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Abstrat. In this paper, we de�ne a proess semantis of P/T-nets

with inhibitor ars (PTI-nets). For PTI-nets with bounded inhibiting

plaes, we ombine the existing approahes for ordinary P/T-nets and

for elementary net systems with inhibitor ars. To deal with unbounded

inhibiting plaes, a new feature has to be added to the underlying our-

rene nets. In either ase we show how to onstrut a proess from a step

sequene and give a omplete haraterization of all proesses whih an

be obtained in this way. Using these proesses it is possible to express

the ausal relationships between events in a PTI-net behaviour.

Keywords: Causality/partial order theory of onurreny; analysis and

synthesis, struture and behaviour of nets.

1 Introdution

Petri nets with inhibitor ars have been around for quite some time now and

as stated in [12℄, `Petri nets with inhibitor ars are intuitively the most diret

approah to inreasing the modelling power of Petri nets'. Unlike a `normal'

Petri net, a Petri net with inhibitor ars has the possibility of testing whether a

plae is empty in the urrent marking (zero testing). Thus inhibitor ars are very

well suited to model situations involving testing for a spei� ondition, rather

than produing and onsuming resoures. Plae/Transition nets with inhibitor

ars (PTI-nets) are stritly more expressive than ordinary Plae/Transition-nets

(P/T-nets). They an simulate the omputations of Turing mahines and several

important problems like reahability and liveness whih are deidable for P/T-

nets are undeidable for PTI-nets.

This paper is onerned with the desription of the ausal relationships in

(onurrent) runs of PTI-nets. The researh presented here is a natural ontin-

uation of the work of [8℄ regarding elementary net systems with inhibitor ars.

There, so-alled strati�ed order strutures are employed to provide a ausality

semantis whih is onsistent with the operational semantis in terms of step

sequenes. Whereas for an elementary net system, an abstrat ausality seman-

tis an be given in terms of partial orders alone, the presene of inhibitor ars

requires more information on the relationships between event ourrenes. As
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an example (borrowed from [8℄), onsider the net with the two events, e and f ,

shown in �gure 1.
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Fig. 1. An elementary net system with inhibitor ar.

In addition to the normal ars, there is an inhibitor ar from ondition s

3

to

f . This implies that f an only our if s

3

is empty (and the standard enabling

onditions in an elementary net system are ful�lled). This net has three non-

empty �ring sequenes: !

1

= e, !

2

= f and !

3

= fe. Note that the ourrene

of e is ompletely independent of the ourrene of f . However, f is disabled

after the ourrene of e. This implies that independene of events is no longer

symmetri. In the a priori semantis of [8℄, e and f may also be exeuted si-

multaneously, sine the inhibiting ondition s

3

of f does not hold prior to the

ourrene of f . Thus also the step fe; fg may be exeuted. This implies that

independene and absene of ordering are no longer the same.

Strati�ed order strutures take are of these more involved relations between

event ourrenes by providing next to a partial order a weak partial order. The

partial order desribes the strit ausal relationships between event ourrenes

whereas the weak partial order desribes weak ausal relationships as the above:

f may preede e but not vie versa and hene the step fe; fg may be sequen-

tialised to fe, but not to ef .

For elementary net systems (without inhibitor ars), an abstrat partial order

semantis follows immediately from their proess semantis (see, e.g., [14℄). A

proess is onstruted by unfolding the system aording to a given run repre-

sented by a �ring sequene. The result is an ourrene net: a (labelled) ayli

net with non-branhing onditions, sine onits are resolved during the run.

By abstrating from the onditions of the ourrene net, one obtains a (la-

belled) partial order whih desribes preisely the ausal relationships between

the events in the given run: all linearisations of the partial order are �ring se-

quenes of the elementary net system and they inlude the �ring sequene on

the basis of whih the proess was onstruted.

Also in [8℄, �rst a proess semantis is given. Sine in the a priori semantis not

all onurrent runs of the system an be sequentialised to a �ring sequene, this

proess semantis is based on step sequenes. (Consider again the elementary net

system in �gure 1, with an additional inhibitor ar from s

4

to e. Now, !

3

= fe

is no longer a �ring sequene, although � = fe; fg is still a legal step sequene.)

Given a step sequene, the system is unfolded into a (labelled) ourrene net

with additional ars to represent the zero testing. Testing if a ondition does not

hold (inhibitor ar) is in the unfolding represented by testing if its omplement

ondition does hold (ativator ar). In the resulting ativator ourrene net the



onditions are again non-branhing (with respet to the normal ars). Moreover,

it is ayli in a sense whih inludes the ativator ars (}-ayli) and thus

allows to extrat a (labelled) strati�ed order struture whih desribes preisely

the ausality and weak ausality relationships between the events in the given

run: all step sequenes whih obey the onstraints imposed by the strati�ed order

struture are step sequenes of the system and they inlude the step sequene

on basis of whih the proess was onstruted.

In this paper we propose a proess semantis for PTI-nets with the aim

to provide a basis for their abstrat ausality semantis. Sine the nets are no

longer neessarily safe (markings may assign more than one token to a plae),

we ombine the ideas of [8℄ with the de�nition of proesses for (�nite) P/T-nets

as disussed in, e.g., [6℄ and [1℄. In these proesses eah token in a plae of the

original P/T-net is represented by a distint ondition in the proess net. Con-

sequently, unfolding the net aording to a step sequene in general yields more

than one ourrene net. However, the same ourrene nets as employed for

elementary net systems are used in the proess de�nition of P/T-nets.

First we onsider the ase of PTI-nets in whih the number of tokens in an in-

hibiting plae annot grow arbitrarily large (the inhibiting plaes are bounded).

We refer to these nets as PTBI-nets. For them, using omplementary plaes for

the inhibiting plaes and ativator ars in the proesses, the ideas of [8℄ an be

ombined with the approah of [1℄ whih relates proess axioms and indutively

de�ned unfoldings. We de�ne the proesses of PTBI-nets and give an unfold-

ing onstrution based on step sequenes. We show that these de�nitions are

onsistent with eah other, and that they an be used to extrat the ausal re-

lationships between the events in a run of a PTBI-net.

Next we turn to the unbounded ase. In this ase, the lassial plae omple-

mentation an no longer be applied. Instead we introdue a new feature in the

form of additional onditions (z-onditions) to the ourrene nets. A z-ondition

represents an empty inhibiting plae and is onneted by an ativator ar to the

events representing transitions whih test that plae for zero tokens. Z-onditions

are introdued `on-demand' during the onstrution of a proess for a given step

sequene, and with their introdution an up-date of the ourrene net has to

take plae. This di�ers from the standard unfolding proedures disussed above

whih do not refer to the past and are purely loal (based on the neighbourhood

of the transitions in the original net). Moreover, z-onditions may be branhing

(with respet to the normal ars). Still, the resulting z-ativator ourrene nets

an be fully (axiomatially) haraterised, and they provide us with an abstrat

ausal semantis for the unbounded ase.

Both the proess semantis and the ausal semantis for PTI-nets are on-

sistent with those for PTBI-nets, whih in their turn generalise the semantis

of P/T-nets as de�ned in [1℄ and the semantis of elementary net systems with

inhibitor ars from [8℄.

This paper is largely self-ontained, although it may be an advantage for the

reader to be aquainted with the `lassial' proess theory as presented in [1, 6℄

and [14℄. Due to the page limit, some proofs are either only skethed or omitted.



2 Preliminaries

N denotes the set f0; 1; 2; : : :g of natural numbers. All funtions onsidered in

this paper are total. For a �nite set X , we denote by jX j its ardinality.

Let X be a set. A multiset (over X) is a funtion m : X ! N. The sum

of two multisets m

1

and m

2

over X is denoted by m

1

+m

2

and is de�ned by

(m

1

+m

2

)(x) = m

1

(x) +m

2

(x), for all x 2 X . The empty multiset, denoted by

0, is de�ned by 0(x) = 0, for all x 2 X . Note that a multiset m over X may be

seen as the subset fx 2 X j m(x) � 1g of X , the elements of whih are equipped

with multipliities. Conversely, every subset of X may be viewed through its

harateristi funtion as a multiset over X . We denote x 2 m if m(x) � 1.

A step sequene (over X) is a �nite sequene m

1

: : :m

n

of non-empty multi-

sets m

i

(over X). The empty sequene is denoted by �. If eah of the multisets

m

i

in a step sequene � = m

1

: : :m

n

is a singleton set fx

i

g (i.e., m

i

(x

i

) = 1 and

m

i

(y) = 0, for all y 6= x

i

), then � may be written as x

1

: : : x

n

. Thus X

�

, the set

of all �nite sequenes of ourrenes of elements from X , is a subset of the set

of all step sequenes over X .

Now assume that X is �nite. A labelling of X is a funtion l : X ! A, where

A is some set of labels (the labelling alphabet). It is extended to step sequenes

over X in the following way: For m : X ! N, we de�ne l(m) : A ! N

by l(m)(a) =

P

fxjl(x)=ag

m(x), for all a 2 A. For � = m

1

: : :m

n

, we set

l(�) = l(m

1

) : : : l(m

n

). In partiular, l(�) = �. Hene step sequenes over X

are mapped to step sequenes over A. Observe that l(�) is in A

�

, whenever

� = x

1

: : : x

n

is in X

�

. In general, however, a set is mapped to a multiset.

For two relations P;Q � X � X , their omposition P Æ Q is also a binary

relation over X , de�ned by P ÆQ = f(x; z) j 9y 2 X : (x; y) 2 P ^ (y; z) 2 Qg.

Let id

X

= f(x; x) j x 2 Xg be the identity relation in X . A binary relation P

over X is reexive if id

X

� P ; it is irreexive if id

X

\P = ;; and it is transitive

if P Æ P � P . The transitive losure of P is denoted by P

+

, and its transitive

and reexive losure by P

?

.

2.1 Partially ordered sets

A partial order on X is an irreexive and transitive binary relation over X . If

�� X � X is a partial order, then the pair (X;�) is referred to as a partially

ordered set, or poset for short. In this paper we will only onsider �nite posets

(X is �nite).

A labelled poset is a triple (X;�; l) suh that (X;�) is a poset and l : X !

A is a labelling of X . As we will be mainly dealing with labelled posets, all

terminology is introdued diretly for labelled posets. If need be, it an be arried

over to posets by identifying the poset (X;�) with the labelled poset (X;�; id

X

).

Let (X;�; l) be a labelled poset. As usual, for x; y 2 X , we write x � y

rather than (x; y) 2� and we use x � y to denote that x = y or x � y.

The notation x 6$ y indiates that x and y are distint inomparable elements

(x 6= y ^ x 6� y ^ y 6� x).

The labelled poset (X;�; l) is linear (or total), if every two distint elements are



omparable (the relation 6$ is empty). It is strati�ed [4℄ if x 6$ y and y 6$ z imply

that x 6$ z whenever x 6= z. Thus a linear labelled poset is always strati�ed. Note

that (X;�; l) is strati�ed if and only if 6$ [ id

X

is an equivalene relation. If

(X;�; l) is strati�ed it de�nes a unique (ordered) sequene of subsetsX

1

: : : X

k

of

X , the equivalene lasses of 6$ [ id

X

, with the property: �=

S

i<j

X

i

�X

j

, and

6$= (

S

k

i=1

X

i

� X

i

) n id

X

. Hene eah labelled strati�ed poset po = (X;�; l)

as above de�nes a unique step sequene 0

po

= l(X

1

) : : : l(X

k

). Conversely, if

po = (X;�; l) is suh that X an be partitioned into non-empty sets X

1

; : : : ; X

k

satisfying the above onditions, then it is strati�ed and 0

po

= l(X

1

) : : : l(X

k

).

Two labelled posets po

1

= (X

1

;�

1

; l

1

) and po

2

= (X

2

;�

2

; l

2

) are isomorphi

if there is a bijetion f : X

1

! X

2

suh that for all x; y 2 X

1

, l

1

(x) = l

2

(f(x)),

and x �

1

y if and only if f(x) �

2

f(y).

Note that every step sequene � de�nes an isomorphism lass of labelled strati�ed

posets po with the property that 0

po

= �. In the sequel, however, we are not

really interested in the underlying set whih is only used to arry labels and we

will simply use po

�

to denote any labelled strati�ed poset po suh that 0

po

= �.

2.2 Strati�ed order strutures

A relational struture is a triple S = (X;�;<), where � and < are two binary

relations over a �nite set X . S is alled a strati�ed order struture [5, 7℄, or an

so-struture for short, if for all x; y; z 2 X the following hold (again using the

in�x notation):

x 6< x C1

x � y =) x < y C2

x < y < z ^ x 6= z =) x < z C3

x < y � z _ x � y < z =) x � z C4:

It is easily seen that (X;�) is a poset and, furthermore, that x � y implies

y 6< x. Furthermore, if (X;�) is a poset, then (X;�;�) is an so-struture.

In diagrams, � is represented by solid ars, and < by dashed ars. We an omit

ars that an be dedued using C1-C4.

The elements of a relational struture (X;�;<) will usually be labelled.

Thus we onsider strutures S = (X;�;<; l), suh that (X;�;<) is a relational

struture and l : X ! A is a labelling of X . All remaining terminology is now

introdued diretly for labelled relational strutures. (It an be arried over to

the non-labelled ase by identifying (X;�;<) with (X;�;<; id

X

).) In diagrams,

we do not name the nodes but only give their labels.

Conurreny theory employs partial orders � to model both spei�ations

and observations of behaviours. On the level of observations, they are used to

de�ne operational semantis; � is then interpreted as the earlier than relation,

and 6$ as (potential) simultaneity. On the level of behaviour spei�ations, � is

usually interpreted as ausality, and 6$ as independene. The �rst relation �

S

in an so-struture S, should be interpreted as the standard ausality, and the

seond relation, <

S

, as a weak ausality. While ausality is an abstration of the



`earlier than' relation, weak ausality is a similar abstration of the `not later

than' relation (this should be learer if one looks at the formula (1) where �

po

represents the former, and �

po

[ 6$ the latter relation). For a detailed disussion

of so-strutures the reader is referred to [7℄.

When used as a tool for representing onurrent behaviours, so-strutures are

derived from loally de�ned information involving events whih diretly interat

with one another. This loal information then needs to be ombined into a global

relationship involving all the event ourrenes. For this a losure operation is

applied whih builds an so-struture from representative loal relations. The

}{losure of a relational struture was introdued in [8℄ to serve suh a purpose.

Let S = (X;�;<; l) be a labelled relational struture. The }{losure of S is

the labelled relational struture S

}

= (X;�

S

} ;<

S

} ; l), where

�

S

}= (� [ <)

?

Æ�Æ(� [ <)

?

and <

S

}= (� [ <)

?

n id

X

:

We also say that a labelled relational struture S is }{ayli if �

S

}
is irreex-

ive. The property of �

S

} being irreexive, whih holds when the struture S

}

obtained from S is an so-struture, has a straightforward interpretation in oper-

ational terms. Basially, it means that in any single system history as desribed

by S, there are no event ourrenes e

1

; e

2

; : : : ; e

k

suh that eah e

i

has ourred

before or simultaneously with e

i+1

, while e

k

has ourred before e

1

.

Proposition 1. [8℄ Let S = (X;�;<; l) be a labelled relational struture.

1. S

}

is a labelled so-struture if and only if �

S

} is irreexive.

2. If S is an so-struture, then S

}

= S. ut

We now turn to the relationship between so-strutures and strati�ed posets

whih resembles that between partial orders and their linear extensions.

A labelled strati�ed poset po = (X

po

;�

po

; l

po

) is an extension of a labelled

so-struture S = (X

S

;�

S

;<

S

; l

S

) if they have the same domain X

po

= X

S

and

the same labelling l

po

= l

S

, and moreover, �

S

��

po

and <

S

� �

po

[ 6$

po

. We

denote this by po 2 strat(S). If S = (X;�;<; l) is a labelled so-struture then

we have [8℄:

S =

�

X ;

\

po2strat(S)

�

po

;

\

po2strat(S)

(�

po

[ 6$

po

) ; l

�

: (1)

Thus S an be derived from its poset extensions. Reall that Szpilrajn's theorem

[13℄ states that eah poset is unambiguously identi�ed by its linear extensions. A

similar result does not hold for so-strutures sine these do not neessarily have

total order extensions, e.g., S = (fa; bg; ;; f(a; b); (b; a)g). For them one needs to

onsider strati�ed poset extensions [9℄.

Again, we are not interested in the atual arriers of the labels in a poset and so

in the sequel we will use the notation strat(S) to denote the set of all isomorphi

opies of the labelled strati�ed poset extensions of S.

We say that two labelled relational strutures, S

1

= (X

1

;�

1

;<

1

; l

1

) and

S

2

= (X

2

;�

2

;<

2

; l

2

), are isomorphi if there is a bijetion f : X

1

! X

2

suh

that for all x; y 2 X

1

, l

1

(x) = l

2

(f(x)), and x �

1

y if and only if f(x) �

2

f(y),

and x <

1

y if and only if f(x) <

2

f(y).



3 Plae/Transition nets with inhibitor ars

This setion introdues the notation and terminology for P/T-nets with inhibitor

ars (PTI-nets, for short) and disusses their operationally de�ned a priori step

sequene semantis. PTI-nets have an underlying struture onsisting of a net

augmented with inhibitor ars.

A net is a triple N = (S; T; F ) suh that S and T are disjoint �nite sets,

and F � (T � S) [ (S � T ). The elements of S and T are respetively alled

plaes and transitions, and F is alled the ow relation. We assume that, for

every t 2 T , fs j (s; t) 2 Fg 6= ; and fs j (t; s) 2 Fg 6= ; (nets are T-restrited).

An inhibitor net is a net together with a (possibly empty) set of inhibitor

ars leading from plaes to transitions. (In diagrams, inhibitor ars have small

irles as arrowheads.) Thus an inhibitor net N is spei�ed as a tuple (S; T; F; I)

suh that (S; T; F ) is a net (the underlying net of N) and I � S� T is its set of

inhibitor ars. A net (S; T; F ) (without inhibitor ars) is onsidered as a speial

instane of an inhibitor net and identi�ed with the inhibitor net (S; T; F; ;).

Given an inhibitor net N = (S; T; F; I) and x 2 S [ T , the post-set of x,

denoted by x

�

, is de�ned by x

�

= fy j (x; y) 2 Fg and the pre-set of x, denoted

by

�

x, is de�ned by

�

x = fy j (y; x) 2 Fg. In addition, for all t 2 T ,

Æ

t = fs 2 S j

(s; t) 2 Ig denotes the set of inhibiting plaes of t. These notations are extended

to multisets over S [ T in the following way: For a multiset U : S [ T ! N,

U

�

= fy j 9x 2 U : (x; y) 2 Fg and

�

U = fy j 9x 2 U : (y; x) 2 Fg; and for a

multiset U : T ! N,

Æ

U = fs 2 S j 9t 2 U : (s; t) 2 Ig.

A PTI-net is an inhibitor net equipped with an initial state. The states of an

inhibitor net are given in the form of markings.

Let N = (S; T; F; I) be an inhibitor net. A marking of N is a multiset of

plaes. Following standard terminology, given a marking M of N and a plae

s 2 S, we say that s is marked (under M) if M(s) � 1 and that M(s) is the

number of tokens in s under M .

Transitions represent ations whih may our at a given marking and then

lead to a new marking. Here we de�ne this dynamis in the more general terms

of multisets of (onurrently ourring) transitions. A step is a multiset of tran-

sitions, U : T ! N. It is enabled at a marking M if, for all s 2 S:

M(s) �

X

t2s

�

U(t) and [s 2

Æ

U =)M(s) = 0℄:

Thus, by the �rst ondition, in order for U to be enabled at M , for eah plae s,

the number of tokens in s under M should be at least equal to the total number

of ourrenes of transitions in U that have s as an input plae. By the seond

ondition, if a plae s is an inhibiting plae of some transition ourring in U ,

then s should be empty in M . Note that the enabledness of a step is based on

an a priori ondition: the inhibiting plaes of transitions ourring in that step

should be empty before it ours.

1

1

In the a posteriori approah [3℄, the seond ondition for enabledness is strengthened:

for all s 2 S, [s 2

Æ

U =) (M(s) = 0 ^ s 62 U

�

)℄. Thus no inhibiting plae of a

transition in U is also an output plae of any transition ourring in U .



If U is enabled at M , then it an be exeuted, whih leads to the marking

M

0

de�ned, for all s 2 S, by:

M

0

(s) =M(s)�

X

t2s

�

U(t) +

X

t2

�

s

U(t):

This means that the exeution of U `onsumes' from eah plae s a token for

eah ourrene of a transition in U that has s as an input plae, and `produes'

in eah plae s a token for eah ourrene of a transition in U with s as an

output plae. If the exeution of U leads fromM toM

0

we writeM [UiM

0

. Note

that the empty step 0 is enabled at every marking of N and that its exeution

has no e�et: M [0iM for all markings M of N .

A step sequene from a marking M to marking M

0

is a sequene U

1

: : : U

n

of

non-empty steps U

i

, 1 � i � n with n � 0, suh that

M =M

0

[U

1

iM

1

[U

2

iM

2

� � � M

n�1

[U

n

iM

n

=M

0

for some markingsM

1

; : : : ;M

n�1

of N . If � is a step sequene from M to M

0

we

write M [�iM

0

and M

0

is said to be reahable (in N) from M . Note that every

marking is reahable from itself by the empty step sequene.

In ase we want to make lear whih (inhibitor) net we are dealing with, we may

add a subsript N and write [�i

N

rather than [�i.

A Plae/Transition net with inhibitor ars (or PTI-net) is a tuple N =

(S; T; F; I;M

0

), where N

0

= (S; T; F; I) is its underlying inhibitor net, and M

0

is a marking of (S; T; F; I).

2

A step sequene of N = (S; T; F; I;M

0

) is a step

sequene starting from M

0

in its underlying inhibitor net N

0

. The set of all step

sequenes of N is the set steps(N) = f� j 9M :M

0

[�i

N

0

Mg.

As the last point of this setion, we look at the boundedness of plaes in N .

A plae s 2 S is n-bounded in N , where n is a positive integer, if M(s) � n for

every marking M reahable from M

0

; it is bounded if it is n-bounded for some

n, otherwise it is unbounded. N is safe if all of its plaes are 1-bounded. If s

1

is

a bounded plae of N , then s

2

2 S is a omplement plae of s

1

, if

�

s

1

= s

2

�

and

s

1

�

=

�

s

2

. Then bound(s

1

) = M

0

(s

1

) +M

0

(s

2

) is a bound for both s

1

and s

2

,

and bound(s

1

) =M(s

1

) +M(s

2

), for every marking M reahable from M

0

.

We allN a PTBI-net if all inhibiting plaes of all its transitions are bounded.

4 Proesses

4.1 Ourrene nets

For safe P/T-nets and elementary net systems, proesses an be used as a non-

sequential representation of runs of the net (see, e.g., [2, 11, 14℄). Proesses are

based on ourrene nets and may be viewed as (partial) ayli unfoldings of

the net. Eah transition represents an ourrene of a transition in the original

2

Note that I may be empty, in whih ase we are atually dealing with a P/T-net,

and then N may also be spei�ed in the form (S; T; F;M

0

).



net, while eah plae orresponds to a token. Conits between transitions are

resolved and thus plaes do not branh. An ourrene net de�nes a partial order

on its transitions whih in turn provides a partial order desription of transition

ourrenes in the original net.

De�nition 1. A (labelled) ourrene net is a labelled net ON = (B;E;R; l)

suh that: j

�

bj � 1 � jb

�

j, for every b 2 B; the relation (R Æ R)j

E�E

is ayli;

and l is a labelling funtion for B [ E. The elements of B and E | the plaes

and transitions of ON | are respetively alled onditions and events. ut

The minimal and maximal onditions of ON are respetively Min(ON ) =

fb 2 B j

�

b = ;g and Max (ON ) = fb 2 B j b

�

= ;g. ON de�nes a set of step

sequenes whih start from an impliit marking formed by Min(ON ) and lead

to Max (ON ). (Note that the steps in these sequenes are sets and that ON with

initial markingMin(ON ) is safe.) Applying the labelling l to suh step sequenes

yields the set lsteps(ON ) = fl(�) j Min(ON )[�i

ON

Max (ON )g.

Sine (R Æ R)j

E�E

is ayli, its transitive losure �

ON

= ((R Æ R)j

E�E

)

+

is

irreexive and we an assoiate with ON a labelled poset po

ON

= (E;�

ON

; lj

E

).

For EN-systems [14℄, the notion of ourrene nets provides a ausality (par-

tial order) semantis whih an be de�ned in two di�erent ways: (i) axiomati,

from the struture of the net; and (ii) operational, through unfolding based on

step sequenes. In both ases, the proesses and hene also the assoiated partial

orders are the same.

The above approah is not diretly appliable to non-safe nets. For these, [6℄

and [1℄ propose to represent eah of the multiple tokens in a plae by a separate

ondition of an ourrene net. We now provide a rephrasing of the de�nitions

of [1℄ for the ase of general (possibly non-safe) �nite P/T-nets.

De�nition 2. Let N = (S; T; F;M

0

) be a P/T-net. A proess of N is an our-

rene net ON = (B;E;R; l) suh that the following onditions are satis�ed:

1. l : B [ E ! S [ T is suh that l(B) � S and l(E) � T .

2. For all s 2 S: M

0

(s) = jMin(ON ) \ l

�1

(s)j.

3. For all s 2 S and e 2 E:

(a) jfsg \

�

l(e)j = jfb 2 l

�1

(s) j (b; e) 2 Rgj

(b) jfsg \ l(e)

�

j = jfb 2 l

�1

(s) j (e; b) 2 Rgj.

We will use on(N) to denote the set of all proesses of N . ut

The above is the axiomati de�nition. Alternatively, we an start from a step

sequene and onstrut a orresponding proess.

De�nition 3. Let N = (S; T; F;M

0

) be a P/T-net and let � = U

1

: : : U

n

be a

step sequene of N . A proess generated by � is the last labelled net N

n

in a

series N

0

; : : : ; N

n

with N

k

= (B

k

; E

k

; R

k

; l

k

), for 0 � k � n, onstruted thus.

{ Step 0: N

0

= (B

0

; E

0

; R

0

; l

0

) where

� E

0

= R

0

= ; and B

0

= fb

s;i;0

j 1 � i �M

0

(s)g.



(a)

e

f

(b)

e

f

()

e

f

Fig. 2. (a,b) Two ases de�ning e �

aux

f , and () one ase de�ning e <

aux

f .

� l

0

: B

0

! S is suh that l(b

s;i;0

) = s, for all b

s;i;0

2 B

0

.

Let Max

0

= B

0

.

{ Step m = k + 1: Let N

k

= (B

k

; E

k

; R

k

; l

k

). Then N

m

is de�ned thus:

� B

m

= B

k

[ fb

s;t;i;m

j 1 � i � U

m

(t) ^ s 2 t

�

g.

� E

m

= E

k

[ fe

t;i;m

j 1 � i � U

m

(t)g. Moreover, for eah e

t;i;m

2 E

m

and

eah s 2

�

t we hoose

3

a distint

b

b

hs;t;i;mi

2 Max

k

\ l

�1

(s).

� R

m

= R

k

[

�

f(

b

b

hs;t;i;mi

; e

t;i;m

) j e

t;i;m

2 E

m

^ s 2

�

tg [

f(e

t;i;m

; b

s;t;i;m

) j e

t;i;m

2 E

m

^ s 2 t

�

g

�

:

� l

m

(b

s;t;i;m

) = s and l

m

(e

t;i;m

) = t, for all b

s;t;i;m

2 B

m

nB

k

and e

t;i;m

2

E

m

nE

k

. Moreover, l

m

(x) = l

k

(x), for all x 2 B

k

[ E

k

.

Let Max

m

= fb 2 B

m

j :9e 2 E

m

: (b; e) 2 R

m

g.

We will use pro

�

to denote the set of all isomorphi opies

4

of all proesses

generated by � . ut

4.2 Ativator ourrene nets

The presene of inhibitor ars makes the unfolding proedure more ompliated,

due to the fat that loal information regarding the lak of tokens in a plae

annot be expliitly represented in an ourrene net. In [8℄ this problem is

solved by using omplement plaes and representing inhibitor ars by ativator

ars onneted to onditions representing omplement plaes. The notion of an

ourrene net is replaed by that of an ativator ourrene net.

De�nition 4. A (labelled) ativator ourrene net (ao-net) is a tuple AON =

(B;E;R;At ; l) suh that: ON = (B;E;R; l) is an ourrene net; At � B�E

are ativators ars; and the relational struture S

aux

(AON ) = (E;�

aux

;<

aux

)

= (E; (R ÆR)j

E�E

[ (R ÆAt); (At

�1

ÆR) n id

E

) is }{ayli. ut

In the diagrams, ativator ars have blak dots as arrowheads; see, e.g., �g-

ure 4 where (b

2

; e) is an ativator ar. Figure 2 shows how �

aux

and <

aux

are

onstruted from ordinary ars and ativator ars.

Notie that the }-ayliity of S

aux

(AON ) implies that (RÆR)j

E�E

is ayli

in the usual sense. Sine S

aux

(AON ) is }{ayli, we an assoiate with AON

the labelled so-struture S(AON) = S

aux

(AON )

}

, see proposition 1. Figure 3

shows the labelled so-strutures S(AON

i

) for the ao-nets AON

i

in �gure 5.

3

This is the only di�erene with the safe ase, where there is only one andidate on-

dition

b

b

hs;t;i;mi

, and so the proess assoiated with � is unique (up to isomorphism).

4

The onstrution of a proess from step sequenes in this and the next setions is

based on onrete nodes whih arry the labels. This provides us immediately with

a fully spei�ed representative of an isomorphism lass whih is both intuitive and

useful in proofs.



S(AON

1

)

w

w

S(AON

2

)

w

t

w

S(AON

3

)

w u w

t t t

w u w

Fig. 3. Strati�ed order strutures generated by ao-nets in �gure 5.

Intuitively, an ativator ar between a ondition b and an event e means that

the ourrene of e requires the holding of b, but the ourrene of e will not

make b ease to hold. Formally, a step U of events is enabled at a marking M

of AON if U is enabled in the underlying ourrene net ON at marking M

and, furthermore, for all e in U and b 2 B, (b; e) 2 At implies that b is marked

in M . The resulting marking M

0

is the same as the marking resulting from the

exeution of U in ON .

5

As before, we will writeM [�i

AON

M

0

if exeuting a step

sequene � in AON leads from M to M

0

.

The minimal and maximal onditions of AON are respetively Min(AON ) =

Min(ON )(= Min) and Max (AON ) = Max (ON )(= Max ). The step sequenes

and the reahable markings of AON from the marking Min are also step se-

quenes and reahable markings of ON with initial marking Min . Thus, in par-

tiular, (AON ;Min) is safe, sine (ON ;Min) always is. As for ourrene nets,

we onsider those step sequenes whih lead from the minimal onditions to the

maximal onditions. Applying the labelling l to suh step sequenes yields the

set lsteps(AON ) = fl(�) j Min [�i

AON

Maxg. The following result states the or-

respondene between the (labelled) step sequenes of an ao-net AON and the

strati�ed extensions of its assoiated labelled so-struture S(AON).

Theorem 1. strat(S(AON )) = fpo

�

j � 2 lsteps(AON )g.

Proof. Let AON and ON be as in de�nition 4, and Min and Max be (safe)

markings as above. It suÆes to show the result assuming that l is the identity

labelling for E.

Suppose that Min [�i

AON

Max and � = E

1

: : : E

n

. Then also Min [�i

ON

Max .

Thus, due to the standard properties of ourrene nets, eah E

i

is a set and

E is the disjoint union of E

1

; : : : ; E

n

. Moreover, there are sets of onditions

B

0

; : : : ; B

k

of B (uts of ON , see [1℄) suh that

Min = B

0

[E

1

i

ON

B

1

: : : B

n�1

[E

n

i

ON

B

n

= Max (2)

and, for every b 2 B, there are 0 � k

b

� l

b

� n suh that

b 2 B

i

if and only if k

b

� i � l

b

: (3)

In the above, k

b

is the index of the �rst ut B

i

in the sequene B

0

; : : : ; B

n

in

whih ondition b is marked, and l

b

is the index of last suh ut. Clearly,

Min = B

0

[E

1

i

AON

B

1

: : : B

n�1

[E

n

i

AON

B

n

=Max (4)

5

Thus an ativator ar does not interfere with normal ars, unlike read ars, [15, 3℄.



also holds. To show that po

�

2 strat(S(AON )), it suÆes to prove that if e 2 E

i

and f 2 E

j

then:

(9b 2 B : (e; b) 2 R ^ (b; f) 2 R [ At) ) i < j: (5)

(9b 2 B : (b; e) 2 At ^ (b; f) 2 R) ) i � j: (6)

From (2,3,4) and E = E

1

℄ : : : ℄ E

n

and j

�

bj � 1 � jb

�

j it follows that: (e; b) 2

R ) i = k

b

; (b; e) 2 R ) i�1 = l

b

; and (b; e) 2 At ) k

b

� i�1 � l

b

. Thus (5)

holds sine (e; b) 2 R^ (b; f) 2 R[At implies i = k

b

and l

b

= j�1 _ k

b

� j�1.

And (6) holds sine (b; e) 2 At ^ (b; f) 2 R implies i�1 � l

b

= j�1.

We have shown the (�) inlusion. To prove the reverse one, suppose that

po

�

2 strat(S(AON )) and � = E

1

: : : E

n

whih means that E = E

1

℄ : : : ℄

E

n

and (5,6) hold. From (5) (without the (b; f) 2 At part), it follows that

Min [�i

ON

Max . Hene there are B

0

; : : : ; B

n

suh that (2,3) hold. To show that

Min [�i

AON

Max also holds, it suÆes to observe that if e 2 E

i

and (b; e) 2 At

then b 2 B

i�1

. Indeed, if this was not true, then l

b

< i�1 or k

b

� i. In the

former ase, there is f 2 E

l

b

+1

suh that (b; f) 2 R, a ontradition with (6).

And, in the latter ase, there is f 2 E

k

b

suh that (f; b) 2 R, a ontradition

with (5). ut

The labelled step sequenes of AON have a ausality interpretation in terms

of the partial order and the weak partial order provided by S(AON). In fat, a

single partial order (as de�ned by an ourrene net) is insuÆient, as it annot

fully express the relationship between simultaneous events (in a step) if they

annot be sequentialized. For example, in �gure 4 we have that �

1

= fe; fg and

�

2

= fegffg are step sequenes leading from Min to Max , but ffgfeg annot

be exeuted, despite the fat that e and f are independent as far as the usual

partial ordering is onerned.

b

1

b

3

b

2

b

4

e

f

Fig. 4. An ativator ourrene net where Min = fb

1

; b

2

g and Max = fb

3

; b

4

g.

In the next setion, we will ombine the approahes of [1℄ and [8℄ in order to

obtain a ausal semantis for PTI-nets in ase the inhibiting plaes have known

bounds. The treatment of unbounded inhibiting plaes will require a further

extension of ourrene nets.

5 The bounded ase

In this setion N = (S; T; F;M

0

; I) is a �xed PTBI-net and N

0

= (S; T; F;M

0

)

is its underlying P/T-net. We assume here that every inhibiting plae s 2 S has



a unique omplement plae s

pl

2 S with M

0

(s) +M

0

(s

pl

) = bound(s) where

bound(s) > 0 is a bound of s in N . The proesses of N are de�ned as follows.

De�nition 5. An ativator proess of N is an ao-net AON = (B;E;R;At ; l)

suh that ON = (B;E;R; l) 2 on(N

0

) and, for all s 2 S and e 2 E:

jfsg \

Æ

l(e)j � bound(s) = jfb 2 l

�1

(s

pl

) j (b; e) 2 Atgj: (7)

We will use aon(N) to denote the set of all ativator proesses of N . ut

Figure 5 shows an example of a PTBI-net and its three ativator proesses.

N

p

q

r

t

w

u

AON

1

p

q

r

q

r

w

w

AON

2

p p

q

r

q

r

t

w

w

AON

3

p p p p

q

r

q

r

q

r

q

r

t t t

w u w

w u w

Fig. 5. Three ativator proesses AON

i

of a PTBI-net N .

The �rst result we show states that an ativator proess of a P/T-net de-

sribes a set of valid step sequenes of the original net.

Lemma 1. If AON 2 aon(N), then lsteps(AON ) � steps(N).

Proof. Let AON and ON be as in de�nition 5, and � 2 lsteps(AON ). Then,

by theorem 1, there is a step sequene � = E

1

: : : E

n

suh that � = l(�) and

Min(AON)[�i

AON

Max (AON) and E = E

1

℄ : : : ℄E

n

and (5,6) in the proof of

theorem 1 hold. Sine ON 2 on(N

0

), we have, by the standard theory [1℄, that

� 2 steps(N

0

). Moreover, there are sets of onditions B

0

; : : : ; B

n

suh that (2,3)

in the proof of theorem 1 hold and:

M

0

= l(B

0

)[l(E

1

)i

N

0

l(B

1

) : : : [l(E

n

)i

N

0

l(B

n

)

Thus, to prove � 2 steps(N), it suÆes to show that if e 2 E

i

and s 2

Æ

l(e),

then l(B

i�1

)(s) = 0. The latter is equivalent to l(B

i�1

)(s

pl

) = bound(s). If this

does not hold then, by (7), there is b 2 B suh that (b; e) 2 At and l

b

< i�1 or

i � k

b

. We then obtain a ontradition with (5,6), similarly as in the last part

of the proof of theorem 1. ut



De�nition 5 an be made operational through the following net unfolding

whih takes a step sequene and onstruts an ao-net orresponding to it.

De�nition 6. Let � = U

1

: : : U

n

be a step sequene of N . An ativator pro-

ess generated by � is the last labelled net N

n

with ativator ars in a series

N

0

; : : : ; N

n

with N

k

= (B

k

; E

k

; R

k

;At

k

; l

k

), for 0 � k � n, onstruted thus.

{ Step 0: N

0

= (B

0

; E

0

; R

0

;At

0

; l

0

) where At

0

= ;, and all other omponents

are as in Step 0 of de�nition 3, inluding Max

0

.

{ Step m = k + 1: Let N

k

= (B

k

; E

k

; R

k

;At

k

; l

k

). Then N

m

is de�ned thus:

� B

m

; E

m

; R

m

, l

m

and Max

m

are as in Step m of de�nition 3.

� At

m

= At

k

[ f(b; e) 2 Max

k

� (E

m

nE

k

) j (l

m

(b)

pl

; l(e)) 2 Ig.

We will use pro

ao

�

to denote the set of all isomorphi opies of all ativator

proesses generated by � . ut

p p p p

q

r

q

r

q

r

q

r

t t t

w u w

w u w

Fig. 6. Deriving an ativator proess in pro

ao

�

for � = fw; wgftgfu; ugfw; wgftgftg.

Figure 6 illustrates the onstrution of an ativator proess for the PTBI-net

in �gure 5. The vertial lines indiate the stages (from left to right) in whih

the net has been derived. Notie that it is an ativator proess of N in �gure 5

as it is isomorphi to AON

3

shown there. The next results states that this is

not a mere hane, sine every unfolding of a PTBI-net satis�es the axiomati

de�nition of an ativator proess.

Lemma 2. For � and N

n

in de�nition 6, N

n

2 aon(N) and � 2 lsteps(N

n

).

Proof. Assume the notation from de�nition 6. That ON = (B

n

; E

n

; R

n

; l

n

) 2

pro

�

for N

0

follows diretly from the de�nitions and thus, by the standard

results for P/T-nets [1℄, ON 2 on(N

0

). Moreover, the onstrution is suh

that, for k = 1; : : : ; n, M

0

= l(Max

0

)[U

1

: : : U

k

i

N

0

l(Max

k

) and so also M

0

=

l(Max

0

)[U

1

: : : U

k

i

N

l(Max

k

). Thus, if e 2 E

k

nE

k�1

and s 2

Æ

l(e), then we have

l(Max

k�1

)(s) = 0 and so l(Max

k�1

)(s

pl

) = bound(s). Hene

jfb 2 l

�1

(s

pl

) j (b; e) 2 At

k

gj = jfb 2 Max

k�1

j l(b) = s

pl

gj = bound(s):

As a result, (7) is satis�ed. To omplete the proof of N

n

2 aon(N), we still

need to show that S

aux

(N

n

) is }-ayli. This, however, follows from an easy

observation that the onditions (5,6) from the proof of theorem 1 (suitably re-

interpreted by setting eah E

i

to be the set of events added in step i of the

onstrution desribed in de�nition 6), hold here by onstrution.



That � 2 lsteps(N

n

) follows immediately from the onstrution of N

n

and a

simple indutive argument. ut

Corollary 1. If � 2 steps(N) and AON 2 pro

ao

�

, then � 2 lsteps(AON ). ut

Similarly as it is the ase for proesses of ordinary P/T-nets, the axiomati

and operational de�nitions of proesses of a PTBI-net oinide.

Theorem 2. aon(N) =

S

�2steps(N)

pro

ao

�

.

Proof. The (�) inlusion follows from lemma 2. To show the reverse one, we

take AON and ON as in de�nition 5. Then, by strat(S(AON )) 6= ; whih always

holds [7℄, there is at least one � suh that po

�

2 strat(S(AON )). By lemma 1 and

theorem 1, � 2 steps(N) and so � 2 steps(N

0

). Thus, by the standard properties

of proesses of P/T-nets, there is a way in whih the onstrution desribed in

de�nition 3 generates a net N

n

= (B

n

; E

n

; R

n

; l

n

) whih is isomorphi to ON .

One an then re-run the onstrution of ON , adding at eah stage the sets At

k

,

as presribed in de�nition 6. This is a deterministi proedure whih results in

an ativator net whih is isomorphi to AON . In proving the latter, one takes

advantage of theorem 1, whih guarantees that � 2 lsteps(AON ). ut

We now an establish that ativator proesses of a PTBI-net generate exatly

the same step sequenes as the original net.

Theorem 3. steps(N) =

S

AON2aon(N)

lsteps(AON).

Proof. The (�) inlusion has been proved in lemma 1. The reverse inlusion

follows from orollary 1 and theorem 2. ut

The last result an be re-stated in terms of labelled strati�ed posets and thus

shows that the ativator proesses of a PTBI-net orretly desribe ausality in

the runs of the net.

Corollary 2. fpo

�

j � 2 steps(N)g =

S

AON2aon(N)

strat(S(AON )).

Proof. Follows from theorems 1 and 3. ut

6 Unboundedness

In this setion, we deal with PTI-nets whose inhibiting plaes an be unbounded.

Thus we annot use omplement plaes to represent the emptiness of plaes, and

therefore need to introdue another devie. It will be provided by z-plaes that

will play a role similar to that of the omplement plaes in ativator proess.

However, z-plaes will represent logial onditions rather than tokens (resoures),

and will admit branhing. LetN = (S; T; F;M

0

; I) be a PTI-net �xed throughout

this setion.



De�nition 7. A (labelled) z-ativator ourrene net (zao-net) is a tuple AON

z

= (B;E;R;At ; l) suh that: ON = (B

n

; E;R

0

; lj

B

n

[E

) is an ourrene net,

where B

n

= B nB

z

and B

z

= fb 2 B j (b; e) 2 Atg; R � (B�E)[ (E�B) and

R

0

= Rj

(B

n

�E)[(E�B

n

)

; At � B

z

�E is a set of ativator ars; l is a labelling

funtion for B [E; and the relational struture S

aux

(AON

z

) = (E;�

aux

;<

aux

)

= (E; (R ÆR)j

E�E

[ (R ÆAt); (At

�1

ÆR) n id

E

) is }{ayli. ut
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Fig. 7. A z-ativator ourrene net.

Figure 7 shows an example of a zao-net. The semantis of a zao-net an

be understood in two ways. First, we an take the underlying order struture

S(AON

z

) = S

aux

(AON

z

)

}

, as we did for ao-nets, and derive all strati�ed or-

der extensions, or step sequenes orresponding to these. The alternative view,

involving step sequenes exeuted from the initial marking, Min(AON

z

) =

Min(ON ), to the �nal marking, Max (AON

z

) = Max (ON ), is not diretly ap-

pliable sine z-onditions allow branhing. However, it is possible to replae the

z-onditions by sets of ordinary onditions for eah pair of pre- and post-event

of a given z-ondition, as desribed below.

De�nition 8. Let AON

z

= (B;E;R;At ; l) be as in de�nition 7, and:

{ B

0

= B

n

[ B

00

where

B

00

= fb

x;y

j b 2 B

z

^ (x 2

�

b _ x = ; =

�

b) ^ (y 2 b

�

_ y = ; = b

�

)g:

{ R

0

= Rj

(B

n

�E)[(E�B

n

)

[ f(e; b

e;y

) j e 2 Eg [ f(b

x;e

; e) j e 2 Eg.

{ At

0

= f(b

x;y

; e) j (b; e) 2 Atg.

{ l

0

j

B

n

[E

= lj

B

n

[E

and l

0

(b

x;y

) = l(b), for all b 2 B

00

.

We then all �(AON

z

) = (B

0

; E;R

0

;At

0

; l

0

) the z-pruning of AON

z

. ut

It is not diÆult to see that the z-pruning of AON

z

is an ao-net. It is used to

give the ativator ars an operational semantis whih orresponds to the intu-

ition behind the z-onditions. We de�ne the (labelled) step sequenes of AON

z

by lsteps(AON

z

) = lsteps(�(AON

z

)). Observe that S(�(AON

z

)) = S(AON

z

).

Consequently, strat(S(AON

z

)) = fpo

�

j � 2 lsteps(AON

z

)g, by theorem 1. We

now give an axiomatisation of the notion of proess for the PTI-net N .

De�nition 9. A z-ativator proess of N is a zao-net AON

z

= (B;E;R;At ; l)

suh that:



1. l : B [ E ! S [ T is suh that l(B) � S and l(E) � T .

2. For all s 2 S: M

0

(s) = jMin(AON

z

) \ l

�1

(s) \ B

n

j.

3. For all s 2 S and e 2 E:

(a) jfsg \

�

l(e)j = jfb 2 l

�1

(s) \ B

n

j (b; e) 2 Rgj.

(b) jfsg \ l(e)

�

j = jfb 2 l

�1

(s) \ B

n

j (e; b) 2 Rgj.

() jfsg \

Æ

l(e)j = jfb 2 l

�1

(s) j (b; e) 2 Atgj.

4. For all b

z

2 B

z

and e 2 E:

(a) If (b

z

; e) 2 R, then (l(e); l(b

z

)) 2 F .

(b) If (b

z

; e) 2 R

�

and (l(e); l(b

z

)) 2 F , then there is a unique b 2 B

z

suh

that l(b) = l(b

z

) and (b; e) 2 R and (b

z

; b) 2 R

�

.

() If (e; b

z

) 2 R, then (l(b

z

); l(e)) 2 F .

(d) If (e; b

z

) 2 R

�

and (l(b

z

); l(e)) 2 F , then there is a unique b 2 B

z

suh

that l(b) = l(b

z

) and (e; b) 2 R and (b; b

z

) 2 R

�

.

5. For all b

z

2 B

z

and b 2 B, if l(b) = l(b

z

), then (b

z

; b) 2 R

�

or (b; b

z

) 2 R

�

.

We will use aon

z

(N) to denote the set of z-ativator proesses of N . ut

Note the absene of plae bounds in the above de�nition. Instead, we have an

expliit `reord' of the fat that a plae was empty in the form of a z-ondition.

By points 4(a) and 4() above, if a z-ondition b

z

is input (output) to an event

e, then the inhibiting plae l(b

z

) of N is output (input) to the transition l(e).

Requirement 4(b) presribes that whenever transition l(e) adds a token to the

inhibiting plae l(b

z

), only the most reent reord b of l(b

z

) being empty in

the past of the ourrene e of l(e) is input to e. Similarly, 4(d) stipulates that

whenever transition l(e) removes a token from the inhibiting plae l(b

z

), while

sometime in the future of this ourrene l(b

z

) is suessfully tested for empti-

ness, the ourrene e of l(e) is only onneted to the earliest future reord b

of l(b

z

) being empty. Note that by de�nition 9(5), all reords of the emptiness

of an inhibiting plae are linearly ordered by R

�

. Moreover, aording to R

�

an

inhibiting plae is never reorded to be empty while it ontains a token.

Figure 7 shows a z-ativator proesses for the net shown in �gure 5. It orre-

sponds to AON

3

in �gure 5 in the sense that they generate isomorphi labelled

so-strutures. The last de�nition is also illustrated for a non-PTBI-net, in �g-

ure 8. We �nally de�ne an unfolding proedure for PTI-nets.

De�nition 10. Let � = U

1

: : : U

n

be a step sequene of N . A z-ativator pro-

ess generated by � is the last labelled net N

n

with ativator ars in a series

N

0

; : : : ; N

n

with N

k

= (B

k

; E

k

; R

k

;At

k

; l

k

), for 0 � k � n, onstruted thus:

{ Step 0: N

0

= (B

0

; E

0

; R

0

;At

0

; l

0

) where:

� E

0

= R

0

= At

0

= B

z

0

= ;.

� B

0

= B

n

0

= fb

s;i;0

j 1 � i �M

0

(s)g.

� l

0

: B

0

! S is suh that l(b

s;i;0

) = s, for all b

s;i;0

2 B

0

.

Let Max

0

= B

0

.

{ Step m = k + 1: Let N

k

= (B

k

; E

k

; R

k

;At

k

; l

k

). Then N

m

is de�ned thus:

� B

n

m

= B

n

k

[ fb

s;t;i;m

j 1 � i � U

m

(t) ^ s 2 t

�

g and

B

z

m

= B

z

k

[ fb

s;m

j 9t 2 U

m

: s 2

Æ

t n l

k

(Max

k

\ B

z

k

)g.
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Fig. 8. A z-ativator proess of a PTI-net whih is not a PTBI-net.

� E

m

= E

k

[ fe

t;i;m

j 1 � i � U

m

(t)g.

Moreover, for eah e

t;i;m

2 E

m

and for eah s 2

�

t we hoose a distint

b

b

hs;t;i;mi

2 Max

k

\ B

n

k

\ l

�1

(s).

� l

m

(b

s;t;i;m

) = s and l

m

(b

s;m

) = s and l

m

(e

t;i;m

) = t,

for all b

s;t;i;m

2 B

n

m

nB

n

k

and b

s;m

2 B

z

m

nB

z

k

and e

t;i;m

2 E

m

nE

k

.

l

m

(x) = l

k

(x), for all x 2 B

k

[ E

k

.

� R

m

= R

k

[

�

f(

b

b

hs;t;i;mi

; e

t;i;m

) j e

t;i;m

2 E

m

^ s 2

�

tg [

f(e

t;i;m

; b

s;t;i;m

) j e

t;i;m

2 E

m

^ s 2 t

�

g

�

[ R

0

m

[ R

00

m

where

R

0

m

=

�

(e; b

s;m

) 2 E

k

� (B

z

m

nB

z

k

)

�

�

�

�

(s; l

k

(e)) 2 F ^ :9b

0

2 B

z

k

:

l

k

(b

0

) = s ^ (e; b

0

) 2 R

k

�

R

00

m

=

�

(b

s;i

; e) 2 B

z

m

� (E

m

nE

k

)

�

�

�

�

(l

m

(e); s) 2 F ^

8b

s;j

2 B

z

m

: j � i

�

:

� At

m

= At

k

[f(b; e) 2 (Max

m

\B

z

m

)� (E

m

nE

k

) j (l

m

(b); l

m

(e)) 2 Ig,

where Max

m

= fb 2 B

m

j :9e 2 E

m

: (b; e) 2 R

m

g.

We will use pro

zao

�

to denote the set of all isomorphi opies of all z-ativator

proesses generated by � . ut

The above de�nition is illustrated for the PTBI-net of �gure 5 and its step

sequene � = fw;wgftgfu; ugfw;wgftgftg. As before, �gure 9 shows stages in

whih the nodes and onnetions were generated.

The z-onditions are generated `on-demand', when it is neessary to `legit-

imise' transition ourrenes. In general, this exludes undesirable orderings be-

tween events. For onsider the net N in �gure 5 and its step sequene � =

fw;wgfu; ug. If we were to add a z-ondition eah time q beomes empty, then

we would generate an ourrene net as shown in �gure 10. Intuitively, suh

a net would introdue arti�ial ausal relationships between some of the event

ourrenes.
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Fig. 9. A z-ativator proess generated for a step sequene of a PTBI-net.

As in the ase of proesses of P/T-nets and PTBI-nets, the axiomati and op-

erational de�nitions oinide. Moreover, we have the desired onsisteny between

step sequenes of a PTI-net and its zao-proesses.

Theorem 4. The following are satis�ed.

1. aon

z

(N) =

S

�2steps(N)

pro

zao

�

.

2. steps(N) =

S

AON

z

2aon

z

(N)

lsteps(AON

z

).

3. fpo

�

j � 2 steps(N)g =

S

AON

z

2aon

z

(N)

strat(S(AON

z

)). ut

The proofs of the various parts of theorem 4 follow those of similar results

presented in the previous setion. A main hange is that we no longer an use

omplement plaes to establish the emptiness of an inhibiting plae, and instead

need to refer to the orresponding z-onditions.

It an be seen that both the proess semantis and the ausal semantis

for PTI-nets developed in this setion are onsistent with those developed for

PTBI-nets in the previous setion. The latter, in turn generalises the semantis

of P/T-nets [1℄ and elementary net systems with inhibitor ars from [8℄.

p

q

r

q

q

q

r

q

w u

w u

Fig. 10. Generating z-onditions may not be desirable.

7 Conluding remarks

The basi ontribution of this paper is a proposal for a proess semantis for

P/T-nets with inhibitor ars while assuming an a priori operational semantis.

This ontrasts with the approah of [3℄ where transitions an our in a step

if and only if they an our in either order. First we generalised the existing

proess notions for ordinary P/T-nets ([6, 1, 14℄) and for safe nets with inhibitor

ars ([8℄) to the ase of P/T-nets with bounded and omplemented inhibiting



plaes. In order to obtain a proess semantis for general PTI-nets, z-ativator

ourrene nets were introdued. Given the proesses, their assoiated strati�ed

order strutures provide a spei�ation of the net behaviours in terms of ausality

and weak ausality. Thus the results in this paper form a basis for a further

investigation of the abstrat ausal relations within the behaviours of a PTI-net.

There are at least two potential appliations of these results: �rst, they an be

useful in the development of model heking algorithms for PTI-nets based on

unfoldings; seond, they an be used as a basis for obtaining a ausality semantis

for P/T-nets with priorities, extending the results obtained for the elementary

net systems with priorities in [10℄. Finally, the approah presented in this paper

an easily be generalised to nets with weighted ars; an extension to weighted

inhibitor ars is a matter for future researh.
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