
SOCCA Basics

P.J. 't Hoen

�

L.P.J. Groenewegen

y

V. Zweije

z

November 18, 1999

Abstract

This paper gives a brief introduction to SOCCA (Speci�cation of Co-

ordinated and Cooperative Activities).

Contents

1 Introduction 2

2 SOCCA 2

2.1 Data Perspective . 2

2.2 Behaviour Perspective . 3

2.3 Functionality Perspective 4

2.4 Communication Perspective 5

3 Concluding Remarks 8

�

hoen@wi.LeidenUniv.nl

y

luuk@wi.leidenuniv.nl

z

zweije@wi.leidenuniv.nl

1

1 Introduction

This paper introduces SOCCA (Speci�cation of Coordinated and Cooper-

ative Activities) as presented in [EG94] and formalised in [DGSK

+

99]. We

have repeatedly experienced that the basic SOCCA concepts are di�cult

to understand at �rst reading. This paper is a simple introduction to the

SOCCA concepts. This paper is di�erent from other SOCCA publications

as it does not claim to be complete, innovative, formal or to cover the

extensions of SOCCA. We do not for example discuss the advanced ap-

plications of the SOCCA concepts. It is however intended to be short and

easy to understand and to serve as a starting point for �rst reading before

more complex material is tackled such as [DGSK

+

99] or [tHDG

+

99].

SOCCA as originally developed is strongly based upon OMT [RBP

+

91].

OMT has been integrated in its successor, UML [UML99]. SOCCA has

followed this development and now strongly leans on UML for the no-

tation of the model elements. The strength and innovation of SOCCA is

the precise modelling of the communication and coordination between the

classes/ objects of the model. This paper focuses exclusively on the con-

cepts required to understand how the communication and coordination

between classes/objects is de�ned in SOCCA.

2 SOCCA

The four perspectives in SOCCA that are currently mature and formalised

in [DGSK

+

99] are:

The data perspective which focuses on the static, structural aspects

of models.

The behaviour perspective which focuses on dynamic aspects of indi-

vidual classes and objects which are made available to other classes

and objects.

The functionality perspective which focuses on dynamic aspects of

individual classes and objects that are internal to them.

The communication perspective which focuses on the communica-

tion between individual classes and objects.

We explain the basic concepts of SOCCA perspective by perspective

and in the order listed. The communication perspective easily presents the

most problems for �rst time readers. The next section begins with a tour

of the data perspective. Throughout the text we assume that the reader

has at least a rudimentary understanding of object-oriented concepts.

2.1 Data Perspective

The data perspective in a SOCCA model describes the static structural

aspects of the model. This perspective is represented by a class diagram.

The data perspective describes the classes and the relationships. The

inheritance, aggregation and general association relationships are drawn

in this class diagram.

2

Special for SOCCA is the uses relationship between classes. In SOCCA,

there is no implicit import within a class; methods within a class are not

automatically available for use by other methods within the class. Thus,

even within a class or an object, one method can only call another method

if it has a uses relationship to that class with that method in the labelling

set.

The reason for making this import within a class explicit is that this

import has consequences for other parts of a SOCCAmodel: namely, those

parts that deal with coordination of communication by method calls.

For SOCCA, method invocations within one object can in principle be

executed concurrently (i.e. SOCCA objects can be multi-threaded). Thus,

intra-object method use necessitates coordination between threads. To

emphasise the consequences of intra-object method use, it is made explicit

in the data perspective through the uses relationship.

Because of the amount of information involved, the class diagram is

often split into several sub diagrams, such as import/export diagrams,

class diagrams without relationships, inheritance diagrams and aggrega-

tion diagrams. Such a split often has an informal meaning to the modeller,

but is for the purposes of this formalisation merely a matter of convenient

representation; it has itself no formal semantics. The uses relationship,

which focuses on the method import necessary for communication, is often

drawn in such a separate import/export diagram.

Example In Figure 1, we show a fragment of a import/export diagram

where class c imports method M 1 from class d . This import indicates

class c can call this method of d . Method M 2 needs to be imported sep-

arately if class c is to be able to call it. 2

C
{M1}

D
M1
M2

Figure 1: A class diagram with a uses relationship

With the uses relationship covered, we have discussed the parts of the

data perspective relevant for modelling communication. The next section

continues with the behaviour perspective.

2.2 Behaviour Perspective

The behaviour perspective deals with visible behaviour (behaviour that is

visible to other classes); whereas the functionality perspective describes

hidden behaviour (which describes the functionality of the various meth-

ods). Later on, in the communication perspective, we will describe the

coordination between the behaviours of objects.

The behavioural aspects of SOCCA models are speci�ed through State

Transition Diagrams (STDs): graphical diagrams containing states and

labelled transitions between them.

3

With respect to the behaviour perspective, we associate with each class

one or more STDs. These STDs are called external STDs and specify the

external behaviour of the class. This is the order in which calls to methods

the class exports are accepted. The traversals through the external STD

specify in what order the methods of the class can be successfully called.

The � transitions in the STD can always be made in such a traversal.

Example In Figure 2, we show the external STD of class d of Figure

1. Each state is drawn as a circle and the initial state is marked with

an arrow with a non-shaded point. Each edge of the STD is either an �

transitions or is labelled with a method name. The external STD of d

speci�es that the iterative calls to methods M 1 and M 2 will be accepted.

So, the sequence of calls hM 1;M 2;M 1;M 2;M 1i will be accepted while

the sequence hM 1;M 2;M 2i will not occur. 2

M2M1

Figure 2: The external STD of a class

The next section continues with the functionality perspective.

2.3 Functionality Perspective

With each method of a class, we associate an internal behaviour STD

that describes how that method is realised. Each transition of internal

behaviour STD can be labelled with a method call. Calls can however

only be made to methods which are imported as de�ned by the uses

relationships. A method m of a class c can only make a call to a method

m

0

of class d if method m

0

is a label of a uses relationship from c to d .

The transitions in an internal behaviour STDmay be labelled with \act

method name" (indicating activation of the execution of method name) or

\call class.method name" (indicating a request to start the execution of

the method).

Example In �gure 3 we give a typical internal STD (belonging to a

method Foo), which makes two calls (one, B.bar of a class B ; the other

to C.Baz of a class C) and does some internal stu� (an unlabelled (�)

transition).

Rather than using separate end states (a state �lled with a smaller

circle), an � transition from what is e�ectively an end state to the initial

state, which is also an end state, is provided. This convention is used in

several SOCCA publications. The underlying intuition is that of a process

that in some sense becomes dormant after handling a call and is woken up

by a new call. This behaviour is de�ned in the communication perspective.

4

act Foo call B.Bar call C.Baz

Figure 3: A typical internal STD

2

The next section continues with the explanation of the communication

perspective.

2.4 Communication Perspective

The communication perspective is where SOCCA di�ers the most from

other object oriented modelling languages and where the di�culties for

readers new to SOCCA usually really begin. This perspective regulates

the coordination of the behaviour of methods.

With respect to the functionality perspective, each internal STD of a

method de�nes the full potential behaviour of a method. With respect

to the communication perspective, subprocesses are used to temporarily

restrict the behaviour of these internal STDs. The desired coordination

between classes is achieved by ensuring that the right subprocesses are

prescribed to the right internal STDs.

A subprocess of an STD is another STD where this new STD has a

subset of the states and transitions of the original. The current possible

behaviour of an internal STD is de�ned as the total possible behaviour

de�ned by the STD restricted by all the subprocesses which are currently

prescribed.

Example In Figures 4(a) and 4(b) we give two subprocesses of the

internal STD of Figure 2.4. The labels of the STD are left out to keep

things simple. By alternatively prescribing either subprocess R1 or R2 we

can (temporarily) restrict the possible behaviour of the internal STD. For

example, if we �rst prescribe subprocess R1, then the state labelled with

\C" is not reachable from the state labelled with \B" of the internal STD.

We prescribe subprocesses R2 when this situation is no longer desirable. 2

CBA

Prescribing the right subprocesses in SOCCA over time for the internal

STDs achieves the desired synchronisation in the communication between

the classes and objects. For example, an edge is taken as a transition of

an internal STD and the edge is labelled with a call to a method of a

class. The STD is not allowed to proceed beyond the reached state with

5

BA C

(a) Subprocess R1

BA C

(b) Subprocess R2

Figure 4: An STD with two subprocesses

further calls by prescribing the appropriate subprocess until the desired

synchronisation constraints are met.

Example In Figure 2.4, consider the case where the edge from the state

A of the STD to state B is labelled with a call. We can let the STD \wait"

after the call by prescribing subprocess R1 of Figure 4(a). We can let the

STD proceed by prescribing subprocess R2 instead. 2

At this point we are ready to introduce the concept of a trap. A trap

de�nes the part of a subprocess where coordination is desired. A trap is

a subset of the states of a subprocess where no state not in the trap can

be reached. The trap can not be left by taking one or more transitions;

thus the name \trap".

Example In Figures 5(a) and 5(b) we once more show the subprocesses

4(a) and 4(b) but now with an additional label of a call for 5(a) and a

trap for both subprocesses. The traps are shown as shaded areas. When

more than one trap is presented with a subprocess, they are often given

names, in this case t1 and t2. These two subprocesses are used to provide

the means to synchronise the call by alternatively prescribing the subpro-

cesses. Trap t1 indicates the call has been made and the internal STD is

\waiting" to proceed. The internal STD can proceed if subprocess R2 is

prescribed instead. Trap t2 indicates the switch has been made. We can

then switch back to subprocess R1 and wait for another call which has to

be synchronised. 2

t1

Call...

(a) Subprocess R1

t2

(b) Subprocess R2

Figure 5: An STD with two subprocesses

Up to now we have left the reader in the dark as how the subprocesses

for the internal STDs are prescribed. This is done by managers which

determine which subprocesses are prescribed for an internal STD at each

6

point in time. Each class has one (or more) managers which are de�ned

as an external STD of the class with extra states and labels. Managers

are yet another special STD. Each state of the manager STD is labelled

with the subprocesses which are prescribed when the manager is in that

state. A switch in state of the manager thus results in a possible change

in the subprocesses prescribed by the manager. The edges of the labels

of the manager are labelled with the names of traps. These traps must

have been reached in the appropriate subprocesses if the transition is to

be taken.

Example Figure 6 gives an example manager. This manager coordi-

nates the internal STD of Figure 2.4 by prescribing subprocesses R1 and

R2 when traps t1 and t2 are reached. The subprocesses R1 and R2 are

used to coordinate a call and traps t1 and t2 are used to detect when a

subprocess switch is necessary. The activities of the STD of Figure 2.4

are also coordinated with another internal STD with subprocesses E1 and

E2 with traps t3 and t4, all of which are not shown here. The example

however shows that the progress of our internal STD is dependent on the

progress of the \omitted" internal STD and whether it reaches traps t3

and t4. 2

R1
E2

R1
E1

R2
E1

{t1,t3}

{t1,t4}

{t2}

Figure 6: A manager

We call each internal STD for which subprocesses are prescribed by

a manager an employee of that manager. A manager typically has two

types of employees. First of all, the manager of a class has as employees

the internal STDs of its own class. The manager regulates when a method

of the class can activate by taking the transition labelled with \act". The

method of the class then goes from a dormant state to an act ive state.

Secondly, a manager has as employees the internal STDs which make a

call to a method of the class to which the manager belongs. The manager

ensures by prescribing the right subprocesses that the calling internal STD

cannot proceed until the desired synchronisation is achieved.

The notion of subprocess, trap, manager and employee are the in-

novative parts of SOCCA and were originally introduced in PARADIGM

[Gro88].

7

3 Concluding Remarks

We have seen how the basic communication between classes/objects is

regulated in SOCCA and we have covered the necessary SOCCA concepts.

The uses relationship de�nes what methods are imported. The external

STDs of a class regulate the order in which the methods of a class can

be called. Internal STDs de�ne the behaviour of the methods. Managers

prescribe subprocesses to their employees and wait for traps to prescribe

new subprocesses to their employees.

We have however simpli�ed many issues in this text. We have, for

example, not discussed inheritance or aggregation. We have furthermore

not discussed the subtle e�ects which arise when one internal STD is pre-

scribed subprocesses by more than one manager. Nor have we discussed

the SOCCA concepts at a very formal level or demonstrated the mod-

elling techniques with a large example. This was not our goal. Our

intention was to write a simple introduction to the SOCCA concepts

to give a reader new to SOCCA a means to reduce the steep learning

curve experienced with SOCCA publications. The reader of this text

should now be better prepared to tackle a \real" SOCCA publication. See

\http://www.wi.LeidenUniv.nl:/CS/SEIS/socca-bib.html" for a complete

up to date electronic list with downloads.

8

References

[DGSK

+

99] J.H.M. Dassen, L.P.J. Groenewegen, I.G. Sprinkhuizen-

Kuyper, P.W.M. Koopman, P.J. 't Hoen, and G. Engels.

A formalisation of SOCCA using Z; part 1: the type level

concepts. Technical Report 1999{03, Leiden Institute of

Advanced Computer Science, February 1999. Available on

the web as http://www.wi.leidenuniv.nl/TechRep/1999/

tr99-03.ps.gz.

[EG94] Gregor Engels and Luuk P.J. Groenewegen. SOCCA: Spec-

i�cations of coordinated and cooperative activities. In

A. Finkelstein, J. Kramer, and B.A. Nuseibeh, editors, Soft-

ware Process Modelling and Technology, pages 71{102. Re-

search Studies Press Ltd. / John Wiley & Sons Inc., 1994.

Taunton 1994.

[Gro88] L.P.J. Groenewegen. Parallel phenomena, 1986{88. A series

of technical reports, consisting of [Gro86, Gro87c, Gro87g,

Gro87h, Gro87i, Gro87b, Gro87e, Gro87d, Gro87f, Gro88a,

Gro88b, Gro87a].

[Gro86] L.P.J. Groenewegen. Processes. Technical Report 86-20, De-

partment of Computer Science, Leiden University, 1986. Part

of [Gro88].

[Gro87a] L.P.J. Groenewegen. Changing managing cooperation in a

hierarchy. Technical Report 88-18, Department of Computer

Science, Leiden University, 1987. Part of [Gro88].

[Gro87b] L.P.J. Groenewegen. A critical section model. Technical Re-

port 87-18, Department of Computer Science, Leiden Uni-

versity, 1987. Part of [Gro88].

[Gro87c] L.P.J. Groenewegen. Decision processes. Technical Report

87-01, Department of Computer Science, Leiden University,

1987. Part of [Gro88].

[Gro87d] L.P.J. Groenewegen. Dijkstra's semaphore solution. Techni-

cal Report 87-29, Department of Computer Science, Leiden

University, 1987. Part of [Gro88].

[Gro87e] L.P.J. Groenewegen. Goeman's solution and a stochastic so-

lution. Technical Report 87-21, Department of Computer

Science, Leiden University, 1987. Part of [Gro88].

[Gro87f] L.P.J. Groenewegen. Lamport's bakery problem. Techni-

cal Report 87-32, Department of Computer Science, Leiden

University, 1987. Part of [Gro88].

[Gro87g] L.P.J. Groenewegen. Modelling. Technical Report 87-05,

Department of Computer Science, Leiden University, 1987.

Part of [Gro88].

[Gro87h] L.P.J. Groenewegen. Parallel processes. Technical Report

87-06, Department of Computer Science, Leiden University,

1987. Part of [Gro88].

9

[Gro87i] L.P.J. Groenewegen. Two examples of a parallel control pro-

cess. Technical Report 87-11, Department of Computer Sci-

ence, Leiden University, 1987. Part of [Gro88].

[Gro88a] L.P.J. Groenewegen. Trap process hierarchy: an almighty

manager. Technical Report 88-15, Department of Computer

Science, Leiden University, 1988. Part of [Gro88].

[Gro88b] L.P.J. Groenewegen. Trap process hierarchy: cooperating

managers. Technical Report 88-17, Department of Computer

Science, Leiden University, 1988. Part of [Gro88].

[RBP

+

91] James Rumbaugh, Michael Blaha, William Premerlani, Fred-

erick Eddy, and William Lorensen. Object-Oriented Modeling

and Design. Prentice-Hall, Inc., 1991.

[tHDG

+

99] P.J. 't Hoen, J.H.M. Dassen, L.P.J. Groenewegen, I.G.

Sprinkhuizen-Kuyper, P.W.M. Koopman, and G. Engels.

SOCCA extended with UML like packages. Technical Report

99-06, liacs, September 1999.

[UML99] Uni�ed modeling language 1.3. Technical report, Rational

Software Corporation, 1999.

10

