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Abstract. This paper presents an overview of the activities carried out

within the second year of the ESPRIT project OCEANS whose objec-

tive is to investigate and develop advanced compiler infrastructure for

embedded VLIW processors. This combines high and low-level optimi-

sation approaches within an iterative framework for compilation. In this

paper we discuss the approach to iterative compilation adopted in the

OCEANS project.

1 Introduction

Embedded applications have become increasingly complex during the last few

years. Although sophisticated hardware solutions, such as those exploiting in-

struction level parallelism, aim to provide improved performance, they also cre-

ate a burden for application developers. The traditional task of optimising as-

sembly code by hand becomes unrealistic due to the high complexity of hard-

ware/software. Thus the need for sophisticated compiler technology is evident.

Within the OCEANS project, the consortium intends to design and imple-

ment an optimising compiler that utilises aggressive analysis techniques and

that integrates source-level transformations with low-level, machine dependent
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optimisations [7, 8]. A major objective is to provide a prototype framework for

iterative compilation, where feedback from the low-level is used to guide the

selection of a suitable sequence of source-level transformations. Currently, the

Philips TriMedia (TM-1000) VLIW processor [4] is used for validation of the

system.

In general, compiler optimizations rely on static analysis, simpli�ed processor

and cache models and sometimes pro�ling information. Static analysis is neces-

sarily a pessimistic approximation of runtime behaviour, and processor/memory

hierarchy models only approximately the behaviour of a part of the system. Pro-

�le based analysis produces averages of the observed behaviour of the system for

a limited number of benchmarks/input sets. Compiler analysis determines the

best parameters for each compiler optimisation separately (e.g., tile size). How-

ever, optimizations are not independent in their e�ect. Finally, in the present

market hardware is changing rapidly. Therefore, the compiler and its optimisa-

tion sequence/stategy need to adapt quickly to hardware changes in order to

remain competitive. We conclude that the traditional approach to optimization

only gives suboptimal results.

In order to cope with the problems described above, an iterative approach to

optimization has been proposed in the OCEANS project. It consists of search-

ing for a good transformation sequence. This means that we need to optimize,

compile and execute the program many times. However, for the case of embed-

ded applications, this can be a�orded. In [3, 11] we have presented two studies

into the characteristics of transformation spaces and the feasibility of searching

these spaces. Based on these studies we have concluded that searching for an

optimization sequence may be a viable solution to the optimisation problem.

In this paper, we present an overview of the work that has been carried out

during the second year of the project. An overall description of the system is

given in Section 2. In section 3 we present a study into the e�ects of di�erent

transformations on execution time. In section 4 we discuss approaches to iterative

compilation. In section 5 we discuss related work. Finally, in section 6 we present

some conclusions and directions of future work.

2 An Overview of the OCEANS Compiler System

The OCEANS [7, 8] compiler is centered around two major components: a high-

level restructuring system, MT1, and a low-level system for supporting assembly

language transformations and optimisations, Salto. Salto is coupled with Sea,

a set of classes that provides an abstract view of the assembly code, and tools

for software pipelining (PiLo) and register allocation (LoRa). Their interaction

is illustrated in �gure 1 which shows the overall organisation of the OCEANS

compilation process. In particular, a program is compiled in three main steps:

{ First, MT1 performs lexical, syntactical and semantic analysis of a source

Fortran program (File.f). Also, a sequence of source program transfor-

mations can be applied. These transformations are written in the Transfor-

mation De�nition Language and the order of their application is speci�ed

using the Strategy Speci�cation Language [8].
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Fig. 1. The Compilation Process.

{ The restructured source program is then fed into the code generator which

generates sequential assembly code that is annotated with instruction identi-

�ers used to identify common objects in MT1 and Salto, and a �le written

in an Interface Language (File.IL) that provides information on data de-

pendences and program structure.

{ Finally, Salto (coupled with Sea) performs code scheduling and register

allocation. At this step guarded instructions are created and resource con-

straints are taken into account.

The above process is driven by a global driver which select optimisations at

the source-level and the low-level iteratively until a certain level of performance

is reached. This paper is primarily concerned with the structure of such a driver

which, for the purposes of this study, focuses on high-level transformations. In

the next section the optimisation space considered is described and a candidate

search algorithm for the global driver is evaluated. This is followed by a short

description of alternative search strategies currently under evaluation within the

OCEANS project.

3 Transformation Space Characteristics

This section is primarily concerned with examining the characteristics of trans-

formation spaces. We initially selected three important and extensively studied

kernels and examined their behaviour across seven separate commodity proces-

sors and di�erent data sizes. This is followed by a more restricted evaluation of

the TriMedia processor.



The initial three kernels and data sizes considered are: matrix-matrix mul-

tiplication (MxM) for N = 256, 300, 400 and 512, matrix-vector multiplication

(MxV) for N = 1024 and 1200, and Successive Over Relaxation (SOR) for

N = 512 and 600. These programs were executed on seven di�erent architec-

tures: MIPS R4000, MIPS R10000, Pentium II, Pentium Pro, Alpha, UltraSparc

and HP-PA. We also used the Philips TM-1000 simulator as an example of an

embedded processor. In this feasibility study, we restrict our attention to loop

unrolling (with unroll factors from 1 to 20) and loop tiling (with tile sizes from 1

to 100). We generated all versions of the programs and executed them on several

of the platforms. Although the application of iterative compilation to commod-

ity processors is interesting, we are particularly concerned with applying such

techniques to embedded processors such as the TriMedia-1000. In this case, only

matrix-multiplication was considered with smaller data sizes of N = 64 and

N = 128 due to the overhead of using a simulator.

3.1 Transformation Spaces

Figure 2 shows the transformation space of matrix multiplication on the R4000

for N = 256 when applying loop unrolling and tiling. The x-axis and y-axis

give the tile size and unroll factor, respectively. The z-axis shows the resulting

execution time. The goal of an optimising compiler is to �nd the minimum point

in such a space. One immediate observation is that there is approximately a

factor of 4 between the maximal and minimal points: selecting the wrong tile

size and unroll factor can be critical. Hence if an optimising compiler were to use

an inaccurate heuristic, the resulting transformed program may run less e�cient

than the original program.
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Fig. 2. Performance R4000 for N = 256 on MxM

Distribution of Minima for Commodity Processors To gain more insight

in the characteristics of the transformation space, we focus on those areas of the

space that are close to the absolute minimum. For example, in �gures 3 through

8, the areas that are within 3% of the minimum are depicted for matrix-vector
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Fig. 3. HP-PA: MxV N = 1024
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Fig. 4. HP-PA: MxV N = 1200
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Fig. 5. Pentium II: MxV N = 1024
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Fig. 6. Pentium II: MxV N = 1200
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Fig. 7. R4000: MxV N = 1024
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Fig. 8. R4000: MxV N = 1200
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Fig. 9. TM-1000: Minimal points for MxM N = 64



multiplication on three commodity processors. For a full discussion consult [3,

11].

Across �gures 3 through 8 we observe a wide variety of behaviour. We see that

the minima on the HP cluster around a small unroll factor while the Pentium II

has a very scattered set of minima whose number is highly dependent on data

size. The behaviour of the R4000 is also highly dependent on data size, with the

majority of near minimal points occurring around a unroll factor of 8 for small

data sizes and with a large area of minima occurring for the larger data size. We

can also observe lines of minima spreading out, converging at the origin.

Distribution of Minima for an Embedded Processor Figure 9 shows

those points within 20% of the found minimum and their distribution for the

case program matrix-matrix multiplication on the TriMedia for the data size

N = 64. The original untransformed code takes 6:750� 10

6

cycles to execute as

compared to an average of 5:094� 10

6

cycles across the transformation space.

In other words, the original program is 32% slower than the application of a

random transformation on average. However, there is great variance across the

space and the maximum execution time is 12:801� 10

6

cycles. Thus, a wrong

transformation selection can more than double the execution time of the original

program. The actual minimum execution time is 1:584�10

6

cycles, which is over

4 times faster than the original. However, only 1.7% of the entire space is within

20% of this value.

3.2 Conclusion

From the results in the above sections we can conclude that the best trans-

formations for a particular program are highly dependent on the underlying

architecture, data sizes and program structure. If static techniques are to �nd

the local minima, they need to model program/processor interaction extremely

closely. Such a model would be very close to a cycle level accurate simulator.

Given the di�culty of statically �nding the minima, the next section considers

the use of iterative compilation to search through the transformation space in

order to �nd the best combination of transformations.

4 Iterative Compilation

To deal with the problems discussed in the previous section, the OCEANS

project is concerned with searching the transformation space for the best op-

timization. In this section we discuss how search techniques are applied at the

high level and the low level. We also discuss a genetic algorithm approach.

4.1 High level searching

Our compiler algorithm, presented below, searches for the best transformation,

by sampling the transformation space and measuring execution times. Although

this approach could potentially be prohibitively expensive, we show that good

performance can be achieved by evaluating only a very small percentage of the



transformation space. The search algorithm is simple but su�ces for studying

the feasibility of searching: without exploiting any system or application char-

acteristics we can already produce good results.

Search Algorithm The algorithm used in the feasibility study is grid based.

It can be brie
y described as follows.

1. First, de�ne a coarse grid on the search space.

2. Evaluate all points on this grid by generating the transformed programs and

executing them.

3. Find the point with minimum execution time and all points that are within

an allowable distance from this minimum (10%, say). Order these points in

a priority queue.

4. For each point in the queue

{ If the execution time associated with this point is within an allowable

distance from the minimum found so far, re�ne the grid around this

point by forming a new grid with half the spacing in each dimension.

{ If new points are found that are close to the minimum found so far,

enqueue them in the priority queue.

Results In [3, 11] it is shown that across all platforms and benchmarks, the

iterative algorithm approaches the absolute minimum rapidly. See �gure 11 for

an example graph for the TriMedia, in which the number of evaluations is plot-

ted against the relative distance to the absolute minimum. For the commodity

processors analogous graphs have been obtained [3, 11]. In �gure 10, we have

given the average percentage of how close to the absolute minimum the search

algorithm comes across all platforms, benchmarks and data sizes. The average

is taken over 26 measurements. The x-axis shows the number of evaluations and

the y-axis shows the distance to the minimum. The �gure shows a monotonic

decreasing graph that reaches high levels of optimization rapidly. In the table

below the graph, we have also shown between brackets the standard deviation,

that is, the average distance to the mean. This standard deviation shows that

there is some variance across all measurements, but this variance is low enough

to conclude that we reach good levels of optimization rapidly.

TriMedia-1000 As we are particularly interested in applying such techniques

to embedded processors, the performance of the search algorithm on the TM-

1000 is shown in �gures 11 and 12. In the case of N = 64, we have the values of

all points in the transformation space and can determine the relative di�erence

between the best transformation found so far against the known minimum. The

original point selected is more than 4 times slower, but after 20 steps is about

1.5 times slower than the absolute minimum. Within 70 evaluations the best

possible transformation sequence is found.

Although this paper has evaluated all points in the transformation space for

the commodity processors and the case of N = 64 for the TM-1000, in practice

the scheme will evaluate points returning the best available as long as su�cient

time remains. This is the case with the �nal experiment where N = 128 on the
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TriMedia-1000. Due to long simulation times, it was not feasible to exhaustively

search the space, so no absolute measure of performance is available. Never-

theless, the results in �gure 12 show that the iterative algorithm makes steady

improvement, reducing the execution time by a factor of 7 over the original

program in less than 60 evaluations.

0 20 40 60 80 100 120 140 160 180 200
0

50

100

150

200

250

300

Number of Evaluations

W
ith

in
 %

 o
f m

in
im

um

Fig. 11. TM-1000: MxM N = 64
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Fig. 12. TM-1000: MxM N = 128

4.2 Alternative Search Techniques

Although we have focused on one search base technique for iterative compilation,

other approaches are also being investigated within the project.



Code size{performance trade-o� Another search algorithm examined by the

OCEANS project is a depth-�rst tree search, where sets of transformations are

recursively built up and examined. The global driver decides if a set is worthwhile

for further examination by enlarging the set, or it backtracks by shrinking the

set. Main focus with this search is on

{ Feedback between the di�erent modules. We exploit two kinds of feedback:

Static Feedback: consisting of the static number of cycles for an iteration,

Dynamic Feedback: consisting of the dynamic number of cycles and data

cache behaviour obtained by executing the code.

{ Trade-o� between code size and code performance.

One of the key issues for iterative compilation is to provide a useful feedback

from the di�erent components of the compiler, so decisions can be made by

choosing between various sets of transformations. In this section we consider loop

unrolling. Since unrolling has mostly an impact on scheduling, static feedback

is su�cient. However, in some cases cache behaviour needs to be known and

dynamic feedback is used. To illustrate the use of the feedback information by

the global optimising driver (shown in �gure 1), we brie
y describe the various

steps of the compilation.

1. Extract source code characteristics.

2. Get a reference point: the original code is compiled without any transforma-

tions to get the basic static performance of the loop.

3. Start transformation space exploration using the information stored.

4. Use dynamic and static feedback for decisions about a next point in the

optimisation space.

An additional constraint of compilers for embedded applications compared to

traditional compilers is that code size is important. Larger code usually means a

larger die size and thus increased production costs. We therefore not only search

for the best optimisation concerning code performance but try to �nd a trade-o�

between these two aspects, using a cost model which takes dynamic and static

feedback into account. Traditional optimising compilers are based on a �xed set

of heuristics and only optimise for speed or code size, but don't search for a

trade-o�. Figure 13 shows how complex this issue can be. This �gure is obtained

by our implementation of the search algorithm. It shows a range of unrolling

factors applied to a loop. It should be noted that when a software pipelining

algorithm is applied to the unrolled loop, the code size can grow with a factor

of 5. Relative gain gives the relative gain between to successive unroll factors.

Genetic algorithms As an alternative to traditional search techniques, we

are also investigating the application of genetic algorithms (GA) as a means of

determining the best transformation sequence. This has the potential bene�t

of investigating transformation spaces which cannot easily be described as a

cartesian domain and is extremely robust in the presence of local minima.



Fig. 13. Code size and performance

The OCEANS GA search is implemented as part of the GAPS compiler

framework described in [12] which uses GA based optimisation for an auto-

parallelising compiler. In the OCEANS GA, traditional restructuring transfor-

mation sequences such as tiling, loop-permutation, loop-distribution, loop-fusion,

loop-skewing and statement reordering are represented as multi-dimensional

mappings [10]. GA optimisation initialises a population of mappings using a com-

bination of randomised methods and conventional compiler techniques. Thus,

a population represents a subset of the transformation space for a program.

Mappings representing transformed programs having good performance (i.e.,

low execution time/predicted overheads) are given high reproduction selection

probabilities. Mutation and recombination based reproduction operators gener-

ate new child mappings from randomly selected parent mappings currently in

the population. Steady-state reproduction with an elitist replacement strategy

ensures that child mappings only replace mappings associated with programs

having low performance. Reproduction is iteratively applied until a maximum

number of mappings have been created or until a real-time performance con-

straint is satis�ed. The use of elitism in conjunction with conventional compiler

techniques ensures that the performance of the best solution produced by GA

optimisation will be equal to or greater than that produced by the conventional

techniques.

5 Related Work

There is a large body of work considering program transformations to improve

uniprocessor performance. In [5], an analytic algorithm to give a good tile size

to minimise interference and exploit locality is presented. This work gives good



performance improvements over existing techniques but does not consider the

impact of tiling on unrolling or other transformations.

Whaley and Dongarra [13], and Bilmes et al. [1] describe a system for gen-

eration highly optimised versions of BLAS routines by probing the underlying

hardware to �nd optimal values for blocking factors, unroll factors etc. Exper-

imentation [1, 13] has shown that these systems are capable of producing code

that is more e�cient than the vendor supplied, hand optimised library BLAS

routines.

Wolf, Maydan and Chen [14] have described a compiler that also searches

for the best optimisation. This compiler also considers the entire optimisation

space. In contrast to the present approach, however, their compiler uses a �xed

order of the transformations and a static cost model to evaluate the di�erent

optimisations. They also use an aggressive but heuristic pruning algorithm to

control the complexity of the search. The present approach, however, is based

on actual execution times instead of static cost models.

Bodin et al. [2] describe a method for searching for the best optimisation

on the assembly level, taking into consideration both execution times and code

size. Their approach also uses a static cost model, in contrast to the present

approach, and does not seem to prune the search space.

Several researchers have considered using runtime information to select the

best implementation. They, however, de�ne one or more options statically which

are then considered at runtime. For example, in [9], whether or not a portion of

the iteration space should be tiled depends on runtime characteristics and in [6],

di�erent synchronisation algorithms are called depending on runtime behaviour.

The work in this paper, however, considers a much larger space of optimisations

at compile time without incurring runtime overhead.

6 Conclusions and Open Problems

In this paper we have described the activities within the second year of the

Esprit project OCEANS. We have addressed the problem of �nding the best

optimisation for a given processor, program and data size. We have shown, by

describing the actual transformation space, that such an optimal optimisation

is hard to �nd using static analysis. We have also shown that an iterative com-

pilation approach based on a simple search algorithm may be able to �nd a

good optimisation by visiting a relatively small fraction of the entire optimi-

sation space. However, for real applications, the search spaces that need to be

considered are extremely large. Hence aggressive pruning strategies need to be

developed. Future work will be focused on this issue. In particular, we will in-

vestigate whether static analysis and static processor/cost models can be used

to guide the search. We will also investigate whether results from mathematical

optimisation theory, such as simulated annealing, can be applied in the present

case. Nevertheless, the resulting compilation times will be substantial. There-

fore, the optimisation approach described in this paper is intended to be used

for (kernels of) embedded applications. In this case, long compilation times can



be a�orded since highly e�cient code is required for these systems. Compilation

time can be amortised over a large number of shipped products.
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