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Abstract. In this paper we investigate the feasibility of iterative com-

pilation in program optimisation. This technique enables compilers to

deliver e�cient code by searching for the best sequence of optimisations.

In embedded systems, long compilation time can be a�orded since the

application is an integral part of the shipped product. However, in prac-

tice search spaces may be extremely large. Our experimental results show

that in the case of large transformation spaces, near optimal transforma-

tions can be found by visiting only a small fraction of the entire search

space by using a simple search algorithm.

1 Introduction

Modern compilers make extensive use of optimisation to improve program perfor-

mance on current micro-processors. The use of a particular optimisation largely

depends on static program analysis based on a simpli�ed machine model. Such

an optimisation approach has been followed for over 20 years and has produced,

in many cases, good results. Due to the unsolvability of the Halting Problem

[7], however, static analysis is necessarily incomplete and cannot determine the

best optimisation for a particular processor/program pair. Furthermore, while

the processor and memory hierarchy is typically modelled by static analysis, this

does not account for the behaviour of the entire system. For instance, the reg-

ister allocation policy and strategy for introducing spill code in the back-end of

the compiler may have a signi�cant impact on performance. Thus static analysis

can improve program performance but is limited by compile-time decidability.
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This paper investigates a di�erent approach to compilation, iterative com-

pilation, where successive transformations are applied to a program and their

worth determined by actual execution of the resulting code. A large number of

di�erent versions of the program are generated and executed, with the fastest

version selected. Such an approach is decidable and, given su�cient time, will

�nd the best program. The obvious drawback is that compilation time dramat-

ically increases. For general purpose computing this is not considered feasible.

In the case of embedded applications, however, only one program is to be exe-

cuted and the cost of compilation will be amortised over the number of systems

shipped and the lifetime of the application. In such applications, performance is

critical and has typically relied on hand coded assembly implementations of the

entire application. With the advent of general-purpose processors being used in

embedded applications, due to the economies of scale, compiler technology, pre-

viously used for general-purpose computing, is now being targeted at embedded

processors.

Although iterative compilation is a natural approach for embedded systems,

it may become increasingly viable for general-purpose computing as PC system

architectures can change almost every three moths. Clearly such a rate of change

of compiler technology is hard to sustain and iterative compilation may provide

a natural method for programs to adapt to changing hardware.

This paper examines the applicability of iterative compilation to program

optimisation. This is achieved by �rst examining the optimisation space of a

set of small programs and then developing an algorithm to search this space

e�ciently. We show that, although the optimisation space is highly non-linear,

iterative compilation can �nd the best program transformation by examining

only a very small fraction of the optimisation space.

The paper is organised as follows. In section 2 we discuss the impact of two

compiler optimisations, unrolling and tiling, on program execution time across

three di�erent platforms and three benchmark programs with two data sizes.

This is followed by section 3 which evaluates an iterative compilation algorithm

that attempts to e�ciently �nd good program optimisations. In section 4 we

discuss ways in which to reduce the potential complexity of the search. In section

5 we discuss some related work. Finally, in section 6, we draw some conclusions

and discuss future research directions.

2 Transformation Space Characteristics

This paper is concerned with studying the viability of iterative compilation by

means of 18 case studies. We selected three important and extensively stud-

ied kernels and examined their behaviour across three separate platforms and

two di�erent data sizes This section is primarily concerned with examining the

characteristics of the transformation space and is followed in section 3 by an

evaluation of an iterative approach to �nding the global minima.

The three kernels and data sizes considered are:

1. Matrix-Matrix Multiplication (MxM) for data sizes N = 256 and 300,



2. Matrix-Vector Multiplication (MxV) for N = 1024 and 1200,

3. Successive Over Relaxation (SOR) for N = 512 and 600.

Each of these programs was executed on three di�erent architectures: MIPS

R4000, Pentium II and HP-PA.

For the purpose of this feasibility study, we restrict our attention to a small

area of the transformation space formed by applying loop unrolling (with unroll

factors from 1 to 20) and loop tiling (with tile sizes from 1 to 100). Each of these

2000 di�erent programs was executed on each of the three platforms and their

execution times plotted.

2.1 Example

Figure 1 shows the transformation space of matrix multiplication on the R4000

for N = 256 when applying loop unrolling and tiling. The x-axis and y-axis give

the tile size and unroll factor respectively, while the z-axis shows the resulting

execution time. The goal of an optimising compiler is to �nd the minimal point

in such a space. One immediate observation is that there is approximately a

factor of 4 between the maximal and minimal points: selecting the wrong tile

size and unroll factor can be critical. The space is highly non-linear, containing

many local minima and some discontinuities. Any approach that tries to rely on

static analysis to �nd the global minima would require an analytic model of the

space which, due to the non-linearity, would be infeasible. Even if such a space

could be accurately modelled it would be extremely di�cult to �nd its minimum

due to its complexity.
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Fig. 1. Performance R4000 for N = 256 on MxM

To gain more insight in the characteristics of the transformation space, we

focus on those areas of the space that are nearest the minima. In the �gures 2 and



3 those areas of the space within 3% of the absolute minimum are highlighted,

allowing observations to be made about their distribution. The x and y-axis in

each �gure corresponds to the unroll factor and the tile-size, respectively.
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Fig. 2. Space within 3% of minimum

2.2 Observations

Across �gures 2 and 3 there is a wide variety of behaviour. In the case of matrix

multiplication on the HP, there is a large part of the space near the minimum

for tile sizes greater than 20. The Pentium II and R4000, however, have a similar

behaviour quite distinct from that of the HP. Here the minima occur around a

small unroll factor with a clustering of minima depending on tile size occuring on

the Pentium II. In the case of matrix vector multiplication, we see a very di�erent

behaviour. This time the minima on the HP cluster around a small unroll factor
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Fig. 3. Space within 3% of minimum

while the Pentium II has a very scattered set of minima whose number is highly

dependent on data size. The behaviour of the R4000 is also highly dependent on

data size, with the majority of near minimal points occurring around a unroll

factor of 8 for small data sizes and with a large area of minima occurring for the

larger data size. We can also observe lines of minima spreading out, converging

at the origin. For the third program, SOR, we again see wide variation, with the

best points on the HP occurring for a very small unroll factor and independent

of tile size up to 50. The Pentium II, however, has no points in this region, with

16 being the preferred unroll factor in the sparsely populated graph. Finally, the

R4000 has two completely distinct behaviours depending on the data size.

From the above results, we can conclude that the best transformations for a

particular program are highly dependent on the underlying architectures. Thus,

whenever a system is upgraded, any compiler optimisation technique based on

static analysis may have to be completely rewritten. Furthermore, the behaviour

of a particular processor across programs is highly dependent on the program



structure. Each of the three kernels considered consist of 2 or 3 perfectly nested

loops with access to 2-d arrays. Although similar in structure, the prefered trans-

formations di�er widely.

If static techniques are to �nd the local minima, they need to model pro-

gram/processor interaction. Such a processor model would be very close to a cy-

cle level accurate simulator. Given the di�culty of statically �nding the minima,

the next sections considers the use of iterative compilation to search through the

transformation space in order to �nd the best combination of transformations.

3 Iterative Compilation

This section evaluates an iterative approach to compiler optimisation. A compiler

algorithm is presented which searches for the best transformation, by sampling

the transformation space, and measuring execution times. This is equivalent to

searching for the minima in non-linear spaces described in the previous section.

Although this approach could potentially be prohibitively expensive, we show

that good performance can be achieved by evaluating only a very small percent-

age of the transformation space.

3.1 Search Algorithm

After prototyping several search algorithms it was quickly determined that a

grid based approach consistently outperformed other approaches. It de�nes a

coarse grain grid on the transformation space and re�nes this grid around good

candidate points using a priority based queue.

The algorithm to search the space can be briey described as follows.

1. First, de�ne a coarse grid on the search space. Initial experimentation [5]

indicates that �ve points in each dimension gives a good initial grid.

2. Evaluate all points on this grid by generating the transformed programs and

executing them.

3. Find the point with the current minimum execution time and all current

points that are within an allowable distance from this minimum (10%, say).

4. Order these points in a priority queue.

5. For each point in the queue

{ if the execution time associated with this point is within an allowable

distance from the minimum found so far, re�ne the grid around this

point by forming a new grid with half the spacing in each dimension.

{ If new points are found that are close to the minimum found so far,

enqueue them in the priority queue.

Using this algorithm the search space is traversed to �nd the best optimisation.
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Fig. 4. Performance search algorithm

3.2 Number of Evaluations

The iterative algorithm described above was applied to each program for two

di�erent sizes on each of the three processors. We are interested in how quickly

such an approach can �nd a good optimisation. We therefore measured how close

the execution time of the transformed program comes to the real minimum, for

di�erent number of evaluations. The results are shown in �gures 4 and 5. In

these �gures, the x-axis corresponds to the number of evaluations carried out by

our search algorithm, and the y-axis corresponds to how close to the absolute

minimum we get. Since our search algorithm keeps track of the best version

found so far, these �gures show monotonously decreasing graphs.

We see that for more than half of the experiments, the search algorithm

does indeed �nd the absolute minimum within 200 evaluations (10% of the en-

tire search space). In the other cases, the search algorithm comes close to this

minimum but does not reach it.
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Fig. 5. Performance search algorithm

3.3 Results

First of all, we see that across all three platforms and benchmarks, the iterative

algorithm approaches the absolute minimum rapidly. This is illustrated in �gure

6 where the average over all the graphs shown in �gures 4 and 5 is shown as a

function of the number of evaluations carried out by the search algorithm. We see

that for less than 15 evaluations, the improvement tends to level out somewhat,

but drops again sharply after that. The standard deviation in this average has

about the same magnitude. This indicates that there is some variance in the

improvement. However, it also indicates that the standard deviation becomes

smaller rapidly and that for every benchmark we approach the minimum quite

fast. This is very encouraging, demonstrating that at least for the examples

selected, iterative compilation is not prohibitively expensive.

In table 1 we report the speedup over the original program found by our

search algorithm after 25, 50, 75 and 100 evaluations of a transformed program.



Optimisation seems to have the greatest e�ect on the Pentium II processor across

all programs and on matrix multiplication across all processors. It seems to have

the smallest impact on SOR. Such a conclusion could have been drawn from a

static analysis of the programs: tiling is more likely to exploit temporal locality

within matrix-multiplication than in the case of SOR. We also see that the

maximum speedup to be gained for SOR is small: 1.05 on average. If we can

deduce by static analysis that a program fragment is likely not to gain much by

the transformations under consideration, this may used by an iterative algorithm

in order that it concentrates its e�orts elsewhere.

Finally, we see that after just 25 evaluations, which corresponds to 1.25% of

the entire transformation space, the improvement is close to the maximum. This

holds for all benchmarks, data sizes and platforms. Hence we conclude that it

may be possible to �nd good optimisations in a relatively small number of steps.

25 ev. 50 ev. 75 ev. 100 ev. max

HP-PA MxM (256) 1.93 1.96 1.96 1.96 1.98

MxV (1024) 1.44 1.44 1.47 1.49 1.49

SOR (512) 1.05 1.05 1.05 1.05 1.06

HP-PA MxM (300) 1.89 1.89 1.89 1.89 1.92

MxV (1200) 1.47 1.47 1.51 1.52 1.53

SOR (600) 1.05 1.05 1.05 1.05 1.05

Pentium MxM (256) 2.22 2.22 2.31 2.31 2.34

MxV (1024) 2.21 2.21 2.21 2.21 2.30

SOR (512) 1.63 1.73 1.73 1.73 1.73

Pentium MxM (300) 2.01 2.01 2.07 2.07 2.07

MxV (1200) 1.67 1.67 1.67 1.67 1.67

SOR (600) 1.23 1.23 1.23 1.23 1.28

R4000 MxM (256) 2.01 2.02 2.06 2.07 2.13

MxV (1024) 2.05 2.10 2.18 2.18 2.18

SOR (512) 1.35 1.35 1.36 1.37 1.37

R4000 MxM (300) 1.82 1.82 1.90 1.90 1.90

MxV (1200) 2.23 2.23 2.24 2.24 2.24

SOR (600) 1.44 1.44 1.46 1.46 1.46

Table 1. Speedup found

4 Managing Search Space Complexity

Although our results provide some evidence for the feasibility of searching for

the best program optimisation, in general the search space under consideration is

huge. We have shown that a simple bound on the number of evaluations needed

can produce encouraging results by visiting a relatively small fraction of the
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entire space. However, even this low percentage may be too large for real ap-

plications. Therefore, future work will focus on reducing the number of points

to consider. Rather than considering static analysis and iterative compilation as

distinct approaches, we could consider them as two extreme points on a con-

tinuum. A possibly fruitful approach would be to use a simple cost model as a

means to generate potentially interesting transformation points.

In this paper we have considered execution time as the metric for evaluating

goodness of a transformation. As our system [1, 2] provides additional informa-

tion, such as code size, register pressure, slot utilisation etc., it is possible to

statically evaluate the goodness of a transformation after code generation. Al-

though only approximate, as cache e�ects etc. cannot be exactly determined,

such information may be used to prune transformed programs guaranteed to

perform poorly. This paper has also concentrated exclusively on the e�ect of

temporal performance. However, in embedded systems, code size is also impor-

tant as it determines the amount of ROM required [4]. In order to incorporate

code size in the present approach, we would need to have a cost metric which

is a function of both execution time and code size. This cost metric can the be

used to give a value to the points in the search space. For example, if the code

size would be larger than a given maximum, the resulting cost could be set to

in�nity.

5 Related Work

There is a large body of work considering program transformations to improve

uniprocessor performance. In [6], an analytic algorithm to give a good tile size

to minimise interference and exploit locality is presented. This work considered



rectangular tiles whose dimensions are a function of the iteration space and

the cache organisation. This work gives good performance improvements over

existing techniques but does not consider the impact of tiling on unrolling or

other transformations.

Whaley and Dongarra [8], and Bilmes et al. [3] describe a system for gener-

ation highly optimised versions of BLAS routines. These systems can probe the

underlying hardware to �nd optimal values for blocking factors, unroll factors

etc. In contrast to the present approach, these systems are only able to optimise

BLAS routines and are not general purpose compilers. Experimentation with

these systems [8, 3] has shown that these systems are capable of producing code

that is more e�cient than the vendor supplied, hand optimised library BLAS

routines.

Wolf, Maydan and Chen [9] have described a compiler that also searches for

the optimal optimisation. This compiler also considers the entire optimisation

space and tries to �nd the best point in it. In contrast to the present approach,

however, their compiler uses a �xed order of the transformations and a static

cost model to evaluate the di�erent optimisations. They also use an aggressive

but heuristic pruning algorithm to control the complexity of the search. They

report good e�ciency of the resulting code and short running times of the search.

We believe that the present approach that is based on actual execution times

instead of static cost models will deliver superior performance.

Bodin et al. [4] describe a method for searching for the best optimisation

on the assembly level, taking into consideration both execution times and code

size. Their approach also uses a static cost model, in contrast to the present

approach, and does not seem to prune the search space.

6 Conclusions

In this paper we have addressed the problem of �nding the best optimisation

for a given processor, program and data size. We have shown, by describing the

actual transformation space, that such an optimal optimisation is hard to �nd

using static analysis. We have shown that an iterative compilation approach

based on a simple search algorithm may be able to �nd a good optimisation

by visiting a relatively small fraction of the entire optimisation space. However,

for real applications, the search spaces that need to be considered are extremely

large. Hence aggressive pruning strategies need to be developed. Future work will

be focussed on this issue. In particular, we will investigate whether static analy-

sis and static processor/cost models can be used to guide the search. We will

also investigate whether results from mathematical optimisation theory, such as

simulated annealing, can be applied in the present case. Nevertheless, the result-

ing compilation times will be substantial. Therefore, the optimisation approach

described in this paper is intended to be used for (kernels of) embedded applica-

tions. In this case, long compilation times can be a�orded since highly e�cient

code is essential and compilation time can be amortised over a large number of

shipped products.
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