;

 e : ENT_REL;
 av1, av2, av3 : VALUE;
 c1, c2, c3, c4 : CONSTITUENT

do
 Add_first_SQB (out s)
 & Add_ER (s, "e", cash_card, out e, out c1)
 & Add_Attribute
 (e, cash_card_serial_number, int, out av1, out c2)
 &
 Add_Attribute (e, cash_card_limit, money, out av2, out c3)
 & Add_Attribute
 (e, cash_card_password, _string, out av3, out c4)
 & Assign_Value ((av3 : ATOMIC_VALUE), "password")

end
end;
(* GOQL11 *)

191

transaction GOQL12 =
use s : SQB;

 e1 : ENT_REL;
 e2 : PART_OF_COMPLEX;
 av : VALUE;
 cv : COMPLEX_VALUE;
 c1, c2, c3, c4 : CONSTITUENT

do
 Add_first_SQB (out s)
 & Add_ER (s, "c", consortium, out e1, out c1)
 & Add_Attribute
 (e1, consortium_name, _string, out av, out c2)
 & Assign_Value ((av : ATOMIC_VALUE), "Banks United")
 & Add_Component
 ((e1 : ENTITY), consortium_consists_of, list_of_bank,

out cv, out c3)
 & Add_to_Mvalue
 ((cv : MVALUE), s, bank, "b", out e2, out c4)

end
end;
(* GOQL12 *)

transaction GOQL13 =
use s : SQB;

 cv1, cv2, av3, av4 : VALUE;
 e1, e2 : ENT_REL;
 av1, av2 : PART_OF_COMPLEX;
 c1, c2, c3, c4, c5, c6, c7, c8 : CONSTITUENT

do
 Add_first_SQB (out s)
 & Add_ER (s, "c1", customer, out e1, out c1)
 & Add_ER (s, "c2", customer, out e2, out c2)
 & Add_Attribute
 ((e1 : ENTITY), customer_residence, list_of_address,

out cv1, out c3)
 & Add_Attribute
 ((e2 : ENTITY), customer_residence, list_of_address,

out cv2, out c4)
 & Add_to_Mvalue
 ((cv1 : MVALUE), s, address, "a1", out av1, out c5)
 & Add_to_Mvalue
 ((cv2 : MVALUE), s, address, "a2", out av2, out c6)
 & Merge_Atomic_Values
 ((av1 : ATOMIC_VALUE), (av2 : ATOMIC_VALUE))
 & Add_Attribute
 (e1, customer_name, _string, out av3, out c7)
 & Add_Attribute
 (e2, customer_name, _string, out av4, out c8)
 & Assign_Value ((av4 : ATOMIC_VALUE), "John")
 & Select (c7)

end
end;
(* GOQL13 *)

192 APPENDIX C. THE PROGRES SPECIFICATION FOR GOQL/EER

transaction GOQL14 =
use s1, s2 : SQB;

 sc1 : SQB_CONS;
 r1, e3 : ENT_REL;
 e1, e2 : ENTITY;
 c1, c2, c3, c4, c5, c6, c7 : CONSTITUENT;
 av1, av2, av3 : VALUE

do
 Add_first_SQB (out s1)
 & Add_SQB (s1, out s2, out sc1)
 & Add_ER (s1, "ho", holds, out r1, out c1)
 & Add_Role ((r1 : RELSHIP), account, ho_a, out e1, out c2)
 &
 Add_Role ((r1 : RELSHIP), customer, ho_c, out e2, out c3)
 & Add_Attribute
 (e1, account_balance, money, out av1, out c4)
 & Add_Attribute
 (e2, customer_name, _string, out av2, out c5)
 & Select (c5)
 & Add_ER (s2, "ac", account, out e3, out c6)
 & Add_Attribute
 ((e3 : ENTITY), account_balance, money, out av3, out c7)
 & Select (c7)

end
end;
(* GOQL14 *)

transaction MAIN =
 GOQL1

end;
(* MAIN *)

end;
(* Transactions *)

end.

Samenvatting

Graaf Herschrijfsystemen en Visuele Database Talen

De gebruiksvriendelijkheid van een informatie- ofte database-systeem kan in belangrijke mate ver-
beterd worden door het visualiseren van diverse aspecten van de bijhorende gebruikersinterface. Eén
aspect van een dergelijke interface dat zich hiertoe uitstekend leent, is de taal om de database te onder-
vragen (de zogenaamde querytaal) of te manipuleren. Nieuwe inzichten in mens-machine interactie,
evenals recente hardware-evoluties, hebben dan ook geleid tot de ontwikkeling van een brede waaier
van talen en hulpmiddelen voor visuele interactie met informatiesystemen.

Helaas zijn slechts weinige van de in de literatuur besproken formalismen ook formeel onder-
bouwd. Bij talen die wèl formeel gedefinieerd zijn, wordt vaak gebruik gemaakt van uitgebreide string-
grammatica’s. In de regels van een dergelijke grammatica worden, naast de gebruikelijke terminale
en niet-terminale symbolen, ook speciale operatoren gebruikt om ruimtelijke (of meer-dimensionale)
verbanden tussen de symbolen aan te geven. Het merkwaardige hieraan is dat stringgrammatica’s in
origine ontwikkeld werden om tekstuele (en dus één-dimensionale) talen formeel te kunnen definiëren.
Eind jaren ’60 werden echter graafgrammatica’s ingevoerd, onder andere om op grafen gebaseerde
talen te kunnen formaliseren. Visuele, en vooral dan diagrammatische talen, laten zich immers uitste-
kend uitdrukken in termen van grafen en graafherschrijving.

Een regel in een graafgrammatica bestaat uit een tweetal grafen. De toepassing van zo’n regel op
een graaf komt neer op het vervangen van een isomorf voorkomen van de ene graaf (de zogenaamde
linkerkant) door een isomorfe kopie van de andere graaf (de zogenaamde rechterkant). De gramma-
tica definieert dan de taal van alle grafen die kunnen worden verkregen door toepassing van een wil-
lekeurige sequentie regels op een “initiële” graaf. Nauw verwant met graafgrammatica’s zijn de zo-
genaamde graafherschrijfsystemen. In tegenstelling tot grammatica’s bestaan herschrijfsystemen uit
gestructureerde verzamelingen regels, en kunnen zodoende gebruikt worden om een graaf te “her-
schrijven” tot een andere graaf.

In dit proefschrift wordt onderzocht hoe graafherschrijfsystemen kunnen worden gebruikt om zo-
wel syntax als semantiek van visuele talen voor database-systemen formeel te definiëren. We bestu-
deren daarbij twee mogelijkheden.

In een eerste benadering vertrekken we van een uit de literatuur gekende techniek om uit een gra-
fische representatie voor database-schema’s een eenvoudige visuele querytaal af te leiden. Het formu-
leren van een query in een dergelijke taal bestaat uit het samenstellen van grafische componenten uit
een gegeven (visueel gepresenteerd) database-schema tot een patroon.

Zo kan bijvoorbeeld het diagram van figuur C.1 op twee manieren bekeken worden. Het kan ener-

193

194 SAMENVATTING

string KLANT bezit BANKPAS
eigenaar paswoordpasnaam

string

Figure C.1: Een diagram met een dubbele betekenis

zijds worden gelezen als een database-schema. In dat geval geeft het aan dat in een database die vol-
gens dit schema is opgebouwd, informatie kan opgeslagen worden over klanten en de bankpas(sen) die
ze bezitten, evenals de naam van die klanten en het paswoord van de bankpassen. Anderzijds kan men
het diagram ook lezen als een vraag, waarbij de vraagsteller zijn/haar interesse uitdrukt in de naam van
in de database aanwezige klanten, evenals het paswoord van bankpassen die ze bezitten. In sectie 4.1
van dit proefschrift wordt de grafische querytaal GOQL/EER ingevoerd, waarmee queries kunnen ge-
formuleerd worden, gebruik makend van de grafische componenten van een Extended Entity Rela-
tionship diagram. In sectie 4.2 wordt vervolgens aangetoond hoe zowel de (abstracte) syntax als de
semantiek van deze taal formeel gedefinieerd kunnen worden door middel van een graafgrammatica.
De abstracte syntax van een GOQL/EER query wordt uitgedrukt door middel van een graaf, terwijl
de semantiek wordt gedefinieerd door middel van een vertaling naar de tekstuele querytaal SQL/EER.
Deze vertaling is geı̈ntegreerd in de graafgrammatica, en maakt gebruik van knoop-attributen in de
graaf.

De graafgrammatica is geschreven in PROGRES (ontwikkeld aan de RWTH Aachen), het op dit
ogenblik meest expressieve specificatie formalisme gebaseerd op graafherschrijfregels. De benodigde
concepten van deze taal worden herhaald in hoofdstuk 3 van dit proefschrift, en aldaar geı̈llustreerd
door middel van een specificatie voor de taal van EER diagrammen.

Vanuit de observatie dat puur grafische talen zowel het specificeren als het lezen van queries vaak
eerder compliceren dan vereenvoudigen, worden in sectie 4.3 de tekstuele taal SQL/EER en de visuele
taal GOQL/EER samengevoegd tot een hybride taal HQL/EER. In deze taal kunnen queries geformu-
leerd worden door middel van een willekeurige combinatie van grafische en tekstuele elementen.

In een tweede benadering richten we onze aandacht op database-manipulatietalen. Zoals eerder
vermeld, kunnen EER diagrammen geformaliseerd worden door middel van grafen. Wanneer we daar-
naast ook database-instances bekijken als grafen, blijkt het een zeer natuurlijke benadering om graaf-
herschrijving te gebruiken als database-manipulatie paradigma.

Bij het toepassen van een graafherschrijfregel op een graaf die een database-instance voorstelt,
moet echter wel gebruik gemaakt worden van een aangepaste semantiek. Volgens de eerder beschreven
semantiek wordt een herschrijfregel immers toegepast op één voorkomen van zijn linkerkant. Een
database-manipulatie bestaat echter in het algemeen uit een query, tezamen met de beschrijving van
een manipulatie die moet uitgevoerd worden op het resultaat van deze query. Uitgedrukt in termen
van graafherschrijving betekent dit dat we een herschrijfregel “uitputtend” moeten toepassen op alle
voorkomens van zijn linkerkant in de graaf.

Bij wijze van illustratie toont figuur C.2 een graafherschrijfregel die volgende database-update uit-
drukt:

Geef elke bankpas als paswoord de naam van de eigenaar van deze pas.

195

string KLANT bezit BANKPAS
eigenaar

paswoord

pasnaam

Figure C.2: Een graafherschrijfregel die een database-update uitdrukt

De linkerkant van deze herschrijfregel wordt gevormd door het deel van de figuur in dunne lijntjes,
terwijl de gehele figuur de rechterkant vormt.

Door aan dit model voor graafherschrijfregels ook nog een aantal typische programmeerconstruc-
ties toe te voegen (zoals sequenties, procedures,.. .) verkrijgen we de in hoofdstuk 5 van dit proef-
schrift beschreven Graph-Oriented Object Database language GOOD/ER, gebaseerd op het Entity Re-
lationship model.

In sectie 5.3 bestuderen we tot slot de expressieve kracht van de taal GOOD/ER. Een dergelijke
studie komt neer op het exact wiskundig karakteriseren van de verzameling transformaties die door
middel van de gegeven taal uitdrukbaar zijn. Dit gebeurt doorgaans door middel van een zogenaamd
volledigheidscriterium, een conditie waaraan een tweetal database-instances moet voldoen opdat de
ene in de ander zou kunnen omgezet worden door middel van een programma in de beschouwde taal.
Het formele bewijs van de karakterisatie voor GOOD/ER maakt sterk gebruik van het feit dat de taal
geformaliseerd is door middel van grafentheorie en graafherschrijving. Dit levert een bijkomende on-
dersteuning voor wat met dit proefschrift is aangetoond, met name dat graafherschrijfsystemen een
beloftevol middel zijn voor het formeel definiëren van visuele (database-)talen.

196 SAMENVATTING

Curriculum Vitae

De schrijver van dit proefschrift werd op 6 april 1968 te Wilrijk (thans Antwerpen, België) geboren.
In 1986 behaalde hij het Getuigschrift van Hoger Secundair Onderwijs (Wetenschappelijke A) aan
het Sint-Jan Berchmanscollege te Antwerpen. In 1988 behaalde hij het Kandidaatsdiploma in de We-
tenschappen, Groep Wiskunde aan het Rijksuniversitair Centrum Antwerpen (RUCA), en in 1990 het
Licentiaatsdiploma in de Wetenschappen, Groep Wiskunde, richting Informatica aan de Universitaire
Instelling Antwerpen (UIA).

In september 1990 begon hij aan de UIA aan zijn promotie-onderzoek, onder begeleiding van prof.
dr. J. Paredaens. Dit onderzoek zette hij in 1991 voort als bursaal in dienst van het Instituut voor Weten-
schappelijk Onderzoek in Nijverheid en Landbouw (IWONL). Vanaf 15 februari 1992 was hij werk-
zaam als Assistent-in-opleiding bij de Vakgroep Informatica van de Rijksuniversiteit te Leiden, onder
begeleiding van prof. dr. G. Engels. Daar voltooide hij het in dit proefschrift beschreven onderzoek in
het kader van de ESPRIT Basic Research Working Group COMPUGRAPH II (Computation by Graph
Transformation).

197

198 Curriculum Vitae

Bibliography

[ACPB95] Marc Andries, Luca Cabibbo, Jan Paredaens, and Jan Van den Bussche. Applying an
update method to a set of receivers. In Proceedings of the Fourteenth ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, pages 208–218.
ACM Press, 1995.

[ACS90] Michele Angelaccio, Tiziana Catarci, and Giuseppe Santucci. QBD: A Graphi-
cal Query Language with Recursion. IEEE Transactions on Software Engineering,
16(10):1150–1163, 1990.

[ADD+91] Annamaria Auddino, Yves Dennebouy, Yann Dupont, Edi Fontana, Stefano Spac-
capietra, and Zahir Tari. SUPER: A Comprehensive Approach to Database Visual
Interfaces. In IFIP 2.6 2nd Working Conf. on Visual Database Systems, September
1991.

[ADS80] G. Ausiello, A. D’Atri, and D. Sacca. Graph-Algorithms for the Synthesis and Ma-
nipulation of Database Schemes. In Proceedings of the 6th International Workshop
on Graph-Theoretic Concepts in Computer Science (WG’80), volume 100 of Lecture
Notes in Computer Science, pages 212–, 1980.

[AE94] Marc Andries and Gregor Engels. Syntax and Semantics of Hybrid Database Lan-
guages. In Hartmut Ehrig and H.J. Schneider, editors, Graph Transformations in
Computer Science – International Conference and Research Center for Computer
Science, Schloss Dagstuhl, January 4-8, 1993, volume 776 of Lecture Notes in Com-
puter Science, pages 19–36, Berlin, 1994. Springer.

[AE97] Marc Andries and Gregor Engels. A Hybrid Query Language for the Extended En-
tity Relationship Model. Journal of Visual Languages and Computing, 8(1), March
1997. Special Issue on Visual Query Systems (to appear).

[AGP+92] Marc Andries, Marc Gemis, Jan Paredaens, Inge Thyssens, and Jan Van den Buss-
che. Concepts for graph-oriented object manipulation. In A. Pirotte, C. Delobel, and
G. Gottlob, editors, 3rd International Conference on Extending Database Technol-
ogy, Proceedings, number 580 in Lecture Notes in Computer Science, pages 21–38,
Berlin, 1992. Springer.

[AK89] Serge Abiteboul and Paris C. Kanellakis. Object Identity as a Query Language Prim-
itive. In Clifford et al. [CLM89], pages 159–173.

199

200 BIBLIOGRAPHY

[And94] Marc Andries. An Exhaustive Semantics for Structured Graph Grammar Rules. In
Fifth International Workshop on Graph Grammars and their Application to Com-
puter Science (Williamsburg VA), Book of abstracts, pages 179–182, November
1994.

[AP91] Marc Andries and Jan Paredaens. Macro’s for the GOOD-transformation language.
Technical Report 91-20, University of Antwerp (U.I.A.), 1991.

[AP92] Marc Andries and Jan Paredaens. A Language for Generic Graph-Transformations.
In Schmidt and Berghammer [SB92], pages 63–74.

[AP96] Marc Andries and Jan Paredaens. On instance-completeness for database query lan-
guages involving object creation. To appear in the Journal of Computer and System
Siences, 1996.

[Ban78] François Bancilhon. On the completeness of query languages for relational data
bases. In Proceedings of the 7th Symposium on Mathematical Foundations of Com-
puter Science, volume 64 of Lecture Notes in Computer Science, pages 112–123,
Berlin, 1978. Springer.

[BCCL91] C. Batini, T. Catarci, M.F. Costabile, and S. Levialdi. Visual Query Systems. Tech-
nical Report 04.91, Universita degli Studi di Roma “La Sapienza”, Dipartimento di
Informatica e Sistemistica, March 1991.

[BH86] D. Bryce and R. Hull. SNAP: A Graphics-Based Schema Manager. In Proceedings
of the International Conference on Data Engineering, pages 151–164, 1986.

[BJ93] Peter Buneman and Sushil Jajodia, editors. Proceedings of the 1993 ACM SIGMOD
International Conference on Management of Data, volume 22:2 of SIGMOD Record.
ACM Press, June 1993.

[BM90] Christian J. Breiteneder and Thomas A. Mück. A Graph Grammar Driven ER CASE
Environment. In Spaccapietra [Spa90], pages 375–392.

[CAE+76] D.D. Chamberlain, M.M. Astrahan, K.P. Eswaran, P.P. Griffiths, R.A. Lorie, J.W.
Mehl, P. Reisner, and B.W. Wade. SEQUEL 2: A Unified Approach to Data De-
finition, Manipulation, and Control. IBM Journal of Research and Development,
20(6):560–575, 1976.

[CCM95] Tiziana Catarci, Maria F. Costabile, and Maristella Matera. Visual Metaphors for
Interacting with Databases. SIGCHI bulletin, 27(2):15–17, April 1995.

[CERE87] Bogdan Czejdo, Ramez Elmasri, Marek Rusinkiewicz, and David W. Embley.
Graphical query languages for semantics database models. In 1987 National Com-
puter Conference, volume 56 of AFIPS Conference Proceedings, pages 615–623.
AFIPS Press, June 1987.

BIBLIOGRAPHY 201

[CGT90] Stefano Ceri, Georg Gottlob, and Letizia Tanca. Logic Programming and Databases.
Surveys in Computer Science. Springer-Verlag, Berlin, 1990.

[CH80] Ashok K. Chandra and David Harel. Computable Queries for Relational Databases.
Journal of Computer and System Sciences, 21:156–178, 1980.

[Che76] Peter P. Chen. The Entity-Relationship Model—Toward a Unified View of Data.
ACM Transactions on Database Systems, 1(1):9–36, 1976.

[CLM89] J. Clifford, B. Lindsay, and D. Maier, editors. Proceedings of the 1989 ACM SIG-
MOD International Conference on the Management of Data, volume 18:2 of SIG-
MOD Record. ACM Press, 1989.

[CM90] Mariano Consens and Alberto Mendelzon. GraphLog: a visual formalism for real
life recursion. In PODS90 [POD90], pages 404–416.

[Cod72] E.F. Codd. Relational Completeness of Data Base Sublanguages. In Randall Rustin,
editor, Data Base Systems, number 6 in Courant Computer Science Symposium,
pages 65–98. Prentice Hall, Englewood Cliffs, 1972.

[Cou91] Bruno Courcelle. Recursive queries and context-free grammars. Theoretical Com-
puter Science, 78:217–244, 1991.

[Cru92] Isabel F. Cruz. DOODLE: A Visual Language for Object-Oriented Databases. In
Michael Stonebraker, editor, Proceedings of the 1992 ACM SIGMOD International
Conference on Management of Data, volume 21:2 of SIGMOD Record, pages 71–80.
ACM Press, 1992.

[CTODL95] Gennaro Costagliola, Genoveffa Tortora, Sergio Orefice, and Andrea De Lucia. Au-
tomatic Generation of Visual Programming Environments. IEEE Computer, pages
56–66, March 1995.

[CTYY89] Shi-Kuo Chang, Michael J. Tauber, Bing Yu, and Jing-Sheng Yu. A Visual Language
Compiler. IEEE Transactions on Software Engineering, 15(5):506–525, May 1989.

[EE94] Gregor Engels and Hartmut Ehrig. Towards a Module Concept for Graph Transfor-
mation Systems: The Software Engineering Perspective. In G. V. Feruglio, editor,
Proceedings Colloquium on Graph Transformation and its Application in Computer
Science, March 1994. Also as Technical Report 93-34, Leiden University, Dept. of
Comp. Science, The Netherlands.

[EF94] Jürgen Ebert and Angelika Fränzke. A Declarative Approach to Graph Based Mod-
eling. In Ernst W. Mayr, Gunther Schmidt, and Gottfried Tinhofer, editors, Proceed-
ings of the 20th International Workshop on Graph-Theoretic Concepts in Computer
Science, volume 904 of Lecture Notes in Computer Science, pages 38–50, Berlin,
1994. Springer.

202 BIBLIOGRAPHY

[EGH+92] Gregor Engels, Martin Gogolla, Uwe Hohenstein, Klaus Hülsmann, Perdita Löhr-
Richter, Gunter Saake, and Hans-Dieter Ehrich. Conceptual modelling of data-
base applications using an extended ER model. Data & Knowledge Engineering,
9(2):157–204, December 1992.

[EHH+89] Gregor Engels, Uwe Hohenstein, Klaus Hülsmann, Perdita Löhr-Richter, and Hans-
Dieter Ehrich. CADDY: Computer-Aided Design of Non-Standard Databases. In
N. Madhavji, H. Weber, and W. Schäfer, editors, International Conference on System
Devlopment Environments & Factories, London, 1989. Pitman Publ.

[EK76] Hartmut Ehrig and Hans-Jörg Kreowski. Parallelism of Manipulations in Multi-
dimensional Information Structures. In Proceedings of the 5th Symposium on Mathe-
matical Foundations of Computer Science, volume 45 of Lecture Notes in Computer
Science, pages 284–239, Berlin, 1976. Springer.

[EK80] Hartmut Ehrig and Hans-Jörg Kreowski. Applications of Graph Grammar Theory to
Consistency, Synchronization, and Scheduling in Data Base Systems. Information
Systems, 5:225–238, 1980.

[EKR90] Hartmut Ehrig, Hans-Jörg Kreowski, and Grzegorz Rozenberg, editors. Graph-
Grammars and Their Application to Computer Science, International Workshop,
volume 532 of Lecture Notes in Computer Science, Berlin, 1990. Springer.

[EL85] Ramez Elmasri and James A. Larson. A Graphical Query Facility for ER Databases.
In Peter P. Chen, editor, Entity-Relationship Approach: The Use of ER Concept in
Knowledge Representation, pages 236–245. IEEE CS Press/North-Holland, 1985.

[ELN+92] Gregor Engels, Claus Lewerentz, Manfred Nagl, Wilhelm Schäfer, and Andy Schürr.
Building Integrated Software Development Environments, Part 1: Tool Specifica-
tion. ACM Transactions on Software Engineering and Methodology, 1(2):135–167,
April 1992.

[Eng90] Gregor Engels. Elementary Actions on an Extended Entity-Relationship Database.
In Ehrig et al. [EKR90], pages 344–362.

[GF79] C.C. Gotlieb and A.L. Furtado. Data Schemata Based on Directed Graphs. Journal
of Computer and System Sciences, 8(1), 1979.

[GG87] Ephraim P. Glinert and Jakob Gonczarowski. A (Formal) Model for (Iconic) Pro-
gramming Environments. In INTERACT’87, Proceedings of the 2nd IFIP Confer-
ence on Human-Computer Interaction [IFI87], pages 283–290.

[GG90] Proceedings of the International Workshops on Graph-Grammars and Their Appli-
cation to Computer Science, volume 73,153,291,532 of Lecture Notes in Computer
Science. Springer, 1978–1990.

BIBLIOGRAPHY 203

[Gli90a] Ephraim P. Glinert, editor. Visual Programming Environments: Applications and
Issues. IEEE Computer Society Press, Los Alamitos, CA, 1990.

[Gli90b] Ephraim P. Glinert, editor. Visual Programming Environments: Paradigms and Sys-
tems. IEEE Computer Society Press, Los Alamitos, CA, 1990.

[Gog94] Martin Gogolla. An extended entity-relationship model : fundamentals and prag-
matics, volume 767 of Lecture Notes in Computer Science. Springer Verlag, Berlin,
1994.

[GPT93] Marc Gemis, Jan Paredaens, and Inge Thyssens. A Visual Database Managment
Interface Based on GOOD. In R. Cooper, editor, Interfaces to Database Systems,
Workshops in Computing, pages 155–175. Springer, 1993.

[GPTVdB93] Marc Gemis, Jan Paredaens, Inge Thyssens, and Jan Van den Buscche. GOOD: A
Graph-Oriented Object Database System. In Buneman and Jajodia [BJ93], pages
505–510. Video presentation.

[GPVdBVG94] Marc Gyssens, Jan Paredaens, Jan Van den Bussche, and Dirk Van Gucht. A graph-
oriented object database model. IEEE Transactions on Knowledge and Data Engi-
neering, 6(4):572, August 1994.

[GPVG89] Marc Gyssens, Jan Paredaens, and Dirk Van Gucht. A Uniform Approach to-
ward Handling Atomic and Structured Information in the Nested Relational Database
Model. Journal of the ACM, 36(2):790–825, October 1989.

[GPVG90a] Marc Gyssens, Jan Paredaens, and Dirk Van Gucht. A Graph-Oriented Object Data-
base Model. In PODS90 [POD90], pages 417–424.

[GPVG90b] Marc Gyssens, Jan Paredaens, and Dirk Van Gucht. A Graph-Oriented Object Model
for End-User Interfaces. In H. Garcia-Molina and H.V. Jagadish, editors, Proceed-
ings of the 1990 ACM SIGMOD International Conference on Management of Data,
volume 19:2 of SIGMOD Record, pages 24–33. ACM Press, 1990.

[GR87] Monika Gerstendörfer and Gabriele Rohr. Which task in which representation on
what kind of interface. In INTERACT’87, Proceedings of the 2nd IFIP Conference
on Human-Computer Interaction [IFI87], pages 513–518.

[GR89] Eric J. Golin and Steven P. Reiss. The Specification of Visual Language Syntax.
In IEEE Proceedings of the Workshop on Visual Languages, pages 105–110, Los
Alamitos, CA, October 1989. IEEE, IEEE Computer Society Press.

[Gra90] Mike Graf. Visual Programming and Visual Languages: Lessons Learned in the
Trenches. In Glinert [Gli90b], pages 452–455.

[Haa95] Erik de Haas. Categorial Graphs. Submitted for publication, 1995.

204 BIBLIOGRAPHY

[HE90] Uwe Hohenstein and Gregor Engels. Formal Semantics of an Extended Entity-Re-
lationship based Query Language. In Spaccapietra [Spa90], pages 177–194.

[HE91] Uwe Hohenstein and Gregor Engels. SQL/EER – Syntax and Semantics of an Entity-
Relationship-Based Query Language. Technical Report 91-02, Technische Univer-
sität Braunschweig, March 1991.

[HE92] Uwe Hohenstein and Gregor Engels. SQL/EER – Syntax and Semantics of an Entity-
Relationship-Based Query Language. Information Systems, 17(3):209–242, 1992.

[HG88] Uwe Hohenstein and Martin Gogolla. A Calculus for an Extended Entity-
Relationship Model Incorporating Arbitrary Data Operations and Aggregate Func-
tions. In C. Batini, editor, Proceedings of the 7th International Conference on Entity-
Relationship Approach, pages 129–148, 1988.

[HIL94] Eben M. Haber, Yannis E. Ioannidis, and Miron Livny. Foundations of Visual
Metaphors for Schema Display. Journal of Intelligent Information Systems, 3:1–38,
1994.

[Hof82] Christoph M. Hoffmann. Group-Theoretic Algorithms and Graph Isomorphism, vol-
ume 136 of Lecture Notes in Computer Science. Springer, 1982.

[Hoh93] Uwe Hohenstein. Formale Semantik eines erweiterten Entity-Relationship Models.
Teubner-Texte zur Informatik. B.G. Teubner Verlagsgesellschaft, 1993.

[Hou92] Teruhisa Houchin. DUO: Graph-Based Database Graphical Query Expression. In
Qiming Chen, Yahiko Kambayashi, and Ron Sacks-Davis, editors, Proceedings of
The Second Far-East Workshop on Future Database Systems, volume 3 of Advanced
Database Research and Development Series, pages 286–295, Singapore, April 1992.
World Scientific.

[IEE88] IEEE. IEEE Proceedings of the Workshop on Visual Languages, Los Alamitos, CA,
October 1988. IEEE Computer Society Press.

[IFI87] IFIP. INTERACT’87, Proceedings of the 2nd IFIP Conference on Human-Computer
Interaction, Amsterdam, 1987. Elsevier Science Publishers B.B. (North Holland).

[Kan88] Hannu Kangassalo. Concept D: a graphical language for conceptual modelling and
data base use. In IEEE Proceedings of the Workshop on Visual Languages [IEE88],
pages 2–11.

[KL89] M. Kifer and G. Lausen. F-Logic: a Higher-Order Logic for Reasoning about Ob-
jects, Inheritance and Scheme. In Clifford et al. [CLM89], pages 134–146.

[KM89] Michel Kuntz and Rainer Melchert. Pasta-3’s Graphical Query Language: Direct
Manipulation, Cooperative Queries, Full Expressive Power. In Peter Apers and Gio
Wiederhold, editors, Proceedings of the Fifteenth International Conference on Very
Large Data Bases, pages 97–105. Morgan Kaufmann, 1989.

BIBLIOGRAPHY 205

[Knu68] Donald E. Knuth. Semantics of Context-Free Languages. Mathematical Systems
Theory, 2(2):127–145, 1968.

[Knu71] Donald E. Knuth. Examples of Formal Semantics. In Symposium on Semantics of
Algorithmic Languages, volume 188 of Lecture Notes in Mathematics, pages 212–
235, 1971.

[Kun92] Michel Kuntz. The gist of GIUKU: Graphical interactive intelligent utilities for
knowledgeable users of data base systems. SIGMOD Record, 21(1), 1992.

[LG94] John P. Lee and Georges G. Grinstein, editors. Database Issues for Data Visualiza-
tion, IEEE Visualization ’93 Workshop, volume 871 of Lecture Notes in Computer
Science, Berlin, October 1994. Springer.

[LP91] Mark Levene and Alexandra Poulovassilis. An object-oriented data model for-
malised through hypergraphs. Data & Knowledge Engineering, 6(3):205–224, 1991.

[Mar89] Leo Mark. A Graphical Query Language for the Binary Relationship Model. Infor-
mation Systems, 14(3):231–246, 1989.

[Mar94] Kim Marriott. Constraint Multiset Grammars. In Proceedings 1994 IEEE Sympo-
sium on Visual Languages, pages 118–125, Los Alamitos, CA, October 1994. IEEE,
IEEE Computer Society Press.

[Miu94] T. Miura. Nesting quantification in a visual data manipulation language. Data &
Knowledge Engineering, 12(2):167–196, March 1994.

[MP80] Dan McCue and George Poonen. Evaluation of an E-R query langauge (Abstract). In
Peter P. Chen, editor, Entity-Relationship Approach to Systems Analysis and Design,
page 463. North-Holland, 1980.

[MR83] Victor M. Markowitz and Yoav Raz. ERROL: An Entity-Relationship, Role Ori-
ented, Query Language. In Carl G. Davis, Sushil Jajodia, Peter Ann-Beng Ng, and
Raymond T. Yeh, editors, Entity-Relationship Approach to Software Engineering,
pages 329–346. North-Holland, 1983.

[New91] Paulisch F. Newbery. The Design of an Extendible Graph Editor, volume 704 of Lec-
ture Notes in Computer Science. Springer, 1991. Dissertation, University of Karl-
sruhe.

[NS90] Manfred Nagl and Andy Schürr. A Specification Environment for Graph Grammars.
In Ehrig et al. [EKR90], pages 599–609.

[OPT+92] S. Orefice, G. Polese, M Tucci, G. Gortora, G. Costagliola, and C. K. Chang. A 2d
Interactive Parser for Iconic Languages. In Proceedings of the 1992 IEEE Workshop
on Visual Languages, pages 207–213, Los Alamitos, CA, September 1992. IEEE,
IEEE Computer Society Press.

206 BIBLIOGRAPHY

[Pag81] F. G. Pagin. Formal Specification of Programming Languages: A Panoramic
Primer. Prentice Hall, Englewood Cliffs, New Jersey, 1981.

[Par78] Jan Paredaens. On the expressive power of the relational algebra. Information
Processing Letters, 7(2):107–111, February 1978.

[POD90] Proceedings of the Ninth ACM Symposium on Principles of Database Systems. ACM
Press, 1990.

[PPT91] Peter Peelman, Jan Paredaens, and Letizia Tanca. G-Log: A Declarative Graphical
Query Language. In C. Delobel, M. Kifer, and Y. Masunaga, editors, Proceedings
2nd International Conference on Deductive and Object-Oriented Databases, volume
566 of Lecture Notes in Computer Science, pages 108–128, Berlin, December 1991.
Springer.

[PPT95] Jan Paredaens, Peter Peelman, and Letizia Tanca. G-Log: A Graph-Based Query
Language. IEEE Transactions on Knowledge and Data Engineering, 7(3):436–453,
June 1995.

[PR69] J. Pfaltz and A. Rosenfeld. Web Grammars. In Proc. International Joint Conference
on Artificial Intelligence, pages 609–619, 1969.

[Pra71] Terrence W. Pratt. Pair Grammars, Graph Languages and String-to-Graph Transla-
tion. Journal of Computer and System Sciences, 5:560–595, 1971.

[PVdBA+92] Jan Paredaens, Jan Van den Bussche, Marc Andries, Marc Gemis, Marc Gyssens,
Inge Thyssens, Dirk Van Gucht, Vijay Sarathy, and Lawrence Saxton. An Overview
of GOOD. SIGMOD Record, 21(1):49–53, 1992.

[RBP+91] James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy, and William
Lorensen. Object Oriented Modeling and Design. Prentice Hall, Englewood Cliffs,
1991.

[RS95] Jan Rekers and Andy Schürr. A Graph Grammar approach to Graphical Parsing.
In Proc. VL’95 11th Int. IEEE Symp. on Visual Languages. IEEE Computer Society
Press, September 1995.

[SB92] G. Schmidt and R. Berghammer, editors. Proceedings of the 17th International Work-
shop on Graph-Theoretic Concepts in Computer Science, volume 570 of Lecture
Notes in Computer Science, Berlin, 1992. Springer.

[SBMW93] Gary Sockut, Luanne Burns, Ashok Malhotra, and Kyu-Young Whang. GRAQULA:
A graphical query language for entity-relationship or relational databases. Data &
Knowledge Engineering, 11:171–202, 1993.

[SBOO95] E. Sukan, N.H. Balkir, G. Ozsoyoglu, and Z.M. Ozsoyoglu. VISUAL: A graphical
Icon-Based Query Language. Unpublished Manuscript, 1995.

BIBLIOGRAPHY 207

[Sch70] H.-J. Schneider. Chomsky-Systeme für partielle Ordnungen. Technical Report Ar-
beitsbericht IMMD-3-3, Universität Erlangen, 1970.

[Sch89] Andy Schürr. Introduction to PROGRESS, an Attribute Grammar Based Specifica-
tion Language. In M. Nagl, editor, Proceedings of the 15th International Workshop
on Graph-Theoretic Concepts in Computer Science, volume 411 of Lecture Notes in
Computer Science, pages 151–165, Berlin, 1989. Springer.

[Sch90a] Andy Schürr. PROGRESS: a VHL-Language Based on Graph Grammars. In Ehrig
et al. [EKR90], pages 641–659.

[Sch90b] Andy Schürr. PROGRESS-Editor: A text-oriented hybrid editor for PROgrammed
Graph REwriting SyStems. In Ehrig et al. [EKR90], page 67.

[Sch91a] Jens Schacht. Visuelle Spezifikation von komplexen Aktionen auf erweiterten
Entity-Relationship-Datenbanken. Master’s thesis, Technische Universität Braun-
schweig, Germany, March 1991. In German.

[Sch91b] Andy Schürr. Operationales Spezifizieren mit programmierten Graphersetzungssys-
temen. PhD thesis, RWTH Aachen, 1991. Deutsche Universitäts Verlag, Wiesbaden.
In German.

[Shn83] Ben Shneiderman. Direct Manipulation: A Step Beyond Programming Languages.
IEEE Computer, 16(8):57–69, 1983.

[Spa90] S. Spaccapietra, editor. Proceedings of the 9th International Conference on Entity-
Relationship Approach. North Holland, 1990.

[VAO93] K. Vadaparty, Y.A. Aslandogan, and G Ozsoyoglu. Towards a Unified Visual Data-
base Access. In Buneman and Jajodia [BJ93], pages 357–366.

[VdB93] Jan Van den Bussche. Formal aspects of object identity in database manipulation.
Doctoral thesis, University of Antwerp (UIA), 1993.

[VdBP91] Jan Van den Bussche and Jan Paredaens. On the Expressive Power of Structured
Values in Pure OODB’s. In Proceedings of the Tenth ACM Symposium on Principles
of Database Systems, pages 291–299. ACM Press, 1991.

[VdBVGAG92] Jan Van den Bussche, Dirk Van Gucht, Marc Andries, and Marc Gyssens. On
the Completeness of Object-Creating Query Languages for Nearly-Deterministic
Queries. In Proceedings 33rd Symposium on Foundations of Computer Science,
pages 372–379. IEEE Computer Society Press, October 1992.

[Wit92] Kent Wittenburg. Earley-Style Parsing for Relational Grammars. In Proc. 1992
IEEE Workshop Visual Languages, pages 192–199, Los Alamitos, CA, 1992. IEEE
CS Press.

208 BIBLIOGRAPHY

[WMS+92] Kyu-Young Whang, Ashok Malhotra, Gary Sockut, Luanne Burns, and K.-S. Choi.
Two-Dimensional Specification of Universal Quantification in a Graphical Data-
base Query Language. IEEE Transactions on Software Engineering, 18(3):216–224,
March 1992.

[Zlo77] M. M. Zloof. Query-by-Example : a data base language. IBM Systems Journal,
16(4):324–343, 1977.

[ZS92] Albert Zündorf and Andy Schürr. Nondeterministic Control Structures for Graph
Rewriting Systems. In Schmidt and Berghammer [SB92], pages 48–62.

