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Abstract

This paper attempts to minimise parallelisation overhead
on distributed shared memory machines, such as the SGi
Origin 2000, by the combination of non-singular loop and
data transformations. We show that conflicting require-
ments on a loop transformation may be resolved by using
a data transformation and vice-versa. We develop optimi-
sation criteriafor locality, synchronisation and communica-
tion and show that neither loop nor data transformationscan
be solely used for efficient parallelisation. Thisleadsto the
development of anovel global optimisation heuristic which
isappliedto 3 SPEC kernelswhereit isshown to outperform
techniques solely based on loop or data transformationsand
to give significant improvement over an existing state-of -
the-art commercia auto-paralleliser.

1 Introduction

Effective utilisation of distributed shared memory multi-
processorsrelies on the efficient mapping of program paral-
lelism to machineparallelism. Duetotheincreasingrelative
cost of memory latency, exploiting the memory hierarchy is
essential. Otherwise, any gains made by discovering par-
allelism can easily be outweighed by overheads such as re-
mote memory access. Parallelising compilers need to min-
imise any introduced synchronisation and inter-processor
communication overhead as well as maximising temporal
and spatial locality within a program.

Loop transformations for parallelism and locality [15,
21] have been extensively studied in the context of shared
memory parallel machines. Although frequently successful,
they suffer from the fact that the analysis and transforma-
tionsareinevitably local, since the unit of considerationisa
loop nest rather than the entire program. Furthermore, they
arerestricted intheir application by datadependences. Con-
versely, data transformations, such as alignment and parti-
tioning, havereceived much attentionin distributed memory
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compilation[6, 9, 12]. Asdatalayout has programwideim-
pact, these techniques have, by necessity, been more global
in their consideration. They are unaffected by data depen-
dences but there has been, until recently, difficulty in apply-
ing datatransformationsto reshaped arraysacross procedure
boundaries (in [19] a solution to this problem is presented).
Though potentially determining good overall layouts, data
transformations are unable to remedy any introduced poor
code localised within a section of the program.

The central problem with both these approachesisthat of
balancing conflicting requirementsthroughout the program.
More specifically, if one part of a program, be it aloop or
an array access, requires a particular transformation but an-
other part requiresacompletely distinct transformation, how
dowedeterminetransformationsthat trade-off such require-
mentsto give a globally acceptable result? In this paper we
show that conflicting requirements on aloop transformation
may be resolved by using a data transformation and vice-
versa. Such acombination of loop and data transformations
S0 as to get the best from both approaches has recently re-
ceived some attention. In particular, Cierniak and Li [7] and
Kandemir et al. [10, 11] have combined non-singular loop
transformation with data transformationsto improve spatia
locality. The asymmetry between loop and data transfor-
mationsin their representation, however, preventsthe direct
combination of loop and data transformations.

This paper devel opsacompiler heuristicto minimise par-
allelisation overhead. It explores how conflicting require-
ments on a loop transformation may be resolved by using
a data transformation and vice-versa. Thisis achieved by
treating loop and data transformations in a unified man-
ner. We develop specific optimisation criteria for spatial
and temporal locality, and communication and synchronisa-
tion reduction. We define those instances where both loop
and data transformations can be used or when only one is
applicable. We examine how different optimisation crite-
riacan lead to conflict and where the use of complementary
transformations may overcomethis. Thisisfollowed by an
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Figure 1. Serial Code

overall optimisation heuristic that trades-off costs in cases
where conflicts are irreconcilable. This approach has been
implemented in the MARS compiler [5] and we show that it
outperforms existing approaches on three SPEC kernels.

The next section presents amotivating exampleoutlining
some of the main ideas developed later in the paper. Sec-
tion 3 briefly outlines the notation used and provides a de-
scription of non-singular loop and data transformations and
whenthey may beusedinterchangeably. Section4 examines
optimising transformations and criteria for when they may
be applied. Section 5 presents a global optimising heuris-
tic which is followed in section 6 by experimental results
showing the applicability of our scheme. Section 7 reviews
related work which is followed in section 8 by some brief
concluding remarks.

2 Example

In this section, we examine a simple example to illus-
trate some of the main points described in this paper. Con-
sider the program in Figure 1. If this code is mapped to a
four processor parallel machine by row partitioning and the
owner computes-rule, we have the local node code in row
1, column 1 of Figure 2 wheretheterms| o and hi refer to
the local array bounds. The impact of subsequent transfor-
mations to this program is shown in row 1, columns 2 to 4
whereas the diagramsin rows 2 to 5 give a graphical repre-
sentation. Here, each box representsa particular array, with
dotted lines showing how the datais partitioned acrossthe 4
processors' and wewill focusour attention on the behaviour
of processor 3. The dark shaded regions refer to local data
accessed by the programs. Lighter shading corresponds to
remote memory access, incurring possible synchronisation.
The direction of data access is shown by an arrow.

Dueto column-major layout in Fortran, array Binthefirst
loop has good stride access (row 2, column 1). However, in
the second loop, all arrays have poor spatial locality. Fur-
thermore, in Loop 2 thereisremote memory accessto arrays

LIn SGI terms, we can consider part of each array as having it's home
node determined by C$distribute(block,*)

B and C, shown by thelight shaded regions. Thereis conse-
guently a cross-processor flow dependence on array B from
Loop 1to 2 resulting in the inserted barrier.

If wefirst apply a data transformation that realigns data
S0 as to minimise communication and synchronisation we
obtain the new codein row 1, column 2. Now thereisnore-
mote memory accesses and the cross-processor data depen-
dence has been eliminated and thus the barrier synchronisa-
tion has been removed. However, thereis still poor spatial
locality with respect to arrays A and B in Loop 2 and the spa-
tial locality in Loop 1 has been destroyed.

Further data transformations can be applied to arrays A,
B and C, giving the code in column 3. Here, spatial locality
has been improved in Loop 2 without introducing synchro-
nisation or communication overhead. However, the spatial
locality inLoop 1isstill just aspoor. Infact, itisimpossible
to find a data layout that will improve spatial locality to ar-
ray B in both loop nests. If, however, aloop transformation
is applied then we have the code in column 4, which hasthe
same properties as column 3 with the addition of good spa-
tial locality in Loop 1. Neither loop nor datatransformations
alone could produce such a program: a combined approach
was necessary. |n subsequent sections, we will detail when
each transformation can be used before developing a com-
piler heuristic that exploits the benefits of both approaches
and performs trade-offswhere necessary.

3 Transformations

Inthissection, webriefly introducethe algebraic notation
used to describe transformations and their properties.

Spaces Theloopindicesor iterators can berepresented as
an M x 1 columnvector J = [j1, ja, - - -, jur] T where M is
the number of enclosing loops. The loop ranges can be de-
scribed by a system of inequalities defining the polyhedron
or iteration space BJ < b. whereB isa (¢ x M) integer
matrix and b a (¢ x 1) vector for some ¢. The data storage
of an array A can also be viewed as a polyhedron. We in-
troduce formal indicesZ = [iy,is,...,in]7, where N is
the dimension of array A, to describe the array index space.
This spaceis given by the polyhedron A7 < a, where A is
a(2N x N) integer matrix and a a (2N x 1) vector. We
assume that the subscriptsin a reference to an array A can
bewritten asi{.J + u, wherel{ isa (N x M) integer matrix
anduisa(N x 1) vector.

DataTransformations A linear datatransformationisap-
plied to the index space of a particular array and to all ac-
cesses to that array throughout the program and is therefore
global in nature. A data transformation A maps an index
vector 7 to anew index vector 7' = AZ. Each array ac-
cess U for an array A must be globally updated to U/’ =
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Figure 2. Partitioned and Transformed Code

AU . Data transformations are therefore |eft-hand transfor-
mations when applied to array access functions.

Loop Transformations A linear loop transformation T’
maps an iteration vector J to a new iteration vector J' =
TJ. Each access U/ within the loop nest must be updated
told’ = UT~'. Thus, loop transformations are right-hand
transformationswhen applied to array accessesand arelocal
in nature.

Complementary Transformations Frequently, if we
wish to transform an array access I/ into a more desirable
form ', we may be able to either apply a data transforma-
tion A or aloop transformation 7 to give the desired effect,
depending on legality and optimisation criteria being satis-
fied and any side effectson therest of the program. Itisaso
possible to reverse the effect of a data transformation by a
loop transformation and vice-versa. Consider the applica
tion of data transformation .4 on accessi/. If we then apply
aloop transformation 7 = U~ AU to the updated
access U’, we recover the original access: U'T~! = U.

Similarly for a loop transformation 7', we can reverse its
impact by using a data transformation A = YTU~'. Thus
the global impact of data transformations can frequently
be resolved locally by loop transformations. Conversely,
datatransformation can recover the structure of a particular
access without affecting other accesses within theloop nest.

These complementary transformations depend on in-
verses. Although an access matrix U is often singular, in
practiseitisstraightforwardto generatea pseudo-inversel/f
suchthat ¢4 x Ut = I. For example, consider the access to
AinLoop 2inFigure2row 1, column 1.

00 1 I
{011]%’({_1 éJu;_ 01]

We cannot, however, guarantee that the resulting con-
structed transformation actually reverses the effect of the
original. The practical implicationisthat for certain optimi-
sations and certain access matrices, only one form of trans-
formation may be used.




4 Properties

This section examines four optimisation criteriain terms
of accessmatrix structure, allowing both loop and datatrans-
formations to be considered. It develops existence criteria
for each optimisation and examines whether or not loop and
data transformations may be applied.

4.1 Communication and Synchronisation

References requiring access to remote memory incur
i nter-processor communicationand potentially synchronisa-
tion, to cover cross-processor dependences. Thissectionde-
scribes how transformations can reduce both of these over-
heads. We assume adata centric approach to parall€elisation,
achieved by partitioning data across the processor space and
scheduling work according to the owner-computesrule[5].

We wish to find a data transformation A that reduces
communication. Consider two references{, and V. If the
ithiindex of thereference Vi isto be aligned to U4y, we have
to apply adatatransformation A to B and the ith row of A,
denoted by y, should obey the following equation:

yV=u; or VIyT =ur (1)

wherel; istheith row of /. Thisimmediately leadsto the
following theorem that says that two arrays can be aligned
on aparticular dimension aslong as one of the arraysis not-
invariant of aparticular (combination of ) iterators appearing
in the corresponding subscript of the other array.

Theorem 1 Itispossibleto align a row of a matrix V with
another access matrix / iff ul is perpendicular to the ker-
nel, or null space, of V.

Thistheorem? enables usto determinewhether there ex-
ists a data transformation to align arraysto eliminate inter-
processor communication. In section 5, this property will be
used as part of the global optimisation heuristic.

To deal with synchronisation, we use the following two
theorems [17]. The first is based on the owner-computes
model which impliesthat all writeaccessesto an array areto
local data. The second impliesthat if we align two or more
array references, we reduce the chance of synchronisation
associated with them.

Theorem 2 Output data dependences never reguire syn-
chronisation.

Theorem 3 If a read array reference is partitioned on
alignedindiceswiththewrite array referenceina particular
statement, no data dependences associated with that read
array reference require synchronisation.

2Due to space restrictions, proofs are omitted.

Once we have computed the minimum number of cross-
processor dependences, we need to know where to place
synchronisation points so as to preserve program semantics
at minimal cost [5].

4.2 Spatial and Temporal Locality

This section examines uni-processor locality which must
be exploited if the gains of parallelisation are not to be lost
due to poor use of the memory hierarchy.

4.2.1 Spatial Locality

Assuming a column-major ordering of arrays, the inner-
most iterator should, ideally, access only the first index of
an array, if any, for good spatial locality. Hence we say
that an access matrix I/ has good spatial locality if &/ =
[ Y 1 O ]whereO isanoptional null sub-matrix, 1 =
[1,0,...,0]T and Y isan arbitrary sub-matrix. The 1 corre-
spondsto theinnermost iterator referenced by thefirst index.
For good spatial locality, this iterator must not be referred
to by any other index. The following theorems define when
loop and datatransformationscan be used to improve spatial
locality, depending on the access matrix structure.

Theorem 4 It is always possible to construct a data trans-
formation .4, which transformsan accessi/ into aformwith
good spatial locality.

Theorem 5 It is possible to construct a loop transfor-
mation 7' which transforms an access ¢/ of the form
ut = [XT0)%into a form with good spatial locality iff
rank(X) = N, where N isthe number of rows of X.

One immediate consequence of the above two theorems
isthat datatransformationsare strictly more powerful inim-
proving spatial locality than loop transformations.

4.2.2 Temporal Locality

Temporal locality occurs when the same valueis used more
than once within a calculation. If a reference is invariant
of the innermost iterator, then temporal locality is exploited
[4, 8, 21]. Hence U has good temporal locality if U =
[ Y O ] whereY isan arbitrary sub-matrix and O is a
null sub-matrix. We present two theorems which describe
when loop and data transformations can derive such aform.

Theorem 6 Data transformations cannot improve or affect
temporal locality.

Theorem 7 A loop transformation 7' to transform an ac-
cess U into a form with good temporal locality exists iff
rank(U) < M, where M isthe number of enclosing iter-
ators.



When finding aloop transformation to enhance locality,
the optimisation criteriafor temporal and spatial locality are
complementary, allowing direct construction of loop trans-
formationsthat improves both spatial and temporal locality
(see section 5.4).

5 Combining Data and Loop Transforma-
tionsfor Optimisation

This section examineshow loop and datatransformations
interact with respect to different optimisation criteria. It also
develops a heurigtic that attempts to construct the best set
of transformationsto trade off any potentially conflicting re-
guirements.

5.1 Global Optimisation

Wewish to find adatatransformation .4 and aloop trans-
formation 7" such that AT ~! has the “best” structure for
all accesses /. This requirement forms a system of equa-
tions with a quadratic number of unknowns making direct
solution impossible. Due to their global nature, any data
transformation .4 must consider all references to the array
throughout the program and there will be a trade-off when
different transformations are required in different program
locations. For loop transformations difficulties arise if dif-
ferent accesses within aloop nest require different loop nest
orderings. Finally, the notion of “best” is compile-time un-
decidable. Instead, we propose a heuristic that attempts to
minimise overheads. We prioritise those sections of the pro-
gramthat arelikely to be executed most frequently and those
overheads that are most expensive. Thus, we focus on the
deepest loop nests and consider synchronisation and com-
munication before intra-processor locality since a barrier
synchronisation, for instance, isan order of magnitude more
expensive than a L1 cache miss. We till, however, want
good uni-processor code and therefore, after parallelisation,
we optimise so that there will be asfew accesses as possible
to expensive levels of the memory hierarchy. We first ap-
ply datatransformations as long as they do not affect inter-
processor synchronisation, since they do not affect tempo-
ral locality (Theorem 6) nor the ability of loop transforma-
tions to exploit temporal locality. Moreover, data transfor-
mations will almost inevitably require adjustments to loop
nest structure [19]. Hence we apply loop optimisations af-
ter data transformations.

5.2 Global Data Layout Optimisation

Determining data layout in the context of alignment for
message-passing architectures has received a large amount
of interest [3, 12]. These approachesrely on arestricted sub-
set of transformations and are not directly applicablein the

1. Reduce the following matrix to row echelon form

fﬂ"L?TI
o o M

2. Reorder by elementary row operations such that lead-
ing non-zeros lie on the diagonal.

3. For each column i of the reduced ¢/ matrix, if this col-
umn isindependent, place thisrow inrow i of A. Oth-
erwise, select an independent row of I,

Figure 3. Data Layout Algorithm

present context. Instead, we use atechnique based on deter-
mining the best transformation for each array reference pair
and use a metric to help trade-off conflicting requirements.

Alignment metric  Themore corresponding rows of array
access matrices!/ and V are equal, the more aligned the ar-
rays are. The aignment evaluation function H thereforeis
simply the number of equal rows.

1 e=fAe#0

M
HU,V) = b, v, Whered,,; = { 0 otherwise

k=1

For example, for arrays Aand Binfigure 2, H (Uy,Us) = 0
in the program shown in column 1, but H (Uy,Us) = 2 in
the program shown in column 2.

Construction of a Data Transformation The agorithm
is shown in Figure 3, where the data transformation A is
chosenin order to maximisethe number of perfectly aligned
subscripts or rows of Z/ and AV, where{ and V denote ex-
panded array accesses padded with rows and columns of ze-
roes to make them of equal size. In order to determine the
formof A, itisnecessary to find asolution for asmany rows
to equation (1). The algorithm reduces an VT to row eche-
lon form, while simultaneously carrying the same elemen-
tary operationson U™ and the identity matrix Ip;.

Global Data Alignment Algorithm Based on the previ-
ous section, we now develop a global algorithm, shown in
Figure 4, to determine the best layout for all arrays. The
most significant regions are first selected based on loop nest
depth or profiling. Once we have the global datalayout, we
can use theorems 6 and 7 to mark any dependences guaran-
teed to belocal asapre-processing step for barrier synchro-
nisation placement [5].



1. Order arraysin terms of importance

2. For each pair of arrays A and B, determinewithin each
statement s the data transformation A, that maximises
H(U,, AsVp) for all accessesify and Vs in s.

3. For each pair A and B, determine s such that
S HUY, AVE) is maximised for al accesses
Uk and V¥ to A and B, respectively. Set Ay 5 = As.

4. For A =1,...,NumArrays, propagate alignment:
ForB=A+1,...,NumArrays
ForC=B+1,...,NumArrays
AB,C = AA,B X AB7C

Figure 4. Global Alignment Algorithm

1 LetT begivenby t;; = 1ifi+j = N+ 1,and0
otherwise.

2. Reduce UT to integer row echelon form by rowwise
operations BB.

3. Foriel,...,N
If row P; isnull, set A; = B;.
Otherwise, set A; to the ith basis vector.

Figure 5. Data Transformation for Spatial Lo-
cality

5.3 DataTransformationsfor Spatial L ocality

We now consider data layout transformationsto improve
spatial locality. These data transformations will not affect
temporal locality (Theorem 6), but it is important that in-
dices that have been aigned by the previous stage are not
“de-aligned” asthis may possibly introduce cross-processor
dependences. Again we use a metric to help trade-off con-
flicting requirements.

Spatial locality metric  Thespatial locality metric .S eval-
uates the improvement of alayout transformation .4 for an
array by assigning 1 if the access matrix isin the correct for-
mat (see section 4.2.1) and O otherwise.

S, = 1 Z/{l,k=1andVi€2,...,N:Ui,k=0
U= 0 otherwise

where k isthe first non-zero column starting from the right-
most column of /.

Constructing a Spatial Locality Data Transformation
Thealgorithmin Figure5 attemptsto create an access matrix

1. For each array A and each referencer € 1,..., R, to
array A, determine best legal A%

2. For each A, determine Ay = max/%, S/ S 4y

Figure 6. Global Spatial Locality Algorithm

with good spatial locality. It isan extension of the algorithm
described in [18] by restricting attention to those indices of
the array that are guaranteed to be non-partitioned. We in-
troduce an N x N partition matrix P, where each row is
either the corresponding row of the identity matrix that sig-
nifies that the corresponding row of the array under consid-
eration isto be partitioned along that dimension, or null (no
partitioning).

Global Spatial Locality Algorithm - Data Theglobal al-
gorithm uses the preferred data layout transformations of
each referenceto an array and selectsthe best transformation
based on the evaluation function S. By construction paral-
lelism, synchronisation and communication are unaffected.

5.4 Loop Transformations for Spatial and Tem-
poral Locality

In this section we show how to construct a valid loop
transformation that increases the locality in aloop nest. We
take into consideration multiple accesses of possibly differ-
ent arrays and then show how the set of all dependences D
can be used to construct alegal transformation.

Construction of a Transformation Given an access ma-
trix U, the array istraversed along lines with direction equal
to the last column of ¢/. A loop transformation 7' changes
thisaccess direction to anew direction given by thelast col-
umn of T~ which equalsi/Zif we denotethe last column
of T—! by & Hence, if the transformed access should have
acolumnwisedirection for, say, a2 dimensional array, then
[10]7 and ¢/ should be linearly dependent. If we can find
¢ with this property, then we can construct 7! and hence
T by a completion method for unimodular transformations
[2]. Notethat in case 1/ = ( temporal locality occurs.

First, we observethat avector @ islinearly dependent on
[10]Tiff [0 1] @ = 0. Hence we need to find ¢ such that
[01]u &= 0. If wehaveacollection {4 | 1 < i < m}
of accesses, then all access patterns are given simultaneous
column wise access if @ satisfies S& = 0 for the following
objective matrix S:



1. ConstructthesetD = {d e D | Td = (0,...,0,a)T}.

2. Selectz = —1if Ud < Gformyje D,andz =1
otherwise.

3. Construct Y. Let T' consist of the first A/ — 1 rows
of T'. Determine whether there exists a vector ¢ with
ged(yr, ..., ya—1) = 1 suchthat 7-7'd > 0 holds for
al d € D — D. The construction of Y failsif no such
y exists. Otherwise, we use y asthe first row of Y and
use a completion method.

Figure 7. Construct Valid V

01 U,
S= ; 2
01 U

We use integer echelon reduction to compute the kernel
of S [2]. We choose a vector ¢ for the last column of 7!
from the set of basisvectors of thiskernel and use acomple-
tion method [2] to construct an M x M unimodular matrix
T. If S isnon-singular then the reshaping method fails: the
only element in its kernel is 0.

Theloop transformation T" is not necessarily legal. How-
ever, the following V' is still aunimodular matrix for which
thelast column of theinverseis +¢ and henceis atransfor-
mation that we can use:

V= Y bl 3)
0
0 ... 0 +1

Consequently, if we can construct a valid V' then we are
done. Otherwise, another ¢istried until either thisconstruc-
tion is successful, or none are left. In the latter case, the re-
shaping method fails.

Global Spatial and Temporal Locality Algorithm - Loop
Summarising, the following is an algorithm to construct a
valid loop transformation to increase both temporal and spa-
tial locality.

1. Construct the objective matrix S and henceT'.
2. Construct V' (see Figure 7).

3. If the reshaping method fails, construct anew S using
less access matrices and try again.

6 Resaults

In order to validate the approach described in this pa-
per, we ran a number of experiments on an SGi Origin
2000. Three SPECfp92 kernels, vpet st, btrtst and
chot st, were selected to test our compiler agorithm
against alternative techniques. Four different approaches
were tested and their performance plotted against the num-
ber of processorsp. Firstly, each kernel was parallelised by
our compiler MARS [5], where the combined algorithm de-
veloped in this paper was compared against loop only and
data only approaches. Secondly, to give a broader compar-
ison, PFA, acommercial loop-orientated parallelising com-
piler that makes use of limited data layout transformations
such as global index reordering, was also evaluated. There-
sults of these experiments can be seen in Figures 8, 9 and
10.

VPETST The combined algorithm gives a performance
improvement over the other approachesespecially for larger
values of p. By reordering the array layout, stride-1 access
throughout the program is achieved, without the need for
any loop reordering. For this reason, the programs derived
from the Data only and Combined approachesare identical.
In the case of Loop only transformations, the lack of data
transformations has relatively little impact, as data align-
ment is aready ideal, so there is no unnecessary communi-
cation/synchronisation. Applying loop transformationsim-
provesspatial locality in two of themain 2-dimensional loop
nests, but it does not improve spatial locality in the remain-
ing five 1-dimensional loop nests. Asthe number of proces-
sors increase, the overhead of poor spatial locality in these
loop nests becomes a significant overhead, as shown by the
graphin Figure 8 labelled ‘' Loop’. Finaly, the performance
of PFA is approximately 50% slower on 32 processors than
the combined approach and 20% slower than the loop based
approach. Thelater differenceis primarily dueto additional
synchronisation overhead when using loop-based paralleli-
sation, as the communication and locality properties are the
sameas‘Loop’.

BTRTST Once again the combined approach has the best
overall performance. Using purely data transformations
achieves similar results except for large p where the inabil-
ity toimprovespatial locality within one of theloop nestsin-
creasesin significance. The solely loop based approach per-
forms significantly worse than either the combined or data
approaches. Here, there is poor data alignment which re-
sultsin communication and inserted barrier synchronisation.
PFA improves on the loop only approach by merging loops
and decreasing synchronisation overhead. The combined
approach is, however, afactor 2 faster than PFA for large p.
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Figure 8. VPETST

CHOTST (n = 250)
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Figure 10. CHOTST

CHOTST This program shows the importance of using
data transformations in parallelisation. Their usage elim-
inates communication and synchronisation and improves
spatial locality without the need for further loop transforma-
tions, hencethe combined and dataonly approachesgivethe
same results. Both the loop only approach and PFA suffer
from poor stride and excessive synchronisation. In the case
of PFA therearetwo ordersof magnitude more synchronisa-
tionthan in the combined case. Thisiscompounded by poor
spatial locality in one of the deepest loop nests so that the
parallelised code never runs faster than the sequentia ver-
sion. The combined approach is a factor of 80 times faster
than PFA on 32 processors.

7 Related Work

Thereis a very large body of work concerned with im-
proving parallelism and locality using program transforma-
tions. In[21], unimodular loop transformations are used to
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improve parallelism and locality, which is extended to the
non-singular case in [15]. They restrict themselves to loop
transformations and do not consider cases where there are
conflicting accessrequirements. In such instances, [ 16] pro-
poses a simple heuristic, limited to just loop permutations,
which is extended to the unimodular casein [4]. These ap-
proachesarelimitedin that they do not consider array layout
transformations.

Other researchers have considered data transformations,
primarily with respect to data alignment and partitioning.
In [3, 12] approaches based on graph theory, integer pro-
gramming and linear algebra are explored. Most of this
work, however, considersalignment to be part of amapping
process rather than a program transformation and thus, par-
allels with loop transformation are absent. In [20], align-
ment as a program level transformation is first presented
while [14] uses a similar representation for uni-processor
spatial locality. In[7], datalinearisation transformationsare
considered as a means to change array layout, while data
permutation and strip-mining transformations are consid-
eredin[1]. In[18], we devel oped anew framework describ-
ing non-singular datatransformationsequivalentin standing
to loop transformationsand described how they may be used
to improve program performance. Again, these approaches
are limited as they restrict themselves to just data transfor-
mations.

There has been recent work considering the combination
of loop and data transformationsin improving program per-
formance. Using a hyperplane formulation of data trans-
formations and non-singular loop transformations, an algo-
rithm, which considersarestricted set of |oop and datatrans-
formations, isproposed asameansof improvinglocality [7].
In [10, 11], a similar formulation is used, but considers a
wider class of transformations. These approaches, however,
have an asymmetric treatment of loop and data transforma-
tions and do not explicitly consider multi-processor issues



such as communication and synchronisation overhead. In-
stead, relianceis placed on the fact that exploiting inner lo-
cality may give outer loops which may be parallelised, an
argument similar in spirit to [21]. This paper, however, uses
aunified representation of loop and datatransformationsand
explicitly considers multi-processor issues and how these
interact with locality.

8 Conclusion

This paper has shown how both non-singular loop and
data transformations may be used for the same optimisation
goals and has defined when they may be used interchange-
ably. It has developed optimisation criteriafor locality, syn-
chronisation and communication in such a manner that al-
lows both loop and data transformationsto be used. It has
further shown that neither loop nor data transformationscan
be solely used for efficient parallelisation. This paper has
developed a global parallelisation heuristic and has shown
that combining non-singular loop and data transformations
significantly outperforms existing techniques.

Dueto the use of adata partitioning based parallelisation
implementation, data alignment transformations have been
shown to have significant impact. It remains to be seen if
loop alignment will prove as useful in loop-based affinity
scheduling. Future work will concentrate on integrating the
optimisation approach described in this paper with our pre-
viouswork on rank-modifying transformations, allowing it-
eration and data spacetiling to beincorporated into one uni-
form optimisation approach. Future work will also inves-
tigate other formulations of the overall optimisation algo-
rithm and examine the interaction of optimisation phases.
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