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Abstra
t

This paper presents an overview of the a
tivities 
arried out within the ESPRIT

proje
t OCEANS whose obje
tive is to investigate and develop advan
ed 
ompiler infras-

tru
ture for embedded VLIW pro
essors. This 
ombines high and low-level optimization

approa
hes within an iterative framework for 
ompilation.

1 Introdu
tion

In
reasingly, general-purpose pro
essors are used for embedded appli
ations rather than 
us-

tomised hardware. As pro
essor 
ost drops, it be
omes more attra
tive to use one pro
essor for

several appli
ations rather than designing spe
i�
 hardware. Multimedia based appli
ations

are typi
al of the growing uses of embedded systems, requiring 
ost-e�e
tive implementation

and high performan
e. Very Long Instru
tion Word (VLIW) pro
essors are an attra
tive

solution for su
h appli
ations as they provide potentially high performan
e, due to multiple

parallel fun
tional units, and are relatively 
heap to manufa
ture due to the simple pro
essor

ar
hite
ture. However, sophisti
ated optimizing 
ompiler te
hnology is ne
essary to exploit

the �ne-grain parallelism as assembly programming of 
omplex appli
ations is not feasible.

1



With 
urrent 
ompiler te
hnology, the average number of operations per 
y
le in VLIW pro-


essors is only 2 to 2.5 [2℄.

Moreover, embedded appli
ations have be
ome in
reasingly 
omplex during the last few years.

Although sophisti
ated hardware solutions, su
h as those exploiting instru
tion level par-

allelism, aim to provide improved performan
e, they also 
reate a burden for appli
ation

developers. The traditional task of optimizing assembly 
ode by hand be
omes unrealisti


due to the high 
omplexity of hardware/software. Thus the need for sophisti
ated 
ompiler

te
hnology is evident.

The goal of the OCEANS proje
t [1, 4, 5℄ is to investigate and develop state-of-the-art 
om-

pilation te
hniques to allow high performan
e implementations of embedded appli
ations. In

su
h appli
ations, long 
ompilation times 
an be a�orded as ea
h embedded pro
essor will

usually exe
ute a limited number of appli
ations throughout its lifetime. This makes it fea-

sible to use more aggressive 
ompilation te
hniques than previously 
onsidered. Within the

OCEANS proje
t, the 
ompiler utilises aggressive analysis te
hniques and integrates sour
e-

level transformations with low-level, ma
hine dependent optimizations. A major obje
tive is

to provide a prototype framework for iterative 
ompilation, where feedba
k from the low-level

is used to guide the sele
tion of a suitable sequen
e of sour
e-level transformations. Currently,

the Philips TriMedia (TM-1000) VLIW pro
essor [11℄ is used for validation of the system.

In general, 
ompiler optimizations rely on stati
 analysis, simpli�ed pro
essor and 
a
he mod-

els and sometimes pro�ling information. Stati
 analysis is ne
essarily a pessimisti
 approx-

imation of runtime behaviour, and pro
essor/memory hierar
hy models only approximately

the behaviour of a part of the system. Pro�le based analysis produ
es averages of the observed

behaviour of the system for a limited number of ben
hmarks/input sets. Compiler analysis

determines the best parameters for ea
h 
ompiler optimization separately (e.g., tile size).

However, optimizations are not independent in their e�e
t. Finally, in the present market

hardware is 
hanging rapidly. Therefore, the 
ompiler and its optimization sequen
e/stategy

need to adapt qui
kly to hardware 
hanges in order to remain 
ompetitive. We 
on
lude that

the traditional approa
h to optimization only gives suboptimal results.

In order to 
ope with the problems des
ribed above, an iterative approa
h to optimization has

been proposed in the OCEANS proje
t. It 
onsists of sear
hing for a good transformation

sequen
e. This means that we need to optimize, 
ompile and exe
ute the program many

times. However, for the 
ase of embedded appli
ations, this 
an be a�orded. In [10, 15℄ we

have presented two studies into the 
hara
teristi
s of transformation spa
es and the feasibility

of sear
hing these spa
es. Based on these studies we have 
on
luded that sear
hing for an

optimization sequen
e may be a viable solution to the optimization problem.

In this paper, we present an overview of the OCEANS proje
t. First, the obje
tives of the
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proje
t are stated in se
tion 2. An overall des
ription of the system is given in Se
tion 3. In

se
tion 4 we present a study into the e�e
ts of di�erent transformations on exe
ution time. In

se
tion 5 we dis
uss approa
hes to iterative 
ompilation. In se
tion 6 we dis
uss some related

work. Finally, in se
tion 7 we present some 
on
lusions and dire
tions of future work.

2 Proje
t Obje
tives

The initial obje
tives of the OCEANS proje
t are the following.

High-Level Optimizations Obje
tives: We aim to develop high-level restru
turing trans-

formations for the exploitation of VLIW pro
essors. These transformations are primarily de-

signed to enable su

essful later low-level exploitation of �ne-grain parallelism. The strategy,

or sequen
e of transformations, employed is guided by feedba
k from other stages.

Low-Level Optimizations Obje
tives: We intend to develop low-level restru
turing

te
hniques, 
on
entrating on a highly retargetable obje
t 
ode s
heduler that in
ludes opti-

mizing te
hniques suited for embedded appli
ations and VLIW ar
hite
tures. This is a
hieved

through a multifun
tion testbed tool whi
h 
an manipulate assembler 
ode in order to imple-

ment low-level 
ode restru
turing as well as to provide the high-level 
ode restru
turer with

information 
olle
ted from the assembler 
ode and from instru
tion pro�ling.

Integration Obje
tives: We intend to integrate the above into a prototype system based on

iterative 
ompilation, where a 
lose intera
tion between the high and low-level exists, allowing

better exploitation of available information. The main ba
k-end target for this proje
t is the

Philips TriMedia (TM-1) pro
essor [11℄. The obje
tive is to show that this approa
h yields

more eÆ
ient 
ode for this parti
ular pro
essor, eventually as optimal as hand-optimized 
ode,

while 
utting down the 
ode development time 
onsiderably.

An overall aim of this proje
t is to a
hieve high retargetability of the 
ode optimization

pro
ess. The reason for this is that the 
ost of the development of 
ompilers for embedded

ar
hite
tures must be amortized a
ross variations of hardware implementations using the same

instru
tion set ar
hite
ture.

In this do
ument we dis
uss how these obje
tives have been implemented during the proje
t.
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Figure 1: The Compilation Pro
ess.

3 The OCEANS Compiler System

The OCEANS [1, 4, 5℄ 
ompiler is 
entered around two major 
omponents: a high-level

restru
turing system, MT1, and a low-level system for supporting assembly language trans-

formations and optimizations, Salto. Salto is 
oupled with Sea, a set of 
lasses that

provides an abstra
t view of the assembly 
ode, and tools for software pipelining (PiLo) and

register allo
ation (LoRa). Their intera
tion is illustrated in �gure 1 whi
h shows the overall

organisation of the OCEANS 
ompilation pro
ess. In parti
ular, a program is 
ompiled in

three main steps:

� First, MT1 [7℄ performs lexi
al, synta
ti
al and semanti
 analysis of a sour
e Fortran

program (File.f). Also, a sequen
e of sour
e program transformations 
an be applied.

These transformations are written in the Transformation De�nition Language (TDL) [6℄

and the order of their appli
ation is spe
i�ed using the Strategy Spe
i�
ation Language

(SSL) [3℄.

� The restru
tured sour
e program is then fed into the 
ode generator whi
h generates

sequential assembly 
ode that is annotated with instru
tion identi�ers used to iden-
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tify 
ommon obje
ts in MT1 and Salto, and a �le written in an Interfa
e Language

(File.IL) that provides information on data dependen
es and program stru
ture.

� Finally, Salto (
oupled with Sea) performs 
ode s
heduling and register allo
ation.

At this step guarded instru
tions are 
reated and resour
e 
onstraints are taken into

a

ount. Salto 
onne
ts to the tools PiLo and LoRa to perform software pipelining

and register allo
ation.

The above pro
ess is driven by a global driver whi
h sele
t optimizations at the sour
e-level

and the low-level iteratively until a 
ertain level of performan
e is rea
hed.

MT1 is developed and maintained at Leiden University, whereas Salto is developed and

maintained in INRIA, Rennes. The two 
omponents are 
onne
ted together over the Internet

via a so
ket interfa
e. Next we dis
uss the software 
omponents in more detail.

The MT1 Restru
turing Compiler: Over the past few years, a full Fortran 77 
om-

piler, 
alled MT1, has been developed at Leiden University [7℄. An important aspe
t of the

MT1 
ompiler is that it provides a fa
ility for spe
ifying program transformations that 
an be

applied intera
tively by means of a Transfromation De�nition Language (TDL) [6℄. These are

de�ned by an input pattern, an output pattern and a 
ondition under whi
h the transforma-

tion 
an be applied. Input patterns may 
ontain meta-variables that are bound to program

expressions or statements. These meta-variables may be used in spe
ifying the output pattern

and the 
ondition. Moreover, fun
tions that a
t dire
tly on the internal representation may be

de�ned and may be used in the output pattern and the 
ondition. Conditions typi
ally 
he
k

for the existen
e of dependen
es between 
ertain parts of the input pattern. Furhtermore,

MT1 
ontains a Strategy Spe
i�
ation Language (SSL) [3℄ that allows the user to spe
ify the

order in whi
h transformations are to be applied.

SALTO: A Retargetable System for Assembly Language Transformation and Op-

timization: Salto [17℄ is a retargetable framework for developing a whole spe
trum of

tools that manipulate assembly language programs. The obje
tive of the system is to provide

the user with a single environment that fa
ilitates the implementation of performan
e tuning

tools for low-level 
odes. This set of tools in
ludes assembly 
ode s
hedulers, pro�ling, and

tra
ing tools. Salto is retargetable with respe
t to instru
tion sets and hardware details.

Salto 
onsists of three parts; a kernel, a ma
hine des
ription �le and an optimization or

instrumentation algorithm. The kernel performs the parsing of the assembly 
ode and of the

ma
hine des
ription �le, and the 
onstru
tion of the internal representation. The internal
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representation is then available via the user interfa
e. The ma
hine des
ription �le provides a

model of hardware 
on�guration and the 
omplete des
ription of the instru
tion set, in
luding

per-instru
tion resour
e reservation tables. The optimization or instrumentation algorithm is

supplied by the user, via a user-supplied fun
tion Salto hook.

The user interfa
e of Salto is obje
t-oriented and provides 
lasses to represent a 
omplete

des
ription of the 
ontrol-
ow graph of the program and a model of the target ar
hite
ture.

PiLo and LoRa: PiLo and LoRa are pa
kages for software pipelining and loop register

allo
ation developed at INRIA Ro
quen
ourt. PiLo has one heuristi
 mode based on the

de
omposed software pipelining algorithm [18℄, as well as one exa
t mode for 
ode s
heduling

under register 
onstraints based on an integer programming formulation. LoRa is a pa
kage

that optimally allo
ates the loop variables into registers while 
ontrolling loop unrolling when

ne
essary [13℄. PiLo and Lora are 
onne
ted to Salto via an interfa
e des
ribing ar
hite
tural

and dependen
y 
onstraints among instru
tions.

4 Transformation Spa
e Chara
teristi
s

This se
tion is primarily 
on
erned with examining the 
hara
teristi
s of transformation

spa
es. We initially sele
ted three important and extensively studied kernels and examined

their behaviour a
ross seven separate 
ommodity pro
essors and di�erent data sizes.

The initial three kernels and data sizes 
onsidered are: matrix-matrix multipli
ation (MxM) for

N = 256, 300, 400 and 512, matrix-ve
tor multipli
ation (MxV) for N = 1024 and 1200, and

Su

essive Over Relaxation (SOR) for N = 512 and 600. These programs were exe
uted on

seven di�erent ar
hite
tures: MIPS R4000, MIPS R10000, Pentium II, Pentium Pro, Alpha,

UltraSpar
 and HP-PA. We also used the Philips TM-1000 simulator as an example of an

embedded pro
essor. In this feasibility study, we restri
t our attention to loop unrolling (with

unroll fa
tors from 1 to 20) and loop tiling (with tile sizes from 1 to 100). We generated all

versions of the programs and exe
uted them on several of the platforms.

Figure 2 shows the transformation spa
e of matrix multipli
ation on the R4000 for N = 256

when applying loop unrolling and tiling. The x-axis and y-axis give the tile size and unroll

fa
tor, respe
tively. The z-axis shows the resulting exe
ution time. The goal of an optimizing


ompiler is to �nd the minimum point in su
h a spa
e. One immediate observation is that

there is approximately a fa
tor of 4 between the maximal and minimal points: sele
ting the

wrong tile size and unroll fa
tor 
an be 
riti
al. Hen
e if an optimizing 
ompiler were to use
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Figure 2: Performan
e R4000 for N = 256 on MxM

an ina

urate heuristi
, the resulting transformed program may run less eÆ
ient than the

original program.

To gain more insight in the 
hara
teristi
s of the transformation spa
e, we fo
us on those

areas of the spa
e that are 
lose to the absolute minimum. For example, in �gure 3, the areas

that are within 3% of the minimum are depi
ted for matrix-ve
tor multipli
ation on three


ommodity pro
essors. For a full dis
ussion 
onsult [10, 15℄.

A
ross the �gures we observe a wide variety of behaviour. We see that the minima on the HP


luster around a small unroll fa
tor while the Pentium II has a very s
attered set of minima

whose number is highly dependent on data size. The behaviour of the R4000 is also highly

dependent on data size, with the majority of near minimal points o

urring around a unroll

fa
tor of 8 for small data sizes and with a large area of minima o

urring for the larger data

size. We 
an also observe lines of minima spreading out, 
onverging at the origin.

From the results dis
ussed in [10, 15℄ we 
an 
on
lude that the best transformations for

a parti
ular program are highly dependent on the underlying ar
hite
ture, data sizes and

program stru
ture. If stati
 te
hniques are to �nd the lo
al minima, they need to model

program/pro
essor intera
tion extremely 
losely. Su
h a model would be very 
lose to a 
y
le

level a

urate simulator. Given the diÆ
ulty of stati
ally �nding the minima, the next se
tion


onsiders the use of iterative 
ompilation to sear
h through the transformation spa
e in order

to �nd the best 
ombination of transformations.

7



10 20 30 40 50 60 70 80 90

2

4

6

8

10

12

14

16

18

U
nr

ol
l

Tile Size

HP-PA: MxV N = 1024

10 20 30 40 50 60 70 80 90

2

4

6

8

10

12

14

16

18

U
nr

ol
l

Tile Size

HP-PA: MxV N = 1200

10 20 30 40 50 60 70 80 90

2

4

6

8

10

12

14

16

18

U
nr

ol
l

Tile Size

Pentium II: MxV N = 1024

10 20 30 40 50 60 70 80 90

2

4

6

8

10

12

14

16

18

U
nr

ol
l

Tile Size

Pentium II: MxV N = 1200

10 20 30 40 50 60 70 80 90

2

4

6

8

10

12

14

16

18

U
nr

ol
l

Tile Size

R4000: MxV N = 1024

10 20 30 40 50 60 70 80 90

2

4

6

8

10

12

14

16

18

U
nr

ol
l

Tile Size

R4000: MxV N = 1200

Figure 3: Areas 
lose to the minimum
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5 Iterative Compilation

To deal with the problems dis
ussed in the previous se
tion, the OCEANS proje
t is 
on
erned

with sear
hing the transformation spa
e for the best optimization. In this se
tion we dis
uss

how sear
h te
hniques are applied at the high level and the low level. We also dis
uss a geneti


algorithm approa
h.

5.1 High level sear
hing

Our 
ompiler algorithm, presented below, sear
hes for the best transformation, by sampling

the transformation spa
e and measuring exe
ution times. Although this approa
h 
ould

potentially be prohibitively expensive, we show that good performan
e 
an be a
hieved by

evaluating only a very small per
entage of the transformation spa
e. The resulting 
ompilation

times are small enough to

5.1.1 Sear
h Algorithm

The algorithm used in the feasibility study is grid based. It 
an be brie
y des
ribed as follows.

1. First, de�ne a 
oarse grid on the sear
h spa
e.

2. Evaluate all points on this grid by generating the transformed programs and exe
uting

them.

3. Find the point with minimum exe
ution time and all points that are within an allowable

distan
e from this minimum (10%, say). Order these points in a priority queue.

4. For ea
h point in the queue

� If the exe
ution time asso
iated with this point is within an allowable distan
e

from the minimum found so far, re�ne the grid around this point by forming a new

grid with half the spa
ing in ea
h dimension.

� If new points are found that are 
lose to the minimum found so far, enqueue them

in the priority queue.
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5.1.2 Global driver

The global driver is responsible for navigating through the sear
h spa
e. It maintains an

internal representation of this spa
e as a multidimensional array where ea
h dimension 
or-

responds to the range of values for the parameters of the individual transformations (e.g.,

unrolling fa
tors).

One step of the global driver 
onsists of the following steps:

1. De
ide the next set of parameters for the transformations using its internal sear
h spa
e

and the sear
h algorithm.

2. Constru
t an SSL �le that 
orresponds to this new sequen
e.

3. Invoke MT1 that starts the transformation pro
ess by reading in the sour
e program,

the SSL �le and the TDL �le.

4. The transformed program is 
ompiled for the target ar
hite
ture and exe
uted.

5. The exe
ution time is measured and reported ba
k to the global driver.

6. The global driver stores this exe
ution time and starts the next step.

Finally, after a predetermined number of iterations, the global driver stops sear
hing and

outputs the transformed program with the shortest exe
ution time.

5.1.3 Results

In this se
tion we dis
uss the results obtained by the iterative 
ompilation approa
h. We also

dis
uss the overall 
ompilation time.

We have exe
uted the sear
h algorithm for three �xed input data sizes. In Figure 4 we have

shown examples of the performan
e improvement for three ben
hmarks. These results where

obtained by exe
uting the 
ompiler and the ben
hmarks on a Pentium II platform running

at 233 MHz. The x-axis shows the number of iterations and the y-axis shows the speedup

over the original program. We restri
t the number of iterations to 400 in ea
h 
ase, sin
e our

previous resear
h [10, 15℄ showed that it is likely that within this number of iterations high

levels of optimization are obtained.

In Figure 4, loop tiling, loop unrolling and array padding are applied as transformations. The

�rst observation is that the sear
h algorithm �nds good speedups. Another observation is
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Figure 6: Compilation Time

that the sear
h algorithm �nds good parameters qui
kly. Within 50 evaluations in all 
ases,

ex
ept for MxM, the performan
e improvement is 
lose to maximum. For MxM more than 100

evaluations are required to obtain a good performan
e improvement. After 350 evaluations,

there is no performan
e improvement observed in all 
ases. This 
orresponds to 1.75% of the

entire sear
h spa
e.

In �gure 5, we have given the average per
entage of how 
lose to the absolute minimum the

sear
h algorithm 
omes a
ross all platforms, ben
hmarks and data sizes. The average is taken

over 26 measurements. The x-axis shows the number of evaluations and the y-axis shows the

distan
e to the minimum. The �gure shows a monotoni
 de
reasing graph that rea
hes high

levels of optimization rapidly.

5.1.4 Compilation Time

An important 
onsideration for the feasibility of iterative 
ompilation is the running time of

the approa
h. Figure 6 shows the average 
ompilation time for a number of ben
hmarks and

the average of these times.

We observe that 
ompilation time is proportional to the number of iterations. The average
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ompile time using 400 iterations ranges from 7.7 minutes (MxV) to 25.4 minutes (FDCT). On

average we need 16 minutes for 400 iterations. Note that the kernels we used are representative

for embedded kernels. In 
ase we are to optimize embedded kernels this amount of time 
an

easily be a�orded. In fa
t, the �gure shows that for time-
riti
al kernels many more iterations


an be a�orded: sin
e 
ompilation time 
an be seen as an integral 
omponent of the total

development time of the embedded system, we 
an a�ord several hours to heavily optimize

the 
ompute intensive routines.

The �gure also shows the breakdown of the exe
ution times for 400 iterations. On average,

about 50% of the total 
ompilation is spent exe
uting the transformed 
ode. The time needed

for native f77 
ompilation is not large, but signi�
ant. Note that in 
ase the target platform

needs stati
 instru
tion s
heduling or software pipelining, this time 
an be mu
h larger. In

some 
ases, the time for MT1 and the global driver is larger than the exe
ution time of the

transformed 
ode (RECO).

5.2 Alternative Sear
h Te
hniques

Although we have fo
used on one sear
h te
hnique for iterative 
ompilation, other approa
hes

are also being investigated within the proje
t.

5.2.1 Code size{performan
e trade-o�

Another sear
h algorithm examined by the OCEANS proje
t is a depth-�rst tree sear
h, where

sets of transformations are re
ursively built up and examined. The global driver de
ides if a

set is worthwhile for further examination by enlarging the set, or it ba
ktra
ks by shrinking the

set. Main fo
us with this sear
h is on the trade-o� between 
ode size and 
ode performan
e.

One of the key issues for iterative 
ompilation is to provide a useful feedba
k from the di�erent


omponents of the 
ompiler, so de
isions 
an be made by 
hoosing between various sets of

transformations. In this se
tion we 
onsider loop unrolling. Sin
e unrolling has mostly an

impa
t on s
heduling, stati
 feedba
k is suÆ
ient. However, in some 
ases 
a
he behaviour

needs to be known and dynami
 feedba
k is used. An additional 
onstraint of 
ompilers

for embedded appli
ations 
ompared to traditional 
ompilers is that 
ode size is important.

Larger 
ode usually means a larger die size and thus in
reased produ
tion 
osts. We therefore

not only sear
h for the best optimization 
on
erning 
ode performan
e but try to �nd a trade-

o� between these two aspe
ts, using a 
ost model whi
h takes dynami
 and stati
 feedba
k

into a

ount. Traditional optimizing 
ompilers are based on a �xed set of heuristi
s and only

optimize for speed or 
ode size, but don't sear
h for a trade-o�. Figure 7 shows how 
omplex
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Figure 7: Code size and performan
e

this issue 
an be. This �gure is obtained by our implementation of the sear
h algorithm. It

shows a range of unrolling fa
tors applied to a loop. It should be noted that when a software

pipelining algorithm is applied to the unrolled loop, the 
ode size 
an grow with a fa
tor of

5. Relative gain gives the relative gain between to su

essive unroll fa
tors.

5.2.2 Geneti
 algorithms

As an alternative to traditional sear
h te
hniques, we are also investigating the appli
ation

of geneti
 algorithms (GA) as a means of determining the best transformation sequen
e.

This has the potential bene�t of investigating transformation spa
es whi
h 
annot easily be

des
ribed as a 
artesian domain and is extremely robust in the presen
e of lo
al minima.

The OCEANS GA sear
h is implemented as part of the GAPS 
ompiler framework des
ribed

in [16℄ whi
h uses GA based optimization for an auto-parallelising 
ompiler. In the OCEANS

GA, traditional restru
turing transformation sequen
es su
h as tiling, loop-permutation, loop-

distribution, loop-fusion, loop-skewing and statement reordering are represented as multi-

dimensional mappings [14℄. GA optimization initialises a population of mappings using a


ombination of randomised methods and 
onventional 
ompiler te
hniques. Thus, a popula-

tion represents a subset of the transformation spa
e for a program. Mappings representing

transformed programs having good performan
e (i.e., low exe
ution time/predi
ted overheads)

are given high reprodu
tion sele
tion probabilities. Mutation and re
ombination based repro-

du
tion operators generate new 
hild mappings from randomly sele
ted parent mappings
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urrently in the population. Steady-state reprodu
tion with an elitist repla
ement strategy

ensures that 
hild mappings only repla
e mappings asso
iated with programs having low per-

forman
e. Reprodu
tion is iteratively applied until a maximum number of mappings have

been 
reated or until a real-time performan
e 
onstraint is satis�ed. The use of elitism in


onjun
tion with 
onventional 
ompiler te
hniques ensures that the performan
e of the best

solution produ
ed by GA optimization will be equal to or greater than that produ
ed by the


onventional te
hniques.

6 Related Work

There is a large body of work 
onsidering program transformations to improve unipro
essor

performan
e. In [12℄, an analyti
 algorithm to give a good tile size to minimise interferen
e

and exploit lo
ality is presented. This work 
onsidered re
tangular tiles whose dimensions are

a fun
tion of the iteration spa
e and the 
a
he organisation. This work gives good performan
e

improvements over existing te
hniques but does not 
onsider the impa
t of tiling on unrolling

or other transformations.

Whaley and Dongarra [19℄, and Bilmes et al. [8℄ des
ribe systems for generating highly opti-

mized versions of BLAS routines. These systems 
an probe the underlying hardware to �nd

optimal values for blo
king fa
tors, unroll fa
tors et
. In 
ontrast to the present approa
h,

these systems are only able to optimize BLAS routines and are not general purpose 
ompil-

ers. Experimentation with these systems [19, 8℄ has shown that these systems are 
apable of

produ
ing 
ode that is more eÆ
ient than the vendor supplied, hand optimized library BLAS

routines.

Wolf, Maydan and Chen [20℄ have des
ribed a 
ompiler that also sear
hes for the optimal

optimization. This 
ompiler also 
onsiders the entire optimization spa
e and tries to �nd the

best point in it. In 
ontrast to the present approa
h, however, their 
ompiler uses a �xed order

of the transformations and a stati
 
ost model to evaluate the di�erent optimizations. They

also use an aggressive but heuristi
 pruning algorithm to 
ontrol the 
omplexity of the sear
h.

They report good eÆ
ien
y of the resulting 
ode and short running times of the sear
h. We

believe that the present approa
h that is based on a
tual exe
ution times instead of stati



ost models will deliver superior performan
e.

Bodin et al. [9℄ des
ribe a method for sear
hing for the best optimization on the assembly

level, taking into 
onsideration both exe
ution times and 
ode size. Their approa
h also uses

a stati
 
ost model, in 
ontrast to the present approa
h, and does not seem to prune the

sear
h spa
e.
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7 Con
lusions

In this do
ument we have des
ribed the Esprit Rea
tive LTR proje
t OCEANS. This proje
t

fo
usses on developing aggressive optimization te
hniques for embedded systems. We have

dis
ussed the 
ompiler infrastru
ture and the software 
omponents from whi
h the 
ompiler

has been built. Next we dis
ussed the iterative approa
h to program optimization adopted

in the OCEANS proje
t. This approa
h 
onsists of sear
hing for the best optimization. The

sear
h is 
ondu
ted along two axes. First, a high level grid-based sear
h is 
ondu
ted to �nd

optimal parameter values for sour
e to sour
e transformations. Se
ond, a low level trade-

o� between 
ode size and performan
e is sear
hed that examines the interplay between loop

unrolling and software pipelining. We have shown that this approa
h to program optimization

delivers highly optimized programs in a reasonable amount of 
ompile time. Although this


ompile time may be too large for general purpose 
ompilers, it 
an easily be a�orded in


ase of embedded appli
ations where 
ompilation time 
an be seen as an integral part of the

produ
t development time.
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