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Abstra
t

In this report we des
ribe a spe
i�
ation language for program transformations on the For-

tran 77 sour
e language level. Together with an appli
ation engine this spe
i�
ation me
ha-

nism allows for a 
exible and highly tunable set of transformations to be applied to a program.

These transformations are stru
tured around a pattern mat
h me
hanism that allows for user

de�ned fun
tion that 
an a

ess the internal program representation dire
tly. This approa
h

allows the spe
i�
ation of a wide range of program transformations, in
luding all 
ommonly

used loop level transformations. Next we dis
uss the Strategy Spe
i�
ation Language (SSL).

The SSL is a spe
i�
ation me
hanism to sequen
e elementary transformations. The SSL on the

sour
e language level is 
apable of the sequential 
omposition of transformations, a 
onditional

and a repetetive 
onstru
t. The 
onditions for these last 
onstru
ts 
onsist of the su

ess or

failure of some arbitrary 
ondition transformation. Sin
e the 
ondition of a transformation

may 
ontain user-de�ned fun
tions that may a

ess an arbitrary data stru
ture, a me
hanism

is provided for feedba
k. This feedba
k information may be targetted towards spe
i�
 parts

of the program, like a parti
ular loop.
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Chapter 1

Introdu
tion

Optimizing and restru
turing 
ompilers in
orporate a number of program transformations that

repla
e program fragments by semanti
ally equivalent fragments [Wol91, Wol96, ZC90℄. The

aim is to obtain more eÆ
ient 
ode for a given target ar
hite
ture. To this end, a 
olle
tion

of suitable transformations and 
onditions under whi
h to apply them needs to be de�ned.

This 
olle
tion is dependent upon 
hara
teristi
s of the target ar
hite
ture. Furthermore, the

order in whi
h to apply them needs to be 
onsidered. This last problem is 
ommonly known

as the phase ordering problem.

Traditionally, 
ompilers approa
h this problem rather stati
ally: the tranformations and their

appli
ation order are hard 
oded. This renders these systems rather in
exible. New trans-

formations need to be hard 
oded on the internal data stru
ture of the 
ompiler. This is a

diÆ
ult and error-prone pro
ess. Likewise, the 
ompiler needs to be adapted to implement

di�erent appli
ation strategies. However, it is not at all obvious what the best strategy for a

given ar
hite
ture and appli
ation domain is. Therefore, experimentation is required to obtain

the optimal strategy.

Within the MT1 
ompilation system [Bik92, BW93, Bri93℄ these problems are appoa
hed in

the following way. The system provides a Transformation De�nition Language and a Strat-

egy Spe
i�
ation Language. Transformations and strategies spe
i�ed in these languages 
an

be dynami
ally loaded into the 
ompiler and exe
uted. This yields a very 
exible system

that allows the user to easily add new transformations and experiment with their appli
ation

strategy. In this report the Transformation De�nition Language (TDL) is des
ribed.

The TDL is based on pattern mat
hing. The user 
an spe
ify an input pattern, a transformed

output pattern and a 
ondition 
an be legally and/or bene�
ially applied. The patterns may


onsists of sequen
es of DO loops, IF statements, assignments et
. They may also 
ontain

expression and statement variables. When su
h sequen
es are mat
hed against the 
ode under
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onsideration, these variables are bound to a
tual expressions and 
ode fragments, respe
-

tively. The expression and statement variables 
an be used in turn in the spe
i�
ation of the

output pattern and the 
ondition. This me
hanism allows one to spe
ify a large number of

transformations, like loop inter
hange, loop distribution or loop fusion. However, it is not

powerful enough to express other important transformations, like loop unrolling. For loop

unrolling, the loop body needs to be dupli
ated, and ea
h o
urren
e of the loop index I needs

to be repla
ed by I + 1 in the se
ond 
opy of the loop body. Therefore, the TDL also allows

for user de�ned fun
tions in the output pattern. Su
h a fun
tion may implement for instan
e

the repla
ement of one expression by another in a sequen
e of statements. In the TDL, user

de�ned fun
tions are the interfa
e to the internal data stru
tures of the 
ompiler. In this

way, any algorithm for transforming the 
ode 
an be implemented and made a

essible to

the level of the TDL. Likewise, all kinds of tests on the stru
ture and properties of the 
ode


an be implemented. For pra
ti
al purposes, libraries with user de�ned fun
tion that perform


ertain elementary fun
tions 
an be 
reated and used in the formulation of more advan
ed

transformations and 
onditions.

However, being able to spe
ify transformations is only one part of the general problem of

obtaining optimal 
ode by means of program transformations. The order in whi
h these

transformations have to be applied needs 
onsideration also [Wol96℄. In the initial imple-

mentation of the TDL this order is �xed. However, in order to be able to experiment with

di�erent appli
ation orders for the transformations, a Strategy Spe
i�
ation Language (SSL)

has been implemented. This language 
ontains sequential 
omposition of transformations, a


hoi
e 
onstru
t and two repetitive 
onstru
ts. Like the de�nition of transformations using

the TDL, a �le 
ontaining a strategy written in the SSL 
an be dynami
ally loaded by MT1

and the sequen
e of transformations spe
i�ed in that �le will be exe
uted. This yields a very


exible system and users are free to 
hange the strategy at any moment.

There are some other proje
ts whi
h separate the implementation of the optimizing strategy

from the implementation of the rest of the 
ompiler. Sage++ o�ers the possibility of spe
ifying

a strategy in the C++ language. Sage++ 
ontains a parser that 
onverts the sour
e program

into its intermediate format. Sage++ o�ers a library of routines to walk through the syntax

tree, investigate properties of the sour
e 
ode, and apply restru
turing transformations onto

the sour
e 
ode. These restru
turing transformations need to be de�ned by the user using

the primitives o�ered by the Sage++ library. Although this approa
h allows a high degree

of 
exibility, writing strategies takes pla
e at a fairly low level. Moreover, the user needs to

hard 
ode the order in whi
h the transformations are applied. If he wants to 
hange this order

then part of 
ompilation system needs to be modi�ed and re
ompiled. This is in 
ontrast to

the present approa
h that o�ers separate languages to spe
ify transformations and strategies.

These spe
i�
ations are dynami
ally loaded and exe
uted whi
h means that the system deals

with 
hanges in the spe
i�
ations very 
exibly.
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This report is organized as follows. In the se
ond 
hapter, the TDL on sour
e language level

is dis
ussed. In se
tion 2.1 a brief overview of the MT1 
ompilation system is given. In se
-

tion 2.2 the syntax and semanti
s of the Transformation De�nition Language is des
ribed. In

se
tion 2.3 it is des
ribed how the TDL and MT1 interfa
e. Finally, in se
tion 2.4 the syntax of

the TDL is formally spe
i�ed in BNF notation. In the third 
hapter, the Strategy Spe
i�
ation

Language is dis
ussed. Finally, in the fourth 
hapter some 
on
lusions are presented.
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Chapter 2

Transfromation De�nition Language

2.1 The restru
turing 
ompiler MT1

MT1 is a Fortran restru
turing sour
e-to-sour
e 
ompiler, initially developed as an aid in

ve
torizing and/or parallelizing sequential programs [Bik92, BW93, Bri93, vDdVW

+

95℄. The


ore of MT1 
onsists of a parser that 
onstru
ts the internal program representation. To

this 
ore several modules are hooked that operate on this internal representation. MT1 has a


ommand-driven interfa
e. After it has been started it shows a prompt after whi
h 
ommands,

su
h as loading a Fortran program or transformation �le, 
an be given. Loading a program

exe
utes the following phases in MT1.

� Lexi
al s
anning, syntax analysis, semanti
s 
he
king and 
onstru
tion of internal data

stru
ture;

� Interpro
edural analysis and optimization;

� Goto elimination;

� Data dependen
e analysis.

MT1 supports seperate 
ompilation. If a Fortran program 
onsists of several sour
e �les, ea
h

of these �les 
an be pro
essed independently. However, loading all sour
e �les at on
e will

give better results, due to MT1's interpro
edural analysis.

MT1 saves several data stru
tures as human readable text in �les, all starting with the pre�x

'program.' in the 
urrent dire
tory. These �les 
an be shown during the exe
ution of MT1,

and will be left behind after exiting MT1. Table 2.1 shows the generated �les, together with

the 
ommand by whi
h the �le 
an be shown during exe
ution.
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File Command Data stru
ture

program.f Program after parsing

program.txt showprg Program after optimization and appli
ation

of transformations

program.sym symtb Symbol table

program.dep showdep Data dependen
e graph

program.
g show
g Call graph

program.
fg show
fg Interpro
edural 
ontrol 
ow graph

trafo.txt showtrf Transformation de�nitions

trafo.sym Symbol table of transformation de�nitions

Table 2.1: MT1's internal data stru
tures

MT1 supports full Fortran. In addition, several extensions 
ommonly supported by many

other Fortran 
ompilers are supported.

From the Military Standard De�nition (MIL-STD-1753) MT1 implements the following fea-

tures:

� Blo
k DO loops

� DO WHILE statements.

� INCLUDE statements.

� IMPLICIT NONE statement.

� The bit manipulation intrinsi
s IAND, IBSET, NOT, IBCLR, IOR, ISHFT, IEOR, ISHFTC,

IBITS and BTEST.

Other implemented extensions are:

� The use of binary, o
tal, and hexadimal 
onstants in any pla
e where integer 
onstants

are allowed

1

. Binary 
onstant may be written as B

0

b

1

: : : b

0

n

or

0

b

1

: : : b

0

n

B, o
tal 
onstants

as O

0

o

1

: : : o

0

n

or

0

o

1

: : : o

0

n

O and hexade
imal 
onstants as Z

0

x

1

: : : x

0

n

or

0

x

1

: : : x

0

n

Z where

b

i

is a binary digit, o

i

an o
tal digit and x

i

a hexade
imal digit.

� The use of unders
ores (' ') and dollar-signs ('$') in symboli
 names.

� Lower 
ase letters as part of the FORTRAN 
hara
ter set.

1

MIL-STD-1753 also de�nes o
tal and hexade
imal 
onstants. However, they are only allowed in DATA

statements.
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� Symboli
 names longer than six 
hara
ters.

� Byte length in type statements. For example, INTEGER*4 spe
i�es an integer of four

bytes. At the moment, byte lengths may only be the default type length, e.g. IN-

TEGER*4 is allowed but INTEGER*2 is not. MT1 
ompiles types with byte length

automati
ally to the appropriate type, e.g. REAL*8 is 
onverted into DOUBLE COMPLEX

This feature has only been added for 
ompatibility reasons.

� Double 
omplex data type (DOUBLE COMPLEX)

� The intrinsi
s DCMPLX, ZABS, DIMAG, DCONJG, ZSQRT, ZEXP, ZLOG, ZSIN, ZCOS whi
h are

equivalent with the C-pre�xed intrinsi
s but use double 
omplex types.

2.2 The Transformation De�nition Language

The Transformation De�nition Language (TDL) enables the user to de�ne its own transfor-

mations to be applied by the 
ompiler. The language has been kept as simple as possible but

is powerful enough to de�ne a host program transformations and their 
onditions. For more

advan
ed transformations, whi
h 
annot be expressed in the TDL dire
tly, an interfa
e to user

de�ned fun
tions written in C is provided. To make live more easy, MT1 
omes with a shared

library, libtdl, whi
h 
ontains a set of 
ommonly needed user-de�ned fun
tions.

Se
tion 2.2.1 des
ribes the TDL in detail. Se
tion 2.2.2 explains some sample transformations

to illustrate the features of the TDL. Se
tion 2.2.3 des
ribes the user de�ned fun
tions in more

detail. Finally, Se
tion 2.2.4 des
ribes all the fun
tions in the shared library libtdl.

2.2.1 Stru
ture of the TDL

The transformation �le 
onsists of several import and transform statements. The import

statement des
ribes the interfa
e to user de�ned fun
tions (
omparable to fun
tion prototypes

in C), while the transform statement des
ribes an a
tual transformation. Appendix 2.4

summarizes the syntax rules of the TDL.

Comments

Any text after the 
hara
ters '%' or '#' up to a new line is treated as a 
omment. However,

the use of '#' is dis
ouraged, be
ause it gives 
on
i
ts with the C prepro
essor /lib/
pp.
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Reserved Keywords

A reserved keyword is a string of 
hara
ters whi
h have spe
ial signi�
an
e to the 
ompiler

when used within the transformation �le (ex
ept when they o

ur within a 
omment). The

following keywords are reserved:

B dobody merge

E follow nil

S head not

and if tail

assign ifbody transform


ondition into import

dep isnil from

do issub true

doall list

In parti
ular, reserved keywords may not be used as identi�ers within a transform or an

import statement. The 
ase of the keywords is signi�
ant, i.e. all reserved keywords are in

lower
ase, ex
ept the B, E and S keywords.

Identi�ers

An identi�er is a string of 
hara
ters used to refer to a user de�ned fun
tion. An identi�er


an 
ontain any 
ombination of lower
ase or upper
ase 
hara
ters, digits or the unders
ore


hara
ter (' '). However, it must start with zero or more unders
ores, followed by at least one

letter. An identi�er may not be a reserved keyword (see Se
tion 2.2.1). The 
ase of identi�ers

is signi�
ant.

The transform Statement

A transformation is des
ribed with the transform statement. The statement has the following

form:

tranform

pattern1

into

pattern2


ondition


ondition

;
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where both pattern1 and pattern2 must be statement lists.

Whenever pattern1 (whi
h will be referred to as the left-hand-side pattern) mat
hes a fragment

in the program, and 
ondition holds, the fragment in the program will be repla
ed with pattern2

(the input pattern) if this transformation is applied.

Statement List Patterns A statement list pattern may be one of the following patterns:

� a statement list variable (see Se
tion 2.2.1);

� list(statement, statement-list)

where statement is the head of the list, a statement pattern (see Se
tion 2.2.1) and

statement-list the tail of the list, a statement list pattern;

� follow(stmt-var, statement-list),

a built-in fun
tion whi
h mat
hes a list of statements ending with statement-list while

the start of the list is bound to the statement variable stmt-var. The follow fun
tion

may be used only in the left-hand-side pattern of a transformation. The main purpose of

this fun
tion is to split up a statement list in an arbitrary fashion. Conse
utive mat
hes

of follow split up the statement list di�erently, e.g. given program fragment

A(I) = B(I)

C(I) = D(I)

E(I) = F(I)

and the statement list pattern follow(!s1, !s2) (here !s1 and !s2 are statement list

patterns, see Se
tion 2.2.1). The �rst mat
h of follow will bind the �rst assignment to

!s1 as a statement list and the se
ond and third assignment to !s2. On a se
ond mat
h,

!s1 will be bound to the �rst and the se
ond assignment and !s2 to the third. Finally,

on a third mat
h, !s1 will be bound to all three statements and !s2 will be bound to

nil.

� merge(statement-list-1, statement-list-2)

a built-in fun
tion whi
h 
on
atenates the two statement list patterns statement-list-1

and statement-list-2. The merge fun
tion may be used only in the output pattern of a

transformation;

� follow(statement variable, statement list)

a built-in fun
tion that �rst binds the statement variable to a program fragment of

minimal length su
h that statement list also 
an be bound to the next fragment, and

if the transformation is not a

epted binds the variable to a fragment of greater length

and so on untill either the transformation is a

epted or no fragement 
an be found su
h

10



that the variable and the list both 
an be mat
hed. The follow fun
tion may be used

only in the output pattern of a transformation;

� a user-de�ned fun
tion

whi
h must have been de�ned in an import statement (see Se
tion 2.2.1) before the

transformation in whi
h the fun
tion is used. The return value of the fun
tion must be

of type statement list (S, see se
tion 2.2.3). User-de�ned fun
tion are not allowed in the

left-hand-side of a transformation.

� nil

the empty list.

Statement Patterns A statement pattern may be one of the following patterns:

� assign(expr-1, expr-2)

whi
h des
ribes an assigment statement with expr-1, an expression pattern, as the left

hand side of the assignment and expr-2, also an expression pattern, as the right hand

side of the assignment;

� if(expr, statement-list)

whi
h des
ribes either a logi
al or a general IF statement, with expr, an expression

pattern, as the 
ondition of the IF statement and statement-list as the body of the IF

statement;

� do(expr-1, expr-2, expr-3, expr-4, statement-list)

whi
h des
ribes a DO loop. expr-1, expr-2, expr-3 and expr-4 are expression patterns,

where expr-1 des
ribes the index variable, expr-2 the lowerbound, expr-3 the upperbound

and expr-3 the stride of the DO loop;

� doall(expr-1, expr-2, expr-3, expr-4, statement-list)

whi
h des
ribes a DOALL loop and is exa
tly the same as the do statement pattern, ex
ept

that it mat
hes a DOALL keyword in 
ase the pattern o

urs in the left hand side of a

transformation statement or generates a DOALL keyword in 
ase the pattern o

urs in

the output pattern of a transformation statement

2

.

See Se
tion 2.2.1 for a des
ription of expression patterns.

2

Note that DOALL loops are not a

epted as an extension of standand FORTRAN 77 on input. However,

doall patterns are provided to turn parallel DO loops into DOALL loops on output. So, 
urrently MT1 is not

always able to read in its own output again.
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Expression Patterns A expression pattern may be one of the following patterns:

� an expression variable (see Se
tion 2.2.1);

� a FORTRAN 77 integer, real or logi
al 
onstant;

� expr-1 bin-op expr-2

where expr-1 and expr-2 are expression patterns and operator is one of the FORTRAN 77

binary expression operators '*', '+', '-', '/', '**', .EQ., .NE., .GE., .GT., .LE., .LT.,

.EQV., .NEQV., .AND. or .OR.;

� un-op expr

where expr is an expression pattern and un-op is one of the FORTRAN 77 unary ex-

pression operators '-' or .NOT.;

� ( expr )

� ve
torize(expr-var-1, expr-var-2, expr-1 : expr-2 : expr-3)

a built-in fun
tion to generate array-se
tions. This expression pattern may only be used

in the output pattern of a transformation statement;

� a user-de�ned fun
tion

whi
h must have been de�ned in an import statement (see Se
tion 2.2.1) before the

transformation in whi
h the fun
tion is used. The return value of the fun
tion must be

of type expression (E, see Se
tion 2.2.3). User-de�ned fun
tion are not allowed in the

left-hand-side of a transformation.

Variables Variables may be used to denote an arbitrary expression or statement list within

a statement pattern. Expression variables start with ' !e' followed by a number, e.g. !e1 or

!e10. Statement list variables start with ' !s' followed by a number, e.g. !s2 or !s10.

If an expression or an statement list variable o

urs in the output pattern of a transformation

statement, it must o

ur also in the left hand side of that statement, otherwise it will be

unbounded during the appli
ation phase. A statement list variable may be used only on
e

in the left hand side pattern. Expression variable may be used several times in a left hand

side pattern to indi
ate that the expressions bound to di�erent o

uren
es of the expression

variable must be synta
ti
ally the same, e.g. the statement pattern

assign(!e1, !e1)

mat
hes the FORTRAN 77 statement

12



A = A

but not

A = B

Conditions A 
ondition in the 
ondition 
lause of a transformation statement may be one

of the following boolean expressions:

� true

the boolean true value. Note that there is no 
onstant false value. This value 
an be

represented by not true;

� dep kind [ dire
tion ℄ (from-stmt-list, to-stmt-list) [ > expr-var ℄

returns true if there exist a dependen
e of kind kind with dire
tion dire
tion from any

statement in from-stmt-list to any statement in to-stmt-list. The optional [ > expr-var

℄ may be used to denote that the dependen
e must hold on a variable whi
h o

urs in

the expression bound to expr-var. The kind of dependen
e may be one of flow, anti,

input, output or '�' (any dependen
e ex
ept input). The dire
tion ve
tor dire
tion is

optional and may be used to denote a dire
tion whi
h should hold for the dependen
e.

The elements of the ve
tor maybe '<', '>' and '*' (meaning either '<' or '>'). The length

of the ve
tor should 
orrespond to the 
ommon number of DO (WHILE) statements

surrounding both from-stmt-list and to-stmt-list. The statement lists from-stmt-list and

to-stmt-list must be referen
es to the mat
hed pattern.

� isnil(statement-variable)

a built-in fun
tion whi
h returns true, if statement-variable is bound to the empty state-

ment list (the statement list pattern nil), or false otherwise.

� issub(expr-var-1, expr-var-2)

a built-in fun
tion whi
h returns true, if the expression bound to expr-var-1 o

urs as

a subs
ript expression in the expression bound to expr-var-2, or false otherwise. Note

that the issub always returns false if the expr-var-1 o

urs only within an expression

whi
h is either an (intrinsi
) fun
tion 
all or an implied DO loop;

� a user-de�ned-fun
tion

whi
h must have been de�ned in an import statement (see Se
tion 2.2.1). Within a


ondition, a fun
tion requiring a statement list as argument (of type S) may be passed

a referen
e to the mat
hed pattern as well as a regular statement list. The return value

of the fun
tion must be of type boolean (B, see Se
tion 2.2.3);

13



� not 
ondition

returns true if 
ondition is false, otherwise true;

� 
ondition-1 and 
ondition-2

returns true if both 
ondition-1 and 
ondition-2 are true, otherwise false.

The not operator has higher pre
eden
e than the and operator.

Referen
ing the Mat
hed Pattern Constru
ts from-stmt-list and to-stmt-list 
onsist of

referen
es to statement lists in the left-hand-side pattern. Ea
h referen
e starts with the whole

mat
hing program fragment, indi
ated by a `$', and uses the 
onstru
ts `.next', `.dobody',

and `.ifbody' to refer to the next statement list, DO-loop body, or IF-statement, respe
tively.

The following example illustrates how referen
es in a dep 
onstru
t 
an be used to spe
ify

spe
i�
 statement lists in a program fragment that mat
hes the following pattern:

list( do(!e1, !e2, !e3, !e4,

list( if(!e5, !s1), !s2 )), !s3 )

For the fragment below, both variable !s3 and $.next are bound to the `rest of program'.

Sin
e a body 
onsists of a single statement list, both $.body.ifbody and !s1 are bound to

the `...' statements inside the IF-body:

$ ! DO I = 1, 100

$.dobody ! IF (L2) THEN

$.dobody.ifbody ! ...  !s1

ENDIF

$.dobody.next ! ...  !s2

ENDDO

$.next ! ...  !s3

Constru
t `.head' 
an be used at the end of a referen
e to indi
ated that only the �rst

statement of the statement list indi
ated by referen
e that pre
edes this 
onstru
t must be


onsidered. Note that if this single statement is a DO-loop or an IF statement, the statements

inside the body are also 
onsidered (sin
e they belong to that single statement). So, in the

given example, $.head spe
i�es the DO-loop with its body (
onsisting of the IF statement

with its body and all statements in the list bound to !s2), while $ spe
i�es this DO-loop with

all statements in its body and the following statement list (bound to !s3 and spe
i�ed with

$.next).
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The �rst stru
ture asso
iated with a dep 
onstru
tion spe
i�es the statement list from whi
h

the sour
e statements must be taken, while the se
ond one spe
i�es the list from whi
h the

sink statements must be taken. Note that the use of referen
es (rather than using, for instan
e,

statement variables) enables the programmer to spe
ify arbitrary statements and statement

lists within the mat
hing fragment. The 
ompiler veri�es, however, whether the referen
es

mat
h the spe
i�
ation of the left-hand side pattern (so that $.next.dobody, for example,


annot be used, even though !s3 may be bound to a DO-loop for a parti
ular mat
hing

fragment).

The import Statement

Before user-de�ned fun
tions are used within a transformation statement, they have to be

de
lared in an import statement. The statement has the following form:

import

user-de�ned-fun
tion-1 : argument-types -> result-type

� � �

user-de�ned-fun
tion-n : argument-types -> result-type

from

shared-library, . . .

;

Ea
h de
lared fun
tion is identi�ed by one of the identi�ers user-de�ned-fun
tion-1 to user-

de�ned-fun
tion-n. A fun
tion takes arguments as spe
i�ed by argument-types, whi
h is a list

of types, separated by white spa
e. An argument type may be either S, a statement list or E,

an expression. The type of the fun
tion result is spe
i�ed by result-type, whi
h may be either

S, a statement list, E, an expression or B, a boolean value.

In the from 
lause of the import statement, a 
omma separated list of shared libraries must be

spe
i�ed in whi
h the de
lared fun
tion are sear
hed for. The library names, whi
h must have

an extension '.sl' or '.so' and may be pre
eded by a path, must be delimited by either double

quotes ('"') or angle bra
kets ('<' and '>'). If the library name is delimited by double quotes,

the library is sear
hed for in the lo
ation as spe
i�ed. Otherwise the environment variable

TRAFOPATH is used to determine where to sear
h for the library by pre�xing the library name

with ea
h path de�ned by TRAFOPATH.

2.2.2 Some Samples Transformations

In this se
tion, some examples of transformations will be explained, to illustrate the features

of the TDL.
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Loop Ve
torization

For ve
torization, the built-in fun
tion ve
torize is used.

transform

list(do(!e1, !e2, !e3, !e4,

list(assign(!e5, !e6), nil)), !s1)

into

list(assign(ve
torize(!e5, !e1, !e2:!e3:!e4),

ve
torize(!e6, !e1, !e2:!e3:!e4)), !s1)


ondition

not dep flow < ($.dobody, $.dobody)

;

Loop Distribution

Loop distribution uses the follow 
onstru
t.

transform

list(do(!e1, !e2, !e3, !e4, follow(!s1, !s2)), !s3)

into

list(do(!e1, !e2, !e3, !e4, !s1),

list(do(!e1, !e2, !e3, !e4, !s2), !s3))


ondition

not isnil (!s2) and

not dep � < ($.dobody.follow, $.dobody)

;

Sin
e a loop 
an be distributed between any two statements in the loop body, the follow


onstru
t provides a means to dynami
ally guide the user to sear
h for this point. Firts !s1

is bound to the �rst statement in the loop body and !s2 to the rest of the loop body. The

loop is distributed at this point and the user is asked to a

ept this distribution or not. If not,

!s1 is bound to the �rst two statements in the body and !s2 to the others, and the user is

prompted again. And so on, until !s1 is bound to the entire loop body and !s2 is nil. Then

the 
ondition fails and the transformation is not applied anymore.

Loop Unrolling

This transformation uses two user de�ned fun
tions that 
ome with the standard library and

that are des
ribed in se
tion 2.2.4. Also, the built-in fun
tion merge is used. First, the
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fun
tions are de
lared by an import statement.

import

tdl_isint : E -> B

tdl_repla
e : S E E -> S

from

<libtdl.sl>

;

transform

list(do(!e1, !e2, !e3, 1, !s1), !s2)

into

list(do(!e1, !e2, (!e2 - 1) + ((!e3 - !e2 + 1) / 2) * 2, 2,

merge(!s1, tdl_repla
e(!s1, !e1, !e1 + 1))),

list(if(((!e3 - !e2 + 1) / 2) * 2 .neq. (!e3 - !e2 + 1),

tdl_repla
e(!s1, !e1, !e3)), !s2))


ondition

tdl_isint(!e2) and tdl_isint(!e3)

;

2.2.3 User de�ned fun
tions

Be
ause the expressiveness of the transformation language is rather limited, the possibility to


all user de�ned fun
tions, written in C, is implemented. These fun
tions should be stored

in one or more shared libraries, that 
an be dynami
ally loaded during run-time, i.e. during

parsing of the transformation �le. Type de�nitions of user de�ned fun
tions and libraries to be

loaded must be spe
i�ed by the import 
lause in the transformation �le. User de�ned fun
tions

may be 
alled from the output pattern and the 
ondition of a transformation. Usually, boolean

fun
tions are used in 
onditions while fun
tions returning an expression or a statement are

used within the output pattern of a transformation (although a 
all to su
h a fun
tion may

also o

ur as an argument to a boolean fun
tion in a 
ondition).

From within a user de�ned C fun
tion, it is possible to make 
alls to many fun
tions used

internally by MT1 to a

ess and maintain the symbol table and the abstra
t syntax tree

representing the Fortran input sour
e.

Parameter Passing

An argument to a user de�ned fun
tion must be either an expression (type 'E') or a statement

(type 'S'). These arguments are pointers to 
opies of nodes in MT1's abstra
t syntax tree.
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Arguments are not passed dire
tly to the user de�ned fun
tion. That means that the C

de�nition of the fun
tion should have an empty argument list (i.e. void in ANSI C). Instead,

expression arguments are passed through an expression sta
k and statement arguments though

a statement sta
k. The arguments are moved in in order of appearan
e on these sta
k, i.e.

the �rst argument is the lowest on one of the sta
ks and the last argument is on top on one

of the sta
ks. Note that in general the arguments are 
opied before they are passed to the

fun
tion. Therefore, the user de�ned fun
tion is responsible for 
leaning up the arguments if

they are not used as a fun
tion result.

The ex
eption is that a fun
tion may be passed a statement list whi
h is not a 
opy but a

dire
t pointer into the abstra
t syntax tree of the input sour
e (in this 
ase the argument in

the transformation de�nition starts with a '$'). In this 
ase the argument must not be deleted

by the fun
tion nor may it be returned as a fun
tion result.

Return Values

User de�ned fun
tion must return either an expression, a statement or a boolean value. If

the fun
tion returns a boolean value, the type of the user de�ned fun
tion should be int and

the fun
tion should return zero in 
ase the return value is false or any nonzero value in 
ase

the return value is true. As with the arguments of the user de�ned fun
tion, expressions and

statements are returned on top of either the expression or statement sta
k. The C de�nition

of the fun
tion should therefore be of type void.

2.2.4 LIBTDL Fun
tions

Be
ause writing user-de�ned fun
tions is not an easy task, MT1 
omes with a library, libtdl,

whi
h provides the transformation writer with a set of 
ommonly needed user-de�ned fun
-

tions. This se
tion des
ribes ea
h fun
tion in the library.

� tdl isint

tdl isint : E ! B

returns true if expression E is of type integer, otherwise false.

� tdl isreal

tdl isreal : E ! B

returns true if expression E is of type real, otherwise false.

18



� tdl isdreal

tdl isdreal : E ! B

returns true if expression E is of type double real, otherwise false.

� tdl is
omplex

tdl is
omplex : E ! B

returns true if expression E is of type 
omplex, otherwise false.

� tdl isd
omplex

tdl isd
omplex : E ! B

returns true if expression E is of type double 
omplex, otherwise false.

� tdl islogi
al

tdl islogi
al : E ! B

returns true if expression E is of type logi
al, otherwise false.

� tdl is
har

tdl is
har : E ! B

returns true if expression E is of type 
hara
ter, otherwise false.

� tdl iseq

tdl iseq : E E ! B

returns true if both expression have te same value, otherwise false. Both arguments

must be 
onstant expressions, otherwise an error messages is given and false is returned.

� tdl islt

tdl islt : E E ! B

returns true if the value of the �rst expression is lower than the value of the se
ond
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expression, otherwise false. Both arguments must be 
onstant expressions, otherwise

an error messages is given and false is returned.

� tdl isleq

tdl isleq : E E ! B

returns true if the value of the �rst expression is lower than or equal to the value of

the se
ond expression, otherwise false. Both arguments must be 
onstant expressions,

otherwise an error messages is given and false is returned.

� tdl isgt

tdl isgt : E E ! B

returns true if the value of the �rst expression is higher than the value of the se
ond

expression, otherwise false. Both arguments must be 
onstant expressions, otherwise

an error messages is given and false is returned.

� tdl isgeq

tdl isgeq : E E ! B

returns true if the value of the �rst expression is higher than or equal to the value

of the se
ond expression, otherwise false. Both arguments must be 
onstant expres-

sions, otherwise an error messages is given and false is returned.

� tdl isneq

tdl isneq : E E ! B

returns true if the values of both expressions are not the same, otherwise false. Both

arguments must be 
onstant expressions, otherwise an error messages is given and false

is returned.

� tdl isdummy

tdl isdummy : E ! B

returns true if variable expression E is a a dummy argument variable, otherwise false.

The argument must be a variable expression, otherwise an error message is given and

false is returned.
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� tdl is
ommon

tdl is
ommon : E ! B

returns true if expression E is a member of a COMMON blo
k, otherwise false. The

argument must be a variable expression, otherwise an error message is given and false

is returned.

� tdl is
onst

tdl is
onst : E ! B

returns true if expression E is a 
onstant expression, otherwise false.

� tdl iss
alar

tdl iss
alar : E ! B

returns true if expression E is a s
alar variable, otherwise false. The argument must

be a variable expression, otherwise an error message is given and false is returned.

� tdl repla
e

tdl repla
e : S E E ! S

repla
e ea
h o

uren
e of the se
ond argument in the �rst argument with the third

argument.

� tdl intvar

tdl intvar : E ! E


reate a lo
al integer variable IV x where x is the 
onstant integer argument. If the

argument is not a 
onstant integer argument, an error is given. If the variable already

exist, an error message is given also.

� tdl realvar

tdl realvar : E ! E


reate a lo
al real variable IV x where x is the 
onstant integer argument. If the argu-
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ment is not a 
onstant integer argument, an error is given. If the variable already exist,

an error message is given also.

� tdl mod

tdl mod : E E ! E

generates a 
all to intrinsi
 fun
tion MOD with both arguments.

� tdl min

tdl min : E E ! E

generates a 
all to intrinsi
 fun
tion MIN with both arguments.

� tdl max

tdl max : E E ! E

generates a 
all to intrinsi
 fun
tion MAX with both arguments.

2.3 In
orporation of TDL in MT1

In this se
tion we brie
y des
irbe how the TDL 
an be invoked from within MT1. First,

a �le 
ontaining a 
olle
tion of IMPORT and TRANSFORM statements is read in. Then these

transformations 
an be applied intera
tively. MT1 
omes with a default strategy for applying

transformations. This default strategy is des
ribed below. As mentioned in the Introdu
tion,

a Strategy Spe
i�
ation Language has been implemented in the MT1 system. This language

is des
ribed in the O
eans Deliverable D1.2a.

The 
ommands to be given to MT1 for applying transformations are the following.

Readtrf The readtrf 
ommand reads in a transformation �le. The name of the tranformation

�le must be supplied as an argument. If the environment variable 'CPP' is set to a �lter,

readtrf feeds the transformation �le to the �lter and then parses the output of the �lter.

Start The start 
ommand starts the appli
ation of transformations to the Fortran program.

If a fragment of the program mat
hes the lefthand-side of a transformation and the


ondition of the transformation evaluates to true, the mat
hed and the new fragment,

des
ribed by the righthand-side of the transformation, are displayed and you are asked

for 
onformation to apply the transformation by a prompt
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** ACCEPT (y/n/q/e/s) ===>

Five answers (either in upper
ase or in lower
ase) are allowed:

� 'y' - yes, apply this transformation and pro
eed sear
hing with this transformation;

� 'n' - no, do not apply this transformation but pro
eed sear
hing with this transfor-

mation;

� 'q' - quit, do not apply this transformation but pro
eed sear
hing with the next

transformation starting at the beginning of the program unit;

� 'e' - exit, do not apply this transformation but return to the 
ommand prompt;

� 's' - skip program unit, do not apply this transformation but restart the transfor-

mation phase on the next program unit.

The answer should be terminated by a 
arriage-return. If only a 
arriage-return is

entered, the default answer is the �rst one listed ('y').

The default strategy for applying transformations 
an be des
ribed by the following

steps:

1. Sele
t the �rst program unit textually o

uring in the Fortran input.

2. Sele
t the �rst transformation textually o

uring in the transformation �le.

3. Sear
h through the program unit for a fragment mat
hing the lefthand-side of the

transformation.

4. If there's no su
h fragment goto step 5, otherwise ask for 
onformation. If the

answer is

� 'y' apply the transformation and pro
eed with step 3;

� 'q' pro
eed goto step 5;

� 'e' return to the 
ommand prompt;

� 's' goto step 6.

� otherwise, pro
eed with step 3;

5. Sele
t the next transformation textually o

uring in the transformation �le. If there

are no more transformations, pro
eed with the next step, otherwise goto step 3.

6. Sele
t the next program unit textually o

uring in the Fortran input. If there are

no more program units, return to the 
ommand prompt,

Auto The auto 
ommand applies all mat
hing transformations without asking for 
onfor-

mation to the user. The same strategy is used for the auto 
ommand as the strategy

for the start 
ommand. In 
ase of the default strategy, step 4 in this strategy should

be repla
ed by
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4. If there's no su
h fragment pro
eed with step 5, otherwise apply the transformation

and goto step 3.

Query If determination of the exa
t solutions is not feasible or possible, dependen
e analysis

must result in 
onservative estimates of dependen
es. This is done to prevent appli
a-

tion of transformations that 
hange the semanti
s of the program, even if this 
auses

some valid appli
ations to be overlooked. Therefore, the 
ommand query has been

implemented in MT1 to toggle between two modes in whi
h either all dependen
es are

assumed to hold or a mode in whi
h dependen
es 
an be ignored. In the latter mode, the


ompiler prompts all dependen
es 
ausing a `dep' 
ondition to hold on a mat
h. The user


an instru
t the 
ompiler to ignore 
ertain dependen
es, if it is known that these depen-

den
es do not a
tually hold, whi
h might disable or enable further appli
ation. In the

following fragment, for example, the o

urren
e of 
omplex subs
ript `IND(I)' results in

the re
ording of the loop-
arried dependen
e S

1

Æ

o

<

S

1

, whi
h prevents 
on
urrentization.

However, if array IND 
ontains a permutation of the index values, 
on
urrentization is

valid. After reply `y', the transformation is enabled:

** MATCH ON

L1: DO I = 1, 100, 1

S2: A(IND(I)) = B(I)

ENDDO

.....

** Dependen
e S2 d-outp < S2 A: IGNORE (n/y/q)=> y

** TRANSFORM INTO

L5: DOALL I = 1, 100, 1

S6: A(IND(I)) = B(I)

ENDDOALL

.....

** ACCEPT (y/n/q/e) ===>

2.4 Syntax of the Transformation De�nition Languge

This se
tion shows the syntax rules for the transformation language. Lower
ase words are

non-terminal tokens, while upper
ase words and single quoted strings are terminal tokens.

The upper
ase tokens may be instantiated as follows:

� ID an identi�er 
onsisting of lower and upper
ase letters, digits and unders
ores. The

identi�er must start with zero or more unders
ores followed by a letter;
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� SLID the name of a shared library �le (optionally pre
eded by a path). The name of the

�le must either have the extension '.sl' or '.so'.

� REALCONST any 
oating point number;

� INTCONST any integer value;

� BOOLCONST either '.true.' or '.false.';

� STMTVAR a string ' !s' followed by an integer;

� EXPVAR a string ' !e' followed by an integer.

The empty rule is denoted by <empty>. Here are the syntax rules in BNF-form.

definitions -> definitions definition

definition -> udf_def | trafo_def

udf_def -> 'import' de
ls 'from' sl_libs ';'

de
ls -> de
l | de
ls de
l

de
l -> ID ':' arg_list '->' type

type -> 'S' | 'B' | 'E'

arg_list -> <empty> | arg_list type

sl_libs -> sl_id | sl_libs sl_id

sl_id -> '"' SLID '"' | '<' SLID '>'

trafo_def -> 'transform' pattern 'into' xpattern '
ondition' 
onditions ';'

pattern -> 'list' '(' stmt ',' xpattern ')'

| STMTVAR

| 'follow' '(' STMTVAR ',' pattern ')'

| 'merge' '(' xpattern ',' xpattern ')'

| 'nil'

25



stmt -> 'do' '(' xexp ',' xexp ',' xexp ',' xexp ',' xpattern ')'

| 'doall' '(' xexp ',' xexp ',' xexp ',' xexp ',' xpattern ')'

| 'assign' '(' xexp ',' xexp ')'

| 'if' '(' xexp ',' xpattern ')'

xpattern -> pattern | fun


exp -> EXPVAR

| xexp '+' xexp

| xexp '-' xexp

| xexp '*' xexp

| xexp '/' xexp

| xexp '**' xexp

| xexp '.eq.' xexp

| xexp '.ne.' xexp

| xexp '.ge.' xexp

| xexp '.gt.' xexp

| xexp '.le.' xexp

| xexp '.lt.' xexp

| xexp '.eqv.' xexp

| xexp '.neqv.' xexp

| xexp '.and.' xexp

| xexp '.or.' xexp

| '.not.' xexp

| '(' xexp ')'

| '-' xexp

| INTCONST

| REALCONST

| BOOLCONST

| 've
torize' '(' EXPVAR ',' EXPVAR ',' xexp ':' xexp ':' xexp ')'

xexp -> exp | fun



onditions -> 
ondition | 
ondition 'and' 
onditions


ondition -> 'true'

| 'dep' depkind dirve
 '(' s_indi
 ',' s_indi
 ')' on
lause

| 'isnil' '(' STMTVAR ')'

| 'issub' '(' EXPVAR ',' EXPVAR ')'

| 'not' 
ondition
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| fun


depkind -> 'flow' | 'anti' | 'output' | 'input' | '�'

on
lause -> <empty> | '>' EXPVAR

dirve
 -> <empty> | dir dirve


dir -> '=' | '<' | '>' | '*'

s_indi
 -> '$' attribs

attribs -> '.' 'tail' attribs

| '.' 'dobody' attribs

| '.' 'ifbody' attribs

| '.' 'follow' attribs

| '.' 'head'

| <empty>

fun
 -> ID '(' a
t_arg_list ')'

a
t_arg_list -> <empty> | a
t_args

a
t_args -> a
t_args ',' a
t_arg

a
t_arg -> exp | pattern | fun
 | s_indi


2.5 Example transformations

In this se
tion we present the TDL formulation of all 
ommonly used loop level transformations

as 
an be found in e.g. [Pol88, Wol96, Wol91, ZC90℄. This se
tion serves to show the expressive

power of the TDL de�ned above.

%

% Loop 
ollapsing

%

transform

list(do(!e1, 1, !e3, 1,

list(do(!e5, 1, !e7, 1, !s1), nil)), !s2)
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into

list(do(tdl_intvar(1), 1, !e3 * !e7, 1,

list(assign(!e1, ((tdl_intvar(1) - 1) / !e7) * !e7 + 1),

list(assign(!e5, tdl_mod(tdl_intvar(1) - 1, !e7) + 1),

!s1))), !s2)


ondition

tdl_isint(!e3) and

tdl_isint(!e7)

;

%

% Loop Distribution

%

transform

list(do(!e1, !e2, !e3, !e4, follow(!s1,!s2)),!s3)

into

list(do(!e1, !e2, !e3, !e4, !s1),

list(do(!e1, !e2, !e3, !e4, !s2), !s3))


ondition

not isnil (!s2) and

not dep � < ($.dobody.follow, $.dobody)

;

%

% Loop fusion

%

transform

list(do(!e1, !e2, !e3, !e4, !s1),

list(do(!e1, !e2, !e3, !e4, !s2), !s3))

into

list(do(!e1, !e2, !e3, !e4, merge(!s1,!s2)), !s3)


ondition

not dep � ($.dobody, $.tail.dobody)

;

%

% Loop inter
hange

%

transform

list(do(!e1, !e2, !e3, !e4,

list(do(!e5, !e6, !e7, !e8, !s1), nil)), !s2)

into
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list(do(!e5, !e6, !e7, !e8,

list(do(!e1, !e2, !e3, !e4, !s1), nil)), !s2)


ondition

not dep � <> ($.dobody.dobody, $.dobody.dobody) and

not dep flow <= ($.dobody.dobody, $.dobody.dobody) and

not dep flow ($.head, $.dobody) > !e1

;

%

% Transformations to normalize loop with non-unit stride.

%

#in
lude <tdl.i>

%

% Turn a loop with a negative stride into a loop with a stride with

% a positive stride

%

transform

list(do(!e1, !e2, !e3, !e4, !s1), !s2)

into

list(do(!e1, !e3, !e2, -!e41,

tdl_repla
e(!s1, !e1, !e2 + !e3 - !e1)), !s2)


ondition

tdl_is
onst(!e4) and

tdl_isint(!e4) and

tdl_islt(!e4, 0)

;

%

% Turn a loop with a non-unit stride into a loop with

% with lowerbound 1 and unit stride.

%

transform

list(do(!e1, !e2, !e3, !e4, !s1), !s2)

into

list(do(!e1, 1, (!e3 - (!e2 - !e4)) / !e4, !e4), 1,

tdl_repla
e(!s1, !e1, !e2 - !e4 + !e4 * !e1)), !s2)


ondition

tdl_isint(!e2) and

tdl_isint(!e3) and

tdl_isint(!e4) and

tdl_is
onst(!e4) and

tdl_isneq(!e4, 1)

;
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%

% Loop peeling

%

#in
lude <tdl.i>

transform

list(do(!e1, !e2, !e3, !e4, !s1),

list(do(!e1, !e5, !e3, !e4, !s2), !s3))

into

merge(tdl_repla
e(!s1, !e1, !e2),

list(do(!e1, !e2 + 1, !e3, !e4, !s1),

list(do(!e1, !e2 + 1, !e3, !e4, !s2), !s3)))


ondition

tdl_iseq(!e5 - !e2, 1)

;

%

% Loop reversal

%

#in
lude <tdl.i>

transform

list(do(!e1, !e2, !e3, !e4, !s1), !s2)

into

list(do(!e1, !e3, !e2, -!e4, tdl_repla
e(!s1, !e1, !e2 + !e3 - !e1)), !s2)


ondition

tdl_is
onst(!e4) and

tdl_islt(!e4, 0)

;

import

tdl_intvar: E -> E

tdl_is
onst: E -> B

from

"./sr
/libtdl.sl"

;

transform

list(do(!e1, !e2, !e3, !e4,

follow(!s1, list(assign(!e5, !e6*!e1), !s2))), !s3)

into

list(assign(tdl_intvar(1), !e2 * !e6),

list(do(!e1, !e2, !e3, !e4,

merge(!s1, list(assign(!e5, tdl_intvar(1)),

merge(!s2, list(assign(tdl_intvar(1), tdl_intvar(1) +

!e6),nil))))),!s3))


ondition
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tdl_is
onst(!e6)

;

%

% Unroll zero trip loops

%

#in
lude <tdl.i>

transform

list(do(!e1, !e2, !e3, !e4, !s1), !s2)

into

!s2


ondition

tdl_isint(!e2) and

tdl_isint(!e3) and

tdl_isint(!e4) and

tdl_isleq(((!e3 - !e2 + !e4) / !e4), 0)

;

%

% Unroll one trip loops

%

#in
lude <tdl.i>

transform

list(do(!e1, !e2, !e2, !e3, !s1), !s2)

into

merge(tdl_repla
e(!s1, !e1, !e2), !s2)


ondition

true

;

%

% Loop unrolling

%

#in
lude <tdl.i>

transform

list(do(!e1, !e2, !e3, 1, !s1), !s2)

into

list(do(!e1, !e2, (!e2 - 1) + ((!e3 - !e2 + 1) / 2) * 2, 2,

merge(!s1, tdl_repla
e(!s1, !e1, !e1 + 1))),

list(if(((!e3 - !e2 + 1) / 2) * 2 .neq. (!e3 - !e2 + 1),

tdl_repla
e(!s1, !e1, !e3)), !s2))


ondition

tdl_isint(!e2) and

tdl_isint(!e3) and

not tdl_is
onst(!e2)
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;

transform

list(do(!e1, !e2, !e3, 1, !s1), !s2)

into

list(do(!e1, !e2, (!e2 - 1) + ((!e3 - !e2 + 1) / 2) * 2, 2,

merge(!s1, tdl_repla
e(!s1, !e1, !e1 + 1))),

list(if(((!e3 - !e2 + 1) / 2) * 2 .neq. (!e3 - !e2 + 1),

tdl_repla
e(!s1, !e1, !e3)), !s2))


ondition

tdl_isint(!e2) and

tdl_isint(!e3) and

not tdl_is
onst(!e3)

;

transform

list(do(!e1, !e2, !e3, 1, !s1), !s2)

into

list(do(!e1, !e2, (!e2 - 1) + ((!e3 - !e2 + 1) / 2) * 2, 2,

merge(!s1, tdl_repla
e(!s1, !e1, !e1 + 1))), !s2)


ondition

tdl_isint(!e2) and

tdl_isint(!e3) and

tdl_is
onst(!e2) and

tdl_is
onst(!e3) and

tdl_iseq(((!e3 - !e2 + 1) / 2) * 2, (!e3 - !e2 + 1))

;

transform

list(do(!e1, !e2, !e3, 1, !s1), !s2)

into

list(do(!e1, !e2, !e3 - 1, 2,

merge(!s1, tdl_repla
e(!s1, !e1, !e1 + 1))),

merge(tdl_repla
e(!s1, !e1, !e3), !s2))


ondition

tdl_isint(!e2) and

tdl_isint(!e3) and

tdl_is
onst(!e2) and

tdl_is
onst(!e3) and

tdl_isneq(((!e3 - !e2 + 1) / 2) * 2, (!e3 - !e2 + 1))

;

%

% loop ve
torization

%

transform

list(do(!e1, !e2, !e3, !e4,

list(assign(!e5, !e6), nil)), !s1)
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into

list(assign(ve
torize(!e5, !e1, !e2:!e3:!e4),

ve
torize(!e6, !e1, !e2:!e3:!e4)), !s1)


ondition

issub(!e1, !e5) and

not dep flow < ($.dobody, $.dobody)

;
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Chapter 3

Strategy Spe
i�
ation Language

In this 
hapter we dis
uss the syntax and semanti
s of the Strategy Spe
i�
ation Language.

We also dis
uss how this language is in
orporated in the MT1 
ompilation system. Finally,

we present a novel strategy for transforming imperfe
tly nested loops.

In the initial implementation of MT1, the order in whi
h the transformations were applied, was

spe
i�ed by the order in whi
h the transformations appeared in the transformation de�nition

�le. Ea
h transformation was taken in turn and applied to every statement in the 
urrent

Fortran unit. If one su
h pass 
aused the Fortran 
ode to be 
hanged, another pass with the

same transformation was exe
uted on the same pie
e of 
ode. Only when a 
ertain pass did

not 
hange anything, the next transformation was taken and applied in the same way.

In this se
tion a Strategy Spe
i�
ation Language (SSL) is presented, that allows the spe
i�-


ation of the order in whi
h the transformations from the transformation de�nition �le are to

be applied. The language impli
itly de�nes the set of statements against whi
h the transfor-

mations are applied. This 
onstru
tion allows the spe
i�
ation of an optimizing strategy to

be at a mu
h higher abstra
t level than the sour
e 
ode level as in most other 
ompilers.

In Se
tion 3.1 de transformation engine of MT1 is des
ribed. Next, Se
tion 3.2 des
ribes the

syntax of our prototype SSL. Se
tion 3.3 then des
ribes the way MT1 interprets the SSL using

the transformation engine.

3.1 The original MT1 transformation engine

This se
tion �rst des
ribes the transformation engine as it was originally implemented in the

MT1 system. These issues are dealt with, be
ause they are essential to des
ribe strategy

exe
ution. For a full dis
ussion of the Transformation De�nition Language and the original
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me
hanism for applying transformations, see O
eans Deliverable D1.1 [BBK

+

97℄. In the

next se
tion the alterations to the transformation appli
ation engine to in
lude strategies are

des
ribed.

Transformations in MT1 
onsist of an input pattern against whi
h FORTRAN statements are

mat
hed, 
onditions 
he
king various properties of the mat
hed 
ode, and an output pattern

whi
h is used to derive the new 
ode from. So the basi
 syntax for spe
ifying transformations


an be given as follows.

trafo := TRANSFORM input_pattern

INTO output_pattern

CONDITION 
onditions;

When a FORTRAN program is read in by MT1, it is split into separate units ea
h 
ontaining

one subroutine. MT1 then applies ea
h transformation on ea
h unit separately.

The appli
ation of a transformation 
onsists of iterating over all FORTRAN statements in

the asso
iated s
ope of the transformation, trying to mat
h the input pattern of the transfor-

mation against a blo
k of statements starting with the 
urrent statement. The notion of the

asso
iated s
ope of a transformation will be explained later. For now, 
onsider the s
ope of

any transformation to be the entire unit. This means that the transformations are applied to

every statement in the 
urrent unit. Note that the input pattern of a transformation needs to

be mat
hed against statements whi
h are within its s
ope. During mat
hing, the statement-

and expression-variables are bound to mat
hing fragments of FORTRAN 
ode.

After having mat
hed the input pattern, MT1 
he
ks whether the 
onditions spe
i�ed in the

transformation hold. To do this, it uses the bindings of the variables to test the original 
ode

for the properties spe
i�ed in the 
ondition of the transformation.

If the 
onditions hold, the output pattern and the variable bindings are used to 
ompute

the resulting 
ode. After repla
ing the original 
ode with the newly 
omputed 
ode, MT1's

internal data stru
tures are updated to re
e
t the new 
ode, after whi
h the exe
ution of the

strategy 
ontinues. Note that the next appli
ation of a transformation may thus work on the

result of a previous transformation.

3.2 Strategy syntax

In this se
tion we give the syntax of the Transformation De�nition Language. The semanti
s

of these 
onstru
ts is given in the next se
tion. A strategy 
onsists of a (possibly empty) list

of semi
olon (;) separated SSL statements:
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strategy := ssl_stats;

ssl_stats := ssl_stat ';' ssl_stats | ;

An SSL statement 
an be a single transformation, a 
onditional statement, or one of two

repetitive statements.

ssl_stat := seq_stat | if_stat | while_stat | until_stat;

seq_stat := trafo_id | roll_ba
k_stat;

An IF-statement 
onsists of a transformation that a
ts as a 
ondition, a THEN-part and an

optional ELSE-part. The transformation in the 
ondition 
an applied su

essfully or not. If

it is, the transformations in the THEN-part are to be exe
uted. Optionally, in the ELSE-part

a statement list 
an be given whi
h should be exe
uted in 
ase the transformation mat
hed

but was not applied su

essfully due to failing 
onditions.


ondition := trafo_id;

if_stat := IF 
ondition THEN ssl_stats elsepart ENDIF;

else_part := ELSE ssl_stats | {empty} ;

The two repetitive 
onstru
ts 
onsist of a transformation to be 
he
ked and a statement list

to be exe
uted if the 
ondition is true or false, respe
tively.

while_stat := WHILE 
ondition ssl_stats ENDWHILE;

until_stat := UNTIL 
ondition ssl_stats ENDUNTIL;

The language 
ontains a means for applying sequen
es of transformations only if they 
an all

be applied, by means of the roll ba
k stat.

roll_ba
k_stat := trafo_id AND trafo_id | trafo_id AND roll_ba
k_stat

3.3 Semanti
s

This se
tion des
ribes the semanti
s of the Strategy Spe
i�
ation Language. We will des
ribe

what a
tions are undertaken by MT1

� when a 
ertain transformation did not mat
h (either be
ause MT1 found no mat
h or

be
ause the user 
hose to ignore the mat
h),

� when the 
onditions were not satis�ed (or the user 
hose not to apply an appli
able

transformation),
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� and when a transformation is su

essfully applied.

The intera
tion with the user has undergone some modi�
ations over the original system. The

system no longer 
he
ks whether the appli
ation of a transformation has 
hanged anything in

order to initiate another pass. Every transformation is applied only on
e to every statement.

The user has to indi
ate whether to a

ept or ignore a mat
h and whether to really apply a

transformation.

When MT1 has found a mat
h between the 
urrent transformation and a blo
k of FORTRAN

statements, beginning with the 
urrent statement, MT1 reports this fa
t by showing the

mat
hing 
ode.

The 
onditions spe
i�ed in the transformation are then 
he
ked. If the 
onditions are not

satis�ed, the user is prompted as follows:

** Condition not satisfied. A

ept mat
h (y/n)

If the user does not a

ept the mat
h, MT1 will 
ontinue as if the mat
h was not found.

If the user does a

ept the mat
h, MT1 will 
onsider the result of the appli
ation of the

transformation to be false. The result of the appli
ation of a transformation is used when

de
iding the 
ow of 
ontrol through the strategy. In parti
ular, it is used to sele
t the THEN-

or the ELSE-part in a 
onditional 
onstru
t.

If the 
onditions are satis�ed, MT1 
omputes and shows the new 
ode fragment and prompts

the user as follows:

** ACCEPT (y/n/i) ==>

If the user a

epts, the mat
hing 
ode is repla
ed by the new 
ode fragment. The result of

the appli
ation of the transformation is 
onsidered to be true. In this 
ase, we 
onsider the

transformation to be applied su

essfully. If the user replies 'n', the mat
h is 
onsidered to

be a

epted, but the 
onditions are 
onsidered not to be satis�ed. As in the 
ase where MT1

de
ided the 
onditions not to be satis�ed and the user a

epted the mat
h, the result of the

transformation is 
onsidered to be false. If the user replies 'i', the mat
h is ignored.

When we des
ribe the semanti
s of the various 
onstru
ts in our SSL, we will indi
ate whi
h

a
tions are undertaken by MT1 in 
ase a 
ertain transformation did not mat
h, in 
ase the


onditions were not ful�lled, and in 
ase the transformation was su

essfully applied. As

des
ribed above, the user may 
hoose to ignore a mat
h if MT1 found one. The user may also


hoose to indi
ate the 
onditions not to be satis�ed, even if MT1 found them to be true. MT1

will respond to these 
hoi
es in the same way it would in 
ase it itself did not �nd a mat
h or

found the 
onditions not to be satis�ed, respe
tively.
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The possibility for a user to ignore the mat
hing of a 
ertain transformation allows the user

to in
uen
e the 
ow of 
ontrol. If a 
ertain transformation would mat
h a FORTRAN loop,

while the transformation is the 
ondition of an IF-THEN-ELSE 
onstru
t, mat
hing of this

transformation would never enter the loop, sin
e after having exe
uted the THEN- or ELSE-

part, transformation would 
ontinue after the loop.

In order to des
ribe the semanti
s, Se
tion 3.3.1 �rst des
ribes some notational 
onventions,

and de�nes the level of transformations. There are four general 
onstru
ts in our prototype

SSL. These 
onstru
ts indi
ate general sequential appli
ation (mu
h like the original MT1

system), 
onditional appli
ation, and repetitive repetition, of whi
h there are two forms. Ea
h

of these four 
onstru
ts will be des
ribed in the next four se
tions.

3.3.1 General de�nitions

To des
ribe these semanti
s we will use trafo n to indi
ate a single transformation. To spe
ify

a list of transformations, possibly 
ontaining arbitrary 
omplex strategy 
onstru
ts, we will

use the notation ssl stats n.

In the original MT1 system, all transformations were applied on every statement in the 
urrent

unit. In the present 
ontext where we want to exe
ute strategies, we need to re
onsider to

s
ope on whi
h transformations a
t. For instan
e, in an IF-THEN-ELSE 
onstru
t, we want

the transformations in the THEN-part to a
t on the fragment sele
ted by the 
ondition. In

order ot do this, MT1 impli
itly asso
iates a list of statements to ea
h transformation. We

will 
all this list of statements the asso
iated s
ope of a transformation. The transformations

are only applied to the statements in its s
ope. MT1 derives the s
ope of a transformation

from its lo
ation in the strategy and the 
ontents of the 
urrent unit.

In order to be able to derive the s
ope of a 
ertain transformation, we �rst need to de�ne the

level of a transformation. To do this, we will �rst de�ne the level of SSL statements. The level

of an SSL statement is essentially its nesting depth. SSL statements whi
h are not lo
ated in

a body of another SSL statement are at level one. The level of an SSL statements lo
ated in

the body of another SSL statement is one higher than the level of its 
ontaining 
onstru
t.

Using the level of SSL statements we 
an formulate the level of the individual transformations

in these statements to be the same as the level of these statements. Hen
e the transformations

in the THEN-part of a 
onditional SSL statement have a level one higher than the 
ondition

of this 
onditional statement.

The s
ope of transformations at level one is the entire unit under 
onsideration. The s
ope of

transformations at higher levels 
an nformally be given as:

� if the transformation is lo
ated in the THEN-part of a 
onditional SSL statement, its

asso
iated s
ope is the fragment that resulted from the appli
ation of the 
ondition
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transformation;

� if the transformation is lo
ated in the ELSE-part of a 
onditional SSL statement, its

asso
iated s
ope is the fragment that mat
hed the 
ondition transformation but did not

satisfy the 
onditions of this transformation;

� if the transformation is lo
ated in the body of a WHILE-statement, its asso
iated s
ope

is the fragment that resulted form the appli
ation of the 
ondition transformation in the

WHILE-statement;

� if the transformation is lo
ated in the doby of a REPEAT-statement, its asso
iated

s
ope is the fragment that mat
hed the 
ondition transformation but did not satisfy its


onditions.

The pre
ise asso
iation of s
opes to transformations in a strategy is des
ribed below in the

semanti
s of the various 
onstru
ts.

3.3.2 Sequential appli
ation

The simplest strategy 
onsist of a list of transformations to be applied one after the other:

trafo_1;

ssl_stats_1;

MT1 will �rst try to apply trafo 1 on all statements in its asso
iated s
ope. If the input

pattern of this transformation does not mat
h a 
ertain statement, the next statement is


onsidered. If a 
ertain statement does mat
h, but the 
onditions do not hold, the appli
ation

of transformations 
ontinues with the next statement as well. If the input pattern mat
hed and

the 
onditions hold, the 
ode is repla
ed. Transformation then 
ontinues with the statement

that follows the last statement in the mat
h. When appli
ation of trafo 1 rea
hes the last

statement of its asso
iated s
ope, appli
ation of the sequential 
onstru
t 
ontinues with the

�rst statement in ssl stats 1. The asso
iated s
ope of transformations in ssl stats 1 at the

same level as trafo 1 all have the same asso
iated s
ope as trafo 1. Hen
e appli
ation of the

transformations in ssl stats 1 starts with the �rst statement in this s
ope.

3.3.3 Conditional appli
ation

With the IF-THEN-ELSE-ENDIF 
onstru
t it is possible to apply 
ertain transformations


onditionally. Whether the transformations in the THEN- or ELSE-part are to be applied is

dependent on the result of the transformation in the 
ondition:
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IF trafo_1 THEN

ssl_stats_1;

ELSE

ssl_stats_2;

ENDIF;

If a 
ertain statement does not mat
h the input pattern of trafo 1 the next statement is

tried. If a statement does mat
h the input pattern, the 
onditions are 
he
ked. Depending on

whether the 
onditions do or do not hold ssl stats 1 or ssl stats 2 is applied, respe
tively.

The statements in ssl stats 1 and ssl stats 2 are one level higher that trafo 1. The asso
iated

s
ope of statements at a higher level is always re�ned. The asso
iated s
ope of the transforma-

tions in ssl stats 1 
onsists of all statements inserted by trafo 1. That is, the transformed 
ode

fragment resulting from the appli
ation of trafo 1. The asso
iated s
ope of the transformations

in ssl stats 2 
onsists of all statements in the mat
h of trafo 1.

After having applied one of the statement lists, appli
ation 
ontinues on the statement follow-

ing the last statement in the mat
h of the previous appli
ation of trafo 1.

3.3.4 Repetitive appli
ation: WHILE

It is possible to apply a list of transformations repeatedly while a 
ertain transformation 
an

be applied su

essfully.

WHILE trafo_1

ssl_stats_1;

ENDWHILE;

If a 
ertain FORTRAN statement mat
hes the input pattern of trafo 1 and the 
onditions

are satis�ed, the transformations in ssl stats 1 are applied. The asso
iated s
ope of the trans-

formations in ssl stats 1 
onsists of the transformed fragment resulting from the su

essful

appli
ation of trafo 1.

After having applied all transformations in ssl stats 1, the WHILE 
onstru
ts starts over and

trafo 1 is applied again. Sin
e we want the WHILE-
onstru
t to repeatedly a
t on a single

program fragment, trafo 1 will be mat
hed against the same fragment as it has mat
hed the

�rst time. That is, its asso
iated s
ope is re�ned to be the same as the asso
iated s
ope of the

transformations in ssl stats 1. Be
ause the transformation in the 
ondition need not mat
h

the �rst statement in its asso
iated s
ope, it will sear
h its s
ope to �nd a fragment against

whi
h it 
an be mat
hed. Therefore, this s
ope may be further re�ned on ea
h iteration. The

end of its s
ope is given by the �rst statement after the �rst mat
h of trafo 1.
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When the 
onditions of trafo 1 are not satis�ed, transformation 
ontinues with the statement

following the last statement in the mat
h and with trafo 1.

3.3.5 Repetitive appli
ation: REPEAT

It is also possible to apply 
ertain transformations as long as a 
ertain transformation 
annot

be applied, be
ause its 
onditions are not full�lled.

UNTIL trafo_1

ssl_stats_1;

ENDUNTIL;

The transformations in ssl stats 1 are exe
uted if trafo 1 mat
hed, but its 
onditions were not

satis�ed. The asso
iated s
ope of the transformations in ssl stats 1 
onsists of all statements

in the mat
h of trafo 1.

When all transformations in ssl stats 1 have been applied, transformation 
ontinues with

trafo 1. Its asso
iated s
ope is re�ned to the asso
iated s
ope of the transformations in

ssl stats 1. Again the asso
iated s
ope of trafo 1 may be re�ned on ea
h iteration.

When the 
onditions in trafo 1 are satis�ed, transformation 
ontinues on the statement fol-

lowing the last statement in the mat
h of trafo 1.

3.3.6 Roll ba
k 
onstru
t

When writing a strategy, we may want to try out a 
ertain transformation, whi
h should

enable another transformation. If the se
ond transformation 
annot be applied, we may want

to undo the �rst transformation. su
h strategy 
annot be expressed in our SSL. The most

intuitive way to express su
h a 
onstru
t is by grouping 
ertain transformations together:

trafo_1 and trafo_2;

In this 
onstru
t, trafo 1 will be applied on a 
ertain fragment of FORTRAN 
ode. If this

transformation is su

essfully applied, trafo 2 will be applied on the resulting 
ode from

trafo 1. That is, the asso
iated s
ope of trafo 2 is the resulting fragment from trafo 1. If

trafo 2 fails to be applied, the e�e
t of trafo 1 is rolled ba
k: the entire 
onstru
t fails and

no 
hanges are made to the program under 
onsideration.

We allow for an arbitrary number of transformations to be grouped together in a roll ba
k


onstru
t. If any of these transformations fails, the entire 
onstru
t fails and no 
hanges are

made to the program under 
onsideration.
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If all transformations in the group have been su

esfully applied, the result is rolled forward.

This means that the fragment that mat
hed trafo 1 is repla
ed in the program under 
onsid-

eration by the result of all transformations on this fragment.

In 
ase su
h a group of transformations appears as the 
ondition of a 
onditional or repetitive


onstru
t, the result would be true only if all transformations in the group were applied

su

essfully.

42



Chapter 4

Con
lusion

In this report we have des
ribed a spe
i�
ation language for program transformations on

the Fortran 77 sour
e language level. Together with the strategy spe
i�
ation language this

spe
i�
ation me
hanism allows for a 
exible and highly tunable set of transformations to be

applied to a program. These transformations are stru
tured around a pattern mat
h me
ha-

nism that allows for user de�ned fun
tion that 
an a

ess the internal program representation

dire
tly. Using this me
hanism we may spe
ify an input pattern 
ontaining meta-variables

that is mat
hed against the sour
e program thereby binding these meta-variables to a
tual

expressions and statements. An output pattern 
an be spe
i�ed using these meta-variables.

Based on this output pattern and the a
tual bindings of the meta-variables, a new program

fragment is 
onstru
ted that will repla
e the fragment that was mat
hed by the input pattern.

We may also spe
ify 
onditions under whi
h the transformation may be applied. These 
on-

ditions typi
ally 
he
k for the legality of the transformation. However, the 
onditon may also


ontain user de�ned fun
tions that may inspe
t arbitrary auxilary data stru
tures. Using this

me
hanism, a hook is provided for the feedba
k from low to high level. This feedba
k 
an be

stored in an auxilary data stru
ture and inspe
ted by user de�ned fun
tions in the 
ondition.

Next we have dis
ussed our notions of Strategy Spe
i�
ation Language. The SSL is a spe
i�-


ation me
hanism to sequen
e elementary transformations. The SSL on the sour
e language

level is 
apable of the sequential 
omposition of transformations, a 
onditional and a repetetive


onstru
t. The 
onditions for these last 
onstru
ts 
onsist of the su

ess or failure of some ar-

bitrary 
ondition transformation. In this way, enabling transformations 
an be applied before

the main transformation. Also, sin
e the 
ondition of a transformation may 
ontain user-

de�ned fun
tions that may a

ess an arbitrary data stru
ture, a me
hanism is provided for

feedba
k. This feedba
k information may be targetted towards spe
i�
 parts of the program,

like a parti
ular loop. Now the `enabling' transformation may 
onsist of a mat
h against an

arbitrary loop, transforming that loop into the same loop and having the 
ondition 
he
k the
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identity of the loop. Only the sought after loop, the number of whi
h is given in the feedba
k

information, will mat
h this 
ondition that 
he
ks for this number.
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