
Overview of the Esprit IV Reative LTR Projet

OCEANS

Optimizing Compilers for Embedded Appliations

Peter M.W. Knijnenburg

Leiden Institute of Advaned Computer Siene, Leiden University,

Niels Bohrweg 1, 2333 CA Leiden

The Netherlands

peterk�lias.nl

Abstrat

This paper presents an overview of the ativities arried out within the ESPRIT

projet OCEANS whose objetive is to investigate and develop advaned ompiler infras-

truture for embedded VLIW proessors. This ombines high and low-level optimization

approahes within an iterative framework for ompilation.

1 Introdution

Inreasingly, general-purpose proessors are used for embedded appliations rather than us-

tomised hardware. As proessor ost drops, it beomes more attrative to use one proessor for

several appliations rather than designing spei� hardware. Multimedia based appliations

are typial of the growing uses of embedded systems, requiring ost-e�etive implementation

and high performane. Very Long Instrution Word (VLIW) proessors are an attrative

solution for suh appliations as they provide potentially high performane, due to multiple

parallel funtional units, and are relatively heap to manufature due to the simple proessor

arhiteture. However, sophistiated optimizing ompiler tehnology is neessary to exploit

the �ne-grain parallelism as assembly programming of omplex appliations is not feasible.

1



With urrent ompiler tehnology, the average number of operations per yle in VLIW pro-

essors is only 2 to 2.5 [2℄.

Moreover, embedded appliations have beome inreasingly omplex during the last few years.

Although sophistiated hardware solutions, suh as those exploiting instrution level par-

allelism, aim to provide improved performane, they also reate a burden for appliation

developers. The traditional task of optimizing assembly ode by hand beomes unrealisti

due to the high omplexity of hardware/software. Thus the need for sophistiated ompiler

tehnology is evident.

The goal of the OCEANS projet [1, 4, 5℄ is to investigate and develop state-of-the-art om-

pilation tehniques to allow high performane implementations of embedded appliations. In

suh appliations, long ompilation times an be a�orded as eah embedded proessor will

usually exeute a limited number of appliations throughout its lifetime. This makes it fea-

sible to use more aggressive ompilation tehniques than previously onsidered. Within the

OCEANS projet, the ompiler utilises aggressive analysis tehniques and integrates soure-

level transformations with low-level, mahine dependent optimizations. A major objetive is

to provide a prototype framework for iterative ompilation, where feedbak from the low-level

is used to guide the seletion of a suitable sequene of soure-level transformations. Currently,

the Philips TriMedia (TM-1000) VLIW proessor [11℄ is used for validation of the system.

In general, ompiler optimizations rely on stati analysis, simpli�ed proessor and ahe mod-

els and sometimes pro�ling information. Stati analysis is neessarily a pessimisti approx-

imation of runtime behaviour, and proessor/memory hierarhy models only approximately

the behaviour of a part of the system. Pro�le based analysis produes averages of the observed

behaviour of the system for a limited number of benhmarks/input sets. Compiler analysis

determines the best parameters for eah ompiler optimization separately (e.g., tile size).

However, optimizations are not independent in their e�et. Finally, in the present market

hardware is hanging rapidly. Therefore, the ompiler and its optimization sequene/stategy

need to adapt quikly to hardware hanges in order to remain ompetitive. We onlude that

the traditional approah to optimization only gives suboptimal results.

In order to ope with the problems desribed above, an iterative approah to optimization has

been proposed in the OCEANS projet. It onsists of searhing for a good transformation

sequene. This means that we need to optimize, ompile and exeute the program many

times. However, for the ase of embedded appliations, this an be a�orded. In [10, 15℄ we

have presented two studies into the harateristis of transformation spaes and the feasibility

of searhing these spaes. Based on these studies we have onluded that searhing for an

optimization sequene may be a viable solution to the optimization problem.

In this paper, we present an overview of the OCEANS projet. First, the objetives of the

2



projet are stated in setion 2. An overall desription of the system is given in Setion 3. In

setion 4 we present a study into the e�ets of di�erent transformations on exeution time. In

setion 5 we disuss approahes to iterative ompilation. In setion 6 we disuss some related

work. Finally, in setion 7 we present some onlusions and diretions of future work.

2 Projet Objetives

The initial objetives of the OCEANS projet are the following.

High-Level Optimizations Objetives: We aim to develop high-level restruturing trans-

formations for the exploitation of VLIW proessors. These transformations are primarily de-

signed to enable suessful later low-level exploitation of �ne-grain parallelism. The strategy,

or sequene of transformations, employed is guided by feedbak from other stages.

Low-Level Optimizations Objetives: We intend to develop low-level restruturing

tehniques, onentrating on a highly retargetable objet ode sheduler that inludes opti-

mizing tehniques suited for embedded appliations and VLIW arhitetures. This is ahieved

through a multifuntion testbed tool whih an manipulate assembler ode in order to imple-

ment low-level ode restruturing as well as to provide the high-level ode restruturer with

information olleted from the assembler ode and from instrution pro�ling.

Integration Objetives: We intend to integrate the above into a prototype system based on

iterative ompilation, where a lose interation between the high and low-level exists, allowing

better exploitation of available information. The main bak-end target for this projet is the

Philips TriMedia (TM-1) proessor [11℄. The objetive is to show that this approah yields

more eÆient ode for this partiular proessor, eventually as optimal as hand-optimized ode,

while utting down the ode development time onsiderably.

An overall aim of this projet is to ahieve high retargetability of the ode optimization

proess. The reason for this is that the ost of the development of ompilers for embedded

arhitetures must be amortized aross variations of hardware implementations using the same

instrution set arhiteture.

In this doument we disuss how these objetives have been implemented during the projet.

3



Control & Information

MT1 

restructurer

MT1

code generator

SEA

SALTO

GLOBAL

DRIVER

prog.f

prog.seq prog.il

TM1000

simulator

prog.s

PiLo

LoRa

Data flow

Figure 1: The Compilation Proess.

3 The OCEANS Compiler System

The OCEANS [1, 4, 5℄ ompiler is entered around two major omponents: a high-level

restruturing system, MT1, and a low-level system for supporting assembly language trans-

formations and optimizations, Salto. Salto is oupled with Sea, a set of lasses that

provides an abstrat view of the assembly ode, and tools for software pipelining (PiLo) and

register alloation (LoRa). Their interation is illustrated in �gure 1 whih shows the overall

organisation of the OCEANS ompilation proess. In partiular, a program is ompiled in

three main steps:

� First, MT1 [7℄ performs lexial, syntatial and semanti analysis of a soure Fortran

program (File.f). Also, a sequene of soure program transformations an be applied.

These transformations are written in the Transformation De�nition Language (TDL) [6℄

and the order of their appliation is spei�ed using the Strategy Spei�ation Language

(SSL) [3℄.

� The restrutured soure program is then fed into the ode generator whih generates

sequential assembly ode that is annotated with instrution identi�ers used to iden-

4



tify ommon objets in MT1 and Salto, and a �le written in an Interfae Language

(File.IL) that provides information on data dependenes and program struture.

� Finally, Salto (oupled with Sea) performs ode sheduling and register alloation.

At this step guarded instrutions are reated and resoure onstraints are taken into

aount. Salto onnets to the tools PiLo and LoRa to perform software pipelining

and register alloation.

The above proess is driven by a global driver whih selet optimizations at the soure-level

and the low-level iteratively until a ertain level of performane is reahed.

MT1 is developed and maintained at Leiden University, whereas Salto is developed and

maintained in INRIA, Rennes. The two omponents are onneted together over the Internet

via a soket interfae. Next we disuss the software omponents in more detail.

The MT1 Restruturing Compiler: Over the past few years, a full Fortran 77 om-

piler, alled MT1, has been developed at Leiden University [7℄. An important aspet of the

MT1 ompiler is that it provides a faility for speifying program transformations that an be

applied interatively by means of a Transfromation De�nition Language (TDL) [6℄. These are

de�ned by an input pattern, an output pattern and a ondition under whih the transforma-

tion an be applied. Input patterns may ontain meta-variables that are bound to program

expressions or statements. These meta-variables may be used in speifying the output pattern

and the ondition. Moreover, funtions that at diretly on the internal representation may be

de�ned and may be used in the output pattern and the ondition. Conditions typially hek

for the existene of dependenes between ertain parts of the input pattern. Furhtermore,

MT1 ontains a Strategy Spei�ation Language (SSL) [3℄ that allows the user to speify the

order in whih transformations are to be applied.

SALTO: A Retargetable System for Assembly Language Transformation and Op-

timization: Salto [17℄ is a retargetable framework for developing a whole spetrum of

tools that manipulate assembly language programs. The objetive of the system is to provide

the user with a single environment that failitates the implementation of performane tuning

tools for low-level odes. This set of tools inludes assembly ode shedulers, pro�ling, and

traing tools. Salto is retargetable with respet to instrution sets and hardware details.

Salto onsists of three parts; a kernel, a mahine desription �le and an optimization or

instrumentation algorithm. The kernel performs the parsing of the assembly ode and of the

mahine desription �le, and the onstrution of the internal representation. The internal

5



representation is then available via the user interfae. The mahine desription �le provides a

model of hardware on�guration and the omplete desription of the instrution set, inluding

per-instrution resoure reservation tables. The optimization or instrumentation algorithm is

supplied by the user, via a user-supplied funtion Salto hook.

The user interfae of Salto is objet-oriented and provides lasses to represent a omplete

desription of the ontrol-ow graph of the program and a model of the target arhiteture.

PiLo and LoRa: PiLo and LoRa are pakages for software pipelining and loop register

alloation developed at INRIA Roquenourt. PiLo has one heuristi mode based on the

deomposed software pipelining algorithm [18℄, as well as one exat mode for ode sheduling

under register onstraints based on an integer programming formulation. LoRa is a pakage

that optimally alloates the loop variables into registers while ontrolling loop unrolling when

neessary [13℄. PiLo and Lora are onneted to Salto via an interfae desribing arhitetural

and dependeny onstraints among instrutions.

4 Transformation Spae Charateristis

This setion is primarily onerned with examining the harateristis of transformation

spaes. We initially seleted three important and extensively studied kernels and examined

their behaviour aross seven separate ommodity proessors and di�erent data sizes.

The initial three kernels and data sizes onsidered are: matrix-matrix multipliation (MxM) for

N = 256, 300, 400 and 512, matrix-vetor multipliation (MxV) for N = 1024 and 1200, and

Suessive Over Relaxation (SOR) for N = 512 and 600. These programs were exeuted on

seven di�erent arhitetures: MIPS R4000, MIPS R10000, Pentium II, Pentium Pro, Alpha,

UltraSpar and HP-PA. We also used the Philips TM-1000 simulator as an example of an

embedded proessor. In this feasibility study, we restrit our attention to loop unrolling (with

unroll fators from 1 to 20) and loop tiling (with tile sizes from 1 to 100). We generated all

versions of the programs and exeuted them on several of the platforms.

Figure 2 shows the transformation spae of matrix multipliation on the R4000 for N = 256

when applying loop unrolling and tiling. The x-axis and y-axis give the tile size and unroll

fator, respetively. The z-axis shows the resulting exeution time. The goal of an optimizing

ompiler is to �nd the minimum point in suh a spae. One immediate observation is that

there is approximately a fator of 4 between the maximal and minimal points: seleting the

wrong tile size and unroll fator an be ritial. Hene if an optimizing ompiler were to use

6



0
20

40
60

80
100

0

5

10

15

20
0

20

40

60

80

T
im

e

Unroll Tile Size

Figure 2: Performane R4000 for N = 256 on MxM

an inaurate heuristi, the resulting transformed program may run less eÆient than the

original program.

To gain more insight in the harateristis of the transformation spae, we fous on those

areas of the spae that are lose to the absolute minimum. For example, in �gure 3, the areas

that are within 3% of the minimum are depited for matrix-vetor multipliation on three

ommodity proessors. For a full disussion onsult [10, 15℄.

Aross the �gures we observe a wide variety of behaviour. We see that the minima on the HP

luster around a small unroll fator while the Pentium II has a very sattered set of minima

whose number is highly dependent on data size. The behaviour of the R4000 is also highly

dependent on data size, with the majority of near minimal points ourring around a unroll

fator of 8 for small data sizes and with a large area of minima ourring for the larger data

size. We an also observe lines of minima spreading out, onverging at the origin.

From the results disussed in [10, 15℄ we an onlude that the best transformations for

a partiular program are highly dependent on the underlying arhiteture, data sizes and

program struture. If stati tehniques are to �nd the loal minima, they need to model

program/proessor interation extremely losely. Suh a model would be very lose to a yle

level aurate simulator. Given the diÆulty of statially �nding the minima, the next setion

onsiders the use of iterative ompilation to searh through the transformation spae in order

to �nd the best ombination of transformations.

7



10 20 30 40 50 60 70 80 90

2

4

6

8

10

12

14

16

18

U
nr

ol
l

Tile Size

HP-PA: MxV N = 1024

10 20 30 40 50 60 70 80 90

2

4

6

8

10

12

14

16

18

U
nr

ol
l

Tile Size

HP-PA: MxV N = 1200

10 20 30 40 50 60 70 80 90

2

4

6

8

10

12

14

16

18

U
nr

ol
l

Tile Size

Pentium II: MxV N = 1024

10 20 30 40 50 60 70 80 90

2

4

6

8

10

12

14

16

18

U
nr

ol
l

Tile Size

Pentium II: MxV N = 1200

10 20 30 40 50 60 70 80 90

2

4

6

8

10

12

14

16

18

U
nr

ol
l

Tile Size

R4000: MxV N = 1024

10 20 30 40 50 60 70 80 90

2

4

6

8

10

12

14

16

18

U
nr

ol
l

Tile Size

R4000: MxV N = 1200

Figure 3: Areas lose to the minimum

8



5 Iterative Compilation

To deal with the problems disussed in the previous setion, the OCEANS projet is onerned

with searhing the transformation spae for the best optimization. In this setion we disuss

how searh tehniques are applied at the high level and the low level. We also disuss a geneti

algorithm approah.

5.1 High level searhing

Our ompiler algorithm, presented below, searhes for the best transformation, by sampling

the transformation spae and measuring exeution times. Although this approah ould

potentially be prohibitively expensive, we show that good performane an be ahieved by

evaluating only a very small perentage of the transformation spae. The resulting ompilation

times are small enough to

5.1.1 Searh Algorithm

The algorithm used in the feasibility study is grid based. It an be briey desribed as follows.

1. First, de�ne a oarse grid on the searh spae.

2. Evaluate all points on this grid by generating the transformed programs and exeuting

them.

3. Find the point with minimum exeution time and all points that are within an allowable

distane from this minimum (10%, say). Order these points in a priority queue.

4. For eah point in the queue

� If the exeution time assoiated with this point is within an allowable distane

from the minimum found so far, re�ne the grid around this point by forming a new

grid with half the spaing in eah dimension.

� If new points are found that are lose to the minimum found so far, enqueue them

in the priority queue.

9



5.1.2 Global driver

The global driver is responsible for navigating through the searh spae. It maintains an

internal representation of this spae as a multidimensional array where eah dimension or-

responds to the range of values for the parameters of the individual transformations (e.g.,

unrolling fators).

One step of the global driver onsists of the following steps:

1. Deide the next set of parameters for the transformations using its internal searh spae

and the searh algorithm.

2. Construt an SSL �le that orresponds to this new sequene.

3. Invoke MT1 that starts the transformation proess by reading in the soure program,

the SSL �le and the TDL �le.

4. The transformed program is ompiled for the target arhiteture and exeuted.

5. The exeution time is measured and reported bak to the global driver.

6. The global driver stores this exeution time and starts the next step.

Finally, after a predetermined number of iterations, the global driver stops searhing and

outputs the transformed program with the shortest exeution time.

5.1.3 Results

In this setion we disuss the results obtained by the iterative ompilation approah. We also

disuss the overall ompilation time.

We have exeuted the searh algorithm for three �xed input data sizes. In Figure 4 we have

shown examples of the performane improvement for three benhmarks. These results where

obtained by exeuting the ompiler and the benhmarks on a Pentium II platform running

at 233 MHz. The x-axis shows the number of iterations and the y-axis shows the speedup

over the original program. We restrit the number of iterations to 400 in eah ase, sine our

previous researh [10, 15℄ showed that it is likely that within this number of iterations high

levels of optimization are obtained.

In Figure 4, loop tiling, loop unrolling and array padding are applied as transformations. The

�rst observation is that the searh algorithm �nds good speedups. Another observation is

10



1.00

1.10

1.20

1.30

1.40

1.50

1.60

1.70

1.80

1.90

2.00

2.10

2.20

0 100 200 300 400
Number of Iterations

P
er

fo
rm

an
ce

 Im
p

ro
ve

m
en

t

N = 256

N = 301
N = 300

MxM

1.10

1.12

1.14

1.16

1.18

1.20

1.22

0 100 200 300 400
Number of Iterations

P
er

fo
rm

an
ce

 Im
p

ro
ve

m
en

t

N = 256

N = 301
N = 300

FDCT

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

1.50

1.55

0 100 200 300 400
Number of Iterations

P
er

fo
rm

an
ce

 Im
p

ro
ve

m
en

t

N = 2300
N = 2301

N = 2048

RECO

Figure 4: Performane Improvement using Unroll, Tile and Padding

0.00

5.00

10.00

15.00

20.00

25.00

20.00 40.00 60.00 80.00 100.00

Figure 5: Average perentage di�erene minimum

11



Ex.Time
 F77
MT1 + Driver

0.00

5.00

10.00

15.00

20.00

25.00

MxM MxV SOR FDCT RECO Average

C
o

m
p

ila
ti

o
n

 T
im

e 
at

 4
00

th
 It

er
at

io
n

 (
m

in
.)

Figure 6: Compilation Time

that the searh algorithm �nds good parameters quikly. Within 50 evaluations in all ases,

exept for MxM, the performane improvement is lose to maximum. For MxM more than 100

evaluations are required to obtain a good performane improvement. After 350 evaluations,

there is no performane improvement observed in all ases. This orresponds to 1.75% of the

entire searh spae.

In �gure 5, we have given the average perentage of how lose to the absolute minimum the

searh algorithm omes aross all platforms, benhmarks and data sizes. The average is taken

over 26 measurements. The x-axis shows the number of evaluations and the y-axis shows the

distane to the minimum. The �gure shows a monotoni dereasing graph that reahes high

levels of optimization rapidly.

5.1.4 Compilation Time

An important onsideration for the feasibility of iterative ompilation is the running time of

the approah. Figure 6 shows the average ompilation time for a number of benhmarks and

the average of these times.

We observe that ompilation time is proportional to the number of iterations. The average

12



ompile time using 400 iterations ranges from 7.7 minutes (MxV) to 25.4 minutes (FDCT). On

average we need 16 minutes for 400 iterations. Note that the kernels we used are representative

for embedded kernels. In ase we are to optimize embedded kernels this amount of time an

easily be a�orded. In fat, the �gure shows that for time-ritial kernels many more iterations

an be a�orded: sine ompilation time an be seen as an integral omponent of the total

development time of the embedded system, we an a�ord several hours to heavily optimize

the ompute intensive routines.

The �gure also shows the breakdown of the exeution times for 400 iterations. On average,

about 50% of the total ompilation is spent exeuting the transformed ode. The time needed

for native f77 ompilation is not large, but signi�ant. Note that in ase the target platform

needs stati instrution sheduling or software pipelining, this time an be muh larger. In

some ases, the time for MT1 and the global driver is larger than the exeution time of the

transformed ode (RECO).

5.2 Alternative Searh Tehniques

Although we have foused on one searh tehnique for iterative ompilation, other approahes

are also being investigated within the projet.

5.2.1 Code size{performane trade-o�

Another searh algorithm examined by the OCEANS projet is a depth-�rst tree searh, where

sets of transformations are reursively built up and examined. The global driver deides if a

set is worthwhile for further examination by enlarging the set, or it baktraks by shrinking the

set. Main fous with this searh is on the trade-o� between ode size and ode performane.

One of the key issues for iterative ompilation is to provide a useful feedbak from the di�erent

omponents of the ompiler, so deisions an be made by hoosing between various sets of

transformations. In this setion we onsider loop unrolling. Sine unrolling has mostly an

impat on sheduling, stati feedbak is suÆient. However, in some ases ahe behaviour

needs to be known and dynami feedbak is used. An additional onstraint of ompilers

for embedded appliations ompared to traditional ompilers is that ode size is important.

Larger ode usually means a larger die size and thus inreased prodution osts. We therefore

not only searh for the best optimization onerning ode performane but try to �nd a trade-

o� between these two aspets, using a ost model whih takes dynami and stati feedbak

into aount. Traditional optimizing ompilers are based on a �xed set of heuristis and only

optimize for speed or ode size, but don't searh for a trade-o�. Figure 7 shows how omplex

13



Figure 7: Code size and performane

this issue an be. This �gure is obtained by our implementation of the searh algorithm. It

shows a range of unrolling fators applied to a loop. It should be noted that when a software

pipelining algorithm is applied to the unrolled loop, the ode size an grow with a fator of

5. Relative gain gives the relative gain between to suessive unroll fators.

5.2.2 Geneti algorithms

As an alternative to traditional searh tehniques, we are also investigating the appliation

of geneti algorithms (GA) as a means of determining the best transformation sequene.

This has the potential bene�t of investigating transformation spaes whih annot easily be

desribed as a artesian domain and is extremely robust in the presene of loal minima.

The OCEANS GA searh is implemented as part of the GAPS ompiler framework desribed

in [16℄ whih uses GA based optimization for an auto-parallelising ompiler. In the OCEANS

GA, traditional restruturing transformation sequenes suh as tiling, loop-permutation, loop-

distribution, loop-fusion, loop-skewing and statement reordering are represented as multi-

dimensional mappings [14℄. GA optimization initialises a population of mappings using a

ombination of randomised methods and onventional ompiler tehniques. Thus, a popula-

tion represents a subset of the transformation spae for a program. Mappings representing

transformed programs having good performane (i.e., low exeution time/predited overheads)

are given high reprodution seletion probabilities. Mutation and reombination based repro-

dution operators generate new hild mappings from randomly seleted parent mappings

14



urrently in the population. Steady-state reprodution with an elitist replaement strategy

ensures that hild mappings only replae mappings assoiated with programs having low per-

formane. Reprodution is iteratively applied until a maximum number of mappings have

been reated or until a real-time performane onstraint is satis�ed. The use of elitism in

onjuntion with onventional ompiler tehniques ensures that the performane of the best

solution produed by GA optimization will be equal to or greater than that produed by the

onventional tehniques.

6 Related Work

There is a large body of work onsidering program transformations to improve uniproessor

performane. In [12℄, an analyti algorithm to give a good tile size to minimise interferene

and exploit loality is presented. This work onsidered retangular tiles whose dimensions are

a funtion of the iteration spae and the ahe organisation. This work gives good performane

improvements over existing tehniques but does not onsider the impat of tiling on unrolling

or other transformations.

Whaley and Dongarra [19℄, and Bilmes et al. [8℄ desribe systems for generating highly opti-

mized versions of BLAS routines. These systems an probe the underlying hardware to �nd

optimal values for bloking fators, unroll fators et. In ontrast to the present approah,

these systems are only able to optimize BLAS routines and are not general purpose ompil-

ers. Experimentation with these systems [19, 8℄ has shown that these systems are apable of

produing ode that is more eÆient than the vendor supplied, hand optimized library BLAS

routines.

Wolf, Maydan and Chen [20℄ have desribed a ompiler that also searhes for the optimal

optimization. This ompiler also onsiders the entire optimization spae and tries to �nd the

best point in it. In ontrast to the present approah, however, their ompiler uses a �xed order

of the transformations and a stati ost model to evaluate the di�erent optimizations. They

also use an aggressive but heuristi pruning algorithm to ontrol the omplexity of the searh.

They report good eÆieny of the resulting ode and short running times of the searh. We

believe that the present approah that is based on atual exeution times instead of stati

ost models will deliver superior performane.

Bodin et al. [9℄ desribe a method for searhing for the best optimization on the assembly

level, taking into onsideration both exeution times and ode size. Their approah also uses

a stati ost model, in ontrast to the present approah, and does not seem to prune the

searh spae.

15



7 Conlusions

In this doument we have desribed the Esprit Reative LTR projet OCEANS. This projet

fousses on developing aggressive optimization tehniques for embedded systems. We have

disussed the ompiler infrastruture and the software omponents from whih the ompiler

has been built. Next we disussed the iterative approah to program optimization adopted

in the OCEANS projet. This approah onsists of searhing for the best optimization. The

searh is onduted along two axes. First, a high level grid-based searh is onduted to �nd

optimal parameter values for soure to soure transformations. Seond, a low level trade-

o� between ode size and performane is searhed that examines the interplay between loop

unrolling and software pipelining. We have shown that this approah to program optimization

delivers highly optimized programs in a reasonable amount of ompile time. Although this

ompile time may be too large for general purpose ompilers, it an easily be a�orded in

ase of embedded appliations where ompilation time an be seen as an integral part of the

produt development time.

Referenes

[1℄ B. Aarts, M. Barreteau, F. Bodin, P. Brinkhaus, Z. Chamski, H.-P. Charles, C. Eisen-

beis, J. Gurd, J. Hoogerbrugge, P. Hu, W. Jalby, P.M.W. Knijnenburg, M.F.P O'Boyle,

E. Rohou, R. Sakellariou, H. Shepers, A. Sezne, E.A. St�ohr, M. Verhoeven, and H.A.G.

Wijsho�. OCEANS: Optimizing ompilers for embedded appliations. In Pro. Euro-Par

97, volume 1300 of Leture Notes in Computer Siene, pages 1351{1356, 1997.

[2℄ G. Araujo, S. Devadas, K. Keutzer, S. Liao, S. Malik, A. Sudarsanam, S. Tjiang, and

A. Wang. Challenges in ode generation for embedded proessors. In P.Marwedel and

G. Goossens, editors, Code Generation for Embedded Proessors, hapter 3, pages 48{64.

Kluwer Aademi Publisher, 1995.

[3℄ R.A.M. Bakker, F. Breg, P.M.W. Knijnenburg, P. Touber, and H.A.G. Wijsho�. Strat-

egy Spei�ation Language. Oeans Deliverable D2.1.a, 1997. Available through

www.wi.leidenuniv.nl/~peterk.

[4℄ M. Barreteau, F. Bodin, P. Brinkhaus, Z. Chamski, H.-P. Charles, C. Eisenbeis, J. Gurd,

J. Hoogerbrugge, P. Hu, W. Jalby, P.M.W. Knijnenburg, M.F.P. O'Boyle, E. Rohou,

R. Sakellariou, A. Sezne, E.A. St�ohr, M. Tre�ers, and H.A.G. Wijsho�. OCEANS:

16



Optimizing ompilers for embedded appliations. In Pro. Euro-Par 98, volume 1470 of

Leture Notes in Computer Siene, pages 1123{1130, 1998.

[5℄ M. Barreteau, F. Bodin, Z. Chamski, H.-P. Charles, C. Eisenbeis, J. Gurd, J. Hooger-

brugge, P. Hu, W. Jalby, T. Kisuki, P.M.W. Knijnenburg, P. van der Mark, A. Nisbet,

M.F.P. O'Boyle, E. Rohou, A. Sezne, E.A. St�ohr, M. Tre�ers, and H.A.G. Wijsho�.

OCEANS: Optimizing ompilers for embedded appliations. In P. Amestoy et al., editor,

Pro. Euro-Par 99, volume 1685 of Leture Notes in Computer Siene, pages 1171{1175,

1999.

[6℄ A.J.C. Bik, P.J. Brinkhaus, P.M.W. Knijnenburg, P. Touber, and H.A.G. Wijsho�.

Transformation De�nition Language. Oeans Deliverable D1.1, 1997. Available through

www.wi.leidenuniv.nl/~peterk.

[7℄ A.J.C. Bik and H.A.G. Wijsho�. MT1: A prototype restruturing ompiler. Tehnial

Report no. 93-32, Department of Computer Siene, Leiden University, 1993.

[8℄ J. Bilmes, K. Asanovi�, C.W. Chin, and J. Demmel. Optimizing matrix multiply using

PHiPAC: A portable, high-performane, ANSI C oding methodology. In Pro. ICS'97,

pages 340{347, 1997.

[9℄ F. Bodin, Z. Chamski, C. Eisenbeis, E. Rohou, and A. Sezne. GCDS: A ompiler

strategy for trading ode size against performane in embedded appliations. Tehnial

Report 1153, IRISA, Rennes, 1997.

[10℄ F. Bodin, T. Kisuki, P.M.W. Knijnenburg, M.F.P. O'Boyle, and E. Rohou. Iterative om-

pilation in a non-linear optimisation spae. In Pro. Workshop on Pro�le and Feedbak

Direted Compilation, 1998. Organised in onjution with PACT'98.

[11℄ B. Case. Philips' hope to displae DSP with VLIW. Miroproessor Report, 8(16):12{15,

1995. See also http://www.trimedia-philips.om/.

[12℄ S. Coleman and K. MKinley. Tile size seletion using ahe organization and data layout.

In Pro. Programming Language Design and Implementation, pages 279{290, 1995.

[13℄ C. Eisenbeis, S. Lelait, and B. Marmol. The meeting graph: a new model for loop yli

register alloation. In Pro. PACT'95, 1995.

[14℄ W. A. Kelly. Optimization within a Uni�ed Transformation Framework. PhD thesis,

Univ. of Maryland, 1996.

17



[15℄ T. Kisuki, P.M.W. Knijnenburg, M.F.P. O'Boyle, F. Bodin, and H.A.G. Wijsho�. A

feasibility study in iterative ompilation. In Pro. ISHPC'99, volume 1615 of Leture

Notes in Computer Siene, pages 121{132, 1999.

[16℄ A. Nisbet. GAPS: Geneti algorithm optimised parallelization. In Pro. Workshop on

Pro�le and Feedbak Direted Compilation, 1998. Workshop organised in onjuntion

with PACT'98.

[17℄ E. Rohou, F. Bodin, A. Sezne, G. Le Fol, F. Charot, and F. Raimbault. SALTO: System

for assembly-language transformation and optimization. Tehnial Report 1032, IRISA,

Rennes, 1996. See also http://www.irisa.fr/aps/Salto/.

[18℄ J. Wang, C. Eisenbeis, M. Jourdan, and B. Su. Deomposed software pipelining: a new

perspetive and a new approah. Int'l J. on Parallel Proessing, 22(3):357{379, 1994.

[19℄ R. C. Whaley and J. J. Dongarra. Automatially tuned linear algebra software. In Pro.

Alliane 98, 1998.

[20℄ M.E. Wolf, D.E. Maydan, and D.-K. Chen. Combining loop transformations onsidering

ahes and sheduling. Int'l. J. of Parallel Programming, 26(4):479{503, 1998.

18


