Transformation Mechanisms in MT'1

A.J.C. Bik P.J. Brinkhaus P.M.W. Knijnenburg H.A.G. Wijshoff

Leiden Institute of Advanced Computer Science,
Leiden University
Niels Bohrweg 1
2333 CA Leiden, the Netherlands

Abstract

In this report we describe a specification language for program transformations on the For-
tran 77 source language level. Together with an application engine this specification mecha-
nism allows for a flexible and highly tunable set of transformations to be applied to a program.
These transformations are structured around a pattern match mechanism that allows for user
defined function that can access the internal program representation directly. This approach
allows the specification of a wide range of program transformations, including all commonly
used loop level transformations. Next we discuss the Strategy Specification Language (SSL).
The SSL is a specification mechanism to sequence elementary transformations. The SSL on the
source language level is capable of the sequential composition of transformations, a conditional
and a repetetive construct. The conditions for these last constructs consist of the success or
failure of some arbitrary condition transformation. Since the condition of a transformation
may contain user-defined functions that may access an arbitrary data structure, a mechanism
is provided for feedback. This feedback information may be targetted towards specific parts
of the program, like a particular loop.

Contents

1 Introduction
2 Transfromation Definition Language
2.1 The restructuring compiler MT1 o oL
2.2 The Transformation Definition Language
2.2.1 Structure of the TDLo
2.2.2 Some Samples Transformations
2.2.3 User defined functions Lo
2.2.4 LIBTDL Functionso i
2.3 Incorporation of TDLin MT1,
2.4 Syntax of the Transformation Definition Languge
2.5 Example transformations L L o L Lo
3 Strategy Specification Language

3.1 The original MT1 transformation engine

3.2 Strategy syntax L e e e e e e

3.3 Semantics e e e

3.3.1
3.3.2
3.3.3
3.3.4

General definitions Lo
Sequential application L o 0o
Conditional application,

Repetitive application: WHILE

14
16
17
21
23
26

3.3.5 Repetitive application: REPEAT

3.3.6 Roll back construct

4 Conclusion

Chapter 1

Introduction

Optimizing and restructuring compilers incorporate a number of program transformations that
replace program fragments by semantically equivalent fragments [Wol91, Wol96, ZC90]. The
aim is to obtain more efficient code for a given target architecture. To this end, a collection
of suitable transformations and conditions under which to apply them needs to be defined.
This collection is dependent upon characteristics of the target architecture. Furthermore, the
order in which to apply them needs to be considered. This last problem is commonly known
as the phase ordering problem.

Traditionally, compilers approach this problem rather statically: the tranformations and their
application order are hard coded. This renders these systems rather inflexible. New trans-
formations need to be hard coded on the internal data structure of the compiler. This is a
difficult and error-prone process. Likewise, the compiler needs to be adapted to implement
different application strategies. However, it is not at all obvious what the best strategy for a
given architecture and application domain is. Therefore, experimentation is required to obtain
the optimal strategy.

Within the MT1 compilation system [Bik92, BW93, Bri93] these problems are appoached in
the following way. The system provides a Transformation Definition Language and a Strat-
egy Specification Language. Transformations and strategies specified in these languages can
be dynamically loaded into the compiler and executed. This yields a very flexible system
that allows the user to easily add new transformations and experiment with their application
strategy. In this report the Transformation Definition Language (TDL) is described.

The TDL is based on pattern matching. The user can specify an input pattern, a transformed
output pattern and a condition can be legally and/or beneficially applied. The patterns may
consists of sequences of DO loops, IF statements, assignments etc. They may also contain
expression and statement variables. When such sequences are matched against the code under

consideration, these variables are bound to actual expressions and code fragments, respec-
tively. The expression and statement variables can be used in turn in the specification of the
output pattern and the condition. This mechanism allows one to specify a large number of
transformations, like loop interchange, loop distribution or loop fusion. However, it is not
powerful enough to express other important transformations, like loop unrolling. For loop
unrolling, the loop body needs to be duplicated, and each ocurrence of the loop index I needs
to be replaced by I + 1 in the second copy of the loop body. Therefore, the TDL also allows
for user defined functions in the output pattern. Such a function may implement for instance
the replacement of one expression by another in a sequence of statements. In the TDL, user
defined functions are the interface to the internal data structures of the compiler. In this
way, any algorithm for transforming the code can be implemented and made accessible to
the level of the TDL. Likewise, all kinds of tests on the structure and properties of the code
can be implemented. For practical purposes, libraries with user defined function that perform
certain elementary functions can be created and used in the formulation of more advanced
transformations and conditions.

However, being able to specify transformations is only one part of the general problem of
obtaining optimal code by means of program transformations. The order in which these
transformations have to be applied needs consideration also [Wol96]. In the initial imple-
mentation of the TDL this order is fixed. However, in order to be able to experiment with
different application orders for the transformations, a Strategy Specification Language (SSL)
has been implemented. This language contains sequential composition of transformations, a
choice construct and two repetitive constructs. Like the definition of transformations using
the TDL, a file containing a strategy written in the SSL can be dynamically loaded by MT1
and the sequence of transformations specified in that file will be executed. This yields a very
flexible system and users are free to change the strategy at any moment.

There are some other projects which separate the implementation of the optimizing strategy
from the implementation of the rest of the compiler. Sage++ offers the possibility of specifying
a strategy in the C++ language. Sage++ contains a parser that converts the source program
into its intermediate format. Sage++ offers a library of routines to walk through the syntax
tree, investigate properties of the source code, and apply restructuring transformations onto
the source code. These restructuring transformations need to be defined by the user using
the primitives offered by the Sage++ library. Although this approach allows a high degree
of flexibility, writing strategies takes place at a fairly low level. Moreover, the user needs to
hard code the order in which the transformations are applied. If he wants to change this order
then part of compilation system needs to be modified and recompiled. This is in contrast to
the present approach that offers separate languages to specify transformations and strategies.
These specifications are dynamically loaded and executed which means that the system deals
with changes in the specifications very flexibly.

This report is organized as follows. In the second chapter, the TDL on source language level
is discussed. In section 2.1 a brief overview of the MT1 compilation system is given. In sec-
tion 2.2 the syntax and semantics of the Transformation Definition Language is described. In
section 2.3 it is described how the TDL and MT1 interface. Finally, in section 2.4 the syntax of
the TDL is formally specified in BNF notation. In the third chapter, the Strategy Specification
Language is discussed. Finally, in the fourth chapter some conclusions are presented.

Chapter 2

Transfromation Definition Language

2.1 The restructuring compiler MT1

MT1 is a Fortran restructuring source-to-source compiler, initially developed as an aid in
vectorizing and/or parallelizing sequential programs [Bik92, BW93, Bri93, vDAVW'95]. The
core of MT1 consists of a parser that constructs the internal program representation. To
this core several modules are hooked that operate on this internal representation. MT1 has a
command-driven interface. After it has been started it shows a prompt after which commands,
such as loading a Fortran program or transformation file, can be given. Loading a program
executes the following phases in MT1.

e Lexical scanning, syntax analysis, semantics checking and construction of internal data
structure;

e Interprocedural analysis and optimization;
e Goto elimination;

e Data dependence analysis.

MT1 supports seperate compilation. If a Fortran program consists of several source files, each
of these files can be processed independently. However, loading all source files at once will
give better results, due to MT1’s interprocedural analysis.

MT1 saves several data structures as human readable text in files, all starting with the prefix
‘program.’ in the current directory. These files can be shown during the execution of MT1,
and will be left behind after exiting MT1. Table 2.1 shows the generated files, together with
the command by which the file can be shown during execution.

File

Command

Data structure

program.f
program.txt

program. sym
program.dep
program.cg
program.cfg
trafo.txt
trafo.sym

showprg

symtb
showdep
showcg
showcfg
showtrf

Program after parsing

Program after optimization and application
of transformations

Symbol table

Data dependence graph

Call graph

Interprocedural control flow graph
Transformation definitions

Symbol table of transformation definitions

Table 2.1: MT1’s internal data structures

MT1 supports full Fortran. In addition, several extensions commonly supported by many
other Fortran compilers are supported.

From the Military Standard Definition (MIL-STD-1753) MT1 implements the following fea-

tures:

e Block DO loops

DO WHILE statements.

INCLUDE statements.

IBITS and BTEST.

IMPLICIT NONE statement.

The bit manipulation intrinsics TAND, IBSET, NOT, IBCLR, IOR, ISHFT, IEOR, ISHFTC,

Other implemented extensions are:

e The use of binary, octal, and hexadimal constants in any place where integer constants
are allowed'. Binary constant may be written as B'b; ...}, or by ... b, B, octal constants
as 0’0y ...0}, or'o; ... 0,0 and hexadecimal constants as Z'zy ... x|, or 'z ...z}, Z where
b; is a binary digit, o; an octal digit and z; a hexadecimal digit.

e The use of underscores (’_’) and dollar-signs (’$’) in symbolic names.

e Lower case letters as part of the FORTRAN character set.

'MIL-STD-1753 also defines octal and hexadecimal constants. However, they are only allowed in DATA

statements.

e Symbolic names longer than six characters.

e Byte length in type statements. For example, INTEGER*4 specifies an integer of four
bytes. At the moment, byte lengths may only be the default type length, e.g. IN-
TEGER*4 is allowed but INTEGER*2 is not. MT1 compiles types with byte length
automatically to the appropriate type, e.g. REAL*8 is converted into DOUBLE COMPLEX
This feature has only been added for compatibility reasons.

e Double complex data type (DOUBLE COMPLEX)

e The intrinsics DCMPLX, ZABS, DIMAG, DCONJG, ZSQRT, ZEXP, ZLOG, ZSIN, ZCOS which are
equivalent with the C-prefixed intrinsics but use double complex types.

2.2 The Transformation Definition Language

The Transformation Definition Language (TDL) enables the user to define its own transfor-
mations to be applied by the compiler. The language has been kept as simple as possible but
is powerful enough to define a host program transformations and their conditions. For more
advanced transformations, which cannot be expressed in the TDL directly, an interface to user
defined functions written in C is provided. To make live more easy, MT1 comes with a shared
library, 1ibtdl, which contains a set of commonly needed user-defined functions.

Section 2.2.1 describes the TDL in detail. Section 2.2.2 explains some sample transformations
to illustrate the features of the TDL. Section 2.2.3 describes the user defined functions in more
detail. Finally, Section 2.2.4 describes all the functions in the shared library 1ibtdl.

2.2.1 Structure of the TDL

The transformation file consists of several import and transform statements. The import
statement describes the interface to user defined functions (comparable to function prototypes
in C), while the transform statement describes an actual transformation. Appendix 2.4
summarizes the syntax rules of the TDL.

Comments

Any text after the characters %’ or '#’ up to a new line is treated as a comment. However,
the use of '#’ is discouraged, because it gives conflicts with the C preprocessor /1ib/cpp.

Reserved Keywords

A reserved keyword is a string of characters which have special significance to the compiler
when used within the transformation file (except when they occur within a comment). The
following keywords are reserved:

B dobody merge

E follow mnil

S head not

and if tail
assign ifbody transform
condition into import
dep isnil from

do issub true
doall list

In particular, reserved keywords may not be used as identifiers within a transform or an
import statement. The case of the keywords is significant, i.e. all reserved keywords are in
lowercase, except the B, E and S keywords.

Identifiers

An identifier is a string of characters used to refer to a user defined function. An identifier
can contain any combination of lowercase or uppercase characters, digits or the underscore
character (’.”). However, it must start with zero or more underscores, followed by at least one
letter. An identifier may not be a reserved keyword (see Section 2.2.1). The case of identifiers

is significant.

The transform Statement

A transformation is described with the transform statement. The statement has the following
form:

tranform
patternl

into
pattern2

condition
condition

where both pattern! and pattern2 must be statement lists.

Whenever patternl (which will be referred to as the left-hand-side pattern) matches a fragment
in the program, and condition holds, the fragment in the program will be replaced with pattern2
(the input pattern) if this transformation is applied.

Statement List Patterns A statement list pattern may be one of the following patterns:

e a statement list variable (see Section 2.2.1);

e list(statement, statement-list)
where statement is the head of the list, a statement pattern (see Section 2.2.1) and
statement-list the tail of the list, a statement list pattern;

e follow(stmi-var, statement-list),
a built-in function which matches a list of statements ending with statement-list while
the start of the list is bound to the statement variable stmi-var. The follow function
may be used only in the left-hand-side pattern of a transformation. The main purpose of
this function is to split up a statement list in an arbitrary fashion. Consecutive matches
of follow split up the statement list differently, e.g. given program fragment

A(I) = B(I)
C(I) = D(I)
E(I) = F(I)

and the statement list pattern follow(!s1, !s2) (here !s1 and !s2 are statement list
patterns, see Section 2.2.1). The first match of follow will bind the first assignment to
sl as a statement list and the second and third assignment to !s2. On a second match,
's1 will be bound to the first and the second assignment and !s2 to the third. Finally,
on a third match, !'s1 will be bound to all three statements and !s2 will be bound to
nil.

e merge(statement-list-1, statement-list-2)
a built-in function which concatenates the two statement list patterns statement-list-1
and statement-list-2. The merge function may be used only in the output pattern of a
transformation;

e follow(statement variable, statement list)
a built-in function that first binds the statement variable to a program fragment of
minimal length such that statement list also can be bound to the next fragment, and
if the transformation is not accepted binds the variable to a fragment of greater length
and so on untill either the transformation is accepted or no fragement can be found such

10

that the variable and the list both can be matched. The follow function may be used
only in the output pattern of a transformation;

e a user-defined function
which must have been defined in an import statement (see Section 2.2.1) before the
transformation in which the function is used. The return value of the function must be
of type statement list (S, see section 2.2.3). User-defined function are not allowed in the
left-hand-side of a transformation.

e nil
the empty list.

Statement Patterns A statement pattern may be one of the following patterns:

e assign(ezpr-1, expr-2)
which describes an assigment statement with ezpr-1, an expression pattern, as the left
hand side of the assignment and ezpr-2, also an expression pattern, as the right hand
side of the assignment;

e if(expr, statement-list)
which describes either a logical or a general IF statement, with exzpr, an expression
pattern, as the condition of the IF statement and statement-list as the body of the IF
statement;

e do(expr-1, expr-2, expr-3, expr-4, statement-list)
which describes a DO loop. expr-1, expr-2, expr-8 and expr-j are expression patterns,
where ezpr-1 describes the index variable, exzpr-2 the lowerbound, expr-3 the upperbound
and ezpr-3 the stride of the DO loop;

e doall(expr-1, expr-2, expr-3, expr-4, statement-list)
which describes a DOALL loop and is exactly the same as the do statement pattern, except
that it matches a DOALL keyword in case the pattern occurs in the left hand side of a
transformation statement or generates a DOALL keyword in case the pattern occurs in
the output pattern of a transformation statement?.

See Section 2.2.1 for a description of expression patterns.

2Note that DDALL loops are not accepted as an extension of standand FORTRAN 77 on input. However,
doall patterns are provided to turn parallel DO loops into DOALL loops on output. So, currently MT1 is not
always able to read in its own output again.

11

Expression Patterns A expression pattern may be one of the following patterns:

e an expression variable (see Section 2.2.1);
e a3 FORTRAN 77 integer, real or logical constant;

e cxpr-1 bin-op expr-2
where ezpr-1 and expr-2 are expression patterns and operator is one of the FORTRAN 77
binary expression operators "*’, '+’ -7 7/’ ** EQ., .NE., .GE., .GT., .LE., .LT.,
.EQV., .NEQV., .AND. or .OR.;

® un-op erpr
where expr is an expression pattern and un-op is one of the FORTRAN 77 unary ex-
pression operators ’-’ or .NOT.;

o (expr)

e vectorize(ezpr-var-1, expr-var-2, expr-1: expr-2: expr-3)
a built-in function to generate array-sections. This expression pattern may only be used
in the output pattern of a transformation statement;

e a user-defined function
which must have been defined in an import statement (see Section 2.2.1) before the
transformation in which the function is used. The return value of the function must be
of type expression (E, see Section 2.2.3). User-defined function are not allowed in the
left-hand-side of a transformation.

Variables Variables may be used to denote an arbitrary expression or statement list within
a statement pattern. Expression variables start with ’le’ followed by a number, e.g. 'el or
le10. Statement list variables start with ’!s’ followed by a number, e.g. !'s2 or !s10.

If an expression or an statement list variable occurs in the output pattern of a transformation
statement, it must occur also in the left hand side of that statement, otherwise it will be
unbounded during the application phase. A statement list variable may be used only once
in the left hand side pattern. Expression variable may be used several times in a left hand
side pattern to indicate that the expressions bound to different occurences of the expression
variable must be syntactically the same, e.g. the statement pattern

assign(lel, lel)

matches the FORTRAN 77 statement

12

but not

Conditions A condition in the condition clause of a transformation statement may be one
of the following boolean expressions:

e true
the boolean true value. Note that there is no constant false value. This value can be
represented by not true;

e dep kind [direction | (from-stmt-list, to-stmt-list) [> expr-var]

returns true if there exist a dependence of kind kind with direction direction from any
statement in from-stmit-list to any statement in to-stmit-list. The optional [> ezpr-var
| may be used to denote that the dependence must hold on a variable which occurs in
the expression bound to expr-var. The kind of dependence may be one of flow, anti,
input, output or 'Q’ (any dependence except input). The direction vector direction is
optional and may be used to denote a direction which should hold for the dependence.
The elements of the vector maybe '<’, ’>” and "*’ (meaning either <’ or ’>’). The length
of the vector should correspond to the common number of DO (WHILE) statements
surrounding both from-stmt-list and to-stmt-list. The statement lists from-stmt-list and
to-stmi-list must be references to the matched pattern.

e isnil(statement-variable)
a built-in function which returns true, if statement-variable is bound to the empty state-
ment list (the statement list pattern nil), or false otherwise.

e issub(expr-var-1, expr-var-2)
a built-in function which returns true, if the expression bound to ezpr-var-1 occurs as
a subscript expression in the expression bound to ezpr-var-2, or false otherwise. Note
that the issub always returns false if the expr-var-1 occurs only within an expression
which is either an (intrinsic) function call or an implied DO loop;

e a user-defined-function
which must have been defined in an import statement (see Section 2.2.1). Within a
condition, a function requiring a statement list as argument (of type S) may be passed
a reference to the matched pattern as well as a regular statement list. The return value
of the function must be of type boolean (B, see Section 2.2.3);

13

e not condition
returns true if condition is false, otherwise true;

e condition-1 and condition-2
returns true if both condition-1 and condition-2 are true, otherwise false.

The not operator has higher precedence than the and operator.

Referencing the Matched Pattern Constructs from-stmi-list and to-stmi-list consist of
references to statement lists in the left-hand-side pattern. Each reference starts with the whole
matching program fragment, indicated by a ‘$’, and uses the constructs ‘.next’, ‘.dobody’,
and ‘.ifbody’ to refer to the next statement list, DO-loop body, or IF-statement, respectively.

The following example illustrates how references in a dep construct can be used to specify
specific statement lists in a program fragment that matches the following pattern:

list(do(lel, !e2, !e3, 'e4,
list(if('e5, !s1), !s2)), !s3)

For the fragment below, both variable !'s3 and $.next are bound to the ‘rest of program’.
Since a body consists of a single statement list, both $.body.ifbody and !'s1 are bound to
the ‘...’ statements inside the IF-body:

$— DOI=1, 100
$.dobody — IF (L2) THEN
$.dobody.ifbody — e +— sl
ENDIF
$.dobody.next — e +— 182
ENDDO
$.next — ... +— 183

Construct ‘.head’ can be used at the end of a reference to indicated that only the first
statement of the statement list indicated by reference that precedes this construct must be
considered. Note that if this single statement is a DO-loop or an IF statement, the statements
inside the body are also considered (since they belong to that single statement). So, in the
given example, $.head specifies the DO-loop with its body (consisting of the TF statement
with its body and all statements in the list bound to !s2), while $ specifies this DO-loop with
all statements in its body and the following statement list (bound to !'s3 and specified with
$.next).

14

The first structure associated with a dep construction specifies the statement list from which
the source statements must be taken, while the second one specifies the list from which the
sink statements must be taken. Note that the use of references (rather than using, for instance,
statement variables) enables the programmer to specify arbitrary statements and statement
lists within the matching fragment. The compiler verifies, however, whether the references
match the specification of the left-hand side pattern (so that $.next.dobody, for example,
cannot be used, even though !'s3 may be bound to a DO-loop for a particular matching
fragment).

The import Statement

Before user-defined functions are used within a transformation statement, they have to be
declared in an import statement. The statement has the following form:

import
user-defined-function-1 : argument-types => result-type

user-defined-function-n : argument-types => result-type
from
shared-library, ...

7

Each declared function is identified by one of the identifiers user-defined-function-1 to user-
defined-function-n. A function takes arguments as specified by argument-types, which is a list
of types, separated by white space. An argument type may be either S, a statement list or E,
an expression. The type of the function result is specified by result-type, which may be either
S, a statement list, E, an expression or B, a boolean value.

In the from clause of the import statement, a comma separated list of shared libraries must be
specified in which the declared function are searched for. The library names, which must have
an extension ’.sl’ or ".so’ and may be preceded by a path, must be delimited by either double
quotes () or angle brackets (’<’ and ’>’). If the library name is delimited by double quotes,
the library is searched for in the location as specified. Otherwise the environment variable
TRAFOPATH is used to determine where to search for the library by prefixing the library name
with each path defined by TRAFOPATH.

2.2.2 Some Samples Transformations

In this section, some examples of transformations will be explained, to illustrate the features
of the TDL.

15

Loop Vectorization

For vectorization, the built-in function vectorize is used.

transform

list(do(lel, 'e2, !e3, le4,

list (assign(!e5, !e6), nil)), !s1)

into

list(assign(vectorize(!e5, lel, !e2:!e3:!ed),

vectorize(le6, lel, !e2:1e3:le4d)), !sl)

condition

not dep flow < ($.dobody, $.dobody)

Loop Distribution

Loop distribution uses the follow construct.

transform

list(do(!el, !'e2, !'e3, !e4, follow('sl, !s2)), !s3)
into

list(do(lel, 'e2, !e3, le4, !sl),

list(do(lel, 'e2, !e3, led, !s2), !s83))
condition

not isnil (!s2) and

not dep @ < ($.dobody.follow, $.dobody)

.
I

Since a loop can be distributed between any two statements in the loop body, the follow
construct provides a means to dynamically guide the user to search for this point. Firts !s1
is bound to the first statement in the loop body and !s2 to the rest of the loop body. The
loop is distributed at this point and the user is asked to accept this distribution or not. If not,
I'sl is bound to the first two statements in the body and !s2 to the others, and the user is
prompted again. And so on, until !'s1 is bound to the entire loop body and !s2 is nil. Then
the condition fails and the transformation is not applied anymore.

Loop Unrolling

This transformation uses two user defined functions that come with the standard library and
that are described in section 2.2.4. Also, the built-in function merge is used. First, the

16

functions are declared by an import statement.

import
tdl_isint : E -> B
tdl_replace : SEE -> S
from
<libtdl.sl>

transform
list(do(lel, 'e2, !'e3, 1, !sl), !s2)
into
list(do(lel, 'e2, (le2 — 1) + (('e3 - te2 + 1) / 2) x 2, 2,
merge(!sl, tdl_replace(!sl, l!el, lel + 1))),
list(if((('e3 - 'e2 + 1) / 2) * 2 .neq. (!'e3 - !e2 + 1),
tdl_replace(!sl, tel, !'e3)), !s2))
condition
tdl_isint(!e2) and tdl_isint('!e3)

2.2.3 User defined functions

Because the expressiveness of the transformation language is rather limited, the possibility to
call user defined functions, written in C, is implemented. These functions should be stored
in one or more shared libraries, that can be dynamically loaded during run-time, i.e. during
parsing of the transformation file. Type definitions of user defined functions and libraries to be
loaded must be specified by the import clause in the transformation file. User defined functions
may be called from the output pattern and the condition of a transformation. Usually, boolean
functions are used in conditions while functions returning an expression or a statement are
used within the output pattern of a transformation (although a call to such a function may
also occur as an argument to a boolean function in a condition).

From within a user defined C function, it is possible to make calls to many functions used
internally by MT1 to access and maintain the symbol table and the abstract syntax tree
representing the Fortran input source.

Parameter Passing

An argument to a user defined function must be either an expression (type 'E’) or a statement
(type ’S’). These arguments are pointers to copies of nodes in MT1’s abstract syntax tree.

17

Arguments are not passed directly to the user defined function. That means that the C
definition of the function should have an empty argument list (i.e. void in ANSI C). Instead,
expression arguments are passed through an expression stack and statement arguments though
a statement stack. The arguments are moved in in order of appearance on these stack, i.e.
the first argument is the lowest on one of the stacks and the last argument is on top on one
of the stacks. Note that in general the arguments are copied before they are passed to the
function. Therefore, the user defined function is responsible for cleaning up the arguments if
they are not used as a function result.

The exception is that a function may be passed a statement list which is not a copy but a
direct pointer into the abstract syntax tree of the input source (in this case the argument in
the transformation definition starts with a ’$’). In this case the argument must not be deleted
by the function nor may it be returned as a function result.

Return Values

User defined function must return either an expression, a statement or a boolean value. If
the function returns a boolean value, the type of the user defined function should be int and
the function should return zero in case the return value is false or any nonzero value in case
the return value is true. As with the arguments of the user defined function, expressions and

statements are returned on top of either the expression or statement stack. The C definition
of the function should therefore be of type void.

2.2.4 LIBTDL Functions
Because writing user-defined functions is not an easy task, MT1 comes with a library, 1ibtdl,

which provides the transformation writer with a set of commonly needed user-defined func-
tions. This section describes each function in the library.

e tdl_isint
tdl_isint : E — B

returns true if expression E is of type integer, otherwise false.

o tdl_isreal
tdl_isreal : E — B

returns true if expression E is of type real, otherwise false.

18

tdl_isdreal
tdl_isdreal : E — B

returns true if expression E is of type double real, otherwise false.

tdl_iscomplex
tdl_iscomplex : E — B

returns true if expression E is of type complex, otherwise false.

tdl_isdcomplex
tdl_isdcomplex : E — B

returns true if expression E is of type double complex, otherwise false.

tdl_islogical
tdl_islogical : E — B

returns true if expression E is of type logical, otherwise false.

tdl_ischar
tdl_ischar : E — B

returns true if expression E is of type character, otherwise false.

tdl_iseq
tdl_iseq : EE — B

returns true if both expression have te same value, otherwise false. Both arguments
must be constant expressions, otherwise an error messages is given and false is returned.

tdl_islt
tdlislt : EE — B

returns true if the value of the first expression is lower than the value of the second

19

expression, otherwise false. Both arguments must be constant expressions, otherwise
an error messages is given and false is returned.

tdl_isleq
tdl_isleq : EE — B

returns true if the value of the first expression is lower than or equal to the value of
the second expression, otherwise false. Both arguments must be constant expressions,
otherwise an error messages is given and false is returned.

tdl isgt
tdl_isgt : EE — B

returns true if the value of the first expression is higher than the value of the second
expression, otherwise false. Both arguments must be constant expressions, otherwise
an error messages is given and false is returned.

tdl isgeq
tdl_isgeq : EE — B

returns true if the value of the first expression is higher than or equal to the value
of the second expression, otherwise false. Both arguments must be constant expres-
sions, otherwise an error messages is given and false is returned.

tdl_isneq
tdl_isneq : EE — B
returns true if the values of both expressions are not the same, otherwise false. Both

arguments must be constant expressions, otherwise an error messages is given and false
is returned.

tdl_isdummy
tdl_isdummy : E — B
returns true if variable expression E is a a dummy argument variable, otherwise false.

The argument must be a variable expression, otherwise an error message is given and
false is returned.

20

tdl_iscommon
tdl_iscommon : E — B
returns true if expression E is a member of a COMMON block, otherwise false. The

argument must be a variable expression, otherwise an error message is given and false
is returned.

tdl_isconst
tdl_isconst : E — B

returns true if expression E is a constant expression, otherwise false.

tdl_isscalar
tdl_isscalar : E — B

returns true if expression E is a scalar variable, otherwise false. The argument must
be a variable expression, otherwise an error message is given and false is returned.

tdl_replace
tdl replace : S EE — S

replace each occurence of the second argument in the first argument with the third
argument.

tdl_intvar
tdl_intvar : E — E
create a local integer variable IV_r where z is the constant integer argument. If the

argument is not a constant integer argument, an error is given. If the variable already
exist, an error message is given also.

tdl_realvar
tdl_realvar : E — E

create a local real variable IV_z where z is the constant integer argument. If the argu-

21

ment is not a constant integer argument, an error is given. If the variable already exist,
an error message is given also.

e tdl_mod
tdlmod : EE — E

generates a call to intrinsic function MOD with both arguments.

e tdl_min
tdlmin : EE — E

generates a call to intrinsic function MIN with both arguments.

o tdl_max
tdlmax : E E — E

generates a call to intrinsic function MAX with both arguments.

2.3 Incorporation of TDL in MT1

In this section we briefly descirbe how the TDL can be invoked from within MT1. First,
a file containing a collection of IMPORT and TRANSFORM statements is read in. Then these
transformations can be applied interactively. MT1 comes with a default strategy for applying
transformations. This default strategy is described below. As mentioned in the Introduction,
a Strategy Specification Language has been implemented in the MT1 system. This language
is described in the Oceans Deliverable D1.2a.

The commands to be given to MT1 for applying transformations are the following.

Readtrf The readtrf command reads in a transformation file. The name of the tranformation
file must be supplied as an argument. If the environment variable ’‘CPP’ is set to a filter,
readtrf feeds the transformation file to the filter and then parses the output of the filter.

Start The start command starts the application of transformations to the Fortran program.
If a fragment of the program matches the lefthand-side of a transformation and the
condition of the transformation evaluates to true, the matched and the new fragment,
described by the righthand-side of the transformation, are displayed and you are asked
for conformation to apply the transformation by a prompt

22

** ACCEPT (y/n/q/e/s) ===
Five answers (either in uppercase or in lowercase) are allowed:

e 'y’ - yes, apply this transformation and proceed searching with this transformation;

e 'n’ - no, do not apply this transformation but proceed searching with this transfor-
mation;

e 'q’ - quit, do not apply this transformation but proceed searching with the next
transformation starting at the beginning of the program unit;

e ¢’ - exit, do not apply this transformation but return to the command prompt;

e ’s’ - skip program unit, do not apply this transformation but restart the transfor-
mation phase on the next program unit.

The answer should be terminated by a carriage-return. If only a carriage-return is
entered, the default answer is the first one listed (’y’).

The default strategy for applying transformations can be described by the following
steps:

1. Select the first program unit textually occuring in the Fortran input.
2. Select the first transformation textually occuring in the transformation file.
3. Search through the program unit for a fragment matching the lefthand-side of the
transformation.
4. If there’s no such fragment goto step 5, otherwise ask for conformation. If the
answer is
e 'y’ apply the transformation and proceed with step 3;
e ’q’ proceed goto step 5;
e ’¢’ return to the command prompt;
e ’s’ goto step 6.
e otherwise, proceed with step 3;
5. Select the next transformation textually occuring in the transformation file. If there

are no more transformations, proceed with the next step, otherwise goto step 3.

6. Select the next program unit textually occuring in the Fortran input. If there are
no more program units, return to the command prompt,

Auto The auto command applies all matching transformations without asking for confor-
mation to the user. The same strategy is used for the auto command as the strategy
for the start command. In case of the default strategy, step 4 in this strategy should
be replaced by

23

4. If there’s no such fragment proceed with step 5, otherwise apply the transformation
and goto step 3.

Query If determination of the exact solutions is not feasible or possible, dependence analysis
must result in conservative estimates of dependences. This is done to prevent applica-
tion of transformations that change the semantics of the program, even if this causes
some valid applications to be overlooked. Therefore, the command query has been
implemented in MT1 to toggle between two modes in which either all dependences are
assumed to hold or a mode in which dependences can be ignored. In the latter mode, the
compiler prompts all dependences causing a ‘dep’ condition to hold on a match. The user
can instruct the compiler to ignore certain dependences, if it is known that these depen-
dences do not actually hold, which might disable or enable further application. In the
following fragment, for example, the occurrence of complex subscript ‘IND(I)’ results in
the recording of the loop-carried dependence 5102 Sy, which prevents concurrentization.
However, if array IND contains a permutation of the index values, concurrentization is
valid. After reply ‘y’, the transformation is enabled:

*x MATCH ON
L1: DOI =1, 100, 1
S2: A(IND(I)) = B(I)
ENDDO
*xx Dependence S2 d-outp < S2 A: IGNORE (n/y/q)=>y
*x TRANSFORM INTO
L5: DOALL T =1, 100, 1
S6: A(IND(I)) = B(I)
ENDDOALL

xx ACCEPT (y/n/q/e) ===>

2.4 Syntax of the Transformation Definition Languge

This section shows the syntax rules for the transformation language. Lowercase words are
non-terminal tokens, while uppercase words and single quoted strings are terminal tokens.
The uppercase tokens may be instantiated as follows:

e ID an identifier consisting of lower and uppercase letters, digits and underscores. The
identifier must start with zero or more underscores followed by a letter;

24

SLID the name of a shared library file (optionally preceded by a path). The name of the

file must either have the extension ’.sl’ or ’.so’.

REALCONST any floating point number;

INTCONST any integer value;

BOOLCONST either ’.true.” or ’.false.’;

STMTVAR a string ’!s’ followed by an integer;

e EXPVAR a string ’le’ followed by an integer.
The empty rule is denoted by <empty>. Here are the syntax rules in BNF-form.
definitions -> definitions definition
definition -> udf_def | trafo_def
udf_def -> ’import’ decls ’from’ sl_libs ’;’
decls -> decl | decls decl
decl -> ID ’:’ arg_list ’->’ type
type -> ’S’ | ’B’ | 'E’
arg_list -> <empty> | arg_list type
sl_libs -> sl_id | sl_1libs sl_id
sl_id -> ’>"?> SLID ’"’ | ’<’ SLID ’>’
trafo_def -> ’transform’ pattern ’into’ xpattern ’condition’ conditions ’;’
pattern -> ’list’ ’(’ stmt ’,’ xpattern ’)’
| STMTVAR
’follow’ ’(’ STMIVAR ’,’ pattern ’)’

|
| ’merge’ ’(’ xpattern ’,’ xpattern ’)’
| ’nil?

25

stmt -> ’do’ ’(’ xexp ’,’ xexp ’,’ xexp ’,’ xexp ’,’ xpattern ’)’
| ’doall’ ’(’ xexp ’,’ xexp ’,’ xexp ’,’ xexp ’,’ xpattern ’)’
| >assign’ ’(° xexp ’,’ xexp ’)’
| 2if> > (’ xexp ’,’ xpattern ’)’

xpattern -> pattern | func

exp —> EXPVAR

xexp
xexp
xexp
xexp
xexp
xexp
xexp
xexp
xexp
xexp
xexp
xexp
xexp
xexp
xexp

’+’ xexp
’-7 xexp
’x’ xexp
*/7 xexp
Yxx’ xexp

)

)

)

)

)

)

)

.eq.’ xexp
.ne.’ xexp
.ge.’ xexp
.gt.’ xexp
.le.’ xexp
.1t.’ xexp
.eqv.’ xexp
.neqv.’ xexp
.and.’ xexp
.or.’ xexp

’.not.’ xexp

>(° xexp ’)°

’-7 xexp

INTCONST

REALCONST

BOOLCONST

’vectorize’ ’(’ EXPVAR ’,’ EXPVAR ’,’ xexp ’:’ xexp ’:’ xexp ’)’

xexp -> exp | func

conditions -> condition | condition ’and’ conditions

condition ->

’true’

’dep’ depkind dirvec ’(’ s_indic ’,’ s_indic ’)’ onclause
’isnil’ ’(’> STMTVAR ’)’

>issub’ ’(’> EXPVAR ’,’ EXPVAR ’)°

’not’ condition

26

| func

depkind -> ’flow’ | ’anti’ | ’output’ | ’input’ | ’@’
onclause -> <empty> | ’>’ EXPVAR
dirvec -> <empty> | dir dirvec
dir >)= |)<) |)>) |) %)
s_indic -> ’$’ attribs
attribs -> ’.’ ’tail’ attribs

| >.? ’dobody’ attribs

| ».? ’ifbody’ attribs

| >.” ’follow’ attribs

| >.7 ’head’

| <empty>
func -> ID ’(’ act_arg_list ’)’
act_arg_list -> <empty> | act_args

act_args -> act_args ’,’ act_arg

act_arg -> exp | pattern | func | s_indic

2.5 Example transformations

In this section we present the TDL formulation of all commonly used loop level transformations
as can be found in e.g. [Pol88, Wol96, Wol91, ZC90]. This section serves to show the expressive
power of the TDL defined above.

h
% Loop collapsing
h

transform

list(do('el, 1, 'e3, 1,
list(do('e5, 1, 'e7, 1, !s1), nil)), !s2)

27

into
list(do(tdl_intvar(1), 1, !e3 * le7, 1,
list(assign(lel, ((tdl_intvar(1) - 1) / !e7) * le7 + 1),
list(assign(!e5, tdl_mod(tdl_intvar(1l) - 1, !e7) + 1),
1s1))), !s2)
condition
tdl_isint(!e3) and
tdl_isint(!e7)

h
% Loop Distribution
9,
h

transform

list(do(lel, 'e2, !e3, 'e4, follow(!sl,!s2)),!s3)
into

list(do(lel, 'e2, 'e3, '!ed4, !sl),

list(do(lel, 'e2, !e3, 'e4, !s2), !s3))

condition

not isnil (!s2) and

not dep @ < ($.dobody.follow, $.dobody)

h
% Loop fusion

h

transform

list(do('el, 'e2, 'e3, 'ed, !sl),

list(do('el, 'e2, 'e3, 'ed4, !s2), !s3))
into

list(do('el, !e2, !e3, !e4, merge(!sl,!s2)), !s3)
condition

not dep @ ($.dobody, $.tail.dobody)

h
% Loop interchange
h
transform
list(do('el, 'e2, !'e3, !e4,
list(do(!'e5, 'e6, 'e7, 'e8, !sl1l), nil)), !s2)
into

28

list(do(!'e5, 'e6, 'e7, !'e8,
list(do('el, 'e2, !'e3, le4, !s1), nil)), !s2)
condition
not dep @ <> ($.dobody.dobody, $.dobody.dobody) and
not dep flow <= ($.dobody.dobody, $.dobody.dobody) and
not dep flow ($.head, $.dobody) > lel

’
0
% Transformations to normalize loop with non-unit stride.

YA
#include <tdl.i>

’

o

% Turn a loop with a negative stride into a loop with a stride with
% a positive stride

h
transform

list(do('el, 'e2, 'e3, '!ed4, !sl), !s2)
into

list(do('el, 'e3, 'e2, -lte4dl,

tdl_replace(!sl, 'el, !e2 + !e3 - lel)), !s2)

condition

tdl_isconst('e4) and

tdl_isint(!e4) and

tdl_islt(!e4, 0)
h

% Turn a loop with a non-unit stride into a loop with
% with lowerbound 1 and unit stride.

YA
transform
list(do('el, 'e2, !'e3, le4, !s1), !s2)
into
list(do(lel, 1, ('e3 - (le2 - led)) / led, 'ed), 1,
tdl_replace(!sl, lel, !e2 - led4 + led x lel)), !s2)
condition

tdl_isint(!'e2) and
tdl_isint(!e3) and
tdl_isint(!e4) and
tdl_isconst(!e4) and
tdl_isneq('!e4, 1)

29

h
% Loop peeling
h

#tinclude <tdl.i>

transform
list(do('el, 'e2, 'e3, 'ed, !sl),
list(do('el, 'e5, !'e3, 'ed4, !s2), !s3))
into
merge (tdl_replace(!sl, lel, !e2),
list(do(lel, 'e2 + 1, !'e3, l!e4, !'sl),
list(do(lel, 'e2 + 1, 'e3, !ed, !s2), !s3)))
condition
tdl_iseq(!eb - !e2, 1)

h
% Loop reversal

YA
#include <tdl.i>

transform

list(do('el, 'e2, !'e3, le4, !s1), !s2)
into

list(do('el, !e3, !e2, -led4, tdl_replace(!sl, !el, !e2 + !e3 - lel)),
condition

tdl_isconst('e4) and

tdl_islt('e4, 0)
import

tdl_intvar: E -> E

tdl_isconst: E -> B
from

"./src/libtdl.sl"

transform
list(do('el, 'e2, !e3, !e4,
follow(!sl, list(assign(!eb5, !eb*!el), !s2))), !s3)
into
list(assign(tdl_intvar(1), !e2 * !e6),
list(do('el, 'e2, 'e3, !e4d,
merge(!s1l, list(assign(!e5, tdl_intvar(1)),
merge(!s2, list(assign(tdl_intvar(1l), tdl_intvar(1l) +
le6) ,nil))))),!s3))
condition

30

1s2)

tdl_isconst (!eb)

YA
% Unroll zero trip loops

YA
#include <tdl.i>

transform

list(do('el, 'e2, !'e3, le4, !s1), !s2)
into

's2
condition

tdl_isint(!e2) and

tdl_isint(!e3) and

tdl_isint(!'e4) and

tdl_isleq(((!'e3 - !e2 + led) / !ed), 0)
A
% Unroll one trip loops
h

#include <tdl.i>

transform

list(do(!el, 'e2, 'e2, !'e3, !sl1), !s2)
into

merge (tdl_replace(!sl, lel, !e2), !s2)
condition

true
h
% Loop unrolling
h

#tinclude <tdl.i>

transform
list(do('el, 'e2, '!'e3, 1, !s1), !s2)
into
list(do('el, 'e2, ('e2 - 1) + ((!le3 - 'e2 + 1) / 2) * 2, 2,
merge(!s1, tdl_replace(!sl, l!el, lel + 1))),
list(if((('e3 - 'e2 + 1) / 2) * 2 .neq. (!e3 - le2 + 1),
tdl_replace(!sl, 'el, !e3)), !s2))
condition
tdl_isint(!'e2) and
tdl_isint(!e3) and
not tdl_isconst(!e2)

31

transform
list(do('el, 'e2, 'e3, 1, !sl1l), !s2)
into
list(do('el, 'e2, ('e2 - 1) + ((le3 - 'e2 + 1) / 2) * 2, 2,
merge(!sl, tdl_replace(!sl, !el, lel + 1))),
list(if((('e3 - 'e2 + 1) / 2) * 2 .neq. (!e3 - le2 + 1),
tdl_replace(!sl, 'el, !e3)), !s2))
condition
tdl_isint(!'e2) and
tdl_isint(!e3) and
not tdl_isconst('e3)

transform

list(do('el, 'e2, '!'e3, 1, !sl1), !s2)
into

list(do('el, 'e2, ('e2 - 1) + ((!le3 - 'e2 + 1) / 2) * 2, 2,

merge(!s1, tdl_replace(!sl, l!el, lel + 1))), !s2)

condition

tdl_isint(!e2) and

tdl_isint(!'e3) and

tdl_isconst(!'e2) and

tdl_isconst('e3) and

tdl_iseq(((!'e3 - le2 + 1) / 2) *x 2, (le3 - le2 + 1))

transform

list(do('el, 'e2, 'e3, 1, !sl1l), !s2)
into

list(do('el, 'e2, 'e3 - 1, 2,

merge(!sl, tdl_replace(!sl, !el, lel + 1))),
merge (tdl_replace(!sl, lel, !e3), !s2))

condition

tdl_isint(!e2) and

tdl_isint(!e3) and

tdl_isconst(!e2) and

tdl_isconst(!'e3) and

tdl_isneq((('e3 - 'e2 + 1) / 2) * 2, (!e3 - !e2 + 1))

’

.
o
% loop vectorization

yA
transform

list(do('el, 'e2, 'e3, !e4d,
list(assign(!e5, !e6), nil)), !s1)

32

into
list(assign(vectorize(!eb, l!el, l!e2:!e3:!e4),
vectorize(le6, 'el, !e2:!'e3:!ed)), !si)
condition
issub(!el, 'e5) and
not dep flow < ($.dobody, $.dobody)

33

Chapter 3

Strategy Specification Language

In this chapter we discuss the syntax and semantics of the Strategy Specification Language.
We also discuss how this language is incorporated in the MT1 compilation system. Finally,
we present a novel strategy for transforming imperfectly nested loops.

In the initial implementation of MT1, the order in which the transformations were applied, was
specified by the order in which the transformations appeared in the transformation definition
file. Each transformation was taken in turn and applied to every statement in the current
Fortran unit. If one such pass caused the Fortran code to be changed, another pass with the
same transformation was executed on the same piece of code. Only when a certain pass did
not change anything, the next transformation was taken and applied in the same way.

In this section a Strategy Specification Language (SSL) is presented, that allows the specifi-
cation of the order in which the transformations from the transformation definition file are to
be applied. The language implicitly defines the set of statements against which the transfor-
mations are applied. This construction allows the specification of an optimizing strategy to
be at a much higher abstract level than the source code level as in most other compilers.

In Section 3.1 de transformation engine of MT1 is described. Next, Section 3.2 describes the
syntax of our prototype SSL. Section 3.3 then describes the way MT1 interprets the SSL using
the transformation engine.

3.1 The original MT1 transformation engine

This section first describes the transformation engine as it was originally implemented in the
MT1 system. These issues are dealt with, because they are essential to describe strategy
execution. For a full discussion of the Transformation Definition Language and the original

34

mechanism for applying transformations, see Oceans Deliverable D1.1 [BBK"97]. In the
next section the alterations to the transformation application engine to include strategies are
described.

Transformations in MT1 consist of an input pattern against which FORTRAN statements are
matched, conditions checking various properties of the matched code, and an output pattern
which is used to derive the new code from. So the basic syntax for specifying transformations
can be given as follows.

trafo := TRANSFORM input_pattern
INTO output_pattern
CONDITION conditions;

When a FORTRAN program is read in by MT1, it is split into separate units each containing
one subroutine. MT1 then applies each transformation on each unit separately.

The application of a transformation consists of iterating over all FORTRAN statements in
the associated scope of the transformation, trying to match the input pattern of the transfor-
mation against a block of statements starting with the current statement. The notion of the
associated scope of a transformation will be explained later. For now, consider the scope of
any transformation to be the entire unit. This means that the transformations are applied to
every statement in the current unit. Note that the input pattern of a transformation needs to
be matched against statements which are within its scope. During matching, the statement-
and expression-variables are bound to matching fragments of FORTRAN code.

After having matched the input pattern, MT1 checks whether the conditions specified in the
transformation hold. To do this, it uses the bindings of the variables to test the original code
for the properties specified in the condition of the transformation.

If the conditions hold, the output pattern and the variable bindings are used to compute
the resulting code. After replacing the original code with the newly computed code, MT1’s
internal data structures are updated to reflect the new code, after which the execution of the
strategy continues. Note that the next application of a transformation may thus work on the
result of a previous transformation.

3.2 Strategy syntax

In this section we give the syntax of the Transformation Definition Language. The semantics
of these constructs is given in the next section. A strategy consists of a (possibly empty) list
of semicolon (;) separated SSL statements:

35

ssl_stats;
ssl_stat ’;’ ssl_stats | ;

strategy
ssl_stats

An SSL statement can be a single transformation, a conditional statement, or one of two
repetitive statements.

ssl_stat := seq_stat | if_stat | while_stat | until_stat;
seq_stat trafo_id | roll_back_stat;

An IF-statement consists of a transformation that acts as a condition, a THEN-part and an
optional ELSE-part. The transformation in the condition can applied successfully or not. If
it is, the transformations in the THEN-part are to be executed. Optionally, in the ELSE-part
a statement list can be given which should be executed in case the transformation matched
but was not applied successfully due to failing conditions.

condition := trafo_id;
if_stat IF condition THEN ssl_stats elsepart ENDIF;
else_part ELSE ssl_stats | {empty} ;

The two repetitive constructs consist of a transformation to be checked and a statement list
to be executed if the condition is true or false, respectively.

while_stat := WHILE condition ssl_stats ENDWHILE;
until_stat := UNTIL condition ssl_stats ENDUNTIL;

The language contains a means for applying sequences of transformations only if they can all
be applied, by means of the roll back_stat.

roll_back_stat := trafo_id AND trafo_id | trafo_id AND roll_back_stat

3.3 Semantics

This section describes the semantics of the Strategy Specification Language. We will describe
what actions are undertaken by MT1

e when a certain transformation did not match (either because MT1 found no match or
because the user chose to ignore the match),

e when the conditions were not satisfied (or the user chose not to apply an applicable
transformation),

36

e and when a transformation is successfully applied.

The interaction with the user has undergone some modifications over the original system. The
system no longer checks whether the application of a transformation has changed anything in
order to initiate another pass. Every transformation is applied only once to every statement.
The user has to indicate whether to accept or ignore a match and whether to really apply a
transformation.

When MT1 has found a match between the current transformation and a block of FORTRAN
statements, beginning with the current statement, MT1 reports this fact by showing the
matching code.

The conditions specified in the transformation are then checked. If the conditions are not
satisfied, the user is prompted as follows:

** Condition not satisfied. Accept match (y/n)

If the user does not accept the match, MT1 will continue as if the match was not found.
If the user does accept the match, MT1 will consider the result of the application of the
transformation to be false. The result of the application of a transformation is used when
deciding the flow of control through the strategy. In particular, it is used to select the THEN-
or the ELSE-part in a conditional construct.

If the conditions are satisfied, MT1 computes and shows the new code fragment and prompts
the user as follows:

*xx ACCEPT (y/n/i) ==

If the user accepts, the matching code is replaced by the new code fragment. The result of
the application of the transformation is considered to be true. In this case, we consider the
transformation to be applied successfully. If the user replies 'n’, the match is considered to
be accepted, but the conditions are considered not to be satisfied. As in the case where MT1
decided the conditions not to be satisfied and the user accepted the match, the result of the
transformation is considered to be false. If the user replies ’i’, the match is ignored.

When we describe the semantics of the various constructs in our SSL, we will indicate which
actions are undertaken by MT1 in case a certain transformation did not match, in case the
conditions were not fulfilled, and in case the transformation was successfully applied. As
described above, the user may choose to ignore a match if MT1 found one. The user may also
choose to indicate the conditions not to be satisfied, even if MT1 found them to be true. MT1
will respond to these choices in the same way it would in case it itself did not find a match or
found the conditions not to be satisfied, respectively.

37

The possibility for a user to ignore the matching of a certain transformation allows the user
to influence the flow of control. If a certain transformation would match a FORTRAN loop,
while the transformation is the condition of an IF-THEN-ELSE construct, matching of this
transformation would never enter the loop, since after having executed the THEN- or ELSE-
part, transformation would continue after the loop.

In order to describe the semantics, Section 3.3.1 first describes some notational conventions,
and defines the level of transformations. There are four general constructs in our prototype
SSL. These constructs indicate general sequential application (much like the original MT1
system), conditional application, and repetitive repetition, of which there are two forms. Each
of these four constructs will be described in the next four sections.

3.3.1 General definitions

To describe these semantics we will use trafo_n to indicate a single transformation. To specify
a list of transformations, possibly containing arbitrary complex strategy constructs, we will
use the notation ssl_stats_n.

In the original MT1 system, all transformations were applied on every statement in the current
unit. In the present context where we want to execute strategies, we need to reconsider to
scope on which transformations act. For instance, in an IF-THEN-ELSE construct, we want
the transformations in the THEN-part to act on the fragment selected by the condition. In
order ot do this, MT1 implicitly associates a list of statements to each transformation. We
will call this list of statements the associated scope of a transformation. The transformations
are only applied to the statements in its scope. MT1 derives the scope of a transformation
from its location in the strategy and the contents of the current unit.

In order to be able to derive the scope of a certain transformation, we first need to define the
level of a transformation. To do this, we will first define the level of SSL statements. The level
of an SSL statement is essentially its nesting depth. SSL statements which are not located in
a body of another SSL statement are at level one. The level of an SSL statements located in
the body of another SSL statement is one higher than the level of its containing construct.
Using the level of SSL statements we can formulate the level of the individual transformations
in these statements to be the same as the level of these statements. Hence the transformations
in the THEN-part of a conditional SSL. statement have a level one higher than the condition
of this conditional statement.

The scope of transformations at level one is the entire unit under consideration. The scope of
transformations at higher levels can nformally be given as:

e if the transformation is located in the THEN-part of a conditional SSL statement, its
associated scope is the fragment that resulted from the application of the condition

38

transformation;

e if the transformation is located in the ELSE-part of a conditional SSL statement, its
associated scope is the fragment that matched the condition transformation but did not
satisfy the conditions of this transformation;

e if the transformation is located in the body of a WHILE-statement, its associated scope
is the fragment that resulted form the application of the condition transformation in the
WHILE-statement;

e if the transformation is located in the doby of a REPEAT-statement, its associated
scope is the fragment that matched the condition transformation but did not satisfy its
conditions.

The precise association of scopes to transformations in a strategy is described below in the
semantics of the various constructs.

3.3.2 Sequential application

The simplest strategy consist of a list of transformations to be applied one after the other:

trafo_1;
ssl_stats_1;

MT1 will first try to apply trafo_1 on all statements in its associated scope. If the input
pattern of this transformation does not match a certain statement, the next statement is
considered. If a certain statement does match, but the conditions do not hold, the application
of transformations continues with the next statement as well. If the input pattern matched and
the conditions hold, the code is replaced. Transformation then continues with the statement
that follows the last statement in the match. When application of trafo_1 reaches the last
statement of its associated scope, application of the sequential construct continues with the
first statement in ssi_stats_1. The associated scope of transformations in ssl_stats_1 at the
same level as trafo_1 all have the same associated scope as trafo_1. Hence application of the
transformations in ssl_stats_1 starts with the first statement in this scope.

3.3.3 Conditional application

With the IF-THEN-ELSE-ENDIF construct it is possible to apply certain transformations
conditionally. Whether the transformations in the THEN- or ELSE-part are to be applied is
dependent on the result of the transformation in the condition:

39

IF trafo_1 THEN
ssl_stats_1;
ELSE
ssl_stats_2;
ENDIF;

If a certain statement does not match the input pattern of trafo_1 the next statement is
tried. If a statement does match the input pattern, the conditions are checked. Depending on
whether the conditions do or do not hold ssl_stats_1 or ssl_stats_2 is applied, respectively.

The statements in ssl_stats_1 and ssl_stats_2 are one level higher that trafo_1. The associated
scope of statements at a higher level is always refined. The associated scope of the transforma-
tions in ssl_stats_1 consists of all statements inserted by trafo_1. That is, the transformed code
fragment resulting from the application of trafo_1. The associated scope of the transformations
in ssl_stats_2 consists of all statements in the match of trafo_1.

After having applied one of the statement lists, application continues on the statement follow-
ing the last statement in the match of the previous application of trafo_1.

3.3.4 Repetitive application: WHILE

It is possible to apply a list of transformations repeatedly while a certain transformation can
be applied successfully.

WHILE trafo_1
ssl_stats_1;
ENDWHILE;

If a certain FORTRAN statement matches the input pattern of trafo_1 and the conditions
are satisfied, the transformations in ssl_stats_1 are applied. The associated scope of the trans-
formations in ssl_stats_1 consists of the transformed fragment resulting from the successful
application of trafo_1.

After having applied all transformations in ssl_stats_1, the WHILE constructs starts over and
trafo_1 is applied again. Since we want the WHILE-construct to repeatedly act on a single
program fragment, trafo_1 will be matched against the same fragment as it has matched the
first time. That is, its associated scope is refined to be the same as the associated scope of the
transformations in ssl_stats_1. Because the transformation in the condition need not match
the first statement in its associated scope, it will search its scope to find a fragment against
which it can be matched. Therefore, this scope may be further refined on each iteration. The
end of its scope is given by the first statement after the first match of ¢rafo_1.

40

When the conditions of trafo_1 are not satisfied, transformation continues with the statement
following the last statement in the match and with #rafo_1.

3.3.5 Repetitive application: REPEAT

It is also possible to apply certain transformations as long as a certain transformation cannot
be applied, because its conditions are not fullfilled.

UNTIL trafo_1
ssl_stats_1;
ENDUNTIL;

The transformations in ssl_stats_1 are executed if trafo_1 matched, but its conditions were not
satisfied. The associated scope of the transformations in ssl_stats_1 consists of all statements
in the match of trafo_1.

When all transformations in ssl_stats_I have been applied, transformation continues with
trafo_1. Tts associated scope is refined to the associated scope of the transformations in
ssl_stats_1. Again the associated scope of trafo_I may be refined on each iteration.

When the conditions in trafo_1 are satisfied, transformation continues on the statement fol-
lowing the last statement in the match of trafo_1.

3.3.6 Roll back construct

When writing a strategy, we may want to try out a certain transformation, which should
enable another transformation. If the second transformation cannot be applied, we may want
to undo the first transformation. such strategy cannot be expressed in our SSL. The most
intuitive way to express such a construct is by grouping certain transformations together:

trafo_1 and trafo_2;

In this construct, trafo_1 will be applied on a certain fragment of FORTRAN code. If this
transformation is successfully applied, trafo_2 will be applied on the resulting code from
trafo_1. That is, the associated scope of trafo_2 is the resulting fragment from trafo_1. If
trafo_2 fails to be applied, the effect of trafo_1 is rolled back: the entire construct fails and
no changes are made to the program under consideration.

We allow for an arbitrary number of transformations to be grouped together in a roll back
construct. If any of these transformations fails, the entire construct fails and no changes are
made to the program under consideration.

41

If all transformations in the group have been succesfully applied, the result is rolled forward.
This means that the fragment that matched trafo_I is replaced in the program under consid-
eration by the result of all transformations on this fragment.

In case such a group of transformations appears as the condition of a conditional or repetitive
construct, the result would be true only if all transformations in the group were applied
successfully.

42

Chapter 4

Conclusion

In this report we have described a specification language for program transformations on
the Fortran 77 source language level. Together with the strategy specification language this
specification mechanism allows for a flexible and highly tunable set of transformations to be
applied to a program. These transformations are structured around a pattern match mecha-
nism that allows for user defined function that can access the internal program representation
directly. Using this mechanism we may specify an input pattern containing meta-variables
that is matched against the source program thereby binding these meta-variables to actual
expressions and statements. An output pattern can be specified using these meta-variables.
Based on this output pattern and the actual bindings of the meta-variables, a new program
fragment is constructed that will replace the fragment that was matched by the input pattern.
We may also specify conditions under which the transformation may be applied. These con-
ditions typically check for the legality of the transformation. However, the conditon may also
contain user defined functions that may inspect arbitrary auxilary data structures. Using this
mechanism, a hook is provided for the feedback from low to high level. This feedback can be
stored in an auxilary data structure and inspected by user defined functions in the condition.

Next we have discussed our notions of Strategy Specification Language. The SSL is a specifi-
cation mechanism to sequence elementary transformations. The SSL on the source language
level is capable of the sequential composition of transformations, a conditional and a repetetive
construct. The conditions for these last constructs consist of the success or failure of some ar-
bitrary condition transformation. In this way, enabling transformations can be applied before
the main transformation. Also, since the condition of a transformation may contain user-
defined functions that may access an arbitrary data structure, a mechanism is provided for
feedback. This feedback information may be targetted towards specific parts of the program,
like a particular loop. Now the ‘enabling’ transformation may consist of a match against an
arbitrary loop, transforming that loop into the same loop and having the condition check the

43

identity of the loop. Only the sought after loop, the number of which is given in the feedback
information, will match this condition that checks for this number.

44

Bibliography

[BBK*97]

[Bik92]

[Bri93]

[BW93]

[Pol8s]

[vDAVW95]

[Wol91]

[Wol96]

[Z.C90)

A.J.C. Bik, P.J. Brinkhaus, P.M.W. Knijnenburg, P. Touber, and H.A.G. Wi-
jshoff. Transformation Definition Language. Oceans Deliverable D1.1, 1997.
Available through www.wi.leidenuniv.nl/"peterk.

Aart J.C. Bik. A prototype restructuring compiler. Master’s thesis, Utrecht
University, 1992. INF/SCR-92-11.

Peter Brinkhaus. Compiler analysis of procedure calls. Master’s thesis, Utrecht
University, 1993. INF/SCR-93-13.

A.J.C. Bik and H.A.G. Wijshoff. MT1: A prototype restructuring compiler.
Technical Report no. 93-32, Department of Computer Science, Leiden Univer-
sity, 1993.

C. Polychronopoulos. Parallel Programming and Compilers. Kluwer Academic
Publishers, Boston, 1988.

E. van Dis, R.D. de Vreugd, A.P. Wulms, P. Brinkhaus, and P.M.W. Knijnen-
burg. A vector transformation library. Technical Report no. 95-29, Department
of Computer Science, Leiden University, 1995.

M.J. Wolfe. Optimizing Supercompilers for Supercomputers. The MIT Press,
1991.

M.J. Wolfe. High Performance Compilers for Parallel Computing. Addison-
Wesley, 1996.

H. Zima and B. Chapman. Supercompilers for Parallel and Vector Computers.
ACM Press, New York, 1990.

45

