
Formalising Obje
t-Oriented Modelling Languages

J.H.M. Dassen

1?

, L.P.J. Groenewegen

1

, G. Engels

2

, P.J. 't Hoen

1

, P.W.M. Koopman

3

, and

I.G. Sprinkhuizen-Kuyper

4

1

Leiden University, Leiden Institute of Advan
ed Computer S
ien
e, P.O. Box 9512, 2300 RA Leiden,

The Netherlands

2

University of Paderborn, Dept. of Computer S
ien
e, D-30095 Paderborn, Germany

3

University of Nijmegen, Dept. of Computer S
ien
e, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands.

4

Universiteit Maastri
ht, Institute for Knowledge and Agents Te
hnology, P.O. Box 616, 6200 MD Maastri
ht,

The Netherlands

Abstra
t. The semanti
s of obje
t-oriented modelling languages is often only given by informal

means, su
h as text in a natural language. This makes obje
t-oriented models developed in these

modelling languages less pre
ise, 
lear and unambiguous than is desirable.

We show how the stati
 semanti
s of an advan
ed obje
t-oriented language 
an be de�ned a

u-

rately. This formal de�nition of the language strongly in
reases the value of the models developed

in this language: the meaning of these models is now unambiguously de�ned.

We use a separate language for the formal spe
i�
ation of the language in order to avoid the known

problems with de�ning the semanti
s of a language in the language itself (su
h a re
ursive de�nition

introdu
es an unknown amount of poorly de�ned 
on
epts).

The stru
ture of the formalisation employs a meta level, rather than a transformational approa
h.

This eliminates issues regarding the semanti
s of a target language and yields a more abstra
t and

rigorous spe
i�
ation whi
h is also better suited for use in the development of tools that employ

the modelling language. We use the spe
i�
ation language Z as it has a high abstra
tion level, is

widely used, and has a sound mathemati
al foundation. Additionally, there is a standard de�nition

of Z, and tool support is available. Tools support has proven itself to be valuable.

We use SOCCA as the obje
t-oriented modelling language sin
e it has very powerful 
apabilities

to express and 
ontrol 
oordination and 
ommuni
ation between obje
ts. We give an intuitive

des
ription of SOCCA's approa
h to 
ommuni
ation and dis
uss the formalisation of its stati


semanti
s.

1 Why formalise obje
t-oriented modelling languages?

The primary goal in developing a modelling language is to make it possible to model parti
ular

situations in pre
ise, 
lear and unambiguous terms. For this, it is important that the modelling

language itself be pre
ise, 
lear and unambiguous, powerful and yet still easy to use. The mod-

elling language is a vehi
le for 
ommuni
ation between and among the modellers, 
lients and

implementors; the 
on
epts it supports in
uen
e how modellers do their job.

An essential requirement for the modelling language to be 
lear is that the modellers (and

automated agents involved) have identi
al notions of the semanti
s of the modelling language

(and thus of individual models). The availability of a de�nite des
ription of both syntax and

semanti
s of the language is essential.

Nowadays there is in
reased interest in rigorously de�ning the semanti
s of modelling lan-

guages using formal spe
i�
ation languages, for several reasons. One is that tool support for

?

Please use the primary author's 
onta
t address: jdassen�wi.LeidenUniv.nl



a modelling language is a ne
essity for industry a

eptan
e of a modelling language. Industry

relies heavily on the availability of tools throughout a large part of the software life 
y
le. Inter-

operability between tools is ne
essary in su
h a 
ontext. A formal spe
i�
ation of the modelling

language 
an play an important role in a
hieving this interoperability.

Another reason is the 
urrent push to standardise on UML as a modelling language. UML

is quite large (as it is essentially a union of several prede
essor modelling languages), and

not very well understood yet. A 
lear semanti
s is ne
essary to prevent splintering and tool

interoperability problems due to di�erent interpretations.

Finally, modelling languages are interesting test 
ases for the formal methods 
ommunity.

Formal methods have matured over re
ent years, and in the formal methods 
ommunity there is

a feeling that formal methods have now rea
hed suÆ
ient maturity to be 
apable of spreading

beyond the fairly small number of appli
ation domains that 
urrently employ them [NAS95,

C

+

97℄.

In this paper, we use the obje
t-oriented modelling language SOCCA, whi
h we prefer for

its expressive power for modelling 
ommuni
ation and 
oordination between obje
t. In addition

to the general reasons for formalising obje
t-oriented modelling languages, there are SOCCA-

spe
i�
 ones. SOCCA's approa
h to modelling 
ommuni
ation and 
on
urren
y, dis
ussed in

Se
tion 6, is based on PARADIGM [GSO86℄, a formalism rooted in the mathemati
al frame-

work of semi-Markov de
ision pro
esses. So far, PARADIGM has mostly been des
ribed in these

mathemati
al terms, making a

eptan
e in Computer S
ien
e diÆ
ult. The formalisation e�ort

provides an opportunity to do away with PARADIGM spe
i�
s that have be
ome lega
y in the


ontext of SOCCA, and allows us to re-phrase PARADIGM as used in SOCCA's 
ommuni
a-

tion perspe
tive using 
on
epts more 
ommon in Computer S
ien
e, su
h a State Transition

Diagrams (STDs).

First we dis
uss the what and how of formalising an obje
t-oriented modelling language and

our 
hoi
e of formal spe
i�
ation language. Then we look at the formalisation of our obje
t-

oriented modelling language, SOCCA reported on in our report [DGSK

+

99℄.

2 What is to be formalised?

It is our goal to des
ribe both the underlying 
ontext-sensitive syntax (stati
 semanti
s) and

the (dynami
) semanti
s of SOCCA using a single formalism. Of this goal, the �rst part has now

been realised: in our report [DGSK

+

99℄ we give the stati
 semanti
s of SOCCA in the form of

Z s
hemata. This provides the basis for realising the se
ond part of our goal: the des
ription of

the dynami
 semanti
s of SOCCA.

In this paper, we motivate design de
isions made in the formalisation, provide an overview

of the formalisation, and highlight some key parts.

3 How to formalise obje
t-oriented modelling languages

Several approa
hes to formalising the semanti
s of obje
t-oriented modelling languages appear

in the literature. It is interesting to look at the 
hoi
es we made for our SOCCA formalisation

along the following lines:



{ The language being formalised.

{ The language in whi
h the semanti
s is expressed.

{ The level at whi
h the formalisation is 
arried out.

We do this by putting our approa
h in the 
ontext of the literature.

UML's meta
lass diagram and OCL. UML's authors have expressed UML's semanti
s in UML

itself augmented with a logi
 notation. More rigour and formality is required of a good semanti
s.

The limitation of this \re
exive" approa
h to formalisation is that it does not for
e one to step

outside the 
on
epts of the language being formalised. Formalisation into a language based on

a di�erent paradigm does for
e one to pay more attention to the underlying 
on
epts of the

modelling language.

Semanti
s in 
on
urren
y formalisms. SOCCA has a strong emphasis on pre
ise modelling of


on
urrent behaviour and 
ommuni
ation. One might argue that formalising into a formalism

more geared towards 
on
urren
y than Z is appropriate. The use of su
h formalisms, like Petri

Nets, CCS and CSP might simplify the e�ort in formalising these important aspe
ts of SOCCA.

There are two reasons why we do not 
onsider them ideally suited for formalising SOCCA.

The �rst is that SOCCA's 
ommuni
ation perspe
tive, being based on PARADIGM, o�ers


on
epts not readily available in other 
on
urren
y formalisms (we des
ribe these 
on
epts in

Se
tion 6). Thus, a dire
t formalisation of SOCCA's 
ommuni
ation perspe
tive into a 
on
ur-

ren
y formalism is 
umbersome. Z, being a more general purpose spe
i�
ation formalism, allows

us to express SOCCA's 
ommuni
ation 
on
epts in a 
learer way, as it does not for
e us to

�t them in another 
on
urren
y approa
h's mould. As the 
ommuni
ation 
on
epts are where

SOCCA di�ers most from other approa
hes, this is quite important.

The se
ond reason is that 
on
urren
y formalisms are less generi
 than Z. While they are

perhaps suitable for formalisation of the 
ommuni
ation perspe
tive of SOCCA, employing them

would make it quite diÆ
ult to address the other perspe
tives of SOCCA, whi
h is ne
essary to

provide an integrated semanti
s of the whole of SOCCA.

Thus, 
hara
teristi
s of the modelling language being formalised should be taken into a

ount

for the 
hoi
e of spe
i�
ation formalism.

The level of the formalisation. [EA98℄ identi�es two levels of abstra
tion for a formalisation of

a modelling language: through a translational approa
h or at the meta level.

In the translational approa
h, the fo
us is on how to translate individual models to spe
i�-


ations (e.g. by translating ea
h 
lass to a Z s
hema).

In the meta level approa
h, the fo
us is on translating a language to a single spe
i�
ation,

rather than models ea
h to a spe
i�
ation of their own. This approa
h 
an be extended to

develop a translational approa
h.

In formalising SOCCA, we have 
hosen the meta level approa
h: we fo
us on formalising the

SOCCA language itself, rather than on formalising SOCCA models. This yields a more abstra
t

semanti
s whi
h may be more diÆ
ult to use with generi
 tools, but whi
h is more rigorous and

better suited as a basis for the development of SOCCA spe
i�
 tools.



4 The formal spe
i�
ation language Z

The formalisation of SOCCA is being 
arried out in the formal spe
i�
ation language Z [Spi92,

ZZads℄.

Several fa
tors positively in
uen
ed our 
hoi
e of Z as the spe
i�
ation language, in
luding

its abstra
tion level, widespread use, strong mathemati
al foundation, level of standardisation

and availability of tool support.

5 The stru
ture of the SOCCA modelling language

Although obje
t-oriented modelling has proven itself to be a useful pra
ti
al approa
h to ta
kling

the issues of analysing, designing, spe
ifying and implementing 
omplex software systems, there

is still room for improvement. One of the ways in whi
h we want to improve obje
t-oriented

modelling is in the des
ription of and 
ontrol over the 
ommuni
ation of obje
ts exe
uting in

parallel.

SOCCA (Spe
i�
ation of Coordinated and Cooperative A
tivities) [EG94℄ is both a language

and a method for obje
t-oriented modelling. Here we deal only with the SOCCA language. It is

e
le
ti
: it 
ombines proven features from other obje
t-oriented modelling languages in several

perspe
tives that address di�erent aspe
ts of a model. In addition to a data perspe
tive, behaviour

perspe
tive and a fun
tionality perspe
tive that use 
on
epts well-known from languages like

OMT and UML, it has a 
ommuni
ation perspe
tive that provides a powerful me
hanism to

des
ribe and 
ontrol 
ommuni
ation between obje
ts (see e.g. [EGK96, EGK99℄). This ability

to model 
oordinated behaviour to any desired degree is of parti
ular importan
e for use in the

domain of work
ow modelling. The 
ommuni
ation 
on
epts in this 
ommuni
ation perspe
tive

are extensions of the 
on
epts of state transition diagrams and state transition ma
hines that

are used in the behaviour and fun
tionality perspe
tives.

SOCCA has been used in several industry proje
ts and is the subje
t of ongoing resear
h;

one of the resear
h proje
ts works towards 
apturing the syntax and the semanti
s of SOCCA

(and thereby, of SOCCA models) in a formal spe
i�
ation method.

Currently, we have 
ompleted the formalisation of the type level of SOCCA [DGSK

+

99℄,

i.e. we have given a 
ontext-sensitive syntax of the SOCCA language through Z s
hemata that


aptures its stati
 semanti
s (i.e. what are synta
ti
ally valid SOCCA models).

We have formalised the 
on
epts of ea
h of SOCCA's perspe
tives:

The data perspe
tive whi
h fo
uses on the stati
, stru
tural aspe
ts of models with 
on
epts

like attributes, methods, 
lasses, relationships, inheritan
e, aggregation, uses relationship

and binding.

The behaviour perspe
tive whi
h fo
uses on dynami
 aspe
ts of individual 
lasses and ob-

je
ts whi
h are made available to other 
lasses and obje
ts through the 
on
ept of external

behaviour STDs.

The fun
tionality perspe
tive whi
h fo
uses on dynami
 aspe
ts of individual 
lasses and

obje
ts that are internal to them through the 
on
ept of internal STDs.

The 
ommuni
ation perspe
tive whi
h fo
uses on the 
ommuni
ation between individual


lasses and obje
ts through the notions of subpro
ess, trap, partition and trap stru
ture,



employee pro
ess and manager pro
ess. In Se
tion 6 we des
ribe these notions in an intuitive

way, and in Se
tion 7 we show part of their formalisation.

Also, we have des
ribed how the perspe
tives relate to ea
h other. For instan
e, we have

des
ribed how managers in the 
ommuni
ation perspe
tive are based on external STDs from

the behaviour perspe
tive.

In the next se
tions, we will give an intuitive des
ription of SOCCA's most interesting feature,

its 
ommuni
ation perspe
tive, and show part of its formalisation.

6 SOCCA's 
ommuni
ation perspe
tive: intuitive des
ription

The 
ommuni
ation perspe
tive is where SOCCA di�ers the most from other obje
t-oriented

modelling languages. Here we sket
h the intuition underlying the 
ommuni
ation perspe
tive

and its formalisation.

A fundamental observation about 
ommuni
ating pro
esses is that their behaviour 
an be

viewed as having two levels. The �rst is the level of lo
al behaviour whi
h des
ribes the pie
es of

behaviour that the pro
ess may have whi
h do not require 
ommuni
ation with other pro
esses.

Su
h lo
al behaviour has parts in whi
h no 
ommuni
ation is desired, and no 
oordination is

ne
essary, and parts in whi
h 
ommuni
ation is desired to arrange 
oordination to prepare the

way for another pie
e of lo
al behaviour. Until this 
ommuni
ation has taken pla
e, the pro
ess

is restri
ted to the 
urrent pie
e of lo
al behaviour. The se
ond, more abstra
t, level is that of

global behaviour whi
h des
ribes how the pro
esses' behaviour may be swit
hed from one pie
e

of lo
al behaviour to another through 
oordination by 
ommuni
ation.

In SOCCA we des
ribe the global behaviour of 
lasses through an external STD, and the

lo
al behaviour of methods through internal STDs. The di�erent parts of lo
al behaviour we

des
ribe by subpro
esses and traps. A subpro
ess des
ribes a temporary restri
tion of behaviour,

a pie
e of lo
al behaviour. A trap de�nes the �nal part of a subpro
ess where 
oordination is

desired; it is a set of states that 
annot be left within the subpro
ess.

Example 1. In �gure 1, a simpli�ed STD is shown (labels are left out), together with two possible

subpro
esses and some of their traps (shown as shaded areas). When more than one trap is

present within a subpro
ess, they are given numbers. The subpro
esses are partial versions of

the original STD (disregarding initial and �nal states).

(a) Full STD

(b) Subpro
ess 1

(
) Subpro
ess 2

Fig. 1. An STD with two subpro
esses



In light of 
ommuni
ation, we distinguish two roles of STDs: employee and manager. An

employee is an STD augmented by a stru
ture of subpro
esses and traps known as a partition and

trap stru
ture. It is managed by a manager (meaning the manager pres
ribes whi
h transitions

between its subpro
esses an employee may do, and when it may do so). The manager is an

STD augmented with two fun
tions: the state interpreter, whi
h maps its states to pres
ribed

subpro
esses, and the transition interpreter, whi
h labels its transitions with traps that its

employees must have rea
hed for the transition to be allowed.

In SOCCA, the external STDs form the basis for the managers, and the internal STDs for

the employees.

There is a behavioural 
onsisten
y that works in both dire
tions: an employee's behaviour

obeys the restri
tion imposed by the 
urrent subpro
ess pres
ribed by the manager, while the

manager's behaviour obeys the restri
tions imposed by the subpro
esses of its employees (not

making a transition labelled with a trap that has not been rea
hed yet).

By itself, PARADIGM la
ks the stru
ture provided by the obje
t orientation of SOCCA

and thus allows the modeller very large degrees of freedom. In SOCCA this freedom has been

restri
ted through the obje
t oriented stru
ture, making it more manageable. In SOCCA, the

modeller no longer has the freedom of 
hoosing employee and manager roles arbitrarily: a 
lass'

external STD(s) gets the role of manager of the internal STD(s): the external STDs re
eive

messages (
alls) and start up behaviours of internal STDs to handle them.

Example 2. As an illustration of how the 
ommuni
ation perspe
tive in SOCCA is used, 
onsider

the following situation: we have two 
lasses, A and B. Method A.Caller needs to perform a

syn
hronised 
all to method B.Callee, i.e. it 
alls Callee and has to wait until that 
all has been

handled 
ompletely.

act caller call callee

(a) STD

act caller

T1

call callee

(b) First subpro
ess R

1

act caller

T2

(
) Se
ond subpro
ess R

2

Fig. 2. Caller

Caller 's STD is depi
ted in �gure 2(a). It has a fairly simple stru
ture: a
tivation, 
all Callee,

some internal stu�, and repeat when desired.

The handling of the 
all to Callee indu
es two subpro
esses: one,R1 (depi
ted in �gure 2(b))

in whi
h the a
tual 
all is allowed and in whi
h the trapT1 expresses waiting for the 
all to �nish;

the other, R2 (depi
ted in �gure 2(
)) in whi
h permission to perform the 
all is temporarily

revoked; its big trap T2 indi
ating its willingness to regain that permission as soon as possible.

Callee's stru
ture is more simple than Caller 's: a
tivation, and internal stu� (see �gure 3(a)).

Like in Caller, the syn
hronised way we want to 
all it indu
es two subpro
esses: the �rst, E1



act callee

(a) STD

T3

(b) First subpro
ess E

1

act callee

T4

(
) Se
ond subpro
ess E

2

Fig. 3. Callee

with trap T3 (in �gure 3(b)) in whi
h Callee waits to perform its a
tivities; the se
ond, E2

with trap T4 (in �gure 3(
)) in whi
h Callee performs them.

ε

ε

callee

(a)

External STD of A

R1
E2

R1
E1

R2
E1

{T1,T3}

{T1,T4}

{T2}

(b)

Corresponding manager

Fig. 4. External STD and 
orresponding manager

In �gure 4, a suitable manager is depi
ted. The state and transition interpreters are indi
ated

by an appropriate labelling of the states and transitions respe
tively.

7 SOCCA's 
ommuni
ation perspe
tive: formal des
ription

In this se
tion, we take a look at a part of the formalisation of the 
ommuni
ation perspe
tive;

the full details are in [DGSK

+

99℄.

We start by de�ning the in�x relationship isSubPro
essOf : an STD subp is a subpro
ess of

an STD std if it 
an be obtained from std by removing some states and labels. (A s
hema for

STD, having member variables states some of whi
h are initial or �nal, labels, and a transition

relation transrel is assumed.)

isSubPro
essOf : STD $ STD

8 std ; subp : STD � subp isSubPro
essOf std ,

subp:states � std :states ^

subp:labels � std :labels ^

subp:transrel � std :transrel \ ((subp:states � subp:labels) � subp:states)



Next we de�ne isTrapOf : a set of states of an STD is a trap if, on
e rea
hed, it 
annot be

left within that STD.

isTrapOf : PSTATE $ STD

8 S : PSTATE � 8 std : STD �

S isTrapOf std ,

S � std :states ^ S 6= ? ^

(8 s; t : std :states �

8 l : std :labels j s 2 S ^ ((s; l); t) 2 std :transrel � t 2 S)

Using these, we de�ne a relation isTrapConne
tionOf whi
h des
ribes whether a parti
ular

set of states is a trap that 
onne
ts two subpro
esses.

isTrapConne
tionOf : STD � PSTATE � STD $ STD

8 std ; subp

1

; subp

2

: STD ; trap : PSTATE �

(subp

1

; trap; subp

2

) isTrapConne
tionOf std ,

(subp

1

isSubPro
essOf std ^

subp

2

isSubPro
essOf std ^

trap isTrapOf subp

1

^

((subp

1

= subp

2

) _ (trap � subp

2

:initial ^ trap � subp

1

:�nal)))

Now we 
an de�ne what a partition and trap stru
ture is: an STD with a set of subpro
esses,

ea
h with a set of traps su
h that the subpro
esses together 
over the STD, and are lo
ally


onne
ted through traps.

isPartitionAndTrapStru
tureOf : (P(STD � P(PSTATE)))$ STD

8 part : P(STD � P(PSTATE)); std : STD �

(part ; std) 2 isPartitionAndTrapStru
tureOf ,

(std :states = fstate : STATE j 9 partstd : part � state 2 (�rst partstd):statesg) ^

(std :transrel =

S

ftrans : (STATE � SYMBOL)$ STATE j 9 partstd : (STD � P(PSTATE)) �

trans = (�rst partstd):transrelg) ^

(8 subp : STD ; traps : P(PSTATE) j (subp; traps) 2 part �

subp isSubPro
essOf std ^

(8 trap : PSTATE j trap 2 traps �

trap isTrapOf subp ^

(9 subp

2

: STD ; traps

2

: P(PSTATE) j

(subp

2

; traps

2

) 2 part �

(9 
trap : traps

2

�

(subp; 
trap; subp

2

) isTrapConne
tionOf std))))



An STD, together with a suitable partition and trap stru
ture 
an play the role of employee.

employee

std : STD

pts : P(STD � (P(PSTATE)))

pts isPartitionAndTrapStru
tureOf std

To make the de�nition of manager manageable, we introdu
e abbreviations for the types of

state and transition interpreters.

stateint == STATE 7! STD

transint == (STATE � SYMBOL)� STATE 7! (PSTATE)

Using these abbreviations, we de�ne manager. A manager is an STD 
ombined with a


olle
tion of employees, and state and transition interpreters for ea
h of them.

manager

std : STD

empsti : seq(employee � stateint � transint)

(8 i : 1 : : #empsti �

(8 e : employee; si : stateint ; ti : transint j (e; si ; ti) = empsti i �

dom si = std :states ^

dom ti = ft : (STATE � SYMBOL)� STATE j

9 s

1

; s

2

: std :states; sym : SYMBOL �

t = ((s

1

; sym); s

2

) ^ t 2 std :transrelg ^

(8 s

1

; s

2

: std :states; sym : std :labels j

((s

1

; sym); s

2

) 2 std :transrel �

si s

1

isSubPro
essOf e:std ^

si s

2

isSubPro
essOf e:std ^

ti ((s

1

; sym); s

2

) isTrapOf si s

1

^

(si s

1

; ti ((s

1

; sym); s

2

); si s

2

) isTrapConne
tionOf e:std)))

It is interesting to study the relationship between the formalisation given in this se
tion,

and the informal des
ription in the previous se
tion. It is 
lear that the formalisation 
annot be

understood without the natural language explanation, but that the formal text is mu
h more

pre
ise.

8 Results of the formalisation

The main result of the �rst phase of the formalisation e�ort is the stati
 semanti
s of SOCCA

in Z ([DGSK

+

99℄), a de�nite des
ription of what are 
orre
t SOCCA models.



The pro
ess of formalisation so far additionally has brought us new insights into the stru
ture

of the SOCCA language; here we dis
uss several of them.

Binding. The formalisation has highlighted the 
on
ept of binding whi
h 
aptures the meaning of

polymorphism by inheritan
e, the similarities between methods and attributes (uni�ed through

the 
on
ept of feature).

Stru
ture of the SOCCA language. The formalisation also shows a way to stru
ture an expla-

nation of SOCCA's 
on
epts. Z's \no forward referen
es" nature for
ed us to write the formal

text without forward referen
es; the order this imposes allows us to stru
ture the informal text

(the natural language des
ription of SOCCA's 
on
epts) so as to 
ontain but a few forward

referen
es. As the previous se
tion illustrates, 
omplex 
on
epts are 
onstru
ted from simpler

ones in bottom-up fashion.

Maturation of the SOCCA language. The formalisation e�ort also for
ed us to make numerous

minor and some fundamental de
isions about the SOCCA 
ore language su
h as whether to have

multiple external STDs per 
lass (yes, as it makes parallelism within obje
ts more expli
it) and

what visibility me
hanism to use (a 
rude one, but one whi
h pra
ti
al experien
e has shown

to be quite powerful).

In our experien
e developing the semanti
s of an obje
t-oriented language for
es one to fo
us

on both the details and the whole pi
ture of the language, and improves one's understanding

of the 
hoi
es involved in a modelling language and their 
onsequen
es. To address real world

modelling needs, pra
ti
al obje
t-oriented spe
i�
ation languages mix 
on
epts and elements

from di�erent areas rather than imposing a single vision on the modeller. The mix needs to

form an integrated whole for it to be usable in pra
ti
e. Formalising su
h a language for
es its

designers to study 
arefully the intera
tions between the elements in the mix and as su
h should

play an important part in the development and maturation of an obje
t-oriented spe
i�
ation

language.

Tool support for Z. We found that even our limited use of tool support (using Z/EVES only

as an automated type 
he
ker) was helpful in developing the abstra
t syntax of SOCCA and in


apturing its internal 
onsisten
y requirements.

9 Current resear
h and future work

The instan
e level. Current resear
h in the formalisation e�ort is fo
using on the instan
e level

semanti
s of SOCCA. The instan
e level is the level at whi
h individual \runs" of SOCCA

model instan
es 
an be des
ribed, and at whi
h the full semanti
s of SOCCA's type level 
an

be expressed:

{ What do transitions mean?

{ How are instan
es (of 
lasses, relationships, state transition diagrams, managers and em-

ployees) 
reated and destroyed?

{ What 
on
urrent a
tions are possible?



{ Whi
h obje
t 
an 
all what method (runtime en
apsulation)?

One of the topi
s is whether or not a standardised notation for the instan
e level is ne
essary,

or whether it suÆ
es to have an instan
e level in the formalisation, without a 
on
rete notation

to illustrate it.

Prototypi
al instan
e layer. We expe
t to extend SOCCA with a prototypi
al instan
e layer (
f.

the notion of a prototypi
al obje
t level [JBAG97℄) based on the instan
e level whi
h 
an express

requirements about groups of obje
ts; su
h requirements 
annot be expressed at the existing

type level.

Other SOCCA resear
h. Outside the formalisation e�ort, resear
h is done on developing a module


on
ept whi
h will make the SOCCA approa
h s
ale to larger problems and on the possibility

of expressing patterns ([CS95℄) in SOCCA and developing patterns for SOCCA; see [Bru98℄. We

expe
t this work to bene�t from the formalisation of the existing SOCCA 
on
epts, and expe
t

its semanti
s to be expressed as an extension/reworking of the 
ore SOCCA semanti
s.

Other SOCCA resear
h deals with software pro
ess modelling [DKW98℄ and evolution.

10 Dis
ussion

In this paper we have argued the need for formalisation of the syntax and the stati
 and dynami


semanti
s of obje
t-oriented modelling languages. We have looked at some of the important


hoi
es that need to be made in the pro
ess of developing su
h a formalisation, su
h as the


hoi
e of spe
i�
ation formalism and the level of the formalisation (translational approa
h or

meta level) and we explained our de
isions with regard to them (Z as spe
i�
ation formalism;

formalisation at the meta level). We have given an overview of SOCCA, an obje
t-oriented

modelling language whi
h has strong expressive power in the �eld of 
ommuni
ation and 
ontrol

of 
on
urren
y. We have given an intuitive des
ription of SOCCA's 
ommuni
ation perspe
tive,

whi
h provides this expressive power. We have shown how 
on
epts from the 
ommuni
ation

perspe
tive are expressed in the formal spe
i�
ation language Z. We have dis
ussed some of

the insights obtained by the development of the spe
i�
ation of SOCCA's stati
 semanti
s in Z

([DGSK

+

99℄), su
h as the role of binding, the possibility of a forward-referen
es-free des
ription

of SOCCA. We stress the importan
e of using formalisation te
hniques in language development

as a means of a
hieving language maturation. As future work we will formalise the instan
e

level of SOCCA to express SOCCA's the dynami
 semanti
s.

Referen
es

[Bru98℄ H.G. Brugman. Software pro
ess modeling in SOCCA. Master's thesis, Department of Computer

S
ien
e, Leiden University, May 1998.

[C

+

97℄ Judith Crow et al. NASA Formal Methods Spe
i�
ation and Veri�
ation Guidebook for Software

and Computer Systems, Volume II: A Pra
titioner's Companion. NASA OÆ
e of Safety and

Mission Assuran
e, Washington, DC, 1997. Available at http://eis.jpl.nasa.gov/quality/

Formal_Methods/.

[CS95℄ James O. Coplien and Douglas C. S
hmidt. Pattern Languages of Program Design. Addison-

Wesley, Reading, Mass., 1995.



[DGSK

+

99℄ J.H.M. Dassen, L.P.J. Groenewegen, I.G. Sprinkhuizen-Kuyper, P.W.M. Koopman, P.J. 't Hoen,

and G. Engels. A formalisation of SOCCA using Z; part 1: the type level 
on
epts. Te
hni
al

Report 1999{03, Leiden Institute of Advan
ed Computer S
ien
e, February 1999. Available on

the web as http://www.wi.leidenuniv.nl/Te
hRep/1999/tr99-03.ps.gz.

[DKW98℄ Jean-Claude Derniame, Badara Ali Kaba, and David Wastell, editors. Software Pro
ess: Prin
i-

ples, Methodology and Te
hnology, number 1500 in Springer Le
ture Notes in Computer S
ien
e.

Springer Verlag, Berlin, Heidelberg, New York., 1998.

[EA98℄ A. S. Evans and A.N.Clark. Foundations of the uni�ed modeling language. In 2nd Northern

Formal Methods Workshop, Ilkley, ele
troni
 Workshops in Computing. Springer-Verlag, 1998.

[EG94℄ Gregor Engels and Luuk P.J. Groenewegen. SOCCA: Spe
i�
ations of 
oordinated and 
ooperative

a
tivities. In A. Finkelstein, J. Kramer, and B.A. Nuseibeh, editors, Software Pro
ess Modelling

and Te
hnology, pages 71{102. Resear
h Studies Press Ltd. / John Wiley & Sons In
., 1994.

Taunton 1994.

[EGK96℄ G. Engels, L.P.J. Groenewegen, and G. Kappel. Obje
t-oriented spe
i�
ation of 
oordinated


ollaboration. In Noboyoshi Terashima and Edward Altman, editors, Pro
eedings IFIP World

Conferen
e on IT Tools, 2-6 September 1996 | Advan
ed IT Tools., pages 437{449, Canberra,

Australia, September 1996. Chapman & Hall, London, Wienheim, New York, Tokyo, Melbourne,

Madras. Also available as Te
hni
al Report 96-24 Department of Computer S
ien
e, Leiden Uni-

versity.

[EGK99℄ G. Engels, L.P.J. Groenewegen, and G. Kappel. Coordinated 
ollaboration of obje
ts. In M. Pa-

pazoglou, St. Spa

apietra, and Z. Tari, editors, Obje
t-Oriented Data Modelling Themes. MIT

press, 1999. To appear.

[GSO86℄ L.P.J. Groenewegen, M.R. van Steen, and G. Oosting. Modelling parallel phenomena. In

Vansteenkisten et al., editor, Pro
eedings 2nd European Simulation Congress, pages 45{51,

Antwerp, Belgium, September 1986.

[JBAG97℄ Stefan Joos, Stefan Berner, Martin Arnold, and Martin Glinz. Hierar
his
he Zerlegung in objek-

torientierten Spezi�kationsmethoden. Softwarete
hnik-Trends, 17(1):29{37, February 1997.

[NAS95℄ NASA OÆ
e of Safety and Mission Assuran
e, Washington, DC. NASA Formal Methods Spe
i�-


ation and Veri�
ation Guidebook for Software and Computer Systems, Volume I: Planning and

Te
hnology Insertion, 1995.

[Spi92℄ J. M. Spivey. The Z Notation: A Referen
e Manual. Prenti
e Hall International Series in Computer

S
ien
e, 2nd edition, 1992.

[ZZads℄ Z ar
hive. URL: http://www.
omlab.ox.a
.uk/ar
hive/z.html, 1994 onwards.


