Process Semantics of
P/T-Nets with Inhibitor Arcs* **

H.C.M. Kleijn! and M. Koutny?

L LIACS, Leiden University, P.O.Box 9512, NL-2300 RA Leiden, The Netherlands
2 Dept. of Comp. Sci., University of Newcastle, Newcastle upon Tyne NE1 7RU, U.K.

Abstract. In this paper, we define a process semantics of P/T-nets
with inhibitor arcs (PTI-nets). For PTI-nets with bounded inhibiting
places, we combine the existing approaches for ordinary P/T-nets and
for elementary net systems with inhibitor arcs. To deal with unbounded
inhibiting places, a new feature has to be added to the underlying occur-
rence nets. In either case we show how to construct a process from a step
sequence and give a complete characterization of all processes which can
be obtained in this way. Using these processes it is possible to express
the causal relationships between events in a PTI-net behaviour.
Keywords: Causality/partial order theory of concurrency; analysis and
synthesis, structure and behaviour of nets.

1 Introduction

Petri nets with inhibitor arcs have been around for quite some time now and
as stated in [12], ‘Petri nets with inhibitor arcs are intuitively the most direct
approach to increasing the modelling power of Petri nets’. Unlike a ‘normal’
Petri net, a Petri net with inhibitor arcs has the possibility of testing whether a
place is empty in the current marking (zero testing). Thus inhibitor arcs are very
well suited to model situations involving testing for a specific condition, rather
than producing and consuming resources. Place/Transition nets with inhibitor
arcs (PTI-nets) are strictly more expressive than ordinary Place/Transition-nets
(P/T-nets). They can simulate the computations of Turing machines and several
important problems like reachability and liveness which are decidable for P/T-
nets are undecidable for PTI-nets.

This paper is concerned with the description of the causal relationships in
(concurrent) runs of PTT-nets. The research presented here is a natural contin-
uation of the work of [8] regarding elementary net systems with inhibitor arcs.
There, so-called stratified order structures are employed to provide a causality
semantics which is consistent with the operational semantics in terms of step
sequences. Whereas for an elementary net system, an abstract causality seman-
tics can be given in terms of partial orders alone, the presence of inhibitor arcs
requires more information on the relationships between event occurrences. As
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an example (borrowed from [8]), consider the net with the two events, e and f,
shown in figure 1.
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Fig. 1. An elementary net system with inhibitor arc.

In addition to the normal arcs, there is an inhibitor arc from condition s3 to
f. This implies that f can only occur if s3 is empty (and the standard enabling
conditions in an elementary net system are fulfilled). This net has three non-
empty firing sequences: w; = e, wy = f and w3 = fe. Note that the occurrence
of e is completely independent of the occurrence of f. However, f is disabled
after the occurrence of e. This implies that independence of events is no longer
symmetric. In the a priori semantics of [8], e and f may also be executed si-
multaneously, since the inhibiting condition s3 of f does not hold prior to the
occurrence of f. Thus also the step {e, f} may be executed. This implies that
independence and absence of ordering are no longer the same.
Stratified order structures take care of these more involved relations between
event occurrences by providing next to a partial order a weak partial order. The
partial order describes the strict causal relationships between event occurrences
whereas the weak partial order describes weak causal relationships as the above:
f may precede e but not vice versa and hence the step {e, f} may be sequen-
tialised to fe, but not to ef.
For elementary net systems (without inhibitor arcs), an abstract partial order
semantics follows immediately from their process semantics (see, e.g., [14]). A
process is constructed by unfolding the system according to a given run repre-
sented by a firing sequence. The result is an occurrence net: a (labelled) acyclic
net with non-branching conditions, since conflicts are resolved during the run.
By abstracting from the conditions of the occurrence net, one obtains a (la-
belled) partial order which describes precisely the causal relationships between
the events in the given run: all linearisations of the partial order are firing se-
quences of the elementary net system and they include the firing sequence on
the basis of which the process was constructed.
Also in [8], first a process semantics is given. Since in the a priori semantics not
all concurrent runs of the system can be sequentialised to a firing sequence, this
process semantics is based on step sequences. (Consider again the elementary net
system in figure 1, with an additional inhibitor arc from s4 to e. Now, w3 = fe
is no longer a firing sequence, although o = {e, f} is still a legal step sequence.)
Given a step sequence, the system is unfolded into a (labelled) occurrence net
with additional arcs to represent the zero testing. Testing if a condition does not
hold (inhibitor arc) is in the unfolding represented by testing if its complement
condition does hold (activator arc). In the resulting activator occurrence net the



conditions are again non-branching (with respect to the normal arcs). Moreover,
it is acyclic in a sense which includes the activator arcs ({-acyclic) and thus
allows to extract a (labelled) stratified order structure which describes precisely
the causality and weak causality relationships between the events in the given
run: all step sequences which obey the constraints imposed by the stratified order
structure are step sequences of the system and they include the step sequence
on basis of which the process was constructed.

In this paper we propose a process semantics for PTI-nets with the aim
to provide a basis for their abstract causality semantics. Since the nets are no
longer necessarily safe (markings may assign more than one token to a place),
we combine the ideas of [8] with the definition of processes for (finite) P/T-nets
as discussed in, e.g., [6] and [1]. In these processes each token in a place of the
original P/T-net is represented by a distinct condition in the process net. Con-
sequently, unfolding the net according to a step sequence in general yields more
than one occurrence net. However, the same occurrence nets as employed for
elementary net systems are used in the process definition of P/T-nets.

First we consider the case of PTI-nets in which the number of tokens in an in-
hibiting place cannot grow arbitrarily large (the inhibiting places are bounded).
We refer to these nets as PTBI-nets. For them, using complementary places for
the inhibiting places and activator arcs in the processes, the ideas of [8] can be
combined with the approach of [1] which relates process axioms and inductively
defined unfoldings. We define the processes of PTBI-nets and give an unfold-
ing construction based on step sequences. We show that these definitions are
consistent with each other, and that they can be used to extract the causal re-
lationships between the events in a run of a PTBI-net.

Next we turn to the unbounded case. In this case, the classical place comple-
mentation can no longer be applied. Instead we introduce a new feature in the
form of additional conditions (z-conditions) to the occurrence nets. A z-condition
represents an empty inhibiting place and is connected by an activator arc to the
events representing transitions which test that place for zero tokens. Z-conditions
are introduced ‘on-demand’ during the construction of a process for a given step
sequence, and with their introduction an up-date of the occurrence net has to
take place. This differs from the standard unfolding procedures discussed above
which do not refer to the past and are purely local (based on the neighbourhood
of the transitions in the original net). Moreover, z-conditions may be branching
(with respect to the normal arcs). Still, the resulting z-activator occurrence nets
can be fully (axiomatically) characterised, and they provide us with an abstract
causal semantics for the unbounded case.

Both the process semantics and the causal semantics for PTI-nets are con-
sistent with those for PTBI-nets, which in their turn generalise the semantics
of P/T-nets as defined in [1] and the semantics of elementary net systems with
inhibitor arcs from [8].

This paper is largely self-contained, although it may be an advantage for the
reader to be acquainted with the ‘classical’ process theory as presented in [1, 6]
and [14]. Due to the page limit, some proofs are either only sketched or omitted.



2 Preliminaries

N denotes the set {0,1,2,...} of natural numbers. All functions considered in
this paper are total. For a finite set X, we denote by | X| its cardinality.

Let X be a set. A multiset (over X) is a function m : X — N. The sum
of two multisets m; and ms over X is denoted by m; + ms and is defined by
(my1 + ms)(z) = my(z) + mao(x), for all z € X. The empty multiset, denoted by
0, is defined by 0(z) = 0, for all z € X. Note that a multiset m over X may be
seen as the subset {z € X | m(z) > 1} of X, the elements of which are equipped
with multiplicities. Conversely, every subset of X may be viewed through its
characteristic function as a multiset over X. We denote x € m if m(z) > 1.

A step sequence (over X) is a finite sequence my ...m,, of non-empty multi-

sets m; (over X). The empty sequence is denoted by A. If each of the multisets
m; in a step sequence o = my ... my, is a singleton set {z;} (i.e., m;(z;) = 1 and
m;(y) =0, for all y # x;), then o may be written as z; ... x,. Thus X*, the set
of all finite sequences of occurrences of elements from X, is a subset of the set
of all step sequences over X.
Now assume that X is finite. A labelling of X is a function [ : X — A, where
A is some set of labels (the labelling alphabet). It is extended to step sequences
over X in the following way: For m : X — N, we define I(m) : A - N
by I(m)(a) = > (4(z)=ay m(@), for all a € A. For 0 = my...my, we set
(o) = l(my)...l(my). In particular, [(\) = \. Hence step sequences over X
are mapped to step sequences over A. Observe that [(o) is in A*, whenever
0 =21...T, is in X*. In general, however, a set is mapped to a multiset.

For two relations P,(Q C X x X, their composition P o ) is also a binary
relation over X, defined by Po @ = {(z,z) | Iy € X : (z,y) € P A (y,2) € Q}.
Let idx = {(z,z) | * € X} be the identity relation in X. A binary relation P
over X is reflexive if idx C P; it is irreflexive if id x N P = (); and it is transitive
if P o P C P. The transitive closure of P is denoted by P, and its transitive
and reflexive closure by P*.

2.1 Partially ordered sets

A partial order on X is an irreflexive and transitive binary relation over X. If
<C X x X is a partial order, then the pair (X, <) is referred to as a partially
ordered set, or poset for short. In this paper we will only consider finite posets
(X is finite).

A labelled poset is a triple (X, <,1) such that (X, <) is a poset and [ : X —
A is a labelling of X. As we will be mainly dealing with labelled posets, all
terminology is introduced directly for labelled posets. If need be, it can be carried
over to posets by identifying the poset (X, <) with the labelled poset (X, <, idx).

Let (X, <,l) be a labelled poset. As usual, for z,y € X, we write z < y
rather than (z,y) €< and we use z < y to denote that z = y or =z < .
The notation x ¢ y indicates that z and y are distinct incomparable elements
(x#yAnz AyAy A ).
The labelled poset (X, <,1) is linear (or total), if every two distinct elements are



comparable (the relation ¢ is empty). It is stratified [4] if z ¢ y and y ¢ z imply
that z ¢ z whenever z # z. Thus a linear labelled poset is always stratified. Note
that (X, <,1) is stratified if and only if ¥ Uidx is an equivalence relation. If
(X, <,1) is stratified it defines a unique (ordered) sequence of subsets X ... X}, of
X, the equivalence classes of ¢ U id x, with the property: <= UK]. X;x Xj, and

H= (Uf:1 X; x X;) \ idx. Hence each labelled stratified poset po = (X, <,1)
as above defines a unique step sequence U,, = I(X7)...1(X}y). Conversely, if
po = (X, <,1) is such that X can be partitioned into non-empty sets Xy, ..., Xy
satisfying the above conditions, then it is stratified and U, = I(X1) ... 1(X}).
Two labelled posets po, = (X1, <1,11) and po, = (X2, <2,12) are isomorphic
if there is a bijection f: X1 — Xa such that for all z,y € X1, l1(z) = l2(f(z)),
and z < y if and only if f(x) <2 f(y).
Note that every step sequence o defines an isomorphism class of labelled stratified
posets po with the property that U,, = o. In the sequel, however, we are not
really interested in the underlying set which is only used to carry labels and we
will simply use po, to denote any labelled stratified poset po such that Up, = o.

2.2 Stratified order structures

A relational structure is a triple S = (X, <, C), where < and [ are two binary
relations over a finite set X. S is called a stratified order structure [5,7], or an
so-structure for short, if for all z,y,z € X the following hold (again using the
infix notation):

xfZx Cl

T <Yy — zLCy C2

rCyCz AN z#z = zCz C3
zCy<z V z<yCz = x<=2 C4.

It is easily seen that (X, <) is a poset and, furthermore, that z < y implies
y Z x. Furthermore, if (X, <) is a poset, then (X, <, <) is an so-structure.

In diagrams, < is represented by solid arcs, and C by dashed arcs. We can omit
arcs that can be deduced using C1-C4.

The elements of a relational structure (X, <,) will usually be labelled.
Thus we consider structures S = (X, <, , 1), such that (X, <, ) is a relational
structure and [ : X — A is a labelling of X. All remaining terminology is now
introduced directly for labelled relational structures. (It can be carried over to
the non-labelled case by identifying (X, <, C) with (X, <,C, idx).) In diagrams,
we do not name the nodes but only give their labels.

Concurrency theory employs partial orders < to model both specifications
and observations of behaviours. On the level of observations, they are used to
define operational semantics; < is then interpreted as the earlier than relation,
and ¢ as (potential) simultaneity. On the level of behaviour specifications, < is
usually interpreted as causality, and 4 as independence. The first relation <g
in an so-structure S, should be interpreted as the standard causality, and the
second relation, Cgs, as a weak causality. While causality is an abstraction of the



‘earlier than’ relation, weak causality is a similar abstraction of the ‘not later
than’ relation (this should be clearer if one looks at the formula (1) where <,
represents the former, and <,, U ¢ the latter relation). For a detailed discussion
of so-structures the reader is referred to [7].

When used as a tool for representing concurrent behaviours, so-structures are
derived from locally defined information involving events which directly interact
with one another. This local information then needs to be combined into a global
relationship involving all the event occurrences. For this a closure operation is
applied which builds an so-structure from representative local relations. The
d—closure of a relational structure was introduced in [8] to serve such a purpose.

Let S = (X, <,C,1) be a labelled relational structure. The {—closure of S is
the labelled relational structure S¢ = (X, <g¢, Cgo,1), where

<se=(KUDO)o<o(xULC)* and Cgo=(<xUD)*\idx.

We also say that a labelled relational structure S is {—acyclic if <g¢ is irreflex-
ive. The property of <go being irreflexive, which holds when the structure S¢
obtained from § is an so-structure, has a straightforward interpretation in oper-
ational terms. Basically, it means that in any single system history as described
by S, there are no event occurrences ey, es, . .., ej such that each e; has occurred
before or simultaneously with e;11, while e; has occurred before e .

Proposition 1. [8] Let S = (X, <,C,1) be a labelled relational structure.

1. 8% is a labelled so-structure if and only if <go is irreflexive.
2. If S is an so-structure, then S = S. O

We now turn to the relationship between so-structures and stratified posets
which resembles that between partial orders and their linear extensions.

A labelled stratified poset po = (Xpo, <po,lpo) is an extension of a labelled
so-structure S = (Xg, <s, Cs,ls) if they have the same domain X,, = Xs and
the same labelling [,,, = ls, and moreover, <s C <,, and Cs C <po U #p, . We
denote this by po € strat(S). If S = (X, <,C,1) is a labelled so-structure then
we have [8]:

S=(X. N <wr () (R Ul M

po€strat(S) po€strat(S)

Thus S can be derived from its poset extensions. Recall that Szpilrajn’s theorem
[13] states that each poset is unambiguously identified by its linear extensions. A
similar result does not hold for so-structures since these do not necessarily have
total order extensions, e.g., S = ({a,b}, 0, {(a,b), (b,a)}). For them one needs to
consider stratified poset extensions [9].
Again, we are not interested in the actual carriers of the labels in a poset and so
in the sequel we will use the notation strat(S) to denote the set of all isomorphic
copies of the labelled stratified poset extensions of S.

We say that two labelled relational structures, $; = (X3, <1,C1,01) and
Sy = (X2, <9,Ca,ls), are isomorphic if there is a bijection f : X; — X5 such
that for all z,y € X1, l1(z) = Is(f(z)), and = <; y if and only if f(z) <2 f(y),
and x T y if and only if f(z) T2 f(y).



3 Place/Transition nets with inhibitor arcs

This section introduces the notation and terminology for P /T-nets with inhibitor
arcs (PTI-nets, for short) and discusses their operationally defined a priori step
sequence semantics. PTI-nets have an underlying structure consisting of a net
augmented with inhibitor arcs.

A net is a triple N = (S,T, F) such that S and T are disjoint finite sets,
and FF C (T x S)U (S x T). The elements of S and T are respectively called
places and transitions, and F' is called the flow relation. We assume that, for
every t € T, {s | (s,t) € F} # 0 and {s | (t,s) € F'} # 0 (nets are T-restricted).

An inhibitor net is a net together with a (possibly empty) set of inhibitor
arcs leading from places to transitions. (In diagrams, inhibitor arcs have small
circles as arrowheads.) Thus an inhibitor net N is specified as a tuple (S, T, F, I)
such that (S,T, F') is a net (the underlying net of N) and I C S x T is its set of
inhibitor arcs. A net (S,T, F) (without inhibitor arcs) is considered as a special
instance of an inhibitor net and identified with the inhibitor net (S, T, F, ).

Given an inhibitor net N = (S,T,F,I) and x € S UT, the post-set of z,
denoted by z*, is defined by z* = {y | (z,y) € F'} and the pre-set of z, denoted
by *z, is defined by *z = {y | (y,z) € F'}. In addition, forallt € T,°t ={s € S |
(s,t) € I'} denotes the set of inhibiting places of t. These notations are extended
to multisets over S U T in the following way: For a multiset U : SUT — N,
Ut={y|3zeU:(x,y) € F}and *U={y |3z €U : (y,x) € F}; and for a
multiset U: T - N,°U={se S|t eU:(st)el}

A PTI-net is an inhibitor net equipped with an initial state. The states of an
inhibitor net are given in the form of markings.

Let N = (S,T,F,I) be an inhibitor net. A marking of N is a multiset of
places. Following standard terminology, given a marking M of N and a place
s € S, we say that s is marked (under M) if M(s) > 1 and that M (s) is the
number of tokens in s under M.

Transitions represent actions which may occur at a given marking and then
lead to a new marking. Here we define this dynamics in the more general terms
of multisets of (concurrently occurring) transitions. A step is a multiset of tran-
sitions, U : T'— N. It is enabled at a marking M if, for all s € S:

M(s)> > U(t) and [s€°U=>M(s)=0].
tes®

Thus, by the first condition, in order for U to be enabled at M, for each place s,
the number of tokens in s under M should be at least equal to the total number
of occurrences of transitions in U that have s as an input place. By the second
condition, if a place s is an inhibiting place of some transition occurring in U,
then s should be empty in M. Note that the enabledness of a step is based on
an a priori condition: the inhibiting places of transitions occurring in that step
should be empty before it occurs.!

! Tn the a posteriori approach [3], the second condition for enabledness is strengthened:
for all s € S, [s € °U = (M(s) = 0A s ¢ U®)]. Thus no inhibiting place of a
transition in U is also an output place of any transition occurring in U.



If U is enabled at M, then it can be ezecuted, which leads to the marking
M' defined, for all s € S, by:

M'(s)=M(s) = Y U@t + > Ut

tes® te®s

This means that the execution of U ‘consumes’ from each place s a token for
each occurrence of a transition in U that has s as an input place, and ‘produces’
in each place s a token for each occurrence of a transition in U with s as an
output place. If the execution of U leads from M to M' we write M[U)M'. Note
that the empty step 0 is enabled at every marking of N and that its execution
has no effect: M[0)M for all markings M of N.

A step sequence from a marking M to marking M’ is a sequence U, ... U, of
non-empty steps U;, 1 < ¢ <n with n > 0, such that

M = Mo [Uy) My [Us)Ms -+ My, [Uy) M, = M’

for some markings My,..., M, _1 of N.If T is a step sequence from M to M’ we
write M [r) M’ and M’ is said to be reachable (in N) from M. Note that every
marking is reachable from itself by the empty step sequence.

In case we want to make clear which (inhibitor) net we are dealing with, we may
add a subscript N and write [-) y rather than [-).

A Place/Transition net with inhibitor arcs (or PTI-net) is a tuple N =
(S,T,F,I, M), where N' = (S, T, F,I) is its underlying inhibitor net, and My
is a marking of (S,T,F,I).2 A step sequence of N = (S,T, F,I, M) is a step
sequence starting from My in its underlying inhibitor net N'. The set of all step
sequences of N is the set steps(N) = {7 | IM : Mo[r)n'M}.

As the last point of this section, we look at the boundedness of places in N.
A place s € S is n-bounded in N, where n is a positive integer, if M(s) < n for
every marking M reachable from My; it is bounded if it is n-bounded for some
n, otherwise it is unbounded. N is safe if all of its places are 1-bounded. If s; is
a bounded place of N, then sy € S is a complement place of sy, if ®*s; = $2® and
51* = *sy. Then bound(s;) = My(s1) + Mo(s2) is a bound for both s; and s,,
and bound(s1) = M(s1) + M(s2), for every marking M reachable from Mj.

We call N a PTBI-net if all inhibiting places of all its transitions are bounded.

4 Processes

4.1 Occurrence nets

For safe P/T-nets and elementary net systems, processes can be used as a non-
sequential representation of runs of the net (see, e.g., [2,11,14]). Processes are
based on occurrence nets and may be viewed as (partial) acyclic unfoldings of
the net. Each transition represents an occurrence of a transition in the original

% Note that I may be empty, in which case we are actually dealing with a P/T-net,
and then N may also be specified in the form (S, T, F, My).



net, while each place corresponds to a token. Conflicts between transitions are
resolved and thus places do not branch. An occurrence net defines a partial order
on its transitions which in turn provides a partial order description of transition
occurrences in the original net.

Definition 1. A (labelled) occurrence net is a labelled net ON = (B,E,R,I)
such that: |*b] <1 > |b*|, for every b € B; the relation (R o R)|gxE is acyclic;
and | is a labelling function for BU E. The elements of B and E — the places
and transitions of ON — are respectively called conditions and events. O

The minimal and mazimal conditions of ON are respectively Min(ON) =
{be B|*b =0} and Maz(ON) = {b € B | b* = 0}. ON defines a set of step
sequences which start from an implicit marking formed by Min(ON) and lead
to Maz(ON). (Note that the steps in these sequences are sets and that ON with
initial marking Min(ON) is safe.) Applying the labelling [ to such step sequences
yields the set Isteps(ON) = {l(o) | Min(ON)[o)on Maz(ON)}.

Since (R o R)|gxr is acyclic, its transitive closure <on= ((R o R)|pxr)" is
irreflexive and we can associate with ON a labelled poset po oy = (E, <on, | E).

For EN-systems [14], the notion of occurrence nets provides a causality (par-
tial order) semantics which can be defined in two different ways: (i) axiomatic,
from the structure of the net; and (ii) operational, through unfolding based on
step sequences. In both cases, the processes and hence also the associated partial
orders are the same.

The above approach is not directly applicable to non-safe nets. For these, [6]
and [1] propose to represent each of the multiple tokens in a place by a separate
condition of an occurrence net. We now provide a rephrasing of the definitions
of [1] for the case of general (possibly non-safe) finite P/T-nets.

Definition 2. Let N = (S, T, F, My) be a P/T-net. A process of N is an occur-
rence net ON = (B, E, R,l) such that the following conditions are satisfied:

1.1:BUE —» SUT is such that [(B) C S and [(E) CT.
2. For all s € S: My(s) = |Min(ON)NI~1(s)].
3. Foralls€ S ande € E:

(a) {s}n*i(e)| = [{b € 17!(s) | (b,e) € R}

(b) Hstnli(e)*| ={b el (s) | (e,d) € R}

We will use on(N) to denote the set of all processes of N. O

The above is the axiomatic definition. Alternatively, we can start from a step
sequence and construct a corresponding process.

Definition 3. Let N = (S,T, F, M) be a P/T-net and let T = Uy ...U, be a
step sequence of N. A process generated by 7 is the last labelled net N, in a
series No, ..., N, with Ny, = (By, Ey, Ry, li.), for 0 < k < n, constructed thus.

— Step 0: Ng = (By, Eo, Ro,lo) where
L] EO = RO = @ and BO = {b57i70 | 1 S i S Mo(s)}



a b c

Fig. 2. (a,b) Two cases defining e <aus f, and (c) one case defining € Caus f-

e lo: By — S is such that l(bs;0) = s, for all bs ;0 € By.
Let Maxo = By.
— Step m =k + 1: Let Ny, = (By, Ex, Ry, l). Then Ny, is defined thus:
o By =By U {bsrim|1<i<Upn(t)Ns €t}
o B, =EpU{eim | 1<i<Un(t)}. Moreover, for each e, ;m € En and
each s € *t we choose® a distinct /I;(s,t’i,m € Maz NI~1(s).
_ {(bgs,t,imy» et,iom) | €tim € Em As € *t} U >
* Rm Rk N <{(et,i,ma bs,t,i,m) | €t,i,m € Em ANs € t.} '
o Im(bstim) = s and Ly (€ im) =1, for all bs 4 im € Bm \ Br, and ey ;m €
Ep \ Er. Moreover, ly,(z) =l (x), for oll x € By, U Ey,.
Let Maz,, = {b€ By, | -3e € E,,, : (b,e) € R,,,}.

We will use proc, to denote the set of all isomorphic copies* of all processes
generated by T. O

4.2 Activator occurrence nets

The presence of inhibitor arcs makes the unfolding procedure more complicated,
due to the fact that local information regarding the lack of tokens in a place
cannot be explicitly represented in an occurrence net. In [8] this problem is
solved by using complement places and representing inhibitor arcs by activator
arcs connected to conditions representing complement places. The notion of an
occurrence net is replaced by that of an activator occurrence net.

Definition 4. A (labelled) activator occurrence net (ao-net) is a tuple AON =
(B,E, R, Act,l) such that: ON = (B, E, R,l) is an occurrence net; Act C Bx E
are activators arcs; and the relational structure Squs (AON) = (E, < auz, Cauz)

= (E,(RoR)|gxp U (Ro Act),(Act * o R) \ idg) is {-acyclic. a

In the diagrams, activator arcs have black dots as arrowheads; see, e.g., fig-
ure 4 where (by,€) is an activator arc. Figure 2 shows how <4y, and Ty, are
constructed from ordinary arcs and activator arcs.

Notice that the {-acyclicity of Sy (AON) implies that (RoR)| g« g is acyclic
in the usual sense. Since Sy (AON) is $—acyclic, we can associate with AON
the labelled so-structure S(AON) = SMMK(AON)O7 see proposition 1. Figure 3
shows the labelled so-structures S(AON;) for the ao-nets AON; in figure 5.

3 This is the only difference with the safe case, where there is only one candidate con-
dition b, ¢ ; m), and so the process associated with 7 is unique (up to isomorphism).

4 The construction of a process from step sequences in this and the next sections is
based on concrete nodes which carry the labels. This provides us immediately with
a fully specified representative of an isomorphism class which is both intuitive and
useful in proofs.
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Fig. 3. Stratified order structures generated by ao-nets in figure 5.

Intuitively, an activator arc between a condition b and an event e means that

the occurrence of e requires the holding of b, but the occurrence of e will not
make b cease to hold. Formally, a step U of events is enabled at a marking M
of AON if U is enabled in the underlying occurrence net ON at marking M
and, furthermore, for all e in U and b € B, (b,e) € Act implies that b is marked
in M. The resulting marking M’ is the same as the marking resulting from the
execution of U in ON.> As before, we will write M[o) 4on M' if executing a step
sequence o in AON leads from M to M'.
The minimal and mazimal conditions of AON are respectively Min(AON) =
Min(ON)(= Min) and Maz(AON) = Maz(ON)(= Maz). The step sequences
and the reachable markings of AON from the marking Min are also step se-
quences and reachable markings of ON with initial marking Min. Thus, in par-
ticular, (AON, Min) is safe, since (ON, Min) always is. As for occurrence nets,
we consider those step sequences which lead from the minimal conditions to the
maximal conditions. Applying the labelling [ to such step sequences yields the
set Isteps(AON) = {l(0) | Min[o) aon Maz}. The following result states the cor-
respondence between the (labelled) step sequences of an ao-net AON and the
stratified extensions of its associated labelled so-structure S(AON).

Theorem 1. strat(S(AON)) = {po, | o € Isteps(AON)}.

Proof. Let AON and ON be as in definition 4, and Min and Maz be (safe)
markings as above. It suffices to show the result assuming that [ is the identity
labelling for E.

Suppose that Min[o)son Maz and o = E; ... E,. Then also Min[o)on Maz.
Thus, due to the standard properties of occurrence nets, each E; is a set and
FE is the disjoint union of FEi,..., E,. Moreover, there are sets of conditions
By, ..., By of B (cuts of ON, see [1]) such that

Min = BO[E1>ONB1 [N Bn—l[En>ONBn = Max (2)
and, for every b € B, there are 0 < ky <l < n such that
b € B; if and only if ky < i <. (3)

In the above, kj is the index of the first cut B; in the sequence By,...,B, in
which condition b is marked, and [ is the index of last such cut. Clearly,

Min = BO[E1>AONB1 .. Bn—l[En>AONBn = Mam (4)

® Thus an activator arc does not interfere with normal arcs, unlike read arcs, [15, 3].



also holds. To show that po, € strat(S(AON)), it suffices to prove that if e € E;
and f € E; then:

(3beB:(e,b)e R A (b, f) € RUAct) = i<j. 5)

(3b€ B: (b,e) € Act A (b,f) €ER) = i< ] 6)

(

(
From (2,3,4) and E = Ey W ... W E, and |*b| <1 > |b*| it follows that: (e,b) €
R=i=ky (bje) e R=i—1=1; and (b,e) € Act = k;, <i—1 <. Thus (5)
holds since (e,b) € RA (b, f) € RU Act implies i = ky and I, = j—1 V ky < j—1.
And (6) holds since (b,e) € Act A (b, f) € R implies i—1 < I, = j—1.

We have shown the (D) inclusion. To prove the reverse one, suppose that
po, € strat(S(AON)) and 0 = E;...E, which means that £ = E; ¥ ... 4§
E, and (5,6) hold. From (5) (without the (b, f) € Act part), it follows that
Min[o) oy Maz. Hence there are By,..., B, such that (2,3) hold. To show that
Min[o) aon Maz also holds, it suffices to observe that if e € F; and (b,e) € Act
then b € B;_1. Indeed, if this was not true, then [, < i—1 or k; > 4. In the
former case, there is f € Ej, 41 such that (b, f) € R, a contradiction with (6).
And, in the latter case, there is f € Ej, such that (f,b) € R, a contradiction
with (5). o

The labelled step sequences of AON have a causality interpretation in terms
of the partial order and the weak partial order provided by S(AON). In fact, a
single partial order (as defined by an occurrence net) is insufficient, as it cannot
fully express the relationship between simultaneous events (in a step) if they
cannot be sequentialized. For example, in figure 4 we have that oy = {e, f} and
o2 = {e}{f} are step sequences leading from Min to Maz, but {f}{e} cannot
be executed, despite the fact that e and f are independent as far as the usual
partial ordering is concerned.

b () e () bs
mo/; Oba

Fig. 4. An activator occurrence net where Min = {b1,b2} and Maz = {bs, ba}.

In the next section, we will combine the approaches of [1] and [8] in order to
obtain a causal semantics for PTI-nets in case the inhibiting places have known
bounds. The treatment of unbounded inhibiting places will require a further
extension of occurrence nets.

5 The bounded case

In this section N = (S, T, F, My, I) is a fixed PTBI-net and N’ = (S, T, F, M)
is its underlying P /T-net. We assume here that every inhibiting place s € S has



a unique complement place s € S with My(s) + My(s?") = bound(s) where
bound(s) > 0 is a bound of s in N. The processes of N are defined as follows.

Definition 5. An activator process of N is an ao-net AON = (B, E, R, Act,l)
such that ON = (B, E,R,l) € on(N') and, for all s € S and e € E:

[{s} N °l(e)| - bound(s) = |{b € 17 (sP") | (b,e) € Act}|. (7)
We will use aon(N) to denote the set of all activator processes of N. O

Figure 5 shows an example of a PTBI-net and its three activator processes.

Fig. 5. Three activator processes AON; of a PTBI-net N.

The first result we show states that an activator process of a P/T-net de-
scribes a set of valid step sequences of the original net.

Lemma 1. If AON € aon(N), then Isteps(AON) C steps(N).

Proof. Let AON and ON be as in definition 5, and 7 € Isteps(AON). Then,
by theorem 1, there is a step sequence o = Ej ... E, such that 7 = [(c) and
Min(AON)[o)aon Maz(AON) and E = E,; W... W E, and (5,6) in the proof of
theorem 1 hold. Since ON € on(N'), we have, by the standard theory [1], that
T € steps(N'). Moreover, there are sets of conditions By, ..., B, such that (2,3)
in the proof of theorem 1 hold and:

Moy = U(Bo)U(BL))wrI(Br) . .. [(En)ynI(Br)

Thus, to prove 7 € steps(N), it suffices to show that if e € E; and s € °l(e),
then I(B;_1)(s) = 0. The latter is equivalent to I(B;_1)(s"') = bound(s). If this
does not hold then, by (7), there is b € B such that (b,e) € Act and I, <i—1or
i < ky. We then obtain a contradiction with (5,6), similarly as in the last part
of the proof of theorem 1. O



Definition 5 can be made operational through the following net unfolding
which takes a step sequence and constructs an ao-net corresponding to it.

Definition 6. Let 7 = Uy ...U, be a step sequence of N. An activator pro-
cess generated by 7 is the last labelled net N, with activator arcs in a series
No, ..., N, with Ny = (B, Ek, Ry, Acty, i), for 0 < k < n, constructed thus.

— Step 0: Ng = (By, Eo, Ro, Acto, lo) where Actg = 0, and all other components
are as in Step 0 of definition 3, including Maz.
— Step m =k + 1: Let Ny, = (Bg, Ex, Ry, Actg, ly). Then Ny, is defined thus:
e B, En, Ry, I, and Maz,, are as in Step m of definition 3.
o Act,, = Act;, U{(b,e) € Mazy, X (E,, \ Et) | (Im(b)P,1(e)) € I}.

We will use proc?® to denote the set of all isomorphic copies of all activator
processes generated by T. O

=) |

| |
Fig. 6. Deriving an activator process in procy’® for 7 = {w, w}{t }{u, u}{w, w}{t}{t}.

Figure 6 illustrates the construction of an activator process for the PTBI-net
in figure 5. The vertical lines indicate the stages (from left to right) in which
the net has been derived. Notice that it is an activator process of N in figure 5
as it is isomorphic to AON3 shown there. The next results states that this is
not a mere chance, since every unfolding of a PTBI-net satisfies the axiomatic
definition of an activator process.

Lemma 2. For 7 and N, in definition 6, N, € aon(N) and 7 € Isteps(Ny).

Proof. Assume the notation from definition 6. That ON = (B, E,, Rn,l,) €
proc,. for N' follows directly from the definitions and thus, by the standard
results for P/T-nets [1], ON € on(N'). Moreover, the construction is such
that, for k = 1,...,n, My = [(Maxo)[U; ...Uk)n1(Mazy) and so also My =
I(Mazo)[U ... Ug)nl(Mazy,). Thus, if e € Ej, \ Ex—1 and s € °l(e), then we have
I(Mazy_1)(s) = 0 and so [(Mazj_,)(s°?") = bound(s). Hence

1{b € 171 (sPYY | (b,e) € Act}| = |{b € Mazy_y | 1(b) = s°"'}| = bound(s).

As a result, (7) is satisfied. To complete the proof of N, € aon(N), we still
need to show that Suuq(N,) is $-acyclic. This, however, follows from an easy
observation that the conditions (5,6) from the proof of theorem 1 (suitably re-
interpreted by setting each E; to be the set of events added in step i of the
construction described in definition 6), hold here by construction.



That 7 € Isteps(Ny,) follows immediately from the construction of N,, and a
simple inductive argument. O

Corollary 1. If 7 € steps(N) and AON € proc?®®, then T € Isteps(AON). O

Similarly as it is the case for processes of ordinary P/T-nets, the axiomatic
and operational definitions of processes of a PTBI-net coincide.

Theorem 2. aon(N) = U, ¢geps(n) Procs’.

Proof. The (D) inclusion follows from lemma 2. To show the reverse one, we
take AON and ON as in definition 5. Then, by strat(S(AON)) # () which always
holds [7], there is at least one 7 such that po_. € strat(S(AON)). By lemma 1 and
theorem 1, 7 € steps(N) and so 7 € steps(N'). Thus, by the standard properties
of processes of P/T-nets, there is a way in which the construction described in
definition 3 generates a net N,, = (B, E,, Rn,[;,) which is isomorphic to ON.
One can then re-run the construction of ON, adding at each stage the sets Acty,
as prescribed in definition 6. This is a deterministic procedure which results in
an activator net which is isomorphic to AON. In proving the latter, one takes
advantage of theorem 1, which guarantees that 7 € Isteps(AON). O

We now can establish that activator processes of a PTBI-net generate exactly
the same step sequences as the original net.

Theorem 3. steps(N) = U soneaon(n) Isteps(AON).

Proof. The (D) inclusion has been proved in lemma 1. The reverse inclusion
follows from corollary 1 and theorem 2. O

The last result can be re-stated in terms of labelled stratified posets and thus
shows that the activator processes of a PTBI-net correctly describe causality in
the runs of the net.

Corollary 2. {po. | T € steps(N)} = Usonecaon(n) strat(S(AON)).

Proof. Follows from theorems 1 and 3. O

6 Unboundedness

In this section, we deal with PTI-nets whose inhibiting places can be unbounded.
Thus we cannot use complement places to represent the emptiness of places, and
therefore need to introduce another device. It will be provided by z-places that
will play a role similar to that of the complement places in activator process.
However, z-places will represent logical conditions rather than tokens (resources),
and will admit branching. Let N = (S, T, F, My, I) be a PTI-net fixed throughout
this section.



Definition 7. A (labelled) z-activator occurrence net (zao-net) is a tuple AON?
= (B, E,R, Act,l) such that: ON = (B",E,R',l|g~uE) is an occurrence net,
where B™ = B\ B* and B* = {b € B | (b,e) € Act}; RC (Bx E)U(E x B) and
R' = R|(»xE)u(ExBr); Act C B* x E is a set of activator arcs; | is a labelling
function for BUE; and the relational structure Sous(AON?) = (E, < auzs Cauz)
= (E,(RoR)|pxrp U (Ro Act),(Act™" o R) \ idg) is $-acyclic. a

Fig. 7. A z-activator occurrence net.

Figure 7 shows an example of a zao-net. The semantics of a zao-net can
be understood in two ways. First, we can take the underlying order structure
S(AON?) = Spuz (4 ONZ)O, as we did for ao-nets, and derive all stratified or-
der extensions, or step sequences corresponding to these. The alternative view,
involving step sequences executed from the initial marking, Min(AON?) =
Min(ON), to the final marking, Maz(AON?) = Maz(ON), is not directly ap-
plicable since z-conditions allow branching. However, it is possible to replace the
z-conditions by sets of ordinary conditions for each pair of pre- and post-event
of a given z-condition, as described below.

Definition 8. Let AON* = (B, E, R, Act,l) be as in definition 7, and:
— B" = B"U B" where
B"={b,, |beB*N(ze*bVz=0="b)A(yeb*Vy=0=>%}.
— R' = R|(grxpyuExsr) U{(e,bey) | e € E}U{(bge,€) | e € E}.

Act' = {(bsy,€) | (be) € Act}.
— U'lgnug = l|Bnur and ' (by ) = (D), for all b € B".

We then call ((AON?) = (B',E,R', Act',l') the z-pruning of AONZ. O

Tt is not difficult to see that the z-pruning of AON? is an ao-net. It is used to
give the activator arcs an operational semantics which corresponds to the intu-
ition behind the z-conditions. We define the (labelled) step sequences of AON*
by Isteps(AON?) = Isteps(C(AON?)). Observe that S(((AON*?)) = S(AON?).
Consequently, strat(S(AON?)) = {po, | o € Isteps(AON?)}, by theorem 1. We
now give an axiomatisation of the notion of process for the PTI-net V.

Definition 9. A z-activator process of N is a zao-net AON* = (B, E, R, Act,l)
such that:



1.1:BUE — SUT is such that [(B) C S and [(E) CT.
2. For all s € S: My(s) = |Min(AON?)NiI~1(s) N B"|.
3. Foralls€ S andec E:
(a) {s} N *I(e)| = [{b e I"'(5) N B" | (b,e) € R}
(b) [{s}ni(e)*| =bei~'(s) N B" | (e,b) € R}|.
(c) sk n°l(e)| = [{b e 171(5) | (b,e) € Act}
4. For allb* € B* and e € E:

(a) If (b%,e) € R, then (I(e),1(b*)) €

(b) If (b*,e) € R* and (I(e),1(b%)) € F then there is a unique b € B* such
that 1(b) = 1(b*) and (b,e) € R and( ,b) € R*.

(c) If (e,b%) € R, then (1(b%),l(e)) € F.

(d) If (e,b*) € R* and (1(b*),l(e)) € F, then there is a unique b € B* such
that 1(b) = 1(b*) and (e,b) € R and (b,b*) € R*.

5. For all b* € B* and b € B, if [(b) = 1(b*), then (b*,b) € R* or (b,b*) € R*.

~—

We will use aon”(N) to denote the set of z-activator processes of N. O

Note the absence of place bounds in the above definition. Instead, we have an
explicit ‘record’ of the fact that a place was empty in the form of a z-condition.
By points 4(a) and 4(c) above, if a z-condition b* is input (output) to an event
e, then the inhibiting place [(b*) of N is output (input) to the transition I(e).
Requirement 4(b) prescribes that whenever transition /(e) adds a token to the
inhibiting place [(b*), only the most recent record b of [(b*) being empty in
the past of the occurrence e of I(e) is input to e. Similarly, 4(d) stipulates that
whenever transition [(e) removes a token from the inhibiting place [(b*), while
sometime in the future of this occurrence [(b*) is successfully tested for empti-
ness, the occurrence e of [(e) is only connected to the earliest future record b
of 1(b*) being empty. Note that by definition 9(5), all records of the emptiness
of an inhibiting place are linearly ordered by R*. Moreover, according to R* an
inhibiting place is never recorded to be empty while it contains a token.

Figure 7 shows a z-activator processes for the net shown in figure 5. It corre-
sponds to AON3 in figure 5 in the sense that they generate isomorphic labelled
so-structures. The last definition is also illustrated for a non-PTBI-net, in fig-
ure 8. We finally define an unfolding procedure for PTI-nets.

Definition 10. Let 7 = Uy ... U, be a step sequence of N. A z-activator pro-
cess generated by 7 is the last labelled net N, with activator arcs in a series
No, ..., Ny with Ny, = (By, Eg, Ry, Acty, 1), for 0 < k < n, constructed thus:

— Step 0: Ng = (By, Eo, Ro, Acto,lo) where:
o EOZROZACtOZB(")Z:w.
L] BO = Bg = {bs7i,0 | 1 S i S Mo(s)}
e lp: By — S is such that l[(bs;0) = s, for all bs ;0 € By.
Let Maxo = Byp.
— Step m =k + 1: Let Ny = (Bg, Ex, Ry, Actg, ;). Then Ny, is defined thus:
o Bl =Bl U{bstim|1<i<Un(t)Aset’} and
B, =B; U{bs, |t € Up s € °t\ l(Maz, N B})}.



Fig. 8. A z-activator process of a PTI-net which is not a PTBI-net.

e F,=FE,U {et,i,m | 1< < Um(t)}
Moreover, for each ei; m € E,, and for each s € *t we choose a distinct
g(s,m,m) € Maz, N BENI7(s).

o In(bstim) =5 and Iy (bs,m) = s and Ly (erm) = t,
for all bs 1 ;. m € BJY \ B} and b, € BZ, \ Bi and et m € Ep, \ Ej.
Im(z) =l (x), for all x € B U Ej.

o~

bis.timy€tim) | €im € Em As € °t} U

e R. = R. U {( (s,t,i,m)> €t i,m t,i,m m UR' UR"

" ‘ <{(et,i,ma bstim) | €tim € Em A5 €%} m = tm
where

R, = {(e,bs’m) € Ey x (B:, \ Bf)

(s,lx(e)) € FA-T € B :
Ik(b')=s A (e,b') € Ry

"no_ ) z (Im(e),s) € F A
R} = {(bs’,,e) € Bz, x (En, \ E) ‘me €B::j<il
o Act,, = Acti, U{(b,e) € (Max,, NB:) X (E \ Ex) | (lm(b),ln(e)) € I},
where Maz,, = {b € By, | 73e € E,, : (b,e) € Rp,}.

We will use procz* to denote the set of all isomorphic copies of all z-activator
processes generated by T. O

The above definition is illustrated for the PTBI-net of figure 5 and its step
sequence 7 = {w, w}H{t}{u,u}{w, w}{t}{t}. As before, figure 9 shows stages in
which the nodes and connections were generated.

The z-conditions are generated ‘on-demand’; when it is necessary to ‘legit-
imise’ transition occurrences. In general, this excludes undesirable orderings be-
tween events. For consider the net N in figure 5 and its step sequence 7 =
{w,w}{u,u}. If we were to add a z-condition each time ¢ becomes empty, then
we would generate an occurrence net as shown in figure 10. Intuitively, such
a net would introduce artificial causal relationships between some of the event
occurrences.
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Fig. 9. A z-activator process generated for a step sequence of a PTBI-net.

As in the case of processes of P/T-nets and PTBI-nets, the axiomatic and op-
erational definitions coincide. Moreover, we have the desired consistency between
step sequences of a PTI-net and its zao-processes.

Theorem 4. The following are satisfied.

1. aon*(N) = U, ¢speps(n) Proci®.
2. steps(N) = Uaon-caon:(w) steps(AON7).
3. {po, | 7 € steps(N)} = U aon:caon: (w) Strat(S(AONF)). o

The proofs of the various parts of theorem 4 follow those of similar results
presented in the previous section. A main change is that we no longer can use
complement places to establish the emptiness of an inhibiting place, and instead
need to refer to the corresponding z-conditions.

It can be seen that both the process semantics and the causal semantics
for PTI-nets developed in this section are consistent with those developed for
PTBI-nets in the previous section. The latter, in turn generalises the semantics
of P/T-nets [1] and elementary net systems with inhibitor arcs from [8].

Fig. 10. Generating z-conditions may not be desirable.

7 Concluding remarks

The basic contribution of this paper is a proposal for a process semantics for
P/T-nets with inhibitor arcs while assuming an a priori operational semantics.
This contrasts with the approach of [3] where transitions can occur in a step
if and only if they can occur in either order. First we generalised the existing
process notions for ordinary P/T-nets ([6, 1,14]) and for safe nets with inhibitor
arcs ([8]) to the case of P/T-nets with bounded and complemented inhibiting



places. In order to obtain a process semantics for general PTI-nets, z-activator
occurrence nets were introduced. Given the processes, their associated stratified
order structures provide a specification of the net behaviours in terms of causality
and weak causality. Thus the results in this paper form a basis for a further
investigation of the abstract causal relations within the behaviours of a PTI-net.
There are at least two potential applications of these results: first, they can be
useful in the development of model checking algorithms for PTI-nets based on
unfoldings; second, they can be used as a basis for obtaining a causality semantics
for P/T-nets with priorities, extending the results obtained for the elementary
net systems with priorities in [10]. Finally, the approach presented in this paper
can easily be generalised to nets with weighted arcs; an extension to weighted
inhibitor arcs is a matter for future research.

Acknowledgment We are grateful to the referees for their constructive criti-
cism and many suggestions to improve our presentation.

References

1. E.Best and R. Devillers: Sequential and Concurrent Behaviour in Petri Net Theory.
Theoretical Computer Science 55 (1988) 87-136.

2. E.Best and C.Fernidndez: Nonsequential Processes. A Petri Net View. EATCS
Monographs on Theoretical Computer Science, Springer-Verlag (1988).

3. N.Busi and G.M.Pinna: Process Semantics for Place/Transition Nets with In-
hibitor and Read Arcs. Fundamenta Informaticae 40 (1999) 165-197.

4. R.Friisse: Theory of Relations. North Holland (1986).

5. H.Gaifman and V. Pratt: Partial Order Models of Concurrency and the Compu-
tation of Function. Proc. of LICS’87, IEEE Computer Society Press (1987) 72-85.

6. U.Goltz and W. Reisig: The Non-sequential Behaviour of Petri Nets. Information
and Control 57 (1983) 125-147.

7. R.Janicki and M. Koutny: Structure of Concurrency. Theoretical Computer Science
112 (1993) 5-52.

8. R.Janicki and M. Koutny: Semantics of Inhibitor Nets. Information and Compu-
tation 123 (1995) 1-16.

9. R.Janicki and M. Koutny: Order Structures and Generalisations of Szpilrajn’s The-
orem. Acta Informatica 34 (1997) 367-388.

10. R.Janicki and M. Koutny: On Causality Semantics of Nets with Priorities. Funda-
menta Informaticae 38 (1999) 1-33.

11. M. Nielsen, G. Rozenberg and P. S. Thiagarajan: Behavioural Notions for Elemen-
tary Net Systems. Distributed Computing 4 (1990) 45-57.

12. J. L. Peterson: Petri Net Theory and the Modeling of Systems. Prentice Hall (1981).

13. E.Szpilrajn: Sur Dextension de l'ordre partiel. Fundamenta Mathematicae 16
(1930) 386-389.

14. G.Rozenberg and J.Engelfriet: Elementary Net Systems. In: Advances in Petri
Nets. Lectures on Petri Nets I: Basic Models, W. Reisig and G. Rozenberg (Eds.).
Springer-Verlag, Lecture Notes in Computer Science 1491 (1998) 12-121.

15. W. Vogler: Partial Order Semantics and Read Arcs. Proc. of MFCS’97, 1. Privara
and P.Ruzicka (Eds.). Springer-Verlag, Lecture Notes in Computer Science 1295
(1997) 508-517.



