
Structuring SOCCA Models with UML-like

Packages

P.J. 't Hoen

�

L.P.J. Groenewegen J.H.M. Dassen

I.G. Sprinkhuizen-Kuyper P.W.M. Koopman G. Engels

September 27, 1999

Abstract

This document de�nes UML-like packages for SOCCA (Speci�cation

of Coordinated and Cooperative Activities). The packages structure and

encapsulate the classes of a (SOCCA) model.

�

Please use the primary author's contact address: hoen@wi.LeidenUniv.nl

1

Contents

1 Introduction 3

2 Z 4

3 SOCCA with Packages 5

3.1 Identity . 6

3.2 Basic Class De�nition . 7

3.3 Meta Relationships . 8

3.4 Potential Inheritance . 9

3.5 Packages . 11

3.5.1 The Basic Package De�nition 11

3.5.2 Working with the Package Parts 12

3.5.3 Indentities of the Package Parts 14

3.5.4 The Tree-Like Structure of a Package 15

3.5.5 The Owner of a Package Element 16

3.5.6 Packages and Ownership of Relationships 18

3.5.7 Inheritance of Classes 19

3.5.8 Package De�nition 21

4 Model De�nition 21

5 The Import of Methods 22

6 Export and Import of Classes 24

6.1 Export of Classes by Packages 25

6.2 Import of Classes by Packages 26

7 The Complete Data Perspective 26

8 Conclusion 27

8.1 Results . 27

8.2 Future Work . 27

A Z 27

A.1 Why Z . 28

A.2 The Type Checker . 28

A.3 The Style of Z Used . 29

B The behaviour and functionality perspectives 30

B.1 STDs . 30

B.2 The behaviour perspective: External behaviour STDs . . . 33

B.3 The Functionality perspective: Internal behaviour STDs . . 33

C The communication perspective 35

C.1 Intuitive description . 35

C.2 Formal description . 37

2

1 Introduction

Object-oriented models become more di�cult to manage and develop as

the number of classes increases. A well known solution to this problem is

to add some form of modules to the modeling language [RBP

+

91, GJM91,

Mey97]. Modules are used for:

Structuring Modules are used to group conceptually related model ele-

ments, i.e. classes, together. In this way, the model can be cut into

individual chunks. If done well, it makes a model simpler to under-

stand and manage. As modules can themselves become quite large,

modules are often hierarchical.

Encapsulation Modules can encapsulate (some of) the model elements.

Encapsulation is used to enforce that certain classes of the model are

only visible to a restricted set of classes of the model. By encapsu-

lating a class in a module, it is explicitly documented and enforced

that a class is accessible within the module.

Abstraction Modules o�er support for abstraction by hiding/encapsu-

lating some of their contained elements from the rest of the model.

Ideally, this makes a module of classes easier to understand than the

complete set of classes contained by the module. Only those classes

intended for use outside of the module are visible and need to be

understood.

Coordinated development of models by multiple teams Modules are

a step toward support for coordinated development of a model by

several teams working together on a large model. Di�erent teams

can be assigned to separate modules where the interactions between

the separate modules of the model are clearly de�ned. Modules can

be developed locally as long as these interactions do not change.

SOCCA [EG94] (Speci�cation of Coordinated and Cooperative Activ-

ities) is a graphical formalism and associated method for object oriented

modelling which is under active development at Leiden University. The

main aim of the SOCCA project is to extend object oriented modelling

with means to describe precisely communication in a well-integrated fash-

ion. Over time, SOCCA models have however become increasingly large,

and even cumbersome, as bigger and more complex problems were tackled.

We extend SOCCA with modules to alleviate this problem by achieving

the bene�ts of modules listed above.

SOCCA is closely related to UML [UML97a] which is becoming more

and more a de facto standard for (graphically based) OO formalisms. We

follow this development by choosing UML-like packages as modules for

SOCCA models. We add UML-like packages to SOCCA and not UML

packages. This has two reasons. First of all, packages in UML can be

used to manage any type of model elements. We only intend packages to

structure and contain the classes and associated relationships of a model.

Secondly, SOCCA packages use a simpler form of export and import but

su�cient for the purpose of encapsulation. The de�ned packages are also

su�cient for the purpose of future work (see Section 8.2).

3

2 Z

[DGSK

+

99] de�nes, using Z [Spi92], the core of the SOCCA language.

We reuse this formalisation in our work to de�ne SOCCA extended with

UML-like packages.

The four perspectives in SOCCA that are currently mature and for-

malised in [DGSK

+

99] are:

The data perspective which focuses on the static, structural aspects

of models.

The behaviour perspective which focuses on dynamic aspects of indi-

vidual classes and objects which are made available to other classes

and objects.

The functionality perspective which focuses on dynamic aspects of

individual classes and objects that are internal to them.

The communication perspective which focuses on the communica-

tion between individual classes and objects.

The main additions and changes to the Z formalisation occur for the

data perspective as the packages structure the classes of the model and

impose restrictions on the possible relations between the classes de�ned

in this perspective. Packages in SOCCA are in this document only de�ned

in the data perspective. We postpone the de�nition of a package for the

other perspectives to [tHDG

+

b] where we de�ne a class-like description

(CLD) of a package of a model. The CLD of a package gives a represen-

tation of a package in SOCCA for all perspectives. The remaining three

perspectives show only minor changes as compared to their original de�-

nition in [DGSK

+

99]. These three perspectives do not play a signi�cant

role until the de�nition of the CLD. Their Formalisations are however

included in the appendices B and C for the sake of completeness and as

basis for [tHDG

+

b] and [tHDG

+

c].

We have slightly simpli�ed the formalisation of [DGSK

+

99] to restrict

the size of our formalisation. We have left out the attributes of classes

and we have left out the signature of methods. These two items are left

out as we mainly focus on the communication between classes and how

these communications can be structured and restricted by the addition of

packages to SOCCA.

Furthermore, we have ignored the names of methods, classes, relation-

ships in the formalisation and have worked exclusively with the identity of

these constructs. This greatly simpli�es the formalisation, avoids having

to work with both of the related concepts of name and identity and sim-

pli�es references to parts of hierarchial structures, i.e. classes or packages

in a hierarchial package.

We have made some further minor changes to the original formalisa-

tion:

� We have replaced all sets in the formalisation by �nite sets. We have

rede�ned all x : PX to x : F X . This ensures that we do not work

with classes with an in�nite number of methods or packages with an

in�nite number of contained classes.

4

� We handle the de�nition of inheritance in several small steps. By

splitting the de�nition of inheritance in two parts, we cut the def-

inition of inheritance into more manageable parts. We �rst de�ne

an abstract notion of inheritance in Section 3.4. In Section 3.5.7 we

de�ne which classes are actual specialisations of other classes of a

package.

� We handle the de�nition of visibility and import of methods in two

separate parts. We split the original formalisation because we go

into more detail and putting everything in one part becomes cum-

bersome. We �rst de�ne method import in Section 5 and then de�ne

how method visibility restricts the possible imports.

In the course of the formalisation, we will need some small extensions

to Z and to the type checker Z/EVES used to type check the formalism

(see Appendix A). We will also encounter some notions from discrete

mathematics. We will de�ne these here as a \toolkit" or \library" for

later use.

We must introduce symbols to Z/EVES as syntactic elements:

Syntax � inrel

Syntax � inrel

For these newly introduced syntactic elements, we supply the following

schema to allow Z/EVES to reason about them.

[X]

� ; � : PX $ PX

8A;B : PX � A � B , B � A

8A;B : PX � A � B , B � A

partial -order [X] ==

fR : X $ X j R = R

�

^ : (9 x ; y : X � x 6= y ^ (x ; y) 2 R ^ (y ; x) 2 R)g

covering [X] ==

fR : X $ X j R

�

2 partial -order [X] ^

(8 x : X � (x ; x) 2 R) ^ (8 x ; y ; z : X j

(x ; y) 2 R ^ (y ; z) 2 R ^ x 6= y ^ y 6= z � (x ; z) 62 R)g

The reader interested in some additional remarks on Z and type check-

ing tools used is referred to the Appendix A. We continue with the actual

formalisation.

3 SOCCA with Packages

The data perspective in SOCCA describes the static structural aspects of

the model. This perspective is graphically represented by a class diagram.

5

For classic SOCCA, as opposed to SOCCA extended with packages,

this diagram consists of the classes and relationships of the model. Re-

lationships between classes in SOCCA are the inheritance and the special

uses (method import, see page 22) relationships. There may also be other

\general" relationships relevant to the problem domain at hand. For the

extension of SOCCA, we also include the packages of the model in this

diagram as the packages serve to structure and encapsulate the classes of

a classic model.

The formalisation of the data perspective takes place in several steps.

We �rst introduce some general types and the basic de�nition of SOCCA

classes and relationships. Next we de�ne the basic structure of a SOCCA

package. We then de�ne our basic model which is de�ned by one package

which contains all the classes and relationships. We continue with the

de�nition of import and export for classes and packages.

The approach in [DGSK

+

99] in formalising the type level is �rst to

model the meta level, i.e. the entities of which the type level concepts are

concrete instances of the meta level concepts. The introduced meta level

concepts are MetaClass and MetaRelationship. The de�nition of a class

in this work follows this same approach.

Example See the UML-like diagram in Figure 1. Both Person and

Student are classes, instances of Metaclass. The relationship IsMarriedTo

between Person and itself is an instance of the concept ofMetarelationship.

The specialisation of Person to Student , i.e. the inheritance relationship,

is likewise an instance of the concept Metarelationship. 2

Type levelPerson Student

Metarelationship Metaclass

IsMarriedTo

Metaclass level

Figure 1: The levels in the SOCCA formalisation

We begin with the de�nitions of the free types for the identities of the

model parts.

3.1 Identity

We de�ne classes, the methods of classes, packages and relationships. All

these four items use a separate identity in the formalisation provided by

the following types:

[ClassIdentity ;PackageIdentity ;MethodIdentity ;RelationshipIdentity]

6

The next section continues wiht the de�nition of a class for the data

perspective.

3.2 Basic Class De�nition

A SOCCA class for the data perspective is de�ned by an identity, some

methods and how these methods are visible to other classes. Furthermore,

in OO formalisms, the concept of encapsulation is important: aspects of

classes may be encapsulated (methods) and, in our case classes as a whole

can be hidden from the rest of the model by the packages of the model.

We �rst handle the visibility of the methods of classes. As in [DGSK

+

99],

the categories of visibility of methods are public, private and protected.

The free type de�nition MethodVisibility captures the categories of

visibility of class methods:

MethodVisibility ::= public

j private

j protected

With the above types de�ned, we can make the �rst step in de�ning

a class. The schema MetaClass de�nes the methods of the class and the

visibility of the various methods.

MetaClass

methods : FMethodIdentity

methodvisibility : MethodIdentity 7! MethodVisibility

dom methodvisibility = methods

Example Figure 2 gives an example class C with methods M 1 to M 3.

MethodM 1 is visible to all other classes for export, i.e. C :methodvisibility M 1 =

public. The method is pre�xed with a `+' to indicate the method is \pub-

lic" following the UML notation of public methods. Method M 2 is not

visible to any other class, i.e. C :methodvisibility M 2 = private. The

method is pre�xed with a `-' to indicate the method is \private" follow-

ing the UML notation of private methods. Method M 3 is only visible

to other classes for specialisation, i.e. C :methodvisibility M 3 = protected .

The method is pre�xed with a `#' to indicate the method is \protected"

following the UML notation of protected methods. 2

The default method (class and package) visibility in the notation is

public. The omission of any pre�x visibility speci�er indicates the default

\+" should be inferred.

Individual classes are instances of MetaClass: they derive their struc-

ture from MetaClass and have identity.

Class

MetaClass

identity : ClassIdentity

7

+M1

C

-M2
#M3

Figure 2: Example of method visibility

We continue with the de�nition of the possible (meta) relationships

between classes.

3.3 Meta Relationships

Relationships between classes can be either a uses, inheritance or general

relationship. The uses relationship is a special relationship of SOCCA

which de�nes the import of methods from (other) classes. The possible re-

lationships are captured at the meta level by the free typeMetaRelationship:

MetaRelationship ::= UsesRelationship j IsARelationship j GeneralRelationship

A relationship type de�ned in [DGSK

+

99] which is missing from this

list is the aggregation relationship. We omit the aggregation relationship

in this document for three reasons.

First of all, packages in SOCCA take the place of aggregates with

respect to the (hierarchical) grouping of the classes of the model. Each

package groups the contained classes and possibly further structures the

classes through containment in subpackages.

Secondly, a package does a better job than using aggregation as:

� A package additionally o�ers encapsulation of its grouped classes.

The classes of a package are not simply structured, but also (par-

tially) hidden from the rest of the model.

� A package o�ers a local namespace for its classes. The names of the

classes can be chosen taken only into consideration the names of the

other classes of the package.

� A package, through the explicit import and export of the contained

model parts, documents the dependencies of the contained parts

with the rest of the model.

Lastly, we do not de�ne aggregation at this point as in [tHDG

+

b]

we present a class-like description (CLD) of a package. We de�ne how

a class can replace a package of a model. This class precisely captures

the communication and synchronisation of the contained classes of the

original package with the rest of the model at the precise level of detail

o�ered by SOCCA classes. The CLD of a package replaces the set of

classes contained in the package. The CLD thus o�ers a strong basis for

a complete de�nition of an aggregate for all perspectives and not only

8

for the data perspective and so we postpone the topic of aggregates to

[tHDG

+

b].

We now de�ne the properties of one relationship of a model. A re-

lationship in the model is an instance of a MetaRelationship. An actual

relationship in a model is characterised by its identity, its type and its

participants.

Relationship

identity : RelationshipIdentity

type : MetaRelationship

participants : seqClass

type 2 fUsesRelationship; IsARelationshipg) # participants = 2

� All relationships of the model are identi�ed by a unique identity.

� All relationships are of a certain type, i.e. a uses, inheritance (IsARelationship)

or general type of relationship.

� All relationships have a number of participants. These are the classes

which participate in the relationship.

� The uses and inheritance are directed, binary relationships.

In [DGSK

+

99] as well as in this text, we treat the inheritance relation-

ship as a straightforward binary relationship which is relatively simple to

formalise. In the past, SOCCA class diagrams used the tree-like gener-

alisation symbol from OMT ([RBP

+

91]) as depicted in �gure 3a. This

generalisation symbol might lead one to assume that generalisation is a

relationship between a set of classes (children) and a class (parent), in-

stead of simply a relationship between classes. [RBP

+

91] is unclear in this

regard, but [Rum96, p. 326] is not: \Generalization is an n-ary relation-

ship, not a binary relationship. In this we di�er from most other authors".

In [RTF99], which can be seen as the proper successor notation to OMT's

notation, generalisation is however a binary relationship. [UML97b, sect.

4.24.2] explains that in UML the tree-structure is only a display variation

of class to class relationships; the other being the separate target style

depicted in �gure 3b. Generalisation (inheritance) is likewise a binary

relationship in SOCCA.

With the relationships between classes de�ned, we can de�ne when a

Class is potentially a specialisation of another Class.

3.4 Potential Inheritance

When formalising inheritance between classes there are two important

things which need to be de�ned. When class C is a specialisation of

class D , then class C inherits a subset of the methods of D depending

on the visibility of the methods of D . Furthermore, class C , according to

the principle that a child can take the place of its parent class, inherits

the relationships to and from D . In [DGSK

+

99] these two aspects of

inheritance are put in one schema. We however handle these two aspects,

inheritance of methods and inheritance of relationships, separately as we

9

Document
Design Test

Document

Document

(a) Tree-like symbol

Document
Design Test

Document

Document

(b) Separate target style

Figure 3: Di�erent notations for inheritance

have a more complex notion of visibility which leads to larger and more

complex schemas. Furthermore, the inheritance of relationships implies

the existence of the precise relationships existing between the classes of a

package, which we, at this point, have not yet de�ned. We can however

already de�ne when a class C is a potential specialisation of class D .

With this we mean that class C has the appropriate methods de�ned so

that it could play the role of a child of D . We introduce the relationship

is-potentially-a to capture when a class C is a potential specialisation

of D , i.e. C is-potentially-a D . Note that we underline a relationship

when written in in�x notation for the sake of legibility. The schema for

is-potentially-a follows.

is-potentially-a : Class $ Class

is-potentially-a =

fr : Class � Class j (9 p; c : Class j r = (c; p) �

(8m : p:methods j p:methodvisibility m 6= private �

m 2 dom c:methods ^

(p:methodvisibility m = public _ p:methodvisibility m = protected))

p:methodvisibility m = c:methodvisibility m))g

Class c must have as methods the public and protected methods of p

if c is to be a potential specialisation of p.

Example In Figure 4, class C

0

is a potential specialisation of class C

i.e. C

0

is-potentially-a C . Class C

0

has the required public method M 1

and the protected method M 3 but not the private method M 2 from C .

Method M 4 is added to C

0

to make it a nontrivial specialisation of C .

In practice, inherited methods of classes are often not explicitly indicated

by the modeller. The inherited methods are implied by the inheritance

relationships between the classes. 2

We continue with the de�nition of the packages, the �rst substantial

deviation from the formalisation of SOCCA in [DGSK

+

99].

10

+M1

+M4

C’

#M3
+M1

#M3

C

-M2
?

Figure 4: Example of potential inheritance

3.5 Packages

This Section de�nes the structure of a SOCCA Package. This is done

in several small steps. We �rst introduce the free type ProtoPackage

to de�ne the general structure of packages and restrict in several small

steps the possible packages of type ProtoPackage until they meet all the

constraints we want.

3.5.1 The Basic Package De�nition

A package in [RTF99] is de�ned as a grouping of any model parts. Further-

more, a package in UML may contain subpackages. We however restrict

the task of SOCCA packages to not just group any model parts but just

to group classes and relationships. Additionally, like in UML, we choose

for a SOCCA package to group (sub)packages.

The grouping of subpackages in a package is useful as at a point in

time a package may become too large to manage. We are extending SOC-

CA with packages to structure and manage the classes of large models.

In the same way we allow subpackages to structure the classes of a single

package. By using hierarchical packages (packages within packages) we

allow a model to be split up into parts where each part can be further

split up as desired.

The use of hierarchical packages is however not essential for managing

the complexity of packages. A valid alternative is to put parts of a large

package into several new packages. These new packages are placed outside

of the original package and are then imported. In this approach, a model

only consist of a collection of classes, relationships and a collection of

non-hierarchical packages.

Both approaches to managing the complexity of packages are equiv-

alent in the sense that models with the same functionality can be devel-

oped. We have a preference for using hierarchical packages. In [tHDG

+

c]

we consider a package as a part of the model which can be developed

separately by one of the teams working concurrently on a model. A single

package is developed by one team within the static context of the rest

of the model. A team can internally restructure its own package using

subpackages without inuencing the structure of the rest of the model.

Adding new packages outside of the package being developed by the team

is not desirable as it can inuence the context for other teams working on

other packages of the model.

Note that a hierarchical package can be reused in various ways. One

option is to reuse the package as a whole. A second possibility is to reuse

11

only a subpackage of the original package. The structuring of a model into

hierarchical packages as is done for the sake of development in [tHDG

+

c]

does not imply that parts of package can not be reused separately or that

a model can not be restructured after completion of the development to

only include non-hierarchical packages.

The ProtoPackage free type is introduced to de�ne the structure of a

package:

ProtoPackage ::=

PackageNodehhPackageIdentity � F Class � F ProtoPackage � F Relationshipii

A ProtoPackage is de�ned by:

� An identity of type PackageIdentity . The identity of a package serves

to identify uniquely a package of the model.

� The set of classes de�ned by the ProtoPackage.

� The set of (sub)packages de�ned by the ProtoPackage.

� The set of relationships de�ned by the ProtoPackage.

We introduce the functions ProjIdentity to ProjRelationships to iso-

late one part of the de�nition of a ProtoPackage, i.e. project the identity,

contained classes, contained (sub) packages and relationships of a package

respectively.

ProjIdentity : ProtoPackage ! PackageIdentity

ProjClasses : ProtoPackage ! F Class

ProjPackages : ProtoPackage ! F ProtoPackage

ProjRelationships : ProtoPackage ! F Relationship

8 p : ProtoPackage; identity : PackageIdentity ;

C : F Class; P : F ProtoPackage; R : F Relationship j

p = PackageNode(identity ;C ;P ;R) �

ProjIdentity p = identity ^

ProjClasses p = C ^

ProjPackages p = P ^

ProjRelationships p = R

The next Section introduces some useful operations on a package which

collect all the contained classes, relationships and (sub)packages of a pack-

age.

3.5.2 Working with the Package Parts

A package is a recursive tree-like structure where the nodes of the tree are

either classes, packages or relationships. We �rst de�ne the classes and

(sub)packages contained in a package:

� ClassElements returns the classes of a package which are de�ned by

the package itself and not by a subpackage contained by the package.

12

� PackageElements Likewise as for ClassElements but now for pack-

ages.

� ContainedClasses Returns all the classes contained by a package.

These are the class elements of the package and the classes contained

by the package elements of the package.

� ContainedPackages Likewise as for ContainedClasses but now for

packages.

The ClassElements and PackageElements of a package are called the

\elements" of the package.

Example A package in UML is shown as a large rectangle with a small

rectangle (a "tab") attached on one corner (usually the left side of the up-

per side of the large rectangle). The small rectangle contains the identity

of the package. The contents of the package, i.e. the elements of the pack-

age, are shown within the large rectangle. If the contents of the package

are not shown, then the identity of the package is placed within the large

rectangle.

In �gure 5, a package P is shown where:

� ClassElements P = fC1g and also ClassElements P2 = fC4;C5g.

� PackageElements P = fP1;P2g.

� ContainedClasses P = fC1;C2;C3;C4;C5g.

� ContainedPackages P = fP1;P2;P3g.

2

C4

P

C1

C2

C3

P1

P2

P3

C5

Figure 5: Example Package P

The de�nition of ClassElements and PackageElements is basically an-

other name for the ProjClasses and ProjPackages functions:

ClassElements == ProjClasses

PackageElements == ProjPackages

The de�nition of ContainedClasses and ContainedPackages are more

complex and recursive:

13

ContainedClasses : ProtoPackage ! F Class

ContainedPackages : ProtoPackage ! F ProtoPackage

8 p : ProtoPackage �

(ContainedClasses p =

ClassElements p [

fc : Class j 9np : ProtoPackage j np 2 (PackageElements p) � c 2 ContainedClasses npg)

^

(ContainedPackages p =

PackageElements p [

fp

1

: ProtoPackage j (9 np : ProtoPackage j np 2 PackageElements p � p

1

2 ContainedPackages np)g)

We introduce the function, AllPackages : ProtoPackage ! F ProtoPackage

where AllPackages p serves as a shorthand for the frequently used expres-

sion ContainedPackages p [fpg.

AllPackages : ProtoPackage ! F ProtoPackage

8 p : ProtoPackage �

AllPackages p = ContainedPackages p [fpg

Example In Figure 5, AllPackages P equals fP ;P1;P2;P3g. 2

Lastly, we de�ne relationship elements and contained relationships of

a package:

RelationshipElements == ProjRelationships

ContainedRelationships : ProtoPackage ! F Relationship

8 p : ProtoPackage �

ContainedRelationships p =

RelationshipElements p [

fr : Relationship j (9 p

0

: ContainedPackages p �

r 2 ContainedRelationships p

0

)g

We use the terminology classes of a package p to refer to the set

ContainedClasses p. We likewise use the terminology packages and re-

lationships of a package p to refer to the sets ContainedPackages p and

ContainedRelationships p. We use the terminology package parts of a

package to refer to the classes, relationships and (sub)packages of a given

package. The next Section de�nes when the package parts have the proper

identities.

3.5.3 Indentities of the Package Parts

The free type de�nition of ProtoPackage in Section 3.5.1 is very un-

restricted. An identity should identify a unique class, relationship or

(sub)package contained by a given package and this is not enforced by

14

the free type de�nition. The set PackagePartIdentities contains those

packages p which do meet these identity constraints.

PackagePartIdentities : F ProtoPackage

PackagePartIdentities =

fp : ProtoPackage j

#(AllPackages p) =

#fi : PackageIdentity j (9 p

0

: ProtoPackage j p

0

2 AllPackages p � ProjIdentity p

0

= i)g

^

#(ContainedClasses p) =

#fi : ClassIdentity j (9 c : Class j c 2 ContainedClasses p � c:identity = i)g

^

#(ContainedRelationships p) =

#fi : RelationshipIdentity j (9 r : Relationship j r 2 ContainedRelationships p � r :identity = i)gg

We continue with the de�nition of the tree-like structure of Packages.

3.5.4 The Tree-Like Structure of a Package

As yet, we allow within the de�nition of PackagePartIdentities for (sub)packages

and classes to be an element of more than one package.

Example In Figure 6, both packages P

1

and P

2

which are de�ned so

that they are elements of PackagePartIdentities have class C as class el-

ement, i.e. P

1

6= P

2

^ ClassElements P

1

\ ClassElemtents P

2

6= ?. 2

P1

P2

C

Figure 6: Example of a non strict tree Package

According to the UML notation guide [RTF99]: \Each element is di-

rectly owned by a single package, so the package hierarchy is a strict tree."

Thus, the UML packages, if they are not nested, are disjoint and do not

overlap. This means that every class or package of the model is directly

owned by exactly one (owner) package. We use the terminology strict

package for a package for which the containment structure of the package

forms such a strict tree.

We likewise ensure that SOCCA packages form a strict tree. This is

done for three reasons.

First of all, a package is less modular if a class may belong to two

packages like in Figure 6. We can not study P

1

without considering the

15

use of class C in P

2

. A package becomes less of a black box if it shares

some of its contained classes with another non nested package.

As a consequence, the semantics of the import of a package become less

precise. The import of a package should document the dependencies of

the contained classes and packages with the rest of the model. For Figure

6, the shared class C may however require di�erent imported functionality

for its role in package P

1

and P

2

. The import required by class C can not

then be deduced by only studying the import of one of the two packages.

Furthermore, in [tHDG

+

c] we allow multiple teams to work concur-

rently on one model. Each team works on a package of the model which

does not share any overlapping classes and subpackages with the packages

being developed by other teams. This makes it straightforward to ensure

that only one team at a time can modify a class of the model. The distri-

bution of packages over the teams is relatively simple if we use packages

which are all strict trees.

We introduce the set StrictPackages to capture the packages from

PackagePartIdentities that are strict:

StrictPackages : F PackagePartIdentities

StrictPackages =

fp : PackagePartIdentities j

(8 c : ContainedClasses p � (9

1

p

0

: AllPackages p � c 2 ProjClasses p

0

)) ^

(8 p

0

: ContainedPackages p � (9

1

p

00

: AllPackages p � p

0

2 ProjPackages p

00

))g

Example In Figure 5, the package P is an element of StrictPackages.

However, in Figure 6, the package P

1

and P

2

are not elements of StrictPackages

as both have class C as element. 2

We continue with the de�nition of the owner of a package element.

3.5.5 The Owner of a Package Element

With respect to the strict tree-like structure of packages in Section 3.5.4,

a class of a package is directly owned, i.e. is a class element of, exactly

one package. We call this package the owner of the class. For example, in

Figure 5, the owner of class C3 is package P3. We can likewise identify the

owner of a package or relationship. The concept of a owner package of a

class, (sub)package or relationship recurs frequently in the formalisation.

Note that in the complete formalisation we make a distinction between

ownership of model parts and use of model parts. A class or subpackage

is owned by one unique package of the model but may be imported and

used by many other parts of the model. The ownership relations in a

model form a tree-like structure. The (uses) relationships between the

classes and packages of the model form a graph with as nodes the classes

and packages of the model and as edges (uses) relationships between the

classes and packages.

We introduce the function OwnerofClass and OwnerofPackage to re-

turn respectively the owner of a class or package of a model. The function

OwnerofClass is however not simply of type Class ! ProtoPackage such

16

that OwnerofClass c is the package which owns a given class c. The

owner of a class is only de�ned for classes contained by packages which

are a strict tree. Furthermore, at this point in the formalisation, we have

characterised the packages which can contain a class. For a given class,

we can design an in�nite number of strict packages to contain the class.

But, if we take one such strict package, within that package we can �nd

the owner of the class. We call such a package the context in which the

owner of a class can be found.

Keeping this in mind, we give the following two functions:

� The function OwnerofClass returns for a given strict package p and

a class c contained by p the package in AllPackages p of which the

class c is an element.

� The function OwnerofPackage returns for a given strict package p

and a package p

0

contained by p the package in AllPackages p of

which the package p

0

is an element.

The package p is the context in which the owner of the class or package

is sought.

Example In Figure 5, the owner of class C3 is package P3. Or, oth-

erwise put, OwnerofClass P2 C3 = P3. In the same �gure, the owner of

package P3 is package P2. Thus, OwnerofPackage P P3 = P2. Packages

P and P2 are the contexts in which the owners of C3 and P3 are sought. 2

OwnerofClass : StrictPackages 7! (Class 7! StrictPackages)

8 p : StrictPackages �

dom (OwnerofClass p) = fc : Class j c 2 ContainedClasses pg ^

(8 c : Class j c 2 dom (OwnerofClass p) �

OwnerofClass p c =

(�np : StrictPackages j (np 2 AllPackages p) ^ (c 2 ClassElements np) � np))

OwnerofPackage : StrictPackages 7! (StrictPackages 7! StrictPackages)

8 p : StrictPackages �

dom (OwnerofPackage p) = ftp : StrictPackages j tp 2 ContainedPackages pg ^

(8 tp : StrictPackages j tp 2 dom (OwnerofPackage p) �

OwnerofPackage p tp =

(�np : StrictPackages j (np 2 AllPackages p) ^ (tp 2 PackageElements np) � np))

Likewise, all relationships are owned by exactly one package. For a

given package p from the set StrictPackages and a relationship r from

ContainedRelationships p, we de�ne the owner of the relationship as the

unique package p

0

from AllPackages p which owns r .

17

OwnerOfRelationship : StrictPackages 7! Relationship 7! StrictPackages

8 p : StrictPackages �

dom (OwnerOfRelationship p) = ContainedRelationships p ^

(8 r : Relationship j r 2 dom (OwnerOfRelationship p) �

(OwnerOfRelationship p r) =

(� p

0

: AllPackages p j r 2 RelationshipElements p

0

� p

0

))

We continue with the constraints placed on ownership by packages of

relationships.

3.5.6 Packages and Ownership of Relationships

In [DGSK

+

99] the relationships of a model are de�ned in one set. This

set contains all the relationships de�ned between the classes of the model.

In this document we distribute the relationships over the packages which

structure the model.

In UML every model part must belong to exactly one package. For

relationships, this means that every relationship of the model must be

owned by one package of the model. Furthermore, these relationships

have to be properly de�ned in the sense that a package may not own a

relationship where one of the participating classes is not a class contained

by the package.

For SOCCA each package of a model is intended to be de�ned as lo-

cally/modular as possible. We want the smallest possible encompassing

package to contain a relationship between a set of classes. This makes the

de�nition of a package as small as possible, which is useful when splitting

up packages of a model during development as de�ned in [tHDG

+

c] or if

a package is to be reused. We therefore add the constraint that a package

may only own a relationship if the package is the smallest package which

contains all the classes participating in the relationship.

Example In Figure 7, there is a relationship de�ned from class C1

to C2. This relationship is owned by package P

0

as all the participants

of the relationship are contained by P

0

and there is no smaller package

which meets this criteria and thus has at least one of the participants of

the relationship as one of its class elements. The relationship is however

not owned by package P as P

0

is contained by P and P

0

is large enough

to contain all the participants of the relationship. 2

The set ProperPackageRelationships contains the packages from StrictPackages

which meet the criteria for ownership of relationships:

ProperPackageRelationships : F StrictPackages

ProperPackageRelationships =

fp : StrictPackages j

(8 r : RelationshipElements p �

(ran (r :participants) � ContainedClasses p) ^

(9 c : ClassElements p � c 2 ran (r :participants))) ^

(8 p

0

: ContainedPackages p � p

0

2 ProperPackageRelationships)g

18

P

P’

C2C1

Figure 7: Illustration of ownership of relations

� Relationships de�ned by each package p are only de�ned for partic-

ipating classes contained by p.

� Each relationship is owned by the smallest package which contains

all the classes participating in the relationships.

� The contained packages of a package from ProperPackageRelationships

are also elements of ProperPackageRelationships.

We continue with the de�nition of inheritance for the classes of a pack-

age.

3.5.7 Inheritance of Classes

In Section 3.4 we have de�ned when a class is a potential specialisation of

another class. We say a class D IsPotentiallyA C if class D has the right

methods to be a specialisation of C . With the classes of packages de�ned,

we can now de�ne which classes of the package are actual specialisations

of other classes of the package. Furthermore, with the parent-child rela-

tionships (i.e. inheritance) in a package de�ned, we can de�ne inheritance

of relationships. With inheritance of relationships we mean that a spe-

cialised child inherits the relationships its parent is a participant in. The

function is-directly-a captures, for a given package P , which classes of

the package are direct specialisations of other classes. Basically, (D ;C) 2

(is-directly-a P) if D IsPotentiallyA C , fC ;Dg � ContainedClasses P

and there is a relationship of type IsARelationhip de�ned from D to C .

The relationship (is-a P) is the closure of the (is-directly-a P) relation-

ship.

Example In Figure 4, we have given classes C and C

0

where C

0

is a

potential specialisation of C ,

i.e. C

0

is-potentially-a C . If C and C

0

are both in ContainedClasses p and

(9 r : ContainedRelationships p j r :type = IsARelationship � r :participants =

hC

0

;C i), then indeed C

0

(is-a p) C . 2

19

is-a : ProperPackageRelationships ! (Class $ Class)

is-directly-a : ProperPackageRelationships ! (Class $ Class)

8 p : ProperPackageRelationships �

is-directly-a p = fr : Class � Class j

9 g : ContainedRelationships p; c; d : Class j

fc; dg � (ContainedClasses p) ^ c is-potentially-a d �

r = (c; d) ^

g :type = IsARelationship ^

g :participants = hc; dig ^

is-a p = ((is-directly-a) p)

�

^

is-a p 2 partial -order [Class]

� is-directly-a p captures which of the potential specialisations in

is-potentially-a is actually realised for a speci�c package p.

� is-a p is the transitive closure of is-directly-a p.

The set PackageClassRelationshipInheritance captures the constraints

on the possible relationships of the package imposed by the substutivity

principle for specialised classes. The substutivity principle states that

every specialised class must be able to take the role of the parent class of

which it is a specialisation.

Example Consider the class diagram (fragment) in �gure 8: as Design

is a Document , and Manager monitors Document , one can infer that

Manager monitors Design. In the example, we have drawn it as dashed

line. It is customary not to draw the relationships induced by inheritance

in order not to clutter the class diagram. 2

Document

Design

Manager
Monitors

Monitors

▲

Figure 8: Inheritance of relationships

20

PackageClassRelationshipInheritance : F ProperPackageRelationships

PackageClassRelationshipInheritance =

fp : ProperPackageRelationships j

8 c; d : Class j (c; d) 2 (is-a p) �

(8R : ContainedRelationships p j R:type 6= IsARelationship �

8 i : 1 : :#(R:participants) j R:participants i = d � 9S : ContainedRelationships p �

S :type = R:type ^

(S :participants) = # (R:participants) ^

S :participants i = c ^

(8 j : (1 : :#(R:participants)) n fig � S :participants j = R:participants j))g

A specialised class can ful�ll the role of its owner class(es) in a rela-

tionship.

We continue with the complete de�nition of a SOCCA Package.

3.5.8 Package De�nition

Since the de�nition of the free type ProtoPackage we have imposed several

restrictions on the packages allowed by this de�nition. We have ensured

that these packages along with their contained elements have proper iden-

tities and have de�ned the ownership of the contained elements. Further-

more, we have de�ned inheritance between the contained classes. The set

Package captures the packages which meet the structure criteria of SOC-

CA packages along with the �nal constraint that every SOCCA package

contains at least one class:

Package : F PackageClassRelationshipInheritance

8 p : Package �

(8 p

0

: AllPackages p � #(ContainedClasses p

0

) > 0)

We consider only packages which contain at least one class as in SOC-

CA only (the objects instantiated from) classes show behaviour. For the

remainder of this document we use the term \package" to refer to an

element from Package exclusively.

We continue with the de�nition of the package which contains all the

classes of a model.

4 Model De�nition

We have now de�ned all constraints for the desired type of package so that

we can de�ne the classes, relationships and packages of a basic model for

the data perspective. We use the term basic model as at this point we

have not yet de�ned the import, export and visibility of model parts.

A model at the type level is essentially represented by one package.

We call this package the TopPackage. The schema BasicModel de�nes a

basic model by de�ning this one package.

21

BasicModel

TopPackage : Package

We use the terminology model part to refer to either the TopPackage

itself or to a part of this package. Recall that a package part is either a

class, relationship or (sub)package contained by the package. A class of

the model is a class of the TopPackage of the model. Relationships and

Packages of a model are likewise de�ned.

The TopPackage which represents the whole model is often not drawn

by the modeler. The TopPackage is represented by the piece of paper or

program window in which the model is being drawn.

In [DGSK

+

99], the schema DataPerspectiveDomain de�nes the vari-

able classes : PClass. This variable is the complete set of classes of

the model. The link with this formalisation is that classes is equal to

ContainedClasses TopPackage. The classes of a model can however now

be structured and encapsulated by packages.

The variable relationships in the schema DataPerspectiveDomain is

introduced as an abbreviation for all the relationships de�ned between

the classes of the model, i.e. the classes in ContainedClasses TopPackage.

This abbreviation is used extensively in the rest of the formalism.

DataPerspectiveDomain

BasicModel

relationships : F Relationship

relationships = ContainedRelationships TopPackage

The next Section continues with the constraints on the use of methods.

5 The Import of Methods

In many formalisms there is not much attention to import within (an

object instantiated from) a class: methods within a class are automatically

available for use by other methods within the class.

In a SOCCA class diagram, the uses relationship between classes de-

scribes method import. The uses relationships are drawn as arcs from

the class which imports the method to the class from which the methods

are imported. The arcs are labeled with the identities of the imported

methods.

Example In Figure 9, the class client imports the methods M 1 and

M 2 from the class server . The uses relationship is depicted as a directed

edge from client to server and the imported methods are added as labels

to the edge. 2

In SOCCA, there is no implicit import within a class; methods within

a class are not automatically available for use by other methods within

the class. Thus, even within a class or an object, one method can only

22

Client
Server

M1
M2

{M1,M2}

Figure 9: The uses relationship

call another method if it has a uses relationship to that class with that

method in the labelling set.

The reason for making this import within a class explicit is that this

import has consequences for other parts of a SOCCAmodel: namely, those

parts that deal with coordination. Furthermore, the uses relationship

documents the possible communication between two classes.

For SOCCA, method invocations of methods within one object can

in principle be executed concurrently (i.e. SOCCA objects can be multi-

threaded). Thus, intra-object method use necessitates coordination be-

tween threads. To emphasise the consequences of intra-object method use,

it is made explicit in the data perspective through the uses relationship.

The schema Uses captures the basic de�nition of the uses relationships:

Uses

DataPerspectiveDomain

uses : Class $ Class

useslabel : (Class � Class) 7! FMethodIdentity

uses = fr : Class �Class j 9 g : relationships; c; d : ContainedClasses TopPackage �

r = (c; d) ^ g :type = UsesRelationship ^ g :participants = hc; dig

domuseslabel = uses

8 c; d : ContainedClasses TopPackage; M : FMethodIdentity j (c; d) 7! M 2 useslabel �

M 6= ? ^

M � d :methods

The relation uses captures the classes (c; d) of the model for which

there is a uses relationship from c to d . The function useslabel de�nes

which method identities of d adorn the uses relationship from c to d

when (c; d) 2 uses. The schema Uses as presented here is a shortened

version of the schema Uses as presented in [DGSK

+

99] as we postpone

the constraints imposed on import by the visibility of methods to the end

of this Section.

Note that the uses relationship is de�ned such that a class may import

its own methods, i.e (9 c : Class � (c; c) 2 uses). For the functionality

perspective in Appendix B.3, we de�ne that a class may not call a method

unless this method was previously imported. A class thus has to import

its own methods previously to being able to call them. This may seem

extreme. We however use import (and export) to document dependencies

between model parts. An import of a class of one of its own methods

documents that the class is one of its own clients, which is not always the

case.

23

Example In Figure 10, the class client�server imports its own method

do � it . This is necessary if a method of the class is to call the method.

2

Client
Server

do-it

{do-it}

Figure 10: Importing your own methods

A modeler will however in may cases not draw this reexive import as

he is often more interested in dependencies with other model parts.

A method has to be visible to a class in order to import it through

a uses relationship. The schema UsesMethodRestrictions captures the

restrictions on possible import of methods by classes.

UsesMethodRestrictions

Uses

8 c; d : ContainedClasses TopPackage; M : FMethodIdentity j (c; d) 7! M 2 useslabel �

8m : MethodIdentity j m 2 M �

c = d _

(d :methodvisibility m) = public _

(d :methodvisibility m = protected ^ ((c; d) 2 (is-a TopPackage)))

All methods of the used class must be visible to the using class:

� Any class may import its own methods.

� Any class may import the public methods of another class.

� A class may import protected methods of its parent class. This

constraint was omitted in [DGSK

+

99].

The next Section continues with the export and import of classes by

packages.

6 Export and Import of Classes

In the previous Section, we have de�ned how the visibility of methods

regulates the possible import of methods by classes. In this Section we

de�ne how the visibility of classes and subpackages of a package determines

the export of the package and thus the possible import by other packages

of a model. We begin by de�ning the export of a package of a model by

de�ning the visibility of the contained classes and packages of the package.

24

6.1 Export of Classes by Packages

Like in UML, we use a simple type of visibility for package elements. An

element of an UML package is either public, i.e. can be exported by the

package, or private and is not exported by the package.

We introduce the free types ClassVisibility and PackageVisibility to

de�ne the possible visibilities of classes and packages respectively:

ClassVisibility ::= publicclass

j privateclass

PackageVisibility ::= publicpackage

j privatepackage

In the schema PackageExport we de�ne the visibility of the classes and

packages of a model. The function export de�nes the export of a SOC-

CA package. The export of a UML package is de�ned as a subset of its

public parts. These include the public classes and public (sub)packages of

a package. We simplify this for SOCCA packages by expressing the export

of a SOCCA package solely in terms of exported classes. The export of

a class of a subpackage implicitly de�nes the export of the corresponding

subpackage.

PackageExport

DataPerspectiveDomain

packagevisibility : Package 7! PackageVisibility

classvisibility : Class 7! ClassVisibility

export : Package 7! F Class

dom classvisibility = ContainedClasses TopPackage

dom packagevisibility = ContainedPackages TopPackage

dom export = ContainedPackages TopPackage

8 p : dom export �

export p �

fc : ContainedClasses p j

(c 2 ClassElements p ^ classvisibility c = publicclass) _

(9 p

0

: PackageElements p j packagevisibility p

0

= publicpackage � c 2 export p

0

)g

� The functions classvisibility and packagevisibility return the visibil-

ity of a class and package of a model.

� The export of a package is a subset of the public class elements of

the package and the classes exported by the public package elements

of the package.

The next Section de�nes the import the packages of a model, i.e. which

of the classes exported by packages are imported for possible use.

25

6.2 Import of Classes by Packages

The schema PackageImport with the function import documents which

classes exported by packages are imported by (other) packages. Like for

the export of a SOCCA package, we de�ne the import of a SOCCA package

as a set of classes. The import of a class implicitly determines the import

of the package(s) which exported the class.

PackageImport

Uses

PackageExport

import : Package 7! F Class

dom import = ContainedPackages TopPackage

8 p : dom import � 8 c : ClassElements p �

8 d : ContainedClasses TopPackage n ClassElements p j

(c; d) 2 (is-a TopPackage) _

(c; d) 2 uses _

(9 r : relationships j r :type = GeneralRelationship �

(9 i ; j : 1 : :# (r :participants) � r :participants i = c ^ r :participants j = d)) �

(d 2 import p)

8 p : dom import �

import p � (ContainedClasses TopPackage n ClassElements p) ^

(8 d : (import p) �

(8 p

0

: ContainedPackages TopPackage j

p 6= p

0

^

p 62 ContainedPackages p

0

^

d 2 ContainedClasses p

0

�

d 2 export p

0

))

� The necessary classes are imported as required. Class d not con-

tained by a package p needs to be imported if there is a class c

contained by p which has a uses relationship to class d or if there is

a general relationship with as participants the classes c and d .

� All imported classes are actually exported by the packages which

contain the imported packages.

The next Section presents the �nal schema for the data perspective.

7 The Complete Data Perspective

The schema DataPerspective de�nes a SOCCA model with packages for

the data perspective.

26

DataPerspective

DataPerspectiveDomain

UsesMethodRestrictions

PackageExport

PackageImport

� The schemaDataPerspectiveDomain de�nes SOCCA classes and pack-

ages for the data perspective.

� The schema UsesMethodRestrictions de�nes the import of methods.

� The schema PackageExport de�nes the export of classes by packages.

� The schema PackageImport de�nes the import of classes by packages.

8 Conclusion

8.1 Results

We have formalised (using Z) how the classes of SOCCA models are struc-

tured and encapsulated by UML-like Packages. The architecture of a

SOCCA model is no longer a set of classes but a collection of hierarchial

packages. A large model can be split up into smaller, more comprehensible

chunks.

8.2 Future Work

With SOCCA packages de�ned, we will formalise [tHDG

+

b] the concept

of a class-like description (CLD) of a package. We investigate how one

class, the CLD of the package, replaces a package of a model. The CLD of

a package uni�es the concepts of class and packages/modules of classes.

In [tHDG

+

a] we discuss/investigate special CLDs of packages which

capture the interactions/communication of the classes of a package with

the rest of the classes of a model. We use the special CLDs of a package to

de�ne when a change to a package is local. i.e. the change of the package

does not a�ect the interactions of the classes of the package with the other

classes of the model. We use the de�nition of local change of a package

to prevent conict in con�guration management during the merging of

separately developed parts/versions of a model.

APPENDICES:

A Z

In this Section we discuss:

� In Section A.1 the formalisation language used.

� In Section A.2 the tool used to check the formalisation.

� In Section A.3 the style of our formalisation.

27

A.1 Why Z

Several factors positively inuenced the choice of Z as the speci�cation

language in [DGSK

+

99] and this document.

Abstraction level Z is suitable for speci�cations at a high level of ab-

straction, as it focuses on mathematical description of systems, rather

than expressing systems in terms of a particular machine model.

This allows one to focus on the \what" rather than the \how".

Widespread use Z has been applied successfully in a large number of

diverse projects in both industry and academia, and there are nu-

merous publications about it available [00bds].

Mathematical foundation Z is founded in set theory and predicate

logic, both branches of mathematics that are familiar to computer

scientists. The particular set-theory underlying Z is non-exotic.

Standardisation Z is currently undergoing standardisation by the in-

ternational standards body ISO.

Tool support There are a number of tools available [ZZads] that provide

support for the development of Z speci�cations, including pretty-

printers, type checkers and theorem provers.

Continuity Continued use of Z allows the reuse of the work done in

[DGSK

+

99].

A.2 The Type Checker

The Z parts of the document were checked using Z/EVES [Saa95], a theo-

rem prover for Z. Information about it can be found at http://www.ora.

on.ca/z-eves/welcome.html. Although the theorem prover mainly used

as type checker was a very valuable tool we experienced some di�culties

during the use of Z/EVES:

� This document was written using L

A

T

E

X. The type checker had some

di�culties in properly parsing the formatting information inserted

into the de�nition of a mathematical set. The straightforward def-

inition of the set would not present di�culties and would check for

type. Inserting a newline or spacing information would in many

cases lead to parsing errors. We have modi�ed the layout until it

was readable and did not produce unwarranted errors.

� Functions likewise presented some problems with formatting infor-

mation. Inserting any layout information in or between the parame-

ters of a function lead to errors. Thus, all function (calls) in schemas

must �t on one source line if they are to check for type.

� Use of cross products lead to long expressions. Expressions of the

form f(c; d) : X � X j Assertion(c; d)g were not accepted and had

to be rewritten to the equivalent expression of the form fr : X �X j

(9 c; d : X j (c; d) = r � Assertion(c; d)g. This is annoying as this

expression distracts by its inelegant complexity. Furthermore this

second form is especially annoying when taking into account the

property that formatting information in sets often leads to typing

28

errors as the second expression grows expansively so as to not �t on

one line. We have thus avoided cross products in our work when

they were not required from a legacy viewpoint. For example, we

have worked with f : X ! X ! Y , the curried version of f , rather

than with f de�ned as f : (X �X)! Y .

� We avoided use of relations where possible as relations lead to cross

products. We have used functions to circumvent relations as demon-

strated with a small example. Instead of R : X $ Y we chose to

work with Rf : X ! F Y where y 2 Rf x , (x ; y) 2 R . The

expression (x ; y) 2 R is avoided by working with the equivalent ex-

pression y 2 Rf x .

A.3 The Style of Z Used

The problems with the type checker listed in Appendix A.2 inuenced

the style of our Z speci�cation. We often used curried functions as they

allow complex domain restrictions of partial functions to be de�ned step

by step. This can make domain restrictions of partial functions easier to

understand. Take, for example, f : (A�B �C) 7! D . The domain of f is

expressed as constraints on the parameters of type A, B and C . This can

lead to large complicated expressions. The curried version of f is of the

type A 7! B 7! C 7! D . The domain constraints of the curried version of

f can now be de�ned separately step by step for each type A to C .

Lastly, we encountered several other small problems using the type

checker:

� The right side of a free type expression (i.e. after the ::=) cannot be

split over several lines. Newlines in the L

A

T

E

X source �le result in

error messages.

� Text in a comment block is not ignored by Z-eves. Comment blocks

therefore cannot be used to (temporarily) easily remove parts of the

formalisation from the text. This may however be a useful feauture

to include Z parts into a document which you need for the type

checking but which you do not want to display in the document.

For example, this feauture will be very for the writing of [tHDG

+

b]

where the Z parts of this document have to be included for the type

checker while the reader is not interested in seeing all of this Z code

once more.

� No formatting information can be inserted inbetween the closing

sequence of brackets (inbetween)))))) in a schema without the type

checker reporting errors.

� For a function f : A 7! B 7! C , for a : A, b : B and c : C , the

expression (a; (b; c)) 2 f does not type. You have to work with

f : (A�B) 7! C as ((a; b); c) 2 f does not type. we however wanted

to avoid cross products as much as possible!

� The expressions (p; (c; d)) 2 is-a , (p 7! (c; d)) 2 is-a, c (is-a p) d

and (c; d) 2 (is-a p) are all equivalent. Only the last one makes it

through the type checker.

29

B The behaviour and functionality per-

spectives

This Appendix de�nes a class for the behaviour perspective. The formali-

sation of the rest of the document does not deviate much from the original

material as presented in [DGSK

+

99]. The only change occurs for the func-

tionality perspective for the de�nition of the free type SYMBOL. Calls to

methods of classes are no longer of the form ClassName�MethodName but

of the form ClassIdentity �MethodIdentity . We work with ClassIdentity

instead of ClassName as the name of a class no longer uniquely identi�es

a class of the model. MethodIdentity is used instead of MethodName as

the names of methods here play a secondary role. The appendices B.2 to

C.2 are thus included for the sake of completeness.

In Section 7 we have described the data perspective of a SOCCAmodel,

which describes a static structure of classes and their relationships. Now

we describe two more perspectives of SOCCA, which describe dynamic

aspects of SOCCA classes.

The behaviour perspective deals with visible behaviour (behaviour that

is visible to other classes); whereas the functionality perspective describes

hidden behaviour (which describes the functionality of the various meth-

ods). Later on, in the communication perspective, we describe the coor-

dination between the behaviours of objects.

The behavioural aspects of SOCCA models are speci�ed through State

Transition Diagrams (STDs): graphical diagrams containing states and

labeled transitions between them. As we see further on, our means of

expressing communication is based on STDs too.

In using STDs for the functionality perspective, SOCCA clearly di�ers

from OMT, revised OMT and UML. Originally OMT ([RBP

+

91]) used

data ow diagrams for it's \functional model". In revised OMT ([Rum96,

p. 353]), \the functional model consists of use cases and operation de-

scriptions, as well as object interaction diagrams, pseudo code designs,

and actual code to specify how they work." In UML, there is no clear

equivalent for the functionality perspective. UML is only a notation; it

o�ers several ways of expressing some perspectives; there is no associated

method that clari�es which language elements are to be used for what

perspective. For instance, UML still has data ow diagrams, but for the

description of behaviour perhaps statecharts can be used as an alternative.

B.1 STDs

In Computer Science, behaviour is often expressed through abstract ma-

chines from Formal Language Theory (such as Turing machines, �nite

state machines or stack automata; see e.g. [HU79]). In these abstract

machines, there is a �nite control operating on a possibly potentially in-

�nite storage structure. In the PARADIGM formalism ([Gro88]), which is

the basis of the communication perspective of SOCCA, behaviour was ex-

pressed through semi-Markov decision processes, a formalism well-known

in Operational Research which can express stochastic behaviour.

STDs are used in SOCCA because they are a mid-way compromise

30

between semi-Markov decision processes and computer science automata

models. They are quite close to the �nite state machines (FSMs) familiar

to computer scientists, but are allowed to have an in�nite state space (of

the control | there is no additional storage structure), they can express

non-determinism (as can many other automata models), but they lack

expressive power for describing true stochastics which semi-Markov deci-

sion processes have. Because STDs are quite similar to FSMs, which are

common throughout computer science, we describe them in an FSM-like

manner. To emphasise the distinction between the type level and the in-

stance level, we distinguish between STDs (on the type level) and STMs

(state transition machines, \STDs in action" on the instance level).

The way in which we use STDs in the formalisation of SOCCA is di�er-

ent from that in Formal Language Theory. In Formal Language Theory,

STDs are primarily devices for generating languages, whose internal struc-

ture doesn't matter much (often STDs are considered equivalent when

they generate the same language, which means no attention is given to

the exact sequence(s) of states involved in generating or recognising a par-

ticular word). In SOCCA the precise structure of STDs is highly relevant,

as we focus on communication between STMs, STDs in action. The pos-

sible behaviours allowed by a SOCCA model result from the interaction

between STMs.

An STD consists of a set of states (some marked as initial and/or

�nal) and a transition relation between states marked with symbols; a

function doesn't su�ce as an STD may be non-deterministic. It provides

a static description of behaviour on the type level, i.e. it describes all

possible behaviours, rather than any particular behaviour that is actually

occurring in an instance.

We introduce a type for the states of STDs.

[STATE]

Transitions can in general be labeled with plain method identities (in

external STDs), \act" labels (in internal STDs; they indicate the acti-

vation of the STDs behaviour), or \call" labels (in internal STDs). It

is often desirable to have the option not to label transitions; for this we

include �.

SYMBOL ::= mlhhMethodIdentityii

j � j acthhMethodIdentityii j callhh(ClassIdentity �MethodIdentity)ii

j OTHER

Once more, note that as opposed to [DGSK

+

99] we de�ne calls to

be of type ClassIdentity � MethodName as opposed to ClassName �

MethodName. This is because class names no longer uniquely identify

a class for a model since the addition of packages. We remedy this by

working with class identity. Furthermore, note that we continue to work

with calls on internal stds of the form call ClassIdentity x MethodIdentity

while only the MethodIdentity would su�ce. This is done as otherwise

this document would deviate too far from [DGSK

+

99] and secondly this

approach would not be in the spirit of the rest of the work on SOCCA.

31

With SYMBOL de�ned, we describe the structure of an STD in general

(on the meta class diagram level):

MetaSTD

states : F STATE

labels : F SYMBOL

transrel : (STATE � SYMBOL)$ STATE

initial : F STATE

�nal : F STATE

initial [�nal � states

states 6= ?) initial 6= ?

transrel � (states � labels) � states

labels = fl : SYMBOL j 9 s

1

; s

2

: states � ((s

1

; l); s

2

) 2 transrelg

And adding identity to MetaSTD, we get regular STDs.

[STDIdentity]

STD

Identity : STDIdentity

MetaSTD

� STATE is the type of states in STDs; states is the set of actual

states in a speci�c STD. Therefore, both initial and �nal have to be

in states.

� STDs may have multiple initial and �nal states.

� Often, but not always states 6= ?, initial 6= ?, �nal 6= ?.

It is sometimes useful to be able to work with the edges directly, dis-

regarding their labels.

edges : STD ! (STATE $ STATE)

8 std : STD �

edges std = fe : STATE � STATE j 9 p; q : STATE j

e = (p; q) � (9 sym : SYMBOL � (p; sym) 7! q 2 std :transrel)g

To describe the realisation of behaviour of objects on the instance level,

we de�ne State Transition Machines (STMs): abstract processors that run

exactly one program; this program is described by an STD. Like for the

STDs they are instances of, we do not require STMs to be �nite (although

they almost always are �nite in practice). As we shall see, a particular

object may have multiple STMs running simultaneously, allowing it to be

multi-threaded.

32

B.2 The behaviour perspective: External behaviour

STDs

With each class, we associate an STD that speci�es the external behaviour.

The external behaviour STD of a class describes behaviour that is visible

to other classes, namely the order in which calls to methods the class

exports are accepted. Note that a class may also export methods to itself

(e.g. if one object of a class may call the method of another object of the

same class, or for when one method of an object calls another method of

the same object).

Edges in the external behaviour STD of a class are unlabeled or labeled

with the identities of operations exported by that class to other classes or

itself:

ExternSTD : F STD

8 s : ExternSTD � s:labels � ranml [f�g

BehaviourPerspective

DataPerspective

externalbehaviour : Class $ STD

externalbehaviour � ContainedClasses TopPackage � ExternSTD

8 c : ContainedClasses TopPackage; m : MethodIdentity � #festd : STD j (c; estd) 2 externalbehaviour ^ ml m 2 estd :labelsg � 1

8 c : ContainedClasses TopPackage � fm : MethodIdentity j 9 estd : STD j (c; estd) 2 externalbehaviour � ml m 2 estd :labelsg � c:methods

� Note that not all the method identities need to occur in the external

behaviour STD.

� Note that even when a method name is used in the external be-

haviour STD, there is no guarantee a call to it will ever be handled.

An external behaviour STD merely constrains the order in which

calls may be accepted.

� We allow for multiple external STDs. This feature has already

proven useful in thesis projects [Wil95, vdZ96]. This feauture proves

useful for the de�nition of the CLD of a package.

B.3 The Functionality perspective: Internal be-

haviour STDs

With each method of a class, we can associate an internal behaviour STD

that describes how that method is realised.

An internal behaviour STD's transitions are labeled with method calls

to methods of the class it belongs to and methods exported to that class

by other classes (or itself). Unlike other formalisms, in SOCCA methods

within a class are not automatically available for use within other methods

of the same class; there has to be a suitably labeled uses relation from

the class to itself.

The transitions in an internal behaviour STD may be labeled with \act

methodidentity" (indicating activation of the execution of methodidentity)

33

or \call class.methodidentity" (indicating a request to start the execution

of methodidentity).

InternSTD : F STD

8 s : InternSTD � s:labels � f�g [(ran act) [(ran call)

8 s : InternSTD � 8 l : s:labels; i : s:initial ; st : s:states j (i ; l) 7! st 2 s:transrel � st 62 s:initial

8 s : InternSTD � (8 s

1

; s

2

: s:states; l : s:labels j (s

1

; l) 7! s

2

2 s:transrel ^ l 2 ran act � s

1

2 s:initial)

� Initial states do not connect to each others.

� All transitions from an initial states are labeled with an \act" label.

With STDs de�ned, we can now de�ne the FunctionalityPerspective:

FunctionalityPerspective

BehaviourPerspective

internalbehaviour : (Class �MethodIdentity) 7! STD

dom internalbehaviour =

fr : Class �MethodIdentity j

(9 c : Class; m : MethodIdentity j (c 2 ContainedClasses TopPackage) ^ (m 2 c:methods) � r = (c;m))g

fi : InternSTD j

(9 c : Class; m : MethodIdentity j

(c 2 ContainedClasses TopPackage) ^ (m 2 c:methods) � internalbehaviour(c;m) = i)g �

InternSTD

8 c : ContainedClasses TopPackage � 8m : c:methods; std : STD

j std = internalbehaviour(c;m) �

(8 i : std :initial ; s : std :states; l : std :labels j ((i ; l) 7! s) 2 std :transrel � l = act m)

8 c; d : ContainedClasses TopPackage �

useslabel(c; d) =

fn : MethodIdentity j 9m : c:methods; std : STD �

internalbehaviour(c;m) = std ^

call (d :identity ; n) 2 std :labelsg

8 c : ContainedClasses TopPackage; m : MethodIdentity ; s : STD j s = internalbehaviour(c;m) �

ml m 2 (externalbehaviour c):labels

� The transition(s) in the internal STD of a method m starting at an

initial node are labeled with \act m", indicating activation of the

method invocation. Usually, there is only one initial node, but we

haven't ruled out multiple initial nodes.

� Invocations of other methods are indicated by

\call ClassIdentity.MethodIdentity".

This import is precisely what the uses relationship describes.

� Methods for which an implementation (STD) is provided, must occur

as labels in an external STD of the class they belong to.

34

When specifying the instance level, we show invocations of methods

of particular objects are done. At that point, we also see how the visi-

bility restrictions dealing with objects (calls to private members of other

objects are disallowed, are implemented. For now, we restrict ourselves

to indicating only the class of objects whose methods are invoked.

C The communication perspective

The communication perspective in SOCCA expresses how communication

between instances of classes occurs. It is based on PARADIGM [Gro88].

As with the behaviour and functionality perspectives, we use concepts

based on STDs in our description, rather than ones based on semi-Markov

decision processes. We need to introduce several notions before we can

address the communication perspective.

C.1 Intuitive description

The communication perspective is where SOCCA di�ers the most from

other object oriented modeling languages. If presented in a purely factual

or formal way, it can be quite daunting. Therefore we'll give you a rough

sketch of the intuition underlying it �rst.

A fundamental observation about communicating processes is that

their behaviour can be viewed as having two levels. The �rst is the level

of local behaviour which describes the pieces of behaviour that the process

may have which do not require communication with other processes. Such

local behaviour has

parts in which no communication is desired, and no coordination is

necessary, and

parts

in which communication is desired to arrange coordination to prepare

the way for another piece of local behaviour. Until this communication

has taken place, the process is restricted to the current piece of local

behaviour. The second, more abstract, level is that of global behaviour

which describes how the processes' behaviour through coordination by

communication may be switched from one piece of local behaviour to

another.

As we have seen earlier, in SOCCA we describe the global behaviour

of classes through an external STD, and the local behaviour of methods

through internal STDs. The di�erent parts of local behaviour we describe

by subprocesses and traps. A subprocess describes a temporary restric-

tion of behaviour, a piece of local behaviour. A trap de�nes the part of a

subprocess where coordination is desired.

Example In �gure C.1, a simple STD is shown (labels are left out to

keep things simple), together with two possible subprocesses and their

traps. The traps are shown as shaded areas. When more than one trap

is presented with a subprocess, they are often given numbers. The sub-

processes are partial versions of the original STD (disregarding initial and

�nal states).

35

(a) Full STD

(b) Subprocess 1

(c) Subprocess 2

Figure 11: An STD with two subprocesses

2

In light of communication, we distinguish two roles of STDs: employee

andmanager. An employee is an STD augmented by a structure of subpro-

cesses and traps known as a partition and trap structure. An employee is

managed by a manager (meaning the manager prescribes when and which

transitions the employee may make between its subprocesses). The man-

ager is an STD augmented with two functions. One, the state interpreter,

which maps its states to prescribed subprocesses, and one, the action in-

terpreter, which labels its transitions with traps that its employee(s) must

have reached for the transition to be allowed.

In SOCCA, the external STDs form the basis for the managers, and

the internal STDs for the employees. This imposes more structure than

in PARADIGM, where the choice of managers and employees was up to

the modeler.

The notions of employee and manager are dual: an equally valid view

on a given model is that the employees manage their manager. For PARA-

DIGM, this has been proved in [Mor93]. Using this duality, the concepts of

employee and managers can be formalised more symmetrically; we don't

do this, as this view is somewhat less natural.

There is a behavioural consistency that works in both directions: an

employee's behaviour obeys the restriction imposed by the current sub-

process prescribed by the manager, while the manager's behaviour obeys

the restrictions imposed by subprocesses (not making a transition labeled

with a trap that hasn't been reached yet).

By itself, PARADIGM lacks the structure provided object orientation

of SOCCA and thus allows the modeler very large degrees of freedom

in modeling. In SOCCA this freedom has been restricted through the

object oriented structure, making it more manageable. In SOCCA, the

modeler no longer has the freedom of choosing employee and manager

roles arbitrarily: a class' external STD(s) gets the role of manager of the

internal STD(s): the external STDs receive messages (calls) and start up

behaviours of internal STDs to handle them.

Example As an illustration of how the communication perspective in

SOCCA is used, consider the following situation: we have two classes, A

and B. Method A.Caller needs to perform a synchronised call to method

B.Callee, i.e. it calls Callee and has to wait until that call has been handled

36

completely.

act caller call callee

(a) STD

act caller

T1

call callee

(b) First subprocess R

1

act caller

T2

(c) Second subprocess R

2

Figure 12: Caller

Caller 's STD is depicted in �gure 12(a). It has a fairly simple struc-

ture: activation, call Callee, some internal stu�, and repeat when desired.

The handling of the call to Callee induces two subprocesses: one,

R

1

(depicted in �gure 12(b)) in which the actual call is allowed and in

which the trap T1 expresses the waiting for the call to �nish; the other,

R

2

(depicted in �gure 12(c)) in which permission to perform the call is

temporarily revoked; its big trap T2 indicating its willingness to regain

that permission as soon as possible.

act callee

(a) STD

T3

(b) First subprocess E

1

act callee

(c) Second subprocess E

2

Figure 13: Callee

Callee's structure is more simple than Caller 's: activation, and inter-

nal stu� (see �gure 13(a)). Like in Caller, the synchronised way we want

to call it induces two subprocesses: the �rst, E

1

(in �gure 13(b)) in which

Callee waits to perform its activities; the second, E

2

(in �gure 13(c)) in

which performs them.

In this example, there is just one designated trap for each subprocess;

this need not be in the general case: there can be more than one designated

trap.

In �gure 14(b), a suitable manager is depicted. The state and tran-

sition interpreters are indicated by an appropriate labelling of the states

and transitions respectively.

2

C.2 Formal description

Subprocess The basic idea is that a process's full behaviour is de-

scribed by an STD, but that most of the time it is useful to view a process

37

ε

ε

callee

(a) External STD of A

R1E2

R1E1
{T1,T3}

{T1,T4}

{T2}

R2E1

(b) Corresponding

manager

as being in a subprocess of that STD. A subprocess functions as a tem-

porary restriction on what behaviour the process is allowed to exhibit. It

is an STD too.

Communication between processes is required to make a switch be-

tween subprocesses.

isSubProcessOf : STD $ STD

8 std ; subp : STD � subp isSubProcessOf std ,

subp:states � std :states ^

subp:labels � std :labels ^

subp:transrel � std :transrel \ ((subp:states � subp:labels) � subp:states)

� Note that the initial and �nal states of a subprocess of an STD are

not required to come from that STD: a subprocess has its own initial

and �nal states, unrelated to those of the STD it relates to.

� It is easy to see that S isSubProcessOf S . An STD is its own trivial

subprocess.

Trap A trap is a set of states within a particular subprocess that, once

reached, cannot be left while the behaviour restriction expressed by the

subprocess holds. The traps a modeler chooses indicate that a process is

ready to switch from one subprocess to another. That a subprocess has

reached a trap, does not mean that it is idle. It can still perform useful

actions. That it has reached a trap merely means that it has entered a

�nal phase of the behaviour restriction imposed by the subprocess the

trap belongs to.

We introduce a relation to check if a particular set of states is a trap

of an STD:

38

isTrapOf : F STATE $ STD

8S : F STATE � 8 std : STD � S isTrapOf std ,

S 6= ? ^ (8 s; t : std :states �

8 l : std :labels j

s 2 S ^ ((s; l); t) 2 std :transrel � t 2 S)

� It is easy to see that std.states isTrapOf std. This is known as the

trivial trap: the trap consisting of all states of a subprocess.

A trap can lead from a subprocess to another subprocess.

isTrapConnectionOf : STD � F STATE � STD $ STD

8 std ; subp

1

; subp

2

: STD ; trap : F STATE �

(subp

1

; trap; subp

2

) isTrapConnectionOf std ,

(subp

1

isSubProcessOf std ^

subp

2

isSubProcessOf std ^

trap isTrapOf subp

1

^

((subp

1

= subp

2

) _ (trap � subp

2

:initial ^ trap � subp

1

:�nal)))

Partition and Trap Structure Often we consider an STD with a

particular set of associated subprocesses that \cover" the STD. Such a

set of subprocesses, each with its own set of traps is known as a partition

and trap structure of that STD.

Such a structure shows how the behaviours of the STD are parti-

tioned in the light of communication. The modeler has degrees of freedom

in choosing the subprocesses, and within them, in choosing the relevant

traps.

We de�ne a relation to check if a set of STDs and set of states is indeed

a partition and trap structure of a given STD:

isPartitionAndTrapStructureOf : (F(STD � F(F STATE)))$ STD

8 part : F(STD � F(F STATE)); std : STD �

(part ; std) 2 isPartitionAndTrapStructureOf ,

fstate : STATE j 9 partstd : part � state 2 (�rst partstd):statesg = std :states ^

S

ftrans : (STATE � SYMBOL)$ STATE j

9 partstd : (STD � F(F STATE)) � trans = (�rst partstd):transrelg = std :transrel ^

(8 subp : STD ; traps : F(F STATE) j (subp; traps) 2 part �

subp isSubProcessOf std ^

(8 trap : F STATE j trap 2 traps �

trap isTrapOf subp ^

(9 subp

2

: STD ; traps

2

: F(F STATE) j

(subp

2

; traps

2

) 2 part �

(9 ctrap : traps

2

� (subp; ctrap; subp

2

) isTrapConnectionOf std))))

� The subprocesses in the partition and trap structure cover the STD

in both states and labels.

� The subprocesses are connected via traps.

39

� In the graphical notation, traps are named; in the abstract Z syntax

there is no need to name them, as they are uniquely identi�ed within

their STDs.

� The connection constraint is local only; we do not impose a reachabil-

ity constraint between subprocesses in a partition and trap structure

in general.

Employee process An STD with a partitioning into subprocesses,

each with a set of traps that connects it to the others, is known as an

employee (process).

employee

std : STD

pts : F(STD � (F(F STATE)))

pts isPartitionAndTrapStructureOf std

Often, the employees follow the pattern of having two subprocesses,

one containing the \act" label(s) (corresponding to \starting"), one with-

out (corresponding to \functioning"). Discussion of such patterns is out-

side the scope of this paper; we refer you to [Bru98].

Manager process A manager (process) is an STD that describes the

coordination that takes place when employee processes change subprocess.

The states of a manager are used to prescribe the subprocesses of its

employees; the transitions of a manager are labeled with the traps (of its

employees) that need to be reached before the transition is possible.

With each manager, for each of his employees, comes a state and transi-

tion interpreter which describes how the manager relates to the employee:

it maps each state of the manager STD to the subprocesses it prescribes

to the employee and maps each transition label of the manager STD to

the traps of this particular employee that have to be reached in order for

the transition to be allowed.

Example See �gure 14(b). The state interpreter labels each state of

the manager STD with the subprocesses the manager in that state pre-

scribes to its employees. Similarly, the transition interpreter labels each

transition of the manager STD with the set of traps of its employees that

have to be reached for the transition to be allowed. 2

In earlier SOCCA publications, this was termed the state action inter-

preter. The term \action" originates in decision process theory; in light

of our use of STDs, the term \transition" is clearer. Also, originally the

state action interpreter described the relation between a manager and all

its employees. In the formalisation, it is more convenient to split this out

for each employee, and distinguish the state and transition parts of the

state and transition interpreter.

We use abbreviation de�nitions to make state and transition inter-

preters more visible:

40

stateint == STATE 7! STD

transint == (STATE � SYMBOL)� STATE 7! (F STATE)

manager

std : STD

empsti : seq(employee � stateint � transint)

(8 i : 1 : :#empsti �

(8 e : employee; si : stateint ; ti : transint j (e; si ; ti) = empsti i �

dom si = std :states ^

dom ti = ft : (STATE � SYMBOL)� STATE j

9 s

1

; s

2

: std :states; sym : SYMBOL �

t = ((s

1

; sym); s

2

) ^ t 2 std :transrelg ^

(8 s

1

; s

2

: std :states; sym : std :labels j ((s

1

; sym); s

2

) 2 std :transrel �

si s

1

isSubProcessOf e:std ^

si s

2

isSubProcessOf e:std ^

ti ((s

1

; sym); s

2

) isTrapOf si s

1

^

(si s

1

; ti ((s

1

; sym); s

2

); si s

2

) isTrapConnectionOf e:std)))

� The state interpreters map states of the manager to appropriate

subprocesses of the employee at hand.

� The action interpreters map transitions of the manager to appropri-

ate traps of the employee at hand.

� All transitions in the manager's STD, interpreted to any of them

employees involved, corresponds to a proper connection between two

(possibly identical) subprocesses via a relevant trap (possibly the

trivial one).

And we de�ne some auxiliary functions to handle managers more eas-

ily; one to get a manager's employees:

HasEmployees : manager ! F employee

8m : manager �

HasEmployees m =

fi : employee j 9 si : stateint ; ti : transint �

(i ; si ; ti) 2 ranm:empstig

and one for the reverse:

HasManagers : employee ! F manager

8 e : employee; m : manager �

m 2 HasManagers e , e 2 HasEmployees m

Now we can put these concepts together to express the communication

perspective. The internal STDs of the various methods are employees of

the external STD of their class acting as manager.

41

CommunicationPerspective

DataPerspective

BehaviourPerspective

FunctionalityPerspective

managers : F manager

employees : F employee

externalstds : F STD

internalstds : F STD

asmanager : STD 7! manager

asemployee : STD 7! F employee

externalstds = ran externalbehaviour

internalstds = ran internalbehaviour

8m : managers � 9 estd : externalstds � m:std = estd

8m : managers � HasEmployees m 6= ?

8 e : employees � HasManagers e 6= ?

8 e : employees � 9 istd : internalstds � e:std = istd

dom asmanager = externalstds ^ ran asmanager = managers

8 s : externalstds � (asmanager s):std = s

dom asemployee = internalstds

employees = fe : employee j (9 istd : dom (asemployee) � e 2 (asemployee istd))g

8 s : internalstds � 8 e : (asemployee s) � e:std = s

8 c : ContainedClasses TopPackage � HasEmployees (asmanager (externalbehaviour c)) =

fe : employees j 9mn : MethodIdentity �

((mn 2 c:methods ^ e 2 asemployee (internalbehaviour(c;mn))) _

(9 d : ContainedClasses TopPackage j

mn 2 useslabel (c; d) �

e 2 asemployee(internalbehaviour(d ;mn))))g

� The external STDs are the basis for the managers; the managers

manage the employees based on the internal STDs.

� The managers manage the employees corresponding to their class'

internal STDs and the internal STDs of methods the class uses.

Discussion Communication Perspective In this description of

the communication perspective, we have identi�ed the manager STDs

and the external STDs, as well as the employee STDs and the internal

STDs. This is a simpli�cation of the reality of modeling. In the reality

of modeling, one starts with a simple external STD which is later re-

�ned in light of communication. The resulting STD is also an external

STD, but one which is suited for the manager role. Similarly, the internal

STDs are re�ned to form the employee STDs. The precise notion of re-

�nement/extension/compatibility involved is currently understood in an

intuitive fashion only; we hope to formalise it in the future.

42

References

[00bds] Z bibliography. URL: http://www.comlab.ox.ac.uk/archive/z/bib.html,

1990 onwards.

[Bru98] H.G. Brugman. Software process modeling in SOCCA. Mas-

ter's thesis, Department of Computer Science, Leiden Uni-

versity, May 1998.

[DGSK

+

99] J.H.M. Dassen, L.P.J. Groenewegen, I.G. Sprinkhuizen-

Kuyper, P.W.M. Koopman, P.J. 't Hoen, and G. Engels.

A formalisation of SOCCA using Z; part 1: the type level

concepts. Technical Report 1999{03, Leiden Institute of

Advanced Computer Science, February 1999. Available on

the web as http://www.wi.leidenuniv.nl/TechRep/1999/

tr99-03.ps.gz.

[EG94] Gregor Engels and Luuk P.J. Groenewegen. SOCCA: Spec-

i�cations of coordinated and cooperative activities. In

A. Finkelstein, J. Kramer, and B.A. Nuseibeh, editors, Soft-

ware Process Modelling and Technology, pages 71{102. Re-

search Studies Press Ltd. / John Wiley & Sons Inc., 1994.

Taunton 1994.

[GJM91] Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli. Funda-

mentals of Software Engineering. Prentice-Hall, Inc., Engle-

wood Cli�s, 1 edition, 1991.

[Gro88] L.P.J. Groenewegen. Parallel phenomena, 1986{88. A series

of technical reports, consisting of [Gro86, Gro87c, Gro87g,

Gro87h, Gro87i, Gro87b, Gro87e, Gro87d, Gro87f, Gro88a,

Gro88b, Gro87a].

[Gro86] L.P.J. Groenewegen. Processes. Technical Report 86-20, De-

partment of Computer Science, Leiden University, 1986. Part

of [Gro88].

[Gro87a] L.P.J. Groenewegen. Changing managing cooperation in a

hierarchy. Technical Report 88-18, Department of Computer

Science, Leiden University, 1987. Part of [Gro88].

[Gro87b] L.P.J. Groenewegen. A critical section model. Technical Re-

port 87-18, Department of Computer Science, Leiden Uni-

versity, 1987. Part of [Gro88].

[Gro87c] L.P.J. Groenewegen. Decision processes. Technical Report

87-01, Department of Computer Science, Leiden University,

1987. Part of [Gro88].

[Gro87d] L.P.J. Groenewegen. Dijkstra's semaphore solution. Techni-

cal Report 87-29, Department of Computer Science, Leiden

University, 1987. Part of [Gro88].

[Gro87e] L.P.J. Groenewegen. Goeman's solution and a stochastic so-

lution. Technical Report 87-21, Department of Computer

Science, Leiden University, 1987. Part of [Gro88].

43

[Gro87f] L.P.J. Groenewegen. Lamport's bakery problem. Techni-

cal Report 87-32, Department of Computer Science, Leiden

University, 1987. Part of [Gro88].

[Gro87g] L.P.J. Groenewegen. Modelling. Technical Report 87-05,

Department of Computer Science, Leiden University, 1987.

Part of [Gro88].

[Gro87h] L.P.J. Groenewegen. Parallel processes. Technical Report

87-06, Department of Computer Science, Leiden University,

1987. Part of [Gro88].

[Gro87i] L.P.J. Groenewegen. Two examples of a parallel control pro-

cess. Technical Report 87-11, Department of Computer Sci-

ence, Leiden University, 1987. Part of [Gro88].

[Gro88a] L.P.J. Groenewegen. Trap process hierarchy: an almighty

manager. Technical Report 88-15, Department of Computer

Science, Leiden University, 1988. Part of [Gro88].

[Gro88b] L.P.J. Groenewegen. Trap process hierarchy: cooperating

managers. Technical Report 88-17, Department of Computer

Science, Leiden University, 1988. Part of [Gro88].

[HU79] John E. Hopcroft and Je�rey D. Ullman. Introduction to

Automata Theory, Languages and Computation. Addison-

Wesley, Reading, Mass., USA, 1979.

[Mey97] Bertrand Meyer. Object-oriented Software Construction.

Prentice-Hall, Inc., New York, N.Y., second edition, 1997.

[Mor93] P.J.A. Morssink. Behaviour Modelling in Information Sys-

tems Design: Application of the PARADIGM Formalism.

PhD thesis, Department of Computer Science, Leiden Uni-

versity, 1993. Co-promoter: L. Groenewegen.

[RBP

+

91] James Rumbaugh, Michael Blaha, William Premerlani, Fred-

erick Eddy, and William Lorensen. Object-Oriented Modeling

and Design. Prentice-Hall, Inc., 1991.

[RTF99] UML speci�cation v. 1.3. Technical report, OMG Uni-

�ed Modeling Language Revision Task Force (UML RTF),

June 25 1999.

[Rum96] James Rumbaugh. OMT Insights: perspectives on modelling

from the Journal of Object-Oriented Programming. Prentice-

Hall, Inc., 1996.

[Saa95] Mark Saaltink. The Z/EVES system. ftp://ftp.ora.on.

ca/pub/doc/z-eves-draft.ps.Z, September 1 1995.

[Spi92] J. M. Spivey. The Z Notation: A Reference Manual. Prentice

Hall International Series in Computer Science, 2nd edition,

1992.

[tHDG

+

a] P.J. 't Hoen, J.H.M. Dassen, L.P.J. Groenewegen, I.G.,

P.W.M. Koopman, and G. Engels. Restricted class like de-

scriptions of modules. Technical report, liacs. To Appear.

44

[tHDG

+

b] P.J. 't Hoen, J.H.M. Dassen, L.P.J. Groenewegen, I.G.

Sprinkhuizen-Kuyper, P.W.M. Koopman, and G. Engels.

Class like descriptions of SOCCA packages. Technical report,

liacs. To Appear.

[tHDG

+

c] P.J. 't Hoen, J.H.M. Dassen, L.P.J. Groenewegen, I.G.

Sprinkhuizen-Kuyper, P.W.M. Koopman, and G. Engels. Co-

ordinated model development in SOCCA_ Technical report,

liacs. To Appear.

[UML97a] Uni�ed modeling language 1.0. Technical report, Rational

Software Corporation, January 13 1997.

[UML97b] UML notation guide 1.0. Technical report, Rational Software

Corporation, January 13 1997.

[vdZ96] Jeroen van der Zon. Evolutionary change, the evolution

of change management. Master's thesis, Department of

Computer Science, Leiden University, April 1996. Inter-

nal Report IR{96{06. ftp://ftp.wi.LeidenUniv.nl/pub/

CS/MScTheses/vdzon.96.ps.gz.

[Wil95] R.F. Willemsen. TEMPO and SOCCA: Concepts, mod-

elling and comparison. Master's thesis, Department of

Computer Science, Leiden University, May 1995. Inter-

nal Report IR{95{09. ftp://ftp.wi.LeidenUniv.nl/pub/

CS/MScTheses/willemsen.95.ps.gz.

[ZZads] Z archive. URL: http://www.comlab.ox.ac.uk/archive/z.html,

1994 onwards.

45

