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Chapter 1

| ntroduction

1.1 A Need for Visual Languages

Wherever large amounts of structured data are to be stored for retrieval and manipulation, database
management systems, also referred to as information systems, have found their way over the past few
decades. As a consequence, as well as through recent evolutions in telecommunication technology, a
growing number of unexperienced and untrained users are confronted with information systems. Un-
fortunately, the functionality and outlook of the user interfaces of these systems quite often seem more
geared towards knowledgeable computer experts, rather than towards their intended users.

In responseto this problem, much research effort has been put into user interface designin general,
and the development of user-friendly information systemsinterfacesin particular. Within this area, a
major line of research (subsuming thetopic of thisthesis) aimsat fully exploiting the two-dimensional
nature of the computer screen, by visualizing various aspects of theinformation systemsuser interface:

1. One aspect is the definition of the structure of the database, leading to graphical scheme nota-
tions, the most well-known of which isundoubtedly Chen’s Entity-Rel ationship model [Che76].

2. Another important aspect of information systems suitable for visualization are languages for
querying and manipulating the database, leading (among others) to database languages based
on Shneiderman’s direct manipulation paradigm [Shn83]. Systems built according to this par-
adigm allow the user to directly manipulate the objects of interest in the form of avisual rep-
resentation, as opposed to systems offering access to these objects indirectly, e.g., by means of
some textual language. In [Shn83], Shneiderman mentions the following advantages of direct
mani pulation interfaces:

(a) Continuous representation of the object of interest,

(b) Physical actionsinstead of complex syntax,

(c) Rapid, incremental, reversible operations whose impact on the object of interest isimme-
diately visible,

(d) Layered approach to learning that permits usage with minimal knowledge.

1



2 CHAPTER 1. INTRODUCTION

3. Afinal aspect which lendsitself most naturally to visualization concernsthe resul ts of manipul a-
tions of and queriesto the database. Research on thistopicis part of the broader research area of
information visualization [LG94]. Research in this area aims at devel oping methods to present
in acomprehensible manner huge and compl ex structured data sets to information systems users
by means of technigues such as three-dimensional rendering.

The research reported on in this thesis concerns the second of the above aspects, namely visual
database query and manipulation languages. The applicability of the notion of direct manipulation
to database manipulation languages was aready recognized by Shneiderman in the aforementioned
article [Shn83]. Based on astudy of various kinds of direct manipulation interfaces, he ascertains that

Graphic representations can be especially helpful when there are multiple relationships
among objects and when the representation is more compact than the detailed object.

This statement most clearly applies to database manipulation.
Also, in hisintroduction to the impressive collection [Gli90a, Gli90b] of influential and represen-
tative articles on visual programming environments, Glinert remarks that

The computer’s ability to represent in a visible manner normally abstract and ephemeral
aspectsof the computing process such asrecursion, concurrency, and the evolution of data
structures has had a remarkabl e and positive impact on both the productivity of program-
mers and their degree of satisfaction with the working environment.

One of the articles included in [GIi90b] supports this claim on the basis of real-life experiments.
In [GR87], Gerstendorfer and Rohr ascertain that

Structural tasks are difficult to comprehend if not presented in pictures or more gener-
ally by means of visual aids. (...) Taskswith structural characteristicswefind e.g., in all
database applications.

It is therefore not surprising that these insights in human-computer interaction, together with the
ongoing evolution of hardware, has triggered the development of a range of formalisms and tools for
visual interaction with information systems, including, among many others, [Mar89, ACS90, CM 90,
LPO1, PPT91, Hou92, WM S*92].

1.2 A Need for Formally Defined Visual Languages

Remarkably, many proposals, though visually attractive, lack any kind of formal definition [Kan88,
ADD™91, Sch91a, SBOO95]. In other cases, pseudo-formal constructionsare presented, which barely
deserveto be called formal definitions [GG87, CTY Y 89].

There ishowever, aclear and widely recognized need for clearly and unambiguously defining any
computer language in general, and visual database languages in particular, since

e it forcesthelanguage designer to think clearly about both the major conceptsaswell asthe minor
details of the language,
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e it enables truthful implementation,

e it guaranteesto the user aunique and clearly determined semanticsfor any sentence in the lan-
guage he cares to write down, and

e itoffersthepossibility toformally study propertiesof thelanguage (without having to implement
it). Oneimportant such property isalanguage’s expressive power (cf. Section 5.3 of thisthesis),
a characterization of which in turn allows the comparison of different languages.

Fortunately, numerous proposals of visual database languages are indeed formally defined. Within
this range of definitions, two main streams may be distinguished:

1. definitionsusing various logics, such as G-Log [PPT95] and GraphLog [CM90] based on first-
order logic, the Categorial Graphs model [Haa95] based on modal logic, DOODLE [Cru92]
based on F-logic [KL89], and VQL [VAO93] based on Datalog [CGT9Q].

2. definitions using various extensions of string grammars, such as context-free positional gram-
mars[CTODL95], constraint multiset grammars[Mar94], and picturelayout grammars[GR89].

In such grammars, special (textual) symbols and operators as well as special-purpose attributes
are used to indicate (spatial) interrel ationships between the symbols used in the grammars pro-
ductions. For instance, the following expression is a production from a positional grammar for
logic circuits [OPT+92]:

Circuit — AND 3°_1 NOT

It captures the fact that the start-symbol Circuit of the grammar may be rewritten to an AND-
gate, whosethird “ attaching point” (representing its output) islinked to aNOT-gatesfirst attach-
ing point (representing itsinput), i.e., the logic circuit

The superscript “0” indicates that the link concerns the immediately preceding gate. A super-
script n # 0 would refer to the n-th preceding gate.

Definitions from the first category deal almost exclusively with the logical aspects of the consid-
ered languages, i.e., their semantics, and include no formalization of syntax, i.e., the correspondence
between rules and their visual representation.

The strange thing about the | atter category of definitional mechanismsisthat string grammarswere
intended for (and have been successfully applied to) the definition of textual languages. In contrast,
over 25 years ago, a counterpart for formally defining graph languages was introduced in the form of
graph grammars and graph rewrite systems [PR69, Sch70].

A graph grammar basically consists of an “initial” graph and a set of graph rewrite rules. Such a
rewrite rule in turn basically consists of two graphs, called its |eft- and right-hand side. A rule may
be applied to a graph by looking for an isomorphic occurrence of the left-hand side in the graph, and
rewriting it into an isomorphic occurrence of the right-hand side. The grammar defines the language
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of all graphsthat may be obtained by applying an arbitrary sequence of graph rewriterulesto theinitial
graph. Ingraphgrammars(aswell asintextual grammars) adistinctionisoften made between ter minal
and non-terminal symbols. Termina symbols are the elements of the graphs that are actually part of
the defined language, while non-terminal symbols are not allowed to occur in these graphs, but are
merely used in intermediate stages of their construction.

A graph rewrite system consists of a structured collection of graph rewrite rules, and can be used
to transform one instance of a given class of graphs into another instance of the same class. *

Since 1969, the theory of graph grammars has become a well-researched area[GG90]. Mainly in
the seventies, somework was already done on applying results obtained in this areato various aspects
of database management, such as conceptual modeling and the description of concurrency [EK76,
GF79, ADS80, EK80], al in the context of relational databases. Only in the early nineties, thisline of
research was picked up again [GPV G90a, GPV G90b, Eng90, BM90, Cou9l, EF94], thistime mainly
in the context of object-based models.

1.3 TopicofthisThess: DefiningVisual DatabaseL anguageswith
Graph Rewriting

In this thesis, we investigate how graph rewrite systems may be used to formally define both syntax
and semantics of visual database languages. We present two possible ways to do so.

1.3.1 A Query Language Defined Using Graph Rewriting

In afirst approach, we start from the following well-known technique [EL 85, Kan88, Mar89] to “de-
rive” afully graphical query language from a given database model which includes agraphical repre-
sentation for database schemes (such as the aforementioned Entity-Relationship model). Intuitively,
formulation of aquery in such alanguage primarily consists of composing graphical componentsfrom
a concrete database scheme into a pattern, describing the desired information. Again intuitively, this
pattern then has to be matched against the database instance to retrieve thisinformation.

As an example, consider Figure 1.1. On one hand, this diagram may be seen as the graphical rep-
resentation of an (extremely ssimple) ER scheme, also called an ER diagram. In this case, the diagram
models a world of customers and cash-cards, as indicated by the rectangular nodes, representing so-
called entity types. Customers can have cash-cards, asindicated by the diamond-shaped node linked to
both rectangles, representing arelationship type. Customers are characterized by a name, while cash-
cards are characterized by a password (both of which are strings). Thisisindicated with oval-shaped
nodes, representing so-called attributes of the entity types.

On the other hand, the diagram may also be read as a query, expressing an interest in the names of
customers and the passwords of cash-cards these customers have. Czejdo et al. [CERE87] list (among
others) the following advantages of query languagesin which queries are composed of graphica com-
ponents from a database scheme:

! Despite the differences outlined above, the terms “ graph grammar” and “graph rewrite system” are often used as syn-
onyms. Since in this thesis, both formalisms are used, we make a conscious effort to use the appropriate term in each
context.
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password

—sting > "™ cUSTOMER®"™"  'has %% [ CASHCARD  siring

Figure 1.1: A diagram with a double purpose

1. The query language is two dimensional. Diagrams that depict a view of the database schema
are displayed and can be manipulated interactively.

2. Query formulationisflexible. A query can be formulated in many different ways since the order
in which the diagram manipulating operators are invoked is often immaterial.

3. The user always has a convenient frame of reference. The current diagram reflects the current
status of query formulation and is always a valid query.

4. The approach is applicable to a wide range of semantic data models.

5. Theintended query can be specified in several different ways (...) The strategy to be used can
be selected by the user.

Based on the Extended Entity-Relationship model [EGH™92] (which is, as the name suggests, an
extended version of Chen's Entity-Relationship model [Che76]) we present in this thesis the Graph-
Oriented Query Language GOQL/EER, in which queries may be expressed graphically using elements
from agiven EER diagram. Theword “diagram” rightfully suggests that GOQL/EER fallswithin the
category of visual query languages using the diagrammatic representation paradigm, according to the
taxonomy introduced by Batini et al. in their comprehensive survey of visual query systems[BCCL91].
According to this taxonomy, the representation paradigm of avisual query language may be either

tabular : using a visualization of prototypical tables (typically used in the context of the relational
database model);

diagrammatic : using afixed set of symbols, each representing aspecific type of concepts, aswell as
afixed set of allowed connections, each representing a specific logical relationship type between
concepts;

iconic : using icons denoting entities of the real world as well as functions offered by the system,
which are combined into a query; or

hybrid : using any combination of the other three approaches.

The main topic of Chapter 4 of thisthesisisan investigation of how both syntax and semantics of
GOQL/EER may beformally defined by means of agraph grammar. Asfor the syntax of thelanguage,
we concentrate on the abstract syntax. Defining the abstract syntax of agraph-oriented language boils
down to specifying the structural characteristics a graph must satisfy in order to represent a syntacti-
cally correct GOQL/EER-query.
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The exact correspondence between agraph and the query it representswoul d be thetopic of astudy
of the concrete syntax. The latter basically establishes the concrete visual representation of language
elements, stating for instance that an entity should be represented by arectangle, aswell astheir layout
and spatial relationships, stating for instance that one endpoint of an edge representing a role should
lie on the boundary of arectangle, while the other should coincide with the corner of adiamond (rep-
resenting the relationship). The topic of concrete syntax of visual languagesisin turn closely related
to the research area of visual parsing [Wit92], which in a sense studies the recognition of concrete
syntax elements, and the transition from concrete to abstract syntax. It is currently being investigated
to what extent graph grammars may also be used for this aspect of visual language definition [RS95].
Conversely, the research area of visualization [LG94] in a sense studies the transition from abstract to
concrete syntax.

For defining the languages semantics, we take the following approach. The EER model includes
afully textual query language SQL/EER [HE92]. We exploit the availability of thisformally defined
language by defining the semantics of GOQL/EER queries by tranglating them to SQL/EER queries.
Intuitively, this means that graph increments are associated to elements of the textual language. For
instance, the CUSTOMERND CASH CARBntitiesin Figure 1.1 can be seen asthe* graphical equiv-
alent” of the declaration of variables (say, ¢ of type CUSTOMERBnd cc of type CASHCARD in the
textual language. Likewise, thestring -labeled nodesin thefigure can be seen asthegraphical equiv-
alentsof thetermsc.name and cc.password . Finaly, the has -relationship expressestheformula
c has cc .

One of the main contributions of this thesisis the observation that the definition of both syntax
and semantics (in the way described above) may beintegrated seemlessly into one and the same graph
grammar specification. In asense, thisideamay be seen to follow naturally from the above mentioned
associ ation between components of respectively graphical and textual queries. Indeed, consider once
more the graphical increment

name

CUSTOMER

inwhich (as mentioned above) thestring  -label ed node should be seen asthe graphical equivalent of
theterm c.name . Inthe EBNF grammar defining the syntax of thetextual query language SQL/EER,
thefact that c.name isindeed a correct part of atextual query is captured in the rule

TERM :=VARIABLE “.” ATTRIBUTE

expressing the fact that a variable, followed by adot, followed by an attribute name, isa syntactically
correct term.

Likewise, thefact that the above depicted graphical increment isindeed acorrect part of agraphical
query may be captured in the graph rewriterule

attribute

| EntityType | := EntityType

capturing thefact that given anodelabeled with an EntityType ,anodelabeledwithaValueType
may be linked to it by means of an attribute  -edge.

Rather than to define the semantics of the graph-oriented query language by formalizing this asso-
ciation between EBNF-rules and graph rewrite rules (alanguage definition technique known as Pratt’s
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pair-grammars [Pra71]) we chose to integrate this association into the graph grammar specification
by extending the latter with attributes,? thus obtaining an attributed graph grammar. This technique
of attributing agrammar is aso used quite frequently for defining the semantics of textual languages.
When the syntax of atextual language is defined using an EBNF grammar, then this grammar may be
extended into an attributed one, defining the semantics of the language as follows:

1. attributes(intheformal language sense of theword!) are associated to the non-terminal symbols
of the EBNF grammar and

2. attribute derivation rules are associated to the EBNF rules, which compute (in the attributes)
an expression in some other formally defined language, which is then considered to define the
semantics of the expression in the original textual language.

Thistechnique has been known sincelong in the context of defining the semantics of textual |anguages.
It was introduced in [Knu68, Knu71] by Knuth under the name of attribute translation grammars. In
these two papers, Knuth applies the technique to the trandlation of atoy-language “turingol” to Turing
Machines, and to the reduction of \-calculus expressions to some canonical form. More examples on
applications of attribute transation grammars may be found in [Pag81].

Thesametechniqueisusedin [HE92], inwhich SQL/EER isformally defined by mapping itsstate-
ments to corresponding formulasin a previously defined calculus for the EER model [HG88]. For in-
stance, an attribute derivation rule associated to the rule “TERM ::= VARIABLE “.” ATTRIBUTE”
tranglates such aterm into an expression in the EER calculus.

Likewise, in a graph grammar specification, attributes (once more in the formal language sense)
may be associated to rewrite rules. Informally, the graph rewrite rule depicted above then becomes

| EntityType | := EntityType attribute alueType

transfer ValueType Term := EntityType.Term *‘."" attribute

capturing thefact that, given the Term corresponding to the node labeled with an Entity- Type |, the
Term corresponding to the newly added node labeled with a ValueType is obtained by appending
(astring-representation of) the attribute to the former Term with a dot.

1.3.2 Choosing a Graph Grammar Formalism: PROGRES

Fromthe aboveideasclearly followsour need for an expressive graph grammar formalism. At thismo-
ment, the most expressive specification formalism based on graph rewrite rulesis Schirr’s PROgram-
med Graph REwriting System language [ Sch90a, Sch91b] (in brief, PROGRES).

A graph language is specified in PROGRES by means of atwo step process.

1. In agraph scheme, the types of nodes and edges that may occur in a graph of the considered
language are declared. Additionally, node attributes (i.e., values representing non-structural in-
formation concerning nodes) are declared and initialized.

2Note that the word “attribute” is now used in two different meanings: one in the context of graphs, and the other in
the context of the EER-model!
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2. A set of graph rewrite rules or productions, obeying the type restrictions imposed by the graph
scheme, captures those structural integrity constraints not expressible in agraph scheme. Addi-
tionally, productions also incorporate attribute computations.

Even though, besides the features mentioned above, the PROGRES language a so includesawide
variety of nondeterministic control structures [Z2S92], we use mainly the powerful pattern matching
and replacement facilities, aswell as attribute derivation mechanism offered by itsgraph rewriterules,
to specify both syntax and semantics of GOQL/EER as described previoudly.

An additional motivation for choosing the PROGRES formalism was the availability of an inte-
grated set of language-specific tools supporting editing, analyzing, and debugging of specifications
[NS90]. The specification of GOQL/EER has been entered using this toolsets syntax-directed edi-
tor [Sch90b], which allowed them to be anal yzed by theincrementally working type-checker and tested
using the integrated interpreter.

1.3.3 From Graphical to Hybrid L anguages

However successful visual query languages may appear to be, visual representations also have their
limitations. Especially when looking at the ever increasing collection of fully graphical query lan-
guages, one getstheimpression that some of thisresearch overshootsits mark in the sensethat apurely
graphical formulation of a query quite often becomes even more complex than its textual equivalent.

As an example, consider the query that retrieves (from some financial information system) the
names of those banks that manage only and exactly all accounts with a balance over 1.000.000. Fig-
ure 1.2 shows an expression of this query in SQL/EER, while Figure 1.3 shows the same query in
the fully graphical query language GRAQULA [SBMW93]. The (implies)  -box on the left corre-
spondsto the conditionthat if an account hasabalance over amillion, the considered bank should man-
agetheaccount. An(and) -box containsthe consequent of animplication (inthiscase, themanages-
relationship). Likewise, the(implies)  -box ontheright correspondsto the condition that if the bank
manages some account, the account’s balance should be over amillion.

select name

from bin BANK

wherefor all ain ACCOUNT
with balance > 1.000.000 : (b manages a)
and for all ain ACCOUNT with b manages a:
(balance > 1.000.000)

Figure 1.2: Names of banks that manage exactly all accounts with a balance over 1.000.000 (in
SQL/EER)

Similar highly expressive yet visually unattractive fully graphical query languages are introduced
in [Miu94, Hou92]. To say the least, one could doubt that both formulating and deciphering such a
nested structure of boxes corresponding to logical primitives, is easier than doing the same with its
textual equivalent.
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~(implies) ~(implies)

—| BANK '— manages

balance
r (and) |='— =

<nt_—> e > | <nt_—>
>1.000.000 Lz 1.000.000_!

Figure 1.3: The query of Figure 1.2 in GRAQULA

In support of this observation, the aforementioned collection of articles on visual programming
[GIli90b] includes an experience report [Grad0] intriguingly entitled “Visua Programming and Visual
Languages. LessonsLearned inthe Trenches’. Thefifth lesson in thisreport is briefly summarized as
“Quit While Winning”, a statement which is clarified as follows:

(...) asystem(...) ends up cumbersome and difficult to use (...) when the extension of
the visual language begins creating more problems than it solves. (...) Shift to another
presentation mode (usually text) as soon as appropriate.

The second lesson of the report supports this claim, by stating that a
(...) visual language should be based on a minimum of icons and constructs.
Likewise, in hisintroduction to [Gli90a, Gli90b], Glinert prophesies

(...) wouldit not be more pleasant and productiveto work in multi paradigmenvironments
which could support, within a single program, both textual and graphical representations
for all sorts of computing objects(...) ?

In the context of databases, the question then arises whether it is possible to combine the “best
of both worlds’, that is, to develop a hybrid query language that allows those parts of a query that
aremost clearly specified graphically respectively textually, to be indeed specified graphically respec-
tively textually.® In asense, Zloof’s Query-By-Example [Zl077], which is commonly considered to
be one of the first attempts at “two-dimensional” query languages, already offers facilities along this
line. Indeed, whilejoin conditionsand sel ections are entered “graphically” (that is, in table skeletons),
complex conditionsinvolving e.g., aggregate functions, have to be entered in plain text in aso-called
“condition box”. Similar facilities are offered in prototype interfaces for semantic database models,
like SNAP's “node restriction” [BH86]. In other proposals, like [Kun92, KM89], tools are presented

3The term “hybrid” was inspired by hybrid editors, where the user can freely choose between a syntax-directed and a
free style of editing [ELNT92].
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which give the user a (limited) choice between graphical and textual specification of operations, lim-
ited in the sense that graphics and text may not be mixed within the same operation.

We answer the above question positively by merging GOQL/EER and SQL/EER into a Hybrid
Query Language for the EER-model, in brief HQL/EER. This language has both GOQL/EER and
SQL/EER as sublanguages, but it al so allowsthe expression of queries by meansof amixture of graph-
ical elements from GOQL/EER and textual elements from SQL/EER.

1.3.4 Database Manipulation Defined as Graph-Rewriting

In a second approach towards the definition of visual database languages by means of graph rewrit-
ing, we shift our attention towards database manipulation languages. On one hand, when we intro-
duced GOQL/EER, we aready mentioned an intuitive way to interpret GOQL/EER queries, namely
by looking upon them as patterns that are to be matched against (a graph-representation of) the data-
base instance. On the other hand, when recalling the notion of a graph grammar, we mentioned that
pattern-matching is precisely the mechanism underlying the application of graph rewrite rules. An
intuitively natural ideawould therefore be to use graph rewriting as database manipulation paradigm.

However, SQL’s update-command illustrates the fact that a database manipulation generically
consists of a query together with the specification of some modification to be performed on the out-
come of the query [ACPB95]. Consequently, if we wish to use graph rewriterulesfor the specification
of database manipulations, we have to attribute a particular semantics to graph rewrite rule applica-
tion, allowing rules to be applied to various parts of a graph at the same time, rather than to asingle
subgraph. More precisely, we need the possibility to apply arule exhaustively, which meansthat it is
to be applied to every possible matching of itsleft-hand sidein the graph representation of the database
instance [And94].

As an example, part of the pattern of Figure 1.1 can be used to graphically express the database
update that the password of all cash-cards should be set to the name of their owner (assuming for the
sake of simplicity that a card has at most one owner).

Siing > CUSTOMEowner®Card FCASH CAR

password

Figure 1.4: A graph rewrite rule expressing a database update

Using theterminology introduced formerly, the part of thisdiagram drawninthinlines corresponds
to the left-hand side of the rewrite rule. On applying this rule to some graph representing a database
instance, thisleft-hand side matches the names of all customers having acash-card. Thediagramasa
whole(i.e., including thethick line) correspondsto the right-hand side of therewriterule. On applying
the rule to a database instance, the password of each cash-card matching theleft-hand sideis set to the
name of the customer occurring in that same matching (i.e., the customer having that cash-card).

Conversely, suppose we wish to revoke ownership for those cash-cards whose password equals
precisely the name of their owner. This manipulation may be performed using the graph rewrite rule
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depicted in Figure 1.5.

password

Figure 1.5: Another graph rewrite rule expressing a database update

Thistime, the diagram asawhol e correspondsto the | eft-hand side of therewriterule. On applying
this rule to some graph representing a database instance, this left-hand side matches the names of all
customers having a cash-card the password of which equals their name. The diagram excluding the
parts indicated with double lines (i.e., the has -relationship and its two incident edges) corresponds
to the right-hand side of the rewrite rule. On applying the rule to a database instance, these are the
elements to be removed from the database.

Sincein general, it isimpossible to express any conceivable database manipulation by means of a
singlerewriterule, we need the ability to structure anumber of rulesinto aprogram. Suchaprogramis
commonly called agraph rewrite system. For instance, applying the rules depicted in the Figures 1.4
and 1.5 in that order would remove (among others) all has -relationships from the database.

We incorporate the above ideas in a third language introduced in this thesis, called the Graph-
Oriented Object Database |language GOOD/ER. For reasons of succinctness, we do not present this
language in terms of the EER model, but rather use (a dlightly modified version of) the original ER
model as aframework. In summary, the GOOD/ER language allows the expression of database ma-
nipulationsas graph rewrite systems. Note the contrast with the use of graph rewrite rulesin the defini-
tion of GOQL/EER: whereas the semantics of GOOD/ER programsis defined asgraph rewriting, both
syntax and semantics of GOQL/EER queries are defined using graph grammar productions. Besides,
whereas the graph rewriting mechanism used for defining GOQL/EER isincorporated within the def-
inition of PROGRES, for the definition of GOOD/ER we define our own graph rewriting mechanism.

Characterizing GOOD/ER’s Expressive Power

Besides formally defining GOOD/ER, we aso formally study the expressive power of the language,
in support of our claim made earlier on that the possibility of such a formal study is precisely one
of the main reasons why one should formally define computer languages. This study is furthermore
facilitated by the fact that the semantics definition of GOOD/ER is“ self-contained”, in the sense that
the definitions incorporate a description of the way in which GOOD/ER programs are to be applied.*

Studying the expressive power of GOOD/ER boils down to answering the question: which cate-
gory of manipulations can be performed using the GOOD/ER language? To answer this question, we
use a so-called completeness-criterion, a well known technique in the area of database languages. A
completeness-criterion providesanecessary and sufficient conditionwhich apair of databaseinstances

4 As opposed to the semantics of GOQL/EER, defined by means of a translation to some other language.
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must satisfy in order for one instance to be transformable by means of the language into the other in-
stance. This condition is necessarily independent of the considered language, and may therefore be
used to compare the relative expressive power of different languages.

The criterion used to characterize GOOD/ER'’s expressive power is an adaptation of the criterion
called BP-compl eteness [CH80], originally introduced in the context of the relational database model,
to object-based database models.

1.4 Organization of thisThesis

In Chapter 2, we recall those aspects of the Extended Entity-Rel ationship model to be used in the defi-
nition of graph-oriented languagesfurther oninthethesis. After aninformal presentation (Section 2.1)
werecall the formal definitions of the EER data model (Section 2.2), including the definitions of EER
schemes and instances. In Section 2.3, we (informally) recall the textual query language SQL/EER.

In Chapter 3, we recall the aspects of the PROGRES graph rewriting formalism needed further
on in thisthesis. After some considerations on formal graph representation, we present the various
aspects which constitute the PROGRES specification of agraph language. As arunning example, we
present a PROGRES specification for EER diagrams, i.e., graphical representations of EER schemes.

In Chapter 4, we introduce and define both the Graph-Oriented and Hybrid Query Languages for
the EER model (abbreviated respectively GOQL/EER and HQL/EER). Following an example-based
presentation of GOQL/EER (Section 4.1), we formally define thislanguage by means of aPROGRES
specification (Section 4.2). In Section 4.3, we then introduce HQL/EER.

In Chapter 5, we introduce the Graph-Oriented Object Database language GOOD/ER based on a
dlightly modified version of the original ER model, presented in Section 5.1. A formal definition of
GOOD/ER is presented in Section 5.2. In Section 5.3, we then characterize GOOD/ER’s expressive
power (i.e., the set of transformations expressible by the language) in terms of the BP-compl eteness
criterion.

In Chapter 6, we contrast the languages studied in Chapters 4 and 5, and discuss the outcome of
our study on the applicability of graph rewrite systemsto the definition of visual database languages.
We also present some open issues for future research.

In Appendix A, we summarize some notational conventions. Appendix B presents the full syntax
of SQL/EER by means of an EBNF-grammar, while Appendix C includes the full PROGRES speci-
fication of GOQL/EER.



Chapter 2
The Extended Entity-Relationship M odel

In this chapter we recall some aspects of the database formalism we will use as a vehicle for the def-
inition of visual languages in the sequel of thisthesis. For this purpose, we chose one of the numer-
ous extensions made over the past two decades to Chen’'s original Entity Relationship model [Che76],
namely the Extended Entity-Relationship model [EGH'92], hereafter referred to as the EER model.

The chapter is organized as follows. In Section 2.1, we informally present the EER data model,
including data type signatures, schemes, and instances. All concepts are introduced by means of an
elaborate example. In Section 2.2, we recall the formal definitions of the EER data model [Hoh93,
Gog94]. Finaly, in Section 2.3, we (informally) recall a query language for the EER model, called
SQL/EER [HEQ0, HE92)].

2.1 Informal Introduction tothe EER Model

We start with an informal sketch of the main concepts of the EER data model. As universe of dis-
course (to be used as arunning example throughout the remainder of thisthesis), we use a network of
automatic teller machines. The following description was adopted and adapted from [RBP*91].

A computerized banking network includes both human cashiers and automatic teller ma-
chines (ATMs) to be shared by a consortium of banks. Each bank maintainsits own ac-
counts. Cashier stations are owned by individual banks. Human cashiers, employed by
banks, enter account and transaction data. An automatic teller machine accepts a cash
card from a customer, and carries out the required (remote) transaction on the account
associated to the cash card.

Thestructural characteristicsof datarelevant to an application areasuch asthe one described above,
may be expressed by means of an EER scheme. The formal (i.e., mathematical) definition of EER
schemes is presented in Section 2.2. Although such a formal definition is a prerequisite for unam-
biguously capturing the precise syntax and semantics of schemes, a mathematical structure is surely
not a very suitable tool to work with in, e.g., the process of deriving a scheme from a given informal
reguirements specification, like the one presented above for ATMs. Therefore, the EER modéd (like
many other object models) offers the possibility to visually represent a scheme, by means of an EER

13
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diagram. Figure 2.1 shows a (partial) EER diagram to model our running example. We now briefly
discuss the various components of an EER scheme that may be distinguished in this diagram.

eo_es eo t
E-'}'ATTRIBN = = TRANSACTIO
Q

ATM CASHIER CASHIER REMOTE
STATION TRANSACTION TRANSACTION

O sb_rt
owns
employs
n

consists of

CONSORTIUM—C TSt BANK [(Tst >4 CASHIER CASH CARD
issues -
proper_acct manages list u cc [Mace ca
has
ha_c

U o ho_c
y ho_a @ CUSTOMER

Croney>222n%e_{ ACCOUNT residence

Figure 2.1: An EER diagram, modeling a network of automatic teller machines

The basic building block of an EER schemeisthe entity type. An entity type providesthe namefor
acollection of real world things (called entities) that share certain characteristics. E.g., in theworld of
ATMs, banks play animportant part, hence the considered EER schemeincludesthe entity type BANK
In an EER diagram, an entity typeis drawn using a rectangular box.

Possiblereal world associations between entities of given entity types are modeled using relation-
shiptypes. E.g.,anATMisowned by aCONSORTIUM heentity typesATMrespectively CONSORT-
IUM aresaid to play theroleof respectively teller  and owner intherelationship typeowned by .
Visually, a diamond-shaped node is used to denote a relationship type. An undirected edge linking a
diamond representing a relationship type with a rectangle representing an entity type (like the edge
labeled owner ) denotes arole. We wish to stress the fact that, although the names of relationship
types often contain verbs, a relationship denotes a static fact recorded in the database. Although our
example only contains binary relationship types, any non-zero number of entity types may participate
in arelationship type.

Besides relationships, one can also establish component-links between entities. Relationships and
components are the EER equivalents of modeling mechanismswhich in many object-oriented model-
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ing techniques are referred to as associations respectively aggregations. While aggregation is used to
express the fact that entities of one type are a property of entities of some other type, an associationis
used to model amore general correspondence between entities of two or more types.

In our example EER scheme, a CONSORTIUM consists of anumber of BANKS, ordered in a
list. In the diagram, thisis indicated using an extra node labeled list , linked to the node labeled
CONSORTIUMespectively BANK by means of an edge labeled consists of , respectively €.
Components are either singletons, lists, sets or bags (i.e., multisets).

Both entities and rel ationships are characterized by meansof attributes. Attributesareeither single
values or collections of values (i.e., sets, lists or bags) describing properties of the pertaining entities
or relationships. In Figure 2.1, we can seethat ACCOUNJhave abalance ,whichisof typemoney,
while CUSTOMEShave alist of address esastheir residence

Attributesare indicated in an EER diagram by an undirected edge, |abel ed with the attribute name,
linking the rectangle corresponding to the entity (or relationship) type to an oval labeled with the do-
main of the attribute (in case of a single-valued attribute) or the keyword list , set or bag (in case
of acomplex attribute).

| Entity type | Attribute | Datatype |
ENTRY STATION | location address
TRANSACTION | entry_time time
amount money
ATM cash onhand | money
dispensed money
CASHIER name string
BANK name string
location address
CONSORTIUM name string
CUSTOMER name string
residence list(address)
CASH CARD password string
serial number | int
limit money
ACCOUNT blocked bool
balance money

Table 2.1: Attributes for the EER diagram for the automatic teller machine example

The complete collection of attributes of our running example EER scheme is shown in Table 2.1
inatabular format. Imagine that all of the attributes in this table would be represented graphically in
the diagram of Figure 2.1. The resulting diagram would obviously become quite incomprehensible.
Therefore we opted for a“hybrid” representation of the EER scheme, by presenting the attributesin a
tabular format, and all other parts of the scheme in the diagram (cf. our motivation of the use of hybrid
representations in Chapter 1).
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Datatypes, including operations and predicates applicableto their datavalues, are defined in adata
typesignature. E.g., the datatype signature underlying our example EER scheme includes adefinition
for thedatatype money (used e.g., asthe domain of the attributedispensed of theentity type ATN).
This definition states that al rational numbers with at most two decimals are allowed as values. To
money values, the function compute interest isapplicable. Thisfunction takesan integer value
asinput as interest rate, and returns a new money value, including the interest. Predicates applicable
to money values include typical mathematical comparison such as <money, <money,-... Note that
these predicates are subscripted with the name of the type in order to distinguish them from similar
predicates applicableto e.g., integer values.

Finally, by meansof the notion of type constructions, the EER model alsoincorporatesinheritance,
another well-known from many object-oriented modeling technique. 1t allowsthe specification of new
entity types as special cases of existing ones. The EER model uses a particular terminology in this
context. A type construction takesanumber of input entity types, and redistributes some of the entities
of these types over anumber of output types. In common object-oriented terminology, input types are
called superclasses, while output types are called subclasses. In our example, the types of ATM and
CASHIER STATIONM are “constructed” from thetype of ENTRY STATION by means of the type
construction partl .

Output types of atype construction inherit all properties (i.e., attributes, components and rolesin
relationships) from theinput typesof that construction. Inour example, thismeansthat both CASHIER
TRANSACTIONandREMOTE TRANSACTIG{vhicharespecializationsof TRANSACTIONcon-
cern ACCOUNY

2.2 Formal Definition of the EER Model

In this section, we formally define the EER model, following the definitions of [Hoh93].

The EER model consists essentially of two levels. Thetop level consists of aformalism for mod-
eling database schemes and instances. Below is alevel that allows the specification of arbitrary data
typesto be used as attribute domains in the specification of EER schemes. The presence of this lower
level solvesthe problem of e.g., traditional relational database management systemswhich offer only a
fixed set of predefined datatypes (such as string, money, date,...) over which relations can be defined.

A collection of datatypesisdeclared in adata type signature, which, besidesthe names of anumber
of sorts, also provides the signatures of operations and predicates defined on these sorts. Formally:

Definition 2.1 (Data type Signature) A datatype signature DT isa sixtuple
(SORTpT, OPERpT, PREDpT, source, dest, arg) where

e SORTpT, OPERpT and PREDpT are finite sets of names of respectively sorts, operations, and
predicates.

e source, dest and arg are functions with respective signatures source : OPERpT — SORTpT,
dest : OPERpT — SORTpT, and arg : PREDpT — &)RTJIST'
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Notation 2.2 If w is an operation name with source(w) =< Dy, ..., D, > and dest(w) = D, then
wewritew : Dy x ... x D, — D and call it the operation signature of w.
If 7 isa predicate namewith arg(7) =< D, ..., D, >,thenwewriter : D; x ... x D,, and call

it the predicate signature of .

Asanillustration, we present part of the data type signature underlying our example EER scheme.
Theset SORTpT containsthe sort namesaddress, bool, int, money, string andtime .
As mentioned in Section 2.1, the set OPERpT contains the operation name compute interest ,
with the functions source and dest defined on it as follows:

source(compute interest ) = (money,int )

dest(compute interest ) = money

The set PREDp contains among others the predicate name “ <money” With the function arg defined
onit asfollows:
arg(<money) = (Mmoney,money )

Hence compute interest has operation signature
compute interest : money x int  — money
while“<money” has predicate signature
<money : MoNey x money

Actual (sets of) values are associated to the sorts of a data type signature by means of an interpre-
tation. At the same time, an interpretation assigns a function to each operation and arelation to each
predicate, respecting their respective signatures.

Definition 2.3 (Inter pretation of a Data type Signature) An interpretation of a data type signature
DT isathree-tuple u[DT] = (u[SORTpT|, £[OPERpT], t[PREDpT]) of functions where

e 1[SORTpT] assignsa (possibly infinite) set of valuesto each sort name in SORTpT;

e 1[OPERpT| assigns to each operation name in OPER with signaturew : d; x ... x d,, — da
function u[OPERpT)(w) : u[SORTpT](di) % ... X p[SORTp7|(dn) — p[SORTDT(d);

e 1[PREDpT| assignsto each predicate namein PRED with signaturer : d; x ... x d,, arelation
such that u[PREDpT]|(7) C u[SORTpT](d1) X ... X u[SORTpT](d,)-

In the interpretation of the data type signature underlying our running example EER scheme, the
function u[SORTpT] assigns to the sort name money the set of al rational numbers with at most two
decimals. Thefunction ;[PREDpT] assignsto the predicate name“ <mqney” the binary relation, con-
taining those pairs (m, m') of money values for which m isindeed less than or equal to m’.
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The above definitions aready alow one to specify arbitrary datatypes. Notein particular that the
actual structure of thedataistotally encapsulated and isonly accessiblethrough the use of the provided
operations and predicates. L ooking back at the attributes of the scheme for our exampl e application of
ATMsinTable 2.1, we seethat thedomain of theresidence -attributeof the entity type CUSTOMER
Isin fact explicitly specified as alist of addresses. Hence one should also be able to specify some of
the structure of attributes outside the data type signature.

As the same type constructors used for complex attributes (i.e., list, set, and bag) are also used
for components, it should not only be possible to explicitly specify complex structured values, but
the model should aso offer the possibility to build such a structure on top of entities. Therefore, the
following definition will be stated in more general terms than just the context of data types. More
precisely, we define sort expressions based on some unspecified set of abstract symbols:

Definition 2.4 (Sort expressions) Let S be a set of symbols with a mapping 1[S] which maps each
element of S to afinite set. Theset expr(.S) of sort expressionsover S isdefined recursively asfollows:

1. S C expr(95);
2. if s € expr(S), then {set(s), bag(s), list(s)} C expr(9);
3. ifsy, ..., s, € expr(S)(n > 1), thenprod(sy,...,s,) € expr(S).
p[S] induces a mapping p[expr(S)] on expr(S) as follows:
L plexpr(S)](s) := p[S](s) for s € S
2. plexpr(S)](set(s)) := F(plexpr(S)](s));
3. plexpr(S))(bag(s)) := B(ulexpr(5)](s));
4. plexpr(S)](list(s)) == (ulexpr(5)](s))*;
5. plexpr(S)](prod(si, ..., sn)) = plexpr(S)](s1) X ... x plexpr(S)}(sn).

The reason for defining sort expressionsin terms of abstract symbolsisthat the collection of types
(i.e., entity types, relationship types, data types,...) on which actual sort expressions can be based,
depends on whether they are used in aquery or in the definition of an EER scheme. E.g., an interpre-
tation ;[ DT] of adatatypesignature DT inducesan interpretation u[expr(SORTpT)| on the set of sort
expressionsover DT, where SORTpT then playstherole of the set of symbols S.

Besides, in Section 2.3, we introduce a query language for EER databases in which the outcome
of aquery may be an arbitrarily complex type built using entity types, relationship types, data types,
and type constructors. Therefore, we define sort expressions to any level of depth, rather than to just
one level asrequired for the modeling of EER schemes.

Asan example, consider the query “ Give the serial numbersand limits of all cash cards’. The an-
swer to thisquery isasubset of theinterpretation of the sort expression prod (int, money). Another ex-
ampleisthedomainof theresidence -attributeof entity type CUSTOMEReing list(address)
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Since the above definition allows sort expressionsto be nested to any depth, more“ exotic” expressions
such as set(list(time, money)) , Which could be used to represent the attributes of the entity
type TRANSACTIONN atabular format, are also allowed.

Definition 2.4 concludes the formalization of thefirst layer of the EER datamodel, namely that of
datatypes. Wenow turn our attentionto EER schemesand instances. Asmentioned intheintroduction
to this section, an EER schemeisdefined over afixed datatype signature. It isformalized as a number
of sets containing the names of each of the basic building blocks such as entity types, attributes etc.
Connections between these building blocks are formalized by means of functions, satisfying anumber
of constraintsto be explained following the definition.

Definition 2.5 (EER Scheme) Let DT be a data type signature. An EER scheme Sy, over DT" con-
sists of

e sixdigjoint finite sets E-TYPE, R-TYPE, ROLE, ATTR, COMP, CONS
¢ seven functions with the following signatures:

participants : R-TYPE — E-TYPE™
relship : ROLE — R-TYPE
entity : ROLE — E-TYPE
owner : ATTR — F(E-TYPEU R-TYPE)
COMP — F(E-TYPE)
domain : ATTR— {D'|3D € SORTpT: D' € {D,set(D), bag(D),list(D)}}
COMP — {E' | 3£ € E-TYPE : E' € {E,set(E), bag(FE),list(£)}}
input, output : CONS— F(E-TYPE) — ()

satisfying the following constraints:

1. For each R € R-TYPEwith participants(R) =< E, ..., E,, >, theremust bem different
P, € ROLE(1 < i < m) withrelship(P;) = R and entity(P;) = E;.

2. For Ty, T, € CONSholdsthat if T} # T, then output(7;) N output(7y) = 0.

3. Let E € E-TYPE. Then (£, E) should not be in the transitive closure of the relation
{(Z,0) | 3T € CONS I € input(T'), O € output(7)}.

The fact that relship respectively entity are functions that map a role to one single relationship
type respectively entity type, implies that role names must be unique within an EER scheme.

Likewise, each attribute or component isassigned a unigue domain by the corresponding function.
In contrast, the function owner maps each attribute (respectively component) to a set of entity and
relationship types (respectively entity types). Consequently, entities and rel ationships (respectively
entities) can have attributes (respectively components) with the same name, on the condition that they
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all have the same domain. For instance, in the example EER scheme (cf. Table 2.1), both BANI,
CASHIERs, CONSORTIUdBNd CUSTOMEShave names, all of which are string s

By constraint 1, aunique role exists for each participation of an entity type in arelationship type
(cf. Notation 2.6 below).

Constraint 2 prevents entity types from being constructed in two different ways. Constraint 3 pre-
vents an entity type from being part of its own construction.

As anillustration, we present part of the EER scheme corresponding to the EER diagram in Fig-
ure2.1.

E-TYPE = {BANK, CASHIER, ACCOUNT,..}

R-TYPE = {accesses, holds, has, .

ROLE = ({teller, owner, .}

ATTR = {balance, location, amount, name, .

COMP = {manages, issues, ...}

CONS = ({partl, part2 }
participants(owned by) = (ATM, CONSORTIUM
relship(teller ) = owned by
entity(teller ) = ATM
owner(balance ) = {ACCOUNF
domain(balance ) = money
owner(residence ) = {CUSTOMER
domain(residence ) = list(address)
owner(employs ) = {BANK

domain(employs )

list(CASHIER)

owner(name) — {BANK,CASHIER,CUSTOMER,CASHIER
domain(name) = string

input(partl ) = {ENTRY STATION

output(partl ) = {ATM, CASHIER STATION

Notation 2.6 For R € R-TYPE with participants(R) =< E4,...,E, >,and P, € ROLE(1 < i <
m) with relship(P;) = R and entity(F;) = E;, wedenote R(P, : Ey,..., P, : E,) € RTYPE and
P,: R — E; € ROLE.

For A € ATTRwith owner(A) > S and domain(A) = D wedenote A : S — D and likewisg, for
C' € COMP with owner(C) 5 F and domain(C') = E' wedenoteC : E — E'.

For 7' € CONSwith input(7’) = {11, ..., I,} and output(7') = {Oy, ..., O,,} we denote
T(L,...,1,;04,...,0,) € CONS

Finally, an EER instance consists of a number of functions, assigning among others actual entities
to each entity type.

Definition 2.7 (Universe of Entities) Let S bean EER scheme. £ = U, g-Typg € & isa countably
infinite set, called the universe of entities. It includes for each entity type £ in S a countably infinite
set £ of entities of type E.



2.2. FORMAL DEFINITION OF THE EER MODEL 21

For different entitytypes E and E', £ N Epr = 0.
O

Definition 2.8 (EER Instance) Let Spr be an EER scheme over a data type signature DT. An EER
instance Z over Spr consists of the following six functions:

e 1|E-TYPE], which maps each entity type £ € E-TYPE to a finite subset of £ ;

e u[R-TYPE], which maps each relationship type R(P; : E\, ..., Py : E,) € RTYPE to afinite
set of tuples of entities called relationships, such that ;[R-TYPE|(R) C p|E-TYPE|(E,) x ... X
H[E-TYPEJ(E,,);

e 1[ROLE], which maps each role P, : R — E; to the function u[ROLE](P;) : p[R-TYPE]
— u|E-TYPE] satisfying u[ROLE|(P;)(r) = e;(1 < i < m)foreachr = (e;,...,e,) €
HIR-TYPE(r);

e u[ATTR], which maps each attribute A : E — D’ respectively A : R — D’ to afunction
p[ATTR](A) : u[E-TYPE|(E) — plexpr(SORTpT)|(D') respectively
PIATTRI(A) : p[RTYPE|(R) — plexpr(SORTpT)](L');

e 1[COMP], which maps each component C' : E — E’ to afunction
p[COMP|(C') : u[E-TYPE](E) — ulexpr(E-TYPE)](E'):

e 1[CONS], which maps each construction7'(14, ..., I,,; Oy, ..., O,,) toafunction
p[CONS(T) = UL, p[E-TYPE](O;) — Up_y u[E-TYPE|(L;). O

Asan illustration, we present part of an EER instance over our running example EER scheme.

u[E-TYPE](ATM = {e1,es,e3}
p[E-TYPE|(CONSORTIUM = {es}
p[E-TYPE|(BANK = {es,e6,€7}
u[E-TYPE|(ENTRY STATION = {es,eq,€10}
p[R-TYPE](owned by) = {(e1,e4), (e2,€4)}
u[ROLE](owner )(eq, e4) = e
u[ROLE]|(teller  )(ey,eq) = e
p[ATTR](dispensed )(e;) = 1234.50
#[COMP|(consists of  )(eqs) = (e5,e5)
p[CONS|(partl )(e;) = eg
[CONS|(partl )(es) = e
[CONS](partl )(63) = €10

Thisinstance includes a consortium owning two ATMs. From athird ATM, which apparently has
no owner, an amount of 1234.50 has been dispensed. The consortium consists of two banks. A third
bank is not part of any consortium. As required by the construction partl , al three ATMs are con-
structed from an entry station.
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2.3 A Textual Query Language: SQL/EER

As the original Entity-Relationship model [Che76] was primarily intended for database design pur-
poses, it consisted mainly of aformalism for describing conceptual database schemes. An ER scheme
resulting from a database design processistherefore traditionally tranglated into e.g., arelational data-
base scheme. Consequently, queries on the actual database have to be formulated in terms of amodel
(namely the relational model) quite different from that in which the database was originally specified
(namely the ER model).

Remarkably enough, Chen remarks in [Che76, Section 3.4]:

The semanticsof informationretrieval requestsbecomevery clear if therequestsare based
on the entity-relationship model of data.

In the same section, Chen also introduces (albeit by means of a single example) a query language in
which queries may be expressed directly in terms of the ER formalism, i.e., by referring to entity and
relationship types of agiven ER scheme, rather than to tables and columns of itsrelationa equivalent.
Perhaps inspired by this remark, several ER-specific query languages, such as ERROL [MR83] and
CLEAR [MP80] (to namejust afew from the “early days’ of ER research) were devel oped.

The Extended ER model presented in Section 2.2 eventually became the core of an integrated DB
design environment called CADDY [EHH*89]. Even in a database design environment, a query lan-
guage has its importance e.g., as the basis for atool which alows browsing a prototype. This obser-
vation motivated the devel opment of a query language for the EER model, named SQL/EER [HE9Q].
Two of the major characteristics of thislanguage are that

e it directly supports all concepts of the EER model, such as attributes of relationships, compo-
nents and type constructions, and takes into account features well known from nowadays query
languages (exceeding those of relational SQL [CAE*76]), such as arithmetic, aggregate func-
tions, output nesting and subqueries as variable domains;

e itssyntax aswell asits semantics are formally defined.

The context free syntax is defined in the usual way, by means of an Extended Backus Naur Form
grammar. To describe context sensitive conditions formally, the EBNF grammar is extended to an
attribute grammar by adding attributes and attribute evaluation rules. Definition of the languages se-
manticsisrealized using aspecial case of the operational approach to language specification, namely
by means of translation. An extension of the attribute grammar is used to formally map an SQL/EER
query into an equivalent expression of the EER calculus [HG88]. This calculusisin term described
using the denotational approach to language specification : the semantics of each calculus expression
is described as an associated input/output function.

Asthey are of no relevance to the contribution of this thesis, we do not discuss the EER calculus,
neither do we elaborate on the attri bute mechanism used for mapping SQL/EER into the calculus. The
interested reader is referred to [HG88, HE9L, HE9Q]. Besides an informal introduction to most (but
not all) of SQL/EER’s characteristics, we limit ourselvesin the remainder of this section to those parts
of the EBNF grammar which describe the context free syntax of SQL/EER (also collected in Appen-
dix B).
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Anaogous to relational SQL, SQL/EER uses the select-from-where clause. Thisis captured in
the following EBNF grammar rule.

SFW-TERM ::= select TERMLIST
from DECLLIST
[ where FORMULA |

As afirst example, consider the SQL/EER query of example 2.9 (over the scheme of Figure 2.1).
It retrieves the serial number  of al CASH CAR®with thetrivial password “password” and
a(credit) limit  lessthan or equal to 100.000.

Example 2.9

select cc.seria_number
from ccin CASH_CARD
wher e cc.password = "password” and cc.limit <mgney 100.000

In the result of aquery, duplicates are not eliminated (the reason for which will become clear when
we discuss aggregate functions in Example 2.12), hence the above query returns a bag of integers.
Inthisquery, thevariable“cc” isdeclared. It ranges over the set of currently stored CASH CAR®

DECL ::= VARIABLE in ENTITYTYPE

Thevariablecc canbeusedto buildtermslike* cc.password” and “ cc.limit”, designating the pass-
word andlimit  of the CASH CARDcc”, respectively.

TERM ::=VARIABLE
| TERM '." ATTRIBUTE

Theformula®cc.limit <money 100.000" usesthe predicate“ <money”, defined for themoney data
type.

FORMULA ::= TERM DATAPRED TERM

Besides entity types and relationship types, any multi-valued term can also be used asrangein a
declaration.

RANGE ::= TERM

For instance, in the SQL/EER query of Example 2.10, the variable al is bound to thefinite list of
addresses being the residence of person p1.

Example 2.10

select cl.name
from alin pl.residence, clin CUSTOMER, a2 in p2.residence, c2 in CUSTOMER
where al = a2 and p2.name="“John”
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This query retrieves the names of all CUSTOMERwho share one of their residence swith a
CUSTOMERBdled “John ”. Note that the result of an SQL/EER is abag. This means that the same
name may appear severa timesin the answer to this query. By placing the reserved word distinct in
front of the term list in the select-clause, a set of distinct names is computed.

Note that since we do not require the customers c1 and c2 to be different, the answer to this query
will asoinclude all customers named John themselves.

The next exampl e showsthe use of rel ationship types as predicatesin SQL/EER. Suppose we want
to know the names of those CUSTOMESRvho haveaCASH CARIhat accesses ACCOUNTswhich
they also hold. Example 2.11 shows the corresponding SQL/EER query.

Example 2.11

select c.name
from acin ACCOUNT, ccin CASH CARD, cuin CUSTOMER
where cu holds ac and cc accesses ac and cu has cc

Relationship types can be used as predicate names in formulas. In the case of relationships with
more than two participating entity types, prefix notation is used instead of infix.

FORMULA = PARTICIPANT RELSHIPTYPE PARTICIPANT
| RELSHIPTYPE (" PARTLIST 'Y

PARTICIPANT ::= TERM

PARTLIST = PARTICIPANT [’, PARTLIST ]

The query of example 2.12 returns the names of those CUSTOMESholding an ACCOUNTor
which the following holds: if the balance of their ACCOUNTS raised with a five percent interest,
then the new balance becomes higher than the average of all balance sof al ACCOUNJwith a
positive balance.

Example 2.12

select cu.name
from aclin ACCOUNT, cuin CUSTOMER
where cu holds acl and
compute.interest(acl.baance,5) >money avg ( select ac2.balance
from ac2in ACCOUNT )
where ac2 >money 0)

Thisexamplefirst of al illustratesthe use of data operations. An application of the function com-
pute interest (cf. Section 2.1) may be used as aterm. Second, the example shows the use of
subqueries in the where-clause of an SQL/EER query (used to retrieve the bag of balance sof al
ACCOUNS. In general, a select-from-where block may be used like any other (bag-valued) term.
Third, the example shows how SQL/EER incorporates aggregate functions as known from relational
SQL. Aggregate functions, such as avg (standing for “average’), min (standing for “minimum”) and
sum may be applied to bags of values on which addition and mathematical comparison are defined
(suchasint eger and money).
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TERM ::= DATAOPNS’ (' TERMLIST )’
'( SFW-TERM ')’
| AGGROPNS' (' TERM 'Y’

Example 2.13 illustrates the handling of lists, as well as the occurrence of multiple termsin the
select-clause. The query of thisexample enumerates the names of bank swhich are part of the CON-
SORTIUM namd “Banks United”.

Example 2.13

select i, co.consists_of[i].name
from i inind(co.consists of), coin CONSORTIUM
where co.name = ‘Banks United’

The (integer) variable i ranges over the set of al indices occurringinthelist co.consists  _of ,
containing the bank swhich are part of the CONSORTIUM nanae’ Banks United” (assuming for the
sake of ssimplicity that banks have a uniquely identifying name). Thisset of indicesisretrieved using
the built-in function ind. A particular element of alist is specified using rectangular braces “[” and

H]” .
TERM ::= TERM '[' INTEGER ']’
lind’( TERM )

Since this query hastwo termsin its select-clause, it returns abag of two-tuples, consisting of an inte-
ger valueand astring. Ingeneral, if aquery hasn termsinitsselect-clause, it returnsabag of n-tuples.
This gives us two specia cases, namely those where n is either zero or one:

e If aquery hasonly oneterminits select-clause, then it formally returns a bag of one-tuples, but
one-tuples are considered equal to their single element.

e If aquery hasnotermsin itsselect-clause, thenit formally returnsabag of tuples of length zero.
Hence there are two possibilities:

1. If the from- and where-clauses of the query “return” an empty result (for instance, if we
look for CASH CAR&whoselimit  isboth strictly positive and negative), then the query
returns the empty bag.

2. Otherwise, the query returns the bag consisting of the (empty) tuple of length zero.

In the (rather theoretical) case of an SQL/EER query with an empty from-clause, an empty bag isalso
returned.

Suppose we want to retrieve the names of those CASHIERswho only enter CASHIER TRANS-
ACTIONSs of more than 100.000, or CASHIER TRANSACTIO$concerning an ACCOUNTwith a
balance over 100.000. In Example 2.14, this query isformulated in SQL/EER.

Example 2.14



26 CHAPTER 2. THE EXTENDED ENTITY-RELATIONSHIP MODEL

select ca.name
from cain CASHIER
wherefor all ctin CASHIER_ TRANSACTION : (ct entered_by ca) implies
( (ct.amount >money 100.000) or
(existsacin ACCOUNT : ( ct concerns ac and
ac.balance >money 100.000) )
)

Thisexampleillustratesthe use of inheritancein queries. Both therelationshipconcerns andthe
attributeamount aredefined ontheentity type TRANSACTIONout sinceCASHIER TRANSACTION
isasubtypeof TRANSACTIONconcerns andamount alsoapplyto CASHIER TRANSACTIOH

Next, thisexamplealsoillustrateshow SQL/EER supports quantifiersand logical connectivessuch
as“or” and “implies’.

FORMULA ::='(' FORMULA implies FORMULA ')’
'( FORMULA or FORMULA )’

'( FORMULA and FORMULA ')’

| not (' FORMULA )’

| exists DECLLIST '’ FORMULA

| forall DECLLIST ' FORMULA

A final example (Ex.2.15) illustrates the use of subqueries in the select- and from-clauses of an
SQL/EER query. A subquery in the select-clause is used to structure the output of a query. The ex-
ample query returns, for each password of some CASH CARIretrieved using a subquery in the
from-clause), the serial number sof the CASH CAR®having thispassword .

Example 2.15

select pwd, ( select cc.serial_number
from ccin CASH_CARD
where cc.password = pwd))
from pwd in distinct ( select cc.password
from ccin CASH_CARD)

This query returns a bag of two-tuples, the first component of which is a string, while the second
isinturn abag of integers.



Chapter 3
An Introduction to PROGRES

3.1 On Formal Graph Representations

In this thesis, we present graph-based definitions for both the EER data model (in this chapter) and
a query language for this model (see Chapter 4). In a graph-based definition of a graphical formal-
ism (such as that of EER diagrams), each “instance” of the formalism is formally represented by an
attributed,' directed labeled graph.

Asan example, consider the part of the EER diagram of Figure 2.1 shownin Figure 3.1. Figure 3.2
shows a representation of this partial EER diagram as aformal graph. Table 3.1 shows the attributes
of this graph.

E?X‘?I\(()N location

CASHIER
STATION

dispensed

onsists_of

CONSORTIUM—_list A BANK

Figure 3.1: Part of the EER diagram of Figure 3.1

!Note that the word “attribute” is now used in two different meanings: one in the context of graphs, and the other in
the context of the EER-model.

27
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&lrattribute

1 sttributeler attributeZyv
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component2e 136:role construct ion2o construct o
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33zentity 85 atomic_value
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B3entity

Figure 3.2: Graph representation of the EER diagram of Figure 3.1

| 1d. | Label | Att.Name | Attribute Value
76 | component | Name consists of
140 | role Name owner
136 | role Name teller
96 | attribute Name dispensed
86 | attribute Name cash on hand
141 | construction | Name partl
81 | attribute Name location
72 | list Name
63 | entity Name BANK
61 | entity Name CONSORTIUM
64 | relship Name owned by
Arity 2
101 | atomic_value | Name money
49 | entity Name ATM
91 | atomic_value | Name money
57 | entity Name CASHIER STATION
33 | entity Name ENTRY STATION
85 | atomic_value | Name address

Table 3.1: Attributes of some nodes from Figure 3.2
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In this formal graph representation, each element of the EER diagram (such as arole, an entity
type or a data type) is represented by a node, shown as a black rectangle in Figure 3.2. Within each
node are shown an icon (which has only a decorative purpose), a unique node-identifier and a label.
Every node has a Nameattribute, which contains the name of the corresponding element in the EER
diagram. For instance, the node with identifier 33 corresponds to the entity type ENTRY STATION
in the EER diagram, while the node with identifier 81 corresponds to the location  attribute (not
the attribute’sdomain!) of thisentity type. In addition, nodes representing rel ationship types have an
Arity -attribute. Since owned by is abinary relationship type, the Arity -attribute of the corre-
sponding node has the value 2.

The interrel ationshi ps between the various el ements are represented in the formal graph represen-
tation by means of directed labeled edges. For instance, an edge labeled attribute2er links the
node corresponding to the location  attribute to the node corresponding to the ENTRY STATION
entity type.

Note that all labels used in the graph are independent of any particular EER scheme: al EER
scheme dependent information is stored in node attributes.

3.2 PROGRES specifications

From the above idesas clearly follows our need for an expressive graph model, i.e., a formalism that
allows the specification of afamily of graphs. To this end, we chose to use the graph rewriting for-
malism PROGRES [Sch89, Sch91b], a very high level operational specification language based on
PROgrammed Graph REwriting Systems.

A major motivation for choosing the PROGRES formalism was that the specifications presented
in thisthesis could consequently be made using the PROGRES-system [NS90]. Concretely, the spec-
ifications were entered using this systems syntax-directed editor [ Sch90b], which allowed them to be
analyzed by the system’sincrementally working type-checker and executed by the system’sintegrated
interpreter. For instance, the graph depicted in Figure 3.2 was generated using EDGE [New91], a
generic graph browser which has been incorporated into the PROGRES system.

In this chapter we present an informal overview of those features of the PROGRES language to
be used in the remainder of this thesis, by means of an example specification for the set of all syn-
tactically correct EER diagrams. Basically, the PROGRES language alows the specification of the
static structure of afamily of directed, node-attributed, and |abeled graphs, together with a collection
of operations on graphsin thisfamily. Recalling Section 1.2, a PROGRES specification istherefore a
graph rewrite system (as the languages name rightfully suggests). Demonstrating the fact that graph
rewrite systemsin general, and PROGRES specifications in particular, may be used to formally spec-
ify visual database languages is the main contribution of thisthesis. This chapter therefore offers an
introduction specifically to the way in which we propose to use PROGRES to formally specify visual
(database) languages (and not to the PROGRES formalism in general).

A PROGRES specification of agraph grammar consistsbasically of two parts. Inthegraph scheme,
the types of nodes and edges aswell as node attributes, which may occur in agraph, are declared. For
instance, the graph scheme from the specification of EER diagrams contains node type declarations
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stating that there may be nodeslabeled relship , construction andentity 2 al of whichhave
aNameattribute. Additionally, the scheme contains edge type declarations stating that edges labeled
either construction2i or construction20 may go from nodes labeled construction to
nodes labeled entity

Although the collection of declarationsin a graph scheme already defines a family of graphs, not
all possiblestructural integrity constraints onewould like to impose on such afamily can be expressed
in such ascheme. For instance, it isimpossibleto express the acyclicity constraint on entity type con-
structions using only graph scheme declarations. Such aconstraint may be captured in the second part
of a PROGRES specification, being a set of graph rewrite rules or productions, obeying the type re-
strictions imposed by the graph scheme. In our example, such a production specifies that, given two
nodes labeled entity , anew node labeled construction may be added, linked to the two given
nodes with edges labeled respectively construction2i and construction20 , on the condi-
tion that this addition would not violate the acyclicity constraint. How exactly such a constraint is
modeled in a PROGRES production is explained further on in this chapter.

Together, agraph schemeand aset of productions constitute an oper ational specification of agraph
grammar: asyntactically correct graph in the language defined by thisgrammar isyielded by applying
a sequence of productionsto an initial empty graph. In the remainder of this chapter, we elaborate on
respectively graph schemes (Section 3.2.1), productions (Section 3.2.2), and the notion of applying
production sequences (Section 3.2.3).

3.21 Graph Schemes

The basis of a PROGRES specification is a graph scheme. The following components of a graph
scheme are distinguished:

e typedeclarations. these are used to introduce labels for nodes and edges in the considered col -
lection of graphs, as well asto initialize node attributes;

e classdeclarations: these denote coercions of node types with common properties by means of
multiple inheritance, hence they play the role of second order types. Class declarationsinclude
attribute declarations.

The section GraphScheme of the specification EER(as shownin Figure 3.3) containsall typeand
class declarations of the specification. Note that sections are merely a syntactical way of structuring a
specification, and have no semantical meaning whatsoever.

Theroot of the node class hierarchy of the exampl e specificationisNODEEssentially, theonly pur-
pose of thisclassisthe definition of the string-val ued attribute Name in which all namesfrom the EER
scheme corresponding to the EER diagram (such as namesof entity types, attributes,...) may bestored.
Sincethese names are “proper” to anode, as opposed to attributeswhich are derived from other infor-
mation present in the graph (see further on), the attribute Nameis declared as being an intrinsic
one. In the same declaration, the attribute is initialized with the empty string.

The next two node classes in the specification do not correspond directly to some component of
EER diagrams, but must be seen as coercions of other node classesthat share some common properties.

2Note that “node label” and “node type” are used as synonyms.
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section GraphScheme
node class NODE

intrinsic

Name : string :="";
end;
node class ENT REL isa NODE end;
node class ENTITY isa ENT_REL end;
node type entity : ENTITY end;
node class CONSTRUCTION isa NODE end;
node type construction : CONSTRUCTION end;

edge type construction2i : CONSTRUCTION -> ENTITY [1:n];
edge type construction20 : CONSTRUCTION -> ENTITY [1:n];
node class RELSHIP isa ENT_REL

derived
Arity : integer;
end;

node type relship : RELSHIP
redef derived

Arity = card (  self.<-role2r-);
end;
node class ROLE isa NODE end;
node type role : ROLE end;

edge type role2e : ROLE -> ENTITY [1:1];

edge type role2r : ROLE [1:n] -> RELSHIP [1:1];

node class VALUE  isa NODE end;

node class ATOMIC_VALUE isaVALUE end;
node type atomic_value : ATOMIC_VALUE end;
node class COMPLEX_VALUE isaVALUE end;
edge type contains : COMPLEX_ VALUE -> NODE;
node class SET isa COMPLEX_VALUE end;

node type _set: SET end;
node class SINGLETON is a COMPLEX VALUE end;
node type singleton : SINGLETON end;

node class MVALUE is a COMPLEX VALUE end;
node class BAG isa MVALUE end;

node type bag : BAG end;
node class LIST isa MVALUE end;

node type list : LIST end;
node class ATTRIBUTE isa NODE end;
node type attribute : ATTRIBUTE end;

edge type attribute2er : ATTRIBUTE -> ENT_REL [1:1];

edge type attribute2v : ATTRIBUTE -> VALUE [1:1];

node class COMPONENT is a NODE end;

node type component : COMPONENT end;

edge type component2e : COMPONENT -> ENTITY [1:1];

edge type component2c : COMPONENT -> COMPLEX_VALUE [1:1];
end;

Figure 3.3: A PROGRES specification for EER diagrams, graph scheme
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For exampl e, thenode classENT_REListhe common superclassof theclassesENTITY and RELSHIP
since entities and rel ationships share the property of being able to have attributes (in the EER sense of
the word) defined on them.

Thenode classENTITY (which isasubclass of ENT REL) hasasingletype entity . Likewise,
the node class CONSTRUCTIONas a single type construction . The reason for declaring these
typesis that actual nodes have to belong to a unique type, and cannot belong directly to a class. For
simplicity however, in the sequel we will often refer to “nodes of acertain class’ rather thanto nodes
of atype of acertain class’.

By means of edges of type construction2i (respectively construction2o ) constructions
are linked to their input entity types (respectively their output entity types). In addition to specifying
the label, source class and target class of edges, an edge type declaration may aso put cardinality
constraints on edges of that type. For example, the expression [1:n]  in the edge type declarations
construction2i and construction20 ensures that no construction is ever created which has
no input and/or no output types. Other allowed cardinality constraintsare[0:1] ,[1:1] and[0:n]
(with the latter indicating the “absence” of a cardinality constraint).

In the node class RELSHIP and its single node type relship ~ we demonstrate the second kind
of attributes, namely derived  attributes (as opposed to intrinsic ones). Derived attributes are
those attributes whose val ue may be computed by means of aderivation rule. In the declaration of the
node classRELSHIP, asinglederived attribute Arity  isdeclared, whose valuewill at any time equal
the number of entity typesthat play aroleintheconsidered relationshiptype. Thisderivationruleisex-
pressed inthe declaration of thenodetyperelship . Theexpression“card ( self .<-role2r-

) ” counts (card stands for “cardinality”) the number of edges of typerole2r entering (hence the
arrowhead to the left of the edge type name) self |, that is, the considered relationship type.

A third kind of attributes (not exemplified in the EER specification) are so-called meta-attributes.
These are attributes of node types, rather than nodes. 1n the PROGRES specification whichisthemain
theme of Chapter 4, meta-attributes always take a node-type (or a set of node-types) as value. For
instance, given the declaration “meta a_meta _attribute : type in NODE, the attribute
a_meta _attribute could take any type in the graph scheme of Figure 3.3 as value. The need for
thiskind of attributes will be extensively motivated in Chapter 4.

Theedgetyperole2r (aswell asitscounterpart role2e ) aredeclared following the declaration
of thenode classROLEand itssinglenodetyperole . Comparableto the situation with constructions,
edges of typerole2r  (respectively role2e ) link arole to its corresponding relationship type (re-
spectively the entity type that playsthe rolein that relationship type). Note the cardinality constraints
: to each role corresponds exactly one relationship type as well as exactly one entity type, while for
each relationship type, at least one role must be defined (cf. Definition 2.5).

The node class VALUEIs the common superclass of the node classes ATOMICVALUEand COM-
PLEXVALUE Edges of type contains  link anode of class COMPLEX/ALUEto its “component
type’. COMPLEX/ALUEhas in turn three direct subclasses, being SET, SINGLETONand MVALUE

The node class SET has asingle type _set .* Nodes of class SINGLETONare used for modeling
“simple” components, i.e., components which are not lists, bags or (general) sets.

3The reason for the underscorein _set istechnical: “set” is areserved word in the PROGRES language!
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The node class MVALUES the common superclass of the node classes BAGand LIST , which are
the data types in which an element may occur multiple times, hence the name MVALUE

Finally, the node classes ATTRIBUTEand COMPONENS well astheir corresponding edge types
aredeclared similarly to for instance the node class CONSTRUCTIONNote how the declaration of the
edge type attribute2v motivates the declaration of the node class VALUE

3.2.2 Productions

We now turn our attention to the Productions  section of the specification. Productions specify
how graphs are constructed/mani pul ated/modified by substituting an occurrence in this graph of the
left-hand side of the production (which isitself an*’ extended” graph (see further on)) by acopy of the
right-hand side of the production (which isjust agraph). Ascan be seen in the production Add_ERas
depicted below, left- and right-hand side of the graph part of a production are separated with the sign
“:= 7. Theproduction Add_ERhas an empty left-hand side, and istherefore applicable to any graph.
From the right-hand side, it follows that the production adds a single node of type ERtype , whichis
atype-valued input parameter.

production Add_ER

(ERname : string ; ERtype : type in ENT_REL ; out ER: ENT_REL ) =

o

I

| |
| |
| 1" :ERtype ;
| |
| |
| |

transfer 1’.Name := ERname;
return ER :=1’;
end;

From the fact that a class may have an arbitrary number of types, it follows that nodes which are
created by a production (i.e., nodes that are in the productions right-hand side but not in its left-hand
side) must be labeled with a node type and not with a node class.

In general, productions are parametrized by

e atomic values: for instance, the first parameter of the production Add_ER (called ERnamg is
of typestring ;

e nodetypes: for instance, the second parameter of the production Add_ER (called ERtype ) is
atypeof classENT.REL

e nodes: for instance, thethird parameter of the production Add_ER(called ER) isanode of class
ENT.REL
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Thefirst two parameters of the production Add_ERare input parameters, while the third parameter is
an output parameter (indicated with the keyword out ). The output parameter is set in the return -
clause of the production.

Besides manipulating nodes and edges of the graph, productions also affect node attributes. Attri-
bute-computations are performed in the transfer-clause. In the production Add_ER the Nameait-
tribute of the newly added nodeisassigned the input parameter ERname Note how anumber followed
by asingle quote (e.g., 1’ ) is used to refer to anode in the right-hand side of a production. Likewise
numbers preceded by a single backquote refer to nodes in the left-hand side of a production.

Both kinds of quoted numbers are used in the production Add_Construction , which aso il-
lustrates two additional features of productions.

path Is_Constructed_From : ENTITY -> ENTITY =

(<-construction20- & -construction2i->) +
end;

production Add_Construction
(EL1:ENTITY ; E2: ENTITY ; CName : string ; out C : CONSTRUCTION) =

‘ |
1 construction2i |
Y =1 - 3’ : construction ‘
| ‘ |
1 :
|

} construction20 i
1 :
‘ |
: 2’ =2 :
‘ |
‘ |
‘ |

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

condition card ( ‘2.<-construction20- ) = 0;
transfer 3'.Name := CName,

return C ;= 3’;

end;

Add_Construction allows the addition of a construction (in the EER sense of the word) with
agiven input and output entity type. In determining an isomorphic occurrence of the left-hand side,
three phases are distinguished:

1. First,thenodes'l and‘2 aregivenasinput parameters, whichisindicated with the expressions
““1=E1 ” and "'2=E2 *“ labeling the rectangles. Another possibility for labeling rectanglesin

theleft-hand side of aproduction is by means of expressions of theform“‘3:a _node _type ”,
which means that a node of the type a_node _type should be sought for in the graph.
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2. Next, an application conditionischecked. Thisconditionisspecifiedinthecondition  -clause,
and is stated in terms of structural and attribute properties of (the isomorphic occurrence of) the
left-hand side. In the production Add_Construction , the application condition ensures that

the node ‘2 has no incoming edges of type construction20 . Therefore, we first compute
the set of all such edges by means of the path-expression ‘2.<-construction2o- (thear-

rowhead “<” indicates incoming edges, whereas an expression of the form -edge _type->
would indicate outgoing edges). Next, we compute the cardinality of this set of edges using the
function card , and check if this cardinality is indeed equal to zero. Note how this condition
corresponds to item 2 in Definition 2.5 of EER schemes.

3. Finally, the path Is _Constructed _From is used to enforce condition 3 in Definition 2.5 of
EER schemes, which prevents the specification of “circular” constructions. Intuitively, paths
are “virtual edges’: they are declared in terms of edges and other paths, and are computed “on
demand”, rather than stored explicitly in agraph (asisthe case for “ordinary” edges).

A path Is Constructed _From (specified prior to the production Add_Construction )
existsbetween two nodes of classENTITY (asshowninthesignatureENTITY —> ENTITY)
if there exists a non-empty (indicated by the sign “+”) path of incoming edges of type cons-
truction2o0 , aternating (indicated by thesign*“ &”) with outgoing edges of type construct-
ion2i . The cross over the double arrow in the left-hand side of the production indicates that
such a path should not be present between the two input nodes.

Path expressions servethe same purposeintheproductionsAdd_Input  and Add_Output , which
allow the addition of an extrainput respectively output entity typeto aconstruction. It would have been
possibleto give a production that would allow the addition of a construction, taking asinput all input
and output entity typesat once. However, sincethe number of input and output entity typesisarbitrary,
this would have implied the use of set valued input parameters, a PROGRES feature not used in the
sequel of thisthesis, and hence not used in this specification either.

Theproduction Add_Input  only allowsthe addition of agiven entity type asinput to agiven con-
struction, if the entity typeisnot yet (directly or indirectly) in the output of the construction. Thiscon-
ditionischecked usingthepath E_Is _Output _of _C. Starting fromanodeof classCONSTRUCTION
this path consists of an outgoing edge of type construction20 , followed by a sequence of incom-
ing edges of type construction2i alternating with outgoing edges of type construction20
The fact that the latter sequence may be of length zero, is indicated by the symbol “*”. (as opposed
to the symbol “+” denoting a non-empty sequence). A violation of this application condition would
result in acyclein the graph of entity type constructions, which is clearly forbidden by Definition 2.5
of EER schemes.

Thefour remaining productionsallow the addition of attributes, componentsand rolesto the graph:

e Theproduction Add_Atomic _Attribute alowsthe addition of an atomic attribute to an en-
tity or relationship type. Both the name of the attribute as well as the name of the domain of the
attribute are passed to the production as strings in respectively the input parameters AttName
and DomName

e The production Add_Complex _Attribute allows the addition of aset -, bag- or list -
valued attribute to an entity or relationship type. Since singleton  is aso atype of class
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path E_Is_Output_Of_C : CONSTRUCTION -> ENTITY =
-construction20-> & (<-construction2i- & -construction20->) *
end;

production Add_Input ( C : CONSTRUCTION ; E : ENTITY ) =

path E_Is_Input_Of_C : CONSTRUCTION -> ENTITY =
-construction2i-> & (<-construction20- & -construction2i->) *
end;

production Add_Output (C : CONSTRUCTION ; E : ENTITY ) =

condition card ( ‘2.<-construction20- ) = 0;
end;
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COMPLEX/ALUEand since “singleton” attributes have to be added using Add_Atomic _At-
tribute , we have to exclude the possibility of calling this production with input parameter
Atype equa tosingleton , by means of the condition  -clause.

e Theproduction Add_Component alowstheaddition of acomponent rel ationship between two
entity types already in the graph.

By default, all nodes in the left-hand side of a production should be mapped to different nodes
in the graph. However, in the production Add_Component , it should be allowed to map the
nodes with identifiers ‘1 and ‘2 to the same node, since an entity and one a component of this
entity may well have the sametype. Thisis specified in thefolding  -clause of the production
as“folding  {‘1,2}".

e The production Add_Role may be used to add a given entity type as participant in a given
relationship type.

A fina feature of productions (not illustrated in the specification for EER diagrams) istheembed-
ding -clause, which is used to affect entire sets of edges. The only case of an embedding -clause
used elsewhereinthisthesis, hastheform“embedding redirect <-edge _type- from ‘1
to 2’ ". Theresult of such aclauseisthat all edges of type edge _type enteringthenode‘l inthe
isomorphic occurrence of the left-hand side are simultaneously redirected to node 2’ .

By default, edges whose type is not mentioned in the embedding -clause, and which are adja
cent to anode that is both part of the left- and right-hand side, are not affected by the application of a
production.

3.2.3 Transactions

We finally turn our attention to the Transactions  section of the EER specification. In a sense,
a PROGRES transaction is a program, the basic steps of which are calls to productions and/or other
transactions. Although the PROGRES language offers awide variety of programming language con-
structs (such asloops and conditiona statements) to be used in the specification of transactions, in the
remainder of thisthesis we only use one simple kind of statement. This statement has the form

use vl : typel,

VN : typeN

do production _calll (in _pl,...,in pP, out out _pl,..,out__ out _pQ)
& ..
& production _callR (in  _pl,..,in pS, out  out pil,.,out__ out pT)

end;

In the part preceding the keyword “do”, local variables are declared. Their typeis either a node
class, or an atomic valuetype. The keyword “do” isfollowed by a sequence (indicated with the sym-
bols*“&”) of production calls. Naturally, productions must be called with the appropriate number and
typeof parameters. Output parameters must be preceded by the keyword “out ” and must be variables.
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production Add_Atomic_Attribute
(ER : ENT_REL ; AttName : string ; DomName : string ) =

attribute2er _
r =1 - 2’ cattribute

3’ :atomic_value

|
|
|
|
|
:
|
| attribute2v
|
|
|
|
|
|
|
|

transfer 2’.Name := AttName;
3’.Name := DomName,;
end;

production Add_Complex_Attribute
(ER : ENT_REL ; AttName : string ; Atype : type in COMPLEX_VALUE ;

DomName : string ) =

| |
: ‘1l =ER :
| |
|\ T _—__—__—— _ _ |
S I
|
| attribute2er ;
Pl =1 - 2" : attribute |
| |
| |
| |
|
l attribute2v w
| |
| |
| | contains |
| 4 :atomic_value = 3 Atype !
| | |
| |
| |

condition not (Atype = singleton);
transfer 2’.Name := AttName;
4’ Name := DomName;

end;
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production Add _Component

(E:ENTITY ; CName: string ; Ctype : type in COMPLEX_VALUE ;
C:ENTITY)
" |
|
1 =E 2 =C |
|
| |
| |
e i
| component2e |
o= -y 3' :component !
|
! |
|
| |
| component2c |
|
| |
; contains |
| 27 =2 -t 4 : Ctype }
|
‘ |
‘ |
s n
folding { ‘1, 2 };
transfer 3'.Name := CName;
end;
production Add_Role (R : RELSHIP ; RoleName : string ; E : ENTITY ) =
PP T
|
: ‘1 =R ‘2 =E
|
|
e
| role2r |
| 17 =1 3 :role ;
} |
| |
|
| role2e ;
1 |
| |
| 2» =72 l
| |
| |
| |

transfer 3'.Name := RoleName;
end;
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section Transactions
transaction MAIN =
use el, e2,e3,e4,e5,r: ENT_REL;
¢ : CONSTRUCTION

do

Add_ER ("ENTRY STATION", entity, outel)
& Add_ER ("ATM", entity, oute?)
& Add_ER ("CASHIER STATION", entity, oute3)
& Add_ER ( "CONSORTIUM", entity, oute4)
& Add_ER ( "BANK", entlty out e5 )
& Add_ER ("owned by relshlp outr)
& Add_Role ((r: RELSHIP) "teller", (e2 ENTITY) )
& Add_Role ((r : RELSHIP), ' owner (ed : ENTITY))
& Add_Construction ( (el : ENTITY), (e2 : ENTITY), "partl”, outc)
& Add_Output (¢, (e3: ENTITY))

& Add_Component ( (e4 : ENTITY), "consists of", list, (e5 : ENTITY) )

& Add_Atomic_Attribute ( (el : ENTITY), "location”, "address" )

& Add_Atomic_Attribute ( (€2 : ENTITY), "cash on hand", "money" )

& Add_Atomic_Attribute ( (2 : ENTITY), "dispensed", "money")
end

Thetransaction MAIN in the EER specification creates a graph corresponding to the EER diagram
of Figure 2.1. For instance, the production Add_ERisfirst called with the constant string "ENTRY
STATION" andthetypeentity  asinput parameters, and thevariableel asoutput parameter. Since
this production returnsanode of classENTREL, we haveto explicitly cast el to classENTITY if we
want to passit as input to for instance the production Add_Construction  , which indeed expectsa
node of class ENTITY asfirst input parameter.

Figure 3.2 showsthe graph resulting from the execution of the MAIN transaction by the PROGRES
system.



Chapter 4

A Query Language Defined Using
Graph-Rewriting

In this chapter, we introduce and define the Graph-Oriented and Hybrid Query Languagesfor the EER
model (abbreviated respectively GOQL/EER and HQL/EER). Following an example-based introduc-
tion to GOQL/EER (Section 4.1), we formally define this language by means of a PROGRES specifi-
cation (Section 4.2). In Section 4.3, we then introduce HQL/EER.

This chapter isbased on [AE94, AE97].

4.1 GOQL/EER: A Graph-Oriented Query Languagefor theEER
M od€

In this Section, we introduce the Graph-Oriented Query Language for the EER model (GOQL/EER)
by means of examples. A query in GOQL/EER basically consists of graphical symbols used in EER-
diagrams. For instance, variables for a customer and a cash card may be declared by drawing two
(rectangular) nodeslabel ed respectively CUSTOME&d CASH CARINotethat these rectanglesnow
represent entities rather than entity types, asin EER-diagrams. The structural constraints applying to
the construction of EER schemes, apply to graphical queriesaswell. That is,

e anentity playingarolein arelationship is represented as a rectangle connected to adiamond by
means of an undirected edge;

e an attribute of an entity (respectively a relationship) is represented as an oval connected to a
rectangle (respectively a diamond) by means of an undirected edge;

e membership of acomplex attribute is represented by means of two ovals connected by means
of adirected edge from the attribute to its e ement;

e acomponent of an entity is represented as an oval, connected to the rectangle representing the
entity by means of an undirected edge, and connected to the rectangl e representing the compo-
nent by means of adirected edge. If the component isalist, aset or abag, then multiple entities
may be connected to the oval by means of directed edges.

41
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In summary, acomposition of subgraphsof an EER diagram may be used to describe configurations
of entities, relationships and values in which one is interested. For instance, the condition that we
are only interested in pairs of a customer and a cash card such that the customer has the cash card, is
indicated by drawing a (diamond shaped) node labeled has with (appropriately labeled) edgesto both
other nodes (see Figure 4.1).

ha_cc

CUSTOMEEha—C has CASH_CARD

Figure 4.1: A sample partial GOQL/EER query

Reconsidering the graph pattern of Figure 1.1 in the Introduction (which in includes the one from
Figure 4.1, expressing an interest in the names of customers and the passwords of cash-cards these
customers have, one may note how such a pattern may be seen to correspond to the from- and where-
clause of an SQL/EER query. In such atextua query, the select-clause is then used to indicate those
elements of the query that actually have to be retrieved from the database. As EER diagrams offer no
natural means of indicating such a“selection” onaquery pattern, we haveto introduce some additional
notation. For the sake of clarity, we choose to draw selected nodes using bold lines, but any other way
to distinguish one kind of nodes from the rest would do. As an example, suppose we want to retrieve
the names of al customers registered in our database, together with the passwords of the cash cards
they have. Then Figure 4.2 shows a possible expression of this query in SQL/EER, while Figure 4.3
shows a possible expression of this query in GOQL/EER.

select c.name, cc.password
from cin CUSTOMER, ccin CASH_CARD
wherec hascc

Figure4.2: Names of customers and passwords of the cash cards which they have (SQL/EER version)

Note how the graphical representation of thisquery isobtained by simply selecting two of the nodes
in the graph pattern of Figure 1.1. Indeed, in the introduction to this chapter, we described how this
graph could be read as adescription of precisely theinformation we need for thisquery. Theonly thing
that was still missing from the graph pattern of Figure 1.1 in order to match the given query precisely,
Is an indication of what information should be returned as a result of the query, i.e., the names and
passwords. Thisisindicated in Figure 4.3 by drawing the string  -labeled nodes representing this
information in bold.

In the graphical query depicted in Figure 4.3, the underlying pattern equals a subgraph of an EER
diagram. Assoon asaquery involvesfor instance multipleentities of the sametype, asimplesubgraph
of an EER diagram is no longer sufficient for graphically expressing the query. Therefore, we allow
the pattern underlying a graphical query to be constructed by “joining” multiple subgraphs of an EER
diagram by identifying some of their nodes. Two nodes in different subgraphs may be identified if
either
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password

Figure 4.3: Names and passwords of customers and the cash cards which they have (GOQL/EER ver-
sion)

1. they have the same label; or

2. they are both entities, and the type of one entity is a subtype of the other entity’s type. In this
case, the “identified” node is labeled with the subtype.

Asan example, suppose we wish to retrieve the names of those pairs of banks that employ one and the
same cashier. Then Figure 4.4 showsapossibleexpression of thisquery in SQL/EER, whileFigure 4.5
shows a possible expression of this query in GOQL/EER. Note that since we do not require that bal
differs from ba2, this query will at least return all identical pairs of banks.

select bal.name, ba2.name
from balin BANK, ba2 in BANK, cain bal.employs
where cain ba2.employs

Figure 4.4: Names of banks employing one and the same cashier (SQL/EER version)

The graph of Figure 4.5 may be seen to consist of two copies of one and the same subgraph of
Figure 2.1 (each consisting of four nodes, |abeled respectively string  , BANKIist ,and CASHIER
linked by three edges) which have been joined on the node labeled CASHIERt0 express sharing of
this entity. Since nothing prevents us from matching the two BANKnodes to one and the same bank,
thisquery, just likeitstextual equivalent, will at least return all identical pairs of banks.

employs 0 N employs
BANK list —>wEASHIER st > BANK

nameg nameg

<string > <string >

Figure 4.5: Names of banks employing one and the same cashier (GOQL/EER version)

The query depicted in both Figure 4.4 and Figure 4.5 also illustrates what constitutesin our view,
amajor advantage of graphical over textual expression of queries. Consider namely the SQL/EER
statement depicted in Figure 4.6, which is semantically equivalent to that of Figure 4.4, and hence to
the GOQL/EER query of Figure 4.5. While the SQL/EER query of Figure 4.4 usesthe in-predicate to
expressthe“crucia” condition in the query (namely the sharing of a cashier by two banks), the query
in Figure 4.6 introduces an extra variable and uses the equality predicate. This possibility to express
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one and the same concept (in this case, sharing) in avariety of ways, is often mentioned as a major
causeof confusionfor usersof alanguage. Looking at Figure 4.5, the reader will noticethat in agraph-
oriented language such as GOQL/EER, the notion of sharing is expressed in a most straightforward
manner, namely by one and the same node representing the shared item.

select bal.name, ba2.name

from bal in BANK, ba2 in BANK, cal in bal.employs,
ca2 in ba2.employs

where cal = ca2

Figure 4.6: Names of banks employing one and the same cashier (SQL/EER version 1)

An additional exampleillustratesin an even more convincing way the advantage of graphical over
textual formulation of certain aspects of a query, especialy when it comes to interrelationships be-
tween the elements of interest. Suppose we wish to retrieve the names of those customers who hold
an account, and al so have a cash card which accesses that same account. 1n the SQL/EER formulation
(Figure 4.7), three variables have to be introduced, each of which occurs twice in the where-clause.
It requires a conscious effort while studying this query, to detect the interrel ationships between the
elements of interest.

select c.name
from cin CUSTOMER, ccin CASH_CARD, ain ACCOUNT
where ¢ has cc and ¢ holds aand cc accesses a

Figure4.7: Namesof customerswho hold an account and have a cash card which accesses that account
(SQL/EER version)

In contrast, in the GOQL/EER formulation of thisquery (Figure 4.8), these interrel ationships may
bedirectly derived from the picture, sinceal conditionsimposed on asingleelement, arevisualized in
the element’s direct vicinity. For instance, concentrating on the CUSTOME#®Ntity in the picture, one
can immediately see that we wish to retrieve the name of CUSTOMESparticipating in ahas - and a
holds -relationship. In contrast, to deduce thisinformation from the SQL/EER version of this query,
one hasto search for four different occurrences of the variable c, oncein the select-clause, onceinthe
from-clause, and twiceinthewhere-clause. Likewise, theconditionsimposed onthe CASH CARBe-
spectively the ACCOUN@&ntity may be found by concentrating on the respective corresponding nodes.

Asmentioned earlier oninthissection, aquery in GOQL/EER should consist basically of graphical
symbols used in EER diagrams. By simply composing these symbols into patterns, already a large
variety of conditions may be expressed graphically, as shown in the above examples. As motivated
in Section 1.3.3, it is most certainly not our intention to introduce a query language in which every
possi ble condition may be expressed graphically. Just for the sake of illustrating how even more kinds
of conditions may be incorporated seemlessly into our language, we now add some minor features to
the language as discussed so far:
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CUSTOMER™® _~Sting

CASH CARD

Figure4.8: Namesof customerswho hold an account and have a cash card which accesses that account
(GOQL/EER version)

¢ the condition that an attribute should have a particular value is indicated by writing this value
next to the node representing the attribute;

¢ the condition that an element should occur at a specific placein alist isindicated by writing the
index in square brackets next to the arrow linking the list to the element.

As an example, suppose we wish to know the name of the second bank of the “General Banking”
consortium. Figure 4.9 shows an expression of this query in SQL/EER.

select b.name
from bin BANK, cin CONSORTIUM
where c.consists_of[2] = b and c.name = * General Banking”

Figure 4.9: The second bank of the General Banking consortium (SQL/EER version)

In the graphical formulation of thisquery (see Figure 4.10), the required consortium nameis added
to the leftmost string  -node, while the required index is added to the e-labeled edge.

consists of .
CONSORTIU 2] BANK
name name

General Banking

Figure 4.10: The second bank of the General Banking consortium (GOQL/EER version)

With the language introduced so far, we are only ableto graphically express queries corresponding
to “flat” SQL/EER queries, i.e. queries not involving subqueries. However, reconsidering the seman-
tics of SQL/EER (sub)queries, it appears that EER diagrams offer a natural representation for sub-
queries! Indeed, since subqueries return a bag (of e.g. entities or values), we may as well use the
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graphical convention used in EER-diagrams for depicting a bag, namely an oval with bag inscribed
init. The graphical equivalent of the subquery is put inside the oval, indicating the fact that this sub-
query definesthe bag. Furthermore, there are basically two ways of connecting such a“ subquerybag”
to the remainder of the graphical query:

1. Nodesof the graph pattern underlying a (sub)query may beidentified (according to the “identifi-
cation-rules’ given above) with nodes of the graph pattern underlying any (direct or indirect)
subquery, analogousto the fact that variables declared in a certain SQL/EER query may be used
in subqueries.

2. A node may be linked to a subquerybag by means of a directed <-labeled edge from the sub-
querybag to the node, indicating that the node corresponds to a variable ranging over the result
of the subquery. In this case, only one node may be selected in the graph pattern underlying the
superquery, and the type of this node should either be identical to or, in case of an entity type, it
should be a supertype of that of the target of the c-labeled edge.

Let us have alook at how these ideas are used in some example queries. Figure 4.11 presents a
textual and Figure 4.12 a graphical version of the query which retrieves, for each address of a bank
recorded in the database, the bag of hames of banks that have this address as their location.

select ad, ( select b.name
from bin BANK
whereb.location = ad)
from adin ( select balocation
from bain BANK))

Figure 4.11: For each address of abank recorded in the database, the bag of names of banks that have
this address as their location (SQL/EER version)

Although Figure 4.12 at first glance does not |ook much like an EER diagram, acloser |ook reveals
that it isindeed still composed of nothing but graphical primitivesalso present in EER diagrams. The
large oval in the bottom right corner of the picture corresponds to the subquery in the from-clause
of the SQL/EER query. Indeed, the query depicted inside this oval selectsthe location  -attribute
(indicated with the bold address -oval) of every bank in the database. The €-labeled directed edge
starting at the border of thislarge oval denotes the fact that the address depicted in the top |eft corner
of the picture (which, as indicated superficially in the picture, corresponds to the variable ad in the
SQL/EER-query) ranges over the result of this subquery.

Thelargeoval inthetop right corner of the picture corresponds to the subquery in the select-clause
of the SQL/EER-query. Thefact that thenodelabeled string  isdrawninbold, indicatesthat thissub-
query selectsabag of names. Thelocation  -labeled edge connecting the node label ed BANK(which
corresponds to the variable b in the SQL/EER query) to the address depicted in the top left corner of
the picture, expresses precisely the condition “b.location = ad ” in the SQL/EER-query.

In the outermost SQL/EER query, the address ad as well as the bag of names is selected. Like-
wise, the address -node, corresponding to the variable ad as well as the bag-node in the top right
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corner, corresponding to this bag of names, are selected in the GOQL/EER query, which is indicated
by drawing themin bold. Remember that the fact that thestring  -nodein thetop right corner aswell
astheaddress -nodein the bottom right corner are also drawn in bold, indicatesthat these nodes are
selected in the subqueries and not in the outer query (which isimpossible anyway, since they are not
within the scope of the outer query).

ad

location

BANK _jocation

Figure 4.12: For each address of a bank recorded in the database, the names of banks located at this
address (GOQL/EER version)

For clarity, the table depicted in Figure 4.13 visualizes once more the correspondence between
elements of the textual and graphical representation of the above query.

A final example query illustrates nesting of subqueriesto morethan onelevel. The query depicted
textually in Figure 4.14 and graphically in Figure 4.15 returns the name of each consortium, together
with abag of pairs, onefor each bank the consortium consists of. Each such pair consists of the bank’s
name together with the bag of names of cashiers the bank employs.

The GOQL/EER version of this query is structured as follows:

¢ Inthe outermost query, the name of the CONSORTIUN selected, as well as the bag depicted
by means of the largest oval in the picture.

¢ Inthisbag, the BANKrangesover theconsists _of attribute of the CONSORTIUM hename
of the BANK:Is selected, as well as the bag depicted by means of the second largest oval in the
picture.

¢ Inthat bag, the CASHIERranges over the employs attribute of the BANK Only the name of
the CASHIERIs selected in this subquery.

4.2 Formal Specification of GOQL/EER

In Section 4.1, we introduced the ideas and concepts behind GOQL/EER by means of examples. In
this section, we formally define syntax and semantics of GOQL/EER in graph-theoretical terms. Our
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SQL/EER fragments GOQL/EER fragments
b

select ba.location
from bain BANK

BANK location

ad in ( select ba.location
from bain BANK )

BANK ocation

b
b in BANK

BANK

b.name

BANK name @

b.location = ad

location BANK

select b.name
from bin BANK
where b.location = ad

location

select ad, ( select b.name
from b in BANK
where b.location = ad)
from ad in ( select ba.location
from bain BANK)

location

BANK _ Jocation

Figure 4.13: Correspondence between fragments of graphical and textual queries
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select co.name, ( select b.name, ( select ca.name

from cain b.employs)
from bin co.consists of )
from coin CONSORTIUM

Figure 4.14: The name of each consortium, together with the bag consisting of a pair for each bank
the consortium consists of, with the bank’s name together with the bag of names of cashiers the bank
employs (SQL/EER version)

consists of
CONSORTIUM

employs CASHIER
name

name
< string > < string >

name

< string >

Figure 4.15: The name of each consortium, together with the bag consisting of a pair for each bank
the consortium consists of, with the bank’s name together with the bag of names of cashiers the bank
employs (GOQL/EER version)
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need for an expressive graph model motivatesour choice of the graph grammar formalism PROGRES,
an informal overview of which was presented in Chapter 3.

The PROGRES specification is obtained in athree step process. In afirst step (see Section 4.2.1)
we show how GOQL/EER queries may be represented by means of labeled, attributed graphs. In a
second step (see Section 4.2.2), theclass of al graphsthat correspond to GOQL/EER queriesisdefined
by means of a PROGRES specification. In other words, this specification captures the syntactic struc-
ture of GOQL/EER. The specification obtained in the second step isthen extended in athird step (see
Section 4.2.3) to define a so the semantics of GOQL/EER. Thisisdone by introducing additional node
attributes and attribute derivation rules. Theserulestransate the GOQL/EER query into an SQL/EER
query, defining the semantics of the graph-oriented query.

Looking from adifferent perspective, the PROGRES specification for GOQL/EER may be seento
consist of the following four parts (cf. Figure 4.16):

1. EER scheme independent part of ~_aredeclaredintermsof 2. PROGRES productions
PROGRES graph scheme i

extends call

use declarations from .
3. EER scheme dependent part of = 4. PROGRES transactions

PROGRES graph scheme

Figure 4.16: Structure of the PROGRES specification for GOQL/EER

1. an EER scheme independent part of a graph scheme, which for instance formalizes the fact that
there are nodes for representing entities and nodes for representing values,

2. aset of productions, specified intermsof the EER schemeindependent part of the graph scheme.
For instance, some production formalizes the fact that given an entity, a value of a given type
may be linked to it, indicating that the value represents one of the entities attributes.

Together, these two parts actually define the language of al syntactically correct GOQL/EER-
graphs. A graph is part of thislanguage if it may be obtained by applying any correct (in the PRO-
GRES sense) sequence of productionsto an initial empty graph. What exactly constitutes a“correct”
sequence of productionsisthe topic of Section 4.2.4.

The fact that PROGRES is an operational specification language, plus the presence of an inter-
preter in the PROGRES environment inspired us to incorporate a scheme dependent part in the PRO-
GRES specification, mainly for the purpose of testing the specification. This scheme dependent part
of the specification consists of

3. an EER scheme dependent part of the graph scheme, extending the EER scheme independent
part with additional node classes and node types. Among others, this part of the graph scheme
formalizes the fact that there are entities of type BANK and values of type address .
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Figure 4.17: Graph representation of the graphical query of Figure 4.10

4. sometransactions, i.e., sequences of production calls. Each transaction creates theformal graph
representation of a particular GOQL/EER query over the EER scheme of Figure 2.1.

4.2.1 A Graph Moded for GOQL/EER

Formalization of GOQL/EER is based on the representation of graphical queries aslabeled, attributed
graphs. Ininformal terms, the figures of Section 4.1 correspond to what a user would see on the screen
of atool supporting GOQL/EER, while the graphs correspond to the internal representation of such

queries. These graphs serve a double purpose:

¢ On one hand, such agraph represents the (abstract) syntactical structure of aquery. Node labels

in the graph correspond either to EER scheme el ements (such as entity types, relationship types
or roles) or to “query elements” (such asqueriesor subqueries). Node attributes' are used for the
storage of non-structural information which is part of the query, such as concrete atomic values
(used in predicates such as “b.name = ’'General Banking’ ") and list indices (used in
termssuch as“co.consists  _of[2] ).

On the other hand, such a graph also incorporates the semantics of the corresponding query:
extraattributesare used to store (SQL -)declarations, formulas and terms corresponding to nodes.
A unique node in the graph corresponds to the query itself, and has associated to it (in one of its
attributes) a complete SQL/EER-query, whose semantics is said to define the semantics of the
graphical query.

! Note once morethat the word “attribute” is used in two different meanings: onein the context of graphs, and the other
in the context of the EER-model.
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Asan example, consider Figure 4.17, which showsthe graph corresponding to the graphical query
of Figure 4.10. Some of the attributes of nodesin the graph of Figure 4.17 are shownin Table 4.1. On
one hand, the attributes Output (indicating whether a node has been selected for output), Value (con-
taining the actual value of a node corresponding to an atomic value), and Index (containing a position
in alist) are part of the representation of the query’s syntax in the graph. On the other hand, the at-
tributes SFW-Term, Term Declaration, and Formula (all containing SQL/EER-statements) are part of
the representation of the query’s semanticsin the graph.

| 1d. | Label | Att.Name | Attribute Value |
129 | sgb SFW-Term | ( select co.consortium_consists_of[2].bank_name
from co in consortium
where co.consortium_name =’ General Banking’ )
249 | constituent | Term C0.consortium_consists_of
273 | constituent | Term C0.consortium_consists_of [ 2]
337 | constituent | Term co.consortium_consists_of[ 2] .bank_name
Output TRUE
313 | constituent | Term Co.consortium_name
Output FALSE
Formula co.consortium_name =’ Genera Banking’
297 | _string Value 'General Banking’
225 | constituent | Declaration | co in consortium
Term co
277 | mmember | Index 2

Table 4.1: Attributes of some nodes of the graph in Figure 4.17

As aready mentioned, a major motivation for our choice to work with the PROGRES formalism
was that the specification of GOQL/EER could consequently be made using the PROGRES-system.
Among others, this allowed us to execute the specification? using the systems integrated interpreter.
The graph shown in Figure 4.17 is the result of such an interpretation and was generated using the
PROGRES system.

Within each node of the graph, its (unique) node identifier and its node type are depicted. This
graph clearly illustrates the different aspects of the correspondence between a GOQL/EER query, de-
picted using the conventions introduced in Section 4.1, and its representation as a formal attributed
labeled graph:

e Thenodesintheformal graph representation (and their types) are obtained from the GOQL/EER
query asfollows:

— All EER scheme dependent names occurring in the graphical query occur as nodetypesin
the graph representation, either

2The precise meaning of “executing a PROGRES specification” is elaborated on in Section 4.2.4.
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x directly, asisthe case with thebank and consortium  nodesin Figure 4.17,

« prefixed with an underscore in case the name coincides with a reserved word of the
PROGRES language, asisthe case with the _string  node;

x prefixed or affixed with “related” namesto ensure unique naming of PROGRES types.
Thisisillustrated withthe name-attributesof theentity typesCONSORTIUIlshd BANK
Since these attributes have to be mapped onto different and hence uniquely named
PROGRES types, they haveto be prefixed with the name of the entity (or relationship)
type to which they apply, resulting in the PROGRES types bank _-name respectively
consortium _name.

Likewise, the consists _of attribute of the consortium is represented with a node
of type consortium _consists  _of .

Because of the same uniquenessrequirement, thelist  -labelednodein Figure4.10is
represented intheformal graph withthelist _of _bank -node, sincethisnodeindeed
represents alist of banks.

— The single EER scheme independent name which may occur in a GOQL/EER query is
“€”. Remember that €-labeled edges are used to link alist, set or bag to its elements. For
representing such edgesin aformal graph, adistinctionis made between the following two
Cases:

1. if the source of the edgeisaset, the €-labeled edgeis simply represented with an edge
labeled cont (rather than €, since PROGRES does not allow special symbolsastype
names).

2. if the source of the edgeis alist or bag, it means that the target of the edge (which
is avalue or entity) may occur multiple timesin this list or bag, and hence may be
connected to thislist or bag through multiple edges. In PROGRES however, it isim-
possible to have multiple edges with the same label between two given nodes. Hence
an additional type of nodes is introduced, namely mmember which stands for nulti-
member. Thisisillustrated with bank being an mmemberof list _of _bank . The
introduction of these mmembernodes has the additional advantages that they offer a
convenient place to store index-values, in case the query specifies at what particular
placein the list or bag the element should occur.

— The query and its subqueries are represented by nodes of type sgb , which standsfor sub-
querybag. The nodes* constituting” the query are linked to the node corresponding to this
query by meansof asequenceof anis _defined _by-edge, aconstituent -nodeanda
cons _is _n-edge. Thereasonfor thisauxiliary constituent  -nodeisexplained further
on in this section.

e Besidesedgesof typescont ,is _defined _by andcons _is _n (whose purposedisexplained
above), eight more types of edges are used to link the various nodes of aformal graph represen-
tation together:

— A nodeof typemmembetislinkedto alist or bag by meansof anincomingcontains _mm
edge, and to theelement of thelist or bag by meansof an outgoingmmis _poc -edge (where
poc standsfor “part of complex value’.
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— A node corresponding to aroleislinked to arelationship by meansof arole2r -edgeand
to an entity by means of arole2e -edge.

— A node corresponding to an attribute is linked to a relationship or entity by means of an
attribute2er -edge and to a value by means of an attribute2v -edge

— A node corresponding to acomponent islinked to the owning entity by meansof acompo-
nent2e -edge and to the component entity by means of acomponent2c -edge.

e InTable 4.1, two major categories of attributes may be distinguished, which correspond to the
double purpose of the formal graph representation as outlined above:

1. The attributes Value , Index and Output contain non-structural information which is
also present in the GOQL/EER query itself. The use of the Value and Index attributes
has been explained previously, while the boolean Output  attributeistrue for those nodes
that correspond to an element of the GOQL/EER query drawn in bold.

2. TheattributesSFW-Term, Term, Declaration  and Formula areused indefining the
semantics of the query. In our example, Table 4.1 formalizes the correspondence between
nodes of the graph in Figure 4.17 (and hence graphical elements of the GOQL/EER query
depicted in Figure 4.10) with elements of the query’s textual equivalent depicted in Fig-
ure4.9. For instance, thenodein Figure4.17 withidentifier 253 (labeled list _of _bank)
on onehand correspondstothelist  -labeled nodeinthegraphical query of Figure4.9. On
the other hand, the Term-attribute of the constituent  -node through which it islinked
to the sgb -labeled node (i.e., the node with identifier 249) showsthat it also corresponds
totheterm co.consists  _of inthetextua query of Figure 4.9.

Inthefollowing two sections, we discuss how the graph model outlined above, isformally captured
in aPROGRES specification. The full specification may be found in Appendix C.

4.2.2 The Syntax of GOQL/EER

We now define the syntax of GOQL/EER by means of a PROGRES specification. As outlined in the
introduction to this section, such a specification consists of a graph scheme and a set of productions.
We first discuss the graph scheme in detail.

Graph Scheme of the GOQL/EER specification

Thenode class QUERYELEM sthe superclassof those node classesthat actually constitute an el ement
of aquery, such asan entity, relationship or value. Thenode classPART.OF.COMPLEXsthe common
superclass of ENTITY and ATOMICVALUE From Definition 2.5 of EER schemes, we know that it
are precisely entities and atomic values that may be part of sets, lists or bags, respectively in the case
of components and (complex) attributes, hence the name of the node class.

3The need for the prefix consortium  _in thisterm is explained above.
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node class QUERY_ELEM end;

node class PART_OF COMPLEX isa QUERY_ELEM end;

node class ENT_REL isa QUERY_ELEM end;

node class ENTITY isa ENT_REL, PART_OF_COMPLEX end;
node class RELSHIP isaENT_REL end;

node class ROLE

meta rel : type in RELSHIP [1:1];
ent: type in ENTITY [1:n];
end;

edge type role2e : ROLE -> ENTITY [1:1];
edge type role2r : ROLE -> RELSHIP [1:1];

Similarly, the node class ENT REL is the common superclass of ENTITY and RELSHIP, which
share the property of being able to have attributes. Consequently, the node class ENTITY is a di-
rect subclass of both PART.OF.COMPLEXnd ENT_REL In Figure4.17, the nodes|abeled bank and
consortium  are nodes of thisclass.

Thefollowing four declarationsin the graph scheme concern roles and relationships. A role2r -
edge links a ROLEto the (unique, hence the “[1:1]” cardinality constraint) RELSHIP to which it be-
longs, whilearole2e -edgelinksa ROLEto the (unique) ENTITY that playstherole.

To understand why roles (as well as attributes and components, see further on) are modeled by
means of nodes rather than edges, consider for instance the production that allows the addition of a
new role to a given (existing) relationship (for instance, a relationship of type owned by).* This
production expectstherole-“type’ (for instance, teller ) asinput. However, in PROGRES it isim-
possible to pass an edge type as input to a production (since there is no such thing as an “edge class
hierarchy”). Hence one hasto model roles by means of nodes, such that the role type can be passed to
a production by means of the corresponding node type.

Unfortunately, the modeling of roles by means of nodes rather than edges, introduces an additional
problem. Suppose we would have modeled theroleteller by means of an edge type with owned
by as source and ATMas target. Then it would be a type error to try and add ateller  role to for
instance a concerns relationship. However, since the edge typesrole2r and role2e  are now
independent of the EER scheme, this error may no longer be recognized by the type system, so we
have to introduce explicit checks for this situation. This is done using the meta attributes ent and
rel declared for node class ROLE

As explained in Section 3, a meta attribute applies to a node type, and may have (an)other node
type(s) as value. For any node type of class ROLE the meta attribute rel is supposed to refer to the
node type corresponding to the relationship type to which the role belongs. The metaattributeent is
supposed to refer to the set of all node types corresponding to the entity types that can play the given
roleinthegivenrelationship. Tothisend, thedeclaration of ent isqualified with“[1:n]” which makes
It a set-valued attribute.

In general, the need for meta attributesin this and other parts of the specification, comes from the
fact that not all “type-related” characteristics of GOQL/EER (such astherelation between relationship
types and entity types playing their roles) may be modeled in and enforced by the PROGRES type
system.

4See the production Add_Role further on in this section.
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The precise usage of these (and other) metaattributesis explained in more detail when the rel evant
productions are discussed.

node class VALUE isa QUERY_ELEM end;
node class ATOMIC_VALUE is a VALUE, PART_OF_COMPLEX

intrinsic Value : string;
end;
node class COMPLEX_VALUE is a VALUE
derived Elem_Type : type in QUERY_ELEM;
end;
node class SET_VALUE is a COMPLEX_VALUE
intrinsic Singleton : boolean := false;
end;

edge type cont : SET_VALUE -> PART_OF_ COMPLEX;
node class MVALUE is a COMPLEX VALUE end;
node class BAG_VALUE isaMVALUE end;

node class LIST VALUE isa MVALUE end;

node class MMEMBER

intrinsic Index : integer := 0;
end;

node type mmember : MMEMBER  end;
edge type contains_mm : MVALUE -> MMEMBER,;
edge type mm_is_poc : MMEMBER -> PART_OF_COMPLEX [1:1];

The class VALUEis a direct subclass of QUERYELEM and has the classes ATOMICVALUEand
COMPLEX/ALUEsas direct descendants. Nodes of class ATOMIC VALUHave an attribute Value
inwhich the “actual value” isstored. For simplicity, we assume all values are stored astexts (whichis
the PROGRES type for “lengthy” strings). In Figure 4.17, the two nodes labeled _string  are nodes
of classATOMIC VALUE

SET VALUEis one of COMPLEX/ALUES direct subclasses. It's attribute Singleton  isset to
true in the case of asingleton component (such asthe proper _account of aBANK. Edgesof type
cont link asettoitselements, which must be of classPART.OF COMPLEXAssubclassof COMPLEX-
_VALUE SET_VALUE(aswell asBAGVALUEand LIST _VALUB inheritstheattribute Elem _Type,
which serves a similar purpose as the attributes of class ROLE Indeed, since edges of type cont are
used both for linking a CASHIERSTATIONto a set of CASHIERSTATIONS, as well as for link-
ing an address to aset of address es, the PROGRES type system cannot prevent the linking of
anaddress toaset of CASHIERSTATIONSs. Hence the need for the attribute Elem _Type , which
may be used to check if the type of a complex value, and the type of a value to be added to it are
compatible.

The other direct subclass of COMPLEX/ALUEis MVALUEwhose name stands for Multi-VALUE
This name is explained by its two subclasses, namely LIST _-VALUEand BAGVALUE one and the
same vaue or entity may be an element of alist or bag multipletimes. As mentioned in Section 4.2.1,
this fact motivates the introduction of auxiliary nodes, both for representing membership of multi-
values and for storing index values. Their node classis called MMEMBERnd nodes of this class have
an integer Index attribute. Edges of type contains _mmink a multi-value to its multi-members,
while edges of type mmis _poc link a multi-member to the element, the membership of which it rep-
resents. As this must be a unique element (of class PART.OF.COMPLEXas in the case of sets) we
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impose the cardinality constraint [1:1].
The usage of the classes MVALUENd MMEMBE#®d the edge typescontains  _mmand mmis-
_poc isexemplified in Figure 4.17 with the bank asamember of thelist _of _banks.

node class DERIVED _SQL  end;

node class SQB is a BAG_VALUE, DERIVED_SQL
redef derived Elem_Type =

((  self.=OutCons=>:CONSTITUENT[1:1]).-cons_is_n->:QUERY_ELEM[1:1]). type;
end;

node type sgb : SQB end;
node class CONSTITUENT

intrinsic Output ; boolean := false;
end;

node type constituent : CONSTITUENT end;

edge type is_defined_by : SQB [1:1] -> CONSTITUENT;

edge type cons_is_n : CONSTITUENT -> QUERY_ELEM [1:1];

node class SQB_CONS is a CONSTITUENT, DERIVED_SQL end;
node type sgb_cons : SQB_CONS end;

Nodes of class CONSTITUENTtogether with edges of typeis _defined _by andcons _is _n)
are used to link a subquerybag to node that constitute part of its definition. In Figure 4.17, one can see
that five nodes constitute the query, namely thetwo _string s, thebank , the consortium  and the
list _of banks.

The Output -attribute of a CONSTITUENTs set to true if the node reachable by means of the
outgoing cons _is _n-edgeis selected in the query corresponding to the node reachable by means of
the outgoing is _defined _by edge (cf. the attributes of constituent 337 in Table 4.1). Since
nodes may be constituents of morethan one (sub)querybag (in case of subqueries), selection for output
hasto be indicated on the constituent  -nodes, rather than on the query elements themselves.

The class SQB(which standsfor SubQueryBag) isused to represent (sub)queries. Sinceaquery re-
turnsabag, SQBisdeclared asubclassof BAGVALUE Thederivationrulefor theattributeElem _Type
inherited from BAGVALUE usesthe path OutCons . A path of type OutCons exists between anode
of class SQBand any of its CONSTITUEN$whose Output -attribute is true.

path OutCons : SQB -> CONSTITUENT =
1=>2 in_

Ly

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

condition ‘2.0utput;
end;

Figure 4.18: Declaration of the path OutCons
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There are two possibilities:

1. A unique constituent is selected for output. In that case, the constraint that the path expression
=0utCons=> should return exactly one constituent (indicated with CONSTITUENT [1:1] )
Issatisfied. From Section 4.1, we know that it are exactly such subquerybags that may be used
asarange for avariable with atype compatible to the unique selected constituent. The attribute
Elem _Type can then be used to check the latter condition, as we will see when discussing the
production which is used to let a variable range over a bag.

2. More than one constituent is selected. In that case, the constraint that =OutCons=> should
return exactly one constituent is not satisfied, hence the evaluation of this derivation rule fails,
and the attribute Elem _Type isundefined. Consequently the subquerybag cannot be used as a
variable domain.

The fact that a subquery is itself a constituent of its superquery explains why SQBis declared a
subclass of QUERYELEM However, in this case, nodes of class SQBCONSare used to link a sub-
query to its superquery, rather than nodes of class CONSTITUENT The need for this special class
is explained by the fact that SQL/EER-terms associated to such constituents, and to the SQBnodes
representing the queries themselves (see Section 4.2.3 on the semantics of GOQL/EER) are derived
automatically, rather than computed in productions. This aso explainsthe need for (and the name of)
the class DERIVED.SQL, which isthe common superclass of SQBand SQBCONS

In Section 4.2.3, it is shown how in an attribute of nodes of class SQB information (that is, decla-
rations, terms and formulas) is* collected” from its constituents, which is combined into an SQL/EER
query.

node class ATTRIBUTE

meta entrel : type in ENT_REL [1:n];
val : type in VALUE [1:1];
end;

edge type attribute2er : ATTRIBUTE -> ENT_REL [1:1];
edge type attribute?2v : ATTRIBUTE -> VALUE [1:1];

node class COMPONENT
meta cent : type in ENTITY [1:n];

comp : type in COMPLEX_VALUE [1:1];
end;

edge type component2e : COMPONENT -> ENTITY [1:1];
edge type component2c : COMPONENT -> COMPLEX_VALUE [1:1];

Theusage of nodeclassATTRIBUTEaswell asof theedgetypesattribute2er and attrib-
ute2v isexemplifiedin Figure4.17 with the names of respectively thebank and the consortium
The meta attributes of ATTRIBUTE serve an identical purpose as those of ROLE

The node class COMPONENSN the two edge types component2e and component2c are
used for modeling components, in the same way as explained above for roles. Their usage is exem-
plified in Figure 4.17 with the consortium  consisting of alist _of _bank s.

Besidesthe node classes and edge types discussed above, the graph scheme al so containsfour node
typessqgb, sgb _cons , mmemberand constituent of respectively the classes SQB SQBCONS
MMEMBE&d CONSTITUENTThe need for these node typesis explained when we discuss the pro-
ductions of the specification, which iswhat we are about to do right now.
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Productions of the GOQL/EER specification

The collection of declarations in the graph scheme described above, is in itself insufficient to com-
pletely describe the syntax of graphical queries. Indeed, the part of the specification given so far, for
instance, does not yet use the various meta-attributes declared in the graph scheme to enforce type cor-
rectness. Hence in general, we still need to specify in more detail which configurations of nodes and
edges are allowed. As PROGRES is an operational specification language, thisis done by means of a
set of productions. GOQL/EER graphs are those graphs that are obtained as aresult of the application
of any correct sequence of these productionsto an initial empty graph.

The compl ete specification includes fifteen productions, most of which are discussed below.

First, reconsider Figure 4.17, depicting the graph representation of the graphical query of Fig-
ure 4.10. Construction of this (and of any other) graph representing a GOQL/EER query starts with
the creation of an sqb -labeled node, representing the query. Thisis done by means of the production
Add_first _SQB

production Add_first SQB ( out NewS : SQB) =

,,,,,,,,,,,,,,,,,,

return NewsS := 2’;
end;

Theleft-hand side of this production consists of asingle crossed node of typesqgb . A crossover a
node or edge indicates negation. In this case, the left-hand side of this production matches the graph
to which the production is applied, if it contains no nodes of type sqb . The fact that the specification
contains no productions that allow the deletion of nodes of thistype, implies that this production may
be applied at most once to any graph. If not, it would be possible to create a query featuring various
unrelated (sub)queries.

Together with the fact that the left-hand side of all other productions in the specification contains
at least one “non-negated” node, thisimpliesthat this production must be applied exactly once to any
graph, namely at the start of any sequence of production applications (i.e., when the graph is still
empty).

All other nodes of type sqb must be added using the production Add_SQB This production takes
an existing sqb -node S as input, and links a new sgb -node to it by means of an sqb _cons -node.
Both new nodes are returned as output parameters.
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production Add SQB (S : SQB; out NewS : SQB ; ut SC: SQB_CONS) =
| |
| |
1 o=s |
| |
| |
| |
1 =1

cons_is_n
3' :sgb_cons ™ 2" :sgb

| |
I I
! I
| |
I I
| |
I I
| is_defined_by }
I I
| |
I |
I I
I |
I |
I I
| |
I J

return NewsS := 27;
SC =3
end;

Thefact that Add_first _SQBand Add_SQBare the only two productionsthat alow the addition
of sqb -nodes, ensuresthat these nodes are al\ways arranged in atree-structure, which corresponds pre-
cisely to the allowed relations between super- and subqueriesin SQL/EER. Thisisillustrated in Fig-
ure 4.19, which shows the tree of sgb -nodes in the formal graph representation of some GOQL/EER
query which has two subgueries, one of which hasin turn a single subquery.

L ooking back at the graph of Figure 4.17, we could now add the required entitiesto the query, i.e.,
thebank andtheconsortium . Thisisdone usingthe production Add_ER which adds anew entity
(or relationship, hence the use of the class ENT_REL) to a given (sub)querybag by means of a consti-
tuent. Both new nodes are returned as output parameters, so they can be used by other productions.
For instance, selection for output of the newly created entity must be indicated on its corresponding
constituent, hence the need for returning also the newly created constituent.

The following observation can be made on the graph-part of this production. From Chapter 3,
we know that nodes which are created by a production (i.e., nodes that are in the productions right-
hand side but not in its left-hand side) must be labeled with a node type. In general, there are two
possibilities for labeling a node in the the right-hand side of a production with a node type, both of
which areillustrated in Add_ER

1. A nodetype may be provided asinput to the production. Thisisthe case for the node with iden-
tifier 3 in Add_ER which is labeled with the input type ERtype . On calling this production,
a concrete EER scheme dependent type (such as bank or consortium ) must be provided.

2. A concrete node type from the graph scheme may be used. Thisis the case for the node with
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iz_defined_by is_defined_by

113:=qb_cons 101 :=qb_cons

cons_is_n cons_is_n

105:=2qb

iz_defined_by

107 r2qb_cons

cons_is_n

103:=qb

Figure 4.19: Arrangement of sqb -nodes in the formal graph representation of a GOQL/EER query

production Add_ER

2’ constituent ———® 3 :ERtype

(S:SQB; ERtype : type in ENT_REL ;

out E: ENT_REL; out C : CONSTITUENT) =
r--—">""""">""~""~""~""~""~>"~>"">7777 |

! |

| |

11 =s |

| |

| |

| |

[ |
R |
| |
| 1 =1 :
| |
| |
! is_defined_by l
| |
| |
| | cons_is_n |
| |
| |
| |
| |
| |

return E := 3’;
Cc:=2;
end;
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identifier 2 in Add_ER labeled with the type constituent  , which is not EER scheme de-
pendent. Thisexplainswhy thistype had to be added to the graph scheme presented above. The
same holds for the types mmember sqb and sqb _cons .

Given arelationship (created using Add_ER), an entity may be added to it asarole, using the pro-
duction Add_Role . This production takes the following inpuit:

production Add Role

(R : RELSHIP ; Etype : type in ENTITY ; Rtype : type in ROLE ;
out E : ENTITY ; out C : CONSTITUENT ) =
cons_is_n \

‘2 :constituent

|
|
|
|
|
:
|
is_defined_by |
|
|
|
|
|
|
|
|
|

InLowerScopeThan
3 :sgb
e |
| cons_is_n |
: 1’ =1 2" =2 |
|
| |
|
; role2r ? is_defined_by T |
|

I |
I I
' |5 :Rtype 3 =13 :
I |
I I
| role2e ¢ is_defined_by ¢ 1
| cons_is_n \ |
| | 4 :Etype -4————| 7 :constituent ;
| I

condition Rtype.rel = R. type;

Etype in Rtype.ent;

return E := 4’;

C:=7;
end;

e Theonly nodethat is passed to the productionistherel ationship R to which arole must be added.
The (sub)query to which the newly created entity must be linked as a constituent is not passed as
input (aswasthe case with Add_ER) but may be computed in theleft-hand side of the production
itself. In general, arelationship (or entity or value) may be a constituent of any non-zero num-
ber of (sub)queries. Thisis the case when relationships declared in different subqueries, have
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been identified to express an equality condition in the query at hand. However, among these
(sub)queries, one must be a(direct or indirect) superquery of al the others (except itself). If this
were not the case, this would mean that the relationship is used in two incomparable scopes,
whichisaclear violation of scoping rules. The entity that has to be created by this production,
must be linked as a constituent to this“highest” subquery, since thisentity must be known in al
scopes in which the relationship in which it plays arole is known.

In theleft-hand side of Add_Role , the sqb -node corresponding to this“highest” (sub)query of
which R is aconstituent, is determined as the single sgb -node of which R is a constituent, but
for which thereis no InLowerScopeThan -pathleading to R.

path InLowerScopeThan : SQB -> QUERY_ELEM =
(<-cons_is_n- & instance of SQB_CONS & <-is_defined_by-) + &
-is_defined_by-> & -cons_is_n->

end;

Indeed, since starting from the given sgb -node, this path leads to an sqb -node which is a su-
perquery of the given node (by means of the expression (<-cons _is _n- & instance of
SQBCONS & <-is _defined _by-) + )andof whichRisaconstituent (obtained by the ex-
presson-is _defined _by-> & -cons _is _n->). Clearly, if such apath would exist, then
the considered sqb -node did not correspond to this“highest” query. Thisisexemplifiedin Fig-
ure 4.20, in which the situation is depicted where R is a constituent of both a query and a direct
subquery. It may be verified that thereisan InLowerScopeThan -path from the bottom sqb -
node to R, but not from the top sqb -node to R.

e The remaining two input parameters to the production are the node types of respectively the
entity and the role to be added to R. In the condition-clause, it is checked whether these types
and R are all “mutually compatible’. First it is checked whether the type of R (obtained using
the built-in function type ) precisely matches the metaattributerel of the given role-type (cf.
the discussion of rolesin Section 4.2.1). Next it ischecked if the given entity typeisan element
of the meta attribute ent of the given role-type. Remember that the ent attribute is indeed
set-valued, and contains precisely all types, nodes of which may play the considered rolein the
given relationship R.

In our running example, thisallowsfor instance the participation of an ATMin an entered on
relationship, since ATMisa subclass of ENTRYSTATION, which in the scheme of our running
exampleis declared as the entity type corresponding to the es _eo role of entered on

Construction of the graph of Figure 4.17 could be continued with the addition of the name at-
tributes (in the EER sense of the word) to the bank and consortium  entities. Thisis done using
the production Add_Attribute  , which works completely analogous to Add_Role .

Likewise, theconsists _of component of theconsortium isaddedtothegraphof Figure4.17
using the production Add_Component , which in turn works compl etely analogous to Add_Attri-
bute , and is therefore omitted here (but may be found in Appendix C).
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185:=2qb

iz_defined_by is_defined_by

197 :=9b_cons 219:conztituent
o
cons_is_n
cons_is_n
189:=qb

iz_defined_by

.
209:constituent

N\

cons_izs_n

Figure 4.20: A relationship in different scopes
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production Add_Attribute

(Er: ENT_REL ; Att: type in ATTRIBUTE ; Val : type in VALUE ;
outv: VALUE ; out C : CONSTITUENT)

B

| cons_is_n JT

I R = et ‘3 : CONSTITUEN

| |

|

1 is_defined_by

|

InLowerScopeThan

| g ~

| ‘2 :sgb

|

|

|

|

o ;

| .

| cons_is_n |

Y =1 3 =3 |
|

! |

|

| ? attribute2er is_defined_by ? |
|

‘ |

|

e At 2 =2 :

‘ |

|

} # attribute2v is_defined_by # i

|

; cons_is_n |

.| 4 Vval - 5 :constituent ;

| ‘ |

|

condition Er. type in Att.entrel;
Att.val = Val,
return v := 4’;
C:=5;

end;
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The following three productions of the specification allow the addition of elements to complex
values such as sets or bags. First, the production Add_to _Set allowsthe addition of an el ement (that
is, anode of class PARTOF.COMPLEXt0 a set.

production Add_to_Set

(Sv:SET_VALUE ;S :SQB ; POCtype : type in PART_OF_COMPLEX ;
VarName : string ; out POC : PART_OF_COMPLEX; out C: CONSTITUENT) =
7777777777777777777777777777777777777777777 |
cons_is_n 11
‘1 =Sv -4——— ‘3 :CONSTITUEN
|

2 =S
\- - - - - - ___u
} cons_is_n !
=1 3 =13 |
I I
! I
I I
I I
| |
| |
| |
|
| cont 2 =12 |
|
1 1
|
| is_defined_by |
|

| y | |
| cons_is_n |
.| 4 :POCtype -4—| 5 :constituent :
| ‘ |
1 |

condition POCtype in Sv.Elem_Type;

‘1.Singleton => ( card (‘1.-cont->) = 0);

return POC := 4,

C =5,
end;

In this production, the (sub)query to which the newly created element must be linked as a consti-
tuent cannot be computed by the productionitself, aswasthe casewith Add_Role , but must be passed
to the production as input. The reason for thislies in the following basic difference between on one
hand the act of adding an entity asroleto arelationship, or avalue as attribute to an entity, and on the
other hand the act of letting a value or entity range over a set, list or bag:

e The connection between a relationship and the entity that plays one of its roles (or between an
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entity and a value that is one of its attributes,...), is essentially one to one. Hence any refer-
ence made to a certain role of acertain relationship, beit in the query where thisrelationshipis
declared, or in any subquery of this query, refers to the same entity.

Conseguently, the entity created by the production Add_Role should be linked as a constituent
to the “highest” query of which the given relationship is a constituent, so it can be used in any
subquery of this query.

e The connection between a set and an entity ranging over this set (or between abag and avalue
ranging over this bag,...) is clearly one to many. Hence the semantics of the query changes,
depending on which (sub)query this entity is linked to as a constituent.

For instance, the graphical queries of Figures 4.21 and 4.22 both return the names of all banks,
together withthelocationsof the cashier stationsthey own. InFigure4.21, theCASHIER STAT-
ION entity aswell astheset belong to the same query. In terms of the graph model, thisisthe
situation that would occur if the production Add_to _Set would associate an element of a set
tothe“highest” query of which the set isa constituent. Sincethisquery is“flat”, it returns abag
of pairs, each consisting of astring  and an address .

BANK e set > U [ CASHIER
STATION

pame location
ring >

Figure 4.21: Banks and their cashier stations, Version |

In Figure 4.22, the CASHIER STATIONentity is part of a subquery of the query in which the
set occurs. Hence this query returns a bag of pairs, each consisting of astring  and a bag
of addresses. In terms of the graph model, this situation can only be obtained if it is possible to
tell the production Add_to _Set explicitly to which subquery the element should be linked as
a constituent.

1 CASHIER
STATION

location

name

(: string :)

Figure 4.22: Banks and their cashier stations, Version |1

Theset Sv, the subquery S and the el ement type POCtype passed to the production Add_to _Set
still have to obey some additional constraints:
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e Thesubquery S must either be equal to some (sub)query of which Sv isaconstituent, or it must
be a (direct or indirect) subquery of such a query. In the left-hand side of Add_to _Set , this
condition is expressed by looking for a CONSTITUENTnhode corresponding to Sv, such that
there exists an InHigherScopeThan  -path from thisnodeto S.

path InHigherScopeThan : CONSTITUENT -> SQB =
<-is_defined_by- &

(-is_defined_by-> & instance of SQB_CONS & -cons_is_n-> & instance of SQB)*
end;

This path goes from a CONSTITUENTto the SQBIt is linked to (by following an incoming
is _defined _by-edge), andthenfollowszeroor moreaternatingoutgoingis _defined _by-
and cons _is _n-edges, thereby going from the SQBto any SQBnodethat correspondsto one of
its(direct or indirect) subqueries. For instance, in Figure4.20, apath of typelnHigherScope-
Than exists between the lowest of the two constituent  -nodes and the top sgb -node.

e Theeement type POCtype must equal the Elem _Type metaattribute of (the nodetype of) the
set Sv (cf. the condition  -clause).

e Iftheset SvisaSingleton ,thenit should not yet contain any elements (which is expressed
using the condition that the card inality of the set of its outgoing cont -edges should be zero).

Two productions offer the possibility of adding an element to a bag or list (i.e., a node of class
MVALUE The production Add_to _Mvalue differs from Add_to _Set only in the absence of the
condition onthe Singleton  -attribute, which isnot relevant to multi-val ues, hence the productionis
not shown here. Note that the multi-value may be itself a subquerybag, in which case the derivation
rule for the Elem _Type -attribute of class SQBis triggered.

In the case of the GOQL/EER-query of Figure 4.10, we need the possibility to add an element at a
specific positioninamulti-value. Thiscan bedoneusingtheproductionAdd_Indexed _to Mvalue .

The graph part of this production is analogous to that of Add_Role . The condition  -clause
contains the usual comparison between the element-type of the multi-value and the component type
passed to the production. In the transfer  -clause, the Ind ex passed to the production is stored in
the Index -attribute of the newly created mmembernode.

In order to complete the graph-representation in Figure 4.17 of the query in Figure 4.10, we till
haveto add two more“non-graphical” features besidesthelist-index. First, we haveto be ableto select
thestring  representing the name of the BANKfor output. In terms of the graph model, this means
setting its Output  attribute to true. This can be done using the Select  production.

The condition  -clause of this production takes care of a problem related to entities or values
ranging over a subquery. If a subquery is used as a range, then exactly one of the subquery’s con-
stituents should be selected for output. In other words, the situation depicted in Figure 4.23 is not
allowed. The subquery on the left returns a bag of pairs (each consisting of an address and a string),
so there is no way to label the value ranging over this subquery.’

>Unless we would allow “(address, string)” as node label, which would contradict our intention to use only elements
from the representation of EER diagrams.
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production Add_Indexed_to_Mvalue
(Mv : MVALUE ; POCtype : type in PART_OF_COMPLEX ; Ind : integer ;
out P : PART _OF COMPLEX; out C : CONSTITUENT) =

7777777777777777777777777777777777777777777777777777777777

cons_is_n

3 CONSTITUENJF
|

is_defined by |

InLowerScopeThan __
‘2 :sgb
| cons_is_n |
1 1 o=1 3 =3 1
| A :
! contains_mm is_defined_by !
i 6" :mmember 2 =2 i
. mm_is_poc i is_defined_by |
l _ v l
w cons_is_n |
! 4 :POCtype < 5 :constituent !
1 L

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

condition POCtype in ‘1.Elem_Type;
return P := 4’;

C =5,
end;
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production Select (C : CONSTITUENT ) =

ffffffffffffffffffffff

,,,,,,,,,,,,,,,,,,,,,,

ffffffffffffffffffffff

,,,,,,,,,,,,,,,,,,,,,,

condition card ( ‘1.<-is_defined_by-.-contains_mm->) = 0;
transfer 1’.Output ;= true;
end;

bag

|
BANK |oPo¥s Clist > D [ CASHIER

location namg|

<address > < string >

Figure 4.23: Multiple selectionsin a subquery serving as variable range
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In terms of the graph model, this means that a constituent of some subquery may only be selected
for output if it satisfies the condition that nothing ranges over the subquery, in other words, that there
are no targets of outgoing contains _mrredges.

In order to completethe graph-representationin Figure 4.17 we still haveto assign theatomic value
“General Banking” tothestring  representing the name of the CONSORTIUMVe therefore use the
production Assign _Value which alowsthe assignment of an actual Val uetotheValue -attribute
of agiven ATOMICVALUEnNode AV.

production Assign_Value ( AV : ATOMIC_VALUE ; Val : string ) =
L |1 =AV |
T =1 |
transfer
1'.Value := Val;
end;

A final category of productions allows the merging of various kinds of query elements, in order
to express equality conditions. The specification contains five such “merging” productions, namely
for merging entities, relationships, atomic, set- and multi-values. In summary, all query elements can
be merged, with the exception of subqgueries, since it would be rather difficult to visualize merged
subqueries.

Asall five merging productionsare quite similar, we only discussthe onefor merging entities. The
production Merge _Entities  accepts as input two entities, which must obey two conditions.

1. Thecondition -clause checks if their types are equal. This prevents the merging of e.g., an
ATMwithaCASHIER which would obviously be an undesirable merge. Note however that this
condition also prevents the merging of e.g., an ATMwith an ENTRY STATIONeven though
these types are “compatible”. The reason why we do not have to allow the merging of entities
with compatibletypesisthat all productionsthat allow the addition of an entity tothegraph (i.e.,
Add_ER, Add_to _Set, Add _to _MValue, Add _Indexed _to _MValue and Add_Role )
already allow the addition of entities of a subtype of the “expected” type, soif two entities have
to be merged at some point, they can aways be created with equal types.

2. Theleft-hand side of the production checksif no scoping rulesareviolated. More precisely, two
entities E1 and E2 may only be merged (that is, compared) if either
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production Merge_Entities ( E1, E2 : ENTITY ) =

1 =E1 2 =E2

! |
|

|
! |
|

|
‘ |
|
‘ |
| cons_is_n cons_is n :
|

|
‘ |
! |
|

|
‘ |
! |
|

|

lr Within_Scope_of lr
‘3 : CONSTITUEN ‘4 : CONSTITUEN
| |

condition E1. type = E2. type;

embedding redirect <-role2e- from2 to1l’;
redirect <-mm_is_poc- from'2 to1
redirect <-cons_is_n- from2 to1’;
redirect <-attribute2er- from ‘2 to 17
redirect <-component2e- from ‘2 to1’;
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e there exists a (sub)query of which both are constituents; or

e thereexist (sub)queries S1 and S2 such that E1 isaconstituent of S1 and E2 isaconstituent
of S2, and such that S1 isadirect or indirect subquery of S2. This situation isillustrated

in Figure 4.24.
cons_is n - is_defined_by
b
is_defined_by
sgb_cons
cons_is n
cons_is n is_defined_by
B

Figure 4.24: “Comparable’ entities

Both possibilitiesare checked together, by looking for CONSTITUENTnhodeslinked to theinput
entities, such that aWithin _Scope _of -path exists between them.

path Within_Scope_of : CONSTITUENT -> CONSTITUENT =
<-is_defined_by- & (<-cons_is_n- & <-is_defined_by-) * & -is_defined_by->
end;

By comparing the body of the Within _Scope _of -path to thegraph of Figure4.24, it may eas-
ily be verified that this path indeed leads from a constituent of some (sub)query to a constituent
of asuperquery of that query.

The effect of the production Merge _Entities Is that the second input entity is removed (as
shown in the right-hand side) and that all edges involving the removed entity, are redirected to the
remaining entity. It may be verified in the graph scheme of the specification that the edge types listed
intheredirect  -clauseof thisproduction areindeed thetypesof al edgesthat could possibly involve
anode of classENTITY.

The difference between the production Merge _Entities  and the productionsfor merging rela-
tionships, atomic, set- and multi-valueslies mainly in the set of edge-typesintheredirect  -clause.
The latter productions redirect, in the case of

relationships: incoming edges of typesrole2r , attribute2er and cons _is _n
atomic values: incoming edges of typescont , mmis _poc, attribute2v and cons _is _n

set values: incoming edges of types component2c , attribute2v and cons _is _n and outgo-
ing edges of type cont

bag values: incoming edges of typescomponent2c , attribute2v and cons _is _n and outgo-
ing edges of type contains _mm
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In addition, the condition  -clause of the production for merging multi-values uses the expression
not (‘l.type = sqgb) to prevent itsapplication to (sub)querybags, as motivated earlier on.

Thisconcludesthediscussion of those parts of the productions concerning the syntax of GOQL/EER
queries. In the following section, most productions discussed above, as well as the graph scheme are
extended (with among others additional attributes and attribute transfers) to incorporate also the se-
mantics of GOQL/EER (that is, itstransation to SQL/EER).

4.2.3 The Semantics of GOQL/EER

We now define the semantics of GOQL/EER queries in terms of the (formally defined) semantics
of SQL/EER [HE92]. This mainly involves extending the PROGRES specification presented so far,
with additional attribute declarations and corresponding attribute derivation rules, which trans ate the
graphical query into an SQL/EER query. This SQL/EER query isthen said to define the semantics of
the GOQL/EER query.

Asremarked in Section 2.3, inwhichwerecalled SQL/EER, the basi ¢ building blocks of SQL/EER
queries are (variable) declarations, formulas and terms. In Figure 4.13, it was already shown infor-
mally how fragments of graphical and textual queries may be seen to correspond, for instance:

e anode labeled with the entity type BANKcorresponds both to the declaration of avariable (say
ba) of thistype, as well asto any occurrence of such avariable, as (part of) aterm

e anaddress -nodelinked to this BANKentity by means of alocation  -edge, corresponds to
the term ba.location

e if theaddress -nodeisalso selected for output, then the entire graph correspondsto the query
“select ba.location from ba in bank ”

e another address -nodelinked to an oval surrounding thisgraph, correspondsto avariable, say
ad, that ranges over the result of this (sub)query

e the fact that this same address -nodeis also linked to another BANKnode (corresponding to
the variable b) by means of alocation  -edge, corresponds to the formulab.location =
ad.

In summary, certain nodesaswell as certain subgraphs of the graphical query correspond to terms. For
certain nodes, thisterm issimply avariable, in which case the node also correspondsto thisvariable’'s
declaration. Subgraphs may correspond to complete select-from-wher e-statements. In addition, cer-
tain “configurations’ correspond to formulas. In the remainder of this section, we discuss how this
correspondence is formalized in the PROGRES specification for GOQL/EER.

First of al, let us consider the part of the above introduced PROGRES graph scheme which isto
be extended with (parts of) declarations to capture the semantics of GOQL/EER.

In the specification of node class CONSTITUENTattributes of typetext aredeclared for storing
Formula s, Declaration  sand Termsthat correspond to the (unique) QUERYELEMnt linked to
the CONSTITUENT{by means of a cons _is _n-edge). The reason for storing this information in
the CONSTITUENTather than in the QUERYELEMnt itself, isthat thisinformation really depends
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section FixedGraphScheme

node class CONSTITUENT
intrinsic

Formula : text := Text ( "true");

Declaration : text := EmptyText;

Term : text := EmptyText;

Output : boolean := false;

end;

node class DERIVED _SQL isa QUERY_ELEM
derived SFW_Term : text = EmptyText;

end;
node class SQB CONS is a CONSTITUENT, DERIVED_SQL

redef derived SFW_Term = self.(-cons_is_n->: SQB [1:1]).SFW_Term;
end;

node class SQB is a BAG_VALUE, DERIVED_SQL
redef derived
Elem_Type =
((  self.=OutCons=>:CONSTITUENT][1:1]).-cons_is_n->:QUERY_ELEM[1:1]). type;
SFW_Term =
Concat(
Concat(
Concat (
Text ("( select"),
concom ( concom ( EmptyText, all  self.=OutCons=>.Term ),
concom ( EmptyText, all  self.=0utSQB_Cons=>.SFW_Term)) ),
Concat(
Text (" from™"),
concom ( EmptyText, al
Concat(
Text (" where "),
conand ( Text ( "true"), al
&& ™ )"
end;
end;

self.-is_defined_by->.Declaration ) ) ),

self.-is_defined_by->.Formula)))

75
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on the “context” in which the QUERYELEMt is seen, that is, the unique (sub)query to which the
CONSTITUENTslinked (by means of anis _defined _by-edge). For instance, an ENTITY -node
linked to both a query and one of its subqueries, may have one variable as Term in the context of the
query, and another variable in the context of the subquery.

Thereason for usingtheimported datatypetext (implementedin MODULA?2) isthat the built-in
PROGRES datatype string  only supports strings of very limited length.

from LongStrings import

types
text;
functions
EmptyText :->text,
Text ( string) -> text,
&& : (text, string) -> text,
== : (text, string) -> boolean,
Concat . (text, text) -> text;
end;

The following operations concerntext s:
EmptyText : returns an empty text

Text . convertsastring  to atext

&& . concatenatesatext and astring  into atext
== : comparesatext with astring

Concat . concatenatestwo text sinto atext

The default Formula is “true’, while the default Terms and Declaration s are the empty
text. All three attributes are declared as intrinsic attributes since they have to be computed in
thetransfer  -clause of various productions, among others because they may depend on “externally
provided” information, such as variable names.

Terms corresponding to subqueries, however, may be derived by means of a derivation rule.
This explains the name of the class DERIVED.SQL, whose sole purpose is the declaration of the at-
tribute SFWTerm, which stands for Select-From-Where_Term, since terms corresponding to sub-
queries are always select-from-wher e-statements.

Thenode class DERIVED SQLhastwo subclasses SQBand SQBCON $Seach of which hasitsown
derivation rule for the SFWTerm-attribute.

The value of the SFWTerm-attribute of a node of class SQBCONSwhich is used to link a sub-
query to its superquery) simply equals the value of the SFWTerm-attribute of the (unique) node of
class SQBthat may be reached by following the outgoing cons _is _n-edge.

Probably the single most important expression in the entire specification of GOQL/EER (asfar as
semantics is concerned) is the derivation rule for the attribute SFWTerm as given in the declaration
of the node class SQB By means of this rule, information gathered from all over the graph is com-
bined into an SQL/EER query. Basicaly, the “cascade’ of applications of the Concat -function in
thisderivationruleresultsinaselect -from -where -statement (in brackets, sinceit isalso used for
subqueries), the three parts of which are computed as follows:
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e Theselect -clause consistsof acomma-separated list of terms selected for output. Comma-
separated listsare obtained using the function concom. Thisfunctiontakestwotext sasargu-
ments. If one of the arguments is empty, then the other argument isreturned, otherwise atext
is returned which consists of both arguments, separated by a comma.

function concom : ( S1:text; S2: text) -> text =

S1==""1:82

S2==""::81

Concat (S1&&",",S2)]
end;

function conand : ( S1:text; S2:text) ->text =
S1 =="true" :: S2

S2 =="true" :: S1

Concat (S1&&"and", S2)]

end;

The select -clause consists first of al of the Term-attributes of those CONSTITUENT that
are not of type sqb _cons , and that have been selected for output. These CONSTITUENSare
retrieved using the path expression OutCons , used earlier on for determining the value of the
Elem _Type attribute. The reason why we do not have to use an extended version of this path,
excluding nodesof typesqb _cons isthat the Term-attribute of thelater kind of nodesisempty
anyway. The set of al these attributes is passed to the function concom as awhole, using the
all -operator. Thisoperator specifically alowsthe second argument of abinary, associativeand
commutative® function to be replaced with a set of values. The result of applying afunction f
to avalue v and a set of values v; through v,, isthen defined as

fo,{vr,...,v}) = f(o.. f(f(v,01),02),...,0,)

Theselect -clausefurthermoreconsistsof the SFWTerm-attributes of those SQBCONSnhodes
that have been selected for output. These nodes are retrieved using the path OutSQB_Cons.

path OutSQB_Cons : SQB -> SQB_CONS =
1=>"2 in_

7777777777777777777777777777777777777777777777777777

. |1 :SQB » ‘2 :SQB_CONS |

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

condition ‘2.0utput;
end;

6Note that when it comes to computing the select -clause of an SQL/EER query, concom is indeed commutative,
sincein GOQL/EER thereisno way of indicating the order in which things should be selected, so it doesn’t matter in what
order the corresponding terms appear in the select -clause.
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e Thefrom -clauseconsistsof acomma-separated list of all Declaration  -attributesof CONS-
TITUENT-nodesreachablefrom the considered SQBnode by means of outgoingis _defined-
_by-edges.

e Thewhere -clause consists of an “and”-separated list of al Formula -attributes of CONSTI-
TUENTFnodes reachable from the considered SQBnode by means of outgoing is _defined-
_by-edges. The function conand is used to generate this“and”-separated list.

We now discusshow theintrinsic attributesof CONSTITUENTnodes, that is, Term, Declarat-
ion and Formula , are computed in the productions of the specification. If we look at the affected
attributes, the fifteen productions of the specification can be divided into four categories:

1. Add_first _SQBand Add_SQBdo not affect these attributes, since they smply do not involve
CONSTITUENT (on the exception of nodes of class SQBCONSwhose intrinsic attributes are
not used).

2. Add_Role , Add_Attribute  , Add_Component and Add_Indexed _to _Mvalue all adda
single constituent to a given (sub)query. The Term-attribute of this newly created constituent
Is computed using the Term-attribute of other given nodes, henceits Declaration  -attribute
is not affected.

3. Add_ER Add_to _Set and Add_to _Mvalue asoaddasingleconstituenttoagiven (sub)query,
which however corresponds to a new variable in SQL/EER. Hence this variable is assigned to
the Term-attribute of this newly created constituent, while the Declaration  -attributeis set
accordingly.

4. Assign _Value aswell asthefive productionsfor merging QUERYELEMents express formu-
las. Hence each of them affects only the Formula -attribute of some constituent.

We now discuss the productions from the last three categories in detail. For a complete overview of
all productions, we refer to Appendix C.

Adding an entity or relationship (i.e., anode of classENT_REL) of acertain type (inthe EER sense
of theword) to the graphical representation of a GOQL/EER query by meansof the production Add_ER
corresponds to the declaration of avariable of thistype in SQL/EER. Hence the production Add_ER
part of which was presented in Section 4.2.2, needs an additional input parameter VarName for the
name of thisvariable. Thisvariableisassigned to the Term-attribute of the CONSTITUEN Dy means
of which the new entity or relationship islinked to the given subquery. The Declaration  -attribute
of the CONSTITUENT's set to the concatenation of the variable name, the keyword “in” and the type
of the new entity or relationship (converted to a string using the function string ). As an exam-
ple, the node with identifier 225 in Figure 4.17 has “co” as Term-attribute and “ co in consortium” as
Declaration  -attribute.

In order to avoid name clashes, we require that no variable name is used in two different declara-
tions. The condition  -clause enforces this by comparing VarName to the Term-attributes of all
CONSTITUENSfound in the graph. To obtain the set of all these CONSTITUENT, we have to start
from the outermost query. This query is determined in the left-hand side of the production, by look-
ing for the SQBnode that satisfies the restriction OuterQuery . Thisrestriction simply checksif the
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production Add_ER

777777

,,,,,,

******

2’ : constituent —»| 3' :ERtype

(S:SQB; VarName : string ; ERtype : type in ENT_REL ;
out E: ENT_REL; out C : CONSTITUENT) =
|1 =S 4 :SQB
i OuterQuery
| I =1 4 =‘4
| is_defined_by
i cons_is_n

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

folding { ‘1, ‘4 };
condition not (Text(VarName) in ‘4.=recCons=>.Term);

transfer 2’.Term := Text ( VarName );
2'.Declaration := Text(VarName) && " in " &&
return E := 37,
C: =2,
end;

,,,,,,

string(ERtype);
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given SQBnode has no incoming cons _is _n-edges. In the folding -clause of the production, it
isindicated that this SQBnode may be identical to the input parameter S. To this SQBnode, we then
apply the path expression recCons , which rec ursively looksfor al Constituentsin the graph.

restriction OuterQuery : SQB =
not  with <-cons_is_n-
end;

path recCons : SQB -> CONSTITUENT =

-is_defined_by-> & (-cons_is_n-> & instance of SQB & -is_defined_by->) *
end;

The productions Add_to _Set (not shown here) and Add_to _Mvalue differ from Add_ERonly
in the computation of the Declaration  -attribute of the new CONSTITUENTAdd_to _Set uses
as range the Term-attribute of the CONSTITUENT{whose choice was explained in Section 4.2.2)
linked to the given. Depending on whether or not the multi-value given asinput to Add_to _Mvalue
isa(sub)querybag or not, the latter production uses the SFWTerm-attribute or the Term-attribute for
this purpose.

Adding an attributeto an entity or relationship with the production Add_Attribute corresponds
to stating atermin SQL/EER, namely the concatenation of the Term of the given entity or relationship,
adot and the string representation of the given attribute type. As an example, the node with identifier
313 in Figure 4.17 has “co.consortium_name” as Term-attribute.”

Add_Component and Add_Role arecompletely analogousto Add_Attribute (and hence not
shown here). Theproduction Add_Indexed _to Mvalue concatenatesthe Term of the given multi-
value with the given index enclosed in square braces. As an example, the node with identifier 273 in
Figure 4.17 has * co.consortium_consists_of[2]” as Term-attribute.

Assigning aconcrete valueto an ATOMICVALUEwith Assign _Value correspondsto express-
ing the condition (or formula) that the term corresponding to this ATOMICVALUEshould equal the
concretevalue. Hencetheproduction Assign _Value appendsthisformulatotheFormula -attribute
of some constituent linked to the ATOMICVALUE using the function conand . Asan example, the
nodewithidentifier 313 in Figure4.17 has*“co.consortium_name = * General Banking' ” asFormula -
attribute.

It does not matter which constituent ischosen by thisproduction, sinceif there existsmorethan one
constituent linked to an ATOMICVALUE then thismust be the result of (an) application(s) of the pro-
duction Merge _Atomic _Values . Applying this production to two ATOMICVALUES corresponds
to expressing the condition (or formul a) that theterms corresponding to these ATOMICVALUE should
be equal. Hence the production Merge _Atomic _Values appends this formula to the Formula -
attribute of some constituent linked to the remaining ATOMICVALUE using the function conand .2

Theother four productionsfor merging query elementsaretotally analogousto Merge _Atomic _-
Values .

"The need for prepending the entity type nameconsortium  to the attribute name nameisexplainedin Section 4.2.1.
8The choice of the latter constituent was discussed in Section 4.2.2.
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production Add_to_Mvalue

(Mv : MVALUE ; s : SQB ; POCtype : type in PART _OF_COMPLEX ;
VarName : string ; out c: PART_OF_COMPLEX; out C : CONSTITUENT)
l cons_is_n 'IL
; ‘1 =Mv < ‘3 :CONSTITUEN ‘7 :SQB
| |
i InHigherScopeThan %
3 OuterQuery
; 2 =s
cons_is_n
1 =1 3 =3 7 =7

i contains_mm

i 6’ : mmember 2 =2
i mm_is_poc i i is_defined_by
| cons_is_n
| 4’ : POCtype < 5’ : constituent
folding { ‘2, ‘7 };
condition POCtype in ‘1.Elem_Type;
not (Text ( VarName) in ‘7.=recCons=>.Term);

transfer 5’.Term := Text ( VarName );
5'.Declaration := Concat ( Text ( VarName & "in ")

[‘3. type = sgb_cons :: (‘3 : SQB_CONS).SFW_Term
[ '3.Term] );
return c := 4’;
C:=5,

end;

- ==

P

-— -

P
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production Add_Attribute

(Er: ENT_REL ; Att : type in ATTRIBUTE ; Val : type in VALUE ;
outv : VALUE ; out C : CONSTITUENT )
[, |
1 cons_is_n Jr |
L1 =FEr et ‘3 : CONSTITUEN ;
| | |
| |
| is_defined_by |
‘ InLowerScopeThan l
: S |
| 2 :sgb 1
|
| |
| |
[ |
S :
| cons_is n |
Y =1 3 =3 |
|
! |
|
} T attribute2er is_defined_by ? 1
|

‘ |
|
e At 2 =2 ‘
! |
! |
} # attribute2v is_defined_by # |
|
; cons_is n 1
| 4 val - 5" :constituent ;
| | |
! |
]

condition Er. type in Att.entrel;

Att.val = Val;
transfer 5’.Term := ‘3.Term && "." && string ((Att);
return v := 4’;
C:=5,

end;
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production Add _Indexed_to_Mvalue
(Mv : MVALUE ; POCtype : type in PART_OF_COMPLEX ; Ind : integer ;
out P : PART_OF_COMPLEX;  outC:CONSTITUENT) =

7777777777777777777777777777777777777777777777777777777777

cons_is_n

3 CONSTITUENJT
|

is_defined_by |

>~
‘2 :sgb
| cons_is_n |
! 1 =1 < 3 =3 1
1 A 1
! contains_mm is_defined_by !
i 6" :mmember 2 =2 3
. mm_is_poc i is_defined_by |
1 , h 4 |
w cons_is_n w
l 4 :POCtype < 5 :constituent l
l |
condition POCtype in ‘1.Elem_Type;
transfer 6’.Index := Ind;
5.Term :='3.Term && "[" && string (Ind ) && "";
return P := 47,

C =5,
end;
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production Assign_Value( AV : ATOMIC_VALUE ; Val : string) =
| cons_is_n JF 3
| 1 =AV et 2 :CONSTITUENT
1 L
| cons_is_n 3
ol o=1 - 2 =72 ‘
transfer

2'.Formula := conand
(*2.Formula, Concat ( ‘2.Term && " =", Text (Val) ) );
1'.Value := Val;

end;

4.2.4 Executing the Specification

Asmentioned in theintroduction to this chapter, the choice of an executable graph grammar specifica-
tion language, allows the execution of the specification using the PROGRES systemsintegrated inter-
preter. We now elaborate on how the specification presented so far is extended with an EER scheme
dependent part in order to allow this execution.

This extension consists of two parts. First, the graph scheme of the specification is extended with
additional node classes and types, modeling the various elements of the given EER scheme. Fig-
ure 4.25 shows part of the PROGRES graph scheme corresponding to the EER scheme depicted in
Figure 2.1.

The extranode classes are introduced to cope with inheritance rel ationshi ps between entity types,
present in the EER scheme. On one hand it is not possibleto specify inheritance rel ationships between
node types, so we haveto use aclassfor each entity typein the EER scheme. More precisdly, if entity
type A is an input type of some type construction, while entity type B is an output type of this type
construction, then the graph scheme must contain adeclarationnode class B is a A. Onthe
other hand, actual nodes have to belong to atype, so for each class we have to declare atype of each
of these classes. The other node types are obtained from the EER scheme as follows:

e For each n-ary relationship type, a node type of class RELSHIP together with n node types
of class ROLEare added. E.g., for the relationship type entered _on, we add the node type
entered _on (of class RELSHIP) as well as node types eo_es and eo_t (of class ROLE.
Therel metaattribute of the latter two node typesis set to entered _on. Note that the ent
meta attribute of eo_es is set to the node class ENTRYSTATION rather than to the node type
entry _station . Sincethe name of anode class standsfor the set of al itstypes, this means
that nodes of thetypesatm and cashier _station may asoplay theeo_es-roleinrelation-
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section VariableGraphScheme
section NodeClasses

node class ENTRY_STATION isa ENTITY  end;
node class ATM isa ENTRY_STATION end;
node class CASHIER_STATION isa ENTRY_STATION end;
node class CONSORTIUM isa ENTITY  end;
node class BANK isa ENTITY end;
node class ACCOUNT isa ENTITY  end;
node class GENERIC_TRANSACTION isa ENTITY  end;
node class CASHIER_TRANSACTION is a GENERIC_TRANSACTION end;
node class REMOTE_TRANSACTION is a GENERIC_TRANSACTION end;
node class CASHIER isa ENTITY  end;
node class CASH CARD isa ENTITY end;
node class CUSTOMER isa ENTITY  end;

end;

section NodeTypes
node type entry_station : ENTRY_STATION end;
node type atm : ATM end;
node type cashier_station : CASHIER_STATION end;

node type set_of cashier_station : SET_VALUE
redef derived Elem_Type = CASHIER_STATION;
end;
node type bank : BANK end;
node type list_of bank: LIST_VALUE
redef derived Elem_Type = BANK;
end;
node type account : ACCOUNT end;
node type account_s: SET_VALUE
redef intrinsic Singleton ;= true;
redef derived Elem_Type = ACCOUNT;

end;
node type entered_on : RELSHIP end;

node type eo_es : ROLE
redef meta rel := entered_on ;
ent := ENTRY_STATION ;
end;
node type eo_t: ROLE
redef meta rel ;= entered_on ;
ent := TRANSACTION ;

end;
node type money : ATOMIC_VALUE end;
node type address : ATOMIC_VALUE end;

node type list_of address : LIST_VALUE
redef derived Elem_Type = address;

end;

node type entry_station_location : ATTRIBUTE

redef meta entrel := ENTRY_STATION ;

val := address ;

end;

node type consortium_consists_of : COMPONENT
redef meta cent := CONSORTIUM ;

comp :=list_of bank ;

end;

Figure 4.25. EER scheme dependent part of the PROGRES graph scheme for GOQL/EER
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ships of type entered _on (cf. the condition  -clause of production Add_Role ).

e For each set, list, bag or singleton of entities occurring as a component, a corresponding node
typeisadded, and itsElem _Type metaattributeisinitialized. In the case of asingleton, anode
type of class SET_VALUEIs added, and the Singleton  -attributeis set to true. For instance,
since the owns-component of a BANKisa set of CASHIERSTATIONSs, we add the node type
set _of _cashier _station ,andinitiaizeitsElem _Type -attributeto CASHIERSTATION.

e For each set, list or bag of atomic values occurring as attribute domain, a corresponding node
typeisadded. E.g., sincetheresidence of acustomer isalistof address es, weaddthe
nodetypelist _of _address of classLIST 'VALUE andinitiaizeits Elem _Type -attribute
toaddress .

e For each atomic value type occurring as attribute domain or as element type of acomplex value,
acorresponding node type of classATOMICVALUEisadded. E.g., sincethelocation  of an
entry _station isanaddress ,we add anodetypeaddress .

e For each attribute, a corresponding node type of class ATTRIBUTEIs added. E.g., we add the
nodetypeentry _station _location ,andinitidlizeitsentrel metaattributetoENTRY-
_STATIONand itsval metaattributeto address .

e For each component, a corresponding node type of class COMPONENTS added. E.g., we add
the node type consortium _consists _of , and initializeits cent meta attribute to CON-
SORTIUMand itscomp metaattributeto list _of _bank .

Looking back at Figure 4.16, this EER dependent part of the graph scheme can be used to call
productions, generating the graph representation of GOQL/EER queries (including their trandation to
SQL/EER).

transaction MAIN =
use s : SQB;
el : ENT_REL;
e2 : PART_OF _COMPLEX;
cl, c2, c3, ¢4, c5, c6 : CONSTITUENT;
avl av2 : VALUE;
cvl: COMPLEX_VALUE

do
Add_first_SQB ( outs)
& Add_ER (s, "co", consortium, outel, outcl)
& Add_Component
((el: ENTITY), consortium_consists_of, list_of bank, out cvl, outc?)

& Add_Indexed_to_Mvalue ((cv1 : MVALUE) . bank, 2,
& Add_Attribute ( €1, consortium_name, strmg
& Assign_Value ( (avl : ATOMIC_ VALUE) "General Banking" )
& Add_Attribute ( (e2 : ENTITY), bank_name, _string, out av2, out c6)
& Select (¢6)
end
end;

oute2, outc3)
out avi, outc4)

As an example, the transaction MAIN creates the graph of Figure 4.17. As mentioned earlier, the
creation of the graph representation of a GOQL/EER query always starts with a single application
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of Add first _SQB Next, aconsortium isadded, with (SQL/EER) variable name “co”. To this
consortium ,aconsortium _consists _of component isadded, which isof typelist _of _-
bank . Inthe application of thisproduction, thevariableel (referring to theconsortium ) hasto be
cast tothenodeclassENTITY, sincethisiswhat Add_Component expects, whereas Add_ERreturns
nodes of class ENT_REL Next, abank isadded in position 2 to thelist of banks. The consortium
then gets a consortium _name attribute of type _string , which is assigned the value “General
Banking”. Likewise, the bank gets abank _-name attribute of type _string , which is selected for
output.

At this point we come back to a statement made at the very beginning of Section 4.2, namely that a
graph is part of the language of graph representations of GOQL/EER queries, if it may be obtained by
applying any correct sequence of productionsto aninitial empty graph. A careful examination of the
productions of the specification reveals that indeed any sequence of production calls that is correctly
specified and successfully executable, resultsin the graph representation of some GOQL/EER query.

As an example, note that even the transaction which consists of merely an application of the pro-
duction Add_first _SQBcorresponds to the empty GOQL/EER query, whose semantics is defined
by the “trivial” SQL/EER query “select from wheretrue”.

A “correctly specified” production is production which is called with sufficient parameters of the
correct type, where variables used as input-parameters must be initialized by some previous produc-
tion application, and cast to the correct class where necessary. A “successfully executable” produc-
tionisaproduction which iscalled in such away that its pre-conditions (as expressed in its header, its
condition  -clause and itsleft-hand side) are not violated.

Conseguently, the notion of correctness depends solely on the semantics of PROGRES, and not on
the semantics of GOQL/EER.

4.3 A Hybrid Query Language: HQL/EER

In thelanguage GOQL/EER asintroduced in Section 4.1, we consciously restricted the set of language
constructs (such as declarations, atomic formulas,...) which may be represented graphically to the
set of symbols used for graphically representing EER schemes. The fact that consequently, concepts
such as negation and aggregate functions cannot be expressed in a GOQL/EER query, impliesthat the
expressive power of thislanguageisstrictly lessthan that of SQL/EER. One possibleway togoin order
to give GOQL/EER the full expressive power of SQL/EER would be to invent graphical counterparts
for all language constructsof SQL/EER. Asargued in Chapter 1, however, graphical expressionsinthe
resulting language would most probably be equally hard to understand and use as their counterparts
in the textual language.

The other way to go is to merge the textual and the graphical language into a hybrid language,
which allows the use of both textual and graphical elements in the formulation of one and the same
query. Or, in other words, given the fact that GOQL/EER offers graphical counterparts for only those
language elements of SQL/EER which (in our view) are worth representing graphically, such ahybrid
language allows the graphical formulation of those parts of a query that are more easily formulated
graphically than textually.

Concretely, inthis section we discussthe Hybrid Query Languagefor the Extended Entity Relation-
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ship model (in brief, HQL/EER). Syntactically, aquery in HQL/EER consistsfirst of al of a(possibly
empty) GOQL/EER query, possibly involving subqueries. To this query and each of its subqueries,
(possibly incomplete) SQL/EER queries may be associated. In a (partial) SQL/EER query associated
to agraphical (sub)query, whenever aterm of a certain typeis expected, an identifier of anode of that
typeinthe graphical query (or its super-queries) may be used. Theseidentifiers are the mechanism by
means of which the textual parts of a hybrid query are linked to the graphical part.

The semantics of a hybrid query is obtained by combining (in a sense to be made precise) the
SQL/EER-query corresponding to the graphical part of the hybrid query (obtained by means of the
specification discussed in Section 4.2) with the textual partsinto afull SQL/EER-query.

4.3.1 Examplesof Hybrid Queries

We clarify theideas presented above by providing hybrid “versions’ for most of the SQL/EER queries
used in the recapitulation of SQL/EER in Section 2.3. First, reconsider Example 2.9, retrieving the
serial number sof al CASH CAR&withthetrivial password “password” and a(credit) limit
less than or equal to 100.000. Since the latter condition involves an inequality, this query cannot
be represented in GOQL/EER. However, Figure 4.26 shows a hybrid representation of this query in
HQL/EER.

serial_number

imit
CmoneyD!  where | 100.000

password

password

Figure 4.26: Serial numbers of cash cards with trivial password and limit under 100.000 (HQL/EER
version)

The graphical part of this hybrid query aready indicates that we want to retrieve the serial
number of all CASH CAR$&withthetrivial password “password”. Tothe money-node, represent-
ingthe CASH CARS&limit , theidentifier | has been associated. Thisidentifier isused in thetextual
part of the hybrid query to express the additional condition that only those CASH CAR®should be
considered whose limit  islessthan or equal to 100.000.

Note that the graphical part of this hybrid query, including the money-node, is indeed a syntacti-
cally correct GOQL/EER query. Looking back at the formal specification of GOQL/EER presented in
Section 4.2, it may easily be seen that nothing prevents the addition of “obsolete” nodes such as the
money-node of the example, using in this case the production Add_Attribute . If such anodeis
neither selected for output, nor merged with some other node to express an equality condition, then it
simply will not influence the semantics of the (GOQL/EER) query.

Figure 4.27 shows an HQL/EER version of the query of Example 2.13, which enumerates the
names of bank s which are part of the CONSORTIUM nanae‘Banks United”. The identifier cco,
associated to theconsists  _of attribute of the CONSORTIUMSs used both in the select-clause and
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inthefrom -clause of thetextual part of the query. Note that the BANKnode serves no actual purpose,
but has been added merely for clarity.

sel ect i, cco[il.name
from i inindcco)

CSig_eme FONSORTIMNS oo >+

Banks United cco

Figure 4.27: Enumeration of the names of banks which are part of the consortium named “Banks
United” (HQL/EER version)

In the foregoing examples, we put as many elements of the queries in the graphical part as pos-
sible. In many cases, however, there exists a wide range of possibilitiesto express one and the same
query inHQL/EER, sinceany element of the query that can be expressed graphically, can also berepre-
sented textually. Weillustratethisfact by providing four hybrid versions of thetextual query of Exam-
ple2.10. Thisquery retrievesthenamesof al CUSTOMERvho shareoneof their residence  swith
a CUSTOMERdlled “John ”. The SQL/EER query of Example 2.10 is itself already an HQL/EER
query, since any textual query isitself ahybrid query with an empty graphical part.

Asshown in Figure 4.28, this same query may easily be represented in GOQL/EER, and hencein
HQL/EER, since any graphical query isitself a hybrid query with an empty textual part!

. O 0 _
CUSTOMEES'dence « @ reS|dence CUSTOMER

name name

tring > Csting_>

John

Figure 4.28: Names of customers sharing an address with John (HQL/EER version |, or GOQL/EER
version)

Figure4.29 showsa“real” hybrid version of still the same query. In comparisonto the GOQL/EER
version depicted in Figure 4.28, the sel ection has now been moved to the textual part, and is connected
to the graphical part by means of the identifier c1 corresponding to one of the CUSTOMER

Finally, Figure 4.30 shows another hybrid version of the same query. In thisversion, also the con-
dition that the other CUSTOMEBhould be named John has been moved to the textual part, which
is now also connected to the graphical part by means of the identifier c2 corresponding to this other
CUSTOMER

We now turn our attention towards queriesinvolving subqueries. Consider the following variation
on the SQL/EER query depicted in Figure 4.11. Suppose we wish to retrieve for each address of a
BANKrecorded in the database, the number of BANKslocated at thisaddress (rather than the names
of al these BANK). Figure 4.31 shows an SQL/EER version of this query.

Comparing Figures4.12 (depicting the GOQL/EER version of theoriginal query) and 4.32 (depict-
ing the HQL/EER version of the modified query), we see that they only differ in the subquery depicted



90 CHAPTER 4. A QUERY LANGUAGE DEFINED USING GRAPH-REWRITING

sel ect cl.name

[CUSTOMER= Tt > maliess S _Tsl_ 'S _[CUSTOVER
cl

name

string
John

Figure 4.29: Names of customers sharing an address with John (HQL/EER version I1)

sel ect cl.name
where c2.name = "John"

[CUSTOMEFE=Cence T > aiiess > To_yesidence [CUSTOWE
Cc C

Figure 4.30: Names of customers sharing an address with John (HQL/EER version 111)

select ad, cnt (select b
from bin BANK
whereb.location=ad)
from adin ( select balocation
from bain BANK)

Figure 4.31: For each address of a bank recorded in the database, the number of banks located at this
address (SQL/EER version)
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inthetop right corner (which in both cases corresponds to the subquery in the select-clause of the cor-
responding SQL/EER query). In Figure 4.32, this subquery simply computes the bag of all BANKsin
the database located at the address ad. Selection of the cardinality of this bag is donein the textual
part of the hybrid query.

sel ect cnt (x)

ad

location

BANK _Jocation

Figure 4.32: For each address of a bank recorded in the database, the number of banks located at this
address (HQL/EER version)

In the previous exampl e, atextual part was only associated to the outermost query. Asan example
of atextual part associated to a subquery, we present a hybrid version of the SQL/EER query from
Example 2.12. This query returns the names of those CUSTOMESholding an ACCOUNTor which
the following holds: if the balance of the ACCOUNTS raised with afive percent interest, then the
new balance becomes higher than the average of al balance sof all ACCOUNSwith a positive
balance. The elements of this query that cannot be represented graphically are theinequaity >money,
the aggregate function avg and the data operation compute interest

ACCOUNTII=2 @ ho_c¢ reSTOMER
balance name

Cimoney > T

bl

bag

ACCOUNT]

balance

< money >

where b2 2y4ne,0

wher e compute_interest(b1, 5) Zmondy) avy

Figure 4.33: A hybrid query with text associated to a subquery

Figure 4.33 shows a hybrid version of this query. The “hybrid subquery” depicted on the right
corresponds precisely to the subquery in the SQL/EER version: the declaration of the ACCOUNand
theselectionof itsbalance areformulated graphically, whilethe conditionthat thebalance should
be positiveis formulated textually. The textual and graphical part are linked using the identifier b2.
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In the graphical part on the left, a CUSTOMEBhd an ACCOUN&re declared. The condition that
the CUSTOMERwust hold the ACCOUNTS expressed, and the CUSTOMEShame is selected. Addi-
tionally, the ACCOUNdbalance isaso depicted graphically, and the identifier bl is associated to
it. Thisidentifier, aswell asthe identifier x associated to the subguery are then used to expressthere-
maining condition that if thebalance of the ACCOUNTSraised with afive percent interest, then the
new balance becomes higher than the average of al balance sof all ACCOUNSwith a positive
balance.

Note that in the graphical representation of this query, the subquery is “disconnected” from the
graphical part of the outer query, a peculiarity which perfectly fits the PROGRES specification pre-
sented previoudly, just like the addition of “obsolete” nodes.

4.3.2 On the Semantics of Hybrid Queries

Remember that an HQL/EER query consistsof aGOQL/EER query, with aSQL/EER query associated
to someof itssubqueries. In an SQL/EER query associated to agraphical (sub)query, whenever aterm
of a certain type is expected, an identifier of a node of that type in the graphical query (or its super-
queries) may be used.

The PROGRES specification presented in Section 4.2 associates SQL/EER terms, declarationsand
formulas to nodes in the formal graph representation of the GOQL/EER query. The combination of
this information with the textual parts of the hybrid query into a complete SQL/EER-query, defines
the semantics of the hybrid query.

Weillustrate how all these bitsand pieces of SQL/EER queries can be combined into one complete
textual query, using the HQL/EER query of Figure 4.33. Figure 4.34 shows the graph representation
of the graphical part of this query, while Table 4.2 shows the attributes of the relevant nodes of this
graph. Composing the SQL/EER query corresponding to this hybrid query starts with the subquery.
The textual part associated to this subquery is “where b2 >money 0”. The identifier b2 refers to the
money-nodein the graphical part of the subquery.

Intheformal graph representation, thismoney-nodeis represented by the node with identifier 339
(of typemoney). Theterm “ac.account_balance” corresponding to thisnodeisstored inthe consti-
tuent with identifier 355. In the general case, finding this term is not as straightforward as in this
example, since an element of a query (i.e., anode of class QUERYELEMN may be linked to several
sqb -nodes by means of constituent ~ -nodes. The following question then naturally arises: given
aquery element linked to several constituent s (by means of cons _is _n-edges), whose Term-
attribute should we use in replacement of an identifier referring to this query element?

In Section 4.2.2 (in the discussion of the input parameters of the production Add_Role ), it was
already noted that among all the (sub)queries of which aquery element isaconstituent, oneisa(direct
or indirect) superquery of al the others. If this were not the case, this would mean that the query
element is used in two incomparabl e scopes, which isaclear violation of traditional scoping rules.

By the above reasoning, the constituent to be used is the one connecting the query element
to the (sub)query which is a (direct or indirect) superquery of all the other subqueries of which the
query element isaconstituent . Indeed, the Term associated to this constituent is”known”
in all scopes in which the query element is used. In addition, it has the same semanticsin all these
scopes. Indeed, the only way in which a query element can become a constituent of more than one
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is_defined_is defined QHeFlned by_defined_fis_definecis_defined by
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299:constituent

cons 13 h cohs_is_h l )
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Figure 4.34: Graph representation of the graphical part of the hybrid query of Figure 4.33

| Id. [ Label | Att.Name | Attribute Value
131 | sgb SFW-Term | ( select ho.ho_c.customer_name
from ho in holds
wheretrue)
199 | constituent | Term ho.ho_a
275 | constituent | Term ho.ho_a.account_balance
187 | constituent | Declaration | hoin holds
Term ho
235 | constituent | Term ho.ho_c
299 | constituent | Term ho.ho_c.customer_name
Output TRUE
163 | sgb SFW-Term | ( select ac.account_balance
from ac in account
wheretrue)
319 | constituent | Declaration | ac in account
Term ac
355 | constituent | Term ac.account_balance
Output TRUE

Table 4.2: Attributes of some nodes of the graph in Figure 4.34




94 CHAPTER 4. A QUERY LANGUAGE DEFINED USING GRAPH-REWRITING

(sub)query, is by the application of the appropriate “merging” production. In the transfer  -clause
of these merging productions, the “semantics’ of the node resulting from this merging is defined as
the formula expressing the equality of the terms corresponding to the two merged nodes.

Returning to our example, the term “ac.account_balance” is substituted for the identifier b2 in the
textual part of the subquery, resulting in the condition “where ac.account_balance >money 0”. This
condition is added (using and) to the where-clause of the SQL/EER-query stored in the SFW-Term
attribute of the sqb -node corresponding to the subquery (that is, the node with identifier 163). This
resultsin the (sub)query

sdlect ac.account_baance
from acin ACCOUNT
wher e ac.account_balance >money 0

The same procedure is now applied to the outer query. The textual part of this query is the con-
dition “where compute.interest(bl, 5) >money avg(x)”. The identifier bl refers to the money-node
in the outer query. The term “ho.ho_a.account_balance” corresponding to this node is stored in the
constituent  -nodewith identifier 275. Theidentifier x refers to the subquery, henceit is replaced
with the SQL/EER query corresponding to this subquery, as computed above. All thisresultsin the
condition

where compute_interest(ho.ho_a.account_balance,5) >money
avg ( select ac.account_balance
from acin ACCOUNT)
wher e ac.account_balance >money 0)

Thiscondition is appended to the wher e-clause of the SQL/EER corresponding to the outer query,
which may be found in the SFW-Term attribute of the sqb -node with identifier 131. Thisresultsin
the SQL/EER query of Example 2.12.

4.3.3 Towardsa Formal Definition of HQL/EER

So far we haveillustrated by means of examples both the syntax (i.e., the representation as a formal
graph) and the semantics (i.e., the trandation to SQL/EER) of HQL/EER queries. To conclude this
section, we present these ideas on a somewhat higher level of abstraction.

Syntactically, a query in HQL/EER consists of a GOQL/EER query, together with an SQL/EER
query associated to this query and each of its subqueries. We assume without loss of generality that at
least the“trivial” SQL/EER query “select from wheretrue’ isassociated to any graphical (sub)query.
In an SQL/EER query associated to a graphical (sub)query, “identifiers’ of nodes in that graphical
query (or its super-queries) may be used wherever aterm is expected. The node referred to by the
identifier must have the correct type (which equalsits label, cf. the correspondence between the pic-
torial representation of a GOQL/EER query and its formal graph representation as discussed in Sec-
tion 4.2.1).

The semantics of an HQL/EER query is defined by trandating it to SQL/EER, using the following
algorithm:
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1. The formal graph representation G (including the node attributes) of the graphica part of the
hybrid query is determined, according to the PROGRES specification discussed in Section 4.2.

2. Theformal graph GG obtained as a result of the foregoing step includes a tree 7' of sqb -nodes
(cf. Figure 4.19), corresponding to the subqueries of the graphical query, with the root corre-
sponding to the query itself. Each node ¢ in G whichis of class QUERYELEMis linked to one
or more nodes of class SQBby means of a node of class CONSTITUENTand edges of type
Is _defined _by andcons _is _n). Among all the SQBnodesto which ¢ islinked, oneisan
ancestor (in 7T") of all the others. Let us denote with a(¢) the CONSTITUENTnode which links
¢ to the latter SQBnNode.

The SQL/EER query corresponding to the given hybrid query is computed by traversing 7" in
postorder (that is, a node of the tree is visited after its children), applying the following two
operations to each node n with associated SQL/EER query s(n):

(8) Eachidentifier i occurring in s(n), referring to some query element ¢ of n, isreplaced as
follows:

i. If gisof typesqb, theniisreplaced by the SFWTerm-attribute of ¢ (which may have
been “recomputed” by an earlier application of step 2b of this agorithm).

ii. If gisnotof typesqgb , then i isreplaced by the Term-attribute of theconstituent -
node a(q).

(b) Theselect-from-where-statement resulting from step 2ais“merged” withthe SFWTerm-
attribute of n by joining the select- respectively the from-clauses with a comma, and the
where-clauseswithanand. In subsequent iterationsof thisalgorithm, theresulting “identi-
fier-free” SQL/EER-query isused in replacement of the SFWTerm-attribute of 7.

Thisiteration eventualy resultsin an “identifier-free” replacement of the SFWTerm-attribute
of the root node of 7", which is considered to define the semantics of the original hybrid query.

We conclude this Chapter with the observation that since
e each HQL/EER query can (by definition) be trandated into an equivalent SQL/EER query, and
e each SQL/EER query is (by definition) itself an HQL/EER query

HQL/EER and SQL/EER have indeed precisely the same expressive power.
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Chapter 5

Database manipulation defined as
graph-rewriting

In Section 1.2, we informally described a graph rewrite rule as a pair of graphs caled its left- and
right-hand side. Basically, the |eft-hand side describes a configuration to be matched to some part of
thegraph towhichtheruleisto beapplied, whiletheright-hand side (or more precise, theway inwhich
the right-hand side differs from the left-hand side) describes the desired modification to be performed
on the chosen matching of the left-hand side.

If we now consider database manipul ations (as opposed to database queries, the topic of Chapter 4)
on avery general level, we see that a database manipulation generically consists of a query together
with the specification of some modification to be performed on the outcome of the query. When in
addition, welook upon a database instance as a network or graph of objects or dataitems, the question
arises quite naturally whether graph rewriting is a suitabl e database manipulation paradigm.

Inthischapter, we answer thisquestion positively by introducing the Graph-Oriented Object Data-
baselanguage GOOD/ER in which database mani pul ations may indeed be expressed asrewritingsof a
database graph. GOOD/ER is based on aslightly modified version of the original ER model, formally
defined in Section 5.1.! A formal definition of GOOD/ER is presented in Section 5.2. In Section 5.3,
we characterize GOOD/ER'’s expressive power (i.e., the set of transformations expressiblein the lan-
guage) in terms of a completeness criterion.

Section 5.2 of thischapter isbased on[AGP™92, PVdBA*92], while Section 5.3 isbased on[AP92,
AP96].

5.1 TheEntity-Relationship M od€

In thissection, we briefly discussarestricted version of the EER model as discussed in Chapter 2. We
call thisversion“the” Entity-Relationship Model, even though it does not exactly match the ER model
asintroduced by Chenin [Che76].?

! Asnoted in Chapter 1, the reason for presenting this languagein terms of this ER model rather than the EER model is
merely one of succinctness: it would be perfectly possible to define a GOOD/EER language, but this would only enlarge
and complicate all definitions and results, and not add anything to the point we wish to make in this chapter.

2Most notably, we do not consider cardinality constraints on roles.

97
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Asanillustration, Figure 5.1 showsan ER version of part of the EER diagram shownin Figure 2.1.
Table5.1 showstheattributes of thisER diagram. The ER version differsfrom the EER version mainly
by the absence of inheritance (i.e., type constructions), components and complex attributes:

¢ Inheritance has been eliminated by “replacing” a superclass and its subclasses either by one of
the subclasses (e.g.,, ENTRY STATIONand its subclass CASHIER STATIONwere replaced
by its subclass ATM or by the superclass (e.g., the subclasses CASHIER TRANSACTIOIsnd
REMOTE TRANSACTIGQ TRANSACTIONave been removed).

e Components have either been replaced by relationships (e.g., manages), or have simply been
removed (e.g., proper _acct ).

e Complex attributesaswell asrel ationship attributeshave been removed all together (e.g., resi-

dence).
eo_es €0t | TRANSACTIO
Qn

ho_c
ho_a @ CUSTOMER

ACCOUNT

Figure5.1: An ER diagram, modeling a network of automated teller machines

The formal definition of ER schemes isjust a “restriction” of Definition 2.5 of EER schemes to
those elements still present in ER schemes, i.e., entity types, relationship types, roles, attributes and
data types:

Definition 5.1 (ER Scheme) An ER scheme S consists of
e fivedigoint finite sets E-TYPE, R-TYPE, ROLE, ATTR and D-TYPE;
e five functionswith signatures:

participants : R-TYPE — E-TYPE™



5.1. THEENTITY-RELATIONSHIP MODEL

| Entity type | Attribute | Datatype |
TRANSACTION | entry_time time
amount money
ATM cash on hand | money
location address
dispensed money
BANK name string
location address
CUSTOMER name string
residence address
CASH CARD password string
serial number | int
limit money
ACCOUNT blocked bool
balance money

Table 5.1: Attributesfor the ER diagram for the automated teller machine example

relship
entity
owner

domain

such that VR € R-TYPE with participants(R) =< Ej,.

ROLE — R-TYPE
ROLE — E-TYPE
ATTR — F(E-TYPE)
ATTR — D-TYPE

m, 3P; € ROLE : relship(P;) = R A entity(P;) = E;.
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.., B, >itholdsthat vVl < i <

Asin the case of EER instances (cf. Definition 2.8), for the definition of ER instances we need a
universe of entities (cf. Definition 2.7). Additionally, since complex values are no longer allowed as
attribute value, there is no longer aneed for data type signatures. In replacement, we assume that for
each datatypeinagiven ER scheme, a(countably infinite) set of valuesof that typeisgiven. Formally:

Definition 5.2 Givenan ERscheme S, thefunction ;.[D-TYPE] assignsto eachdatatype D € D-TYPE
a countably infinite set of values, such that different members of D-TYPE are mapped to digoint sets.
For any D € D-TYPE, ;[D-TYPE](D) includes a typed null value L p,.

O

Null values are used as default attribute val ues by the GOOD/ER operation that allowsthe addition

of new entitiesto an ER instance.

The following shorthand notation for relationships and attributesis a simplification of the one for

EER schemes:
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Notation 5.3 For R € R-TYPE with participants(R) =< Fy,...,E,, >,and P, € ROLE(1 < i <
m) with relship(P;) = R and entity(P;) = E;, wedenote R(P, : E1,..., P, : E,) € RTYPE and
P, : R — E; € ROLE.

For A € ATTRwith owner(A) 5 E and domain(A) = D wedenote A : E — D.

Apart from the absence of inheritance, components and complex attributes, ER instances differ
in one more significant aspect from EER instances, namely in the way relationships are formalized.
In the EER model, relationships are just n-tuples of entities, hence they do not contain any informa-
tion about roles (apart from the fact that the role which a given entity plays, may be derived from the
entity’s position in the n-tuple). As a consequence, one and the same relationship can belong to mul-
tiple relationship types. Consider for instance the (E)ER diagram depicted in Figure 5.2. Let usfirst
consider this diagram as an EER diagram. Let e; be an entity of type E1, and let e, be an entity of
type E2. According to Definition 2.8, the pair (e;, e;) may be an element of both 1[R-TYPE|(R1) and
u[R-TYPE](R2).

Figure 5.2: An (E)ER diagram with multiple relationship types between entity types

Further on in this chapter, however, we want to be able to look upon ER instances (to be defined
shortly) as graphs. If an ER instance contains two different relationships, then this graph should con-
tain two clearly distinct nodes, one for each relationship. If, however, one and the same n-tuple of
entities may belong to an arbitrary number of relationship types (asillustrated above), then thisis not
the case. Hence there is aneed to incorporate information about roles explicitly into the rel ationships.
Note that this does not mean that relationships are “ objectified” in the ER variant used in this chapter.
Even with role names incorporated into them, relationships still do not have an identity of their own.
It is for instance not possible to have two or more relationships of the same type in which the same
entities play the same roles.

All of the above isformalized in the following definition of ER instances:

Definition 5.4 (ER Instance) An ER instance Z over an ER scheme S consists of the following four
functions:

e u[E-TYPE], which maps each entity type £ € E-TYPE to a finite subset of £ ;;

e u[R-TYPE], which maps each relationship type R(P; : Ei,..., P, : E,) € R-TYPEtoafi-
nite set of relationships, such that ;[R-TYPE|(R) C {P,} x pu[E-TYPE|(E)) x ... x {P,} %
p[E-TYPE|(E,,);

e 1[ROLE], which mapseachrole P, : R — E; to afunction u[ROLE](FP;) : u[R-TYPE] (R) —
p[E-TYPE](£) such that for eachr = (Py, eq,..., Py, e,) € u[R-TYPE|(R) and for each 1 <
i < m, u[ROLE](P;)(r) = e;;
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e u[ATTR], which maps each attribute A € ATTRto a function
HATTRI(A) : Upeowner(a) #[E-TYPE|(E) — u[D-TYPE](domain(A)).

We introduce the following alternative notation for relationships:

Notation 5.5 Arelationship (Py, ey, ..., Py, e,) € u[R-TYPE](R) for somerelationship type R(P; :
Ey,...,P,: E,) € RTYPEisalsodenoted (P, : e1,..., P, : )

Asan illustration, we present part of an ER instance over the example ER scheme.

Example 5.6

p[E-TYPE|(ATM = {e1,es}

1[E-TY PE](BANK = {es e}

p[R-TYPE](owned by) = {(teller  :e;,owner :ej3),
(teller  :ey,owner :ey)}

p[ROLE](teller  )((teller  :ej,owner :e3)) = e

p[ROLE](owner )((teller  :ej;,owner :e3)) = e;3

pu[ROLE](teller )((teller  :ey,0wner :eq)) = e

pu[ROLE](owner )((teller  : ey, owner :ey)) = e

p[ATTR](dispensed )(e;) = 1234.50

In thisinstance, two ATMs are present, each of which is owned by a different bank. From one of
these ATMss, an amount of 1234.50 has been dispensed.

5.2 GOOD/ER: a Graph-Oriented Object Database language

In this Section, we present and formally define the Graph-Oriented Object Database language for the
ER model, in brief, GOOD/ER. GOOD/ER is a database programming language.

A program in GOOD/ER consists of a sequence of operations, to be applied to an ER instance. A
GOOD/ER operation in turn consists basically of two parts:

1. apattern, describing the configurations of entities, relationships and values to which the op-
eration should be applied. Note the close correspondence to GOQL/EER queries, which also
include a pattern, describing configurations, parts of which should be returned as the result of
the query.

2. amanipulation to be performed on all parts of the database instance that match the pattern of
the operation. Such a manipulation consists of the addition or the deletion of certain entities,
relationships, values, attributes, and/or roles.
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Even though both operationsin GOOD/ER and queriesin GOQL/EER have a pattern as their ba-
sic constituent, the notion of pattern matching in GOQL/EER is merely an intuitive one. Indeed, in
Section 4.2 the actual semantics of GOQL/EER queriesis defined by means of atrandation to thetex-
tual query language SQL/EER. In other words, the actual evaluation of queries is not treated in the
definition of GOQL/EER, since thisistaken care of in the definition of SQL/EER.

In GOOD/ER however, we incorporate this notion of pattern matching explicitly in the definition
of the language. Concretely, patterns are formalized as attributed, directed, node- and edge-labeled
graphs, which, when executing the operation of which they are part, are to be matched (in the formal
graph-theoretical sense of the word) against the database instance. Thisin turn shows the need for a
“graph-oriented look” on ER instances.

Before formalizing thelatter, however, wefirst formally define thekind of graphsused in formaliz-
ing both this graph-oriented |ook on ER instances aswell as (ER) patterns. Whereas the kind of graphs
used in formalizing GOQL/EER queries was defined in an operational manner, namely by means of
a PROGRES specification, the graphs used in this chapter for formalizing both ER instance graphs
as well as the syntax of GOOD/ER operations are defined declaratively, by means of the following
definition:

Definition 5.7 (Graph) Let NL be a countably infinite set of node labels, EL a countably infinite set
of edge labels, and AV a countably infinite set of attribute values. A graph over (NL,EL,AV) is a four-
tuple (V, W, A\, 7), where V' isthe set of nodes, W C V' x EL x V the set of edges, A : V' — NL the
node labeling function, and 7 : V' + AV the (partial) node attribution function. The labeling function
Aisextended to W as A((vy, a, v9)) 1= av.

O

Notation 5.8 The components of a given graph GG are denoted respectively Vi, Wq, Ag and 7.

Given thisdefinition of graphs, we now capture, by means of the definition of ER instance graphs,
how an ER instance may be looked upon asagraph. Briefly, entities, relationships and values play the
part of nodes, while attributes and roles correspond to edges between the appropriate nodes.

Definition 5.9 (ER Instance Graph) Given an ER instance Z over an ER scheme S, the instance
graph corresponding to Z is the graph (V, W, A, ) over (E-TYPE U R-TYPE U D-TYPE, ROLE U
ATTR, Ugep-TvPE #[D-TYPE](d)) with

v= U uWETYPEEU | uRTYPER)U |J mguATTR(4))
EcE-TYPE ReR-TYPE AcATTR

e )\isdefinedon V as

— e € ul[E-TYPE|(E) = M) = E
—r € p[RTYPE|(R) = A(r) =R
— d € rg(u[ATTR|(a)) C u[D-TYPE|(D) = A(d) = D
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o W ={(r,Pe) | u[ROLE|(P)(r) = e} U{(e, A, d) | u[ATTR](A)(e) = d}
e 7 istheidentity on U catTRrng(u[ATTR](A)), and is undefined elsewhere.

The attribution function 7 isin a sense obsolete in this definition (being merely the identity on the
values of the ER instance), but will turn out to be useful in the subsequent definition of embeddings
of patterns, in which unattributed nodes |abeled with a data type represent an “unknown” (or “don’t-
care”) value of that type.

Because of the one-to-one correspondence between ER instances and ER instance graphs, in the
remainder of this chapter we treat both terms as synonyms (e.g., in phrases such as “the nodes of an
instance” or “the entitiesin agraph™).

As an example, Figure 5.3 shows the ER instance graph corresponding to the ER instance of Ex-
ample 5.6. In this graphical representation of ER instance graphs, the same conventions are used as
in (E)ER diagrams, i.e., nodes corresponding to entities are shown as rectangles, nodes corresponding
to relationships are shown as diamonds, and nodes corresponding to values are shown as ovals. In the
case of the latter kind of nodes, the valueitself is shown near the node, thereby “visualizing” the attri-
bution function 7. In Figure 5.3, thisisillustrated with the money-labeled oval, and the actual value
1234.50. For clarity, null values are omitted both from this ER instance graph as well as from most
other instance graphs used in the remainder of this chapter.

To show the correspondence between this figure and Example 5.6, the “identifiers’ used in Exam-
ple 5.6 are shown near the entities they correspond to.

dispensed

el 1234.50

Figure 5.3: An ER instance graph corresponding to the ER instance of Example 5.6

5.2.1 Patternsand Embeddings

As mentioned previously, the basic component of an operation in GOOD/ER is a pattern, describing
the configuration(s) in the instance (graph) to which the operation is to be applied. A pattern is basi-
cally agraph, with an “abstract” set of nodes (as opposed to the nodes of an ER instance graph, which
arethe“actua” entities, relationships and valuesin the corresponding ER instance) and labeled in ac-
cordance with a given ER scheme:

Definition 5.10 (ER Pattern) A pattern over an ERscheme Sisagraph (V, W, A, 7) over (E-TYPEU
R-TYPE U D-TYPE, ROLE U ATTR, Upcp-TypE 1£[D-TYPE] (D)) such that ¥V(n, o, m) € W :
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1. @ € ROLE = (A(n) = relship(a) A A\(m) = entity(«))
2. a € ATTR = (A\(n) € owner(a) A A(m) = domain(«))

The correspondence between the pattern of an operation and the parts of an ER instance graph
which it matches, isformalized by the notion of an embedding of a pattern in an instance graph. Such
an embedding isamapping from the nodes of the pattern to the nodes of theinstance graph, preserving
typing (i.e., labels) and structure of the pattern.

We define embeddings in a somewhat more general context, namely for graphs in general, since
further on, we also need the possibility to embed one instance into another.

Definition 5.11 (Embedding) An embedding of agraph G inagraph # isatotal functionm : Vg —
V4, that satisfies

1 Vo e Vg : Ay(m(v)) = Ag(v)
2. Yv € Vg : mg(v) isdefined = 74 (m(v)) = mg(v)
3. Y(n,a,m) € Eg : (m(n),a,m(m)) € Ey

An embedding is extended to Eg asm((n, o, m)) := (m(n), o, m(m)).
O

Asanillustration, Figure 5.4 shows an ER pattern over the ER scheme depicted in Figure 5.1. It
may be easily verified that this ER pattern may be embedded exactly once in the ER instance graph
depicted in Figure 5.3, namely by mapping the ATMnode, the BANKnode and the money-node in
the pattern to respectively the ATMnode with identifier e1, the BANKnode with identifier €3 and the
single money-node in the instance graph.

dispensed

1234.50

Figure 5.4: An ER pattern (1)

The ER pattern shown in Figure 5.5 on the other hand, may be embedded twicein the ER instance
graph depicted in Figure 5.3. The first embedding maps the ATMnode and the BANKnode in the pat-
tern to respectively the ATMnode with identifier el and the BANKnode with identifier €3 in the in-
stance graph. The second embedding maps the ATMnode and the BANKnode in the pattern to respec-
tively the ATMnode with identifier €2 and the BANKnode with identifier e4 in the instance graph.
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Figure 5.5: An ER pattern (I1)

Note that the latter embedding may be extended to the embedding of the pattern depicted in Fig-
ure 5.4. Extending embeddingsis akey notion in the definition of the GOOD/ER operations. To for-
malize this notion, we first have to define subgraphs:

Definition 5.12 (Subgraph) AgraphG = (V, W, A, ) isasubgraphofagraph G’ = (V', W', X 7’)
ifVCV,WCW, A=N|yandr =x'y.
O

Since both ER instance graphs and ER patterns are graphs, we use the terms subinstance and sub-
pattern as synonyms for subgraph, wherever appropriate.

Definition 5.13 (Embedding Extension) Let Z be an ER instance graph, and P and P’ be ER pat-
terns such that P is a subpattern of P’. Let m and m' be embeddings of respectively P and P’ in Z.
Then m’ isan extension of m if m/|y,, = m.

O

As athird example of embeddings, Figure 5.6 shows a pattern that may be embedded four times
in the ER instance graph depicted in Figure 5.3. This fact follows readily from the observation that
an embedding is not necessarily an injective mapping (as was the case with the embeddings of the
patterns in Figures 5.4 and 5.5). Concretely, an embedding of this pattern in the considered instance
may either

e map the leftmost ATMnode to the ATMnode with identifier el and the rightmost ATMnode to
the ATMnode with identifier €2,

e map the leftmost ATMnode to the ATMnode with identifier e2 and the rightmost ATMnode to
the ATMnode with identifier el;

e map both ATMnodes to the ATMnode with identifier €1;
e map both ATMnodes to the ATMnode with identifier e2.

The effect of these four embeddings on the remaining four nodes of the pattern follows straightfor-
wardly from their effect on the ATMnodes.
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Figure 5.6: An ER pattern (111)

5.2.2 Basic Operations

We now illustrate and formally define the six basic operations offered by GOOD/ER. Three of these
operationsallow the addition of certain elementsto an ER instance, one allowsthe update of attributes,
while the remaining two allow the deletion of certain e ements from an ER instance.

By means of an entity addition, new entities may be added to an ER instance, with given attribute
values and relationships with entities already present in the ER instance. As an example, suppose we
wish to represent in the database the fact that all customersliving in Antwerp get anew cash card with
an initia limit of 5000, and the customers name as default password. Thisis done using the entity
addition depicted in Figure 5.7.

5000

password

Antwerp

Figure 5.7: An entity addition

Just asany other GOOD/ER operation, an entity addition consists basically of two parts: apattern,
and a part indicating the operation to be performed, in this case, the elements to be added to the ER
instance. Intheexampleentity addition of Figure 5.7, the pattern consistsof al nodesand edgesinthin
lines. This pattern matches all customers living in Antwerp, together with their name and location.

The operation part of this(and any) entity addition consists of the partsdrawn in bold lines. It indi-
cates that, for each CUSTOMERNMtity matching the pattern,aCASH CARI@ntity should be added to
the considered ER instance, linked by means of ahas -relationship to the CUSTOMEdntity. In addi-
tion, thepassword -attributeof any newly added CASH CARI@ntity should besettothe CUSTOMER
name, whileitslimit  -attribute should be set to the money value 5000.

Note that the latter money value should not be included in the pattern, since this would make the
effect of the entity addition depend on the presence or absence of this money value (as attribute-value
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of some other entity or relationship) in the considered ER instance. Indeed, since if the money value
would be part of the pattern, then on application of the operation, no entities would be added if the
money value 5000 was absent from the considered ER instance. Thiswould clearly be an undesirable
semantics for this operation, since its effect should solely depend on the presence (or absence) in the
ER instance of customersliving in Antwerp.

We are now ready for the formal definition of entity additions:

Definition 5.14 (Entity Addition (syntax)) Given an ER scheme S, an entity addition over S isde-
noted syntactically as ENTADD|[P, E, VA, AT, RE, RO] with the following input parameters:

an ER pattern? = (V, W, \, 7) over S
E € E-TYPE

VA = {(A1,v1),..., (Am,vm)} C ATTRx V suchthat V1 < i < m : domain(4;) = A(v;) A
owner(A4;) > F

AT - {(Am+1, 'Um+1), ceey (Am+l, 'Um+l)} C A-I_I-RX UDGD'TYPE /J/[D'TYPE] (D) SUCh that Vl S
i <1,3D; € D-TYPE : v,,4; € u[D-TYPE|(D;) A domain(A,,.;) = D; A owner(A,,+;) > E

RE =< Ry,...,R, >€ RTYPE" suchthatVl < i < n: E € participants(R;)

RO={(< (Pl,e}),..., (P} es) > PL),....(< (PP el),.... (P el ) > P}
€ F((ROLE x V)* x ROLE) suchthat V1 < i < n,relship™'(R;) = {P,..., P, P} } and
participants(R;) =< A(e}), ..., A(el,) > with E inserted at the position corresponding to role

7
Pi.

In terms of the notation of Definition 5.14, Figure 5.7 shows the entity addition
ENTADD[P, E, VA, AT, RE, ROJ with

the pattern P = (V, W, A, ) consisting of

-V= {615,01702}

— W = {(e1, name, v;), (e, location, vy) }
node | label

_ \isdefined by the following table: | €1 | CYSTOMER
v string
U address

— 7 maps vy to the string “ Antwerp”
the entity type £’ equal to CASH CAR[Deing the type of the entities to be added
the set VA of (attribute, value)-pairs with values taken from P equal to {(password, v)}
the set AT of (attribute, value)-pairs with values which are not part of P equal to {(limit, 5000) }
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¢ thelist RE of types of relationships in which the newly created entities participate equal to <
has >

¢ the set RO containing both the roles played by the newly created entities in the relationships of
RE, aswell asthe entitiesin the pattern that play the remaining roles, equal to {(< (ha.c,e;) >
,hacc)}.

Definition 5.15 (Entity Addition (semantics)) Let ENTADD[P, E, VA, AT, RE, RO| be an entity ad-
dition over an ER scheme S asin Definition 5.14.
Let P’ bethe ER pattern (V', W', X', 7') where

e V' equalsV extendedwith1+n+I newnodes’ e, r, ..., 7y, 0}, 1, ..., V), |abeledby X’ with
respectively £, Ry, ..., R,,dy,...,d;. On'V, X equals \.

o W' equals W extended with role edges fromthe nodesr, .. ., r,, tothenodese, ey, . .., e , as
well as attribute edges frome to thenodes v, . .., vy, V), 15 - - - Uy

o 7' attributesv,, ..., v, ., with respectively v, 1, ..., v, and equalsT on V.

Theresult of applying the entity addition ENTADD[P, E, VA, AT, RE, RO| to an ERinstanceZ over
S is defined as one possible outcome of the following algorithm:

7' .=1
for each embedding m of P inZ do
if not exists an embedding m' of P’ in Z which extends m
then addto Vv anewentityet € £ — V7 of type E
thevaluesv,, 11, .. ., Umy
therelationships (P} : e1,..., P : e, ..., P} : ¢, ) through
(Pl :ef,....P] :et,... . P! e} )
add to E7 the edges (et, a1, vy ) through (€t, a1, Vi)
the role-edges of the newly added relationships
for each o € ATTRsuchthat E € owner(a) anda & {ay, ..., Gmii},
add (et, a, —I—domain(a))
return (Z')

O

TheER pattern P’ = (V', W', X', «") from Definition 5.15 is obtained by extending the pattern P
with nodes and edges for the parts to be added by the entity addition. In the case of the example, P’
consists of

[
o V' = {61,62,7"1,7}1,'02,'03}

o W' = {(e;,name, vy), (e, location, vy), (r1, ha.c, e;), (r1, hacc, ey), (es, password, v, ),
(627 llmlta ,03)}

3That is, nodes not already present in V.
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node | label

el CUSTOMER
€y CASH CARD
e )\ isdefined by thefollowing table: | r, has

o string

Vo address

U3 money

node | attribute
e 7' isdefined by the following table: | vy Antwerp
U3 5000

The definition of the semantics of entity additions may best be explained by applying the example
entity addition of Figure 5.7 to the sample ER instance shown in Figure 5.8.

CASH CARD—lmit

CUSTOMER

location

location

location

Antwerp

Frank
CUSTOMER—12me

Willy

location

address
Leiden

Figure 5.8: Input instance to the example entity addition of Figure 5.7

It may be verified that the pattern of the entity addition of Figure 5.7 has three embeddingsin this
ER instance, namely for the customers named Pete, John and Frank, since they all live in Antwerp.
The pattern doesn’t match the customer named Willy, since he livesin Leiden.

These three embeddings are treated by the algorithm defining the semantics of an entity addition
in some arbitrary order. Since this algorithm uses the set of embeddings of the pattern in the input
instance, and the condition on the extendibility of the pattern of the operation is aso checked on the
input instance (and not on the intermediate result Z7), the algorithm is clearly independent of the cho-
sen order. Suppose that on applying the considered sample entity addition, the algorithm starts with
the embedding corresponding to customer Frank. Then the condition on embedding extensionsin the
algorithmwill fail, since Frank already has a cash card with his name as password, and alimit of 5000.
Next, the algorithm might consider the embedding corresponding to customer John. Since John hasa
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cash card with his name as password, but with alimit of 4999, heis assigned a new cash card. Like-
wise, Pete is assigned a new cash card, since he did not have one in the input instance.

In summary, an application of the entity addition of Figure 5.7 to the input instance of Figure 5.8
(the resulting instance of which is shown in Figure 5.9) adds (among others) two new entities of type
CASH CARI theinstance. The fact that these entities are taken “at random” from the universe of
entities £ explains the phrase “...one possible outcome of the following algorithm...”. Indeed, since
the algorithm does not specify which entities are taken from £, the outcome of thisalgorithmisapriori
non-deterministic.

location

location

location

Antwerp

CUSTOMER—12me

Willy
location

address
Leiden

Figure 5.9: Output instance of the example entity addition

However, two possible outcomes of the algorithm are strongly related. On one hand, they both
include the input instance. On the other hand, they indeed only differ in the “identity” of the newly
added entities. This similarity between possible outcomes of an entity addition may be formally cap-
tured asfollows. First, theintuitivenotion of ER instancesdiffering only intheidentity of their entities
isformalized by means of the notion of isomorphism:

Definition 5.16 (Isomorphism) Two graphs Z and Z’ are isomorphic, if Z can be embedded injec-
tively in Z' and vice versa. An injective embedding of a graph into an isomorphic graph is called an
isomorphism.

O

Next, the similarity between two possible outcomes of an entity addition may be formalized using
the notion of Z-isomorphism. As opposed to general isomorphism, Z-isomorphism captures the fact
that two ER instances are identical on some common subinstance Z, and differ elsewhere only in the
identity of their entities:
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Definition 5.17 (Z-isomor phism) Let Z bea graph. Two graphs 7 and 7' are Z-isomorphic if there
exists an isomorphismfrom 7 to J' that istheidentity on Z N 7, and whose inverse is the identity on
nJg'.

O

Given this notion, the following lemmamay be easily verified:

Lemma 5.18 Any two outcomes of the application of an entity addition to some instance Z are Z-
isomorphic. Conversely, if an instance Z, isZ-isomorphic to an instance Z, which is the outcome of
the application of an entity addition to some instance Z, then Z, itself is also a possible outcome of
the application of that entity additionto Z.m

A special case of isomorphisms, namely isomorphisms of an instance onto itself, may be used to
gain some insight into the set of embeddings of a pattern in an instance.

Definition 5.19 (Automor phism) Let Z be a graph. An automorphism of Z is an isomorphism from
7 onto itself. Aut(Z) isthe group of all automorphisms of Z.
O

Using the notion of automorphisms, the following lemma may be easily seen to hold:

Lemma 5.20 The composition of an embedding of a graph Z’ in a graph Z and an automor phism of
Z,isitself an embedding of 77 in Z.

Proof The proof follows readily from the fact that isomorphisms, and hence automorphisms, are
themselves embeddings, and the fact that the composition of two embeddingsis aso an embedding. m

Thislemmawill turn out to be of crucial importance to the study of the expressive power of the
GOOD/ER language in Section 5.3.

Besides adding relationships involving newly added entities, it should also be possible to simply
add relationshipsinvolving only entities already present in an instance. Hence we define the following
GOOD/ER operation:

Definition 5.21 (Relationship Addition) GivenanERschemeS, arelationship additionover S takes
asinput

e anERpattern P = (V, W, \, 7) over S

e Re RTYPE

e RO=<ey,...,e, > Vtauchthat R(P; : A(eq), ..., P, : Meg)) € RTYPE
Let P’ bethe ER pattern (V', W', X', ) where

e V' equals V' extended with a new node r labeled R by \'. On 'V, \’ equals \.



112 CHAPTER 5. DATABASE MANIPULATION DEFINED AS GRAPH-REWRITING

e W' equals W extended with role-edges from r to the nodesin RO.

The result of applying the relationship addition RELADDI[P, R, RO] to an ER instance Z over S
Is defined as the outcome of the following algorithm:

7' =1,
for each embedding m of P inZ do

Vi =V U{(r1 :m(er),...,rqg : m(ey))}

Wz = Wz U {therole-edges of the newly added relationship}
return (Z')

O

Figure 5.10 shows an exampl e rel ationship addition over the scheme of Figure 5.1. The result of
this operation applied to some ER instance isthat, if some customer has a cash card and holds an ac-
count, the cash card is “granted access’ to the account.

CASH CARD
a_cc ha_cc
aa ha_c

ACCOUNT ho—aho—c CUSTOMER

Figure 5.10: An example relationship addition

In terms of the notation of Definition 5.21, Figure 5.10 shows the relationship addition
RELADDIP, R, RO] with

e thepattern P = (V, W, A, ) consisting of

-V= {617 62)€3JT17r2}
— W = {(r1,hacc, e;), (r1, hac, es), (r2,ho-C, ey), (12, h0_a e3) }

node | label

el CASH CARD
€9 CUSTOMER
es ACCOUNT
1 has

Ty holds

— M isdefined by the following table:

— misundefined on V.

e therelationship type R equal to accesses , being the type of the relationships to be added
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¢ thelist RO containing the entities in the pattern that are to play the roles of the newly added
relationships, equal to < ey, e >.

The pattern P’ is obtained in asimilar way as with the example entity addition.

The semantics of the operation is that for each embedding of the pattern in the given ER instance,
mapping the CASH CARIEnd ACCOUNTodes in the pattern to respectively entitiese’ and e” in the
instance, the accesses -relationship (a.cc,e’,aa ¢”) is added. Note that since this relationship is
uniquely determined by the combination of the roles and the entities in the input instance, thereisno
non-determinism involved in the algorithm defining the semantics of a relationship addition, as op-
posed to the definition of entity additions. In addition, thereis no need for a check on the extensibility
of the considered embedding, since adding arelationship to an instance in which it isaready present,
simply has no effect.

We now turn our attention towards attributes. Since attributes are always defined (even if they are
set to the null value L ;) it makes no sense to consider either attribute deletions or additions. The only
operation on attributes that does make sense isamodification or update of the value of some attribute:

Definition 5.22 (Attribute Update) Givenan ERscheme S, an attribute update over S takesasinput
e anERpattern? = (V, W, \, 7) over S
e AcATTR
e ¢ € V suchthat owner(A) 5 A(e)
e one of the following:

1. v € V such that domain(A) = A(v) and 7(v) is defined
2. v € pu[D-TYPE](domain(A))

If v € V, then the result of applying the attribute update ATTUPD[P, A, e, v] to an ER instance Z
over S is defined as the outcome of the following algorithm:

T =T,
for each embedding m of P inZ do
Wz =Wz — {(m(e), A, z)} (for somez € V7)
Wz = Wz U{(m(e), A,m(v))}
Vi =V —{v | A\z(v) € D-TYPEA Ae € V7, A" € ATTR: (e, A", v) € W1}
return (Z')

If v ¢ V, then the result of applying the attribute update ATTUPD[P, A, e, v] to theinstance Z is
defined as the outcome of the following algorithm:

T =1,

for each embedding m of P inZ do
Wz =Wz — {(m(e), A, z)} (for somez € V7)
Wz = Wz U{(m(e), A,v)}
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Vo =V U {U}
Vi =V —{v | A\z(v) € D-TYPEA Ae € V7, A" € ATTR: (e, A", v) € W1}
return (Z')

O

By the one but last statement of each agorithm, isolated values (i.e., values that no longer occur
as attribute of some entity) are deleted, since otherwise, the resulting graph of the algorithm would no
longer correspond to an ER instance.

In asense, an attribute addition may also be used both to “delete” an attribute, by supplying L, as
the new value, or to “add” an attribute, if the old value happened to be equal to L.

In the above definition, a distinction is made between two kinds of attribute updates: either the
attribute value istaken from the pattern, or it is provided separately. Weillustrate both kinds by means
of an example.

Figure 5.11 shows an attribute update in which the attribute value is taken from the pattern. More
precisely, this operation setsto zero the limit of all cash cards that access an account with a zero bal-
ance.

Figure 5.11: An example attribute update (1)

In terms of the notation of Definition 5.22, Figure 5.11 shows the attribute update
ATTUPDIP, A, e, v] with

e thepattern P = (V, W, A\, ) consisting of

- V — {617 e?)”larl}
— W ={(r1,acc,eq), (r;,aa es), (es, balance, vy)}

node | label

e CASH CARD
— A isdefined by the following table: | e, ACCOUNT
r1 aCCesses

vy money

— 7 mapsv; to 0.

e theattribute type A equal to limit , being the type of the attributes to be updated
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e theentity e equal to e, being the entity whose attribute is to be updated
¢ thevalue v equal to the node v, being the new value of the updated attributes.

Thisexample may aso be used to illustrate the need for the requirement that 7 must be defined on
the node v taken from the pattern as the new value of the updated attribute. Indeed, suppose = were
undefined on the money-node in the pattern of the update addition in Figure 5.11. Now consider the
ER instance graph depicted in Figure 5.12. Then the pattern would clearly have two embeddingsin the
instance of Figure 5.12. The outcome of the (first) algorithm in Definition 5.22 would now depend on
theorder inwhichtheseembeddingsweretreated! Indeed, if theembedding mapping themoney-node
in the pattern to the value 1234 is treated first, then in the instance resulting from the algorithm, the
cash card getsthelimit 5678, and vice versa. The only way to avoid this clearly undesirable semantics
IS to require that the target node of a newly added attribute edge is a uniquely specified value in the
pattern.

X ac
ACCOUNT] [ ACCOUNTI2X2M%_—noney >

1234 5678

Figure 5.12: An ER instance graph

Figure 5.13 shows an attribute update in which the attribute value is provided separately. More
precisely, this operation blocks all accounts with a zero balance.

blocked balance
> ACCOUN Cmoney >

true 0

Figure 5.13: An example attribute update (11)

In terms of the notation of Definition 5.22, Figure 5.13 shows the attribute update
ATTUPDIP, A, e, v] with

e thepattern P = (V, W, A\, ) consisting of

- V = {61,1)1}
— W = {(e1, balance, v;) }

node | label
— M isdefined by the following table: | e; ACCOUNT
U1 money
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— 7 mapsv; to 0.
¢ the attribute type A equal to blocked , being the type of the attributes to be updated
e theentity e equal to e;, being the entity whose attribute is to be updated
¢ thevalue v equal to “true’, being the new value of the updated attributes.

The result of applying this attribute update to any ER instance is that the blocked -attribute of al
ACCOUNSwith a zero balance issetto “true’, regardless of the value of the blocked -attribute
in the input instance.

Previously, we have introduced GOOD/ER operations that alow the addition of entities and/or
relationships. For both operations, we now introduce a “deleting counterpart”, i.e., operations that
allow the deletion of either entities or relationships.

The first operation, called entity deletion, alows the deletion of entities, together with al their
attributes and the relationships in which they participate:

Definition 5.23 (Entity Deletion) Given an ER scheme S, an entity deletion over S takes asinput
e anERpattern? = (V, W, \, 7) over S
e ¢ € V suchthat \(e) € E-TYPE

The result of applying the entity deletion ENTDEL [P, ¢] to an ERinstance Z over S is defined as
the outcome of the following algorithm:

I =17
for each embedding m of P inZ do
Vo =V — {m(e)} — {all relationshipsinvolving e}
Exe) = Exe) — {mle)};
Wr =Wz |v,,
Vo =V — {’U | )\I(’U) € D-TYPEA Ae' € V3, A" € ATTR: (e’,A’,v) € WI/}
return (Z')

O

By removing a deleted entity from the universe of entities, the tricky situation is avoided where
one and the same entity is deleted from an instance, and subsequently reinserted by an entity addition
(or abstraction, see furtheron). Thisis motivated by the fact that the actual identity of entitiesis of no
concern when basic GOOD/ER operations are executed. Hence one cannot and should not be able to
make any assumptions about the identity of a newly added entity.

Figure 5.14 shows an example entity deletion. The pattern of this operation consists of the entire
picture, whereasthe part (theimage of which under embeddingsis) to bedeleted (in thiscase, the CASH
CARDentity) is indicated with double lines. This operation removes al cash cards of the customer
named “John Smith”, aswell as all has -, started by -, accesses - andissues -relationships
inwhich these CASH CARIntitiesareinvolved. The agorithm of Definition 5.23 takes care of the
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CASH CARD ha—cc ha_¢ mCUSTOMER2™ Sting >
John Smith

Figure 5.14: An example entity deletion

deletion of all attribute and role edges entering or leaving the del eted entities, by simply restricting the
edge set of the ER instance graph to those edges involving nodes which are still in the graph after the
removal of the entities and the relationshipsin which they participate.

The second kind of deleting operations allows the deletion of relationships:

Definition 5.24 (Relationship Deletion) Givenan ERscheme S, arelationship deletion over S takes
asinput

e anERpattern P = (V, W, A\, 7) over S
e 7 ¢ V suchthat A(r) € RTYPE

Theresult of applying therelationship deletion RELDEL [P, r| toan ERinstanceZ over S isdefined
as the outcome of the following algorithm:

T =T,

for each embedding m of P inZ do
Vo = Vo —{m(r)}
Wr =Wz |y,

return (Z')

O

Figure 5.15 shows an exampl e rel ationship del etion. This operation expresses the fact that no cash
cards should be allowed to access blocked accounts. The operation therefore looks for embeddings of
the pattern consisting of a CASH CARMhich accesses an ACCOUNWhose blocked -attribute
isset to “true’, and deletes the accesses -relationship.

= @ a2 MACCOUNTIRHed ool

true

Figure 5.15: An example relationship deletion

A magjor characteristic of all GOOD/ER operationsisthat, by the mechanism of pattern matching,
operations can only use information stored explicitly in the ER instance. Examples of such explicitly
stored information are

¢ the (non)-existence of entities or relationships of a certain type;
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e the presence/absence of certain values;
e avalue (not) being an attribute of a certain entity;
e an entity (not) playing a certain role in arelationship.
Examples of information not accessible through pattern matching are
e specific properties of values (e.g., an integer being positive);
e theidentity of entities (e.g., the presence of a particular entity e).

In Section 5.3, we formally prove that the GOOD/ER language is capable of expressing all possible
transformations using only explicitly stored information (in asense to be made precise). With thefive
GOOD/ER operations introduced so far, however, the above claim does not hold. Concretely, using
these five operations, it is for instance not possible to group entities that are indistinguishable on the
basis of explicitly stored information (of a certain type) concerning them. We clarify this kind of ma-
nipulation (i.e., the grouping of such “indistinguishable” entities) by means of an example.

Consider the (partial) ER instance graph depicted in Figure 5.16. It shows anumber of cash cards
(theidentifiers el through e4 are used further on to distinguish the various nodes), accessing a number
of accounts. If we restrict our view on cash cards to the information of type accesses concerning
them (i.e., we don’t take into account their attributes, or any other relationships in which they might
participate), then we can say that the two leftmost cash cards are indistinguishable, since they both
access both accounts shown in the ER instance graph, whereas the third cash card accesses only one
of them, and the fourth cash card doesn’t access any account.

el e2 e3 e4
CASH CARD | CASH CARD| | CASH CARD|

a_cc

Figure 5.16: The input instance for the example entity abstraction

Hence an operation that groups (or, to be precise, partitions the set of) cash cards based on this
similarity, should have the effect shown in the ER instance graph of Figure 5.17.

We implicitly assume that the ER scheme includes an entity type CC-SET (used for representing
setsof cash cards, henceitsname) aswell asarelationshiptypecontains , usedfor linking CC-SETs
totheCASH CARS&xontainedinthem. Theresultinginstanceof the grouping operation containsthree
additional entities, each representing a set of cash cards, the elements of which are indistinguishable
on the basis of the accesses -relationshipsthey participatein.

In[VdBP91], it was shown that this operation cannot be performed using only the five GOOD/ER
operations introduced so far. Hence we define the following additional operation:
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| CC-SET | | CC-SET |
co_set co_set co_set co_set
co_cc co_cc co_cc

| CASH CARD| | CASH CARD|

Figure 5.17: The output instance for the example entity abstraction

Definition 5.25 (Entity Abstraction (syntax)) Given an ER scheme S, an entity abstraction over S
is denoted syntactically asENTABSP, e, E, R, RE| with the following input parameters:

an ER pattern? = (V, W, \, 7) over S

e € V suchthat A(e) € E-TYPE
E € E-TYPE

R € R-TYPE such that participants(R) =< E, A(e) >, withrolesP, : R - Eand P, : R —
Ale)

e RE € R-TYPE such that participants(RE) =< Ps, P, >, with P : RE — \(e)*

Figure 5.18 shows the entity abstraction which, when applied to the ER instance shown in Fig-
ure 5.16, resultsin the ER instance shown in Figure 5.17.

-
co_set co_cc ~
CC-SET [ = CASH CARD—2=2C Gccesses™ >
~_-

Figure 5.18: An example entity abstraction

In terms of the notation of Definition 5.25, Figure 5.18 shows the entity abstraction
ENTABSP, ¢, E, R, RE| with

4The reason for considering entity abstraction only over binary relationships is merely one of succinctness: it is per-
fectly possible to define abstraction over arbitrary n-ary relationships, but as Section 5.3 shows, this would not add to the
expressive power of the GOOD/ER language.
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e thepattern P = (V, W, A\, ) consisting of

-V ={e}

-Ww=0

— Amapse; to CASH CARD
— misundefined on V.

e theentity e equal to e;

e the entity type F equal to CC-SET, being the type of the entities that (will) represent sets of
cash cards

e therelationship type R equal to contains , being the type of the relationships used to link the
setsto their elements

¢ therelationship type RE equal to accesses , indicating which relationship type should be con-
sidered for partitioning the cash cards

In Figure 5.18, one can see that the pattern and the “addition part” of an entity abstraction are denoted
asusual (i.e., using plain lines for the pattern, and bold lines for the addition part). The role and the
relationship type used for partitioning the cash cards are indicated with dotted lines.

Definition 5.26 (Entity Abstraction (semantics)) Let ENTABSP, ¢, £, R, RE] bean entity abstrac-
tion over an ER scheme S as defined in Definition 5.25, and let Z be an ER instance over S.

Let S betheset {m(e) | m : P — Z isan embedding}, and let ¥ be the partition of S, defined by
the equivalence relation

quﬁ(VtEVI:(Pg,p,le,t) EVI<:>(P37an47t) EVI)

Then the result of applying the entity abstraction ENTABSP, e, E, R, RE| to Z is defined as one
possible outcome of the following algorithm:

I =17
for each T € ¥ do
if not eXiStSvl e Vr: )\I(Ul) =FEA {1)2 | (Pl,Ul, PQ,UQ) € VI} =T
then addto Vz anewentityet € £ — V7 of type E
the relationships (P, vy, Ps, ve) (Vvg € T')
add to Wz the role-edges of the newly added relationships
for each A € ATTR suchthat £ € owner(A), add (e, A, Laomain(a))
return (Z')

O
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The set S of embeddings of the pattern P’ in the ER instance graph of Figure 5.16 obviously con-
tainsfour elements, sincethe single node of P’ may be mapped to each of thefour CASH CARIDodes
in the graph. The partition X of S equals {{m1, m2}, {m3}, {m4}}, as explained above. Given this
partition, the algorithm of Definition 5.26 then workssimilarly to that of Definition 5.15 of entity addi-
tions, with the singledifference that whereasthe algorithm for entity addition operates on theimages of
the pattern under the embeddings, the algorithm for entity abstraction operates on the elements of the
partition X. In summary, the result of applying the entity abstraction of Figure 5.18 to the ER instance
shown in Figure 5.16 is shown in Figure 5.17.

5.2.3 GOOD/ER Programs

In order to obtain a language based on the six basic GOOD/ER operations, we still have to intro-
duce programming primitives that alow the grouping of basic operations into programs. In [AP91,
GPVdBVG94], aprogramming language is discussed, consisting of fourteen programming constructs
(including typical ones such as conditional statements and while-loops) which may be used to group
into programs basic graph rewriting operations (strongly reminiscent to those introduced in this sec-
tion). Twelve of these programming constructs are actually “macros’, defined in terms of two pro-
gramming primitives, allowing the sequencing respectively the grouping of basic operations. Asdefin-
Ing programming constructsin terms of each other haslittleto do with graph rewriting (and hence with
the topic of this thesis), we restrict ourselves in this section to introducing these two programming
primitives.

The simplest programming construct allows the sequencing of any number of basic GOOD/ER
operations or method applications (to be defined further on):

Definition 5.27 (GOOD/ER program) A GOOD/ER program is a sequence of basic GOOD/ER op-
erations(i.e., entity addition, relationship addition, attribute update, entity deletion, relationship dele-
tion and entity abstraction) or method applications. The result of the application of a GOOD/ER pro-
gramto an instance is obtained by sequentially applying the operations constituting the program to
the instance, in the order given by the sequence.

O

Figure 5.19 shows a GOOD/ER program consisting of five basic GOOD/ER operations. The five
operations are separated by dotted lines in the figure, and the sequence should be read from top to
bottom. Under the assumption that its input instance does not contain any entities of type CC-SET,
this program removes from itsinput instance all CASH CAR&that do not access any ACCOUNT

By means of thefirst three operations of the program, all the CASH CAR&that are to be removed,
are grouped by linking them to an entity of type CC-SET. First we create this entity, by means of an
entity addition with an empty pattern. An entity addition with an empty pattern creates exactly one
entity of the given type, unless the input instance already contains entities of that type. By means of
the second operation, arelationship addition, welink all CASH CAR&to the newly created entity, by
means of relationships of type contains . The CC-SET-entity may now be considered to represent
the set of dl CASH CARSIn the instance. By means of the third operation, arelationship deletion,
we remove from this set the CASH CAR&that do access one or more ACCOUNY Finally we delete
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I |

Figure 5.19: An example GOOD/ER program

the CASH CAR&that are still in the set, as well as the set (i.e., the CC-SET-entity) itself by means
of two entity deletions.

Note how in this program, deletion is used to express negation, which cannot be expressed with a
single ordinary pattern.

The second programming construct we introduce allows to name and parametrize a sequence of
GOOD/ER operations. Such a sequenceis called a GOOD/ER method, according to the terminology
of object-orientation. If supplied with the required actual parameters (in the form of an ER pattern)
the sequence may be applied by means of the method’s name.

Formally, let £ be a countably infinite universe of parameter names.

Definition 5.28 (GOOD/ER method (syntax)) Let S be an ER scheme. Syntactically, a GOOD/ER
method M over S isapair (Su, B) consisting of the method’'s signature Sy, and the method's body
B

e Thesignatureisathree-tuple Sy, = (raq, Lo, paq) With

— 1 € E-TYPE the method's receiver type;

— L C L afinite set containing names for the method's parameters;

— pam : Ly — E-TYPEUD-TYPE afunctionindicating the types of the method’s parameters;
e Thebodyisalist By =< Oq,...,0,, > inwhichVl < i < n, O; iseither

— an ordinary basic GOOD/ER operation or a method application (see further on); or
— abasic GOOD/ER operation or a method application with as additional parameters

* aset s', which iseither empty or contains a single entity of type ., in P’ (where P’
isthe operation’s pattern), distinguishing the receiver;
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* Py Ly + Vp satisfying Vi € L : Ap(p', (1)) = pa((), distinguishing the formal
parameters.
O

Supposeit frequently occursthat abank blocksall accounts of agiven customer which are managed
by that bank, while at the same time setting the passwords of al cash cards owned by that customer
and which access those accounts to some string only known to the bank’s system administration. This
complex database manipul ation may be accomplished with the GOOD/ER method block , the signa-
ture of which is depicted graphically in Figure 5.20, and the body of whichis shown in Figure 5.21.

BANK |e¢ block >USt TCUSTOMER

newpw

Figure 5.20: An example GOOD/ER method signature

The method’ snameis shown in the hexagon, whichislinked to nodes|abeled with the receiver and
parameter typesby means of edges|abeled with respectively rec and the parameter names. Intermsof
the notation of Definition 5.28, Figure 5.20 shows the method signature Spiock = ("block , Lblock s

Pblock ) Where

e plock ,the method sreceiver type, equals BANK
e Lplock , the set containing names for the method’s parameters, equals {newpw, cust }

e pplock thefunction indicating the types of the method’s parameters, maps newpw to the data
typestring and mapscust to the entity type CUSTOMER

The body consists of a sequence < Oy, O, > of two attribute updates, both with additional para-
meters.

The first attribute update blocks the accounts managed by the given bank and held by the given
customer. The formal parameters are distinguished graphically using the same conventions as in the
graphical depiction of the method’s signature, that is, by means of a hexagon linked to these various
parameters. |n terms of the notation of Definition 5.28, the set s;, .., containsthe entity of type BANK
The partial function p;, ., Mmaps the parameter name cust to the entity of type CUSTOMERN is
undefined on the parameter name newpw (sincethelatter parameter isirrelevant to thisfirst operation).

The second attribute update sets the password of the cash cardsissued by the given bank and owned
by the given customer to the given string. In terms of the notation of Definition 5.28, the set sZ, .,
contains the entity of type BANK The function pZ, ., istotal, and maps the parameter name cust to
the entity of type CUSTOMERNd the parameter name newpw to the value of type string

Given what methods |ook like syntactically, we can now define how they can be applied and what
the semantics of such an applicationis, inaway similar to the application of the basic GOOD/ER oper-
ations. Informally, the semantics of the method call isthat the operationsin the body of the method are
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password

ha_cc

CASH CARD

Figure 5.21: An example GOOD/ER method body

applied consecutively, but with the matchings of their patterns restricted according to their additional
parameters indicating the actual receiver entity and parameters. Formally:

Definition 5.29 (GOOD/ER method (semantics)) Let M = (S, Byr) be a method over an ER
scheme S as defined in Definition 5.28, with signature Sy, = (ra, L, pa) @nd body By =<
O1,...,0, >. Let 7 bean ERinstance and P an ER pattern over S.

Let e be an entity in V> of type r, called the receiver entity.

Let g : Ly, — Vp bea function that identifies actual parametersin the pattern P, satisfying Vi €
Ly Ap(9(1) = pa(l).- )

Assume that M € E-TYPE, rec € R-TYPE, rec! : rec — M,rec? : rec — r, € ROLE and
Vi € L

e if pr((l) € E-TYPE, then let R, € R-TYPE with participants(R;) =< M, pxy(I) > and roles
Tll : R, —)M andrf - R, —>pM(l),

o if ppi(l) € D-TYPE, thenlet 4, : M — pai(I) € ATTR

Then the result of applying the method M ([P, e, g] to theinstance Z is defined as one possible out-
come of the following sequence of GOOD/ER operations:

1. First, theentity addition ENTADD[P, M, {(A;,g(1)) | | € L, paa(l) € D-TYPE}, 0, {R; | | €
L ppm(l) € E-TYPE} U {rech, {(< (17, g(1)) >,77) | 1 € Ly} U{(< (rec?,e) >, rect)}],
mar king the embeddings of the pattern of the method application.
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2. Next,foreach1 < i < n:

e If O; isan ordinary basic GOOD/ER operation or method application, then apply this op-
eration after having augmented its pattern with a single entity of type M;

e Otherwise, apply O; after having augmented its pattern with

— asingleentity ¢’ of type M;

— thereationships {(r} : €', 77 : piv (1)) | I € L, p',(1) defined, pr(1) € E-TYPE} U
{(rect : €',rec? : ¢;) | s, = {e;}} together with the roles corresponding to these
relationships;

— theattributes {(A4;, p’,(1)) | I € L, Py (1) defined, ppos(1) € D-TYPE}.

3. Finally, the entity deletion ENTDEL [P’ {¢" }] where P’ isa pattern consisting of a single entity
e” of type M, removing the markings introduced by the first operation of this sequence.

Suppose an employee of the “General Savings’ bank wishes to block both the accounts and cash
cards of customer John Smith, using the password “ secret”. He can do this using the method applica-
tion depicted in Figure 5.22.

BANK i block et CUSTOMER

name name
hewpw

General Savings John Smith

secret

Figure 5.22: An example GOOD/ER method application

Graphically, amethod application is represented by a boldface hexagon, linked to the actual para-
metersin the pattern by means of edges |abeled with the parameter’s names, aswell as an edge label ed
rec tothe actual receiver entity in the pattern.

Intermsof the notation of Definition 5.29, Figure5.22 showsthe method applicationblock [P, e, g]
where

¢ the pattern of the method application depicted in Figure 5.22 consists of the nodes and edges
drawnin plain lines;

e therecelver entity e isthe entity of type BANK

¢ thefunction g identifying the actual parameters maps the parameter name cust  to the entity of
type CUSTOMERNd the parameter name newpw to the value of type string
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Figure 5.23 shows the actual sequence of basic GOOD/ER operationsto be executed as aresult of
the method application depicted in Figure 5.22. Theinitial entity addition marks the embeddings of
the pattern of the method application by means of entities of type block . These entities are linked
by means of relationshipsto the parameters which are entities, and have as attributes the parameters
which are values. These entities are then used in replacement of the hexagons in the operations from
the body of the method. The final operation removes them from the ER instance.

1 2

rec 1 rec 2 M cust M cust
BANK otk CUSTOMER

name Anewpw name
General Savings secret John Smith

CUSTOMER

blocked

bool
true

[cuSTOE]
Anewpw
password

ha_cc

Figure 5.23: An example GOOD/ER method

A single feature from Definition 5.29 is not illustrated in this example, namely that of operations
in the body that do not use parameters. In this case, Definition 5.29 neverthel ess enforces the addition
of an isolated entity (of type block in the case of the example) to their pattern. This ensures that
nothing happensif there are no embeddings of the pattern of the method application, sincein thiscase,
theinitial entity addition has no effect.

What the example does illustrate is how GOOD/ER methods offer the possibility to group and
parametrize a sequence of basic GOOD/ER operations for purposes of reuse and encapsulation. But
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besides these advantages, the method mechanism also adds to the expressive power of the GOOD/ER
language, since they introduces recursion into the language.

As an illustration, we conclude this section by modeling a version of the well-known transitive
closure problem (which is clearly not expressible by means of a simple fixed-length sequence of ba-
sic GOOD/ER operations) using a GOOD/ER method. Suppose our example ER scheme includes a
relationship type for modeling child-rel ationships between customers (cf. Figure 5.24).

CUSTOMER

parent hiId

Figure 5.24: A relationship type for modeling child-relationships between customers

Suppose we wish to explicitly represent descendancy-relationships between customers: one cus-
tomer is a descendant of another customer, if he is a child of that customer, or a child of a child of
that customer, and so on. In other words, the descendants-rel ationships represent the transitive clo-
sure of the child-relationships. This operation can be performed using the method TC (for Transitive
Closure), the signature and body of which are depicted in respectively Figures 5.25 and 5.26.

rec rg

0

CUSTOMER

Figure 5.25: Signature of the GOOD/ER method expressing transitive closure

The method TC takes two customers as input, one as receiver and the other as argument.

It adds a descendant -relationship between the receiver and argument, and then calls itself on
the receiver and any child of the argument.

Theprogram depictedin Figure5.27first “doubles’ thechilds  -relationshipswithdescendant -
relationships, after which it initiates the actual computation of the transitive closure by calling the
method TC on any customer with any child of adescendant of that customer asargument. Notethat this
method loops forever in case the input instance contains cycles of has child -relationships. This
could be taken care of in the body of the method, by checking for the presence of ahas ancestor -
relationship between the receiver and the argument, prior to recursively calling the method.

In [Eng90, Sch91a], another manipulation language was introduced for the EER model, called the
Visua Action Language. The definition of this language consists of three levels:

1. basic actions affect single elements (such as an entity or relationship) of an EER instance. They
operate on a graph-representation of a database instance, which includes among others an en-
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ancestor has descendant
ancestor

CUSTOMER

descendant

ancestor has \_descendant
ancestor
parent

ancestor

CUSTOMER

rec

S m

CUSTOMER

Figure 5.27: Program including an application of the GOOD/ER method expressing transitive closure
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coding of the database scheme. Basic actions may be derived automatically from the database
scheme;

2. elementary actions consist of several basic actions, but respect theintegrity constraintsfrom the
database scheme. Such actions may therefore also be derived automatically from the database
scheme;

3. complex actions consist of several elementary actions, and are specified by the user. In order to
indicate the database el ements to which the action should be applied, pre-computed queries are
used, represented by a special graphical symbol.

The following basic differences between the Visual Action Language and GOOD/ER may be de-
rived from this:

e thethree-level definition of the actions in the Visual Action Language, as opposed to the two-
level definition (i.e., rules and programs) of graph rewrite systemsin GOOD/ER;

¢ the automatic derivation of elementary actions from the scheme;
¢ theuse of pre-computed queries as opposed to GOOD/ER’s patterns;

¢ theuse of an encoding of the database scheme in the representation of the database instance.

5.3 On the Expressive Power of GOOD/ER

In Section 5.2, the introduction of the entity abstraction (Definitions 5.25 and 5.26) operation was mo-
tivated by the observation that a certain kind of operations (namely the grouping of entities based on
common properties) cannot be expressed as a sequence of the other basic GOOD/ER operations. This
rai ses the question whether, given the GOOD/ER language consisting of al six basic operations plus
the mechanism of sequencing, there are still other kinds of operations that cannot be expressed. Or,
to put things more positive: which category of operations can be expressed using the GOOD/ER lan-
guage as introduced in Section 5.2?

More generaly, to demonstrate the viability of any newly proposed (and formally defined) lan-
guage, its expressive power should be compared to that of other languages. A possible approach to-
wards such a comparison of languages is the use of so-called completeness-criteria, a technique well
known in the area of database languages. Indeed, aready in [Cod72], Codd proposed to cal alan-
guage for the relational database model complete if its expressive power could be shown equivalent
to that of some “standard” query language, like the relational calculus.

However, in [Ban78] Bancilhon argued that a completeness-criterion, in order to be sufficiently
meaningful, should be language independent. In [Ban78] respectively in [Par78] Bancilhon and Pare-
daens therefore (independently) introduced a similar criterion, stating when a query language for re-
lational databases deserves to be called complete.The criterion says that, in order to be complete, a
query language should express exactly the transformations from a database (i.e., a set of relations) D
to arelation R that satisfy the following two conditions. First, no new values may be added by the
transformation. Second, each domain permutation that maps D to itself, must also map R to itself. A
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transformation satisfying these conditionsis called a generic transformation. These conditions can be
summarized by saying that every automor phismof D must be an automorphism of R, or yet in other
words, every query in the considered language should commute with every automorphism of the input
database D.

It is aso shown in the aforementioned articles that the relational calculus [Ban78] and algebra
[Par78] indeed express exactly these transformations, thereby providing an a posteriori justification
for Codds choice of the relational calculus as a reference language for testing completeness for rela-
tional query languages.

But what does the above criterion intuitively signify? The presence of a (non-trivial) automor-
phism for some database D can be interpreted as follows:. for every value in D, there exists another
value which can “take its place” in the database. Indeed, when each value in D is substituted by its
image under the automorphism, D itself is obtained. Consequently, a value and itsimage under some
automorphism are indistinguishabl e on the basis of those rel ati onshi ps between them which are stored
explicitly in D. The criterion states that if such aresemblance existsin the input database of a query,
it should still exist in the resulting relation. Violating thisis only possible by manipulating values
through more than just their relationships with other values (as stored explicitly in the relations of the
database), in other words by interpreting them. Consequently, this criterion isreally very natural and
unrestrictive, since it merely prohibits interpreting values, or in other words, to perform calculations
on them.

Apart from its theoretical importance, the validity of the criterion for a certain language can also
haveapractical usageif itispossibleto readily check it for two given instances, sincethisisequivaent
to the existence of atransformation between them in the language under consideration.

In [CH80], the above criterion was named BP-completeness (after its inventors). Briefly, alan-
guage is BP-completeif it can express exactly all generic transformations. Since itsintroduction, the
notion of genericity has been used frequently in the context of other database models. Naturally, if we
want to generalizeit to other formalismsbesidestherel ational one, wefirst haveto appropriately define
concepts such as “transformation” and “automorphism”. An example may be found in [GPVG89], in
which BP-completeness is adapted and applied successfully to the nested relational database model.

Therecent shift of attention of the database research community from therel ational model to obj ect-
oriented models raised the question if the BP-completeness criterion could also be applied to the as-
sessment of the expressive power of object-oriented query languages. It soon became clear, however,
that one particul ar characteristic of suchlanguageswould considerably complicate such an application.
First, remember from the above discussion that afirst condition to be satisfied by atransformation ex-
pressed in alanguage satisfying the BP-compl eteness criterion, isthat it may add no new valuesto the
input database. 1n object-oriented query languages, however, it is common practice to incorporate the
result of aquery in the database, by creating (a) new object(s) for it.

So how does this influence the second condition of the BP-completeness criterion, namely that
transformations should commute with the automorphisms of the input database? On one hand, auto-
morphismsmay still be looked upon as permutations of the basic elements of the database (in thiscase,
the objects), that preserve the structure of the instance (in this case, the relationships represented ex-
plicitly intheinstance). Inthe course of atransformation, however, new objects may be created, while
others may be removed. Consequently, we can no longer impose an inclusion relationship on the sets
of automorphismsof theinput- and output-instance of the transformation. The most natural translation
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of such arelationship to the context of automorphism groupsfor object-baseinstanceswould therefore
beto requirethe existence of amapping between the respective automorphi sm groups of two instances,
with the additional constraint that an automorphism and itsimage under the given mapping should co-
incide on the objects still in common to the input- and output-instance. This correspondenceiscrucial
for the understanding of the remainder of this section: database transformations for value-based data
models commuting with permutations corresponds to database transformations for object-based data
model s preserving automorphisms.

This, however, does not yet solve al problemswith applying the BP-compl eteness criterion to ob-
ject databases. In [AK89], the Identity Query Language IQL (which is a language involving object
creation) isintroduced and shown to be very general and powerful. Inthe samearticle however, IQL is
shown unableto expressexactly the class of transformationsthat satisfy the modified BP-compl eteness
criterion as discussed in the previous paragraph. In this section, we therefore introduce an adjusted
version of the criterion — in terms of mappings between automorphism groups, since it was shown
above that thisis the most natural way to go in an attempt to translate BP-completeness criterion to
the context of languagesinvolving object creation — and show that it allows usto precisely character-
ize the set of transformations expressible by means of GOOD/ER programs (i.e., sequences of basic
GOOD/ER operations excluding method applications).

In other words, we provide alanguage independent characterization for the set of pairs of ER in-
stances (Z,Z') for which there exists a GOOD/ER program mapping Z to Z'.

GOOD/ER

Definition 5.30 (GOOD/ER-implication) Let Z and Z’ be ERinstances. Z —> 7' holdsif there ex-
istsa GOOD-program(i.e., a sequence of basic GOOD/ER operations excluding method applications)
that mapsZ to 7.

O

One might wonder why we so explicitly exclude the powerful mechanism of methods from this
study. Thereason for thisisthat for the problem we study in this section, this power is not needed. As
mentioned before, the additional power offered by methods comes solely from their ability to model
recursion. In thissection, we study the problem of expressive power on “instance-level”, that is, given
two instances, we consider the problem of finding necessary and sufficient conditionsfor the existence
of a GOOD/ER program that maps one to the other. Suppose there isindeed a GOOD/ER program,
involving recursive methods, mapping one given instance to another given instance. Since both in-
stances are known in every possible detail, we also know exactly how many times (say, n) these recur-
sive methods will call themselves when the program is applied to the given input instance. Hence we
can simply replace theinitial application of any recursive method in the given program by n copies of
the method’ s body.

However, when studying the expressive power of database manipulations defined as mappings
from one set of instances to another set of instances, rather than between individua instances, the
power of methods is indeed needed, as shown in [VdBVGAG92, VdB93], where the main result of
this section is used to characterize the expressive power of database manipulations defined as map-

pings.

Returning to the problem to be dealt with in this section, remember that the characterization should
be stated in terms of amapping between the respective automorphism groupsof Z and Z', with the con-
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straint that an automorphism and itsimage under the given mapping should coincideon theintersection
of Zand Z'. In[AK89], it was shown that a condition based on an “ordinary” mapping between the
automorphism groupsistoo weak to precisely characterize the expressive power of an object creating
query language. Hence we strengthen the condition by demanding the existence of a homomor phism
between the automorphism groups, as captured in the following definition:

Definition 5.31 (Extension mor phism) Let Z and Z' be two ER instances. An extension morphism
of type (Z,Z") isa group homomorphismh : Aut(Z) — Aut(Z') such that

Vo € Vi NV, Va € Aut(Z) : a(v) = h(a)(v) (5.1)

We refer to property 5.1 as the extension property. To understand the meaning of this name, con-
sider the case where 7 is a subinstance of Z'. The condition then simply says that the image under /
of any automorphism should coincide with that automorphismon Z.

The step from extension morphisms to an adapted BP-compl eteness criterion is simple. We re-
call that a language is BP-complete if it can express exactly all generic transformations. Hence the
following definition:

Definition 5.32 (Generic Transformations) Let Z and Z' be two ER instances. The pair (Z,7Z') isa
generic transformation if there exists an extension morphism of type (Z,Z").
O

We are now ready to state the main result of this section, being that GOOD/ER expresses precisely
al generic transformations.

Theorem 5.33 Let Z and Z' be two ER instances. Then the following are equivalent:

GOOD/ER

1. 7T =17.

2. (Z,7') isageneric transformation.

A first proposition shows that GOOD/ER only expresses generic transformations.

GOOD/ER

Proposition 5.34 If for two ERinstancesZ andZ', Z — 7' holds, then (Z, Z") isa generic transfor-
mation.

Proof The fact that Z === 7' hol ds, implies the existence of a GOOD/ER-program that maps Z to
Z'. We prove the existence of an extension morphism /4 of type (Z,Z") by induction on the length of
this program.

Let us first assume that the GOOD/ER-program consists of zero operations, so Z equalsZ’. The
identity-function on Aut(Z) isthen the required extension morphism of type (Z, Z').
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For the general case, the induction-hypothesisis as follows: for each pair of instances for which
GOOD/ER

7 = T, such that the GOOD/ER-program, mapping Z to Z' consists of at most ¢ basic GOOD/ER-
operations, there exists an extension-morphism of type (Z,Z).

Given a GOOD-program V consisting of ¢ + 1 basic GOOD/ER operations V4, . .., V1, which
maps an instance Z to an instance ', we now have to prove the existence of an extension-morphism
' of type (Z,H').

Let 7' be the result of applying the first ¢ operations of V to Z. By the induction-hypothesis, we
know that there exists an extension-morphism h of type (Z,Z').

We now show how to change the extension-morphism A into an extension-morphism A’ of type
(Z,H'), depending on which kind of basic GOOD/ER operation V. ; actualy is. Notefirst of all that
the behavior of an automorphism on an instanceis completely determined by its behavior on the enti-
tiesin that instance. Indeed, arelationship (P, : ey, ..., P : e;) must be mapped by an automorphism
a totherelationship (P : a(ey),. .., Py : a(ex)), whereas avalue must obviously be mapped to itself.
Hence, when describing automorphismsin the remainder of thisproof, we shall suffice with describing
their behavior on entities.

e Suppose V., isan entity addition or abstraction. If no entitiesare actually added, the definition
of b’ isobvious. If anentity e isadded asa*“result” of an embedding m of the pattern of theentity
additionin Z’, then for al a € Aut(Z), an entity ¢, is also added as a result of the embedding
h(a)om (cf. Lemma5.20). We define b (a)(e) = e,. Furthermore, we define " (a) = h(a) on
VII.

To seethat /' is an extension-morphism of type (Z, #'), let m be an embedding of the pattern
of Vo1 inZ', and let a; and a, be two automorphisms of Z. Suppose three entities e;, e, and
e3 are added to 7' as aresult of the respective embeddings m, h(a;) o m and h(ay) o h(a;) o m.
Then h'(ay)(e1) = ey and h'(as)(e2) = e3, SO h'(az) o h'(ar)(e1) = es. But since the entity
added by h(ay) o h(a;) o mises, h'(as 0 ay)(e1) = e3. The same reasoning holds for newly
added relationships and values, hence ' is a group homomorphism. Sinceit is an extension of
h, h'(a) equalsaonZ NH', for al a € Aut(Z).

e Suppose V. isarelationship addition. If no relationships are actually added, the definition of
h' isobvious. If arelationship r isadded asa*“result” of an embedding m of the pattern of the
relationship additioninZ’, thenfor all « € Aut(Z), arelationship r, isalso added as aresult of
the embedding h(a) o m. We define h/(a)(r) = r,. Furthermore, we define 2'(a) = h(a) on
VII.

Theproof that 2" isan extension-morphism of type (Z, ') istotally analogousto the case where
V41 IS an entity addition.

e Suppose V,,; is an attribute update. Then for any attribute edge (e, A, v), to be updated to
(e, A,v")andforal a € Aut(Z), theattributeedge (h(a)(e), A, h(a)(v)) isupdatedto (h(a)(e),
A, h(a)(v")) = (h(a)(e), A,v"). Consequently, every automorphism of 7’ is also an automor-
phism of H',> sowe cantake i/ = h.

5Unless v’ isavalue not in Z, in which case each automorphism of Z' may be straightforwardly extended to an auto-
morphism of #’.
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e Suppose V.. isan entity deletion. Then for any deleted entity e, and for all « € Aut(Z), the
entity h(a)(e) isalso deleted. The same holdsfor all relationshipsinvolving either e or h(a)(e).
Asaresult, the restriction of an automorphism of Z’ to H' is an automorphism of 7', so we can
take h'(a) equal to h(a) restricted to #', for each « € AUT(Z).

e Suppose V. is arelationship deletion. Then for any deleted relationship » and for al a €
Aut(Z), therelationship h(a)(r) isalso deleted. Asaresult, the restriction of an automorphism
of 7' to H' is an automorphism of ', so we can take h'(a) equal to h(a) restricted to ', for
eacha € AUT(Z).m

Next, we show that the GOOD/ER language can expressany generictransformation (Z, Z'). Thisis
proved in two steps. First we study the specia casewhereZ’ isasuperinstance of Z (i.e., of monotonic
transformations). We giveaGOOD/ER program that, when applied to Z, resultsin asuperinstance (Z')
of Z', which contains information derived from the extension morphism 4. Then we state how this
superinstance may be restricted to Z' by means of another GOOD/ER program (cf. Proposition 5.44).

In the second step, we consider arbitrary instancesZ’. Wetherefore first describe an extension of Z
that also includesZ’, as well as an adaptation of the extension morphism A to this superinstance. This
way we can apply the result of the first step, showing that Z GOOD/ER-implies this superinstance.
Finally we show how this superinstance can be restricted to Z' by means of yet another GOOD/ER
program (cf. Proposition 5.46).

In prepartion of the introduction of the superinstance (Z') mentioned above, we first review some
graph-theoretical notions (see for instance [Hof82, Section 1.4]).

First, the orbit of a nodein a graph is usualy defined as the set of all nodesin that graph that are
the image of that node under some automorphism of the graph. We slightly adapt this definition using
the notion of extension-morphism:

Definition 5.35 (Orbit) Let Z be a subinstance of Z’, and let h be an extension morphism of type
(Z,7'). Let n beanode of Z'. The orbit of nw.r.t. i is defined as the set

orb,(n) ={n" € Vz | Ja € AWt(Z) : h(a)(n) =n'}

In each orbit, an arbitrary but fixed nodeis chosen, called the representative of the orbit. Orbits, (Z' —
T) isthe set of all the orbits of nodesof Z' — 7 wir.t. h.
O

It can easily be seen that Orbits,(Z' — Z) isapartition of V7.
Second, the stabilizer of anodein agraph isusually defined asthe set of all automorphismsof the
graph that fix this node. We also adapt this definition to the notion of extension-morphism:

Definition 5.36 (Stabilizer) Let Z be a subinstance of Z', and let 4 be an extension mor phism of type
(Z,7"). Let n € Vp_7. The stabilizer of n wir.t. & is defined as the set

stp(n) = {a € AW(Z) | h(a)(n) =n}
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It can easily be seen that sty (n) isasubgroup of Aut(Z).
The group-theoretical notion of (left) coset allows usto “characterize” nodes of a graph in terms
of orbits and stabilizers.

Definition 5.37 (Coset) Let G be a subgroup of Aut(Z) andlet a € Aut(Z). A coset of G is defined
asaoG ={aob|be G}. CosetAut(Z) isthe set of all cosets of all subgroups of Aut(Z).
O

The following lemma is of crucial importance to the proof of the main result of this section. It
establishes a one-to-one correspondence between nodes added by a generic transformation (Z,Z") on
one hand, and orbits and cosets of stabilizers on the other hand:

Lemma 5.38 Let 7 be a subinstance of Z’, and let i be an extension morphismof type (Z,Z'). Let O
bean orbitinZ' — Z with representative no. Then there exists a one-to-one correspondence between
O and the set of cosets of st;,(no).

Proof First, let n be anode of O. Then by definition, there is an automorphism « of Z such that
h(a)(no) = n. Weclaimthat aost, (no) isaunique coset corresponding to . To show that aost, (no)
indeed determines a unique coset, we have to provethat it isindependent of the chosen automorphism
a. Indeed, supposethereis someother automorphismb of Z suchthat (b) (no) = n. Thenh(a)(np) =
h(b)(no). Applying h(b~1) to both sides of thisequation yields h(b~* o a)(np) = no, S0b toaisa
member of st;,(np). Asaresult, (b~! o a) o sty (no) = Sty(no). Applying b to both sides of the latter
equation yields a o st,(np) = b o sty (no).

Second, to acoset a o st(np), corresponds the unique node i(a)(np). m

Withthisresult, weareready to definetheinstance (Z'), which extendsthe “target” -instance Z' of a
generic transformation (Z, Z") with information derived from the corresponding extension morphism.

Definition 5.39 Let 7 be a subinstance of Z', and let i be an extension mor phism of type (Z,Z'). We
define the extension (Z') of Z' w.r.t. Z and h as follows.

e (7') includes all entitiesof Z', aswell as

— the elements of Orbits, (Z' — Z) considered as entities, each of a unique type;
— the elements of Aut(Z) considered as entities, all of type AUT;

— the elements of CosetAut(Z) considered as entities, each typed by a unique name for the
subgroup corresponding to the coset.

We assume that all these entities and their types do not occur inZ'.

e (Z") includes all relationshipsand roles of Z', as well as

— for each pair of different entities e, e; in Z of the same type, the relationship (af(el) :
e, a5 < ey) of typediff (), aswell asits corresponding roles;
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— for each automorphisma € Aut(Z) and eachentity e inZ, therdlationship (5, : a, 3,
a(e)) of typee, aswell asitscorresponding roles, assumingthat U zce-1ype 1|E-TYPE](E)
C R-TYPE;

— for each coset b o G € CosetAut(Z) and each automorphisma € b o G, the relationship
(D bo @D 1 a) of type TN, aswell asits corresponding roles;

— for each orbit O € Orbits,(Z' — Z) and each entity e € O, the relationship (e?(o) :
0,6)? . ¢) of type eNO), aswell asits corresponding roles;

— For each orbit-representative no and each automorphisma € Aut(Z), the relationship
(59(5%(”0)),)\(”0)) : a0 sty(no), 6§>‘(Sth(n0))a>‘(n0)) . h(a)(no)) of type A()\(Sh(no)),)\(no)),
aswell asits corresponding roles.

We assume that all these relationship types and role names do not occur in Z’. The set of roles
of types o for all E € E-TYPE isreferred to asthe set of roles of type a;. The same holds for
all other roles and relationships.

e (Z') includes no attributes or values besides those of 7.

The motivation behind this definition of theinstance (Z') may be found in the structure of the proof
of the forthcoming Proposition 5.44. In this proof it is shown how, given a pair of instances (Z,Z')
for which there exists an extension-morphism, a GOOD/ER program can be constructed that maps
ZtoZ'. Inafirst phase, this program adds to 7 its automorphisms (the “functionality” of which is
represented by means of the relationships labeled with entities), subgroups of Aut(Z) and their cosets
(linked to their members by means of theI'-relationships), aswell astheorbitsof 7' —Z. We chooseto
add these mappings and sets themsel ves to the instance Z, since the alternative would be to add nodes
representing them, which would just clutter up al forthcoming definitions and proofs. In a second
phase, the GOOD/ER program then adds the nodes of Z' together with the relationships of types A
and €. Theserelationshipslink it to the coset and the orbit by whichitisuniquely identified asaresult
of Lemma5.38.

Other particularitiesin the definition of (Z') (such as the need for labeling relationships with en-
tities, or the presence of the diff  -relationships) are explained in the course of the proof of Proposi-
tion 5.44.

In the following definition, a given extension-morphism of type (Z,Z") is extended to a mapping
(which we show to be a group isomorphism) from Aut(Z) to Aut((Z")):

Definition 5.40 Let 7 be a subinstance of Z' and let / be an extension morphism of type (Z,Z"). Let
(Z') bethe extension of Z' according to Definition 5.39.
The group homomorphism (h') : Aut(Z) — Aut({Z'})) is defined as follows. Let a € Aut(Z).

1. (h')(a)(n) = h(a)(n), for each noden of Z';

2. (h)(a)(O) =0, for O € Orbits,(Z' — 7);
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3. ()(a)(b) = aob,forbe Aut(Z);
4. (W)(a)(boG)=aobo@G,forboG e CosetAut(Z).

The behavior of (h')(a) on the relationships of (Z') is defined as (h') (a)((Py : ny, ..., Py = ng)) ==
(P : (W) (a)(n1),..., P (h')(a)(ng)).

O

Lemmab5.41 (h') isa group isomorphism.

Proof Wefirst haveto show that (h') isawell-defined mapping, i.e., that it maps automorphisms of
7 to automorphisms of (Z'). Let d be an automorphism of Z. It follows directly from the definition
that (n')(d) isaoneto one function of V7, onto itself, preserving all node labels. We now show that
(h')(d) also preserves al relationshipsin (Z').

e By thefirst item of its definition, (h')(d) preserves al relationships of Z’;

e Since (h')(d) isaoneto one function, it preservesthe diff  -relationships;

o If, for somea € Aut(Z) ande € Vz, (30 : 4,59 : a(e)) isarelationship in (Z'), then
(B (W) (d)(a), B« (1) (d)(a)(e)) = (BY) s doa, 3 : doale)) isaso ardationship
in(Z'};

o If (VD :coG, 'Y : a)isardationshipin (Z'), thena € co G, 0doa € doco G. Asa
result, ()Y : (W) (d)(c o G),%'D : (W) (d)(a)) = (13D 1 doco G D i doa)isdsoa
relationshipin (Z');

o If (]9 :m, &9 : O)isardationshipin (Z'), then m € O. Consequently, by the definition
of orbits, (e}”) : (W')(d)(m),s'? : (W)d)(0)) = (89 : h(d)(m),&'? : O)isdsoa
relationshipin (Z');

o If (PEREmODARO) L py ) (), SPEONACOD o g (1)) is arelationship in (Z7), then

1
(3( S DX (1) (d) () (n)), 55PN () (d) (0 0 S (o)) =
(XS oNAROD 16 0 (), 6 <Sth<”0>> Amo)) 46 a o sty(no)) isalso areationship in
().

To show that (h') is agroup homomorphism, it can be trivially verified that for every node n of
(') and for every a, b € Aut(Z), (h')(a o b)(n) = ((h')(a) o (W) (b)) (n).

We now show that (k') isinjective. If a # b € Aut(Z), thereisanoden inZ for whicha(n) # b(n).
Since h is an extension-morphism, (h')(a)(n) = a(n) # b(n) = (h')(b)(n), S0 (h')(a) # (h')(b).

Finally, we provethat (h') is surjective. Let therefore (a') € Aut((Z')). Because (a') hasto pre-
serve relationships of type €, and each entity of 7' — 7 participates in precisely one relationship of
type €, (a’) must map entities (and hence also relationships and values) of Z' — 7 to entities (respec-
tively relationships and values) of 7' — Z. Asaresult, (a') maps nodes of Z to nodes of Z, and hence
(a")|y, € Aut(Z). Weclamthat (a') = (h')({a')]y,).
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Since orbits (as nodes of (Z')) have alabel which isuniqueto (Z’), they must be fixed by (a)
aswell asby (1) ((a)]v;);

Let n beanodeof Z. Since h isan extension-morphism, i({a"}|v;)(n) = (a')|v;(n) = (a')(n),
s0 (') = (h)({a)]v;) O T;

Let b be an automorphismof Z. By thedefinition of ('), (k') ((a')|v;)(b) = (a’)|v; 0b. Theim-
age under the automorphism (a’) (b) of anoden of Z must equal thetarget of the n-labeled edge
leaving the node (a')(b). Since (a') is an automorphism of (Z'), this target must in turn equal
thenode (a')(b(n)) = (a’)|y, (b(n)). We concludethat (a’)(b) and (h")({a’)|y,)(b) represent the
same automorphism, so (a') and (h")({a'}|v,) map b to the same node;

Let G € CosetAut(Z) suchthat G = {b,...,b,} C Aut(Z). By the relationships of type
I", an automorphism ¢ of (Z') must map G to the coset {c(b;), ..., c(b,)}. In other words, the
behavior of an automorphism of (Z') on Aut(Z), determinesits behavior on CosetAut(Z). Since
(a") = (W) ({a")|v;) on Aut(Z), (a') also equals (h')({(a’}|v;) on CosetAut(Z);

By Lemma5.38, the behavior of an automorphism of (Z') onZ’-Z is determined by its behavior
on Orbits, (Z' — Z) U CosetAut(Z). Since (h')({a'})|y,) and {a") are equal on Orbits,(Z' — Z) U
Coset Aut(Z), they arealsoequal onZ' — 7.

By the definition of (h'), (a') and (h’)({a’)|y;) obviously coincide on the relationships and val-
uesof (Z'). m

This proof concludes the extension of Z into a superinstance (Z') of Z', using information derived
from the extension-morphism 4. Note that this extension is stated in a purely descriptive way, inde-
pendent of the GOOD/ER language. On the other hand, in the proof of Proposition 5.44, 7 is extended
to (Z') by means of a GOOD/ER program. In preparation of this proof, the following definition intro-
ducesaseriesof subinstancesof (Z'), aswell as corresponding morphismsrelating their automorphism
groupsto Aut(Z). In the proof of Proposition 5.44, these subinstanceswill turn out to be the “interme-
diate” results of the GOOD/ER program extending Z to (Z').

Definition 5.42 Let 7 be a subinstance of Z, and let / be an extension morphism of type (Z,Z"). Let
(I') be the extension of 7' w.r.t. Z and h as defined in Definition 5.39.
Then theinstances X'y, . .., K'; are defined as follows:

1
2.
3.

K'y equalsZ
K’y equals X', extended with the diff ~ -relationships of (Z')

K'3 equals X'y extended with Aut(Z) and the e-relationships
(withe € Ugee-TvPe 1[E-TYPE|(E)) of (Z')

. K'y equals K’ extended with CosetAut(Z) and the I'-relationships of (Z')

K'5 equals X', extended with Orbits, (Z' — 7)
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6. K's equals K'5 extended with the entities of Z' and the - and A-relationships of (Z')
7. K'; equals (7).
The mappings ('), ..., (1), are defined as:
(h); + AU(Z) — AUt(K';) : a — (h’>(a)|VK,j (1<j<7)
O

Lemma 5.43 The mappings (#'),(1 < j < 7) as defined in Definition 5.42 are group isomor phisms.

Proof This proof is structured as follows. We first show that each (%' ; is awell-defined, injective
group homomorphism. For each pair of instances K'; and K';; (1 < i < 6), wethen give abijection
between their automorphism groups. Given the property that an injective group homomorphism be-
tween two finite groups with equal cardinality isagroup isomorphism, it follows that each (') isa
group isomorphism.

We first prove that (1), is well-defined, in other words, that for each a € Aut(Z), (h'),(a) =
(W) (a)lv,., isinAut(K';). Toshow that (#'), (a) iswell-defined, notethat, becauise (h)(a) € Aut((Z’)),
it has to preserve relationships of type €. Since each entity of Z' — 7 participates in precisely one
relationship of type €, (h')(a) must map entities (and hence also relationships and values) of 7' — 7
to entities (respectively relationships and values) of Z' — Z. Asaresult, (1), (a) maps nodes of 7 to
nodes of Z. Since (h')(a) isan automorphism, ('), (a) is aso injective and surjective, and preserves
node labels. To show that ('), (a) also preserves edges, let (z, «,y) bean edgein K'y, i.e.inZ. As
aready shown, (h')(a)(x) and (k') (a)(y) are still nodesof K';. But by the definition of (A') and since
h is an extension morphism, (h')(a)(x) = a(x) and (h')(a)(y) = a(y). Since a is an automorphism
of Z, (a(x), o, a(y)) isstill an edge of K'y. So (1), iswell-defined.

We next show that (h’>j isalsowell-defined for 1 < j < 7. Sinceforal 1 < j < 6,anodein
K';—K';_1 haseither anodelabel notin £';_;, or an outgoing edgewith alabel notin K';_;, while X'
always contains all nodes or edges of (Z') with these new labels, (') ;(a) always maps nodes of K
to nodes of K';, and also preserves edges. K'; equals (Z), so (') (a) equals (h'), which has already
been shown a group-isomorphism.

To provethat foral 1 < j < 7, (h'); isinjective, leta # b € Aut(Z). Consequently, thereisa
noden of Z (and thusof X'; for each j) for which a(n) # b(n). By Definitions5.31 (of extension mor-
phisms) and 5.40 (of (h')), itfollowsthat (A')(a)(n) # (k') (b)(n), andthus (h’)(a);(n) # (h')(b);(n).

SinceVa, b € AUt(Z), (h');(a o b) = (h)(aob) = (K')(a) o (h')(b) = (I');(a) o (h');(b), (h'); is
agroup homomorphism for all ;.

Recall that the only thing left to be done, is to give a bijection between the automorphism groups
of al pairs of instances '; and K'; 1 (1 < i < 6). Weonly give details for the first two pairs of
instances. The other bijections can be constructed anal ogously.

Sincein X'y, only diff  -relationships are added to Z, an automorphism « of Z can be extended
straightforwardly to an automorphism of K’ by letting it map arelationship (a; : e, as : ey) to the
relationship (o : a(ey), as : a(es)). Sincethe automorphism a isan injective mapping, thisextension
is an automorphism of K'5. Obviously, the restriction of an automorphism of £’ to the nodes of 7 is
a unique automorphism of Z.
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An automorphisma of K’y can be extended so it mapsan AUT-node b in K'5 to the AUT-node a o b.
Thisextension is obviously unique. Conversely, if an automorphism of K’'3 maps an AUT-node a to a
node b, it meansthat b = ¢ o a, where ¢ isthe restriction of that automorphismto Z. Consequently, if
two automorphismsof X'; are equal on X', they must be equal, so restricting such an automorphism
yields a unique automorphism of £';. m

Recall that our current aim isto show that GOOD/ER can express any “increasing” generic trans-
formation, in other words, that the existence of an extension morphismfor aninstance Z and asuperin-
stance 7" is a sufficient condition for the existence of a GOOD/ER program that, when applied to Z,
resultsin Z'. The GOOD/ER program to be constructed in the proof of the following Proposition has
(T') as an intermediate result, hence the proof contains a“constructive” definition for (Z7).

C GOOD/ER D
7 (Z")

I
. J
GOOD/ER

K';

Figure 5.28: An overview of instances, used in the proof of Proposition 5.44

Proposition 5.44 Let 7 be a subinstance of Z’ for which there exists an extension-mor phism A of type
GOOD/ER

(Z,7"). ThenZT = T'.

Proof Thisproof isstructured asfollows. We build a GOOD/ER program that, when appliedto Z, re-
sultsininstance (Z') asdefined in Definition 5.39. It is shown that the intermediate resulting instances
of this stepwise construction equal the instances X'; (where j indicates the number of the step) from
Definition 5.42. We then give a GOOD/ER program that, when applied to (Z), resultsin the instance
T’ (cf. Figure 5.28).

Step1: Theinput to the program isthe instance Z, which equals X';.

Step 2:  We next add the diff -relationships. First, for each entity type E, we add a diff  *-
relationship between any two entities of type £. Next, we delete any diff -relationships with iden-
tical participants. Figure 5.29 shows the pictorial representation of these operations. Obviously, the
instance resulting from the application of these operationsto X', equals the instance X',

Step 3:  We next add AUT-nodes together with relationships typed with the entities of Z. This oper-
ation can be accomplished with the single entity addition ENTADD[K',, AUT. 0, 0, {e € VZ | A(e) €
E-TYPE}, {(< (39, e) >, 829 | e € V7, Me) € E-TYPE}]. It uses k', as pattern, and adds enti-
ties of type AUT, with for each entity e in K’y arelationship of type e linking the AUT-node to e (cf.
Figure 5.30).

To see that this operation has the desired effect, reconsider Lemma 5.20. Since the identity func-
tion on X', is an embedding of the pattern of this operation, each automorphism of X', isin fact an
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Me) Ae)

B B ,
T—  >—e] K

Figure 5.30: The GOOD/ER operation of Step 3

embedding. By the presence of thediff -edges, these automorphismsareall the possible embeddings
of the pattern. Hence precisely one AUT-node will be added for each element of Aut(X';), which by
Lemma 5.43 is isomorphic to Aut(Z). We may assume without loss of generality that these newly
added nodes are the elements of Aut(Z) themselves. By the choice of the pattern and the relationship
types of theentity addition, if arelationship (5 : a, 3, : ¢') isadded astheresult of an embedding
a € Aut(Z), thenindeed a(e) = ¢'. Consequently, the result of this operation indeed equals X';.

Step 4:  We next add the elements of CosetAut(Z) together with the I"-relationships. Therefore,
for each subgroup G = {ay, ..., a,} of Aut(Z), the following four GOOD/ER operations are applied
consecutively to K'; (cf. Figure 5.31):

1. an entity addition with K'5 as pattern, of entities of type X (which we assume to be a “new”
entity type), linked by means of relationships of type I'* to all the automorphisms of G

2. an entity abstraction of the I'* -relationships ENTABSP, ¢, I'*, A\(G), I'"'] where the pattern P
contains a single entity e of type X;

3. arelationship addition of relationshipsof typeI'“, for each 'Y -rel ationship and I'* -rel ati onship
“sharing” an entity of type X as participant;

4. an entity deletion of all X -entities.

By the observation used in the explanation of the correctness of Step 3, one can see that the first
GOOD/ER operation of this step results in the addition of an entity of type X for each subgroup G
(linked by means of I'X -relationships to the members of G), but also in the addition of an entity for



142 CHAPTER 5. DATABASE MANIPULATION DEFINED AS GRAPH-REWRITING

Figure 5.31: The GOOD/ER operations of Step 4 for the subgroup G = {ay, ..., a,}
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each a € Aut(K';) (which is (group-)isomorphic to Aut(Z)), linked by means of T'* -relationships to
the members of a o GG. By the semantics of entity additions, however, in general several entities are
added for one such coset: e.g., if some subgroup contains n automorphisms, then the entity addition
for that particular subgroup adds » entities, since an embedding from the pattern followed by an au-
tomorphism of that subgroup, resultsin the addition of another entity of type X, corresponding to the
same subgroup.

However, the resulting instance should contain exactly one entity for each coset. Recalling De-
finition 5.25, entity abstraction allows grouping entities according to common relationships. Hence
the following three GOOD/ER operations group X -entities that represent the same set (with the I'X -
relationships indicating the “elements”), thereby create a unique \(G)-entity for each coset. Without
loss of generality, we may assume that the entity abstractions add the elements of CosetAut(Z) them-
selves. Consequently, the result of this step equals X' ;.

We conclude this step with a calculation, which is used later on in this proof.

Va € Aut(Z),v4 < j < 7,VG subgroup of Aut(Z) : (h');(a)(G) = (h)(a)(G) =aoG (5.2

Step 5:  We next add the elements of Orbits,(Z' — Z). An isolated entity can be added easily by
means of an entity addition using an empty pattern. So we apply one entity addition to X', using
an empty pattern, for each element of O of Orbits,(Z' — 7), of an entity typed by a unique name
for that orbit. Without loss of generality, we may assume that these entity additions add the orbits O
themselves. Consequently, the result of this step equals X's.

We al so concludethis step of the construction with acal culation, whichisused later onin the proof.

Va € AUt(Z), V5 < j < 7,Y0 € Orbits,(Z' — ) : ('), (a)(0) = (W')(a)(0) = O (5.3)

Step6:  Wenow addtheentitiesof 7' —Z together withtheir attributesand the A- and €-relationships.
Therefore, one entity addition isapplied to K'5 for each element of Orbits, (Z' — Z) (cf. Figure 5.32).

Given the representative no of an orbit O, the entity addition has K'5 as pattern, and adds entities

of type A\(no), together with two relationships. A relti onshlp of type e* ) links the newly added

entity to the orbit O, while the other relationship, of type A (St (no)) , links the newly added

entity to the stabilizer st, (no). Additionally, the entity addition adds the attrlbutes of no, which are

identical for al entitiesin O. In summary, if A; through A, are all attributes in ATTR such that

no € owner(4;)(1 < i < n), then the entity addition for Step 6 is ENTADD[IC’5, A(no),

{(Ar, pATTRI(A41)(10)). ... (Ay, pIATTRI(A,) (n0))}. 0, {1, AXS oD Ao},

{(< (62(0), 0) >, 6/1\(0))7 (< (65/\(Sth(”0))a)‘(”0))’ sty (o)) >, 6%/\(5‘511(“0)):/\("0)))}]

To seethat these operations have the desired effect, recall that (h') is surjective (cf. Lemma5.43),
so for each b € Aut(K';), there isana € Aut(Z) suchthat (h').(a) = b. Asaresult, if no is
added with relationships (61 : no,e)? 1 0) and (61 (S (n0 ) Alno) : ng, SPERmONAmO)
st,(no)), then an entity no is also added with relationships (61( ) ng,eg(()) : (W)(a)(0)) and
(XS roNAmO)) o NS moNARO) 1y () (st (n0))). The notation n?, indicates that this
is the entity, added by the same entity addition as no as aresult of the automorphism b of 's. Re-

calling the equations (5.2) and (5.3), the relationshipsinvolving nt, equal (¢} : nt, ey : 0) and
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Figure 5.32: The GOOD/ER operations of Step 6 for the orbit O

(P EmoNAmo) .y AS(0NAM)) (gt (ne))). Consequently, we have added an entity for
each pair consisting of an orbit and an arbitrary coset of the stabilizer of the representative of that or-
bit. We now want to apply Lemma5.38to 's. In fact, thisLemmaconcernstheinstance (Z'), but the
only difference between (Z') and K', isthat ' lacks the relationships of Z' — Z. Since the absence
of these relationships does not invalidate the proof of Lemma5.38, we may apply it here. It follows
that for each entity of Z' — Z exactly one entity is added. Without |oss of generality, we may assume
that these entity additions add the nodes of Z' — Z themselves. Consequently, the result of this step
equals K's.

Step 7:  Finaly, weadd therelationshipsof Z'—Z. For each suchrelationship, say (P, : e, ..., Py, :
en), arelationship addition is applied with K'q as pattern, of arelationship (P; : e1,..., P, : ey).
Obviously, these operations add at least enough relationships. To see that they do not add too many
relationships, note that for each such relationship and for each b € Aut(K's), arelationship (P; :
b(e1),..., P, : be,)) isaso added. Since (k') is surjective (cf. Lemma 5.43), there exists an auto-
morphism a of Z such that b = (h')4(a), so the relationship is actualy (P, : (h')s(a)(e1), ..., Py :
(h')¢(a)(en)), or, by the definition of (h"), and (h'), (P1 : h(a)(e1),..., Py : h(a)(ey)). Sinceh(a) is
an automorphism of Z', this relationship must be present in Z', and hence in (Z'). Consequently, the
resulting instance is X', which equals (Z').

Summarizing, the application to Z of the six GOOD programs described above, resultsin (Z').
Restricting (Z') to the given instance Z' can be done very easily by deleting all entities typed AUT or
by some identifier for an orbit or a subgroup of Aut(Z), aswell asall diff -relationships. m

We still have to prove that GOOD/ER is able to express all generic transformations (Z,Z'), even
those where Z' is not a super-instance of Z. Proving this becomes easy if we use Proposition 5.44.
Before stating the final Proposition, leading to the proof of Theorem 5.33, we define akind of superin-
stance for two instances, containing (almost) all “information” of both these instances.

Definition 5.45 Let Z and 7' be ER instances. e define the instance 77 7+ as follows:

Vs, = VrUVzU
{l,anentitynotinVz U Vg } U
{(PE1,Pf:e)|e€Vi_p, Ar(e) = K € E-TYPE} U
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{(P:en,....,P 1en) | (PL:er,...,P, e,) € Vr_p}
Wz, = WU
{(z,a,y) € Wz |« ¢ ATTR} U
{all roles corresponding to the relationshipsin Vz, , }
Az,p() = Az(n)  (n€V7)
= Ar(n) (neVr—Vp)
= difference (n=1)
= RY  (me{(PF:L,Pf:e)|eeVi_p, M\z(e) = K € E-TYPE})
= R~ (nef{(P; :e1,....,P 1en) | (Pr:er,...,Py:e) € Vg,

n

M ((Py:eq,..., P, e,)) =R}

Trjl',zl = TrI’

We assume that difference  isa new entity type, that for each entity type K, R¥ isa new relation-
ship type that for each relationship type R, R™ is a new relationship type, and that for each role P,
P and P are new roles.

O

Besides containing all entitiesand relationshipsof bothZ and Z’, 7z 7 @l so indicateswhich entities
and relationships of Z are absent in Z'. For entities, say of type K, thisisindicated by linking them
to the “auxiliary” entity [ by means of relationships of type R. For relationships (say of type R),
thisisindicated by adding relationships of type R~ with the same participants. Not incorporating the
attributes of Z' in the instance [J7 7 ensures that the superinstance is indeed a well-defined instance,
since the union of two instances is in general not an instance: conflicts may arise with the unique-
ness of attributes (cf. Definition 5.4). Attributes are therefore dealt with separately in the proof of the
following proposition, which concludes the proof of the Theorem 5.33:

Proposition 5.46 Let Z and 7’ be instances such that (Z, Z') is a generic transformation.
GOOD/ER

ThenZ — 7.

Proof In this proof, we give (or prove the existence of) three GOOD/ER programs. The first one
maps I to the instance J7 7/, the second maps Jz 7 to I but with the attributes of Z, and the third
maps the latter instanceto Z'.

The existence of the first transformation is shown using Proposition 5.44. Therefore we define the
following mapping ~’ from Aut(Z) to Aut(Jz 7). Let a € Aut(Z). Let h be the extension-morphism
corresponding to the generic transformation (Z,Z").

1. A'(a)(n) = a(n), forn € Vz;
2. h'(a)(n) = h(a)(n), forn € Vz;

3. W(a)(l) =1;
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4. the behavior of ' on the relationships of 77z isdefined as 2/ (a)((Py : ny, ..., Py ng)) =
(Py: W (a)(n),. .., Py - h'(a)(ng)).

We omit the tedious but straightforward verification that /' is indeed an extension morphism of
type (Z, Jz ). Applying Proposition 5.44, we know that there exists a GOOD/ER program that maps
Tto jI,I’-

The second GOOD/ER program deletes from J7 7+ all entitiesand relationshipsnot in Z' (cf. Fig-
ure5.33). Itfirst deletesall relationshipsof sometype R for which thereexistsarelationship of type R~
with the same participants. Next, all relationships of type R are deleted. Then all nodes are deleted
which are linked to [, which is supposed to be the single entity of type difference . Finaly the
entity [ itself is deleted. Let 7 be the outcome of this second GOOD/ER program.

rl ° r n
rI r;]'

E E
1 2

O

r B r
difference R E

Figure 5.33: The GOOD/ER operations for the proof of Proposition 5.46 for the relationship type R
and the entity type £

The only difference |eft between 7 and the instance 7' is that entities which were also present in
7, still have their attribute values from Z. Therefore, let e be an entity in Z N Z' whose «-éttribute
hasthevalue d; in Z (and hencein Z) and the value d, in Z'. Then we apply to Z the attribute update
ATTUPDIZ, , e, d5]. Such an attribute update is performed for each attribute to be modified. The
reasoning which shows that all these attribute updates together have the desired effect, is similar to
the proof of Step 7 in the proof of Proposition 5.44.

Combining the above three GOOD/ER programs, we get the desired GOOD/ER program mapping
ZtoZ'.m

Combining Propositions 5.34 and 5.46, Theorem 5.33 easily follows.
We conclude this section with afew corollaries, in which somesimple“classes’ of transformations
are shown to be computablein GOOD/ER.

GOOD/ER

Corrolary 5.47 If Z and Z’ are instances with empty intersection, thenZ — 7'. m
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Indeed, the homomaorphism mapping each automorphism of Z to theidentity on Z' always satisfies
the extension property.

GOOD/ER

Corrolary 5.48 Let 7 be the empty ER instance, and Z' an arbitrary instance. ThenZ — 7'. m

Thisisjust a speciaization of the previous Corollary. It showsthat any ER instance can be gener-
ated by a GOOD/ER program, starting from scratch.

Corrolary 5.49 Let 7 be an instance such that Aut(Z) = {idz}, and let Z' be an arbitrary instance.
GOOD/ER

ThenZ — 7'.m

Theintuition behind this Corollary isthe fact that in an instance which has only the identity map-
ping as automorphism, any node is clearly distinguishable from any other node by means of some
pattern (e.g., theinstanceitself), and hence any concelvabl e transformation on it may be expressed by
a GOOD/ER transformation.
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Chapter 6

Conclusions

In thisthesis, we studied the applicability of the theory of graph grammars and graph rewrite systems
to the definition of syntax and semantics of visual database languages. In Chapters 4 and 5, we suc-
cessfully demonstrated the theory’s applicability in two different ways. In thisconcluding chapter, we
contrast these two approaches, and discuss the outcome of our study.

The major differences between the definitions of respectively GOQL/EER (cf. Section 4.2) and
GOOD/ER (cf. Section 5.2) may be summarized as follows (cf. Table 6.1):

syntax semantics
GOQL/EER | constructive attribute operational

(graph rewriterules) evauations (translation)
GOOD/ER | descriptive graph rewriting | denotational (1/O pairs)

Table 6.1: Contrasting GOQL/EER to GOOD/ER

Syntax : The syntax of GOQL/EER is defined in a constructive way, namely by means of the graph
rewrite rules of agraph grammar.

In contrast, the syntax of GOOD/ER is defined in a purely declarative manner, namely by sum-
ming up the constituents of “sentences’ in the language. The latter isclearly illustrated in e.g.,
Definition 5.14 of entity addition syntax.

Semantics: The semantics of GOQL/EER is defined in an operational way, namely by providing
a translation from GOQL/EER queries to SQL/EER queries, in the form of attribute evalua-
tions within the graph rewrite rules of the graph grammar. Note that the actual evaluation of
GOQL/EER queries on a database instance is not incorporated in the definition.

In contrast, the semantics of GOOD/ER is defined in a denotational manner, by an algorithmic
description of the resulting instance of the application of abasic GOOD/ER operationto agiven
input instance.

Hence the most prominent difference liesin therole played by graph rewrite rulesin the respective
definitions. whereas both syntax and semantics of GOQL/EER queries are defined by means of graph
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rewrite rules, basic GOOD/ER operations are themselves graph rewrite rules. The latter is easily mo-
tivated: looking upon database manipulation as graph rewriting follows quite naturally from looking
upon database instances as graphs. In contrast to what is suggested by the table of contents of thisthe-
sis, the study of the GOOD/ER language chronologically preceded the study of GOQL/EER. Having
defined the semantics of GOOD/ER as graph rewriting, the question then arose whether graph rewrite
rules could also be used to define agraph-based |language, the semantics of which has basically nothing
to do with graph rewriting. The (positive) answer to this question is the graph grammar specification
of GOQL/EER, aslisted in Appendix C.

Another difference between GOQL/EER and GOOD/ER liesin their respective expressive power.
Even though GOQL/EER isaquery language, while GOOD/ER is adatabase manipul ation language,
we can still compare them on the basis of their capacity to “identify” information within a database.
Asan example, the GOOD/ER program shown in Figure 5.19 deletes all cash cards that do not access
any account. But before this can happen, the program first has to identify these accounts. From the
fact that a negative condition cannot be expressed in a GOQL/EER pattern, it follows readily that no
GOQL/EER query can possibly perform such an identification, while in GOOD/ER, negationisin a
sense “simulated” using deletion.

On amore genera level, GOOD/ER is agenerically complete language (as discussed extensively
in Section 5.3) while GOQL/EER can only express conjunctive queries (i.e., queries whose equiv-
alent in logic consists ssimply of a conjunction of atomic conditions). Intuitively, this magjor differ-
ence in expressive power between the two languages discussed in thisthesis, stems from the fact that
while GOOD/ER uses pattern matching combined with the powerful paradigm of graph rewriting,
GOQL/EER uses only pattern matching.

6.1 LessonsLearned from GOQL/EER

From the act of specifying GOQL/EER by means of agraph grammar, someimportant lessons may be
drawn. First, we have shown that the use of an attributed graph grammar allows the seemlessintegra-
tion of the definition of both (abstract) syntax and semantics of a graph-based language into one sin-
gle specification, in the same way the use of attributed string grammars enables a similarly integrated
specification of textual languages. Second, when defining graph-based, and particularly diagrammatic
languages, the ability to work with graphs as “basic primitives’ in the graph rewrite rules surely has
its advantages over having to work with some general purpose specification language in which these
graphs first have to be (sometimes cryptically) encoded themselves. It allows one to concentrate on
the essentials of the graph-based language itself, rather than on the details of the applied specification
language.

Besides, the specification process of GOQL/EER aso taught us a few general lessons on how to
write specifications in PROGRES, or, more generaly, in an operational specification language based
on programmed graph rewrite systems. Most importantly, both the process of writing, as well as the
structure of the resulting specification, allowed usto derive the following rudimentary “life-cycle’ for
the construction of a graph grammar specification for avisual language:

1. the given visua representation of the language must first be mapped onto a graph model (cf.
Section 4.2.1). This correspondence is called a visual metaphor by Haber et al. [HIL94], who
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applied this idea to the visual representation of database schemes. The maor motivation they
offer for making a clear separation between the visual representation of a database scheme and
the database scheme itself, is that as a consequence, the visual model becomes more flexible.
Recently it was argued by Cattarci et al. [CCM95] that the idea of avisua metaphor should be
extended to visual query languages aswell, thereby providing an a posteriori motivation for the
work presented in thisthesis.

2. Next, the basic components of this graph model, i.e., the nodes, edges, and non-structural char-
acteristics should be recognized, and mapped to agraph scheme, i.e., acollection of node classes,
node types, and edge types, including attribute declarations.

3. Certain restrictions on the way in which these basic components may be composed into syntac-
tically correct graphs (such asthefact that the graph should be acyclic), cannot be captured in a
graph scheme alone. These restrictions should be reflected in a set of graph rewrite rules.

4. If an operational definition of the semantics of the language isto beincorporated into the graph
grammar specification, then the foregoing three steps should be reiterated. Concretely, the de-
sign of the graph model should be reevaluated, resulting in the addition and/or modification of
both the graph scheme and the set of graph rewrite rules.

Asmentioned in Chapter 1, going through thislife-cycleismost certainly facilitated by the operational
character of the PROGRES specification language in addition to the availability of the PROGRES
environment supporting the editing, analysis and execution of PROGRES specifications.

Besides the at times unstable character of this environment (within six months, four different re-
leases of the system were used!), the most significant problem encountered while applying the life-
cycle described above to the PROGRES specification of GOQL/EER was caused by the diverging way
inwhich nodes and edges are treated in the PROGRES formalism. The exact problem was extensively
covered in Section 4.2. In summary, by the absence of an edge class hierarchy, productions cannot take
edge types as parameters. Consequently, language el ements such as attributes and roles, which in the
visual representation of GOQL/EER have aclear “edge-like" character, have to be model ed by nodes.
Thisin turn imposes the use of meta-attributes for the enforcement of crucial structural integrity con-
straints, which surely does not add to the clarity and understandability of the resulting specification.

A secondary problem encountered in the process of writing the GOQL/EER specification was the
absence of mechanisms for structuring this specification. Indeed, as remarked in Chapter 3, PRO-
GRES *“sections’ are merely a syntactical way of structuring a specification, and have no semanti-
cal meaning whatsoever. In principle, al declarations (of node types, paths, productions,...) in the
GOQL/EER specification could be included in the specification in any arbitrary order. Structuring
mechanismsfor graph grammar based specification languages are therefore currently atopic of active
research [EE94].

6.2 LessonsLearned from GOOD/ER

The most prominent lesson to be learned from the definition of GOOD/ER is the fact that with their
typical form of an action to be performed on the outcome of a query, manipulations on a database
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representable as a graph may be naturally represented by graph rewrite rules. Asamajor benefit, this
representation offers an equally natural graphical syntax. The benefits of the Graph-Oriented Object
Database model are demonstrated in an experimental environment called xgood [GPT93, GPTVdB93],
supporting the editing and execution of GOOD programs.

Instead of developing ageneral purpose graph rewrite formalism (such as PROGREYS) it appeared
to be more suitableto define anumber of categories of rules specially tailored towardstypical database
mani pul ations such as the addition of entities or the update of attributes. Forcing the user to apply only
rewriterulesthat fall withinthese categories, allowstheenforcementsof structural integrity constraints
on the database instance. At the end of Section 5.2, it was also shown how on top of these tailored
graph rewrite rules, the usual collection of typical programming constructs (such as sequences and
procedures) traditionally found textual languages, may be superimposed.

Another major benefit of formalizing a graph-oriented database manipulation language by means
of graph-theoretical notionswas clearly illustrated in Section 5.3, in which we formally characterized
the expressive power of the GOOD/ER language. Formalizing the expressive power of object-creating
query languages was, at the time of writing, considered a tough and open problem, as e.g., mentioned
by Abiteboul and Kanellakisin their influential paper on object identity and query languages [AK 89,
p.161]. In the proof of Theorem 5.33, in which we present a solution to this problem, the graph-
theoretical characteristics of GOOD/ER are most prominently used. Thisfirst of al supportstheclaim
made in Section 1.2 that the formal definition of alanguage enables the formal study of properties of
that language. More specifically, the fact that the results presented in Section 5.3, and especidly their
proofs, rely so heavily on the graph-based nature of the GOOD/ER model, generally argues in favor
of a graph-based |ook on object-oriented databases, being (at least from the structural point of view)
networks of objects.

6.3 Open Issuesfor Future Research

Any research activity raises questions, perhaps even morethan it answers. Theissue of formally defin-
ing visual languages by means of graph rewriting, being part of the currently very active area of re-
search in visual language formalization, certainly makes no exception to thisrule. We therefore con-
clude this thesis with a series of open problems, raised, but not answered, in the course of preparing
and writing thisthesis:

e How doesthework presented in this thesis compare precisely to other work on visual language
definition, donein the visual language research community? Are definitionsusing graph rewrite
systems easier to write, more readable, more compact,...? This should be verified experimen-
tally, by defining one and the same visual language by means of graph rewrite systems, as well
as by means of some other technique.

Can we eventually conclude from such a comparison that graph rewrite systems may eventu-
ally replace attributed string grammars grammars as the standard mechanism for formalizing
languagesin general ?

e The borderline between the concrete and abstract syntax (discussed in Section 1.3) is not that
clear cut, especially in the context of visual languages. Would it be desirable and/or feasible
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to incorporate layout information, spatial relationships, or other aspects from the definition of a
visual language into a graph grammar-based specification for them?

e How can graph rewrite systems be used to define visual languages outside the realm of data-
bases? |Is the applicability of graph rewrite systems restricted to diagrammatic languages, or
can they also cope with iconic ones?

¢ If PROGRESwould offer mechanismsfor structuring a specification, for instance amodul ariza-
tion concept [EE94], would this allow for improved specifications of visual languages? Would
it for instance be possible to specify modules, reusable in the definition of different languages?
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Appendix A

Notational Conventions

F(5)
{z1,...,2,}
0

B(S)

S*

g+

< XyyeneyTy >

S X ...x S,
f:Sx...x8, =T
f:S1x...x8,+T
flv

E.E,
€, ey
R,R,
T
PP,
D, D,
d,d,
A A,
C,C,
T,T,

V. Va

a,f3,...

the set of al finite sets with elements from the set S

the set containing the elements =, through z,,

the empty set

the set of all finite bags or multisets with elements from the set S
the set of al finite lists of elements from the set S

the set of all finite non-empty lists of elements from the set S
alist with elements z; through z,,

the cartesian product of the sets S; through S,

atotal function from with domain S; x ... x S, andrange T’
apartial function from withdomain S; x ... x S,, andrange T’
the restriction of the function f to the subset V' of its domain

entity types
entities
relationship types
relationships
roles

datatypes

(data) values
attributes
components
constructors

set of vertices (or nodes) (of agraph G)
vertices or nodes

set of edges (of agraph G)

edge labels

embeddings

isomorphism, homomorphism
automorphisms
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Appendix B
EBNF-grammar for SQOL/EER

Aucxiliary Production Rules

STRING :=CHARJ[ STRING]
CHAR t=A|...|Z]4...|2/0]...] 9 ...
DATAOPNS = STRING
ATTRIBUTE = STRING
ROLE = STRING
AGGROPNS = STRING
ENTITYTYPE ;= STRING
INTEGER ;= STRING
DATAPRED = STRING
COMPONENT = STRING
CONSTRUCTION := STRING
RELSHIPTYPE := STRING
VARIABLE ;= STRING
Queries
QUERY .= SFW-TERM
| TERM
SFW-TERM = [ select TERMLIST ] [ from DECLLIST ] [ where FORMULA ]
TERMLIST “=TERM [, TERMLIST ]
DECLLIST :=DECL [, DECLLIST ]
Declarations
DECL m=VARIABLE in ENTITYTYPE

| VARIABLE in RELSHIPTY PE
| VARIABLE in RANGEUNION
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Ranges

RANGEUNION  ::= RANGE [ union RANGEUNION ]
RANGE = ENTITYTYPE

| RELSHIPTY PE

| TERM

Terms

TERM :=VARIABLE
| STRING
| DATAOPNS TERM
' TERM DATAOPNSTERM ')’
| DATAOPNS’ (" TERMLIST ')’
| TERM '." ATTRIBUTE
| TERM '." COMPONENT
| ATTRIBUTE
| COMPONENT
| TERM *." ROLE
| TERM ' ENTITYTYPE
| distinct TERM
| TERM '[" INTEGER']’
|ind’(" TERM ")
| AGGROPNS’ (" TERM ")’
| TERM "." INTEGER
' SFW-TERM ')’

Formulas

FORMULA ::= DATAPRED TERM
| TERM DATAPRED TERM
| DATAPRED ' (" TERMLIST ")’
| TERM "= TERM
| TERM in TERM
| TERM isnull
| TERM isaENTITYTYPE
| RELSHIPTYPE ' (" PARTLIST )
| PARTICIPANT RELSHIPTY PE PARTICIPANT
| TERM
| not ' FORMULA )’
' FORMULA and FORMULA ")’
' FORMULA or FORMULA')
| exists DECLLIST '’ FORMULA
| forall DECLLIST [ with FORMULA ] " FORMULA
PARTLIST ::= PARTICIPANT [ ', PARTLIST ]
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PARTICIPANT  :=ROLE’: TERM
| TERM
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Appendix C
The PROGRES specification for GOQL/EER

Thetransactions GOQL 1 through GOQL 14 at the end of this specification generate the abstract syntax
graphs of almost al (partial) GOQL/EER queries, as well as of the graphical part of the HQL/EER
queries presented in Chapter 4. The precise correspondence is as follows:

GOQL1 | Figure4.3

GOQL2 | Figure4.5

GOQL3 | Figure4.8

GOQL4 | Figure4.10
GOQL5 | Figure4.12
GOQL6 | Figure4.15
GOQL7 | Figure4.20
GOQL8 | Figure4.21
GOQL9 | Figure4.22
GOQL10 | Figure4.26
GOQL11 | Figure4.27
GOQL12 | Figure 4.28
GOQL13 | Figure 4.32
GOQL14 | Figure4.33
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spec GOQL
from LongStrings import

types
text;
functions
EmptyText :->text,
Text ( string) -> text,
&& : (text, string) -> text,
== : (text, string) -> boolean,
Concat . ( text, text) -> text;
end;

function concom : ( S1:text; S2:text) ->text =

[S1=="":S2
|S2=="":S1

| Concat (S1 &&", ", S2)]
end;

function conand : ( S1 :text; S2:text) ->text =

[ S1=="true":: S2

| S2 =="true" :: S1

| Concat (S1&&"and", S2)]

end;

section FixedGraphScheme
node class QUERY_ELEM end;
node class PART_OF_COMPLEX is a QUERY_ELEM end;
node class ENT_REL isa QUERY_ELEM end;
node class ENTITY isa ENT_REL, PART_OF COMPLEX end;
node class RELSHIP isaENT_REL end;

node class ROLE

meta
rel : type in RELSHIP [1:1];
ent: type in ENTITY [O:n];
end;

edge type role2e : ROLE -> ENTITY [1:1];

edge type role2r : ROLE -> RELSHIP [1:1];

node class VALUE isa QUERY_ELEM end;

node E[:I_ass_ ATOMIC_VALUE is a VALUE, PART_OF_COMPLEX
intrinsic

Value : string;
end;



node class COMPLEX_ VALUE is aVALUE

derived
Elem_Type : type in QUERY_ELEM [0:n];
end;

node class ATTRIBUTE

meta
entrel : type in ENT_REL [0:n];
val : type in VALUE [1:1];
end;

edge type attribute2er : ATTRIBUTE -> ENT_REL [1:1];
edge type attribute2v : ATTRIBUTE -> VALUE [1:1];

node class COMPONENT

meta
cent: type in ENTITY [0:n];
comp : type in COMPLEX_VALUE [1:1];
end;

edge type component2e : COMPONENT -> ENTITY [1:1];

edge type component2c : COMPONENT -> COMPLEX_VALUE [1:1];

node class SET VALUE is a COMPLEX_VALUE
intrinsic

Singleton : boolean := false;

end;

edge type cont : SET_VALUE -> PART_OF COMPLEX;
node class MVALUE isa COMPLEX VALUE end;
node class BAG_VALUE isa MVALUE end;

node class LIST VALUE isa MVALUE end;

node class MMEMBER

intrinsic
Index : integer := 0;
end;

node type mmember : MMEMBER  end;
edge type contains_mm : MVALUE -> MMEMBER,;
edge type mm_is_poc : MMEMBER -> PART_OF COMPLEX [1:1];

node class DERIVED SQL
derived

SFW_Term : text = EmptyText;

end;
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node class SQB is a BAG_VALUE, DERIVED_SQL, QUERY_ELEM
redef derived
Elem_Type =
(( self.=OutCons=>: CONSTITUENT [1:1]).
-cons_is_n->: QUERY_ELEM [1:1)). type;
SFW_Term =
Concat (
Concat (
Concat (
Text ("( select"),
concom (
concom ( EmptyText, all _ self.=OutCons=>.Term),
concom ( EmptyText, all  self.=OutSQB_Cons=>.SFW_Term)) ),
Concat (
Text (" from"),
concom ( EmptyText,

all _ self.-is defined_by->.Declaration ) ) ),

Concat (
Text (" where "),
conand ( Text ( "true"),
all_ self.-is_defined_by->.Formula)))

&&")";
end;

node type sqb : SOB end;

node class CONSTITUENT
intrinsic

Formula : text := Text ( "true");

Declaration : text := EmptyText;

Term : text := EmptyText;

Output : boolean := false;
end;
node type constituent : CONSTITUENT end;

edge type is_defined_by : SQB -> CONSTITUENT;
edge type cons_is_n: CONSTITUENT -> QUERY_ELEM [1:1];

node class SQB CONS is a CONSTITUENT, DERIVED_SQL
redef derived

SFW_Term = self.(-cons_is_n->: SQB [1:1]).SFW_Term;
end;

node type sgb_cons : SQB_CONS end;

path OutCons : SQB -> CONSTITUENT [0:n] =
1 =>2 in_

****************************************************

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

condition ‘2.0utput;
end;



path OutSQB_Cons : SQB -> SQB_CONS [0:n] =

,,,,,,,,,,,,,,,,,,,,,,

return NewsS = 2’;

end;
(* Add_first_SQB *)

1 =>2 in_
| is_defined_by
.| 'l :SQB > 2
condition ‘2.0utput;
end;
end;
section Productions
production Add_first SQB ( ut NewS : SQB) =
. |1 :sqgb |
. |2 :sgb |
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production Add_SQB (S : SQB; out NewS : SQB ; out SC: SQB_CONS) =
|1 =S !
1 =1

cons_is_n
3’ :sgb_cons — P> 2" :sgb

; is_defined_by |

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

return NewsS = 2’;
SC =3
end;
(* Add_S@B *)

restriction QuterQuery : SQB =
not def <-cons_ is n-
end;

path recCons : SQB -> CONSTITUENT =
-is_defined_by-> & (-cons_is_n-> & instance of SQB & -is_defined_by->) *
end;
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production Add_ER

2' :constituent — » 3 :ERtype

(S:SOQB; VarName : string ; ERtype : type in ENT_REL ;
out E: ENT_REL; out C : CONSTITUENT) =
|1 =S ‘4 :SQB !
i OuterQuery 3
Y =1 4 =44 |
| is_defined_by |
i | cons_is_n i

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

folding { ‘1, ‘4 };
condition not (Text ( VarName ) in ‘4.=recCons=>.Term);

transfer 2’.Term := Text ( VarName );
2'.Declaration := Text (VarName ) && " in "

&& string ( ERtype );
return E := 3’;
Cc:=2;
end;
(* Add_ER *)

path InLowerScopeThan : SQB -> QUERY_ELEM =
(<-cons_is n- & instance of SQB_CONS & <-is_defined_by-) +
& -is_defined_by-> & -cons_is_n->

end;
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production Add_Role

(R : RELSHIP ; Etype : type in ENTITY ; Rtype : type in ROLE ;

out E : ENTITY ; out C : CONSTITUENT)
1 cons_is_n | 1
| ‘1T =R <4— ‘2 constituent |
| ‘ |
| is_defined_by |
3 InLowerScopeThan 3
| ‘3 :sgb |
3 cons_is n !
‘ 11 :11 2’ :‘2 |
I role2r T is_defined_by T |
i 5 Rtype 3 =3 3
i role2e i is_defined_by i i
1 cons_is_n |
| | 4 :Etype <4————| 7' :constituent l
! |

condition Rtype.rel = R. type;

Etype in Rtype.ent;

transfer 7°.Term := ‘2.Term && "." && string ( Rtype );

return E := 4’;

C:=7,
end;

(* Add_Rol e *)
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production Add_ Attribute

(Er: ENT_REL ; Att: type in ATTRIBUTE ; Val : type in VALUE ;
out v : VALUE ; out C : CONSTITUENT)

7777777777777777777777777777777777777777777777777777777777

cons_is_n

‘3 :CONSTITUEN‘IL
|

InLowerScopeThan

is_defined_by |

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

****************************************************

T attribute2er is_defined_by T

i attribute2v is_defined_by i
cons_is_n \

6 At 2 =2

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

condition Er. type in Att.entrel;
Att.val = Val;
transfer 5. Term := ‘3.Term && "." && string (Att);
return v := 4’;
C =5,
end;
(* Add_Attribute *)
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production Add_Component
(E:ENTITY ; Comp: type in COMPONENT ; Cv : type in COMPLEX_VALUE ;
out e : COMPLEX_VALUE ; out C : CONSTITUENT) =

7777777777777777777777777777777777777777777777777777777777

cons_is n

‘3 :CONSTITUEN'Il
|

InLowerScopeThan

is_defined_by |

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

7777777777777777777777777777777777777777777777777777

cons_is_n

component2e is_defined_by

component2c is_defined_by
v ) v
cons_is_n
4 :Cv ¢ 5 :constituent

i 6" :Comp 20 =2 3

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

condition E. type in Comp.cent;
Comp.comp = Cv;
transfer 5’.Term := ‘3.Term && "." && string (Comp );
return e := 4’;
C =5},
end;
(* Add_Component *)

path InHigherScopeThan : CONSTITUENT -> SQB =
<-is_defined_hy- &
(-is_defined_by-> & instance of SQB_CONS & -cons_is_n->
& instance of SQB) *
end;
(* InH gher ScopeThan *)
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production Add_to_Set

(Sv:SET_VALUE ;S : SQB ; POCtype: type in PART_OF_COMPLEX ;
VarName : string ; out POC : PART_OF_COMPLEX;

out C : CONSTITUENT ) =

777777777777777777777777777777777777777777777777777777777777777777777777

| cons_is_n 'Il l
| =sv 4————— '3 :CONSTITUEN ‘6 :SQB |
| | |
| InHigherScopeThan % |
| OuterQuery |
| 2 =S |
i cons_is_n !
=1 3 =3 6 ='6 |
| cont 2 =2 l
1 is_defined_by |
| y | |
| cons_is n \ |
| 4 :POCtype -« 5 :constituent |
1 ‘ !

folding { ‘2, ‘6 };

condition POCtype in Sv.Elem_Type;

‘1.Singleton implies (  card (‘l.-cont->) =0);

not (Text ( VarName ) in ‘6.=recCons=>.Term);

transfer 5. Term ;= Text ( VarName );
5'.Declaration := Concat ( Text ( VarName )
&&"in", ‘3. Term);
return POC = 4’;
C =5,
end;
(* Add_to_Set *)
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production Add_to_Mvalue

(Mv : MVALUE ; s : SQB ; POCtype : type in PART_OF_COMPLEX ;

VarName : string ; out c : PART_OF_COMPLEX; out C : CONSTITUENT)
! cons_is_n 1L !
L'l =My < ‘3 :CONSTITUEN 7 :SQB !
I | I
! InHigherScopeThan % !
! OuterQuery |
| 2 =s |

cons_is_n
1 =1 3 =3 7 =7

i 6’ :mmember 27 =2 i
i mm_is_poc i i is_defined_by i
1 cons_is_n | :
l 4 :POCtype < 5 : constituent |
| | |
folding { ‘2, ‘7 };
condition POCtype in ‘1.Elem_Type;
not (Text ( VarName ) in ‘7.=recCons=>.Term);

transfer 5’.Term := Text ( VarName );

5’.Declaration :=

Concat
(Text (VarName &"in"), [ ‘3. type = sgb_cons ::
('3: SQB_CONS).SFW_Term
| ‘3.Term ] );
return c := 4’;
C =5,
end;

(* Add_to_Mal ue *)



production Add_Indexed_to_Mvalue
(Mv : MVALUE ; POCtype :

out P : PART_OF_COMPLEX ;

type in PART_OF_COMPLEX ; Ind :
out C : CONSTITUENT) =

7777777777777777777777777777777777777777777777777777777777

cons_is_n

InLowerScopeThan

‘3

:CONSTITUEN1L
|

>~

is_defined_by

integer ;

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

77777777777777777777777777777777777777777777777777777777

11

cons_is_n

contains_mm i

is_defined_by

: mmember

mm_is_poc i

41

: POCtype

cons_is_n

is_defined_by

| 6

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

condition POCtype

transfer 6’.Index := Ind;
5.Term :='3.Term && "[" &&

return P :=4’;
C =5,
end;

in‘1.Elem_Type;

(* Add_I ndexed to Mval ue *)

string (Ind ) && "";
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production Select (C : CONSTITUENT ) =

ffffffffffffffffffffff

,,,,,,,,,,,,,,,,,,,,,,

ffffffffffffffffffffff

,,,,,,,,,,,,,,,,,,,,,,

condition card ((‘l.<-is_defined_by-: SQB [1:1]).-contains_mm->) = 0;

transfer 1'.Output := true;
end;

(* Select *)

production Assign_Value ( AV : ATOMIC_VALUE ; Val : string ) =

| cons_is_n 1L 3

L |1 =AV ¢ ‘2 :CONSTITUEN |

1 |

| cons_is_n 3

o= < 2 =2 ‘
transfer

2'.Formula := conand ( ‘2.Formula,
Concat (‘2.Term && " =", Text (Val)));
1'.Value := Val,
end;
(* Assign_Val ue *)

path Within_Scope_of : CONSTITUENT -> CONSTITUENT =
<-is_defined_by- & (<-cons_is_n- & <-is_defined_by-) *
& -is_defined_by->

end,

(* Wthin_Scope_ of *)



production Merge_Entities (E1, E2 : ENTITY ) =
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777777777777777777777777777777777777777777777777777777777777

1 =E1

con

‘3 :CONSTITUEN

|
|
|
|
|
|
:
| cons_is_n
|
|
|
|
|
|
|
|
|

11 Within_Scope_of
|

=E2

S_is_|

‘4

:CONSTITUEN1L
|

-,

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

777777777777777777777777777777777777777777777777777777777777

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

1 =1
| '\cons_is_n
| cons_is_n
| 3 =3
condition E1. type = E2. type;
embedding redirect <-role2e- from ‘2
redirect <-mm_is_poc- from ‘2

redirect <-cons_is_n-
redirect <-attribute2er-
redirect <-component2e-

redirect <-cons_is_n-
transfer
3'.Formula := conand ( ‘3.Formula,
Concat (‘'3.Term && " =", ‘4.Term ) );

end;
(* Merge Entities *)

from ‘2

from ‘2

to 1
to 17
to1’;

to 1

to 1%

to 1
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production Merge_Relationships ( R1, R2 : RELSHIP ) =

7777777777777777777777777777777777777777777777777777777777

1L Within_Scope_of 1L
‘3 :CONSTITUEN |> ‘4 :CONSTITUEN

| |
I I
I I
I I
| |
| |
1 1
I I
| cons_is_n cons_is_n |
| |
I I
I I
| |
| |
| |
I I
I I
I I
| |

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

**********************************************************

| 1 =1 |
| cons_is_n i
| cons_is_n |
| 3 =3 4 =4 |
condition ‘2. type = ‘1. type;
embedding redirect <-role2r- from ‘2 to 1’;
redirect <-attribute2er- from ‘2 to1’;
redirect <-cons_is_n- from2 to1l’;
transfer
3.Formula := conand ( ‘3.Formula,
Concat (‘3.Term && " =", ‘4.Term ) );
end;

(* Merge_Rel ationships *)



production Merge_Atomic_Values ( V1, V2 :

ATOMIC_VALUE) =

7777777777777777777777777777777777777777777777777777777777

1 ‘1 =V1 2 =V2 1
| cons_is_n cons_is_n !
l J]' Within_Scope_of J]_ |
1 ‘3 : CONSTITUEN > 4 :CONSTITUENT |
1 | L
1 1 =1 1
3 cons_is_n i
, Cons_is_n ‘
: 3 =3 4 =4 1
condition ‘2. type = ‘1. type;
embedding redirect  <-cont- from2 to1’;
redirect <-mm_is_poc- from2 to1’;
redirect <-attribute2v- from'2 to 1
redirect <-cons_is_n- from2 to1’;
transfer
3'.Formula := conand ( ‘3.Formula,
Concat (‘4.Term && " =", ‘3.Term));

end;
(* Merge_Atom c_Val ues *)
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production Merge_Set Values ( S1, S2: SET_VALUE ) =

777777777777777777777777777777777777777777777777777777777777

| |
| |
| |
| |
| |
| |
| |
| |
l l
' cons_is_n cons_is_n l
| |
| |
I I
| |
| |
| |
| |
| |
| |
| |
| |

J]' Within_Scope_of JT
‘3 : CONSTITUEN > ‘4 : CONSTITUEN
| |
1 1 =1 1
3 cons_is_n i
, Cons_is_n |
1 3 =3 4 =4 1
condition ‘2. type = ‘1. type;
embedding redirect  -cont-> from'2 to1
redirect <-attribute2v- from2 to1l’;
redirect <-component2c- from'2 to1
redirect <-cons_is_n- from2 to1l’;
transfer
3'.Formula := conand ( ‘3.Formula,
Concat (‘3.Term && " =", ‘4. Term ) );
end;

(* Merge_Set Val ues *)
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production Merge_MValues ( Mvl, Mv2 : MVALUE ) =

7777777777777777777777777777777777777777777777777777777777

'|L Within_Scope_of '|L
‘3 :CONSTITUEN |> ‘4 :CONSTITUEN
| |

: 1 =1 !

3 cons_is_n i

1 CONS_is_n !

! 3 =13 4 =4 l

condition ‘2. type = ‘1. type;

not (‘'1.  type = sqgb);
embedding redirect  -contains_mm-> from2 to1’;

redirect <-attribute2v- from'2 to 1’
redirect <-component2c- from2 to1’;
redirect <-cons_is_n- from‘2 to1’;
transfer
3'.Formula := conand ( ‘3.Formula,
Concat (‘3.Term && " =", '4.Term ) );
end;

(* Merge_Mval ues *)

end;
(* Productions *)

section VariableGraphScheme
section NodeClasses
node class ENTRY_STATION isa ENTITY end;

node class ATM isa ENTRY_STATION end;

node class CASHIER_STATION isa ENTRY_STATION end;
node class CONSORTIUM is a ENTITY end;

node class BANK isa ENTITY end;
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o

node class ACCOUNT isaENTITY  end;
node class GENERIC_TRANSACTION isa ENTITY end;

node class CASHIER_TRANSACTION is a GENERIC_TRANSACTION end;
node class REMOTE_TRANSACTION is a GENERIC_TRANSACTION end;
node class CASHIER  isa ENTITY  end;

node class CASH CARD isaENTITY end;

node class CUSTOMER isa ENTITY end;
end;

section NodeTypes
node type entry_station : ENTRY_STATION end;
node type atm : ATM end;
node type cashier_station : CASHIER_STATION end;

node type set_of cashier_station : SET_VALUE
redef derived
Elem_Type = CASHIER_STATION;

end;
node type consortium : CONSORTIUM end;

node type bank : BANK end;

node type list_of bank: LIST_VALUE
redef derived
Elem_Type = BANK;

end;
node type account : ACCOUNT end;

node type account_s : SET_VALUE
redef intrinsic
Singleton := true;
redef derived
Elem_Type = ACCOUNT;
end;

node type list_of account: LIST_VALUE
redef derived
Elem_Type = ACCOUNT;

end;
node type generic_transaction : GENERIC_TRANSACTION end;
node type cashier_transaction : CASHIER_TRANSACTION end;

node type remote_transaction : REMOTE_TRANSACTION end;
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node type cashier : CASHIER end;

node type list of cashier: LIST_VALUE
redef derived
Elem_Type = CASHIER,;

end;

node type cash_card : CASH_CARD end;

node type list_of cash_card : LIST_VALUE
redef derived
Elem_Type = CASH_CARD;
end;

node type customer : CUSTOMER end;

node type entered_on : RELSHIP end;

node type eo_es : ROLE
redef meta

rel := entered_on ;
ent ;= ENTRY_STATION ;

end;

node type eo t: ROLE
redef meta

rel := entered_on ;
ent := GENERIC_TRANSACTION ;
end;

node type owned_by : RELSHIP end;

node type teller : ROLE
redef meta

rel := owned_hy ;
ent :=ATM;
end;

node type owner : ROLE
redef meta
rel := owned_by ;
ent := CONSORTIUM ;

end;
node type entered_by : RELSHIP end;

node type eb _ct: ROLE
redef meta

rel := entered_by ;
ent := CASHIER_TRANSACTION ;
end;

node type eb _c : ROLE
redef meta

rel := entered_by ;
ent .= CASHIER ;
end;

node type started by : RELSHIP end;
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node type sb_rt: ROLE
redef meta

rel := started_by ;
ent := REMOTE_TRANSACTION ;
end;

node type sb_cc : ROLE
redef meta

rel := started_by ;
ent := CASH_CARD ;

end;
node type concerns ;: RELSHIP end;

node type ¢ t: ROLE
redef meta

rel := concerns ;
ent := GENERIC_TRANSACTION ;
end;

node type ¢ _a: ROLE
redef meta

rel ;= concerns ;
ent ;== ACCOUNT ;

end;
node type accesses : RELSHIP end;

node type a_a: ROLE
redef meta

rel ;= accesses ;
ent ;== ACCOUNT ;
end;

node type a_cc : ROLE
redef meta

rel := accesses ;
ent ;= CASH_CARD ;
end;

node type has : RELSHIP end;

node type ha_cc : ROLE
redef meta

rel := has ;
ent ;= CASH_CARD ;
end;

node type ha_c : ROLE
redef meta

rel := has ;
ent := CUSTOMER ;
end;

node type holds : RELSHIP end;
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node type ho ¢ : ROLE
redef meta

rel := holds ;
ent := CUSTOMER ;
end;

node type ho_a: ROLE
redef meta

rel := holds ;
ent := ACCOUNT ;
end;

node type money : ATOMIC_VALUE end;

node type time : ATOMIC_VALUE end;
node type address : ATOMIC_VALUE end;

node type list of address : LIST_VALUE
redef derived
Elem_Type = address;

end;

node type _string : ATOMIC_VALUE end;
node type int : ATOMIC_VALUE end;
node type bool : ATOMIC_VALUE end;

node type entry station_location : ATTRIBUTE
redef meta
entrel := ENTRY_STATION ;
val ;= address ;
end;

node type generic_transaction_entry time : ATTRIBUTE
redef meta
entrel ;= GENERIC_TRANSACTION ;
val :=time ;
end;

node type generic_transaction_amount : ATTRIBUTE
redef meta
entrel := GENERIC_TRANSACTION ;
val := money ;
end;

node type atm_cash_on_hand : ATTRIBUTE
redef meta
entrel ;= ATM ;
val := money ;
end;

node type atm_dispensed : ATTRIBUTE

redef meta
entrel ;== ATM ;
val := money ;

end;
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node type cashier_name : ATTRIBUTE
redef meta
entrel := CASHIER ;
val := _string ;
end;

node type bank _name : ATTRIBUTE
redef meta
entrel := BANK ;
val := _string ;
end;

node type bank_location : ATTRIBUTE
redef meta
entrel ;== BANK ;
val ;= address ;
end;

node type consortium_name : ATTRIBUTE
redef meta
entrel := CONSORTIUM ;
val := _string ;
end;

node type customer_name : ATTRIBUTE
redef meta
entrel := CUSTOMER ;
val := _string ;
end;

node type customer_residence : ATTRIBUTE
redef meta
entrel ;= CUSTOMER ;
val := list_of address ;
end;

node type cash_card_password : ATTRIBUTE
redef meta
entrel .= CASH_CARD ;
val := _string ;
end;

node type cash_card_serial number : ATTRIBUTE
redef meta
entrel := CASH_CARD ;
val :=int;
end;

node type cash_card_limit : ATTRIBUTE
redef meta
entrel := CASH_CARD ;
val := money ;
end;

node type account_blocked : ATTRIBUTE

redef meta
entrel ;= ACCOUNT ;
val := bool ;

end;
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node type account_balance : ATTRIBUTE
redef meta
entrel := ACCOUNT ;
val := money ;
end,;

node type consortium_consists_of : COMPONENT
redef meta
cent := CONSORTIUM ;
comp := list_of_bank ;
end;

node type bank_owns : COMPONENT
redef meta
cent := BANK;
comp :=set_of cashier_station ;
end;

node type bank_proper_acct : COMPONENT
redef meta
cent := BANK ;
comp = account_s ;
end;

node type bank_manages : COMPONENT
redef meta
cent := BANK;
comp :=list_of account;
end;

node type bank_employs : COMPONENT
redef meta
cent := BANK;
comp := list_of cashier ;
end;

node type bank_issues : COMPONENT
redef meta
cent ;= BANK ;
comp :=list_of cash_card ;
end;
end;
end;
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section Transactions

transaction GOQL1 =
use s : SQB;
avl, av2 : VALUE;
r,el, e2: ENT_REL;
cl, c2,c3, c4,c5: CONSTITUENT
do
Add_first SQB ( outs)
& Add_ER (s, "h", has, outr, outcl)
&

Add_Role ((r : RELSHIP), cash_card, ha_cc, outel, outc?)
& Add_Role ( (r : RELSHIP), customer, ha_c, oute2, outc3)
& Add_Attribute

((el: ENTITY), cash_card_password, _string, out avl,

outc4)

& Add_Attribute

((e2: ENTITY), customer_name, _string, out av2, outch)
& Select (c4)
& Select (c5)

end

end;

(* GOQLL ™)

transaction GOQL2 =
use s : SQB;
cvl, cv2 : COMPLEX VALUE;
el, e2: ENT_REL;
e3, e4 : PART_OF_COMPLEX;
cl, c2,c3,c4,ch, c6, c7, c8 : CONSTITUENT;
avl, av2 : VALUE

do

Add_first_SQB ( outs)
& Add_ER (s, "bal", bank, outel, outcl)
& Add_ER (s, "ba2", bank, oute2, outc2)
& Add_Component

((el: ENTITY), bank_employs, list_of cashier, out cvl,

outc3)

& Add_Component

((e2: ENTITY), bank_employs, list_of cashier, out cv2,

outc4)

& Add_to_Mvalue

((cvl : MVALUE), s, cashier, "cal", oute3d, outch)
& Add_to_Mvalue

((cv2 : MVALUE), s, cashier, "ca2", outed4, outc8)
& Merge_Entities ((e4 : ENTITY), (e3: ENTITY))
& Add_Attribute ( el, bank_name, _string, out avl, out c6)
& Add_Attribute ( €2, bank_name, _string, out av2, outc7)
& Select (¢6)
& Select (¢7)

end

end;

(* GOz *)
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transaction GOQL3 =
use s : SQB;
rl, r2, r3: ENT_REL,
el, e2, e3, e4, e5, e6 : ENTITY;
cl, c2,c3, c4, c5, c6, c7, c8, c9, c10 : CONSTITUENT;

avl : VALUE
do

Add_ first_ SQB ( outs)
& Add_ER (s, "acc", accesses, outrl, outcl)
& Add_ER (s, "has", has, out r2, outc?)
& Add_ER (s, "hol", holds, out r3, out c3)
& Add_Role ((rl : RELSHIP), account, a_a, outel, outcd)
&
Add_Role ((rl : RELSHIP), cash_card, a_cc, oute2, outch)
&
Add_Role ( (r2 : RELSHIP), customer, ha_c, oute3, outc6)
& Add_Attribute

( e3, customer_name, _string, out avl, out c10)
& Add_Role

((r2 : RELSHIP), cash_card, ha_cc, outed4, outc7)
&
Add_Role ( (r3 : RELSHIP), customer, ho_c, outeb5, outc8)
& Add_Role ((r3 : RELSHIP), account, ho_a, oute6, outc9)

& Merge_Entities (el, e6)
& Merge_Entities (e2, e4)
& Merge_Entities (€3, e5)
& Select (¢10)

end
end;

(* GOQA3 *)

transaction GOQL4 =
use s : SQB;
el : ENT_REL,;
e2 : PART_OF_COMPLEX;
cl, c2, c3, c4, c5 : CONSTITUENT;
avl, av2 : VALUE;
cvl : COMPLEX_VALUE

do
Add_first SQB ( outs)
& Add_ER (s, "co", consortium, outel, outcl)

& Add_Component
((el: ENTITY), consortium_consists_of, list_of bank,

out cvl, outc?)
& Add_Indexed_to Mvalue
((cvl : MVALUE), bank, 2, oute2, outc3)
& Add_Attribute
(el, consortium_name, _string, out avl, outc4)

& Assign_Value ( (avl : ATOMIC_VALUE), "General Banking" )
& Add_Attribute
((e2: ENTITY), bank_name, _string, out av2, outch)
& Select (¢5)
end
end;

(* G4 *)
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transaction GOQLS5 =
use s, s1, s2 : SQB;
scl, sc2: SQB CONS;
avl, av2, av3 : VALUE;
av4 : PART_OF_COMPLEX;
el, e2: ENT_REL;
cl, c2,c3,c4,c5,c6: CONSTITUENT

do
Add_first SQB ( ou ts)
& Add_SQB (s, outsl, outscl)
& Add_SQB (s, uts2, outsc2)
& Add_ER ('s1, "b1", bank outel, cl)
& Add_ER ( s2, "b2", bank, out e?, c2)
& Add_Attribute
((el: ENTITY), bank_name, _string, outavl, outc3)
& Add_Attribute
((el: ENTITY), bank_location, address, out av3, outch)
& Add_Attribute
((e2: ENTITY), bank_location, address, out av2, outc4)
& Select (c4)
& Add_to_Mvalue (s2, s, address, "a", out av4, out c6)
& Merge_Atomic Values
((av3 : ATOMIC_VALUE), (av4 : ATOMIC_VALUE))
& Select (¢3)
& Select (c6)
& Select (scl)
end
end;

(* GOQAS5 *)

transaction GOQL6 =
use s, s1, s2 : SQB;
el: ENT_REL;
cvl, cv2 : COMPLEX_VALUE;
e2, e3 : PART_OF_COMPLEX;
cl, c2, c3, ¢4, ¢5 : CONSTITUENT;
scl, sc2 : SQB_CONS
do
Add_first SQB ( outs)
& Add_SOB (s, out s1, out scl)
& Add_SQB ( s1, out s2, out sc2)
& Add_ER (s, "co", consortium, outel, outcl)
& Add_Component
((el: ENTITY), consortium_consists_of, list_of bank,
out cvl, outc?)
& Add_to_Mvalue
((cvl : MVALUE), s1, bank, "b", oute?2, outc3)
&

I\JI—‘

Add_Component

((e2: ENTITY), bank_owns, set_of cashier_station, out cv2,
outc4d)

& Add_to_Set



((cv2 : SET_VALUE), s2, cashier_station, "cs", out e3,
outch)

& Select (scl)

& Select (sc2)

& Select (¢5)

& Select (¢3)

& Select (cl)

end
end;

(* GOQA6 *)

transaction GOQL7 =
use s, s1, s2, s3: SQB;
scl, sc2, sc3: SQB_CONS

do
Add_first_SQB ( outs)
& Add_SQB (s, outsl, outscl)
& Add_SQOB (s, outs2, outsc2)
& Add_SQOB ( s1, outs3, outsc3)
end
end;
(* GOQL7 *)

transaction GOQL8 =
use s, s1: SQB;

scl: SQB_CONS;

rl, r2 : ENT_REL;

cl, c2: CONSTITUENT

do
Add_first_SQB ( outs)
& Add_SQB (s, outsl, outscl)
& Add_ER (s1, "r1", R, outrl, outcl)
& Add_ER (s, "r2", R, out r2, outc?)
& Merge_Relationships ( (rl1 : RELSHIP), (r2 : RELSHIP) )
end
end;
(* GOA8 *)
transaction GOQL9 =
use s : SQB;
el: ENT_REL;
sv: COMPLEX_VALUE;
e2 : PART_OF _COMPLEX;
avl, av2 : VALUE;
cl, c2,c3, c4,c5: CONSTITUENT
do
Add_first_ SQB ( outs)
& Add_ER (s, "el", bank, outel, outcl)
&

Add_Component

((el: ENTITY), bank_owns, set_of _cashier_station, out sv,
outc?)
&
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Add _to_ Set
((sv: SET_VALUE), s, cashier_station, "cs",

)
& Add_Attribute ( e1, bank_name, _string,
& Add_Attribute
((e2: ENTITY), entry_station_location, address,
outch)
end

end;
(* GOQL9 *)

transaction GOQL10 =
use s, s1: SQB;

sc : SQB_CONS;

el: ENT_REL;

sv : COMPLEX_VALUE;

e2 : PART_OF _COMPLEX;

avl, av2 : VALUE;

cl, c2, c3, c4,c5: CONSTITUENT

do

Add_first_ SQB (
& Add_SQB (s, out s1,
& Add_ER (s, "el", bank,
&
Add_Component
((el: ENTITY), bank_owns, set_of cashier_station,

outc2)

& Add_to_Set

((sv:SET_VALUE), s1, cashier_station, "cs",

out c3)

& Add_Attribute ( el, bank_name, _string,
& Add_Attribute

((e2: ENTITY), entry_station_location, address,

outc5)

end
end;
(* GOQL10 *)

transaction GOQL11 =
use s : SQB;
e ENT_REL;
avl, av2, av3 : VALUE;
cl, c2, c3, c4 : CONSTITUENT
do
Add_first_SQB ( outs)
& Add_ER ( s, "e", cash_card,
& Add_Attribute
(e, cash_card_serial_number, int,

Add_Attribute ( e, cash_card_limit, money,
& Add_Attribute
(e, cash_card_password, _string,

& Assign_Value ( (av3 : ATOMIC_VALUE), "password" )

end
end;

(* GOQL1L *)

out e2, out c3

out avi, outc4)

out av2,

outcl)

outcl)

out avi, outc?)

out av3,
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transaction GOQL12 =
use s : SQB;
el : ENT_REL,;
e2 : PART_OF_COMPLEX;
av : VALUE;
cv : COMPLEX_ VALUE;
cl, c2,c3, c4 : CONSTITUENT

do
Add first SQB ( outs)
& Add_ER (s, "c", consortium, outel, outcl)
& Add_Attribute
(el, consortium_name, _string, outav, outc?)

& Assign_Value ((av : ATOMIC _VALUE), "Banks Unlted")
& Add_Component
((el: ENTITY), consortium_consists_of, list_of bank,
out cv, outc3)
& Add_to_MvaIue
((cv : MVALUE), s, bank, "b", oute2, outc4)
end
end;

(* o1z *)

transaction GOQL13 =
use s : SQB;
cvl, cv2, av3, av4 : VALUE;
el, e2: ENT_REL;
avl, av2 : PART_OF_COMPLEX;
cl, c2, c3, c4, c5, c6, c7, c8 : CONSTITUENT
do
Add_first_ SQB ( outs)
& Add_ER (s, "c1", customer, tel
& Add_ER (s, "c2", customer, ut e2,
& Add_Attrlbute
((el: ENTITY), customer_residence, list_of address,
out cvl, out c3)
& Add_Attribute
((e2: ENTITY), customer_residence, list_of _address,
out cv2, outc4)
& Add_to_Mvalue
((cvl: MVALUE), s, address, "al", out avl, outch)
& Add_to_Mvalue
((cv2 : MVALUE), s, address, "a2", out av2, out c6)
& Merge_Atomic_Values
((avl: ATOMIC_VALUE), (av2 : ATOMIC_VALUE))
& Add_Attribute
(el, customer_name, _string, out av3, outc7)
& Add_Attribute
(e2, customer_name, _string, out av4, out c8)
& Assign_Value ( (av4 : ATOMIC_VALUE), "John")
& Select (¢7)
end
end;

(* GOQL13 *)
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transaction GOQL14 =
use s1, s2 : SQB,;
scl: SQB_CONS;
rl, e3: ENT_REL;
el, e2: ENTITY;
cl, c2, c3, c4, c5, c6, c7 : CONSTITUENT,;
avl, av2, av3 : VALUE

do
Add_first SQB ( outsl)
& Add_SQB ( s1, out s2, out scl)
t

& Add_ER ( s1, "ho", holds, outrl, outcl)
& Add_Role ((rl : RELSHIP), account, ho_a, outel, outc2)
&

Add_Role ((rl : RELSHIP), customer, ho_c, oute2, outc3)
& Add_Attribute

(el, account_balance, money, out avl, outc4)
& Add_Attribute

(e2, customer_name, _string, out av2, outch)
& Select (c5)
& Add_ER ( s2, "ac", account, oute3, outc6)
& Add_Attribute

((e3: ENTITY), account_balance, money, out av3, outc7)
& Select (¢7)

end

end;

(* GoQL14 *)

transaction MAIN =
GOQL1

end;

(* MAIN *)

end;
(* Transactions *)



Samenvatting

Graaf Herschrijfsystemen en Visuele Database Talen

De gebruiksvriendelijkheid van een informatie- ofte database-systeem kan in belangrijke mate ver-
beterd worden door het visualiseren van diverse aspecten van de bijhorende gebruikersinterface. Eén
aspect van een dergelijke interface dat zich hiertoe uitstekend leent, is de taal om de database te onder-
vragen (de zogenaamde querytaal) of te manipuleren. Nieuwe inzichten in mens-machine interactie,
evenals recente hardware-evoluties, hebben dan ook geleid tot de ontwikkeling van een brede waaier
van talen en hulpmiddelen voor visuele interactie met informatiesystemen.

Helaas zijn slechts weinige van de in de literatuur besproken formalismen ook formeel onder-
bouwd. Bij talendiewel formeel gedefinieerd zijn, wordt vaak gebruik gemaakt van uitgebrei de string-
grammatica’s. In de regels van een dergelijke grammatica worden, naast de gebruikelijke terminale
en niet-terminal e symbolen, ook speciale operatoren gebruikt om ruimtelijke (of meer-dimensionale)
verbanden tussen de symbolen aan te geven. Het merkwaardige hieraan is dat stringgrammaticasin
origine ontwikkeld werden om tekstuel e (en dus één-dimensionale) talen formeel te kunnen definiéren.
Eind jaren '60 werden echter graafgrammatica’s ingevoerd, onder andere om op grafen gebaseerde
talen te kunnen formaliseren. Visuele, en vooral dan diagrammatischetalen, laten zich immers uitste-
kend uitdrukken in termen van grafen en graafherschrijving.

Een regel in een graafgrammatica bestaat uit een tweetal grafen. De toepassing van zo'n regel op
een graaf komt neer op het vervangen van een isomorf voorkomen van de ene graaf (de zogenaamde
linkerkant) door een isomorfe kopie van de andere graaf (de zogenaamde rechterkant). De gramma-
tica definieert dan de taal van alle grafen die kunnen worden verkregen door toepassing van een wil-
lekeurige sequentie regels op een “initiéle” graaf. Nauw verwant met graafgrammatica’s zijn de zo-
genaamde graafher schrijfsystemen. In tegenstelling tot grammatica’s bestaan herschrijfsystemen uit
gestructureerde verzamelingen regels, en kunnen zodoende gebruikt worden om een graaf te “her-
schrijven” tot een andere graaf.

In dit proefschrift wordt onderzocht hoe graaf herschrijfsystemen kunnen worden gebruikt om zo-
wel syntax als semantiek van visuele talen voor database-systemen formeel te definiéren. We bestu-
deren daarbij twee mogelijkheden.

In een eerste benadering vertrekken we van een uit de literatuur gekende techniek om uit een gra-
fische representatie voor database-schema's een eenvoudige visuele querytaa af teleiden. Het formu-
leren van een query in een dergelijke taal bestaat uit het samenstellen van grafische componenten uit
een gegeven (visueel gepresenteerd) database-schema tot een patroon.

Zo kan bijvoorbeeld het diagram van figuur C.1 op twee manieren bekeken worden. Het kan ener-
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@ naam _ eigenaar ,‘@ pas aswoord @

Figure C.1: Een diagram met een dubbele betekenis

zijds worden gelezen a's een database-schema. In dat geval geeft het aan dat in een database die vol-
gensdit schemaisopgebouwd, informatie kan opgeslagen worden over klanten en de bankpas(sen) die
ze bezitten, evenal s de naam van die klanten en het paswoord van de bankpassen. Anderzijdskan men
het diagram ook lezen als een vraag, waarbij de vraagsteller zijn/haar interesse uitdrukt in de naam van
in de database aanwezige klanten, evenals het paswoord van bankpassen die ze bezitten. In sectie 4.1
van dit proefschrift wordt de grafische querytaal GOQL/EER ingevoerd, waarmee queries kunnen ge-
formuleerd worden, gebruik makend van de grafische componenten van een Extended Entity Rela-
tionship diagram. In sectie 4.2 wordt vervolgens aangetoond hoe zowel de (abstracte) syntax als de
semantiek van deze taal formeel gedefinieerd kunnen worden door middel van een graafgrammatica.
De abstracte syntax van een GOQL/EER query wordt uitgedrukt door middel van een graaf, terwijl
de semantiek wordt gedefinieerd door middel van een vertaling naar de tekstuele querytaal SQL/EER.
Deze vertaling is geintegreerd in de graafgrammatica, en maakt gebruik van knoop-attributen in de
graaf.

De graafgrammatica is geschreven in PROGRES (ontwikkeld aan de RWTH Aachen), het op dit
ogenblik meest expressieve specificatie formalisme gebaseerd op graafherschrijfregels. De benodigde
concepten van deze taal worden herhaald in hoofdstuk 3 van dit proefschrift, en aldaar geillustreerd
door middel van een specificatie voor de taal van EER diagrammen.

Vanuit de observatie dat puur grafische talen zowel het specificeren als het lezen van queries vaak
eerder compliceren dan vereenvoudigen, worden in sectie 4.3 de tekstuel etaal SQL/EER en devisuele
taal GOQL/EER samengevoegd tot een hybride taal HQL/EER. In deze taal kunnen queries geformu-
leerd worden door middel van een willekeurige combinatie van grafische en tekstuel e elementen.

In een tweede benadering richten we onze aandacht op database-manipulatietalen. Zoals eerder
vermeld, kunnen EER diagrammen geformaliseerd worden door middel van grafen. Wanneer we daar-
naast ook database-instances bekijken als grafen, blijkt het een zeer natuurlijke benadering om graaf-
herschrijving te gebruiken als database-manipul atie paradigma.

Bij het toepassen van een graafherschrijfregel op een graaf die een database-instance voorstelt,
moet echter wel gebruik gemaakt worden van een aangepaste semantiek. Volgensde eerder beschreven
semantiek wordt een herschrijfregel immers toegepast op één voorkomen van zijn linkerkant. Een
database-manipulatie bestaat echter in het algemeen uit een query, tezamen met de beschrijving van
een manipulatie die moet uitgevoerd worden op het resultaat van deze query. Uitgedrukt in termen
van graafherschrijving betekent dit dat we een herschrijfregel “uitputtend” moeten toepassen op alle
voorkomens van zijn linkerkant in de graaf.

Bij wijzevanillustratietoont figuur C.2 een graafherschrijfregel die volgende database-update uit-
drukt:

Geef elke bankpas als paswoord de naam van de eigenaar van deze pas.
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eigenaar | ¢

paswoord

Figure C.2: Een graafherschrijfregel die een database-update uitdrukt

Delinkerkant van deze herschrijfregel wordt gevormd door het deel van defiguur in dunnelijntjes,
terwijl de gehele figuur de rechterkant vormt.

Door aan dit model voor graafherschrijfregels ook nog een aantal typische programmeerconstruc-
ties toe te voegen (zoals sequenties, procedures,...) verkrijgen we de in hoofdstuk 5 van dit proef-
schrift beschreven Graph-Oriented Object Database |anguage GOOD/ER, gebaseerd op het Entity Re-
lationship model.

In sectie 5.3 bestuderen we tot slot de expressieve kracht van de taal GOOD/ER. Een dergelijke
studie komt neer op het exact wiskundig karakteriseren van de verzameling transformaties die door
middel van de gegeven taal uitdrukbaar zijn. Dit gebeurt doorgaans door middel van een zogenaamd
volledigheidscriterium, een conditie waaraan een tweetal database-instances moet voldoen opdat de
ene in de ander zou kunnen omgezet worden door middel van een programmain de beschouwde taal.
Het formele bewijs van de karakterisatie voor GOOD/ER maakt sterk gebruik van het feit dat de taal
geformaliseerd is door middel van grafentheorie en graafherschrijving. Dit levert een bijkomende on-
dersteuning voor wat met dit proefschrift is aangetoond, met name dat graafherschrijfsystemen een
bel oftevol middel zijn voor het formeel definiéren van visuel e (database-)talen.
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