
Class-like Descriptions of Packages

The Behaviour of Packages

P.J. 't Hoen

�

L.P.J. Groenewegen

y

J.H.M. Dassen

z

P.W.M. Koopman

x

G. Engels

{

I.G. Sprinkhuizen-Kuyper

k

February 9, 2000

Abstract

Current object-oriented modelling languages provide concepts like pack-

ages (or modules) to structure large-scale object-oriented models. These

concepts are purely syntactical. They are used to de�ne model-speci�c

name scopes and thus to hide encapsulated features inside a package. But,

in order to understand the semantics of what is contained in a package,

one still has to zoom into a package and to study its detailed �ne-grained

structure.

We present a new approach termed class-like description (CLD) of

packages. These CLDs allow to view a package as an ordinary class,

and to abstract from the detailed (hierarchical) structure of a package.

Thus, packages can be treated as ordinary classes on this higher level of

abstraction.

We illustrate our approach by extending the object-oriented modelling

language SOCCA with CLDs. SOCCA o�ers UML-like class diagrams

and state transition diagrams to model static and dynamic aspects of a

system. In addition, enhanced state transition diagram mechanisms are

provided to model sophisticated inter-object communications. The CLDs

in SOCCA re
ect these aspects too.

�

hoen@liacs.nl

y

luuk@liacs.nl

z

jhm@cistron.nl

x

pieter@cs.kun.nl

{

engels@uni-paderborn.de

k

kuyper@cs.unimaas.nl

1

Contents

1 Introduction 2

2 Formalisation 7

2.1 Data Perspective . 8

2.1.1 De�ning the Class . 8

2.1.2 Replacing a Package by a Class 10

2.1.3 Isolating the Replaced Class 13

2.1.4 Relationships . 13

2.1.5 Labels of the Uses Relationships 16

2.1.6 Visibility . 18

2.1.7 Export and Import . 20

2.2 Behaviour Perspective . 22

2.3 Functionality Perspective . 23

2.4 Communication Perspective . 26

3 Conclusion 29

4 Future Work 30

1

1 Introduction

The modelling and design of large object-oriented (OO) systems is still a di�cult

task. Much e�ort has been put into developing techniques to facilitate the design

of such large systems. The behaviour of objects is a continuing topic of research

within this e�ort [ABKR89, Jon93, Dem97, BKS98, Sil99].

It is however essential for the design of large, complex models that the be-

haviour of a collection of objects of the model can be seen as a black box. This

black box captures the behaviour of the individual objects while hiding them.

This is essential if the modeller is to have a well de�ned abstract view of the be-

haviour of the model. Most current OO languages however require the modeller

to examine the behaviour of the individual objects to understand the behaviour

of the whole.

This is problematical as the behaviour of a collection of objects is not well

de�ned at an abstract level. The modeller has to compose the behaviour of the

collection in an ad-hoc fashion from the behaviour of the individual objects.

Thus, for n modellers working on a project, there will be n interpretations of

the combined behaviour of a collection of objects.

Additionally, each modeller has to study the behaviour of a collection of

objects at the detailed level of the individual objects. This is �ne for a mod-

eller who is working on the innards of such a collection. This is however not

desirable for the designer of the architecture. An architect is more interested in

an abstract overview of the behaviour of the model. Furthermore, most mod-

ellers will only work on a small part of the model. Like the architects, they are

likewise not interested in �guring out the detailed behaviour of the rest of the

model. They are more interested in an overview of the behaviour of the rest of

the model.

It is thus a problem if the abstract behaviour of a collection of objects is

not de�ned. There is thus a need for a black box model part with well de�ned

behaviour where the behaviour of the black box does not have to be constructed

by the modeller from the behaviour of the objects which make up the part.

The need for such a black box has led to the development of components.

This ongoing development focuses on �nding appropriate modelling mechanisms

of a coarser-grain than single objects. Examples of this research are the Compo-

nent Object Model [COM99], CORBA [Obj91, Gro96], design components also

known as patterns [GHJV94], frameworks [HP94, Sil99], real-time constraints

for components of objects [NA99] and dynamic components [WMB99]. The

behaviour of these components is however roughly de�ned.

In this paper, we de�ne a component at the type level. We de�ne a com-

ponent as a coarser grained modelling part than single classes. We do not, as

yet, de�ne how a set of objects is de�ned as a component. We instead de�ne

the set of classes from which these objects are instantiated as a black box. The

behaviour of one class is a template for the behaviour of all the objects instanti-

ated from this one class. The behaviour of a set of classes is thus a template for

the behaviour of all the objects instantiated from these classes. A set of classes

as a black box is thus an abstract template of the behaviour of the instantiated

2

objects. This black box representation is thus also a template for the behaviour

of the instantiated objects as a component of objects.

In Figure 1 we give example classes which make up a bank and which com-

municate in various ways as shown by the arrows between the classes. In this

paper, we de�ne a representation of a collection of classes as a black box. The

objects to which the classes are instantiated, when seen as a component, are

an instance of the black box representation of the set of classes from which the

objects are instantiated. Future work (see Section 4) de�nes the instances of

such a black box representation of a set of classes. This future work thus de�nes

a component of objects while this text de�nes a component of classes.

black
box

Objects
representing

one bank

black
box

instance

component
of

classes

component
of

objects

to
instantiated behavioural

template/instantiated
to

behavioural
template/

seen
as

as
seen

savings

loansaccounts

dept.

dept.dept.

front
office

/

/

bank

bank

Figure 1: Instances of a black box

Figure 1 is an implementation of a general Model-Instance Viewpoint archi-

tecture proposed in [EK99]. Parts of the model can be observed at type (class)

and instance level (objects) and the black box representations gives behavioural

viewpoints on the model.

[RK99] observes that class diagrams, showing the classes of a model, can be

compressed by (temporarily) e�acing less essential classes. Non-essential classes

are hidden and the modeller can concentrate on the remaining classes. This,

however, immediately raises the question of which classes are essential and to

whom?

To answer the above questions, most OOmodelling/ programming languages

use some form of (hierarchical) packages to manage the complexity of the model

by structuring and encapsulating classes [RBP

+

91, GJM91, Mey97, UML99].

Encapsulation of classes by packages hides classes intended only for use within

the package from the rest of the model. The exported classes of a package are

deemed essential with respect to the rest of the model while the \non-essential"

classes which only play a role within the package are hidden. These packages are

however syntactical structures and have no behaviour of their own. A modeller

has to consider all individual classes which are contained by a package to study

3

the collective behaviour of the classes of the package. As such, packages are not

the sought for black-box with respect to the behaviour.

[MWB99] however observes that in [UML99], a \subsystem" can be seen as

an object. The term subsystem is a keyword which refers to a package that

represents an independent part of the system being modelled. A subsystem

contains a collection of classes which are, conceptually, instantiated to one,

complex object. This object is then a black box representation of the package.

This approach is promising, but the de�nition of how the behaviour of the classes

in the subsystem is mapped to the behaviour of one object, and visa versa, is

not given. [MWB99] however points out the need of modellers to be able to

have two views of a subsystem; it can either be seen as complex structure or as

a black box.

In this paper, the behaviour of a package is de�ned in terms of the behaviour

of a single class. The techniques for de�ning the behaviour of a single class are

reused to model the behaviour of the set of classes contained in a package.

We de�ne the mapping of a package to a single class. This class captures the

behaviour of the original classes in the package at the level of detail o�ered by

the OO modelling language in which we apply this technique.

With the above approach, a (hierarchical) package is de�ned as a black-box

where the individual classes contributing to the behaviour of the package are

hidden. Each modeller working on the model has the same interpretation of the

de�nition of the behaviour of a package of the model. Secondly, the behaviour

of a package/part of the model no longer has to be deduced from the individual

classes which make up the package. The behaviour of the package is expressed

by one class and the modeller can abstract from the internal structure of the

package when studying the behaviour of the package.

We introduce a layer above the model with packages where we can observe

the behaviour of the packages of the model in terms of the classes which capture

the behaviour of the package. We call this class, which de�nes the behaviour of

a package, a class-like description (CLD) of the package. The CLD represents the

original package and brings the concepts of packages and classes closer together.

All packages of a model can be replaced by their respective CLDs as sketched

in Figure 2. We give a model where the behaviour of its packages P

1

to Pn are

captured by their corresponding CLDs.

Any package of the model can thus be seen either as a complex structure or

as a single class, its CLD. A modeller who is developing a package will want/need

to observe all details while other developers working on other parts of the model

only observes the non-encapsulated classes of the package. If even less detail is

desired, the CLD of the package is used to represent the package as a black box.

The concept of a class is reused to represent packages of classes. The above gives

strength to the quote of Meyer that \classes are the only modules" [Mey97].

A hierarchical package can even be replaced by its CLD in intermediate steps

for di�erent levels of abstraction. We once more return to the example of a bank

of Figure 1. In Figure 3, we show three di�erent ways of looking at a bank. We

can see the bank as a complex package where each department of the bank,

formerly represented by a single class, is represented by a horrendously complex

4

P1

.....

represented by
 behaviour

represented by
 behaviour

Pn

............

.......

CLD CLD

abstraction

of
P1

of
Pn

Figure 2: The Levels of Behaviour in a Model

package. We can also observe the entire bank as one class when we use the CLD

of the entire bank. Or, we can take the middle road by observing the bank as

a moderately complex package where each of its departments is represented by

its CLD.

Bank

Bank

CLD
of

loans
.......

CLD

office
of............

office loans
CLD
of

Bank

abstraction
abstraction

Figure 3: The scalable use of CLDs of packages

The above gives strength to [Mey99] where \All the evidence is there that

successful component technology must build on object orientation". We are not

sure whether OO is the only viable route to build components. But, packages

of classes represented by their CLDs provide a means to scale the concepts

developed in OO for a single class to a set of classes. Concepts and modelling

techniques can be lifted to apply to a package of classes.

The CLD of a package is a viable concept for any object-oriented modelling

language. We however restrain ourselves and only illustrate and formalise the

CLD of hierarchical packages in SOCCA (Speci�cation of Coordinated and Co-

operative Activities). SOCCA is a graphical formalism and associated method

for object-oriented modelling which is under active development at Leiden Uni-

versity. The strength of SOCCA is that it allows the precise and detailed speci�-

cation of the communication and synchronisation between the modelled classes.

The modelling of the behaviour of a class in SOCCA is very sophisticated. As

a consequence, the CLD of a SOCCA package captures the behaviour of the

package at a high level of precision.

In Section 2, the CLD of a (hierarchical) SOCCA package is formalised. In-

5

terwoven with this section we discuss how a CLD of a package is a black-box

representation of the package. Furthermore, we discuss how the encapsulation

of a package is re
ected in the CLD of the package. Section 3 gives conclusions.

Section 4 lists some future work.

6

2 Formalisation

The formalisation of the CLD of a package is based on the formalisation of

SOCCA, UML-like packages as de�ned in [tHDG

+

99]. In this text we have

formalised how the classes of SOCCA models are structured and encapsulated

by packages. The architecture of a SOCCA model is not a set of classes but

a collection of hierarchical packages. A large model can thus be split up into

smaller, more comprehensible chunks.

We assume in this text that the reader is familiar with [tHDG

+

99]. A

reader unfamiliar with SOCCA can read [tHZG99] as an introduction. The

formalisation, like the previous work, is done in Z [Spi92]. All schemas, axioms,

etc. . . are type checked using Z/EVES [Saa95], a theorem prover for Z

1

.

We de�ne the CLD of a package as a � operation on a model where a package

of the model is replaced by a single class. This single class is as yet de�ned as

part of a model as the behaviour of a class in SOCCA is de�ned in the context of

a concrete model. We thus take one model M and one package p of the model

and transform the model to replace the package and all classes it contains by

one single class as depicted in Figure 4. A model is depicted by the TopPackage

which contains all classes and packages of the model. The transformed model

M

0

now contains the CLD of p. We use the Z convention to adorn modi�ed

variables with a single �.

TopPackage
(of M)

P

....

TopPackage’
(of M’)

...........
CLD

of
P

construction
of the
CLD

Figure 4: How the CLD of a package is de�ned

The total of the four perspectives of SOCCA that are formalised in [tHDG

+

99]

and used in this text are:

The data perspective which focuses on the static, structural aspects of mod-

els.

The behaviour perspective which focuses on dynamic aspects of individual

classes which are made available to other classes.

The functionality perspective which focuses on dynamic aspects of individ-

ual classes that are internal to them.

1

Further information on the theorem prover can be found at http://www.ora.on.ca/

z-eves/welcome.html

7

The communication perspective which focuses on the communication be-

tween individual classes.

The schemaCommunicationPerspective in [tHDG

+

99] de�nes a SOCCAmodel

with respect to all four perspectives. We introduce the schemaModel as an syn-

onym for this schema.

Model

CommunicationPerspective

We build the de�nition of the CLD of packages perspective by perspective.

This is done to show how the CLD of a package is de�ned for the various perspec-

tives. Additionally, this keeps the size of the required schemas in the formalisa-

tion manageable. The schemas DeltaData, DeltaBehaviour , DeltaFunctionality

and DeltaCommunication of Sections 2.1 to 2.4 de�ne the CLD of a package step

by step as a � operation for each perspective. Each of these schemas is likewise

build in small, clear steps.

The next section de�nes the CLD of a package with respect to the data

perspective.

2.1 Data Perspective

The data perspective of SOCCA in [tHDG

+

99] is basically de�ned by three

aspects: the containment structure of the model parts, the visibility of model

parts and the import and export of model parts. We build the de�nition of the

CLD for the data perspective in separate steps for these three aspects and in

the order in which they are listed as once we de�ne the changes in structure, we

can de�ne the changes in visibility. We can de�ne the changes in import and

export only after these �rst two steps.

We begin the formalisation by de�ning the changes in the structure of the

packages as a result of the introduction of the CLD. We replace one package p of

a model by its CLD. We need to restructure the owner of the replaced package

as one of its package elements, namely p, is replaced by a class element; the

CLD of p. The �rst step is to de�ne this class which replaces the package with

respect to the data perspective.

2.1.1 De�ning the Class

A class in SOCCA as de�ned in [tHDG

+

99] with respect to the data perspective

is de�ned by an identity, a set of method identi�ers and the visibility of the

methods. We �rst de�ne a CLD of a package for the �rst two of these aspects.

We postpone the visibility of the methods of the CLD until we have rede�ned

the containment structure of the model with the CLD. Only then can we de�ne

the modi�ed visibility of the methods. We �rst de�ne the identity of the CLD

of a package.

We de�ne the function CLDidentity : Package ! ClassIdentity where

CLDidentity p returns a fresh identity for a CLD of a subpackage of p.

8

CLDidentity : Package ! ClassIdentity

8 p : Package �

CLDidentity p 62

fi : ClassIdentity j (9 c : ContainedClasses p � i = c:identity)g

We ensure that the identity of the CLD of package of p is not equal to the

identity of any contained class of p. The CLD of the subpackage of p is identi�ed

by the identity returned by CLDidentity .

The CLD of a package is a class which has as methods the methods of the

classes of the original package. The CLD of a package has the same functionality

as the individual classes of the package.

Example In Figure 5(a) we give as example the methods of the classes of a

package Bank . The CLD of this package has as methods the collected methods

of all these classes. These are the methods of the class in Figure 5(b). 2

office
open
put
get

accounts
withdraw
add

Bank

savings
save

loans
request
addrent

(a) Bank

open
put
get
withdraw
save
request
addrent

CLD of Bank

(b) Class

Figure 5: The methods of the CLD

We introduce the function collectmethods to collect the method identi�ers

of the classes of one given package.

collectmethods : Package ! FMethodIdentity

8 p : Package �

collectmethods p =

S

fm : F MethodIdentity j (9 c : ContainedClasses p � m = c:methods)g

� The methods of the classes of a package p, are the methods of the classes

contained by p. These are thus not only the methods of the class elements

of p, but also the methods of the classes contained by the subpackages of

p. The function collectmethods collects all the methods of the contained

classes.

9

� We do not have to rename the methods of the CLD of a package when they

are collected as methods of one class. We have ensured in [tHDG

+

99] that

each method of the class has a unique identity with respect to the rest of

the methods of the model.

The CLD of a package abstracts from the internal structure of a package.

The internal structure of a package can be changed without a�ecting the CLD

of the package. If we ignore visibility constraints, we can state that we can

change the internal structure of a package as long as we do not change the

classes contained by the package.

Example In Figures 6(a) and 6(b) we give two packages P which both

have the same CLD. In both cases, the CLDis a class with the methods M 1

to M6. In the �rst Figure, the classes C2 and C3 are contained by the sub

package Psub of P . In the second Figure, classes C2 are instead grouped in a

di�erent subpackage Psub

0

. This however does not a�ect the CLD of P as only

the methods of the contained classes matter. 2

P

M4
M5
M6

Psub
C1
M1
M2

C2 C3
M3

(a) one version

Psub’

C1
M1
M2 M4

C2
M3

M5
M6

C3

P

(b) a second version

Figure 6: Two packages with the same CLD

In principle we could even shu�e the methods between the classes in Figures

6(a) and 6(b). For example, we could switch the methods of class C1 and C2.

This would not make a di�erence for the methods of the CLD of P as these

methods are de�ned by the collection of methods of all the classes contained by

the package. It does not matter which class of the package provides the method.

The CLD of a package p is thus partially de�ned as a class with as identity

CLDidentity p and as methods the methods of the classes of p,

i.e. collectmethods p. The next section de�nes how we replace a subpackage of

a package by its partial CLD.

2.1.2 Replacing a Package by a Class

We now de�ne how we replace one subpackage of a package by its partial CLD.

This CLD is partial as we, as yet, ignore the visibility of the methods of the

class. The relation replace : (Package � Package) $ Package holds for the

10

packages ((in; rep); out) if subpackage rep of in is replaced by its partial CLD

in the package out .

We however as yet ignore how the relationships of a package are changed

by replacing a subpackage by its CLD. The changes in the relationships are

complex and are handled separately. We de�ne the relation partial-equality of

type Package $ Package. We have p

0

partial-equality p

1

if packages p

0

and

p

1

are equivalent except for the relationships with respect to their contained

classes. We use this relation to ignore the changes of the relationships in the

de�nition of replace at this point in time.

Example The example packages of Figures 7(a) and 7(b) are equivalent

with respect to the relation partial-equality as only the de�ned relationships

di�er. 2

-savings
+save

-loans
+request
-addrent

+office
+open
+put
+get

+accounts
+withdraw
-add

Bank

-savings
+save

-loans
+request
-addrent

+office
+open
+put
+get

+accounts
+withdraw
-add

Bank

Figure 7: Equivalence with respect to partial-equality

We now de�ne the relation partial-equality:

partial-equality : Package $ Package

8 p

0

; p

1

: Package �

p

0

partial-equality p

1

,

ProjIdentity p

0

= ProjIdentity p

1

^

ClassElements p

0

= ClassElements p

1

^

(PackageElements p

0

) = # (PackageElements p

1

) ^

(8 psub

0

: PackageElements p

0

�

(9

1

psub

1

: PackageElements p

1

�

psub

0

partial-equality psub

1

))

We now de�ne the relation replace which de�nes how we replace one subpack-

age rep of package in by its partial CLD to build package out , i.e. ((in; rep); out)

is in the relation replace. We de�ne the relation replace in two small steps. We

�rst de�ne how rep is replaced by its CLD is a package element of in, i.e. rep is

directly contained by in.

11

replace : (Package � Package) $ Package

8 in; rep; out : Package j

((in; rep); out) 2 replace �

rep 2 ContainedPackages in ^

ProjIdentity out = ProjIdentity in ^

rep 2 PackageElements in ,

((9 cld : Class j

cld :methods = collectmethods rep ^

cld :identity = CLDidentity in �

ClassElements out = ClassElements in [fcldg) ^

(PackageElements out) = (# (PackageElements in)� 1) ^

(8 outsub : PackageElements out �

(9

1

insub : PackageElements in j insub 6= rep �

outsub partial-equality insub)))

� The element package rep of in is removed and is replaced by its CLD to

produce package rep.

� The containment structure for classes and packages of the (sub)packages

which are not replaced by a CLD, i.e. the other package elements of in, are

left unmodi�ed. rep is directly replaced by its CLD.

� We ignore constraints on the relationships at this point through use of the

relation partial-equality.

In the second case, the package rep is not a package element of in. As we

ensure that rep is a contained package of in, we know there must be a package

element of in which contains rep. We replace rep by its CLD in this package by,

once more, using the relation replace.

8 in; rep; out : Package j

((in; rep); out) 2 replace �

rep 2 ContainedPackages in ^

rep 62 PackageElements in ,

(ClassElements out = ClassElements in ^

(PackageElements out) = # (PackageElements in) ^

(9

1

outsub : PackageElements out � 9

1

insub : PackageElements in �

((insub; rep); outsub) 2 replace ^

(8 out

00

: PackageElements out j out

00

6= outsub �

(9

1

in

00

: PackageElements in j in

00

6= insub �

out

00

partial-equality in

00

))))

With the above de�nitions, we can de�ne, with respect to the data perspec-

tive, how we replace one package of a model by its CLD, without yet taking into

consideration the rerouting of relationships or the visibility of model parts. The

input variable which? contains the identity of the package we wish to replace in

the model. We introduce the variable p to capture this package. The use of the

12

variable which? is more intuitive for the modeller while use of the variable p is

used throughout most of the formalisation.

DeltaDataContainment

�Model

which? : PackageIdentity

p : Package

p 2 ContainedPackages TopPackage

ProjIdentity p = which?

((TopPackage; p);TopPackage

0

) 2 replace

The schema DeltaDataContaiment de�nes how we replace a package p with

identity which by its partial CLD. Recall that TopPackage is the package of a

model which contains all the classes, packages and relationships of a model. We

use the Z convention of labelling modi�ed variables with an apostrophe.

2.1.3 Isolating the Replaced Class

In the schema DeltaDataContainment , one package p of a model is replaced by

its CLD. We isolate this class in the variable cld : Class in the modi�ed model,

amongst others, in order to be able to de�ne the rerouting of relationships and

for the de�nition of the modi�ed visibility of the model parts.

DeltaisolateCLD

DeltaDataContainment

cld : Class

cld 2 ContainedClasses TopPackage

0

cld 62 ContainedClasses TopPackage

The class cld is the unique class due to its fresh identity which is contained

by the modi�ed TopPackage

0

and not contained by the original TopPackage.

The next section de�nes the changes in the relationships of the model due to

the de�nition of the CLD of a package.

2.1.4 Relationships

In this section we de�ne how the relationships of a model are a�ected by replac-

ing one of its packages by its CLD. The relationships to and from the classes

contained by the package we replace are rerouted to the new CLD.

Example In Figure 8, relationships 1 to 3 to and from the classes of a pack-

age P are redirected to the CLD of P , the class P . The relationship from C1

to C2, a class of P , is rerouted to the CLD of P . The relationship from C2 to

C3 becomes a relationship from the CLD of P to itself. Finally, the relationship

from C3 to C4 becomes a relationship from the CLD of P to C4. 2

13

C4

C3

P

C1

C2

C1 C4
1 2

3

1

2

3of
CLD

P

Figure 8: Example of redirecting relationships

This approach does not work with respect to inheritance if we reroute rela-

tionships to the CLD of a package in this straightforward manner. In Figure 9,

if we replace package p by its CLD, then class C3 becomes a specialisation of

the CLD. This means that suddenly class C3 can inherit methods from C1.

C1

M1

C2

M2

P

C3

Figure 9: A problem with inheritance

We could solve the problem by de�ning the notion of selective inheritance.

With this notion, we can de�ne that the CLD of the package p only allows for

class C3 of the above example to inherit the intended methods originating from

class C2. This approach is however beyond the scope of this work. We, for

now, solve the problem in the most simple way by avoiding it. We introduce

the function nonbase : Package ! F Package where nonbase p returns the

(sub)packages psub of p which do not contain any class c which is used as base

class for a class d . We de�ne the CLD of a package of a model for those packages

which do not have the problem with inheritance, i.e. those packages returned

by nonbase TopPackage.

14

nonbase : Package ! F Package

8 p : Package �

nonbase p =

fpsub : ContainedPackages p j

(8 c; d : Class j

c 2 ContainedClasses psub ^

d 62 ContainedClasses psub �

(c; d) 62 (is-a p))g

We now ensure that we only work with correct packages, i.e. the package p

which we replace is an element of the set nonbase which does not su�er from the

inheritance problem. Note that inheritance between the classes of p is allowed.

A class of p can also be a specialisation of a class not contained by p.

DeltaDataCorrect

DeltaisolateCLD

p 2 (nonbase TopPackage)

It is however not di�cult to convert a package p of a model which does not

meet the above constraint to a non-base package. It is su�cient to remove all

undesired specialisations from the model as given in the operation Fix . The

existence of a specialisation relationship from class c to d means class d inher-

its certain methods, relations, etc . . . from class c. Removing the inheritance

relationship does not change the properties of d itself. It is however no longer

documented that if c changes, then d is automatically changed as well. This

is however not a problem for the construction of the CLD where we are only

interested in the behaviour/abstract representation of a given package.

Fix

DeltaDataContainment

(8 c; d : ContainedClasses TopPackage

0

�

(c; d) 2 (is-a TopPackage

0

)

,

((c; d) 2 (is-a TopPackage) ^

: (c 2 ContainedClasses p ^ d 62 ContainedClasses p)))

We can thus use this operation to \repair" a model if we whish to give the

CLD for a package p of which contained classes are specialised to classes not

contained by the package.

We can now de�ne the function changeparticipants for rerouting the relation-

ships. This function is used to change relationships r which have as participants

a class from a given set C . The participants of these relationships are replaced

by a given class c; the CLD of a package.

15

Example The function changeparticipants (R;C ; c) changes all relation-

ships r : R which use classes in C to use the class c instead. 2

The function is used to redirect relationships to classes of a package p by

calling changeparticipants (R;ContainedClasses p; cld) where cld is the cld of

p and R are all the relationships of the model.

changeparticipants : (F Relationship � F Class � Class)! F Relationship

8R : F Relationship; C : F Class ; c : Class �

changeparticipants (R;C ; c) =

fr

0

: Relationship j

(9 r : R �

r

0

:identity = r :identity ^

r

0

:type = r :type ^

(r

0

:participants) = # (r :participants) ^

(8 i : 1 : :# (r :participants) �

(r :participants i 62 C) r

0

:participants i = r :participants i) ^

(r :participants i 2 C) r

0

:participants i = c)) ^

(r

0

:type = IsARelationship) r

0

:participants 6= hc; ci))g

� The identity, type and the number of participants of individual relation-

ships from R are left unmodi�ed.

� The participants of individual relationships which are in C are replaced by

class c.

� Cyclic inheritance, i.e. r

0

:participants = hc; ci and r

0

:type = IsARelationship,

which occur as a result of changing the participants of an is-a relationship

from classes c

1

to c

2

of C to the new class c are omitted. Note this can

cause relationships from R to be omitted in the produced set of modi�ed

relationships.

Now that we have de�ned the redirection of relationships to the CLD of a

package, we can de�ne the changes of the relationships of the models with the

CLD of the package.

DeltaDataRelationships

DeltaDataCorrect

ContainedRelationships TopPackage

0

=

changeparticipants ((ContainedRelationships TopPackage); (ContainedClasses p); cld)

The participants of the relationships formerly classes of p are changed to the

CLD of p. The next section de�nes the changes in labels of the uses relationships.

2.1.5 Labels of the Uses Relationships

We have rerouted the relationships, including the uses relationships, with the

schema DeltaDataRelationships . We however still need to adjust the labels of

16

the uses relationships. These labels document which methods are imported

from (other) classes. The labels of uses relationships, as documented by the

function useslabel , may need to be combined as a result of the use of the CLD

of a package.

For example, in Figure 10 we replace package p by its CLD. The two uses

relationships from class C to contained classes of p become one uses relationship

to the CLD of p.

C1

M1
C C

M1
M2

of P
CLD

M2

C2

P

{M1}

{M2}

{M1,M2}

Figure 10: How to Change useslabel

When two or more classes of a package of which we construct the CLD have

a uses relationship to a class not contained by the package we likewise have

to combine the labels of uses relationships. The schema DeltaDataUsesLabels

combines all these constraints.

DeltaDataUsesLabels

DeltaDataRelationships

8 c

0

; d

0

: ContainedClasses TopPackage

0

; m : MethodIdentity

j (c

0

; d

0

) 2 domuseslabel

0

�

m 2 useslabel

0

(c

0

; d

0

),

(9 c; d : ContainedClasses TopPackage j

(c = c

0

_ (c 2 ContainedClasses p ^ c

0

= cld)) ^

(d = d

0

_ (d 2 ContainedClasses p ^ d

0

= cld)) �

m 2 useslabel (c; d))

A method m is only imported by c

0

from d

0

if there is a class c which imports

m from d where c and d are classes of the original model which are mapped to

the classes c

0

and d

0

respectively in the model with the CLD of p.

In SOCCA, a method must be imported by a uses relationship if the method

is called. This means the uses relationships between classes documents the static

structure of communication between classes in terms of method calls.

The CLD of a package abstracts from the internal static description of the

communication in the package. All uses relationships between classes of a pack-

age are mapped to uses relationships of the CLD of the package to itself.

Example Figures 11(a) and 11(b) give two packages P with di�erent uses

relationships, i.e. communication, between the contained classes. The CLD s

17

of the packages as given in Figure 11(c) are identical with respect to the data

perspective in the sense that in both cases the CLD will import method M of

itself. The structure of the internal communication in the packages is hidden

and the modi�ed uses relationship abstracts from which classes of the package

call each other. 2

C1

C2

C3

M
{M}

P

(a)

C1

C2

C3

M

P

{M}

(b)

CLD

P
of

{M}

(c)

Figure 11: Abstraction from Communication Structure

At this point we have de�ned how the structuring of the classes, packages

and (uses) relationships of the model are a�ected by the replacement of one

package of the model by its CLD. The next section de�nes how the visibility of

the model parts (methods, classes and packages) is a�ected.

2.1.6 Visibility

In this section we de�ne the changes in the visibility of methods, classes and

packages as a consequence of replacing a package by its CLD. The visibility of

the classes and packages not contained by the package for which we construct the

CLD are not a�ected as these classes and packages are unchanged. We however

have to de�ne the visibility of the methods of the CLD and the visibility of this

class. These visibilities are chosen such that they provide an equivalent hiding

of the methods of the original classes contained in the package which we replace.

Example In Figure 12(a), the package P is replaced by its CLD of Figure

12(b). The visibility of the methods of the CLD are chosen such that the visi-

bility of the methods M

i

with respect to classes not in P are identical. Method

M 1 in package P is not hidden by the package nor by class C1 and is thus a

public method of the CLD of P . Methods M 2 to M 4 are private methods of

the CLD. Class C2 is a private class of P and is not visible outside of package

P and its methods thus become private methods of the CLD. Method M 2 is a

private method of C1 and is thus likewise a private method of the CLD. 2

We de�ne the visibility of the classes and packages in the new model with the

CLD in three steps. We �rst de�ne the visibility of the packages. We then de�ne

the visibility of the classes, except for the CLD. Lastly, we de�ne the visibility

18

C1

M1

P

M3

-C2

-M2 -M4

(a)

M1
-M2
-M3

CLD of P

-M4

(b)

Figure 12: Example of changing method visibility

of the CLD and the visibility of its methods. We begin with the visibility of the

packages:

DeltaDataPackageVisibility

DeltaDataUsesLabels

(8 p

0

: ContainedPackages TopPackage

0

�

packagevisibility

0

p

0

=

(� p : ContainedPackages TopPackage j

ProjIdentity p = ProjIdentity p

0

�

packagevisibility p))

The package visibility of the packages not in AllPackages p is unchanged.

We continue with the visibility of the classes.

DeltaClassVisibility

DeltaDataPackageVisibility

dom classvisibility

0

= dom classvisibility n (ContainedClasses p) [fcldg ^

(dom classvisibility) C classvisibility

0

=

(dom classvisibility n (ContainedClasses p)) C classvisibility

� The domain of classvisibility

0

are the classes of of the original model with-

out the classes in ContainedClasses p but with the CLD of p added.

� The class visibility of the classes not contained by p is unchanged.

We now de�ne the visibility of the CLD and for the visibility of its methods

2

:

2

The (let x == expr � body) local de�nition is used to associate a variable x with an

expression expr within the text body. The let local de�nition is used to introduce short

names for expressions or to avoid writing the same expression more than once in a schema.

19

DeltaDataVisibility

DeltaClassVisibility

classvisibility cld =

if (packagevisibility p = publicpackage) then publicclass

else privateclass

(8m : cld :methods �

(let d == (� du : ContainedClasses p j m 2 du:methods � du) �

cld :methodvisibility m =

if d 62 export p then private

else d :methodvisibility m))

For a method m of the CLD, the class d of package p is the class for which

method m is originally de�ned. The visibility of the CLD of p and the visibility

of its methods is de�ned so as to o�er the same visibility of the methods of the

classes of p as in the original model. The only public methods of the CLD are the

public methods of the classes of p which are exported by p. Protected methods

of classes of p are mapped to private methods of the CLD. These methods are

not visible to a class not contained by p. These methods are therefore hidden

from the rest of the classes in the model with the CLD of p. Furthermore, we

have ensured no class inherits the methods of the CLD of p.

The CLD of a package thus not only collects the methods of the package.

The encapsulation of the classes by the package is re
ected in the construction

of its CLD. The CLD of a package is thus more than a straightforward aggregate

class which only groups methods and ignores the visibility of the aggregated

classes. In this case, only the public methods of the classes exported by the

package are public methods of the CLD.

Example Figures 13(a) to 13(c) have three di�erent techniques for spec-

ifying the visibility of method M of class C . In all three cases the method is

however hidden from the rest of the model. The CLD of P is in all three cases is

a class with a private methodM . The CLD of a package abstracts from whether

the hiding of a method of a class is a result of the encapsulation of an entire

subpackage (Figure 13(a)), the encapsulation of the class with the method (Fig-

ure 13(b)) or the encapsulation of the method by a class (Figure 13(c)). All

three packages give the identical CLD of �gure 13(d). 2

2.1.7 Export and Import

The schema DeltaDataExportAndImport de�nes the changes in export and im-

port which occur as a result of the use of the CLD of a package. Basically, all

import (export) of a class of p is replaced by import (export) of the CLD of p.

20

+C

+M

-Psub

P

(a)

-C

+M

+Psub

P

(b)

+C

-M

+Psub

P

(c)

-M

CLD of P

(d)

Figure 13: Three ways of encapsulating M

DeltaDataExportAndImport

DeltaDataVisibility

(8 p

0

: ContainedPackages TopPackage

0

�

(let op ==

(� tempop : ContainedPackages TopPackage j

ProjIdentity tempop = ProjIdentity p

0

� tempop) �

(export

0

p

0

=

(export op n ContainedClasses p) [

(if (export op \ ContainedClasses p 6= ?)

then fcldg else ?))

^

import

0

p

0

=

(import op n ContainedClasses p) [

(if (import op \ ContainedClasses p 6= ?)

then fcldg else ?)))

The export (import) of a package p

0

of model with the CLD of p is equal to

the export (import) of package op (original package) with export (import) of

classes of p replaced by the CLD of p.

At this point, we have de�ned the changes in structure, visibility and im-

port and export with respect to the data perspective. We have thus completely

de�ned the CLD of a package with respect to the data perspective. We intro-

duce the shorthand DeltaData for the CLD of packages de�ned for the data

perspective.

DeltaData

DeltaDataExportAndImport

We continue with the de�nition of a CLD with respect to the behaviour

perspective.

21

2.2 Behaviour Perspective

With respect to the behaviour perspective, we associate, in SOCCA, with each

class one or more external STDs that specify the external behaviour of the

class. These external STDs of a class describe behaviour that is visible to

other classes. This is the order in which calls to methods the class exports

are accepted. For the de�nition of the CLD of a package p with respect to the

behaviour perspective, we need to migrate the external STDs of classes of p

which we replace by its CLD to this newly formed class.

Example In Figure 14(a), we draw the identity of the external STD(s) of

a class in a box next to the class. The CLD of the package P of Figure 14(b)

groups the external STDs of the classes in P . Note that this notation for ex-

ternal STDs is ad-hoc and not the way to display the external STDs. We do

not show the actual STDs as these are identical before and after the migration

from the individual classes of p to the CLD of p. 2

P

C1

M1

C2 eStd2eStd1
eStd3

M2
M3
M4

M5
M6

(a)

M1
M2
M3

CLD of P
eStd1
eStd2
eStd3

M5
M6

M4

(b)

Figure 14: Example of relocating the external STDs

The external STDs of classes not contained by this package p remain un-

changed.

The CLD of a package abstracts from the structure of the external behaviour

of the classes of the package. All external STDs of the classes are associated to

the CLD of the package and the external behaviour of the classes of the package

can not be deduced from the external behaviour of the CLD. For example,

Figure 14(b) does not give any information on which external STDs of the CLD

is contributed by which class of the package without resorting to Figure 14(a).

22

DeltaBehaviour

DeltaData

externalbehaviour

0

=

fe : Class � STD j (9 c : Class ; estd : STD j e = (c; estd) �

(9 d : ContainedClasses TopPackage j

d 62 ContainedClasses p ^

(d ; estd) 2 externalbehaviour �

c = d)

_

(9 d : ContainedClasses p j

(d ; estd) 2 externalbehaviour �

c = cld))g

� The external STDs of the classes not in p are associated to the same classes.

� The external STDs of the classes in p are associated to the CLD of p.

We continue with the de�nition of a class with respect to the functionality

perspective.

2.3 Functionality Perspective

With respect to the functionality perspective, in SOCCA, we associate with each

method of a class an internal STD that describes how that method is realised.

We need to move the internal STDs of the classes in the package p of which we

form the CLD to this new class.

Example In Figure 15(a), we draw the identity of the internal STDs of the

methods of a class in a box next to the class. The CLD of the package P given

in Figure 15(b) groups the internal STDs of the classes in P as this class has as

methods the methods of the classes in p. Note that this notation for internal

STDs is ad-hoc and not the way to display the internal STDs. 2

P

C1

M1

C2

M2
iStd2iStd1

M3

C3

M4
M5

iStd2

iStd5

iStd3

iStd4

(a)

M1
M2
M3

CLD of P

M5

iStd1
iStd2
iStd3
iStd4
iStd5M4

(b)

Figure 15: Example of relocating the internal STDs

23

The CLD of a package abstracts from the structure of the internal behaviour

of the classes of the package. All internal STDs of the classes are associated to

the CLD of the package and the internal behaviour of the classes of the package

can not be deduced from the internal behaviour of the CLD. For example,

Figure 15(b) does not give any information on which internal STDs of the CLD

is contributed by which class of the package without resorting to Figure 15(a).

Additionally, we need to change calls to methods of the classes of p to into

calls to the methods of the CLD of p as the classes of p no longer exist in the new

model. For this purpose, we introduce the function changecalls which changes all

calls in a single internal STD to calls to methods of a given set of classes to calls

of the samemethods of one given class. So changecalls (I ;ContainedClasses p; cld)

returns the internal STD I

0

where all calls to methods of the classes of p are

changed to calls of methods of the class cld .

Example Figure 16 gives the internal STD I which makes various calls. If

classes Wuz and Mu are classes of the package p of which we want to build the

CLD, then changecalls (I ; fWuz ;Mug; cld) gives us the internal STD of Figure

17. 2

act Foo call Wuz.Bar call Mu.Baz call DoIt.Whee

Figure 16: STD I before changecalls

act Foo call cld.Bar call cld.Baz call DoIt.Whee

Figure 17: STD I

0

after changecalls

We now de�ne the function changecalls :

24

changecalls : (STD � F Class � Class)! STD

8 I : STD ; C : F Class ; c : Class �

changecalls (I ;C ; c) =

(� I

0

: STD j

I

0

:Identity = I :Identity ^

I

0

:states = I :states ^

I

0

:transrel =

ft : (STATE � SYMBOL)� STATE j

(9 l : SYMBOL; s

1

; s

2

: I

0

:states j t = ((s

1

; l); s

2

) �

(l 62 ran call ^ t 2 I :transrel) _

(9 l

0

: SYMBOL; ci : ClassIdentity ; m : MethodIdentity j

l

0

= call (ci ;m) ^ ((s

1

; l

0

); s

2

) 2 I :transrel �

(let IdentitiesC == fi : ClassIdentity j (9 d : C � d :identity = i)g �

ci 62 IdentitiesC) l = l

0

^

ci 2 IdentitiesC) l = call (c:identity ;m))))g

� I

0

)

In the above de�nition:

� The set IdentitiesC are the identities of the classes in C .

� Labels of the STD I which are not calls are left unchanged.

� Labels which are calls to methods of classes whose identity does not occur

in IdentitiesC are likewise left unchanged.

� Calls to methods of classes whose identities are in IdentitiesC are changed

to calls of the same method of c.

The schema DeltaFunctional moves the internal STDs of the classes in a

package p to the CLD of p. Furthermore, calls to the methods of classes in p

are changed to calls to the methods of the CLD.

DeltaFunctional

DeltaBehaviour

(8 c : ContainedClasses TopPackage � 8m : c:methods �

let I

0

== changecalls ((internalbehaviour (c;m)); (ContainedClasses p); cld) �

c 62 ContainedClasses p)

internalbehaviour

0

(c;m) = I

0

^

c 2 ContainedClasses p)

internalbehaviour

0

(cld ;m) = I

0

)

� The internal STD I

0

is an STD in which all calls to methods of the classes

of p are changed to calls of the methods of the CLD.

� Internal STDs of classes not in p, the package to be replaced, are associated

to the original classes. Calls to methods of the classes of p have become

calls of the methods of the CLD of p.

25

� Internal STDs of classes in p are associated to the CLD of p. Calls to

methods of the classes of p likewise have become calls of the methods of

the CLD of p.

The next section de�nes a CLD with respect to the communication perspec-

tive.

2.4 Communication Perspective

The communication perspective in SOCCA expresses how regulation of commu-

nication between instances of classes is controlled by managers and employees.

With respect to the communication perspective we need to de�ne the changes

to the managers and employees of a model as a consequence of replacing a pack-

age of the model by its CLD. This is fairly straightforward as the formalisation

of employees and managers as originally de�ned in [DGSK

+

99] and as reused

in [tHDG

+

99] de�nes the structure and mapping of managers and employees

(states and transitions) to classes separately.

We �rst de�ne the changes in the employees. An employee is de�ned as a

set of subprocesses with traps based on an underlying internal STD. We have

only changed some calls in the internal STDs to calls of methods of the CLD.

We have not changed the states or edges. We thus only need to change the

employees to re
ect the changes in calls for the underlying internal STD de�ned

in the functionality perspective.

Example In Figure 18(a) we give internal STD I with one of its subpro-

cesses S1. Its call to method bar of class B is changed to a call of method bar

of the class cld to give the internal STD I

0

of Figure 18(b). Subprocess S1

0

of

the modi�ed internal STD has the same structure as the original subprocesses

S except for the change in labels. 2

call B.baract_foo
I

S1

t-1

call B.bar

(a)

call cld.bar

t-1’

call cld.baract_foo
I’

S1’

(b)

Figure 18: Changes in employees

We de�ne the changes in the employees using the schema

DeltaCommunicationEmployees .

26

DeltaCommunicationEmployees

DeltaFunctional

(8 intstd : internalstds �

(8 intstd

0

: internalstds

0

j

intstd

0

= changecalls (intstd ; (ContainedClasses p); cld) �

(8 e

0

: employee �

e

0

2 (asemployee

0

intstd

0

),

(9 e : asemployee intstd �

e:std = intstd ^

(8 sub

0

: STD ; traps : F(F STATE) �

(sub

0

; traps) 2 e

0

:pts ,

(9 sub : STD j sub

0

= changecalls (sub; (ContainedClasses p); cld) �

(sub; traps) 2 e:pts))))))

� intstd

0

s is an internal STD which is a modi�ed internal STD intstd of the

model with the original package p.

� An employee of intstd

0

has nearly the same subprocess and trap structure

compared to an employee of intstd . Only calls to methods of the classes of

p are changed to calls to methods of the CLD of p.

We next de�ne the changes to the managers. Each manager is de�ned as

an extension of an external STD. We have not changed the structure of the

external STDs of a model in the de�nition of the CLD with respect to the

behaviour perspective. We have only \moved" the external STDs of the classes

of the package p of which we construct the CLD to this new class. Furthermore,

a manager is de�ned in terms of the names of subprocesses and traps it uses

for its employees. These have not changed due to the introduction of the CLD

of p. The employees of the classes of p have \moved" to the CLD of p, but

are identical in name and structure. The managers of the CLD of a package

can thus remain the same. We only have to \move" these managers de�ned as

extensions of the external STDs of classes of p to the CLD of p.

Example In Figure 19, the mapping from the external STDs to the corre-

sponding managers is indicated by a dotted arrow. Both the external STDs of

the classes of the package p and the external STDs of the CLD of p map to the

same managers. 2

The change in managers due to the de�nition of the CLD of p is trivial:

DeltaCommunication

DeltaCommunicationEmployees

asmanager

0

= asmanager

The function asmanager maps an external STD to a manager. We have

already \moved" the external STDs. We therefore automatically associate the

27

CLD
of
P

P

eStd2eStd1

eStd3

C1 C2

C3

eStd1
eStd2
eStd3

Man1

Man2

Man3

Figure 19: Mapping of External STDs to Managers

managers of the classes of package p to the CLD of p once we have relocated

the external STDs.

The above schema not only de�nes the managers of the CLD. It completes

the de�nition of the CLD. We have completely de�ned the CLD of a package

with respect to all perspectives.

We have formalised how the CLD of a package is a black-box representation

of the behaviour of a package. The next section presents some conclusions and

future work.

28

3 Conclusion

Most object-oriented (OO) modelling/ programming languages use some form of

(hierarchical) packages to manage the complexity of the model by structuring

and encapsulating classes. Encapsulation of classes by packages hides classes

intended only for use within the package from the rest of the model. The

exported classes of a package are deemed essential with respect to the rest

of the model while the \non-essential" classes which only play a role within

the package are hidden. These packages are however syntactical structures and

have no behaviour of their own. A modeller has to consider all individual classes

which are contained by a package to study the collective behaviour of the classes

of the package.

We introduce a layer above the model with packages where we can observe

the behaviour of the packages of the model in terms of single classes which

capture the behaviour of the package. We call each such a class a class-like

description (CLD) of a package. The CLD represents the original package and

brings the concepts of packages and classes closer together. All packages of a

model can be replaced by their respective CLDs as sketched in Figure 20. We

give a model where the behaviour of its packages P

1

to Pn are captured by their

corresponding CLDs.

P1

.....

represented by
 behaviour

represented by
 behaviour

Pn

............

.......

CLD CLD

abstraction

of
P1

of
Pn

Figure 20: The Levels of Behaviour in a Model

Any package of the model can thus be seen either as a complex structure or

as a single class, its CLD. A modeller who is developing a package will want/need

to observe all details while other developers working on other parts of the model

only observes the non-encapsulated classes of the package. If even less detail is

desired, the CLD of the package is used to represent the package as a black box.

29

We have illustrated and formalised the CLD of hierarchical packages in SOC-

CA (Speci�cation of Coordinated and Cooperative Activities). SOCCA is a

graphical formalism and associated method for object-oriented modelling which

is under active development at Leiden University. We have chosen SOCCA as

the strength of SOCCA is that it allows the precise and detailed speci�cation

of the communication and synchronisation between the modelled classes. The

modelling of the behaviour of a class in SOCCA is very sophisticated. As a

consequence, the CLD of a SOCCA package captures the behaviour of the package

at a high level of precision. In a SOCCA model, as formalised in this text, a

package can thus be observed as a single, well de�ned class.

4 Future Work

We have three main topics of interest for future work.

The integration of behaviour in the interface of a package in most OO lan-

guages is often minimal or non-existent. It is therefore not clear whether a

change in the behaviour of a package a�ects the interface of the package. The

interface of a package as such does not su�ciently capture the dependencies of

the package with the rest of the model. In [tHDG

+

00], based on the de�nition of

the CLD, we de�ne the interface of a package to include the aspect of behaviour.

Secondly, we wish to express the behaviour of a package in terms of the

instantiated objects of the package. In this document, we have expressed the

behaviour of a package at the type level in terms of a single class. We wish

to develop an abstract object-like description of the behaviour of the objects

instantiated from the classes of a package. We de�ne this behaviour in terms of

an object instantiated from the CLD of the package. The behaviour of a package

can then be seen as a single class at the type level or at the instance level as a

single instantiated object from this one class. This work will take place upon

completion of [tH00].

Lastly, the concept of a CLD can be used to de�ne some useful concepts. For

example, we have several times during the formalisation of the CLD re
ected on

how two packages were essentially the same. In [tHGKE00], we use the CLD of

packages to formally de�ne when packages are equivalent. We also show how

the CLD concept can be used during top-down development of a model. We

show how the CLD concept can be used, for example, to de�ne decomposition

of a class.

30

References

[ABKR89] P. America, J.W. Bakker, J.N. Kok, and J.J.M.M. Rutten. Deno-

tational semantics of a parallel object-oriented language. In Infor-

mation and Computation, number 83 in 2, pages 152{205, 1989.

[BKS98] M.M. Bonsangue, J.N. Kok, and Kaisa Sere. An approach to

object-orientation in action systems. In Proceedings of the 4th In-

ternational Conference on Mathematics of Program Constructions

(MPC'98), pages 68{95, 1998.

[COM99] Microsoft COM Technologies, 1999. http://www.microsoft.com/

com/.

[Dem97] C. Demmer. Uni�ed Modeling Language vs. MWOOD- I, 1997.

http://stud2.tuwien.ac.at/~e8726711/ummw2.html#MU1.

[DGSK

+

99] J.H.M. Dassen, L.P.J. Groenewegen, I.G. Sprinkhuizen-Kuyper,

P.W.M. Koopman, P.J. 't Hoen, and G. Engels. A formalisation of

SOCCA using Z; part 1: the type level concepts. Technical Report

1999{03, Leiden Institute of Advanced Computer Science, Febru-

ary 1999. Available on the web as http://www.wi.leidenuniv.

nl/TechRep/1999/tr99-03.ps.gz.

[EK99] Andy Evans and Stuart Kent. Core meta-modelling semantics

of UML: The pUML approach. In Robert France and Bernhard

Rumpe, editors, UML'99 - The Uni�ed Modeling Language. Be-

yond the Standard. Second International Conference, Fort Collins,

CO, USA, October 28-30. 1999, Proceedings, volume 1723 of LNCS.

Springer, 1999.

[GHJV94] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.

Design Patterns: Elements of Reusable Object-Oriented Software.

Addison-Wesley, Reading, Massachussetts, 1994.

[GJM91] Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli. Fundamentals

of Software Engineering. Prentice-Hall, Inc., Englewood Cli�s, 1

edition, 1991.

[Gro96] Object Management Group. Realtime CORBA- a White Paper -

issue 1.0. Technical Report ORBOS/96-09-01, Object Management

Group, september 1996.

[HP94] Martin Hofmann and Benjamin C. Pierce. A unifying type-

theoretic framework for objects. Journal of Functional Program-

ming, 1994.

[Jon93] C.B. Jones. A �-calculus semantics for an object-based design

notation. In Proceedings of CONCUR'93, volume 715, 1993.

[Mey97] Bertrand Meyer. Object-oriented Software Construction. Prentice-

Hall, Inc., New York, N.Y., second edition, 1997.

31

[Mey99] Bertrand Meyer. On to components. Computer (IEEE), january

1999. downloadable at http://www.eiffel.com/doc/manuals/

technology/bmarticles/computer/components/page.html.

[MWB99] Joaquin Miller and Rebecca Wirfs-Brock. How can anything be

both a classi�er and a package? In Robert France and Bernhard

Rumpe, editors, UML'99 - The Uni�ed Modeling Language. Be-

yond the Standard. Second International Conference, Fort Collins,

CO, USA, October 28-30. 1999, Proceedings, volume 1723 of LNCS.

Springer, 1999.

[NA99] Brian Nielsen and Gul Agba. Towards reusable real-time objects.

Annals of Software Engineering 7, pages 257{282, 1999.

[Obj91] Object Management Group. The Common Object Request Broker:

Architecture and Speci�cation, August 1991.

[RBP

+

91] James Rumbaugh, Michael Blaha, William Premerlani, Frederick

Eddy, and William Lorensen. Object-Oriented Modeling and De-

sign. Prentice-Hall, Inc., 1991.

[RK99] Ferenc Racz and Kai Koskimies. Tool-supported compressing of

UML class diagrams. In Robert France and Bernhard Rumpe, edi-

tors, UML'99 - The Uni�ed Modeling Language. Beyond the Stan-

dard. Second International Conference, Fort Collins, CO, USA,

October 28-30. 1999, Proceedings, volume 1723 of LNCS. Springer,

1999.

[Saa95] Mark Saaltink. The Z/EVES system. ftp://ftp.ora.on.ca/pub/

doc/z-eves-draft.ps.Z, September 1 1995.

[Sil99] A.R. Silva. Concurrent Object-Oriented Programming: Separation

and Composition of Concerns using Design Patterns, Pattern Lan-

guages, and Object-Oriented Frameworks. PhD thesis, Technical

University of Lisbon, march 1999.

[Spi92] J. M. Spivey. The Z Notation: A Reference Manual. Prentice Hall

International Series in Computer Science, 2nd edition, 1992.

[tH00] P.J. 't Hoen. Instance level packages for SOCCA. Technical report,

Leiden Institute of Advanced Computer Science, 2000. To Appear.

[tHDG

+

99] P.J. 't Hoen, J.H.M. Dassen, L.P.J. Groenewegen, I.G.

Sprinkhuizen-Kuyper, P.W.M. Koopman, and G. Engels. SOCCA

extended with UML like packages. Technical Report 99-06, Leiden

Institute of Advanced Computer Science, September 1999.

[tHDG

+

00] P.J. 't Hoen, J.H.M. Dassen, L.P.J. Groenewegen, I.G.

Sprinkhuizen-Kuyper, P.W.M. Koopman, and G. Engels. Be-

haviour interfaces of uml-like packages. Technical report, Leiden

Institute of Advanced Computer Science, 2000. To Appear.

[tHGKE00] P.J. 't Hoen, L.P.J. Groenewegen, P.W.M. Koopman, and G. En-

gels. Behaviour interfaces of uml-like packages. Technical report,

32

Leiden Institute of Advanced Computer Science, february 2000. To

Appear.

[tHZG99] P.J. 't Hoen, V. Zweije, and L.P.J. Groenewegen. SOCCA Ba-

sics. Technical Report 99-14, Leiden Institute of Advanced Com-

puter Science, 1999. downloadable as draft at http://www.wi.

LeidenUniv.nl:/~hoen/publications/soccabasics.ps.

[UML99] Uni�ed modeling language 1.3. Technical report, Rational Software

Corporation, 1999.

[WMB99] Axel Wienberg, Florian Matthes, and Marko Boger. Modeling dy-

namic software components with UML. In Robert France and

Bernhard Rumpe, editors, UML'99 - The Uni�ed Modeling Lan-

guage. Beyond the Standard. Second International Conference,

Fort Collins, CO, USA, October 28-30. 1999, Proceedings, volume

1723 of LNCS. Springer, 1999.

33

