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Abstra
t. In this paper, we de�ne a pro
ess semanti
s of P/T-nets

with inhibitor ar
s (PTI-nets). For PTI-nets with bounded inhibiting

pla
es, we 
ombine the existing approa
hes for ordinary P/T-nets and

for elementary net systems with inhibitor ar
s. To deal with unbounded

inhibiting pla
es, a new feature has to be added to the underlying o

ur-

ren
e nets. In either 
ase we show how to 
onstru
t a pro
ess from a step

sequen
e and give a 
omplete 
hara
terization of all pro
esses whi
h 
an

be obtained in this way. Using these pro
esses it is possible to express

the 
ausal relationships between events in a PTI-net behaviour.

Keywords: Causality/partial order theory of 
on
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1 Introdu
tion

Petri nets with inhibitor ar
s have been around for quite some time now and

as stated in [12℄, `Petri nets with inhibitor ar
s are intuitively the most dire
t

approa
h to in
reasing the modelling power of Petri nets'. Unlike a `normal'

Petri net, a Petri net with inhibitor ar
s has the possibility of testing whether a

pla
e is empty in the 
urrent marking (zero testing). Thus inhibitor ar
s are very

well suited to model situations involving testing for a spe
i�
 
ondition, rather

than produ
ing and 
onsuming resour
es. Pla
e/Transition nets with inhibitor

ar
s (PTI-nets) are stri
tly more expressive than ordinary Pla
e/Transition-nets

(P/T-nets). They 
an simulate the 
omputations of Turing ma
hines and several

important problems like rea
hability and liveness whi
h are de
idable for P/T-

nets are unde
idable for PTI-nets.

This paper is 
on
erned with the des
ription of the 
ausal relationships in

(
on
urrent) runs of PTI-nets. The resear
h presented here is a natural 
ontin-

uation of the work of [8℄ regarding elementary net systems with inhibitor ar
s.

There, so-
alled strati�ed order stru
tures are employed to provide a 
ausality

semanti
s whi
h is 
onsistent with the operational semanti
s in terms of step

sequen
es. Whereas for an elementary net system, an abstra
t 
ausality seman-

ti
s 
an be given in terms of partial orders alone, the presen
e of inhibitor ar
s

requires more information on the relationships between event o

urren
es. As
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an example (borrowed from [8℄), 
onsider the net with the two events, e and f ,

shown in �gure 1.
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Fig. 1. An elementary net system with inhibitor ar
.

In addition to the normal ar
s, there is an inhibitor ar
 from 
ondition s

3

to

f . This implies that f 
an only o

ur if s

3

is empty (and the standard enabling


onditions in an elementary net system are ful�lled). This net has three non-

empty �ring sequen
es: !

1

= e, !

2

= f and !

3

= fe. Note that the o

urren
e

of e is 
ompletely independent of the o

urren
e of f . However, f is disabled

after the o

urren
e of e. This implies that independen
e of events is no longer

symmetri
. In the a priori semanti
s of [8℄, e and f may also be exe
uted si-

multaneously, sin
e the inhibiting 
ondition s

3

of f does not hold prior to the

o

urren
e of f . Thus also the step fe; fg may be exe
uted. This implies that

independen
e and absen
e of ordering are no longer the same.

Strati�ed order stru
tures take 
are of these more involved relations between

event o

urren
es by providing next to a partial order a weak partial order. The

partial order des
ribes the stri
t 
ausal relationships between event o

urren
es

whereas the weak partial order des
ribes weak 
ausal relationships as the above:

f may pre
ede e but not vi
e versa and hen
e the step fe; fg may be sequen-

tialised to fe, but not to ef .

For elementary net systems (without inhibitor ar
s), an abstra
t partial order

semanti
s follows immediately from their pro
ess semanti
s (see, e.g., [14℄). A

pro
ess is 
onstru
ted by unfolding the system a

ording to a given run repre-

sented by a �ring sequen
e. The result is an o

urren
e net: a (labelled) a
y
li


net with non-bran
hing 
onditions, sin
e 
on
i
ts are resolved during the run.

By abstra
ting from the 
onditions of the o

urren
e net, one obtains a (la-

belled) partial order whi
h des
ribes pre
isely the 
ausal relationships between

the events in the given run: all linearisations of the partial order are �ring se-

quen
es of the elementary net system and they in
lude the �ring sequen
e on

the basis of whi
h the pro
ess was 
onstru
ted.

Also in [8℄, �rst a pro
ess semanti
s is given. Sin
e in the a priori semanti
s not

all 
on
urrent runs of the system 
an be sequentialised to a �ring sequen
e, this

pro
ess semanti
s is based on step sequen
es. (Consider again the elementary net

system in �gure 1, with an additional inhibitor ar
 from s

4

to e. Now, !

3

= fe

is no longer a �ring sequen
e, although � = fe; fg is still a legal step sequen
e.)

Given a step sequen
e, the system is unfolded into a (labelled) o

urren
e net

with additional ar
s to represent the zero testing. Testing if a 
ondition does not

hold (inhibitor ar
) is in the unfolding represented by testing if its 
omplement


ondition does hold (a
tivator ar
). In the resulting a
tivator o

urren
e net the




onditions are again non-bran
hing (with respe
t to the normal ar
s). Moreover,

it is a
y
li
 in a sense whi
h in
ludes the a
tivator ar
s (}-a
y
li
) and thus

allows to extra
t a (labelled) strati�ed order stru
ture whi
h des
ribes pre
isely

the 
ausality and weak 
ausality relationships between the events in the given

run: all step sequen
es whi
h obey the 
onstraints imposed by the strati�ed order

stru
ture are step sequen
es of the system and they in
lude the step sequen
e

on basis of whi
h the pro
ess was 
onstru
ted.

In this paper we propose a pro
ess semanti
s for PTI-nets with the aim

to provide a basis for their abstra
t 
ausality semanti
s. Sin
e the nets are no

longer ne
essarily safe (markings may assign more than one token to a pla
e),

we 
ombine the ideas of [8℄ with the de�nition of pro
esses for (�nite) P/T-nets

as dis
ussed in, e.g., [6℄ and [1℄. In these pro
esses ea
h token in a pla
e of the

original P/T-net is represented by a distin
t 
ondition in the pro
ess net. Con-

sequently, unfolding the net a

ording to a step sequen
e in general yields more

than one o

urren
e net. However, the same o

urren
e nets as employed for

elementary net systems are used in the pro
ess de�nition of P/T-nets.

First we 
onsider the 
ase of PTI-nets in whi
h the number of tokens in an in-

hibiting pla
e 
annot grow arbitrarily large (the inhibiting pla
es are bounded).

We refer to these nets as PTBI-nets. For them, using 
omplementary pla
es for

the inhibiting pla
es and a
tivator ar
s in the pro
esses, the ideas of [8℄ 
an be


ombined with the approa
h of [1℄ whi
h relates pro
ess axioms and indu
tively

de�ned unfoldings. We de�ne the pro
esses of PTBI-nets and give an unfold-

ing 
onstru
tion based on step sequen
es. We show that these de�nitions are


onsistent with ea
h other, and that they 
an be used to extra
t the 
ausal re-

lationships between the events in a run of a PTBI-net.

Next we turn to the unbounded 
ase. In this 
ase, the 
lassi
al pla
e 
omple-

mentation 
an no longer be applied. Instead we introdu
e a new feature in the

form of additional 
onditions (z-
onditions) to the o

urren
e nets. A z-
ondition

represents an empty inhibiting pla
e and is 
onne
ted by an a
tivator ar
 to the

events representing transitions whi
h test that pla
e for zero tokens. Z-
onditions

are introdu
ed `on-demand' during the 
onstru
tion of a pro
ess for a given step

sequen
e, and with their introdu
tion an up-date of the o

urren
e net has to

take pla
e. This di�ers from the standard unfolding pro
edures dis
ussed above

whi
h do not refer to the past and are purely lo
al (based on the neighbourhood

of the transitions in the original net). Moreover, z-
onditions may be bran
hing

(with respe
t to the normal ar
s). Still, the resulting z-a
tivator o

urren
e nets


an be fully (axiomati
ally) 
hara
terised, and they provide us with an abstra
t


ausal semanti
s for the unbounded 
ase.

Both the pro
ess semanti
s and the 
ausal semanti
s for PTI-nets are 
on-

sistent with those for PTBI-nets, whi
h in their turn generalise the semanti
s

of P/T-nets as de�ned in [1℄ and the semanti
s of elementary net systems with

inhibitor ar
s from [8℄.

This paper is largely self-
ontained, although it may be an advantage for the

reader to be a
quainted with the `
lassi
al' pro
ess theory as presented in [1, 6℄

and [14℄. Due to the page limit, some proofs are either only sket
hed or omitted.



2 Preliminaries

N denotes the set f0; 1; 2; : : :g of natural numbers. All fun
tions 
onsidered in

this paper are total. For a �nite set X , we denote by jX j its 
ardinality.

Let X be a set. A multiset (over X) is a fun
tion m : X ! N. The sum

of two multisets m

1

and m

2

over X is denoted by m

1

+m

2

and is de�ned by

(m

1

+m

2

)(x) = m

1

(x) +m

2

(x), for all x 2 X . The empty multiset, denoted by

0, is de�ned by 0(x) = 0, for all x 2 X . Note that a multiset m over X may be

seen as the subset fx 2 X j m(x) � 1g of X , the elements of whi
h are equipped

with multipli
ities. Conversely, every subset of X may be viewed through its


hara
teristi
 fun
tion as a multiset over X . We denote x 2 m if m(x) � 1.

A step sequen
e (over X) is a �nite sequen
e m

1

: : :m

n

of non-empty multi-

sets m

i

(over X). The empty sequen
e is denoted by �. If ea
h of the multisets

m

i

in a step sequen
e � = m

1

: : :m

n

is a singleton set fx

i

g (i.e., m

i

(x

i

) = 1 and

m

i

(y) = 0, for all y 6= x

i

), then � may be written as x

1

: : : x

n

. Thus X

�

, the set

of all �nite sequen
es of o

urren
es of elements from X , is a subset of the set

of all step sequen
es over X .

Now assume that X is �nite. A labelling of X is a fun
tion l : X ! A, where

A is some set of labels (the labelling alphabet). It is extended to step sequen
es

over X in the following way: For m : X ! N, we de�ne l(m) : A ! N

by l(m)(a) =

P

fxjl(x)=ag

m(x), for all a 2 A. For � = m

1

: : :m

n

, we set

l(�) = l(m

1

) : : : l(m

n

). In parti
ular, l(�) = �. Hen
e step sequen
es over X

are mapped to step sequen
es over A. Observe that l(�) is in A

�

, whenever

� = x

1

: : : x

n

is in X

�

. In general, however, a set is mapped to a multiset.

For two relations P;Q � X � X , their 
omposition P Æ Q is also a binary

relation over X , de�ned by P ÆQ = f(x; z) j 9y 2 X : (x; y) 2 P ^ (y; z) 2 Qg.

Let id

X

= f(x; x) j x 2 Xg be the identity relation in X . A binary relation P

over X is re
exive if id

X

� P ; it is irre
exive if id

X

\P = ;; and it is transitive

if P Æ P � P . The transitive 
losure of P is denoted by P

+

, and its transitive

and re
exive 
losure by P

?

.

2.1 Partially ordered sets

A partial order on X is an irre
exive and transitive binary relation over X . If

�� X � X is a partial order, then the pair (X;�) is referred to as a partially

ordered set, or poset for short. In this paper we will only 
onsider �nite posets

(X is �nite).

A labelled poset is a triple (X;�; l) su
h that (X;�) is a poset and l : X !

A is a labelling of X . As we will be mainly dealing with labelled posets, all

terminology is introdu
ed dire
tly for labelled posets. If need be, it 
an be 
arried

over to posets by identifying the poset (X;�) with the labelled poset (X;�; id

X

).

Let (X;�; l) be a labelled poset. As usual, for x; y 2 X , we write x � y

rather than (x; y) 2� and we use x � y to denote that x = y or x � y.

The notation x 6$ y indi
ates that x and y are distin
t in
omparable elements

(x 6= y ^ x 6� y ^ y 6� x).

The labelled poset (X;�; l) is linear (or total), if every two distin
t elements are




omparable (the relation 6$ is empty). It is strati�ed [4℄ if x 6$ y and y 6$ z imply

that x 6$ z whenever x 6= z. Thus a linear labelled poset is always strati�ed. Note

that (X;�; l) is strati�ed if and only if 6$ [ id

X

is an equivalen
e relation. If

(X;�; l) is strati�ed it de�nes a unique (ordered) sequen
e of subsetsX

1

: : : X

k

of

X , the equivalen
e 
lasses of 6$ [ id

X

, with the property: �=

S

i<j

X

i

�X

j

, and

6$= (

S

k

i=1

X

i

� X

i

) n id

X

. Hen
e ea
h labelled strati�ed poset po = (X;�; l)

as above de�nes a unique step sequen
e 0

po

= l(X

1

) : : : l(X

k

). Conversely, if

po = (X;�; l) is su
h that X 
an be partitioned into non-empty sets X

1

; : : : ; X

k

satisfying the above 
onditions, then it is strati�ed and 0

po

= l(X

1

) : : : l(X

k

).

Two labelled posets po

1

= (X

1

;�

1

; l

1

) and po

2

= (X

2

;�

2

; l

2

) are isomorphi


if there is a bije
tion f : X

1

! X

2

su
h that for all x; y 2 X

1

, l

1

(x) = l

2

(f(x)),

and x �

1

y if and only if f(x) �

2

f(y).

Note that every step sequen
e � de�nes an isomorphism 
lass of labelled strati�ed

posets po with the property that 0

po

= �. In the sequel, however, we are not

really interested in the underlying set whi
h is only used to 
arry labels and we

will simply use po

�

to denote any labelled strati�ed poset po su
h that 0

po

= �.

2.2 Strati�ed order stru
tures

A relational stru
ture is a triple S = (X;�;<), where � and < are two binary

relations over a �nite set X . S is 
alled a strati�ed order stru
ture [5, 7℄, or an

so-stru
ture for short, if for all x; y; z 2 X the following hold (again using the

in�x notation):

x 6< x C1

x � y =) x < y C2

x < y < z ^ x 6= z =) x < z C3

x < y � z _ x � y < z =) x � z C4:

It is easily seen that (X;�) is a poset and, furthermore, that x � y implies

y 6< x. Furthermore, if (X;�) is a poset, then (X;�;�) is an so-stru
ture.

In diagrams, � is represented by solid ar
s, and < by dashed ar
s. We 
an omit

ar
s that 
an be dedu
ed using C1-C4.

The elements of a relational stru
ture (X;�;<) will usually be labelled.

Thus we 
onsider stru
tures S = (X;�;<; l), su
h that (X;�;<) is a relational

stru
ture and l : X ! A is a labelling of X . All remaining terminology is now

introdu
ed dire
tly for labelled relational stru
tures. (It 
an be 
arried over to

the non-labelled 
ase by identifying (X;�;<) with (X;�;<; id

X

).) In diagrams,

we do not name the nodes but only give their labels.

Con
urren
y theory employs partial orders � to model both spe
i�
ations

and observations of behaviours. On the level of observations, they are used to

de�ne operational semanti
s; � is then interpreted as the earlier than relation,

and 6$ as (potential) simultaneity. On the level of behaviour spe
i�
ations, � is

usually interpreted as 
ausality, and 6$ as independen
e. The �rst relation �

S

in an so-stru
ture S, should be interpreted as the standard 
ausality, and the

se
ond relation, <

S

, as a weak 
ausality. While 
ausality is an abstra
tion of the



`earlier than' relation, weak 
ausality is a similar abstra
tion of the `not later

than' relation (this should be 
learer if one looks at the formula (1) where �

po

represents the former, and �

po

[ 6$ the latter relation). For a detailed dis
ussion

of so-stru
tures the reader is referred to [7℄.

When used as a tool for representing 
on
urrent behaviours, so-stru
tures are

derived from lo
ally de�ned information involving events whi
h dire
tly intera
t

with one another. This lo
al information then needs to be 
ombined into a global

relationship involving all the event o

urren
es. For this a 
losure operation is

applied whi
h builds an so-stru
ture from representative lo
al relations. The

}{
losure of a relational stru
ture was introdu
ed in [8℄ to serve su
h a purpose.

Let S = (X;�;<; l) be a labelled relational stru
ture. The }{
losure of S is

the labelled relational stru
ture S

}

= (X;�

S

} ;<

S

} ; l), where

�

S

}= (� [ <)

?

Æ�Æ(� [ <)

?

and <

S

}= (� [ <)

?

n id

X

:

We also say that a labelled relational stru
ture S is }{a
y
li
 if �

S

}
is irre
ex-

ive. The property of �

S

} being irre
exive, whi
h holds when the stru
ture S

}

obtained from S is an so-stru
ture, has a straightforward interpretation in oper-

ational terms. Basi
ally, it means that in any single system history as des
ribed

by S, there are no event o

urren
es e

1

; e

2

; : : : ; e

k

su
h that ea
h e

i

has o

urred

before or simultaneously with e

i+1

, while e

k

has o

urred before e

1

.

Proposition 1. [8℄ Let S = (X;�;<; l) be a labelled relational stru
ture.

1. S

}

is a labelled so-stru
ture if and only if �

S

} is irre
exive.

2. If S is an so-stru
ture, then S

}

= S. ut

We now turn to the relationship between so-stru
tures and strati�ed posets

whi
h resembles that between partial orders and their linear extensions.

A labelled strati�ed poset po = (X

po

;�

po

; l

po

) is an extension of a labelled

so-stru
ture S = (X

S

;�

S

;<

S

; l

S

) if they have the same domain X

po

= X

S

and

the same labelling l

po

= l

S

, and moreover, �

S

��

po

and <

S

� �

po

[ 6$

po

. We

denote this by po 2 strat(S). If S = (X;�;<; l) is a labelled so-stru
ture then

we have [8℄:

S =

�

X ;

\

po2strat(S)

�

po

;

\

po2strat(S)

(�

po

[ 6$

po

) ; l

�

: (1)

Thus S 
an be derived from its poset extensions. Re
all that Szpilrajn's theorem

[13℄ states that ea
h poset is unambiguously identi�ed by its linear extensions. A

similar result does not hold for so-stru
tures sin
e these do not ne
essarily have

total order extensions, e.g., S = (fa; bg; ;; f(a; b); (b; a)g). For them one needs to


onsider strati�ed poset extensions [9℄.

Again, we are not interested in the a
tual 
arriers of the labels in a poset and so

in the sequel we will use the notation strat(S) to denote the set of all isomorphi



opies of the labelled strati�ed poset extensions of S.

We say that two labelled relational stru
tures, S

1

= (X

1

;�

1

;<

1

; l

1

) and

S

2

= (X

2

;�

2

;<

2

; l

2

), are isomorphi
 if there is a bije
tion f : X

1

! X

2

su
h

that for all x; y 2 X

1

, l

1

(x) = l

2

(f(x)), and x �

1

y if and only if f(x) �

2

f(y),

and x <

1

y if and only if f(x) <

2

f(y).



3 Pla
e/Transition nets with inhibitor ar
s

This se
tion introdu
es the notation and terminology for P/T-nets with inhibitor

ar
s (PTI-nets, for short) and dis
usses their operationally de�ned a priori step

sequen
e semanti
s. PTI-nets have an underlying stru
ture 
onsisting of a net

augmented with inhibitor ar
s.

A net is a triple N = (S; T; F ) su
h that S and T are disjoint �nite sets,

and F � (T � S) [ (S � T ). The elements of S and T are respe
tively 
alled

pla
es and transitions, and F is 
alled the 
ow relation. We assume that, for

every t 2 T , fs j (s; t) 2 Fg 6= ; and fs j (t; s) 2 Fg 6= ; (nets are T-restri
ted).

An inhibitor net is a net together with a (possibly empty) set of inhibitor

ar
s leading from pla
es to transitions. (In diagrams, inhibitor ar
s have small


ir
les as arrowheads.) Thus an inhibitor net N is spe
i�ed as a tuple (S; T; F; I)

su
h that (S; T; F ) is a net (the underlying net of N) and I � S� T is its set of

inhibitor ar
s. A net (S; T; F ) (without inhibitor ar
s) is 
onsidered as a spe
ial

instan
e of an inhibitor net and identi�ed with the inhibitor net (S; T; F; ;).

Given an inhibitor net N = (S; T; F; I) and x 2 S [ T , the post-set of x,

denoted by x

�

, is de�ned by x

�

= fy j (x; y) 2 Fg and the pre-set of x, denoted

by

�

x, is de�ned by

�

x = fy j (y; x) 2 Fg. In addition, for all t 2 T ,

Æ

t = fs 2 S j

(s; t) 2 Ig denotes the set of inhibiting pla
es of t. These notations are extended

to multisets over S [ T in the following way: For a multiset U : S [ T ! N,

U

�

= fy j 9x 2 U : (x; y) 2 Fg and

�

U = fy j 9x 2 U : (y; x) 2 Fg; and for a

multiset U : T ! N,

Æ

U = fs 2 S j 9t 2 U : (s; t) 2 Ig.

A PTI-net is an inhibitor net equipped with an initial state. The states of an

inhibitor net are given in the form of markings.

Let N = (S; T; F; I) be an inhibitor net. A marking of N is a multiset of

pla
es. Following standard terminology, given a marking M of N and a pla
e

s 2 S, we say that s is marked (under M) if M(s) � 1 and that M(s) is the

number of tokens in s under M .

Transitions represent a
tions whi
h may o

ur at a given marking and then

lead to a new marking. Here we de�ne this dynami
s in the more general terms

of multisets of (
on
urrently o

urring) transitions. A step is a multiset of tran-

sitions, U : T ! N. It is enabled at a marking M if, for all s 2 S:

M(s) �

X

t2s

�

U(t) and [s 2

Æ

U =)M(s) = 0℄:

Thus, by the �rst 
ondition, in order for U to be enabled at M , for ea
h pla
e s,

the number of tokens in s under M should be at least equal to the total number

of o

urren
es of transitions in U that have s as an input pla
e. By the se
ond


ondition, if a pla
e s is an inhibiting pla
e of some transition o

urring in U ,

then s should be empty in M . Note that the enabledness of a step is based on

an a priori 
ondition: the inhibiting pla
es of transitions o

urring in that step

should be empty before it o

urs.

1

1

In the a posteriori approa
h [3℄, the se
ond 
ondition for enabledness is strengthened:

for all s 2 S, [s 2

Æ

U =) (M(s) = 0 ^ s 62 U

�

)℄. Thus no inhibiting pla
e of a

transition in U is also an output pla
e of any transition o

urring in U .



If U is enabled at M , then it 
an be exe
uted, whi
h leads to the marking

M

0

de�ned, for all s 2 S, by:

M

0

(s) =M(s)�

X

t2s

�

U(t) +

X

t2

�

s

U(t):

This means that the exe
ution of U `
onsumes' from ea
h pla
e s a token for

ea
h o

urren
e of a transition in U that has s as an input pla
e, and `produ
es'

in ea
h pla
e s a token for ea
h o

urren
e of a transition in U with s as an

output pla
e. If the exe
ution of U leads fromM toM

0

we writeM [UiM

0

. Note

that the empty step 0 is enabled at every marking of N and that its exe
ution

has no e�e
t: M [0iM for all markings M of N .

A step sequen
e from a marking M to marking M

0

is a sequen
e U

1

: : : U

n

of

non-empty steps U

i

, 1 � i � n with n � 0, su
h that

M =M

0

[U

1

iM

1

[U

2

iM

2

� � � M

n�1

[U

n

iM

n

=M

0

for some markingsM

1

; : : : ;M

n�1

of N . If � is a step sequen
e from M to M

0

we

write M [�iM

0

and M

0

is said to be rea
hable (in N) from M . Note that every

marking is rea
hable from itself by the empty step sequen
e.

In 
ase we want to make 
lear whi
h (inhibitor) net we are dealing with, we may

add a subs
ript N and write [�i

N

rather than [�i.

A Pla
e/Transition net with inhibitor ar
s (or PTI-net) is a tuple N =

(S; T; F; I;M

0

), where N

0

= (S; T; F; I) is its underlying inhibitor net, and M

0

is a marking of (S; T; F; I).

2

A step sequen
e of N = (S; T; F; I;M

0

) is a step

sequen
e starting from M

0

in its underlying inhibitor net N

0

. The set of all step

sequen
es of N is the set steps(N) = f� j 9M :M

0

[�i

N

0

Mg.

As the last point of this se
tion, we look at the boundedness of pla
es in N .

A pla
e s 2 S is n-bounded in N , where n is a positive integer, if M(s) � n for

every marking M rea
hable from M

0

; it is bounded if it is n-bounded for some

n, otherwise it is unbounded. N is safe if all of its pla
es are 1-bounded. If s

1

is

a bounded pla
e of N , then s

2

2 S is a 
omplement pla
e of s

1

, if

�

s

1

= s

2

�

and

s

1

�

=

�

s

2

. Then bound(s

1

) = M

0

(s

1

) +M

0

(s

2

) is a bound for both s

1

and s

2

,

and bound(s

1

) =M(s

1

) +M(s

2

), for every marking M rea
hable from M

0

.

We 
allN a PTBI-net if all inhibiting pla
es of all its transitions are bounded.

4 Pro
esses

4.1 O

urren
e nets

For safe P/T-nets and elementary net systems, pro
esses 
an be used as a non-

sequential representation of runs of the net (see, e.g., [2, 11, 14℄). Pro
esses are

based on o

urren
e nets and may be viewed as (partial) a
y
li
 unfoldings of

the net. Ea
h transition represents an o

urren
e of a transition in the original

2

Note that I may be empty, in whi
h 
ase we are a
tually dealing with a P/T-net,

and then N may also be spe
i�ed in the form (S; T; F;M

0

).



net, while ea
h pla
e 
orresponds to a token. Con
i
ts between transitions are

resolved and thus pla
es do not bran
h. An o

urren
e net de�nes a partial order

on its transitions whi
h in turn provides a partial order des
ription of transition

o

urren
es in the original net.

De�nition 1. A (labelled) o

urren
e net is a labelled net ON = (B;E;R; l)

su
h that: j

�

bj � 1 � jb

�

j, for every b 2 B; the relation (R Æ R)j

E�E

is a
y
li
;

and l is a labelling fun
tion for B [ E. The elements of B and E | the pla
es

and transitions of ON | are respe
tively 
alled 
onditions and events. ut

The minimal and maximal 
onditions of ON are respe
tively Min(ON ) =

fb 2 B j

�

b = ;g and Max (ON ) = fb 2 B j b

�

= ;g. ON de�nes a set of step

sequen
es whi
h start from an impli
it marking formed by Min(ON ) and lead

to Max (ON ). (Note that the steps in these sequen
es are sets and that ON with

initial markingMin(ON ) is safe.) Applying the labelling l to su
h step sequen
es

yields the set lsteps(ON ) = fl(�) j Min(ON )[�i

ON

Max (ON )g.

Sin
e (R Æ R)j

E�E

is a
y
li
, its transitive 
losure �

ON

= ((R Æ R)j

E�E

)

+

is

irre
exive and we 
an asso
iate with ON a labelled poset po

ON

= (E;�

ON

; lj

E

).

For EN-systems [14℄, the notion of o

urren
e nets provides a 
ausality (par-

tial order) semanti
s whi
h 
an be de�ned in two di�erent ways: (i) axiomati
,

from the stru
ture of the net; and (ii) operational, through unfolding based on

step sequen
es. In both 
ases, the pro
esses and hen
e also the asso
iated partial

orders are the same.

The above approa
h is not dire
tly appli
able to non-safe nets. For these, [6℄

and [1℄ propose to represent ea
h of the multiple tokens in a pla
e by a separate


ondition of an o

urren
e net. We now provide a rephrasing of the de�nitions

of [1℄ for the 
ase of general (possibly non-safe) �nite P/T-nets.

De�nition 2. Let N = (S; T; F;M

0

) be a P/T-net. A pro
ess of N is an o

ur-

ren
e net ON = (B;E;R; l) su
h that the following 
onditions are satis�ed:

1. l : B [ E ! S [ T is su
h that l(B) � S and l(E) � T .

2. For all s 2 S: M

0

(s) = jMin(ON ) \ l

�1

(s)j.

3. For all s 2 S and e 2 E:

(a) jfsg \

�

l(e)j = jfb 2 l

�1

(s) j (b; e) 2 Rgj

(b) jfsg \ l(e)

�

j = jfb 2 l

�1

(s) j (e; b) 2 Rgj.

We will use on(N) to denote the set of all pro
esses of N . ut

The above is the axiomati
 de�nition. Alternatively, we 
an start from a step

sequen
e and 
onstru
t a 
orresponding pro
ess.

De�nition 3. Let N = (S; T; F;M

0

) be a P/T-net and let � = U

1

: : : U

n

be a

step sequen
e of N . A pro
ess generated by � is the last labelled net N

n

in a

series N

0

; : : : ; N

n

with N

k

= (B

k

; E

k

; R

k

; l

k

), for 0 � k � n, 
onstru
ted thus.

{ Step 0: N

0

= (B

0

; E

0

; R

0

; l

0

) where

� E

0

= R

0

= ; and B

0

= fb

s;i;0

j 1 � i �M

0

(s)g.



(a)

e

f

(b)

e

f

(
)

e

f

Fig. 2. (a,b) Two 
ases de�ning e �

aux

f , and (
) one 
ase de�ning e <

aux

f .

� l

0

: B

0

! S is su
h that l(b

s;i;0

) = s, for all b

s;i;0

2 B

0

.

Let Max

0

= B

0

.

{ Step m = k + 1: Let N

k

= (B

k

; E

k

; R

k

; l

k

). Then N

m

is de�ned thus:

� B

m

= B

k

[ fb

s;t;i;m

j 1 � i � U

m

(t) ^ s 2 t

�

g.

� E

m

= E

k

[ fe

t;i;m

j 1 � i � U

m

(t)g. Moreover, for ea
h e

t;i;m

2 E

m

and

ea
h s 2

�

t we 
hoose

3

a distin
t

b

b

hs;t;i;mi

2 Max

k

\ l

�1

(s).

� R

m

= R

k

[

�

f(

b

b

hs;t;i;mi

; e

t;i;m

) j e

t;i;m

2 E

m

^ s 2

�

tg [

f(e

t;i;m

; b

s;t;i;m

) j e

t;i;m

2 E

m

^ s 2 t

�

g

�

:

� l

m

(b

s;t;i;m

) = s and l

m

(e

t;i;m

) = t, for all b

s;t;i;m

2 B

m

nB

k

and e

t;i;m

2

E

m

nE

k

. Moreover, l

m

(x) = l

k

(x), for all x 2 B

k

[ E

k

.

Let Max

m

= fb 2 B

m

j :9e 2 E

m

: (b; e) 2 R

m

g.

We will use pro


�

to denote the set of all isomorphi
 
opies

4

of all pro
esses

generated by � . ut

4.2 A
tivator o

urren
e nets

The presen
e of inhibitor ar
s makes the unfolding pro
edure more 
ompli
ated,

due to the fa
t that lo
al information regarding the la
k of tokens in a pla
e


annot be expli
itly represented in an o

urren
e net. In [8℄ this problem is

solved by using 
omplement pla
es and representing inhibitor ar
s by a
tivator

ar
s 
onne
ted to 
onditions representing 
omplement pla
es. The notion of an

o

urren
e net is repla
ed by that of an a
tivator o

urren
e net.

De�nition 4. A (labelled) a
tivator o

urren
e net (ao-net) is a tuple AON =

(B;E;R;A
t ; l) su
h that: ON = (B;E;R; l) is an o

urren
e net; A
t � B�E

are a
tivators ar
s; and the relational stru
ture S

aux

(AON ) = (E;�

aux

;<

aux

)

= (E; (R ÆR)j

E�E

[ (R ÆA
t); (A
t

�1

ÆR) n id

E

) is }{a
y
li
. ut

In the diagrams, a
tivator ar
s have bla
k dots as arrowheads; see, e.g., �g-

ure 4 where (b

2

; e) is an a
tivator ar
. Figure 2 shows how �

aux

and <

aux

are


onstru
ted from ordinary ar
s and a
tivator ar
s.

Noti
e that the }-a
y
li
ity of S

aux

(AON ) implies that (RÆR)j

E�E

is a
y
li


in the usual sense. Sin
e S

aux

(AON ) is }{a
y
li
, we 
an asso
iate with AON

the labelled so-stru
ture S(AON) = S

aux

(AON )

}

, see proposition 1. Figure 3

shows the labelled so-stru
tures S(AON

i

) for the ao-nets AON

i

in �gure 5.

3

This is the only di�eren
e with the safe 
ase, where there is only one 
andidate 
on-

dition

b

b

hs;t;i;mi

, and so the pro
ess asso
iated with � is unique (up to isomorphism).

4

The 
onstru
tion of a pro
ess from step sequen
es in this and the next se
tions is

based on 
on
rete nodes whi
h 
arry the labels. This provides us immediately with

a fully spe
i�ed representative of an isomorphism 
lass whi
h is both intuitive and

useful in proofs.



S(AON

1

)

w

w

S(AON

2

)

w

t

w

S(AON

3

)

w u w

t t t

w u w

Fig. 3. Strati�ed order stru
tures generated by ao-nets in �gure 5.

Intuitively, an a
tivator ar
 between a 
ondition b and an event e means that

the o

urren
e of e requires the holding of b, but the o

urren
e of e will not

make b 
ease to hold. Formally, a step U of events is enabled at a marking M

of AON if U is enabled in the underlying o

urren
e net ON at marking M

and, furthermore, for all e in U and b 2 B, (b; e) 2 A
t implies that b is marked

in M . The resulting marking M

0

is the same as the marking resulting from the

exe
ution of U in ON .

5

As before, we will writeM [�i

AON

M

0

if exe
uting a step

sequen
e � in AON leads from M to M

0

.

The minimal and maximal 
onditions of AON are respe
tively Min(AON ) =

Min(ON )(= Min) and Max (AON ) = Max (ON )(= Max ). The step sequen
es

and the rea
hable markings of AON from the marking Min are also step se-

quen
es and rea
hable markings of ON with initial marking Min . Thus, in par-

ti
ular, (AON ;Min) is safe, sin
e (ON ;Min) always is. As for o

urren
e nets,

we 
onsider those step sequen
es whi
h lead from the minimal 
onditions to the

maximal 
onditions. Applying the labelling l to su
h step sequen
es yields the

set lsteps(AON ) = fl(�) j Min [�i

AON

Maxg. The following result states the 
or-

responden
e between the (labelled) step sequen
es of an ao-net AON and the

strati�ed extensions of its asso
iated labelled so-stru
ture S(AON).

Theorem 1. strat(S(AON )) = fpo

�

j � 2 lsteps(AON )g.

Proof. Let AON and ON be as in de�nition 4, and Min and Max be (safe)

markings as above. It suÆ
es to show the result assuming that l is the identity

labelling for E.

Suppose that Min [�i

AON

Max and � = E

1

: : : E

n

. Then also Min [�i

ON

Max .

Thus, due to the standard properties of o

urren
e nets, ea
h E

i

is a set and

E is the disjoint union of E

1

; : : : ; E

n

. Moreover, there are sets of 
onditions

B

0

; : : : ; B

k

of B (
uts of ON , see [1℄) su
h that

Min = B

0

[E

1

i

ON

B

1

: : : B

n�1

[E

n

i

ON

B

n

= Max (2)

and, for every b 2 B, there are 0 � k

b

� l

b

� n su
h that

b 2 B

i

if and only if k

b

� i � l

b

: (3)

In the above, k

b

is the index of the �rst 
ut B

i

in the sequen
e B

0

; : : : ; B

n

in

whi
h 
ondition b is marked, and l

b

is the index of last su
h 
ut. Clearly,

Min = B

0

[E

1

i

AON

B

1

: : : B

n�1

[E

n

i

AON

B

n

=Max (4)

5

Thus an a
tivator ar
 does not interfere with normal ar
s, unlike read ar
s, [15, 3℄.



also holds. To show that po

�

2 strat(S(AON )), it suÆ
es to prove that if e 2 E

i

and f 2 E

j

then:

(9b 2 B : (e; b) 2 R ^ (b; f) 2 R [ A
t) ) i < j: (5)

(9b 2 B : (b; e) 2 A
t ^ (b; f) 2 R) ) i � j: (6)

From (2,3,4) and E = E

1

℄ : : : ℄ E

n

and j

�

bj � 1 � jb

�

j it follows that: (e; b) 2

R ) i = k

b

; (b; e) 2 R ) i�1 = l

b

; and (b; e) 2 A
t ) k

b

� i�1 � l

b

. Thus (5)

holds sin
e (e; b) 2 R^ (b; f) 2 R[A
t implies i = k

b

and l

b

= j�1 _ k

b

� j�1.

And (6) holds sin
e (b; e) 2 A
t ^ (b; f) 2 R implies i�1 � l

b

= j�1.

We have shown the (�) in
lusion. To prove the reverse one, suppose that

po

�

2 strat(S(AON )) and � = E

1

: : : E

n

whi
h means that E = E

1

℄ : : : ℄

E

n

and (5,6) hold. From (5) (without the (b; f) 2 A
t part), it follows that

Min [�i

ON

Max . Hen
e there are B

0

; : : : ; B

n

su
h that (2,3) hold. To show that

Min [�i

AON

Max also holds, it suÆ
es to observe that if e 2 E

i

and (b; e) 2 A
t

then b 2 B

i�1

. Indeed, if this was not true, then l

b

< i�1 or k

b

� i. In the

former 
ase, there is f 2 E

l

b

+1

su
h that (b; f) 2 R, a 
ontradi
tion with (6).

And, in the latter 
ase, there is f 2 E

k

b

su
h that (f; b) 2 R, a 
ontradi
tion

with (5). ut

The labelled step sequen
es of AON have a 
ausality interpretation in terms

of the partial order and the weak partial order provided by S(AON). In fa
t, a

single partial order (as de�ned by an o

urren
e net) is insuÆ
ient, as it 
annot

fully express the relationship between simultaneous events (in a step) if they


annot be sequentialized. For example, in �gure 4 we have that �

1

= fe; fg and

�

2

= fegffg are step sequen
es leading from Min to Max , but ffgfeg 
annot

be exe
uted, despite the fa
t that e and f are independent as far as the usual

partial ordering is 
on
erned.

b

1

b

3

b

2

b

4

e

f

Fig. 4. An a
tivator o

urren
e net where Min = fb

1

; b

2

g and Max = fb

3

; b

4

g.

In the next se
tion, we will 
ombine the approa
hes of [1℄ and [8℄ in order to

obtain a 
ausal semanti
s for PTI-nets in 
ase the inhibiting pla
es have known

bounds. The treatment of unbounded inhibiting pla
es will require a further

extension of o

urren
e nets.

5 The bounded 
ase

In this se
tion N = (S; T; F;M

0

; I) is a �xed PTBI-net and N

0

= (S; T; F;M

0

)

is its underlying P/T-net. We assume here that every inhibiting pla
e s 2 S has



a unique 
omplement pla
e s


pl

2 S with M

0

(s) +M

0

(s


pl

) = bound(s) where

bound(s) > 0 is a bound of s in N . The pro
esses of N are de�ned as follows.

De�nition 5. An a
tivator pro
ess of N is an ao-net AON = (B;E;R;A
t ; l)

su
h that ON = (B;E;R; l) 2 on(N

0

) and, for all s 2 S and e 2 E:

jfsg \

Æ

l(e)j � bound(s) = jfb 2 l

�1

(s


pl

) j (b; e) 2 A
tgj: (7)

We will use aon(N) to denote the set of all a
tivator pro
esses of N . ut

Figure 5 shows an example of a PTBI-net and its three a
tivator pro
esses.

N

p

q

r

t

w

u

AON

1

p

q

r

q

r

w

w

AON

2

p p

q

r

q

r

t

w

w

AON

3

p p p p

q

r

q

r

q

r

q

r

t t t

w u w

w u w

Fig. 5. Three a
tivator pro
esses AON

i

of a PTBI-net N .

The �rst result we show states that an a
tivator pro
ess of a P/T-net de-

s
ribes a set of valid step sequen
es of the original net.

Lemma 1. If AON 2 aon(N), then lsteps(AON ) � steps(N).

Proof. Let AON and ON be as in de�nition 5, and � 2 lsteps(AON ). Then,

by theorem 1, there is a step sequen
e � = E

1

: : : E

n

su
h that � = l(�) and

Min(AON)[�i

AON

Max (AON) and E = E

1

℄ : : : ℄E

n

and (5,6) in the proof of

theorem 1 hold. Sin
e ON 2 on(N

0

), we have, by the standard theory [1℄, that

� 2 steps(N

0

). Moreover, there are sets of 
onditions B

0

; : : : ; B

n

su
h that (2,3)

in the proof of theorem 1 hold and:

M

0

= l(B

0

)[l(E

1

)i

N

0

l(B

1

) : : : [l(E

n

)i

N

0

l(B

n

)

Thus, to prove � 2 steps(N), it suÆ
es to show that if e 2 E

i

and s 2

Æ

l(e),

then l(B

i�1

)(s) = 0. The latter is equivalent to l(B

i�1

)(s


pl

) = bound(s). If this

does not hold then, by (7), there is b 2 B su
h that (b; e) 2 A
t and l

b

< i�1 or

i � k

b

. We then obtain a 
ontradi
tion with (5,6), similarly as in the last part

of the proof of theorem 1. ut



De�nition 5 
an be made operational through the following net unfolding

whi
h takes a step sequen
e and 
onstru
ts an ao-net 
orresponding to it.

De�nition 6. Let � = U

1

: : : U

n

be a step sequen
e of N . An a
tivator pro-


ess generated by � is the last labelled net N

n

with a
tivator ar
s in a series

N

0

; : : : ; N

n

with N

k

= (B

k

; E

k

; R

k

;A
t

k

; l

k

), for 0 � k � n, 
onstru
ted thus.

{ Step 0: N

0

= (B

0

; E

0

; R

0

;A
t

0

; l

0

) where A
t

0

= ;, and all other 
omponents

are as in Step 0 of de�nition 3, in
luding Max

0

.

{ Step m = k + 1: Let N

k

= (B

k

; E

k

; R

k

;A
t

k

; l

k

). Then N

m

is de�ned thus:

� B

m

; E

m

; R

m

, l

m

and Max

m

are as in Step m of de�nition 3.

� A
t

m

= A
t

k

[ f(b; e) 2 Max

k

� (E

m

nE

k

) j (l

m

(b)


pl

; l(e)) 2 Ig.

We will use pro


ao

�

to denote the set of all isomorphi
 
opies of all a
tivator

pro
esses generated by � . ut

p p p p
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q
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q

r
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r

t t t

w u w

w u w

Fig. 6. Deriving an a
tivator pro
ess in pro


ao

�

for � = fw; wgftgfu; ugfw; wgftgftg.

Figure 6 illustrates the 
onstru
tion of an a
tivator pro
ess for the PTBI-net

in �gure 5. The verti
al lines indi
ate the stages (from left to right) in whi
h

the net has been derived. Noti
e that it is an a
tivator pro
ess of N in �gure 5

as it is isomorphi
 to AON

3

shown there. The next results states that this is

not a mere 
han
e, sin
e every unfolding of a PTBI-net satis�es the axiomati


de�nition of an a
tivator pro
ess.

Lemma 2. For � and N

n

in de�nition 6, N

n

2 aon(N) and � 2 lsteps(N

n

).

Proof. Assume the notation from de�nition 6. That ON = (B

n

; E

n

; R

n

; l

n

) 2

pro


�

for N

0

follows dire
tly from the de�nitions and thus, by the standard

results for P/T-nets [1℄, ON 2 on(N

0

). Moreover, the 
onstru
tion is su
h

that, for k = 1; : : : ; n, M

0

= l(Max

0

)[U

1

: : : U

k

i

N

0

l(Max

k

) and so also M

0

=

l(Max

0

)[U

1

: : : U

k

i

N

l(Max

k

). Thus, if e 2 E

k

nE

k�1

and s 2

Æ

l(e), then we have

l(Max

k�1

)(s) = 0 and so l(Max

k�1

)(s


pl

) = bound(s). Hen
e

jfb 2 l

�1

(s


pl

) j (b; e) 2 A
t

k

gj = jfb 2 Max

k�1

j l(b) = s


pl

gj = bound(s):

As a result, (7) is satis�ed. To 
omplete the proof of N

n

2 aon(N), we still

need to show that S

aux

(N

n

) is }-a
y
li
. This, however, follows from an easy

observation that the 
onditions (5,6) from the proof of theorem 1 (suitably re-

interpreted by setting ea
h E

i

to be the set of events added in step i of the


onstru
tion des
ribed in de�nition 6), hold here by 
onstru
tion.



That � 2 lsteps(N

n

) follows immediately from the 
onstru
tion of N

n

and a

simple indu
tive argument. ut

Corollary 1. If � 2 steps(N) and AON 2 pro


ao

�

, then � 2 lsteps(AON ). ut

Similarly as it is the 
ase for pro
esses of ordinary P/T-nets, the axiomati


and operational de�nitions of pro
esses of a PTBI-net 
oin
ide.

Theorem 2. aon(N) =

S

�2steps(N)

pro


ao

�

.

Proof. The (�) in
lusion follows from lemma 2. To show the reverse one, we

take AON and ON as in de�nition 5. Then, by strat(S(AON )) 6= ; whi
h always

holds [7℄, there is at least one � su
h that po

�

2 strat(S(AON )). By lemma 1 and

theorem 1, � 2 steps(N) and so � 2 steps(N

0

). Thus, by the standard properties

of pro
esses of P/T-nets, there is a way in whi
h the 
onstru
tion des
ribed in

de�nition 3 generates a net N

n

= (B

n

; E

n

; R

n

; l

n

) whi
h is isomorphi
 to ON .

One 
an then re-run the 
onstru
tion of ON , adding at ea
h stage the sets A
t

k

,

as pres
ribed in de�nition 6. This is a deterministi
 pro
edure whi
h results in

an a
tivator net whi
h is isomorphi
 to AON . In proving the latter, one takes

advantage of theorem 1, whi
h guarantees that � 2 lsteps(AON ). ut

We now 
an establish that a
tivator pro
esses of a PTBI-net generate exa
tly

the same step sequen
es as the original net.

Theorem 3. steps(N) =

S

AON2aon(N)

lsteps(AON).

Proof. The (�) in
lusion has been proved in lemma 1. The reverse in
lusion

follows from 
orollary 1 and theorem 2. ut

The last result 
an be re-stated in terms of labelled strati�ed posets and thus

shows that the a
tivator pro
esses of a PTBI-net 
orre
tly des
ribe 
ausality in

the runs of the net.

Corollary 2. fpo

�

j � 2 steps(N)g =

S

AON2aon(N)

strat(S(AON )).

Proof. Follows from theorems 1 and 3. ut

6 Unboundedness

In this se
tion, we deal with PTI-nets whose inhibiting pla
es 
an be unbounded.

Thus we 
annot use 
omplement pla
es to represent the emptiness of pla
es, and

therefore need to introdu
e another devi
e. It will be provided by z-pla
es that

will play a role similar to that of the 
omplement pla
es in a
tivator pro
ess.

However, z-pla
es will represent logi
al 
onditions rather than tokens (resour
es),

and will admit bran
hing. LetN = (S; T; F;M

0

; I) be a PTI-net �xed throughout

this se
tion.



De�nition 7. A (labelled) z-a
tivator o

urren
e net (zao-net) is a tuple AON

z

= (B;E;R;A
t ; l) su
h that: ON = (B

n

; E;R

0

; lj

B

n

[E

) is an o

urren
e net,

where B

n

= B nB

z

and B

z

= fb 2 B j (b; e) 2 A
tg; R � (B�E)[ (E�B) and

R

0

= Rj

(B

n

�E)[(E�B

n

)

; A
t � B

z

�E is a set of a
tivator ar
s; l is a labelling

fun
tion for B [E; and the relational stru
ture S

aux

(AON

z

) = (E;�

aux

;<

aux

)

= (E; (R ÆR)j

E�E

[ (R ÆA
t); (A
t

�1

ÆR) n id

E

) is }{a
y
li
. ut
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Fig. 7. A z-a
tivator o

urren
e net.

Figure 7 shows an example of a zao-net. The semanti
s of a zao-net 
an

be understood in two ways. First, we 
an take the underlying order stru
ture

S(AON

z

) = S

aux

(AON

z

)

}

, as we did for ao-nets, and derive all strati�ed or-

der extensions, or step sequen
es 
orresponding to these. The alternative view,

involving step sequen
es exe
uted from the initial marking, Min(AON

z

) =

Min(ON ), to the �nal marking, Max (AON

z

) = Max (ON ), is not dire
tly ap-

pli
able sin
e z-
onditions allow bran
hing. However, it is possible to repla
e the

z-
onditions by sets of ordinary 
onditions for ea
h pair of pre- and post-event

of a given z-
ondition, as des
ribed below.

De�nition 8. Let AON

z

= (B;E;R;A
t ; l) be as in de�nition 7, and:

{ B

0

= B

n

[ B

00

where

B

00

= fb

x;y

j b 2 B

z

^ (x 2

�

b _ x = ; =

�

b) ^ (y 2 b

�

_ y = ; = b

�

)g:

{ R

0

= Rj

(B

n

�E)[(E�B

n

)

[ f(e; b

e;y

) j e 2 Eg [ f(b

x;e

; e) j e 2 Eg.

{ A
t

0

= f(b

x;y

; e) j (b; e) 2 A
tg.

{ l

0

j

B

n

[E

= lj

B

n

[E

and l

0

(b

x;y

) = l(b), for all b 2 B

00

.

We then 
all �(AON

z

) = (B

0

; E;R

0

;A
t

0

; l

0

) the z-pruning of AON

z

. ut

It is not diÆ
ult to see that the z-pruning of AON

z

is an ao-net. It is used to

give the a
tivator ar
s an operational semanti
s whi
h 
orresponds to the intu-

ition behind the z-
onditions. We de�ne the (labelled) step sequen
es of AON

z

by lsteps(AON

z

) = lsteps(�(AON

z

)). Observe that S(�(AON

z

)) = S(AON

z

).

Consequently, strat(S(AON

z

)) = fpo

�

j � 2 lsteps(AON

z

)g, by theorem 1. We

now give an axiomatisation of the notion of pro
ess for the PTI-net N .

De�nition 9. A z-a
tivator pro
ess of N is a zao-net AON

z

= (B;E;R;A
t ; l)

su
h that:



1. l : B [ E ! S [ T is su
h that l(B) � S and l(E) � T .

2. For all s 2 S: M

0

(s) = jMin(AON

z

) \ l

�1

(s) \ B

n

j.

3. For all s 2 S and e 2 E:

(a) jfsg \

�

l(e)j = jfb 2 l

�1

(s) \ B

n

j (b; e) 2 Rgj.

(b) jfsg \ l(e)

�

j = jfb 2 l

�1

(s) \ B

n

j (e; b) 2 Rgj.

(
) jfsg \

Æ

l(e)j = jfb 2 l

�1

(s) j (b; e) 2 A
tgj.

4. For all b

z

2 B

z

and e 2 E:

(a) If (b

z

; e) 2 R, then (l(e); l(b

z

)) 2 F .

(b) If (b

z

; e) 2 R

�

and (l(e); l(b

z

)) 2 F , then there is a unique b 2 B

z

su
h

that l(b) = l(b

z

) and (b; e) 2 R and (b

z

; b) 2 R

�

.

(
) If (e; b

z

) 2 R, then (l(b

z

); l(e)) 2 F .

(d) If (e; b

z

) 2 R

�

and (l(b

z

); l(e)) 2 F , then there is a unique b 2 B

z

su
h

that l(b) = l(b

z

) and (e; b) 2 R and (b; b

z

) 2 R

�

.

5. For all b

z

2 B

z

and b 2 B, if l(b) = l(b

z

), then (b

z

; b) 2 R

�

or (b; b

z

) 2 R

�

.

We will use aon

z

(N) to denote the set of z-a
tivator pro
esses of N . ut

Note the absen
e of pla
e bounds in the above de�nition. Instead, we have an

expli
it `re
ord' of the fa
t that a pla
e was empty in the form of a z-
ondition.

By points 4(a) and 4(
) above, if a z-
ondition b

z

is input (output) to an event

e, then the inhibiting pla
e l(b

z

) of N is output (input) to the transition l(e).

Requirement 4(b) pres
ribes that whenever transition l(e) adds a token to the

inhibiting pla
e l(b

z

), only the most re
ent re
ord b of l(b

z

) being empty in

the past of the o

urren
e e of l(e) is input to e. Similarly, 4(d) stipulates that

whenever transition l(e) removes a token from the inhibiting pla
e l(b

z

), while

sometime in the future of this o

urren
e l(b

z

) is su

essfully tested for empti-

ness, the o

urren
e e of l(e) is only 
onne
ted to the earliest future re
ord b

of l(b

z

) being empty. Note that by de�nition 9(5), all re
ords of the emptiness

of an inhibiting pla
e are linearly ordered by R

�

. Moreover, a

ording to R

�

an

inhibiting pla
e is never re
orded to be empty while it 
ontains a token.

Figure 7 shows a z-a
tivator pro
esses for the net shown in �gure 5. It 
orre-

sponds to AON

3

in �gure 5 in the sense that they generate isomorphi
 labelled

so-stru
tures. The last de�nition is also illustrated for a non-PTBI-net, in �g-

ure 8. We �nally de�ne an unfolding pro
edure for PTI-nets.

De�nition 10. Let � = U

1

: : : U

n

be a step sequen
e of N . A z-a
tivator pro-


ess generated by � is the last labelled net N

n

with a
tivator ar
s in a series

N

0

; : : : ; N

n

with N

k

= (B

k

; E

k

; R

k

;A
t

k

; l

k

), for 0 � k � n, 
onstru
ted thus:

{ Step 0: N

0

= (B

0

; E

0

; R

0

;A
t

0

; l

0

) where:

� E

0

= R

0

= A
t

0

= B

z

0

= ;.

� B

0

= B

n

0

= fb

s;i;0

j 1 � i �M

0

(s)g.

� l

0

: B

0

! S is su
h that l(b

s;i;0

) = s, for all b

s;i;0

2 B

0

.

Let Max

0

= B

0

.

{ Step m = k + 1: Let N

k

= (B

k

; E

k

; R

k

;A
t

k

; l

k

). Then N

m

is de�ned thus:

� B

n

m

= B

n

k

[ fb

s;t;i;m

j 1 � i � U

m

(t) ^ s 2 t

�

g and

B

z

m

= B

z

k

[ fb

s;m

j 9t 2 U

m

: s 2

Æ

t n l

k

(Max

k

\ B

z

k

)g.
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Fig. 8. A z-a
tivator pro
ess of a PTI-net whi
h is not a PTBI-net.

� E

m

= E

k

[ fe

t;i;m

j 1 � i � U

m

(t)g.

Moreover, for ea
h e

t;i;m

2 E

m

and for ea
h s 2

�

t we 
hoose a distin
t

b

b

hs;t;i;mi

2 Max

k

\ B

n

k

\ l

�1

(s).

� l

m

(b

s;t;i;m

) = s and l

m

(b

s;m

) = s and l

m

(e

t;i;m

) = t,

for all b

s;t;i;m

2 B

n

m

nB

n

k

and b

s;m

2 B

z

m

nB

z

k

and e

t;i;m

2 E

m

nE

k

.

l

m

(x) = l

k

(x), for all x 2 B

k

[ E

k

.

� R

m

= R

k

[

�

f(

b

b

hs;t;i;mi

; e

t;i;m

) j e

t;i;m

2 E

m

^ s 2

�

tg [

f(e

t;i;m

; b

s;t;i;m

) j e

t;i;m

2 E

m

^ s 2 t

�

g

�

[ R

0

m

[ R

00

m

where

R

0

m

=

�

(e; b

s;m

) 2 E

k

� (B

z

m

nB

z

k

)

�

�

�

�

(s; l

k

(e)) 2 F ^ :9b

0

2 B

z

k

:

l

k

(b

0

) = s ^ (e; b

0

) 2 R

k

�

R

00

m

=

�

(b

s;i

; e) 2 B

z

m

� (E

m

nE

k

)

�

�

�

�

(l

m

(e); s) 2 F ^

8b

s;j

2 B

z

m

: j � i

�

:

� A
t

m

= A
t

k

[f(b; e) 2 (Max

m

\B

z

m

)� (E

m

nE

k

) j (l

m

(b); l

m

(e)) 2 Ig,

where Max

m

= fb 2 B

m

j :9e 2 E

m

: (b; e) 2 R

m

g.

We will use pro


zao

�

to denote the set of all isomorphi
 
opies of all z-a
tivator

pro
esses generated by � . ut

The above de�nition is illustrated for the PTBI-net of �gure 5 and its step

sequen
e � = fw;wgftgfu; ugfw;wgftgftg. As before, �gure 9 shows stages in

whi
h the nodes and 
onne
tions were generated.

The z-
onditions are generated `on-demand', when it is ne
essary to `legit-

imise' transition o

urren
es. In general, this ex
ludes undesirable orderings be-

tween events. For 
onsider the net N in �gure 5 and its step sequen
e � =

fw;wgfu; ug. If we were to add a z-
ondition ea
h time q be
omes empty, then

we would generate an o

urren
e net as shown in �gure 10. Intuitively, su
h

a net would introdu
e arti�
ial 
ausal relationships between some of the event

o

urren
es.
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Fig. 9. A z-a
tivator pro
ess generated for a step sequen
e of a PTBI-net.

As in the 
ase of pro
esses of P/T-nets and PTBI-nets, the axiomati
 and op-

erational de�nitions 
oin
ide. Moreover, we have the desired 
onsisten
y between

step sequen
es of a PTI-net and its zao-pro
esses.

Theorem 4. The following are satis�ed.

1. aon

z

(N) =

S

�2steps(N)

pro


zao

�

.

2. steps(N) =

S

AON

z

2aon

z

(N)

lsteps(AON

z

).

3. fpo

�

j � 2 steps(N)g =

S

AON

z

2aon

z

(N)

strat(S(AON

z

)). ut

The proofs of the various parts of theorem 4 follow those of similar results

presented in the previous se
tion. A main 
hange is that we no longer 
an use


omplement pla
es to establish the emptiness of an inhibiting pla
e, and instead

need to refer to the 
orresponding z-
onditions.

It 
an be seen that both the pro
ess semanti
s and the 
ausal semanti
s

for PTI-nets developed in this se
tion are 
onsistent with those developed for

PTBI-nets in the previous se
tion. The latter, in turn generalises the semanti
s

of P/T-nets [1℄ and elementary net systems with inhibitor ar
s from [8℄.

p

q

r

q

q

q

r

q

w u

w u

Fig. 10. Generating z-
onditions may not be desirable.

7 Con
luding remarks

The basi
 
ontribution of this paper is a proposal for a pro
ess semanti
s for

P/T-nets with inhibitor ar
s while assuming an a priori operational semanti
s.

This 
ontrasts with the approa
h of [3℄ where transitions 
an o

ur in a step

if and only if they 
an o

ur in either order. First we generalised the existing

pro
ess notions for ordinary P/T-nets ([6, 1, 14℄) and for safe nets with inhibitor

ar
s ([8℄) to the 
ase of P/T-nets with bounded and 
omplemented inhibiting



pla
es. In order to obtain a pro
ess semanti
s for general PTI-nets, z-a
tivator

o

urren
e nets were introdu
ed. Given the pro
esses, their asso
iated strati�ed

order stru
tures provide a spe
i�
ation of the net behaviours in terms of 
ausality

and weak 
ausality. Thus the results in this paper form a basis for a further

investigation of the abstra
t 
ausal relations within the behaviours of a PTI-net.

There are at least two potential appli
ations of these results: �rst, they 
an be

useful in the development of model 
he
king algorithms for PTI-nets based on

unfoldings; se
ond, they 
an be used as a basis for obtaining a 
ausality semanti
s

for P/T-nets with priorities, extending the results obtained for the elementary

net systems with priorities in [10℄. Finally, the approa
h presented in this paper


an easily be generalised to nets with weighted ar
s; an extension to weighted

inhibitor ar
s is a matter for future resear
h.
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