
Formalising Objet-Oriented Modelling Languages

J.H.M. Dassen

1?

, L.P.J. Groenewegen

1

, G. Engels

2

, P.J. 't Hoen

1

, P.W.M. Koopman

3

, and

I.G. Sprinkhuizen-Kuyper

4

1

Leiden University, Leiden Institute of Advaned Computer Siene, P.O. Box 9512, 2300 RA Leiden,

The Netherlands

2

University of Paderborn, Dept. of Computer Siene, D-30095 Paderborn, Germany

3

University of Nijmegen, Dept. of Computer Siene, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands.

4

Universiteit Maastriht, Institute for Knowledge and Agents Tehnology, P.O. Box 616, 6200 MD Maastriht,

The Netherlands

Abstrat. The semantis of objet-oriented modelling languages is often only given by informal

means, suh as text in a natural language. This makes objet-oriented models developed in these

modelling languages less preise, lear and unambiguous than is desirable.

We show how the stati semantis of an advaned objet-oriented language an be de�ned au-

rately. This formal de�nition of the language strongly inreases the value of the models developed

in this language: the meaning of these models is now unambiguously de�ned.

We use a separate language for the formal spei�ation of the language in order to avoid the known

problems with de�ning the semantis of a language in the language itself (suh a reursive de�nition

introdues an unknown amount of poorly de�ned onepts).

The struture of the formalisation employs a meta level, rather than a transformational approah.

This eliminates issues regarding the semantis of a target language and yields a more abstrat and

rigorous spei�ation whih is also better suited for use in the development of tools that employ

the modelling language. We use the spei�ation language Z as it has a high abstration level, is

widely used, and has a sound mathematial foundation. Additionally, there is a standard de�nition

of Z, and tool support is available. Tools support has proven itself to be valuable.

We use SOCCA as the objet-oriented modelling language sine it has very powerful apabilities

to express and ontrol oordination and ommuniation between objets. We give an intuitive

desription of SOCCA's approah to ommuniation and disuss the formalisation of its stati

semantis.

1 Why formalise objet-oriented modelling languages?

The primary goal in developing a modelling language is to make it possible to model partiular

situations in preise, lear and unambiguous terms. For this, it is important that the modelling

language itself be preise, lear and unambiguous, powerful and yet still easy to use. The mod-

elling language is a vehile for ommuniation between and among the modellers, lients and

implementors; the onepts it supports inuene how modellers do their job.

An essential requirement for the modelling language to be lear is that the modellers (and

automated agents involved) have idential notions of the semantis of the modelling language

(and thus of individual models). The availability of a de�nite desription of both syntax and

semantis of the language is essential.

Nowadays there is inreased interest in rigorously de�ning the semantis of modelling lan-

guages using formal spei�ation languages, for several reasons. One is that tool support for

?

Please use the primary author's ontat address: jdassen�wi.LeidenUniv.nl



a modelling language is a neessity for industry aeptane of a modelling language. Industry

relies heavily on the availability of tools throughout a large part of the software life yle. Inter-

operability between tools is neessary in suh a ontext. A formal spei�ation of the modelling

language an play an important role in ahieving this interoperability.

Another reason is the urrent push to standardise on UML as a modelling language. UML

is quite large (as it is essentially a union of several predeessor modelling languages), and

not very well understood yet. A lear semantis is neessary to prevent splintering and tool

interoperability problems due to di�erent interpretations.

Finally, modelling languages are interesting test ases for the formal methods ommunity.

Formal methods have matured over reent years, and in the formal methods ommunity there is

a feeling that formal methods have now reahed suÆient maturity to be apable of spreading

beyond the fairly small number of appliation domains that urrently employ them [NAS95,

C

+

97℄.

In this paper, we use the objet-oriented modelling language SOCCA, whih we prefer for

its expressive power for modelling ommuniation and oordination between objet. In addition

to the general reasons for formalising objet-oriented modelling languages, there are SOCCA-

spei� ones. SOCCA's approah to modelling ommuniation and onurreny, disussed in

Setion 6, is based on PARADIGM [GSO86℄, a formalism rooted in the mathematial frame-

work of semi-Markov deision proesses. So far, PARADIGM has mostly been desribed in these

mathematial terms, making aeptane in Computer Siene diÆult. The formalisation e�ort

provides an opportunity to do away with PARADIGM spei�s that have beome legay in the

ontext of SOCCA, and allows us to re-phrase PARADIGM as used in SOCCA's ommunia-

tion perspetive using onepts more ommon in Computer Siene, suh a State Transition

Diagrams (STDs).

First we disuss the what and how of formalising an objet-oriented modelling language and

our hoie of formal spei�ation language. Then we look at the formalisation of our objet-

oriented modelling language, SOCCA reported on in our report [DGSK

+

99℄.

2 What is to be formalised?

It is our goal to desribe both the underlying ontext-sensitive syntax (stati semantis) and

the (dynami) semantis of SOCCA using a single formalism. Of this goal, the �rst part has now

been realised: in our report [DGSK

+

99℄ we give the stati semantis of SOCCA in the form of

Z shemata. This provides the basis for realising the seond part of our goal: the desription of

the dynami semantis of SOCCA.

In this paper, we motivate design deisions made in the formalisation, provide an overview

of the formalisation, and highlight some key parts.

3 How to formalise objet-oriented modelling languages

Several approahes to formalising the semantis of objet-oriented modelling languages appear

in the literature. It is interesting to look at the hoies we made for our SOCCA formalisation

along the following lines:



{ The language being formalised.

{ The language in whih the semantis is expressed.

{ The level at whih the formalisation is arried out.

We do this by putting our approah in the ontext of the literature.

UML's metalass diagram and OCL. UML's authors have expressed UML's semantis in UML

itself augmented with a logi notation. More rigour and formality is required of a good semantis.

The limitation of this \reexive" approah to formalisation is that it does not fore one to step

outside the onepts of the language being formalised. Formalisation into a language based on

a di�erent paradigm does fore one to pay more attention to the underlying onepts of the

modelling language.

Semantis in onurreny formalisms. SOCCA has a strong emphasis on preise modelling of

onurrent behaviour and ommuniation. One might argue that formalising into a formalism

more geared towards onurreny than Z is appropriate. The use of suh formalisms, like Petri

Nets, CCS and CSP might simplify the e�ort in formalising these important aspets of SOCCA.

There are two reasons why we do not onsider them ideally suited for formalising SOCCA.

The �rst is that SOCCA's ommuniation perspetive, being based on PARADIGM, o�ers

onepts not readily available in other onurreny formalisms (we desribe these onepts in

Setion 6). Thus, a diret formalisation of SOCCA's ommuniation perspetive into a onur-

reny formalism is umbersome. Z, being a more general purpose spei�ation formalism, allows

us to express SOCCA's ommuniation onepts in a learer way, as it does not fore us to

�t them in another onurreny approah's mould. As the ommuniation onepts are where

SOCCA di�ers most from other approahes, this is quite important.

The seond reason is that onurreny formalisms are less generi than Z. While they are

perhaps suitable for formalisation of the ommuniation perspetive of SOCCA, employing them

would make it quite diÆult to address the other perspetives of SOCCA, whih is neessary to

provide an integrated semantis of the whole of SOCCA.

Thus, harateristis of the modelling language being formalised should be taken into aount

for the hoie of spei�ation formalism.

The level of the formalisation. [EA98℄ identi�es two levels of abstration for a formalisation of

a modelling language: through a translational approah or at the meta level.

In the translational approah, the fous is on how to translate individual models to spei�-

ations (e.g. by translating eah lass to a Z shema).

In the meta level approah, the fous is on translating a language to a single spei�ation,

rather than models eah to a spei�ation of their own. This approah an be extended to

develop a translational approah.

In formalising SOCCA, we have hosen the meta level approah: we fous on formalising the

SOCCA language itself, rather than on formalising SOCCA models. This yields a more abstrat

semantis whih may be more diÆult to use with generi tools, but whih is more rigorous and

better suited as a basis for the development of SOCCA spei� tools.



4 The formal spei�ation language Z

The formalisation of SOCCA is being arried out in the formal spei�ation language Z [Spi92,

ZZads℄.

Several fators positively inuened our hoie of Z as the spei�ation language, inluding

its abstration level, widespread use, strong mathematial foundation, level of standardisation

and availability of tool support.

5 The struture of the SOCCA modelling language

Although objet-oriented modelling has proven itself to be a useful pratial approah to takling

the issues of analysing, designing, speifying and implementing omplex software systems, there

is still room for improvement. One of the ways in whih we want to improve objet-oriented

modelling is in the desription of and ontrol over the ommuniation of objets exeuting in

parallel.

SOCCA (Spei�ation of Coordinated and Cooperative Ativities) [EG94℄ is both a language

and a method for objet-oriented modelling. Here we deal only with the SOCCA language. It is

eleti: it ombines proven features from other objet-oriented modelling languages in several

perspetives that address di�erent aspets of a model. In addition to a data perspetive, behaviour

perspetive and a funtionality perspetive that use onepts well-known from languages like

OMT and UML, it has a ommuniation perspetive that provides a powerful mehanism to

desribe and ontrol ommuniation between objets (see e.g. [EGK96, EGK99℄). This ability

to model oordinated behaviour to any desired degree is of partiular importane for use in the

domain of workow modelling. The ommuniation onepts in this ommuniation perspetive

are extensions of the onepts of state transition diagrams and state transition mahines that

are used in the behaviour and funtionality perspetives.

SOCCA has been used in several industry projets and is the subjet of ongoing researh;

one of the researh projets works towards apturing the syntax and the semantis of SOCCA

(and thereby, of SOCCA models) in a formal spei�ation method.

Currently, we have ompleted the formalisation of the type level of SOCCA [DGSK

+

99℄,

i.e. we have given a ontext-sensitive syntax of the SOCCA language through Z shemata that

aptures its stati semantis (i.e. what are syntatially valid SOCCA models).

We have formalised the onepts of eah of SOCCA's perspetives:

The data perspetive whih fouses on the stati, strutural aspets of models with onepts

like attributes, methods, lasses, relationships, inheritane, aggregation, uses relationship

and binding.

The behaviour perspetive whih fouses on dynami aspets of individual lasses and ob-

jets whih are made available to other lasses and objets through the onept of external

behaviour STDs.

The funtionality perspetive whih fouses on dynami aspets of individual lasses and

objets that are internal to them through the onept of internal STDs.

The ommuniation perspetive whih fouses on the ommuniation between individual

lasses and objets through the notions of subproess, trap, partition and trap struture,



employee proess and manager proess. In Setion 6 we desribe these notions in an intuitive

way, and in Setion 7 we show part of their formalisation.

Also, we have desribed how the perspetives relate to eah other. For instane, we have

desribed how managers in the ommuniation perspetive are based on external STDs from

the behaviour perspetive.

In the next setions, we will give an intuitive desription of SOCCA's most interesting feature,

its ommuniation perspetive, and show part of its formalisation.

6 SOCCA's ommuniation perspetive: intuitive desription

The ommuniation perspetive is where SOCCA di�ers the most from other objet-oriented

modelling languages. Here we sketh the intuition underlying the ommuniation perspetive

and its formalisation.

A fundamental observation about ommuniating proesses is that their behaviour an be

viewed as having two levels. The �rst is the level of loal behaviour whih desribes the piees of

behaviour that the proess may have whih do not require ommuniation with other proesses.

Suh loal behaviour has parts in whih no ommuniation is desired, and no oordination is

neessary, and parts in whih ommuniation is desired to arrange oordination to prepare the

way for another piee of loal behaviour. Until this ommuniation has taken plae, the proess

is restrited to the urrent piee of loal behaviour. The seond, more abstrat, level is that of

global behaviour whih desribes how the proesses' behaviour may be swithed from one piee

of loal behaviour to another through oordination by ommuniation.

In SOCCA we desribe the global behaviour of lasses through an external STD, and the

loal behaviour of methods through internal STDs. The di�erent parts of loal behaviour we

desribe by subproesses and traps. A subproess desribes a temporary restrition of behaviour,

a piee of loal behaviour. A trap de�nes the �nal part of a subproess where oordination is

desired; it is a set of states that annot be left within the subproess.

Example 1. In �gure 1, a simpli�ed STD is shown (labels are left out), together with two possible

subproesses and some of their traps (shown as shaded areas). When more than one trap is

present within a subproess, they are given numbers. The subproesses are partial versions of

the original STD (disregarding initial and �nal states).

(a) Full STD

(b) Subproess 1

() Subproess 2

Fig. 1. An STD with two subproesses



In light of ommuniation, we distinguish two roles of STDs: employee and manager. An

employee is an STD augmented by a struture of subproesses and traps known as a partition and

trap struture. It is managed by a manager (meaning the manager presribes whih transitions

between its subproesses an employee may do, and when it may do so). The manager is an

STD augmented with two funtions: the state interpreter, whih maps its states to presribed

subproesses, and the transition interpreter, whih labels its transitions with traps that its

employees must have reahed for the transition to be allowed.

In SOCCA, the external STDs form the basis for the managers, and the internal STDs for

the employees.

There is a behavioural onsisteny that works in both diretions: an employee's behaviour

obeys the restrition imposed by the urrent subproess presribed by the manager, while the

manager's behaviour obeys the restritions imposed by the subproesses of its employees (not

making a transition labelled with a trap that has not been reahed yet).

By itself, PARADIGM laks the struture provided by the objet orientation of SOCCA

and thus allows the modeller very large degrees of freedom. In SOCCA this freedom has been

restrited through the objet oriented struture, making it more manageable. In SOCCA, the

modeller no longer has the freedom of hoosing employee and manager roles arbitrarily: a lass'

external STD(s) gets the role of manager of the internal STD(s): the external STDs reeive

messages (alls) and start up behaviours of internal STDs to handle them.

Example 2. As an illustration of how the ommuniation perspetive in SOCCA is used, onsider

the following situation: we have two lasses, A and B. Method A.Caller needs to perform a

synhronised all to method B.Callee, i.e. it alls Callee and has to wait until that all has been

handled ompletely.

act caller call callee

(a) STD

act caller

T1

call callee

(b) First subproess R

1

act caller

T2

() Seond subproess R

2

Fig. 2. Caller

Caller 's STD is depited in �gure 2(a). It has a fairly simple struture: ativation, all Callee,

some internal stu�, and repeat when desired.

The handling of the all to Callee indues two subproesses: one,R1 (depited in �gure 2(b))

in whih the atual all is allowed and in whih the trapT1 expresses waiting for the all to �nish;

the other, R2 (depited in �gure 2()) in whih permission to perform the all is temporarily

revoked; its big trap T2 indiating its willingness to regain that permission as soon as possible.

Callee's struture is more simple than Caller 's: ativation, and internal stu� (see �gure 3(a)).

Like in Caller, the synhronised way we want to all it indues two subproesses: the �rst, E1



act callee

(a) STD

T3

(b) First subproess E

1

act callee

T4

() Seond subproess E

2

Fig. 3. Callee

with trap T3 (in �gure 3(b)) in whih Callee waits to perform its ativities; the seond, E2

with trap T4 (in �gure 3()) in whih Callee performs them.

ε

ε

callee

(a)

External STD of A

R1
E2

R1
E1

R2
E1

{T1,T3}

{T1,T4}

{T2}

(b)

Corresponding manager

Fig. 4. External STD and orresponding manager

In �gure 4, a suitable manager is depited. The state and transition interpreters are indiated

by an appropriate labelling of the states and transitions respetively.

7 SOCCA's ommuniation perspetive: formal desription

In this setion, we take a look at a part of the formalisation of the ommuniation perspetive;

the full details are in [DGSK

+

99℄.

We start by de�ning the in�x relationship isSubProessOf : an STD subp is a subproess of

an STD std if it an be obtained from std by removing some states and labels. (A shema for

STD, having member variables states some of whih are initial or �nal, labels, and a transition

relation transrel is assumed.)

isSubProessOf : STD $ STD

8 std ; subp : STD � subp isSubProessOf std ,

subp:states � std :states ^

subp:labels � std :labels ^

subp:transrel � std :transrel \ ((subp:states � subp:labels) � subp:states)



Next we de�ne isTrapOf : a set of states of an STD is a trap if, one reahed, it annot be

left within that STD.

isTrapOf : PSTATE $ STD

8 S : PSTATE � 8 std : STD �

S isTrapOf std ,

S � std :states ^ S 6= ? ^

(8 s; t : std :states �

8 l : std :labels j s 2 S ^ ((s; l); t) 2 std :transrel � t 2 S)

Using these, we de�ne a relation isTrapConnetionOf whih desribes whether a partiular

set of states is a trap that onnets two subproesses.

isTrapConnetionOf : STD � PSTATE � STD $ STD

8 std ; subp

1

; subp

2

: STD ; trap : PSTATE �

(subp

1

; trap; subp

2

) isTrapConnetionOf std ,

(subp

1

isSubProessOf std ^

subp

2

isSubProessOf std ^

trap isTrapOf subp

1

^

((subp

1

= subp

2

) _ (trap � subp

2

:initial ^ trap � subp

1

:�nal)))

Now we an de�ne what a partition and trap struture is: an STD with a set of subproesses,

eah with a set of traps suh that the subproesses together over the STD, and are loally

onneted through traps.

isPartitionAndTrapStrutureOf : (P(STD � P(PSTATE)))$ STD

8 part : P(STD � P(PSTATE)); std : STD �

(part ; std) 2 isPartitionAndTrapStrutureOf ,

(std :states = fstate : STATE j 9 partstd : part � state 2 (�rst partstd):statesg) ^

(std :transrel =

S

ftrans : (STATE � SYMBOL)$ STATE j 9 partstd : (STD � P(PSTATE)) �

trans = (�rst partstd):transrelg) ^

(8 subp : STD ; traps : P(PSTATE) j (subp; traps) 2 part �

subp isSubProessOf std ^

(8 trap : PSTATE j trap 2 traps �

trap isTrapOf subp ^

(9 subp

2

: STD ; traps

2

: P(PSTATE) j

(subp

2

; traps

2

) 2 part �

(9 trap : traps

2

�

(subp; trap; subp

2

) isTrapConnetionOf std))))



An STD, together with a suitable partition and trap struture an play the role of employee.

employee

std : STD

pts : P(STD � (P(PSTATE)))

pts isPartitionAndTrapStrutureOf std

To make the de�nition of manager manageable, we introdue abbreviations for the types of

state and transition interpreters.

stateint == STATE 7! STD

transint == (STATE � SYMBOL)� STATE 7! (PSTATE)

Using these abbreviations, we de�ne manager. A manager is an STD ombined with a

olletion of employees, and state and transition interpreters for eah of them.

manager

std : STD

empsti : seq(employee � stateint � transint)

(8 i : 1 : : #empsti �

(8 e : employee; si : stateint ; ti : transint j (e; si ; ti) = empsti i �

dom si = std :states ^

dom ti = ft : (STATE � SYMBOL)� STATE j

9 s

1

; s

2

: std :states; sym : SYMBOL �

t = ((s

1

; sym); s

2

) ^ t 2 std :transrelg ^

(8 s

1

; s

2

: std :states; sym : std :labels j

((s

1

; sym); s

2

) 2 std :transrel �

si s

1

isSubProessOf e:std ^

si s

2

isSubProessOf e:std ^

ti ((s

1

; sym); s

2

) isTrapOf si s

1

^

(si s

1

; ti ((s

1

; sym); s

2

); si s

2

) isTrapConnetionOf e:std)))

It is interesting to study the relationship between the formalisation given in this setion,

and the informal desription in the previous setion. It is lear that the formalisation annot be

understood without the natural language explanation, but that the formal text is muh more

preise.

8 Results of the formalisation

The main result of the �rst phase of the formalisation e�ort is the stati semantis of SOCCA

in Z ([DGSK

+

99℄), a de�nite desription of what are orret SOCCA models.



The proess of formalisation so far additionally has brought us new insights into the struture

of the SOCCA language; here we disuss several of them.

Binding. The formalisation has highlighted the onept of binding whih aptures the meaning of

polymorphism by inheritane, the similarities between methods and attributes (uni�ed through

the onept of feature).

Struture of the SOCCA language. The formalisation also shows a way to struture an expla-

nation of SOCCA's onepts. Z's \no forward referenes" nature fored us to write the formal

text without forward referenes; the order this imposes allows us to struture the informal text

(the natural language desription of SOCCA's onepts) so as to ontain but a few forward

referenes. As the previous setion illustrates, omplex onepts are onstruted from simpler

ones in bottom-up fashion.

Maturation of the SOCCA language. The formalisation e�ort also fored us to make numerous

minor and some fundamental deisions about the SOCCA ore language suh as whether to have

multiple external STDs per lass (yes, as it makes parallelism within objets more expliit) and

what visibility mehanism to use (a rude one, but one whih pratial experiene has shown

to be quite powerful).

In our experiene developing the semantis of an objet-oriented language fores one to fous

on both the details and the whole piture of the language, and improves one's understanding

of the hoies involved in a modelling language and their onsequenes. To address real world

modelling needs, pratial objet-oriented spei�ation languages mix onepts and elements

from di�erent areas rather than imposing a single vision on the modeller. The mix needs to

form an integrated whole for it to be usable in pratie. Formalising suh a language fores its

designers to study arefully the interations between the elements in the mix and as suh should

play an important part in the development and maturation of an objet-oriented spei�ation

language.

Tool support for Z. We found that even our limited use of tool support (using Z/EVES only

as an automated type heker) was helpful in developing the abstrat syntax of SOCCA and in

apturing its internal onsisteny requirements.

9 Current researh and future work

The instane level. Current researh in the formalisation e�ort is fousing on the instane level

semantis of SOCCA. The instane level is the level at whih individual \runs" of SOCCA

model instanes an be desribed, and at whih the full semantis of SOCCA's type level an

be expressed:

{ What do transitions mean?

{ How are instanes (of lasses, relationships, state transition diagrams, managers and em-

ployees) reated and destroyed?

{ What onurrent ations are possible?



{ Whih objet an all what method (runtime enapsulation)?

One of the topis is whether or not a standardised notation for the instane level is neessary,

or whether it suÆes to have an instane level in the formalisation, without a onrete notation

to illustrate it.

Prototypial instane layer. We expet to extend SOCCA with a prototypial instane layer (f.

the notion of a prototypial objet level [JBAG97℄) based on the instane level whih an express

requirements about groups of objets; suh requirements annot be expressed at the existing

type level.

Other SOCCA researh. Outside the formalisation e�ort, researh is done on developing a module

onept whih will make the SOCCA approah sale to larger problems and on the possibility

of expressing patterns ([CS95℄) in SOCCA and developing patterns for SOCCA; see [Bru98℄. We

expet this work to bene�t from the formalisation of the existing SOCCA onepts, and expet

its semantis to be expressed as an extension/reworking of the ore SOCCA semantis.

Other SOCCA researh deals with software proess modelling [DKW98℄ and evolution.

10 Disussion

In this paper we have argued the need for formalisation of the syntax and the stati and dynami

semantis of objet-oriented modelling languages. We have looked at some of the important

hoies that need to be made in the proess of developing suh a formalisation, suh as the

hoie of spei�ation formalism and the level of the formalisation (translational approah or

meta level) and we explained our deisions with regard to them (Z as spei�ation formalism;

formalisation at the meta level). We have given an overview of SOCCA, an objet-oriented

modelling language whih has strong expressive power in the �eld of ommuniation and ontrol

of onurreny. We have given an intuitive desription of SOCCA's ommuniation perspetive,

whih provides this expressive power. We have shown how onepts from the ommuniation

perspetive are expressed in the formal spei�ation language Z. We have disussed some of

the insights obtained by the development of the spei�ation of SOCCA's stati semantis in Z

([DGSK

+

99℄), suh as the role of binding, the possibility of a forward-referenes-free desription

of SOCCA. We stress the importane of using formalisation tehniques in language development

as a means of ahieving language maturation. As future work we will formalise the instane

level of SOCCA to express SOCCA's the dynami semantis.

Referenes

[Bru98℄ H.G. Brugman. Software proess modeling in SOCCA. Master's thesis, Department of Computer

Siene, Leiden University, May 1998.

[C

+

97℄ Judith Crow et al. NASA Formal Methods Spei�ation and Veri�ation Guidebook for Software

and Computer Systems, Volume II: A Pratitioner's Companion. NASA OÆe of Safety and

Mission Assurane, Washington, DC, 1997. Available at http://eis.jpl.nasa.gov/quality/

Formal_Methods/.

[CS95℄ James O. Coplien and Douglas C. Shmidt. Pattern Languages of Program Design. Addison-

Wesley, Reading, Mass., 1995.



[DGSK

+

99℄ J.H.M. Dassen, L.P.J. Groenewegen, I.G. Sprinkhuizen-Kuyper, P.W.M. Koopman, P.J. 't Hoen,

and G. Engels. A formalisation of SOCCA using Z; part 1: the type level onepts. Tehnial

Report 1999{03, Leiden Institute of Advaned Computer Siene, February 1999. Available on

the web as http://www.wi.leidenuniv.nl/TehRep/1999/tr99-03.ps.gz.

[DKW98℄ Jean-Claude Derniame, Badara Ali Kaba, and David Wastell, editors. Software Proess: Prini-

ples, Methodology and Tehnology, number 1500 in Springer Leture Notes in Computer Siene.

Springer Verlag, Berlin, Heidelberg, New York., 1998.

[EA98℄ A. S. Evans and A.N.Clark. Foundations of the uni�ed modeling language. In 2nd Northern

Formal Methods Workshop, Ilkley, eletroni Workshops in Computing. Springer-Verlag, 1998.

[EG94℄ Gregor Engels and Luuk P.J. Groenewegen. SOCCA: Spei�ations of oordinated and ooperative

ativities. In A. Finkelstein, J. Kramer, and B.A. Nuseibeh, editors, Software Proess Modelling

and Tehnology, pages 71{102. Researh Studies Press Ltd. / John Wiley & Sons In., 1994.

Taunton 1994.

[EGK96℄ G. Engels, L.P.J. Groenewegen, and G. Kappel. Objet-oriented spei�ation of oordinated

ollaboration. In Noboyoshi Terashima and Edward Altman, editors, Proeedings IFIP World

Conferene on IT Tools, 2-6 September 1996 | Advaned IT Tools., pages 437{449, Canberra,

Australia, September 1996. Chapman & Hall, London, Wienheim, New York, Tokyo, Melbourne,

Madras. Also available as Tehnial Report 96-24 Department of Computer Siene, Leiden Uni-

versity.

[EGK99℄ G. Engels, L.P.J. Groenewegen, and G. Kappel. Coordinated ollaboration of objets. In M. Pa-

pazoglou, St. Spaapietra, and Z. Tari, editors, Objet-Oriented Data Modelling Themes. MIT

press, 1999. To appear.

[GSO86℄ L.P.J. Groenewegen, M.R. van Steen, and G. Oosting. Modelling parallel phenomena. In

Vansteenkisten et al., editor, Proeedings 2nd European Simulation Congress, pages 45{51,

Antwerp, Belgium, September 1986.

[JBAG97℄ Stefan Joos, Stefan Berner, Martin Arnold, and Martin Glinz. Hierarhishe Zerlegung in objek-

torientierten Spezi�kationsmethoden. Softwaretehnik-Trends, 17(1):29{37, February 1997.

[NAS95℄ NASA OÆe of Safety and Mission Assurane, Washington, DC. NASA Formal Methods Spei�-

ation and Veri�ation Guidebook for Software and Computer Systems, Volume I: Planning and

Tehnology Insertion, 1995.

[Spi92℄ J. M. Spivey. The Z Notation: A Referene Manual. Prentie Hall International Series in Computer

Siene, 2nd edition, 1992.

[ZZads℄ Z arhive. URL: http://www.omlab.ox.a.uk/arhive/z.html, 1994 onwards.


