
Transformation Mehanisms in MT1

A.J.C. Bik P.J. Brinkhaus P.M.W. Knijnenburg H.A.G. Wijsho�

Leiden Institute of Advaned Computer Siene,

Leiden University

Niels Bohrweg 1

2333 CA Leiden, the Netherlands

Abstrat

In this report we desribe a spei�ation language for program transformations on the For-

tran 77 soure language level. Together with an appliation engine this spei�ation meha-

nism allows for a exible and highly tunable set of transformations to be applied to a program.

These transformations are strutured around a pattern math mehanism that allows for user

de�ned funtion that an aess the internal program representation diretly. This approah

allows the spei�ation of a wide range of program transformations, inluding all ommonly

used loop level transformations. Next we disuss the Strategy Spei�ation Language (SSL).

The SSL is a spei�ation mehanism to sequene elementary transformations. The SSL on the

soure language level is apable of the sequential omposition of transformations, a onditional

and a repetetive onstrut. The onditions for these last onstruts onsist of the suess or

failure of some arbitrary ondition transformation. Sine the ondition of a transformation

may ontain user-de�ned funtions that may aess an arbitrary data struture, a mehanism

is provided for feedbak. This feedbak information may be targetted towards spei� parts

of the program, like a partiular loop.

Contents

1 Introdution 2

2 Transfromation De�nition Language 5

2.1 The restruturing ompiler MT1 . 5

2.2 The Transformation De�nition Language . 7

2.2.1 Struture of the TDL . 7

2.2.2 Some Samples Transformations . 14

2.2.3 User de�ned funtions . 16

2.2.4 LIBTDL Funtions . 17

2.3 Inorporation of TDL in MT1 . 21

2.4 Syntax of the Transformation De�nition Languge 23

2.5 Example transformations . 26

3 Strategy Spei�ation Language 33

3.1 The original MT1 transformation engine . 33

3.2 Strategy syntax . 34

3.3 Semantis . 35

3.3.1 General de�nitions . 37

3.3.2 Sequential appliation . 38

3.3.3 Conditional appliation . 38

3.3.4 Repetitive appliation: WHILE . 39

1

3.3.5 Repetitive appliation: REPEAT . 40

3.3.6 Roll bak onstrut . 40

4 Conlusion 42

2

Chapter 1

Introdution

Optimizing and restruturing ompilers inorporate a number of program transformations that

replae program fragments by semantially equivalent fragments [Wol91, Wol96, ZC90℄. The

aim is to obtain more eÆient ode for a given target arhiteture. To this end, a olletion

of suitable transformations and onditions under whih to apply them needs to be de�ned.

This olletion is dependent upon harateristis of the target arhiteture. Furthermore, the

order in whih to apply them needs to be onsidered. This last problem is ommonly known

as the phase ordering problem.

Traditionally, ompilers approah this problem rather statially: the tranformations and their

appliation order are hard oded. This renders these systems rather inexible. New trans-

formations need to be hard oded on the internal data struture of the ompiler. This is a

diÆult and error-prone proess. Likewise, the ompiler needs to be adapted to implement

di�erent appliation strategies. However, it is not at all obvious what the best strategy for a

given arhiteture and appliation domain is. Therefore, experimentation is required to obtain

the optimal strategy.

Within the MT1 ompilation system [Bik92, BW93, Bri93℄ these problems are appoahed in

the following way. The system provides a Transformation De�nition Language and a Strat-

egy Spei�ation Language. Transformations and strategies spei�ed in these languages an

be dynamially loaded into the ompiler and exeuted. This yields a very exible system

that allows the user to easily add new transformations and experiment with their appliation

strategy. In this report the Transformation De�nition Language (TDL) is desribed.

The TDL is based on pattern mathing. The user an speify an input pattern, a transformed

output pattern and a ondition an be legally and/or bene�ially applied. The patterns may

onsists of sequenes of DO loops, IF statements, assignments et. They may also ontain

expression and statement variables. When suh sequenes are mathed against the ode under

3

onsideration, these variables are bound to atual expressions and ode fragments, respe-

tively. The expression and statement variables an be used in turn in the spei�ation of the

output pattern and the ondition. This mehanism allows one to speify a large number of

transformations, like loop interhange, loop distribution or loop fusion. However, it is not

powerful enough to express other important transformations, like loop unrolling. For loop

unrolling, the loop body needs to be dupliated, and eah ourrene of the loop index I needs

to be replaed by I + 1 in the seond opy of the loop body. Therefore, the TDL also allows

for user de�ned funtions in the output pattern. Suh a funtion may implement for instane

the replaement of one expression by another in a sequene of statements. In the TDL, user

de�ned funtions are the interfae to the internal data strutures of the ompiler. In this

way, any algorithm for transforming the ode an be implemented and made aessible to

the level of the TDL. Likewise, all kinds of tests on the struture and properties of the ode

an be implemented. For pratial purposes, libraries with user de�ned funtion that perform

ertain elementary funtions an be reated and used in the formulation of more advaned

transformations and onditions.

However, being able to speify transformations is only one part of the general problem of

obtaining optimal ode by means of program transformations. The order in whih these

transformations have to be applied needs onsideration also [Wol96℄. In the initial imple-

mentation of the TDL this order is �xed. However, in order to be able to experiment with

di�erent appliation orders for the transformations, a Strategy Spei�ation Language (SSL)

has been implemented. This language ontains sequential omposition of transformations, a

hoie onstrut and two repetitive onstruts. Like the de�nition of transformations using

the TDL, a �le ontaining a strategy written in the SSL an be dynamially loaded by MT1

and the sequene of transformations spei�ed in that �le will be exeuted. This yields a very

exible system and users are free to hange the strategy at any moment.

There are some other projets whih separate the implementation of the optimizing strategy

from the implementation of the rest of the ompiler. Sage++ o�ers the possibility of speifying

a strategy in the C++ language. Sage++ ontains a parser that onverts the soure program

into its intermediate format. Sage++ o�ers a library of routines to walk through the syntax

tree, investigate properties of the soure ode, and apply restruturing transformations onto

the soure ode. These restruturing transformations need to be de�ned by the user using

the primitives o�ered by the Sage++ library. Although this approah allows a high degree

of exibility, writing strategies takes plae at a fairly low level. Moreover, the user needs to

hard ode the order in whih the transformations are applied. If he wants to hange this order

then part of ompilation system needs to be modi�ed and reompiled. This is in ontrast to

the present approah that o�ers separate languages to speify transformations and strategies.

These spei�ations are dynamially loaded and exeuted whih means that the system deals

with hanges in the spei�ations very exibly.

4

This report is organized as follows. In the seond hapter, the TDL on soure language level

is disussed. In setion 2.1 a brief overview of the MT1 ompilation system is given. In se-

tion 2.2 the syntax and semantis of the Transformation De�nition Language is desribed. In

setion 2.3 it is desribed how the TDL and MT1 interfae. Finally, in setion 2.4 the syntax of

the TDL is formally spei�ed in BNF notation. In the third hapter, the Strategy Spei�ation

Language is disussed. Finally, in the fourth hapter some onlusions are presented.

5

Chapter 2

Transfromation De�nition Language

2.1 The restruturing ompiler MT1

MT1 is a Fortran restruturing soure-to-soure ompiler, initially developed as an aid in

vetorizing and/or parallelizing sequential programs [Bik92, BW93, Bri93, vDdVW

+

95℄. The

ore of MT1 onsists of a parser that onstruts the internal program representation. To

this ore several modules are hooked that operate on this internal representation. MT1 has a

ommand-driven interfae. After it has been started it shows a prompt after whih ommands,

suh as loading a Fortran program or transformation �le, an be given. Loading a program

exeutes the following phases in MT1.

� Lexial sanning, syntax analysis, semantis heking and onstrution of internal data

struture;

� Interproedural analysis and optimization;

� Goto elimination;

� Data dependene analysis.

MT1 supports seperate ompilation. If a Fortran program onsists of several soure �les, eah

of these �les an be proessed independently. However, loading all soure �les at one will

give better results, due to MT1's interproedural analysis.

MT1 saves several data strutures as human readable text in �les, all starting with the pre�x

'program.' in the urrent diretory. These �les an be shown during the exeution of MT1,

and will be left behind after exiting MT1. Table 2.1 shows the generated �les, together with

the ommand by whih the �le an be shown during exeution.

6

File Command Data struture

program.f Program after parsing

program.txt showprg Program after optimization and appliation

of transformations

program.sym symtb Symbol table

program.dep showdep Data dependene graph

program.g showg Call graph

program.fg showfg Interproedural ontrol ow graph

trafo.txt showtrf Transformation de�nitions

trafo.sym Symbol table of transformation de�nitions

Table 2.1: MT1's internal data strutures

MT1 supports full Fortran. In addition, several extensions ommonly supported by many

other Fortran ompilers are supported.

From the Military Standard De�nition (MIL-STD-1753) MT1 implements the following fea-

tures:

� Blok DO loops

� DO WHILE statements.

� INCLUDE statements.

� IMPLICIT NONE statement.

� The bit manipulation intrinsis IAND, IBSET, NOT, IBCLR, IOR, ISHFT, IEOR, ISHFTC,

IBITS and BTEST.

Other implemented extensions are:

� The use of binary, otal, and hexadimal onstants in any plae where integer onstants

are allowed

1

. Binary onstant may be written as B

0

b

1

: : : b

0

n

or

0

b

1

: : : b

0

n

B, otal onstants

as O

0

o

1

: : : o

0

n

or

0

o

1

: : : o

0

n

O and hexadeimal onstants as Z

0

x

1

: : : x

0

n

or

0

x

1

: : : x

0

n

Z where

b

i

is a binary digit, o

i

an otal digit and x

i

a hexadeimal digit.

� The use of undersores (' ') and dollar-signs ('$') in symboli names.

� Lower ase letters as part of the FORTRAN harater set.

1

MIL-STD-1753 also de�nes otal and hexadeimal onstants. However, they are only allowed in DATA

statements.

7

� Symboli names longer than six haraters.

� Byte length in type statements. For example, INTEGER*4 spei�es an integer of four

bytes. At the moment, byte lengths may only be the default type length, e.g. IN-

TEGER*4 is allowed but INTEGER*2 is not. MT1 ompiles types with byte length

automatially to the appropriate type, e.g. REAL*8 is onverted into DOUBLE COMPLEX

This feature has only been added for ompatibility reasons.

� Double omplex data type (DOUBLE COMPLEX)

� The intrinsis DCMPLX, ZABS, DIMAG, DCONJG, ZSQRT, ZEXP, ZLOG, ZSIN, ZCOS whih are

equivalent with the C-pre�xed intrinsis but use double omplex types.

2.2 The Transformation De�nition Language

The Transformation De�nition Language (TDL) enables the user to de�ne its own transfor-

mations to be applied by the ompiler. The language has been kept as simple as possible but

is powerful enough to de�ne a host program transformations and their onditions. For more

advaned transformations, whih annot be expressed in the TDL diretly, an interfae to user

de�ned funtions written in C is provided. To make live more easy, MT1 omes with a shared

library, libtdl, whih ontains a set of ommonly needed user-de�ned funtions.

Setion 2.2.1 desribes the TDL in detail. Setion 2.2.2 explains some sample transformations

to illustrate the features of the TDL. Setion 2.2.3 desribes the user de�ned funtions in more

detail. Finally, Setion 2.2.4 desribes all the funtions in the shared library libtdl.

2.2.1 Struture of the TDL

The transformation �le onsists of several import and transform statements. The import

statement desribes the interfae to user de�ned funtions (omparable to funtion prototypes

in C), while the transform statement desribes an atual transformation. Appendix 2.4

summarizes the syntax rules of the TDL.

Comments

Any text after the haraters '%' or '#' up to a new line is treated as a omment. However,

the use of '#' is disouraged, beause it gives onits with the C preproessor /lib/pp.

8

Reserved Keywords

A reserved keyword is a string of haraters whih have speial signi�ane to the ompiler

when used within the transformation �le (exept when they our within a omment). The

following keywords are reserved:

B dobody merge

E follow nil

S head not

and if tail

assign ifbody transform

ondition into import

dep isnil from

do issub true

doall list

In partiular, reserved keywords may not be used as identi�ers within a transform or an

import statement. The ase of the keywords is signi�ant, i.e. all reserved keywords are in

lowerase, exept the B, E and S keywords.

Identi�ers

An identi�er is a string of haraters used to refer to a user de�ned funtion. An identi�er

an ontain any ombination of lowerase or upperase haraters, digits or the undersore

harater (' '). However, it must start with zero or more undersores, followed by at least one

letter. An identi�er may not be a reserved keyword (see Setion 2.2.1). The ase of identi�ers

is signi�ant.

The transform Statement

A transformation is desribed with the transform statement. The statement has the following

form:

tranform

pattern1

into

pattern2

ondition

ondition

;

9

where both pattern1 and pattern2 must be statement lists.

Whenever pattern1 (whih will be referred to as the left-hand-side pattern) mathes a fragment

in the program, and ondition holds, the fragment in the program will be replaed with pattern2

(the input pattern) if this transformation is applied.

Statement List Patterns A statement list pattern may be one of the following patterns:

� a statement list variable (see Setion 2.2.1);

� list(statement, statement-list)

where statement is the head of the list, a statement pattern (see Setion 2.2.1) and

statement-list the tail of the list, a statement list pattern;

� follow(stmt-var, statement-list),

a built-in funtion whih mathes a list of statements ending with statement-list while

the start of the list is bound to the statement variable stmt-var. The follow funtion

may be used only in the left-hand-side pattern of a transformation. The main purpose of

this funtion is to split up a statement list in an arbitrary fashion. Conseutive mathes

of follow split up the statement list di�erently, e.g. given program fragment

A(I) = B(I)

C(I) = D(I)

E(I) = F(I)

and the statement list pattern follow(!s1, !s2) (here !s1 and !s2 are statement list

patterns, see Setion 2.2.1). The �rst math of follow will bind the �rst assignment to

!s1 as a statement list and the seond and third assignment to !s2. On a seond math,

!s1 will be bound to the �rst and the seond assignment and !s2 to the third. Finally,

on a third math, !s1 will be bound to all three statements and !s2 will be bound to

nil.

� merge(statement-list-1, statement-list-2)

a built-in funtion whih onatenates the two statement list patterns statement-list-1

and statement-list-2. The merge funtion may be used only in the output pattern of a

transformation;

� follow(statement variable, statement list)

a built-in funtion that �rst binds the statement variable to a program fragment of

minimal length suh that statement list also an be bound to the next fragment, and

if the transformation is not aepted binds the variable to a fragment of greater length

and so on untill either the transformation is aepted or no fragement an be found suh

10

that the variable and the list both an be mathed. The follow funtion may be used

only in the output pattern of a transformation;

� a user-de�ned funtion

whih must have been de�ned in an import statement (see Setion 2.2.1) before the

transformation in whih the funtion is used. The return value of the funtion must be

of type statement list (S, see setion 2.2.3). User-de�ned funtion are not allowed in the

left-hand-side of a transformation.

� nil

the empty list.

Statement Patterns A statement pattern may be one of the following patterns:

� assign(expr-1, expr-2)

whih desribes an assigment statement with expr-1, an expression pattern, as the left

hand side of the assignment and expr-2, also an expression pattern, as the right hand

side of the assignment;

� if(expr, statement-list)

whih desribes either a logial or a general IF statement, with expr, an expression

pattern, as the ondition of the IF statement and statement-list as the body of the IF

statement;

� do(expr-1, expr-2, expr-3, expr-4, statement-list)

whih desribes a DO loop. expr-1, expr-2, expr-3 and expr-4 are expression patterns,

where expr-1 desribes the index variable, expr-2 the lowerbound, expr-3 the upperbound

and expr-3 the stride of the DO loop;

� doall(expr-1, expr-2, expr-3, expr-4, statement-list)

whih desribes a DOALL loop and is exatly the same as the do statement pattern, exept

that it mathes a DOALL keyword in ase the pattern ours in the left hand side of a

transformation statement or generates a DOALL keyword in ase the pattern ours in

the output pattern of a transformation statement

2

.

See Setion 2.2.1 for a desription of expression patterns.

2

Note that DOALL loops are not aepted as an extension of standand FORTRAN 77 on input. However,

doall patterns are provided to turn parallel DO loops into DOALL loops on output. So, urrently MT1 is not

always able to read in its own output again.

11

Expression Patterns A expression pattern may be one of the following patterns:

� an expression variable (see Setion 2.2.1);

� a FORTRAN 77 integer, real or logial onstant;

� expr-1 bin-op expr-2

where expr-1 and expr-2 are expression patterns and operator is one of the FORTRAN 77

binary expression operators '*', '+', '-', '/', '**', .EQ., .NE., .GE., .GT., .LE., .LT.,

.EQV., .NEQV., .AND. or .OR.;

� un-op expr

where expr is an expression pattern and un-op is one of the FORTRAN 77 unary ex-

pression operators '-' or .NOT.;

� (expr)

� vetorize(expr-var-1, expr-var-2, expr-1 : expr-2 : expr-3)

a built-in funtion to generate array-setions. This expression pattern may only be used

in the output pattern of a transformation statement;

� a user-de�ned funtion

whih must have been de�ned in an import statement (see Setion 2.2.1) before the

transformation in whih the funtion is used. The return value of the funtion must be

of type expression (E, see Setion 2.2.3). User-de�ned funtion are not allowed in the

left-hand-side of a transformation.

Variables Variables may be used to denote an arbitrary expression or statement list within

a statement pattern. Expression variables start with ' !e' followed by a number, e.g. !e1 or

!e10. Statement list variables start with ' !s' followed by a number, e.g. !s2 or !s10.

If an expression or an statement list variable ours in the output pattern of a transformation

statement, it must our also in the left hand side of that statement, otherwise it will be

unbounded during the appliation phase. A statement list variable may be used only one

in the left hand side pattern. Expression variable may be used several times in a left hand

side pattern to indiate that the expressions bound to di�erent ourenes of the expression

variable must be syntatially the same, e.g. the statement pattern

assign(!e1, !e1)

mathes the FORTRAN 77 statement

12

A = A

but not

A = B

Conditions A ondition in the ondition lause of a transformation statement may be one

of the following boolean expressions:

� true

the boolean true value. Note that there is no onstant false value. This value an be

represented by not true;

� dep kind [diretion ℄ (from-stmt-list, to-stmt-list) [> expr-var ℄

returns true if there exist a dependene of kind kind with diretion diretion from any

statement in from-stmt-list to any statement in to-stmt-list. The optional [> expr-var

℄ may be used to denote that the dependene must hold on a variable whih ours in

the expression bound to expr-var. The kind of dependene may be one of flow, anti,

input, output or '�' (any dependene exept input). The diretion vetor diretion is

optional and may be used to denote a diretion whih should hold for the dependene.

The elements of the vetor maybe '<', '>' and '*' (meaning either '<' or '>'). The length

of the vetor should orrespond to the ommon number of DO (WHILE) statements

surrounding both from-stmt-list and to-stmt-list. The statement lists from-stmt-list and

to-stmt-list must be referenes to the mathed pattern.

� isnil(statement-variable)

a built-in funtion whih returns true, if statement-variable is bound to the empty state-

ment list (the statement list pattern nil), or false otherwise.

� issub(expr-var-1, expr-var-2)

a built-in funtion whih returns true, if the expression bound to expr-var-1 ours as

a subsript expression in the expression bound to expr-var-2, or false otherwise. Note

that the issub always returns false if the expr-var-1 ours only within an expression

whih is either an (intrinsi) funtion all or an implied DO loop;

� a user-de�ned-funtion

whih must have been de�ned in an import statement (see Setion 2.2.1). Within a

ondition, a funtion requiring a statement list as argument (of type S) may be passed

a referene to the mathed pattern as well as a regular statement list. The return value

of the funtion must be of type boolean (B, see Setion 2.2.3);

13

� not ondition

returns true if ondition is false, otherwise true;

� ondition-1 and ondition-2

returns true if both ondition-1 and ondition-2 are true, otherwise false.

The not operator has higher preedene than the and operator.

Referening the Mathed Pattern Construts from-stmt-list and to-stmt-list onsist of

referenes to statement lists in the left-hand-side pattern. Eah referene starts with the whole

mathing program fragment, indiated by a `$', and uses the onstruts `.next', `.dobody',

and `.ifbody' to refer to the next statement list, DO-loop body, or IF-statement, respetively.

The following example illustrates how referenes in a dep onstrut an be used to speify

spei� statement lists in a program fragment that mathes the following pattern:

list(do(!e1, !e2, !e3, !e4,

list(if(!e5, !s1), !s2)), !s3)

For the fragment below, both variable !s3 and $.next are bound to the `rest of program'.

Sine a body onsists of a single statement list, both $.body.ifbody and !s1 are bound to

the `...' statements inside the IF-body:

$! DO I = 1, 100

$.dobody ! IF (L2) THEN

$.dobody.ifbody ! ... !s1

ENDIF

$.dobody.next ! ... !s2

ENDDO

$.next ! ... !s3

Construt `.head' an be used at the end of a referene to indiated that only the �rst

statement of the statement list indiated by referene that preedes this onstrut must be

onsidered. Note that if this single statement is a DO-loop or an IF statement, the statements

inside the body are also onsidered (sine they belong to that single statement). So, in the

given example, $.head spei�es the DO-loop with its body (onsisting of the IF statement

with its body and all statements in the list bound to !s2), while $ spei�es this DO-loop with

all statements in its body and the following statement list (bound to !s3 and spei�ed with

$.next).

14

The �rst struture assoiated with a dep onstrution spei�es the statement list from whih

the soure statements must be taken, while the seond one spei�es the list from whih the

sink statements must be taken. Note that the use of referenes (rather than using, for instane,

statement variables) enables the programmer to speify arbitrary statements and statement

lists within the mathing fragment. The ompiler veri�es, however, whether the referenes

math the spei�ation of the left-hand side pattern (so that $.next.dobody, for example,

annot be used, even though !s3 may be bound to a DO-loop for a partiular mathing

fragment).

The import Statement

Before user-de�ned funtions are used within a transformation statement, they have to be

delared in an import statement. The statement has the following form:

import

user-de�ned-funtion-1 : argument-types -> result-type

� � �

user-de�ned-funtion-n : argument-types -> result-type

from

shared-library, . . .

;

Eah delared funtion is identi�ed by one of the identi�ers user-de�ned-funtion-1 to user-

de�ned-funtion-n. A funtion takes arguments as spei�ed by argument-types, whih is a list

of types, separated by white spae. An argument type may be either S, a statement list or E,

an expression. The type of the funtion result is spei�ed by result-type, whih may be either

S, a statement list, E, an expression or B, a boolean value.

In the from lause of the import statement, a omma separated list of shared libraries must be

spei�ed in whih the delared funtion are searhed for. The library names, whih must have

an extension '.sl' or '.so' and may be preeded by a path, must be delimited by either double

quotes ('"') or angle brakets ('<' and '>'). If the library name is delimited by double quotes,

the library is searhed for in the loation as spei�ed. Otherwise the environment variable

TRAFOPATH is used to determine where to searh for the library by pre�xing the library name

with eah path de�ned by TRAFOPATH.

2.2.2 Some Samples Transformations

In this setion, some examples of transformations will be explained, to illustrate the features

of the TDL.

15

Loop Vetorization

For vetorization, the built-in funtion vetorize is used.

transform

list(do(!e1, !e2, !e3, !e4,

list(assign(!e5, !e6), nil)), !s1)

into

list(assign(vetorize(!e5, !e1, !e2:!e3:!e4),

vetorize(!e6, !e1, !e2:!e3:!e4)), !s1)

ondition

not dep flow < ($.dobody, $.dobody)

;

Loop Distribution

Loop distribution uses the follow onstrut.

transform

list(do(!e1, !e2, !e3, !e4, follow(!s1, !s2)), !s3)

into

list(do(!e1, !e2, !e3, !e4, !s1),

list(do(!e1, !e2, !e3, !e4, !s2), !s3))

ondition

not isnil (!s2) and

not dep � < ($.dobody.follow, $.dobody)

;

Sine a loop an be distributed between any two statements in the loop body, the follow

onstrut provides a means to dynamially guide the user to searh for this point. Firts !s1

is bound to the �rst statement in the loop body and !s2 to the rest of the loop body. The

loop is distributed at this point and the user is asked to aept this distribution or not. If not,

!s1 is bound to the �rst two statements in the body and !s2 to the others, and the user is

prompted again. And so on, until !s1 is bound to the entire loop body and !s2 is nil. Then

the ondition fails and the transformation is not applied anymore.

Loop Unrolling

This transformation uses two user de�ned funtions that ome with the standard library and

that are desribed in setion 2.2.4. Also, the built-in funtion merge is used. First, the

16

funtions are delared by an import statement.

import

tdl_isint : E -> B

tdl_replae : S E E -> S

from

<libtdl.sl>

;

transform

list(do(!e1, !e2, !e3, 1, !s1), !s2)

into

list(do(!e1, !e2, (!e2 - 1) + ((!e3 - !e2 + 1) / 2) * 2, 2,

merge(!s1, tdl_replae(!s1, !e1, !e1 + 1))),

list(if(((!e3 - !e2 + 1) / 2) * 2 .neq. (!e3 - !e2 + 1),

tdl_replae(!s1, !e1, !e3)), !s2))

ondition

tdl_isint(!e2) and tdl_isint(!e3)

;

2.2.3 User de�ned funtions

Beause the expressiveness of the transformation language is rather limited, the possibility to

all user de�ned funtions, written in C, is implemented. These funtions should be stored

in one or more shared libraries, that an be dynamially loaded during run-time, i.e. during

parsing of the transformation �le. Type de�nitions of user de�ned funtions and libraries to be

loaded must be spei�ed by the import lause in the transformation �le. User de�ned funtions

may be alled from the output pattern and the ondition of a transformation. Usually, boolean

funtions are used in onditions while funtions returning an expression or a statement are

used within the output pattern of a transformation (although a all to suh a funtion may

also our as an argument to a boolean funtion in a ondition).

From within a user de�ned C funtion, it is possible to make alls to many funtions used

internally by MT1 to aess and maintain the symbol table and the abstrat syntax tree

representing the Fortran input soure.

Parameter Passing

An argument to a user de�ned funtion must be either an expression (type 'E') or a statement

(type 'S'). These arguments are pointers to opies of nodes in MT1's abstrat syntax tree.

17

Arguments are not passed diretly to the user de�ned funtion. That means that the C

de�nition of the funtion should have an empty argument list (i.e. void in ANSI C). Instead,

expression arguments are passed through an expression stak and statement arguments though

a statement stak. The arguments are moved in in order of appearane on these stak, i.e.

the �rst argument is the lowest on one of the staks and the last argument is on top on one

of the staks. Note that in general the arguments are opied before they are passed to the

funtion. Therefore, the user de�ned funtion is responsible for leaning up the arguments if

they are not used as a funtion result.

The exeption is that a funtion may be passed a statement list whih is not a opy but a

diret pointer into the abstrat syntax tree of the input soure (in this ase the argument in

the transformation de�nition starts with a '$'). In this ase the argument must not be deleted

by the funtion nor may it be returned as a funtion result.

Return Values

User de�ned funtion must return either an expression, a statement or a boolean value. If

the funtion returns a boolean value, the type of the user de�ned funtion should be int and

the funtion should return zero in ase the return value is false or any nonzero value in ase

the return value is true. As with the arguments of the user de�ned funtion, expressions and

statements are returned on top of either the expression or statement stak. The C de�nition

of the funtion should therefore be of type void.

2.2.4 LIBTDL Funtions

Beause writing user-de�ned funtions is not an easy task, MT1 omes with a library, libtdl,

whih provides the transformation writer with a set of ommonly needed user-de�ned fun-

tions. This setion desribes eah funtion in the library.

� tdl isint

tdl isint : E ! B

returns true if expression E is of type integer, otherwise false.

� tdl isreal

tdl isreal : E ! B

returns true if expression E is of type real, otherwise false.

18

� tdl isdreal

tdl isdreal : E ! B

returns true if expression E is of type double real, otherwise false.

� tdl isomplex

tdl isomplex : E ! B

returns true if expression E is of type omplex, otherwise false.

� tdl isdomplex

tdl isdomplex : E ! B

returns true if expression E is of type double omplex, otherwise false.

� tdl islogial

tdl islogial : E ! B

returns true if expression E is of type logial, otherwise false.

� tdl ishar

tdl ishar : E ! B

returns true if expression E is of type harater, otherwise false.

� tdl iseq

tdl iseq : E E ! B

returns true if both expression have te same value, otherwise false. Both arguments

must be onstant expressions, otherwise an error messages is given and false is returned.

� tdl islt

tdl islt : E E ! B

returns true if the value of the �rst expression is lower than the value of the seond

19

expression, otherwise false. Both arguments must be onstant expressions, otherwise

an error messages is given and false is returned.

� tdl isleq

tdl isleq : E E ! B

returns true if the value of the �rst expression is lower than or equal to the value of

the seond expression, otherwise false. Both arguments must be onstant expressions,

otherwise an error messages is given and false is returned.

� tdl isgt

tdl isgt : E E ! B

returns true if the value of the �rst expression is higher than the value of the seond

expression, otherwise false. Both arguments must be onstant expressions, otherwise

an error messages is given and false is returned.

� tdl isgeq

tdl isgeq : E E ! B

returns true if the value of the �rst expression is higher than or equal to the value

of the seond expression, otherwise false. Both arguments must be onstant expres-

sions, otherwise an error messages is given and false is returned.

� tdl isneq

tdl isneq : E E ! B

returns true if the values of both expressions are not the same, otherwise false. Both

arguments must be onstant expressions, otherwise an error messages is given and false

is returned.

� tdl isdummy

tdl isdummy : E ! B

returns true if variable expression E is a a dummy argument variable, otherwise false.

The argument must be a variable expression, otherwise an error message is given and

false is returned.

20

� tdl isommon

tdl isommon : E ! B

returns true if expression E is a member of a COMMON blok, otherwise false. The

argument must be a variable expression, otherwise an error message is given and false

is returned.

� tdl isonst

tdl isonst : E ! B

returns true if expression E is a onstant expression, otherwise false.

� tdl issalar

tdl issalar : E ! B

returns true if expression E is a salar variable, otherwise false. The argument must

be a variable expression, otherwise an error message is given and false is returned.

� tdl replae

tdl replae : S E E ! S

replae eah ourene of the seond argument in the �rst argument with the third

argument.

� tdl intvar

tdl intvar : E ! E

reate a loal integer variable IV x where x is the onstant integer argument. If the

argument is not a onstant integer argument, an error is given. If the variable already

exist, an error message is given also.

� tdl realvar

tdl realvar : E ! E

reate a loal real variable IV x where x is the onstant integer argument. If the argu-

21

ment is not a onstant integer argument, an error is given. If the variable already exist,

an error message is given also.

� tdl mod

tdl mod : E E ! E

generates a all to intrinsi funtion MOD with both arguments.

� tdl min

tdl min : E E ! E

generates a all to intrinsi funtion MIN with both arguments.

� tdl max

tdl max : E E ! E

generates a all to intrinsi funtion MAX with both arguments.

2.3 Inorporation of TDL in MT1

In this setion we briey desirbe how the TDL an be invoked from within MT1. First,

a �le ontaining a olletion of IMPORT and TRANSFORM statements is read in. Then these

transformations an be applied interatively. MT1 omes with a default strategy for applying

transformations. This default strategy is desribed below. As mentioned in the Introdution,

a Strategy Spei�ation Language has been implemented in the MT1 system. This language

is desribed in the Oeans Deliverable D1.2a.

The ommands to be given to MT1 for applying transformations are the following.

Readtrf The readtrf ommand reads in a transformation �le. The name of the tranformation

�le must be supplied as an argument. If the environment variable 'CPP' is set to a �lter,

readtrf feeds the transformation �le to the �lter and then parses the output of the �lter.

Start The start ommand starts the appliation of transformations to the Fortran program.

If a fragment of the program mathes the lefthand-side of a transformation and the

ondition of the transformation evaluates to true, the mathed and the new fragment,

desribed by the righthand-side of the transformation, are displayed and you are asked

for onformation to apply the transformation by a prompt

22

** ACCEPT (y/n/q/e/s) ===>

Five answers (either in upperase or in lowerase) are allowed:

� 'y' - yes, apply this transformation and proeed searhing with this transformation;

� 'n' - no, do not apply this transformation but proeed searhing with this transfor-

mation;

� 'q' - quit, do not apply this transformation but proeed searhing with the next

transformation starting at the beginning of the program unit;

� 'e' - exit, do not apply this transformation but return to the ommand prompt;

� 's' - skip program unit, do not apply this transformation but restart the transfor-

mation phase on the next program unit.

The answer should be terminated by a arriage-return. If only a arriage-return is

entered, the default answer is the �rst one listed ('y').

The default strategy for applying transformations an be desribed by the following

steps:

1. Selet the �rst program unit textually ouring in the Fortran input.

2. Selet the �rst transformation textually ouring in the transformation �le.

3. Searh through the program unit for a fragment mathing the lefthand-side of the

transformation.

4. If there's no suh fragment goto step 5, otherwise ask for onformation. If the

answer is

� 'y' apply the transformation and proeed with step 3;

� 'q' proeed goto step 5;

� 'e' return to the ommand prompt;

� 's' goto step 6.

� otherwise, proeed with step 3;

5. Selet the next transformation textually ouring in the transformation �le. If there

are no more transformations, proeed with the next step, otherwise goto step 3.

6. Selet the next program unit textually ouring in the Fortran input. If there are

no more program units, return to the ommand prompt,

Auto The auto ommand applies all mathing transformations without asking for onfor-

mation to the user. The same strategy is used for the auto ommand as the strategy

for the start ommand. In ase of the default strategy, step 4 in this strategy should

be replaed by

23

4. If there's no suh fragment proeed with step 5, otherwise apply the transformation

and goto step 3.

Query If determination of the exat solutions is not feasible or possible, dependene analysis

must result in onservative estimates of dependenes. This is done to prevent applia-

tion of transformations that hange the semantis of the program, even if this auses

some valid appliations to be overlooked. Therefore, the ommand query has been

implemented in MT1 to toggle between two modes in whih either all dependenes are

assumed to hold or a mode in whih dependenes an be ignored. In the latter mode, the

ompiler prompts all dependenes ausing a `dep' ondition to hold on a math. The user

an instrut the ompiler to ignore ertain dependenes, if it is known that these depen-

denes do not atually hold, whih might disable or enable further appliation. In the

following fragment, for example, the ourrene of omplex subsript `IND(I)' results in

the reording of the loop-arried dependene S

1

Æ

o

<

S

1

, whih prevents onurrentization.

However, if array IND ontains a permutation of the index values, onurrentization is

valid. After reply `y', the transformation is enabled:

** MATCH ON

L1: DO I = 1, 100, 1

S2: A(IND(I)) = B(I)

ENDDO

.....

** Dependene S2 d-outp < S2 A: IGNORE (n/y/q)=> y

** TRANSFORM INTO

L5: DOALL I = 1, 100, 1

S6: A(IND(I)) = B(I)

ENDDOALL

.....

** ACCEPT (y/n/q/e) ===>

2.4 Syntax of the Transformation De�nition Languge

This setion shows the syntax rules for the transformation language. Lowerase words are

non-terminal tokens, while upperase words and single quoted strings are terminal tokens.

The upperase tokens may be instantiated as follows:

� ID an identi�er onsisting of lower and upperase letters, digits and undersores. The

identi�er must start with zero or more undersores followed by a letter;

24

� SLID the name of a shared library �le (optionally preeded by a path). The name of the

�le must either have the extension '.sl' or '.so'.

� REALCONST any oating point number;

� INTCONST any integer value;

� BOOLCONST either '.true.' or '.false.';

� STMTVAR a string ' !s' followed by an integer;

� EXPVAR a string ' !e' followed by an integer.

The empty rule is denoted by <empty>. Here are the syntax rules in BNF-form.

definitions -> definitions definition

definition -> udf_def | trafo_def

udf_def -> 'import' dels 'from' sl_libs ';'

dels -> del | dels del

del -> ID ':' arg_list '->' type

type -> 'S' | 'B' | 'E'

arg_list -> <empty> | arg_list type

sl_libs -> sl_id | sl_libs sl_id

sl_id -> '"' SLID '"' | '<' SLID '>'

trafo_def -> 'transform' pattern 'into' xpattern 'ondition' onditions ';'

pattern -> 'list' '(' stmt ',' xpattern ')'

| STMTVAR

| 'follow' '(' STMTVAR ',' pattern ')'

| 'merge' '(' xpattern ',' xpattern ')'

| 'nil'

25

stmt -> 'do' '(' xexp ',' xexp ',' xexp ',' xexp ',' xpattern ')'

| 'doall' '(' xexp ',' xexp ',' xexp ',' xexp ',' xpattern ')'

| 'assign' '(' xexp ',' xexp ')'

| 'if' '(' xexp ',' xpattern ')'

xpattern -> pattern | fun

exp -> EXPVAR

| xexp '+' xexp

| xexp '-' xexp

| xexp '*' xexp

| xexp '/' xexp

| xexp '**' xexp

| xexp '.eq.' xexp

| xexp '.ne.' xexp

| xexp '.ge.' xexp

| xexp '.gt.' xexp

| xexp '.le.' xexp

| xexp '.lt.' xexp

| xexp '.eqv.' xexp

| xexp '.neqv.' xexp

| xexp '.and.' xexp

| xexp '.or.' xexp

| '.not.' xexp

| '(' xexp ')'

| '-' xexp

| INTCONST

| REALCONST

| BOOLCONST

| 'vetorize' '(' EXPVAR ',' EXPVAR ',' xexp ':' xexp ':' xexp ')'

xexp -> exp | fun

onditions -> ondition | ondition 'and' onditions

ondition -> 'true'

| 'dep' depkind dirve '(' s_indi ',' s_indi ')' onlause

| 'isnil' '(' STMTVAR ')'

| 'issub' '(' EXPVAR ',' EXPVAR ')'

| 'not' ondition

26

| fun

depkind -> 'flow' | 'anti' | 'output' | 'input' | '�'

onlause -> <empty> | '>' EXPVAR

dirve -> <empty> | dir dirve

dir -> '=' | '<' | '>' | '*'

s_indi -> '$' attribs

attribs -> '.' 'tail' attribs

| '.' 'dobody' attribs

| '.' 'ifbody' attribs

| '.' 'follow' attribs

| '.' 'head'

| <empty>

fun -> ID '(' at_arg_list ')'

at_arg_list -> <empty> | at_args

at_args -> at_args ',' at_arg

at_arg -> exp | pattern | fun | s_indi

2.5 Example transformations

In this setion we present the TDL formulation of all ommonly used loop level transformations

as an be found in e.g. [Pol88, Wol96, Wol91, ZC90℄. This setion serves to show the expressive

power of the TDL de�ned above.

%

% Loop ollapsing

%

transform

list(do(!e1, 1, !e3, 1,

list(do(!e5, 1, !e7, 1, !s1), nil)), !s2)

27

into

list(do(tdl_intvar(1), 1, !e3 * !e7, 1,

list(assign(!e1, ((tdl_intvar(1) - 1) / !e7) * !e7 + 1),

list(assign(!e5, tdl_mod(tdl_intvar(1) - 1, !e7) + 1),

!s1))), !s2)

ondition

tdl_isint(!e3) and

tdl_isint(!e7)

;

%

% Loop Distribution

%

transform

list(do(!e1, !e2, !e3, !e4, follow(!s1,!s2)),!s3)

into

list(do(!e1, !e2, !e3, !e4, !s1),

list(do(!e1, !e2, !e3, !e4, !s2), !s3))

ondition

not isnil (!s2) and

not dep � < ($.dobody.follow, $.dobody)

;

%

% Loop fusion

%

transform

list(do(!e1, !e2, !e3, !e4, !s1),

list(do(!e1, !e2, !e3, !e4, !s2), !s3))

into

list(do(!e1, !e2, !e3, !e4, merge(!s1,!s2)), !s3)

ondition

not dep � ($.dobody, $.tail.dobody)

;

%

% Loop interhange

%

transform

list(do(!e1, !e2, !e3, !e4,

list(do(!e5, !e6, !e7, !e8, !s1), nil)), !s2)

into

28

list(do(!e5, !e6, !e7, !e8,

list(do(!e1, !e2, !e3, !e4, !s1), nil)), !s2)

ondition

not dep � <> ($.dobody.dobody, $.dobody.dobody) and

not dep flow <= ($.dobody.dobody, $.dobody.dobody) and

not dep flow ($.head, $.dobody) > !e1

;

%

% Transformations to normalize loop with non-unit stride.

%

#inlude <tdl.i>

%

% Turn a loop with a negative stride into a loop with a stride with

% a positive stride

%

transform

list(do(!e1, !e2, !e3, !e4, !s1), !s2)

into

list(do(!e1, !e3, !e2, -!e41,

tdl_replae(!s1, !e1, !e2 + !e3 - !e1)), !s2)

ondition

tdl_isonst(!e4) and

tdl_isint(!e4) and

tdl_islt(!e4, 0)

;

%

% Turn a loop with a non-unit stride into a loop with

% with lowerbound 1 and unit stride.

%

transform

list(do(!e1, !e2, !e3, !e4, !s1), !s2)

into

list(do(!e1, 1, (!e3 - (!e2 - !e4)) / !e4, !e4), 1,

tdl_replae(!s1, !e1, !e2 - !e4 + !e4 * !e1)), !s2)

ondition

tdl_isint(!e2) and

tdl_isint(!e3) and

tdl_isint(!e4) and

tdl_isonst(!e4) and

tdl_isneq(!e4, 1)

;

29

%

% Loop peeling

%

#inlude <tdl.i>

transform

list(do(!e1, !e2, !e3, !e4, !s1),

list(do(!e1, !e5, !e3, !e4, !s2), !s3))

into

merge(tdl_replae(!s1, !e1, !e2),

list(do(!e1, !e2 + 1, !e3, !e4, !s1),

list(do(!e1, !e2 + 1, !e3, !e4, !s2), !s3)))

ondition

tdl_iseq(!e5 - !e2, 1)

;

%

% Loop reversal

%

#inlude <tdl.i>

transform

list(do(!e1, !e2, !e3, !e4, !s1), !s2)

into

list(do(!e1, !e3, !e2, -!e4, tdl_replae(!s1, !e1, !e2 + !e3 - !e1)), !s2)

ondition

tdl_isonst(!e4) and

tdl_islt(!e4, 0)

;

import

tdl_intvar: E -> E

tdl_isonst: E -> B

from

"./sr/libtdl.sl"

;

transform

list(do(!e1, !e2, !e3, !e4,

follow(!s1, list(assign(!e5, !e6*!e1), !s2))), !s3)

into

list(assign(tdl_intvar(1), !e2 * !e6),

list(do(!e1, !e2, !e3, !e4,

merge(!s1, list(assign(!e5, tdl_intvar(1)),

merge(!s2, list(assign(tdl_intvar(1), tdl_intvar(1) +

!e6),nil))))),!s3))

ondition

30

tdl_isonst(!e6)

;

%

% Unroll zero trip loops

%

#inlude <tdl.i>

transform

list(do(!e1, !e2, !e3, !e4, !s1), !s2)

into

!s2

ondition

tdl_isint(!e2) and

tdl_isint(!e3) and

tdl_isint(!e4) and

tdl_isleq(((!e3 - !e2 + !e4) / !e4), 0)

;

%

% Unroll one trip loops

%

#inlude <tdl.i>

transform

list(do(!e1, !e2, !e2, !e3, !s1), !s2)

into

merge(tdl_replae(!s1, !e1, !e2), !s2)

ondition

true

;

%

% Loop unrolling

%

#inlude <tdl.i>

transform

list(do(!e1, !e2, !e3, 1, !s1), !s2)

into

list(do(!e1, !e2, (!e2 - 1) + ((!e3 - !e2 + 1) / 2) * 2, 2,

merge(!s1, tdl_replae(!s1, !e1, !e1 + 1))),

list(if(((!e3 - !e2 + 1) / 2) * 2 .neq. (!e3 - !e2 + 1),

tdl_replae(!s1, !e1, !e3)), !s2))

ondition

tdl_isint(!e2) and

tdl_isint(!e3) and

not tdl_isonst(!e2)

31

;

transform

list(do(!e1, !e2, !e3, 1, !s1), !s2)

into

list(do(!e1, !e2, (!e2 - 1) + ((!e3 - !e2 + 1) / 2) * 2, 2,

merge(!s1, tdl_replae(!s1, !e1, !e1 + 1))),

list(if(((!e3 - !e2 + 1) / 2) * 2 .neq. (!e3 - !e2 + 1),

tdl_replae(!s1, !e1, !e3)), !s2))

ondition

tdl_isint(!e2) and

tdl_isint(!e3) and

not tdl_isonst(!e3)

;

transform

list(do(!e1, !e2, !e3, 1, !s1), !s2)

into

list(do(!e1, !e2, (!e2 - 1) + ((!e3 - !e2 + 1) / 2) * 2, 2,

merge(!s1, tdl_replae(!s1, !e1, !e1 + 1))), !s2)

ondition

tdl_isint(!e2) and

tdl_isint(!e3) and

tdl_isonst(!e2) and

tdl_isonst(!e3) and

tdl_iseq(((!e3 - !e2 + 1) / 2) * 2, (!e3 - !e2 + 1))

;

transform

list(do(!e1, !e2, !e3, 1, !s1), !s2)

into

list(do(!e1, !e2, !e3 - 1, 2,

merge(!s1, tdl_replae(!s1, !e1, !e1 + 1))),

merge(tdl_replae(!s1, !e1, !e3), !s2))

ondition

tdl_isint(!e2) and

tdl_isint(!e3) and

tdl_isonst(!e2) and

tdl_isonst(!e3) and

tdl_isneq(((!e3 - !e2 + 1) / 2) * 2, (!e3 - !e2 + 1))

;

%

% loop vetorization

%

transform

list(do(!e1, !e2, !e3, !e4,

list(assign(!e5, !e6), nil)), !s1)

32

into

list(assign(vetorize(!e5, !e1, !e2:!e3:!e4),

vetorize(!e6, !e1, !e2:!e3:!e4)), !s1)

ondition

issub(!e1, !e5) and

not dep flow < ($.dobody, $.dobody)

;

33

Chapter 3

Strategy Spei�ation Language

In this hapter we disuss the syntax and semantis of the Strategy Spei�ation Language.

We also disuss how this language is inorporated in the MT1 ompilation system. Finally,

we present a novel strategy for transforming imperfetly nested loops.

In the initial implementation of MT1, the order in whih the transformations were applied, was

spei�ed by the order in whih the transformations appeared in the transformation de�nition

�le. Eah transformation was taken in turn and applied to every statement in the urrent

Fortran unit. If one suh pass aused the Fortran ode to be hanged, another pass with the

same transformation was exeuted on the same piee of ode. Only when a ertain pass did

not hange anything, the next transformation was taken and applied in the same way.

In this setion a Strategy Spei�ation Language (SSL) is presented, that allows the spei�-

ation of the order in whih the transformations from the transformation de�nition �le are to

be applied. The language impliitly de�nes the set of statements against whih the transfor-

mations are applied. This onstrution allows the spei�ation of an optimizing strategy to

be at a muh higher abstrat level than the soure ode level as in most other ompilers.

In Setion 3.1 de transformation engine of MT1 is desribed. Next, Setion 3.2 desribes the

syntax of our prototype SSL. Setion 3.3 then desribes the way MT1 interprets the SSL using

the transformation engine.

3.1 The original MT1 transformation engine

This setion �rst desribes the transformation engine as it was originally implemented in the

MT1 system. These issues are dealt with, beause they are essential to desribe strategy

exeution. For a full disussion of the Transformation De�nition Language and the original

34

mehanism for applying transformations, see Oeans Deliverable D1.1 [BBK

+

97℄. In the

next setion the alterations to the transformation appliation engine to inlude strategies are

desribed.

Transformations in MT1 onsist of an input pattern against whih FORTRAN statements are

mathed, onditions heking various properties of the mathed ode, and an output pattern

whih is used to derive the new ode from. So the basi syntax for speifying transformations

an be given as follows.

trafo := TRANSFORM input_pattern

INTO output_pattern

CONDITION onditions;

When a FORTRAN program is read in by MT1, it is split into separate units eah ontaining

one subroutine. MT1 then applies eah transformation on eah unit separately.

The appliation of a transformation onsists of iterating over all FORTRAN statements in

the assoiated sope of the transformation, trying to math the input pattern of the transfor-

mation against a blok of statements starting with the urrent statement. The notion of the

assoiated sope of a transformation will be explained later. For now, onsider the sope of

any transformation to be the entire unit. This means that the transformations are applied to

every statement in the urrent unit. Note that the input pattern of a transformation needs to

be mathed against statements whih are within its sope. During mathing, the statement-

and expression-variables are bound to mathing fragments of FORTRAN ode.

After having mathed the input pattern, MT1 heks whether the onditions spei�ed in the

transformation hold. To do this, it uses the bindings of the variables to test the original ode

for the properties spei�ed in the ondition of the transformation.

If the onditions hold, the output pattern and the variable bindings are used to ompute

the resulting ode. After replaing the original ode with the newly omputed ode, MT1's

internal data strutures are updated to reet the new ode, after whih the exeution of the

strategy ontinues. Note that the next appliation of a transformation may thus work on the

result of a previous transformation.

3.2 Strategy syntax

In this setion we give the syntax of the Transformation De�nition Language. The semantis

of these onstruts is given in the next setion. A strategy onsists of a (possibly empty) list

of semiolon (;) separated SSL statements:

35

strategy := ssl_stats;

ssl_stats := ssl_stat ';' ssl_stats | ;

An SSL statement an be a single transformation, a onditional statement, or one of two

repetitive statements.

ssl_stat := seq_stat | if_stat | while_stat | until_stat;

seq_stat := trafo_id | roll_bak_stat;

An IF-statement onsists of a transformation that ats as a ondition, a THEN-part and an

optional ELSE-part. The transformation in the ondition an applied suessfully or not. If

it is, the transformations in the THEN-part are to be exeuted. Optionally, in the ELSE-part

a statement list an be given whih should be exeuted in ase the transformation mathed

but was not applied suessfully due to failing onditions.

ondition := trafo_id;

if_stat := IF ondition THEN ssl_stats elsepart ENDIF;

else_part := ELSE ssl_stats | {empty} ;

The two repetitive onstruts onsist of a transformation to be heked and a statement list

to be exeuted if the ondition is true or false, respetively.

while_stat := WHILE ondition ssl_stats ENDWHILE;

until_stat := UNTIL ondition ssl_stats ENDUNTIL;

The language ontains a means for applying sequenes of transformations only if they an all

be applied, by means of the roll bak stat.

roll_bak_stat := trafo_id AND trafo_id | trafo_id AND roll_bak_stat

3.3 Semantis

This setion desribes the semantis of the Strategy Spei�ation Language. We will desribe

what ations are undertaken by MT1

� when a ertain transformation did not math (either beause MT1 found no math or

beause the user hose to ignore the math),

� when the onditions were not satis�ed (or the user hose not to apply an appliable

transformation),

36

� and when a transformation is suessfully applied.

The interation with the user has undergone some modi�ations over the original system. The

system no longer heks whether the appliation of a transformation has hanged anything in

order to initiate another pass. Every transformation is applied only one to every statement.

The user has to indiate whether to aept or ignore a math and whether to really apply a

transformation.

When MT1 has found a math between the urrent transformation and a blok of FORTRAN

statements, beginning with the urrent statement, MT1 reports this fat by showing the

mathing ode.

The onditions spei�ed in the transformation are then heked. If the onditions are not

satis�ed, the user is prompted as follows:

** Condition not satisfied. Aept math (y/n)

If the user does not aept the math, MT1 will ontinue as if the math was not found.

If the user does aept the math, MT1 will onsider the result of the appliation of the

transformation to be false. The result of the appliation of a transformation is used when

deiding the ow of ontrol through the strategy. In partiular, it is used to selet the THEN-

or the ELSE-part in a onditional onstrut.

If the onditions are satis�ed, MT1 omputes and shows the new ode fragment and prompts

the user as follows:

** ACCEPT (y/n/i) ==>

If the user aepts, the mathing ode is replaed by the new ode fragment. The result of

the appliation of the transformation is onsidered to be true. In this ase, we onsider the

transformation to be applied suessfully. If the user replies 'n', the math is onsidered to

be aepted, but the onditions are onsidered not to be satis�ed. As in the ase where MT1

deided the onditions not to be satis�ed and the user aepted the math, the result of the

transformation is onsidered to be false. If the user replies 'i', the math is ignored.

When we desribe the semantis of the various onstruts in our SSL, we will indiate whih

ations are undertaken by MT1 in ase a ertain transformation did not math, in ase the

onditions were not ful�lled, and in ase the transformation was suessfully applied. As

desribed above, the user may hoose to ignore a math if MT1 found one. The user may also

hoose to indiate the onditions not to be satis�ed, even if MT1 found them to be true. MT1

will respond to these hoies in the same way it would in ase it itself did not �nd a math or

found the onditions not to be satis�ed, respetively.

37

The possibility for a user to ignore the mathing of a ertain transformation allows the user

to inuene the ow of ontrol. If a ertain transformation would math a FORTRAN loop,

while the transformation is the ondition of an IF-THEN-ELSE onstrut, mathing of this

transformation would never enter the loop, sine after having exeuted the THEN- or ELSE-

part, transformation would ontinue after the loop.

In order to desribe the semantis, Setion 3.3.1 �rst desribes some notational onventions,

and de�nes the level of transformations. There are four general onstruts in our prototype

SSL. These onstruts indiate general sequential appliation (muh like the original MT1

system), onditional appliation, and repetitive repetition, of whih there are two forms. Eah

of these four onstruts will be desribed in the next four setions.

3.3.1 General de�nitions

To desribe these semantis we will use trafo n to indiate a single transformation. To speify

a list of transformations, possibly ontaining arbitrary omplex strategy onstruts, we will

use the notation ssl stats n.

In the original MT1 system, all transformations were applied on every statement in the urrent

unit. In the present ontext where we want to exeute strategies, we need to reonsider to

sope on whih transformations at. For instane, in an IF-THEN-ELSE onstrut, we want

the transformations in the THEN-part to at on the fragment seleted by the ondition. In

order ot do this, MT1 impliitly assoiates a list of statements to eah transformation. We

will all this list of statements the assoiated sope of a transformation. The transformations

are only applied to the statements in its sope. MT1 derives the sope of a transformation

from its loation in the strategy and the ontents of the urrent unit.

In order to be able to derive the sope of a ertain transformation, we �rst need to de�ne the

level of a transformation. To do this, we will �rst de�ne the level of SSL statements. The level

of an SSL statement is essentially its nesting depth. SSL statements whih are not loated in

a body of another SSL statement are at level one. The level of an SSL statements loated in

the body of another SSL statement is one higher than the level of its ontaining onstrut.

Using the level of SSL statements we an formulate the level of the individual transformations

in these statements to be the same as the level of these statements. Hene the transformations

in the THEN-part of a onditional SSL statement have a level one higher than the ondition

of this onditional statement.

The sope of transformations at level one is the entire unit under onsideration. The sope of

transformations at higher levels an nformally be given as:

� if the transformation is loated in the THEN-part of a onditional SSL statement, its

assoiated sope is the fragment that resulted from the appliation of the ondition

38

transformation;

� if the transformation is loated in the ELSE-part of a onditional SSL statement, its

assoiated sope is the fragment that mathed the ondition transformation but did not

satisfy the onditions of this transformation;

� if the transformation is loated in the body of a WHILE-statement, its assoiated sope

is the fragment that resulted form the appliation of the ondition transformation in the

WHILE-statement;

� if the transformation is loated in the doby of a REPEAT-statement, its assoiated

sope is the fragment that mathed the ondition transformation but did not satisfy its

onditions.

The preise assoiation of sopes to transformations in a strategy is desribed below in the

semantis of the various onstruts.

3.3.2 Sequential appliation

The simplest strategy onsist of a list of transformations to be applied one after the other:

trafo_1;

ssl_stats_1;

MT1 will �rst try to apply trafo 1 on all statements in its assoiated sope. If the input

pattern of this transformation does not math a ertain statement, the next statement is

onsidered. If a ertain statement does math, but the onditions do not hold, the appliation

of transformations ontinues with the next statement as well. If the input pattern mathed and

the onditions hold, the ode is replaed. Transformation then ontinues with the statement

that follows the last statement in the math. When appliation of trafo 1 reahes the last

statement of its assoiated sope, appliation of the sequential onstrut ontinues with the

�rst statement in ssl stats 1. The assoiated sope of transformations in ssl stats 1 at the

same level as trafo 1 all have the same assoiated sope as trafo 1. Hene appliation of the

transformations in ssl stats 1 starts with the �rst statement in this sope.

3.3.3 Conditional appliation

With the IF-THEN-ELSE-ENDIF onstrut it is possible to apply ertain transformations

onditionally. Whether the transformations in the THEN- or ELSE-part are to be applied is

dependent on the result of the transformation in the ondition:

39

IF trafo_1 THEN

ssl_stats_1;

ELSE

ssl_stats_2;

ENDIF;

If a ertain statement does not math the input pattern of trafo 1 the next statement is

tried. If a statement does math the input pattern, the onditions are heked. Depending on

whether the onditions do or do not hold ssl stats 1 or ssl stats 2 is applied, respetively.

The statements in ssl stats 1 and ssl stats 2 are one level higher that trafo 1. The assoiated

sope of statements at a higher level is always re�ned. The assoiated sope of the transforma-

tions in ssl stats 1 onsists of all statements inserted by trafo 1. That is, the transformed ode

fragment resulting from the appliation of trafo 1. The assoiated sope of the transformations

in ssl stats 2 onsists of all statements in the math of trafo 1.

After having applied one of the statement lists, appliation ontinues on the statement follow-

ing the last statement in the math of the previous appliation of trafo 1.

3.3.4 Repetitive appliation: WHILE

It is possible to apply a list of transformations repeatedly while a ertain transformation an

be applied suessfully.

WHILE trafo_1

ssl_stats_1;

ENDWHILE;

If a ertain FORTRAN statement mathes the input pattern of trafo 1 and the onditions

are satis�ed, the transformations in ssl stats 1 are applied. The assoiated sope of the trans-

formations in ssl stats 1 onsists of the transformed fragment resulting from the suessful

appliation of trafo 1.

After having applied all transformations in ssl stats 1, the WHILE onstruts starts over and

trafo 1 is applied again. Sine we want the WHILE-onstrut to repeatedly at on a single

program fragment, trafo 1 will be mathed against the same fragment as it has mathed the

�rst time. That is, its assoiated sope is re�ned to be the same as the assoiated sope of the

transformations in ssl stats 1. Beause the transformation in the ondition need not math

the �rst statement in its assoiated sope, it will searh its sope to �nd a fragment against

whih it an be mathed. Therefore, this sope may be further re�ned on eah iteration. The

end of its sope is given by the �rst statement after the �rst math of trafo 1.

40

When the onditions of trafo 1 are not satis�ed, transformation ontinues with the statement

following the last statement in the math and with trafo 1.

3.3.5 Repetitive appliation: REPEAT

It is also possible to apply ertain transformations as long as a ertain transformation annot

be applied, beause its onditions are not full�lled.

UNTIL trafo_1

ssl_stats_1;

ENDUNTIL;

The transformations in ssl stats 1 are exeuted if trafo 1 mathed, but its onditions were not

satis�ed. The assoiated sope of the transformations in ssl stats 1 onsists of all statements

in the math of trafo 1.

When all transformations in ssl stats 1 have been applied, transformation ontinues with

trafo 1. Its assoiated sope is re�ned to the assoiated sope of the transformations in

ssl stats 1. Again the assoiated sope of trafo 1 may be re�ned on eah iteration.

When the onditions in trafo 1 are satis�ed, transformation ontinues on the statement fol-

lowing the last statement in the math of trafo 1.

3.3.6 Roll bak onstrut

When writing a strategy, we may want to try out a ertain transformation, whih should

enable another transformation. If the seond transformation annot be applied, we may want

to undo the �rst transformation. suh strategy annot be expressed in our SSL. The most

intuitive way to express suh a onstrut is by grouping ertain transformations together:

trafo_1 and trafo_2;

In this onstrut, trafo 1 will be applied on a ertain fragment of FORTRAN ode. If this

transformation is suessfully applied, trafo 2 will be applied on the resulting ode from

trafo 1. That is, the assoiated sope of trafo 2 is the resulting fragment from trafo 1. If

trafo 2 fails to be applied, the e�et of trafo 1 is rolled bak: the entire onstrut fails and

no hanges are made to the program under onsideration.

We allow for an arbitrary number of transformations to be grouped together in a roll bak

onstrut. If any of these transformations fails, the entire onstrut fails and no hanges are

made to the program under onsideration.

41

If all transformations in the group have been suesfully applied, the result is rolled forward.

This means that the fragment that mathed trafo 1 is replaed in the program under onsid-

eration by the result of all transformations on this fragment.

In ase suh a group of transformations appears as the ondition of a onditional or repetitive

onstrut, the result would be true only if all transformations in the group were applied

suessfully.

42

Chapter 4

Conlusion

In this report we have desribed a spei�ation language for program transformations on

the Fortran 77 soure language level. Together with the strategy spei�ation language this

spei�ation mehanism allows for a exible and highly tunable set of transformations to be

applied to a program. These transformations are strutured around a pattern math meha-

nism that allows for user de�ned funtion that an aess the internal program representation

diretly. Using this mehanism we may speify an input pattern ontaining meta-variables

that is mathed against the soure program thereby binding these meta-variables to atual

expressions and statements. An output pattern an be spei�ed using these meta-variables.

Based on this output pattern and the atual bindings of the meta-variables, a new program

fragment is onstruted that will replae the fragment that was mathed by the input pattern.

We may also speify onditions under whih the transformation may be applied. These on-

ditions typially hek for the legality of the transformation. However, the onditon may also

ontain user de�ned funtions that may inspet arbitrary auxilary data strutures. Using this

mehanism, a hook is provided for the feedbak from low to high level. This feedbak an be

stored in an auxilary data struture and inspeted by user de�ned funtions in the ondition.

Next we have disussed our notions of Strategy Spei�ation Language. The SSL is a spei�-

ation mehanism to sequene elementary transformations. The SSL on the soure language

level is apable of the sequential omposition of transformations, a onditional and a repetetive

onstrut. The onditions for these last onstruts onsist of the suess or failure of some ar-

bitrary ondition transformation. In this way, enabling transformations an be applied before

the main transformation. Also, sine the ondition of a transformation may ontain user-

de�ned funtions that may aess an arbitrary data struture, a mehanism is provided for

feedbak. This feedbak information may be targetted towards spei� parts of the program,

like a partiular loop. Now the `enabling' transformation may onsist of a math against an

arbitrary loop, transforming that loop into the same loop and having the ondition hek the

43

identity of the loop. Only the sought after loop, the number of whih is given in the feedbak

information, will math this ondition that heks for this number.

44

Bibliography

[BBK

+

97℄ A.J.C. Bik, P.J. Brinkhaus, P.M.W. Knijnenburg, P. Touber, and H.A.G. Wi-

jsho�. Transformation De�nition Language. Oeans Deliverable D1.1, 1997.

Available through www.wi.leidenuniv.nl/~peterk.

[Bik92℄ Aart J.C. Bik. A prototype restruturing ompiler. Master's thesis, Utreht

University, 1992. INF/SCR-92-11.

[Bri93℄ Peter Brinkhaus. Compiler analysis of proedure alls. Master's thesis, Utreht

University, 1993. INF/SCR-93-13.

[BW93℄ A.J.C. Bik and H.A.G. Wijsho�. MT1: A prototype restruturing ompiler.

Tehnial Report no. 93-32, Department of Computer Siene, Leiden Univer-

sity, 1993.

[Pol88℄ C. Polyhronopoulos. Parallel Programming and Compilers. Kluwer Aademi

Publishers, Boston, 1988.

[vDdVW

+

95℄ E. van Dis, R.D. de Vreugd, A.P. Wulms, P. Brinkhaus, and P.M.W. Knijnen-

burg. A vetor transformation library. Tehnial Report no. 95{29, Department

of Computer Siene, Leiden University, 1995.

[Wol91℄ M.J. Wolfe. Optimizing Superompilers for Superomputers. The MIT Press,

1991.

[Wol96℄ M.J. Wolfe. High Performane Compilers for Parallel Computing. Addison-

Wesley, 1996.

[ZC90℄ H. Zima and B. Chapman. Superompilers for Parallel and Vetor Computers.

ACM Press, New York, 1990.

45

