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Abstract

This paper attempts to minimise parallelisation overhead
on distributed shared memory machines, such as the SGi
Origin 2000, by the combination of non-singular loop and
data transformations. We show that conflicting require-
ments on a loop transformation may be resolved by using
a data transformation and vice-versa. We develop optimi-
sation criteria for locality, synchronisation and communica-
tion and show that neither loop nor data transformations can
be solely used for efficient parallelisation. This leads to the
development of a novel global optimisation heuristic which
is applied to 3 SPEC kernels where it is shown to outperform
techniques solely based on loop or data transformations and
to give significant improvement over an existing state-of-
the-art commercial auto-paralleliser.

1 Introduction

Effective utilisation of distributed shared memory multi-
processors relies on the efficient mapping of program paral-
lelism to machine parallelism. Due to the increasing relative
cost of memory latency, exploiting the memory hierarchy is
essential. Otherwise, any gains made by discovering par-
allelism can easily be outweighed by overheads such as re-
mote memory access. Parallelising compilers need to min-
imise any introduced synchronisation and inter-processor
communication overhead as well as maximising temporal
and spatial locality within a program.

Loop transformations for parallelism and locality [15,
21] have been extensively studied in the context of shared
memory parallel machines. Although frequently successful,
they suffer from the fact that the analysis and transforma-
tions are inevitably local, since the unit of consideration is a
loop nest rather than the entire program. Furthermore, they
are restricted in their application by data dependences. Con-
versely, data transformations, such as alignment and parti-
tioning, have received much attention in distributed memory

compilation [6, 9, 12]. As data layout has program wide im-
pact, these techniques have, by necessity, been more global
in their consideration. They are unaffected by data depen-
dences but there has been, until recently, difficulty in apply-
ing data transformations to reshaped arrays across procedure
boundaries (in [19] a solution to this problem is presented).
Though potentially determining good overall layouts, data
transformations are unable to remedy any introduced poor
code localised within a section of the program.

The central problem with both these approaches is that of
balancing conflicting requirements throughout the program.
More specifically, if one part of a program, be it a loop or
an array access, requires a particular transformation but an-
other part requires a completely distinct transformation, how
do we determine transformations that trade-off such require-
ments to give a globally acceptable result? In this paper we
show that conflicting requirements on a loop transformation
may be resolved by using a data transformation and vice-
versa. Such a combination of loop and data transformations
so as to get the best from both approaches has recently re-
ceived some attention. In particular, Cierniak and Li [7] and
Kandemir et al. [10, 11] have combined non-singular loop
transformation with data transformations to improve spatial
locality. The asymmetry between loop and data transfor-
mations in their representation, however, prevents the direct
combination of loop and data transformations.

This paper develops a compiler heuristic to minimise par-
allelisation overhead. It explores how conflicting require-
ments on a loop transformation may be resolved by using
a data transformation and vice-versa. This is achieved by
treating loop and data transformations in a unified man-
ner. We develop specific optimisation criteria for spatial
and temporal locality, and communication and synchronisa-
tion reduction. We define those instances where both loop
and data transformations can be used or when only one is
applicable. We examine how different optimisation crite-
ria can lead to conflict and where the use of complementary
transformations may overcome this. This is followed by an



L1: Do j = 1,8
Do i = 1 ,8
B(i,j) = i + j
Enddo
Enddo

L2:
Do k = 1, 8
Do j = 1,8
Do i = j+1,8
A(i,i+j) = A(i,i+j)
+ B(i-j,i)+ C(k,i)
Enddo
Enddo
Enddo

Figure 1. Serial Code

overall optimisation heuristic that trades-off costs in cases
where conflicts are irreconcilable. This approach has been
implemented in the MARS compiler [5] and we show that it
outperforms existing approaches on three SPEC kernels.

The next section presents a motivating example outlining
some of the main ideas developed later in the paper. Sec-
tion 3 briefly outlines the notation used and provides a de-
scription of non-singular loop and data transformations and
when they may be used interchangeably. Section 4 examines
optimising transformations and criteria for when they may
be applied. Section 5 presents a global optimising heuris-
tic which is followed in section 6 by experimental results
showing the applicability of our scheme. Section 7 reviews
related work which is followed in section 8 by some brief
concluding remarks.

2 Example

In this section, we examine a simple example to illus-
trate some of the main points described in this paper. Con-
sider the program in Figure 1. If this code is mapped to a
four processor parallel machine by row partitioning and the
owner computes-rule, we have the local node code in row
1, column 1 of Figure 2 where the terms lo and hi refer to
the local array bounds. The impact of subsequent transfor-
mations to this program is shown in row 1, columns 2 to 4
whereas the diagrams in rows 2 to 5 give a graphical repre-
sentation. Here, each box represents a particular array, with
dotted lines showing how the data is partitioned across the 4
processors1 and we will focus our attention on the behaviour
of processor 3. The dark shaded regions refer to local data
accessed by the programs. Lighter shading corresponds to
remote memory access, incurring possible synchronisation.
The direction of data access is shown by an arrow.

Due to column-major layout in Fortran, arrayB in the first
loop has good stride access (row 2, column 1). However, in
the second loop, all arrays have poor spatial locality. Fur-
thermore, in Loop 2 there is remote memory access to arrays

1In SGI terms, we can consider part of each array as having it’s home
node determined by C$distribute(block,*)

B and C, shown by the light shaded regions. There is conse-
quently a cross-processor flow dependence on array B from
Loop 1 to 2 resulting in the inserted barrier.

If we first apply a data transformation that realigns data
so as to minimise communication and synchronisation we
obtain the new code in row 1, column 2. Now there is no re-
mote memory accesses and the cross-processor data depen-
dence has been eliminated and thus the barrier synchronisa-
tion has been removed. However, there is still poor spatial
locality with respect to arraysA and B in Loop 2 and the spa-
tial locality in Loop 1 has been destroyed.

Further data transformations can be applied to arrays A,
B and C, giving the code in column 3. Here, spatial locality
has been improved in Loop 2 without introducing synchro-
nisation or communication overhead. However, the spatial
locality in Loop 1 is still just as poor. In fact, it is impossible
to find a data layout that will improve spatial locality to ar-
ray B in both loop nests. If, however, a loop transformation
is applied then we have the code in column 4, which has the
same properties as column 3 with the addition of good spa-
tial locality in Loop 1. Neither loop nor data transformations
alone could produce such a program: a combined approach
was necessary. In subsequent sections, we will detail when
each transformation can be used before developing a com-
piler heuristic that exploits the benefits of both approaches
and performs trade-offs where necessary.

3 Transformations

In this section, we briefly introduce the algebraic notation
used to describe transformations and their properties.

Spaces The loop indices or iterators can be represented as
an M � 1 column vector J = [j

1

; j

2

; : : : ; j

M

]

T whereM is
the number of enclosing loops. The loop ranges can be de-
scribed by a system of inequalities defining the polyhedron
or iteration space BJ � b. where B is a (` �M ) integer
matrix and b a (` � 1) vector for some `. The data storage
of an array A can also be viewed as a polyhedron. We in-
troduce formal indices I = [i

1

; i

2

; : : : ; i

N

]

T , where N is
the dimension of array A, to describe the array index space.
This space is given by the polyhedronAI � a, whereA is
a (2N � N) integer matrix and a a (2N � 1) vector. We
assume that the subscripts in a reference to an array A can
be written as UJ +u, where U is a (N �M) integer matrix
and u is a (N � 1) vector.

Data Transformations A linear data transformation is ap-
plied to the index space of a particular array and to all ac-
cesses to that array throughout the program and is therefore
global in nature. A data transformation A maps an index
vector I to a new index vector I 0 = AI. Each array ac-
cess U for an array A must be globally updated to U

0

=



Original Code (1) Realigned Arrays (2) Data Spatial (3) Loop Spatial (4)
Do j = 1, 8
Do i = max(lo,1),min(8,hi)

B(i,j) = i + j
Enddo
Enddo

call mp_barrier()
Do k = 1, 8
Do j = 1, 8
Do i=max(lo,j+1),min(8,hi)
A(i,i+j) = A(i,i+j)
+ B(i-j,i)+ C(k,i)

Enddo
Enddo
Enddo

Do j = 1, 8
Do i = max(lo,1),min(8,hi)
B(i,2*j-i) = i + j
Enddo
Enddo
Do k = 1, 8
Do j = 1, 8
Do i=max(lo,j+1),min(8,hi)
A(i,i+j) = A(i,i+j)
+ B(i,i+j)+ C(i,k)
Enddo
Enddo
Enddo

Do j = 1, 8
Do i = max(lo,1),min(8,hi)
B(i,j-i) = i +j

Enddo
Enddo
Do k = 1, 8
Do j = 1, 8
Do i=max(lo,j+1),min(8,hi)
A(i,j) = A(i,j)
+ B(i,j)+ C(i,k)

Enddo
Enddo

Enddo

Do j = -7, 7
Do i=max(lo,1-j),min(hi,8-j)
B(i,j) = 2*j+i

Enddo
Enddo
Do k = 1, 8
Do j = 1, 8
Do i=max(lo,j+1),min(8,hi)
A(i,j) = A(i,j)
+ B(i,j)+ C(i,k)

Enddo
Enddo

Enddo

Loop 1 Loop 1 Loop 1 Loop 1

B

p1

p2

p3

p4

Loop 2 Loop 2 Loop 2 Loop 2

A

B

C

Figure 2. Partitioned and Transformed Code

AU . Data transformations are therefore left-hand transfor-
mations when applied to array access functions.

Loop Transformations A linear loop transformation T

maps an iteration vector J to a new iteration vector J 0 =

TJ . Each access U within the loop nest must be updated
to U 0 = UT

�1. Thus, loop transformations are right-hand
transformations when applied to array accesses and are local
in nature.

Complementary Transformations Frequently, if we
wish to transform an array access U into a more desirable
form U

0, we may be able to either apply a data transforma-
tionA or a loop transformation T to give the desired effect,
depending on legality and optimisation criteria being satis-
fied and any side effects on the rest of the program. It is also
possible to reverse the effect of a data transformation by a
loop transformation and vice-versa. Consider the applica-
tion of data transformationA on access U . If we then apply
a loop transformation T

�1

= U

�1

A

�1

U to the updated
access U 0, we recover the original access: U 0T�1 = U .

Similarly for a loop transformation T , we can reverse its
impact by using a data transformation A = UTU

�1. Thus
the global impact of data transformations can frequently
be resolved locally by loop transformations. Conversely,
data transformation can recover the structure of a particular
access without affecting other accesses within the loop nest.

These complementary transformations depend on in-
verses. Although an access matrix U is often singular, in
practise it is straightforward to generate a pseudo-inverseUy

such that U � U

y

= I . For example, consider the access to
A in Loop 2 in Figure 2 row 1, column 1.

�

0 0 1

0 1 1

�

U

A

�

2

4

0 0

�1 1

1 0

3

5

U

y

A

=

�

1 0

0 1

�

We cannot, however, guarantee that the resulting con-
structed transformation actually reverses the effect of the
original. The practical implication is that for certain optimi-
sations and certain access matrices, only one form of trans-
formation may be used.



4 Properties

This section examines four optimisation criteria in terms
of access matrix structure, allowing both loop and data trans-
formations to be considered. It develops existence criteria
for each optimisation and examines whether or not loop and
data transformations may be applied.

4.1 Communication and Synchronisation

References requiring access to remote memory incur
inter-processor communication and potentially synchronisa-
tion, to cover cross-processor dependences. This section de-
scribes how transformations can reduce both of these over-
heads. We assume a data centric approach to parallelisation,
achieved by partitioning data across the processor space and
scheduling work according to the owner-computes rule [5].

We wish to find a data transformation A that reduces
communication. Consider two references U

A

and V
B

. If the
ith index of the reference V

B

is to be aligned to U
A

, we have
to apply a data transformation A to B and the ith row of A,
denoted by y, should obey the following equation:

yV = U

i

or V

T

y

T

= U

T

i

(1)

where U
i

is the ith row of U . This immediately leads to the
following theorem that says that two arrays can be aligned
on a particular dimension as long as one of the arrays is not-
invariant of a particular (combination of) iterators appearing
in the corresponding subscript of the other array.

Theorem 1 It is possible to align a row of a matrix V with
another access matrix U iff uT

i

is perpendicular to the ker-
nel, or null space, of V .

This theorem 2 enables us to determine whether there ex-
ists a data transformation to align arrays to eliminate inter-
processor communication. In section 5, this property will be
used as part of the global optimisation heuristic.

To deal with synchronisation, we use the following two
theorems [17]. The first is based on the owner-computes
model which implies that all write accesses to an array are to
local data. The second implies that if we align two or more
array references, we reduce the chance of synchronisation
associated with them.

Theorem 2 Output data dependences never require syn-
chronisation.

Theorem 3 If a read array reference is partitioned on
aligned indices with the write array reference in a particular
statement, no data dependences associated with that read
array reference require synchronisation.

2Due to space restrictions, proofs are omitted.

Once we have computed the minimum number of cross-
processor dependences, we need to know where to place
synchronisation points so as to preserve program semantics
at minimal cost [5].

4.2 Spatial and Temporal Locality

This section examines uni-processor locality which must
be exploited if the gains of parallelisation are not to be lost
due to poor use of the memory hierarchy.

4.2.1 Spatial Locality

Assuming a column-major ordering of arrays, the inner-
most iterator should, ideally, access only the first index of
an array, if any, for good spatial locality. Hence we say
that an access matrix U has good spatial locality if U =

�

Y 1 O

�

where O is an optional null sub-matrix, 1 =

[1; 0; : : : ; 0]

T and Y is an arbitrary sub-matrix. The 1 corre-
sponds to the innermost iterator referenced by the first index.
For good spatial locality, this iterator must not be referred
to by any other index. The following theorems define when
loop and data transformations can be used to improve spatial
locality, depending on the access matrix structure.

Theorem 4 It is always possible to construct a data trans-
formationA, which transforms an accessU into a form with
good spatial locality.

Theorem 5 It is possible to construct a loop transfor-
mation T which transforms an access U of the form
U

T

= [X

T

O]

T into a form with good spatial locality iff
rank(X) = N , where N is the number of rows of X .

One immediate consequence of the above two theorems
is that data transformations are strictly more powerful in im-
proving spatial locality than loop transformations.

4.2.2 Temporal Locality

Temporal locality occurs when the same value is used more
than once within a calculation. If a reference is invariant
of the innermost iterator, then temporal locality is exploited
[4, 8, 21]. Hence U has good temporal locality if U =

�

Y O

�

where Y is an arbitrary sub-matrix and O is a
null sub-matrix. We present two theorems which describe
when loop and data transformations can derive such a form.

Theorem 6 Data transformations cannot improve or affect
temporal locality.

Theorem 7 A loop transformation T to transform an ac-
cess U into a form with good temporal locality exists iff
rank(U) < M , where M is the number of enclosing iter-
ators.



When finding a loop transformation to enhance locality,
the optimisation criteria for temporal and spatial locality are
complementary, allowing direct construction of loop trans-
formations that improves both spatial and temporal locality
(see section 5.4).

5 Combining Data and Loop Transforma-
tions for Optimisation

This section examines how loop and data transformations
interact with respect to different optimisation criteria. It also
develops a heuristic that attempts to construct the best set
of transformations to trade off any potentially conflicting re-
quirements.

5.1 Global Optimisation

We wish to find a data transformationA and a loop trans-
formation T such that AUT�1 has the “best” structure for
all accesses U . This requirement forms a system of equa-
tions with a quadratic number of unknowns making direct
solution impossible. Due to their global nature, any data
transformation A must consider all references to the array
throughout the program and there will be a trade-off when
different transformations are required in different program
locations. For loop transformations difficulties arise if dif-
ferent accesses within a loop nest require different loop nest
orderings. Finally, the notion of “best” is compile-time un-
decidable. Instead, we propose a heuristic that attempts to
minimise overheads. We prioritise those sections of the pro-
gram that are likely to be executed most frequently and those
overheads that are most expensive. Thus, we focus on the
deepest loop nests and consider synchronisation and com-
munication before intra-processor locality since a barrier
synchronisation, for instance, is an order of magnitude more
expensive than a L1 cache miss. We still, however, want
good uni-processor code and therefore, after parallelisation,
we optimise so that there will be as few accesses as possible
to expensive levels of the memory hierarchy. We first ap-
ply data transformations as long as they do not affect inter-
processor synchronisation, since they do not affect tempo-
ral locality (Theorem 6) nor the ability of loop transforma-
tions to exploit temporal locality. Moreover, data transfor-
mations will almost inevitably require adjustments to loop
nest structure [19]. Hence we apply loop optimisations af-
ter data transformations.

5.2 Global Data Layout Optimisation

Determining data layout in the context of alignment for
message-passing architectures has received a large amount
of interest [3, 12]. These approaches rely on a restricted sub-
set of transformations and are not directly applicable in the

1. Reduce the following matrix to row echelon form

�

^

V

T

^

U

T

O O

I

M

�

2. Reorder by elementary row operations such that lead-
ing non-zeros lie on the diagonal.

3. For each column i of the reduced ^

U matrix, if this col-
umn is independent, place this row in row i ofA. Oth-
erwise, select an independent row of I

M

Figure 3. Data Layout Algorithm

present context. Instead, we use a technique based on deter-
mining the best transformation for each array reference pair
and use a metric to help trade-off conflicting requirements.

Alignment metric The more corresponding rows of array
access matrices U and V are equal, the more aligned the ar-
rays are. The alignment evaluation function H therefore is
simply the number of equal rows.

H(U ;V) =

M

X

k=1

�

U

k

;V

k

where �
e;f

=

�

1 e = f ^ e 6= 0

0 otherwise

For example, for arrays A and B in figure 2, H(U

A

;U

B

) = 0

in the program shown in column 1, but H(U

A

;U

B

) = 2 in
the program shown in column 2.

Construction of a Data Transformation The algorithm
is shown in Figure 3, where the data transformation A is
chosen in order to maximise the number of perfectly aligned
subscripts or rows of ^

U and A^

V , where ^

U and ^

V denote ex-
panded array accesses padded with rows and columns of ze-
roes to make them of equal size. In order to determine the
form ofA, it is necessary to find a solution for as many rows
to equation (1). The algorithm reduces an ^

V

T to row eche-
lon form, while simultaneously carrying the same elemen-
tary operations on ^

U

T and the identity matrix I
M

.

Global Data Alignment Algorithm Based on the previ-
ous section, we now develop a global algorithm, shown in
Figure 4, to determine the best layout for all arrays. The
most significant regions are first selected based on loop nest
depth or profiling. Once we have the global data layout, we
can use theorems 6 and 7 to mark any dependences guaran-
teed to be local as a pre-processing step for barrier synchro-
nisation placement [5].



1. Order arrays in terms of importance

2. For each pair of arrays A and B, determine within each
statement s the data transformationA

s

that maximises
H(U

A

;A

s

V

B

) for all accesses U
A

and V
B

in s.

3. For each pair A and B, determine s such that
P

k

H(U

k

A

;A

s

V

k

B

) is maximised for all accesses
U

k

A

and Vk
B

to A and B, respectively. Set A
A;B

= A

s

.

4. For A = 1; : : : ; NumArrays, propagate alignment:
For B = A+ 1; : : : ; NumArrays

For C = B+ 1; : : : ; NumArrays

A

B;C

:= A

A;B

�A

B;C

Figure 4. Global Alignment Algorithm

1. Let T be given by t

ij

= 1 if i + j = N + 1, and 0
otherwise.

2. Reduce UT to integer row echelon form by rowwise
operations B.

3. For i 2 1; : : : ; N

If row P

i

is null, set A
i

= B
i

.
Otherwise, set A

i

to the ith basis vector.

Figure 5. Data Transformation for Spatial Lo-
cality

5.3 Data Transformations for Spatial Locality

We now consider data layout transformations to improve
spatial locality. These data transformations will not affect
temporal locality (Theorem 6), but it is important that in-
dices that have been aligned by the previous stage are not
“de-aligned” as this may possibly introduce cross-processor
dependences. Again we use a metric to help trade-off con-
flicting requirements.

Spatial locality metric The spatial locality metricS eval-
uates the improvement of a layout transformation A for an
array by assigning 1 if the access matrix is in the correct for-
mat (see section 4.2.1) and 0 otherwise.

S

U

=

�

1 U

1;k

= 1 and 8i 2 2; : : : ; N : U

i;k

= 0

0 otherwise

where k is the first non-zero column starting from the right-
most column of U .

Constructing a Spatial Locality Data Transformation
The algorithm in Figure 5 attempts to create an access matrix

1. For each array A and each reference r 2 1; : : : ; R

A

to
array A, determine best legal Ar

A

2. For each A, determine A
A

= max

R

A

r=1

P

R

A

k=1

S

A

r

A

U

k

A

Figure 6. Global Spatial Locality Algorithm

with good spatial locality. It is an extension of the algorithm
described in [18] by restricting attention to those indices of
the array that are guaranteed to be non-partitioned. We in-
troduce an N � N partition matrix P , where each row is
either the corresponding row of the identity matrix that sig-
nifies that the corresponding row of the array under consid-
eration is to be partitioned along that dimension, or null (no
partitioning).

Global Spatial Locality Algorithm - Data The global al-
gorithm uses the preferred data layout transformations of
each reference to an array and selects the best transformation
based on the evaluation function S. By construction paral-
lelism, synchronisation and communication are unaffected.

5.4 Loop Transformations for Spatial and Tem-
poral Locality

In this section we show how to construct a valid loop
transformation that increases the locality in a loop nest. We
take into consideration multiple accesses of possibly differ-
ent arrays and then show how the set of all dependences D
can be used to construct a legal transformation.

Construction of a Transformation Given an access ma-
trix U , the array is traversed along lines with direction equal
to the last column of U . A loop transformation T changes
this access direction to a new direction given by the last col-
umn of UT�1 which equals U~c if we denote the last column
of T�1 by ~c. Hence, if the transformed access should have
a column wise direction for, say, a 2 dimensional array, then
[1 0]

T and U~c should be linearly dependent. If we can find
~c with this property, then we can construct T�1 and hence
T by a completion method for unimodular transformations
[2]. Note that in case U~c = ~

0 temporal locality occurs.
First, we observe that a vector~a is linearly dependent on

[1 0]

T iff [0 1] ~a =

~

0. Hence we need to find ~c such that
[0 1] U ~c =

~

0. If we have a collection fU
i

j 1 � i � mg

of accesses, then all access patterns are given simultaneous
column wise access if ~c satisfies S~c =

~

0 for the following
objective matrix S:



1. Construct the set ~

D = f

~

d 2 D j T

~

d � (0; : : : ; 0; a)

T

g.

2. Select z = �1 if U ~

d �

~

0 for any ~

d 2

~

D, and z = 1

otherwise.

3. Construct Y . Let ~

T consist of the first M � 1 rows
of T . Determine whether there exists a vector ~y with
gcd(y

1

; : : : ; y

M�1

) = 1 such that ~y � ~T ~d > 0 holds for
all ~d 2 D �

~

D. The construction of Y fails if no such
y exists. Otherwise, we use y as the first row of Y and
use a completion method.

Figure 7. Construct Valid V

S =

2

6

4

0 1

. . .
0 1

3

7

5

2

6

4

U

1

...
U

m

3

7

5

(2)

We use integer echelon reduction to compute the kernel
of S [2]. We choose a vector ~c for the last column of T�1

from the set of basis vectors of this kernel and use a comple-
tion method [2] to construct an M �M unimodular matrix
T . If S is non-singular then the reshaping method fails: the
only element in its kernel is ~0.

The loop transformationT is not necessarily legal. How-
ever, the following V is still a unimodular matrix for which
the last column of the inverse is �~c and hence is a transfor-
mation that we can use:

V =

2

6

6

6

4

0

Y

...
0

0 : : : 0 �1

3

7

7

7

5

T (3)

Consequently, if we can construct a valid V then we are
done. Otherwise, another~c is tried until either this construc-
tion is successful, or none are left. In the latter case, the re-
shaping method fails.

Global Spatial and Temporal Locality Algorithm - Loop
Summarising, the following is an algorithm to construct a
valid loop transformation to increase both temporal and spa-
tial locality.

1. Construct the objective matrix S and hence T .

2. Construct V (see Figure 7).

3. If the reshaping method fails, construct a new S using
less access matrices and try again.

6 Results

In order to validate the approach described in this pa-
per, we ran a number of experiments on an SGi Origin
2000. Three SPECfp92 kernels, vpetst, btrtst and
chotst, were selected to test our compiler algorithm
against alternative techniques. Four different approaches
were tested and their performance plotted against the num-
ber of processors p. Firstly, each kernel was parallelised by
our compiler MARS [5], where the combined algorithm de-
veloped in this paper was compared against loop only and
data only approaches. Secondly, to give a broader compar-
ison, PFA, a commercial loop-orientated parallelising com-
piler that makes use of limited data layout transformations
such as global index reordering, was also evaluated. The re-
sults of these experiments can be seen in Figures 8, 9 and
10.

VPETST The combined algorithm gives a performance
improvement over the other approaches especially for larger
values of p. By reordering the array layout, stride-1 access
throughout the program is achieved, without the need for
any loop reordering. For this reason, the programs derived
from the Data only and Combined approaches are identical.
In the case of Loop only transformations, the lack of data
transformations has relatively little impact, as data align-
ment is already ideal, so there is no unnecessary communi-
cation/synchronisation. Applying loop transformations im-
proves spatial locality in two of the main 2-dimensional loop
nests, but it does not improve spatial locality in the remain-
ing five 1-dimensional loop nests. As the number of proces-
sors increase, the overhead of poor spatial locality in these
loop nests becomes a significant overhead, as shown by the
graph in Figure 8 labelled ‘Loop’. Finally, the performance
of PFA is approximately 50% slower on 32 processors than
the combined approach and 20% slower than the loop based
approach. The later difference is primarily due to additional
synchronisation overhead when using loop-based paralleli-
sation, as the communication and locality properties are the
same as ‘Loop’.

BTRTST Once again the combined approach has the best
overall performance. Using purely data transformations
achieves similar results except for large p where the inabil-
ity to improve spatial locality within one of the loop nests in-
creases in significance. The solely loop based approach per-
forms significantly worse than either the combined or data
approaches. Here, there is poor data alignment which re-
sults in communication and inserted barrier synchronisation.
PFA improves on the loop only approach by merging loops
and decreasing synchronisation overhead. The combined
approach is, however, a factor 2 faster than PFA for large p.
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CHOTST This program shows the importance of using
data transformations in parallelisation. Their usage elim-
inates communication and synchronisation and improves
spatial locality without the need for further loop transforma-
tions, hence the combined and data only approaches give the
same results. Both the loop only approach and PFA suffer
from poor stride and excessive synchronisation. In the case
of PFA there are two orders of magnitude more synchronisa-
tion than in the combined case. This is compounded by poor
spatial locality in one of the deepest loop nests so that the
parallelised code never runs faster than the sequential ver-
sion. The combined approach is a factor of 80 times faster
than PFA on 32 processors.

7 Related Work

There is a very large body of work concerned with im-
proving parallelism and locality using program transforma-
tions. In [21], unimodular loop transformations are used to

improve parallelism and locality, which is extended to the
non-singular case in [15]. They restrict themselves to loop
transformations and do not consider cases where there are
conflicting access requirements. In such instances, [16] pro-
poses a simple heuristic, limited to just loop permutations,
which is extended to the unimodular case in [4]. These ap-
proaches are limited in that they do not consider array layout
transformations.

Other researchers have considered data transformations,
primarily with respect to data alignment and partitioning.
In [3, 12] approaches based on graph theory, integer pro-
gramming and linear algebra are explored. Most of this
work, however, considers alignment to be part of a mapping
process rather than a program transformation and thus, par-
allels with loop transformation are absent. In [20], align-
ment as a program level transformation is first presented
while [14] uses a similar representation for uni-processor
spatial locality. In [7], data linearisation transformations are
considered as a means to change array layout, while data
permutation and strip-mining transformations are consid-
ered in [1]. In [18], we developed a new framework describ-
ing non-singular data transformations equivalent in standing
to loop transformations and described how they may be used
to improve program performance. Again, these approaches
are limited as they restrict themselves to just data transfor-
mations.

There has been recent work considering the combination
of loop and data transformations in improving program per-
formance. Using a hyperplane formulation of data trans-
formations and non-singular loop transformations, an algo-
rithm, which considers a restricted set of loop and data trans-
formations, is proposed as a means of improving locality [7].
In [10, 11], a similar formulation is used, but considers a
wider class of transformations. These approaches, however,
have an asymmetric treatment of loop and data transforma-
tions and do not explicitly consider multi-processor issues



such as communication and synchronisation overhead. In-
stead, reliance is placed on the fact that exploiting inner lo-
cality may give outer loops which may be parallelised, an
argument similar in spirit to [21]. This paper, however, uses
a unified representation of loop and data transformations and
explicitly considers multi-processor issues and how these
interact with locality.

8 Conclusion

This paper has shown how both non-singular loop and
data transformations may be used for the same optimisation
goals and has defined when they may be used interchange-
ably. It has developed optimisation criteria for locality, syn-
chronisation and communication in such a manner that al-
lows both loop and data transformations to be used. It has
further shown that neither loop nor data transformations can
be solely used for efficient parallelisation. This paper has
developed a global parallelisation heuristic and has shown
that combining non-singular loop and data transformations
significantly outperforms existing techniques.

Due to the use of a data partitioning based parallelisation
implementation, data alignment transformations have been
shown to have significant impact. It remains to be seen if
loop alignment will prove as useful in loop-based affinity
scheduling. Future work will concentrate on integrating the
optimisation approach described in this paper with our pre-
vious work on rank-modifying transformations, allowing it-
eration and data space tiling to be incorporated into one uni-
form optimisation approach. Future work will also inves-
tigate other formulations of the overall optimisation algo-
rithm and examine the interaction of optimisation phases.
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