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Abstract

The domains of partial attributed tree transducers (patt's) are the tree languages

recognized by tree walking automata in universal acceptance mode. Moreover, the

domains of patt's having monadic output are the tree languages recognized by deter-

ministic tree walking automata.
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1 Introduction

An attribute grammar (ag) [Knu68] can be seen as a device that translates derivation trees

of a context-free grammar G

0

into expressions over some signature. Abstracting from G

0

we obtain an attributed tree transducer (att) [F�ul81]. An att A is a total deterministic

device that translates all trees in T

�

(the set of trees over a ranked alphabet �) into output

trees in T

�

.

If we allow A to be a partial att (patt), then the domain of A is a tree language L over �,

i.e., a subset of T

�

. Now the question arises, which tree languages L can be the domain

of patt's (equivalently: partial ag's)? From [Bar81] it is known that L is inside REGT,

the class of regular tree languages. We show that L is the domain of a patt if and only

if it can be recognized by a tree walking automaton (twa) in universal acceptance mode.

A twa M is a sequential �nite-state device that `walks' on the nodes of a tree s (possibly

changing its state). The transition of M is de�ned nondeterministically, however, the tree

s is recognized by M in universal acceptance mode if and only if every possible walk of M

on s leads to a �nal state (cf., e.g., [Kam83]). We also show that restricting the output of

a patt to monadic trees corresponds to restricting the twa to determinism, which is simply

a deterministic tree walking automaton (dtwa) [AU71].

The class of deterministic top-down recognizable tree languages (cf. [GS84]) is properly in-

cluded in the class of domains of patt's, because (i) a deterministic top-down tree automa-

ton (dta) is a patt with synthesized attributes only and (ii) the domain f�(a; b); �(b; a)g

of A

1

from Example 1 cannot be recognized by a dta. It is open if every recognizable

�
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(equivalently: regular) tree language L can be the domain of a patt. In fact, this is even

open for the case of monadic output, i.e., it is not known whether there is an L 2 REGT

which cannot be recognized by a dtwa (cf. [EHvB99]). This seems to be a deep problem in

the distinction between sequential and parallel tree recognizing devices; maybe the char-

acterization by patt's can help. Other possibilities might be the recent characterizations

of dtwa's in terms of logic [EHvB99, NS].

Acknowledgement We are grateful to Joost Engelfriet for helpful discussions.

2 Preliminaries

For two nonnegative integers m;n, we denote by [m;n] the set fi jm � i � ng. Moreover,

[1; n] is abbreviated by [n]. Let IN = f1; 2; : : : g and denote by IN

�

the monoid of words

(i.e. sequences of positive integers) generated by IN. The empty word is denoted by 0,

hence for every u 2 IN

�

, u0 = 0u = u.

Let � be a ranked alphabet. For k 2 IN we denote by �

(k)

the set of symbols in � having

rank k. If � 2 �

(k)

, then we denote this fact by �

(k)

. We de�ne maxrank (�) to be the

integer maxfk j�

(k)

6= ?g. � is called monadic, if maxrank (�) � 1

Let A be a set. Then jAj denotes the cardinality of A. As usual, we denote by T

�

(A) the

set of trees over � indexed by A; for A = ?, we write T

�

for T

�

(A). Let s 2 T

�

(A). The

set of occurrences (or, nodes) of s is the subset O(s) of IN

�

de�ned inductively as follows.

For s 2 A, O(s) = f0g, and for s = �(s

1

; : : : ; s

k

), � 2 �

(k)

, k � 0, and s

1

; : : : ; s

k

2 T

�

(A),

O(s) = f0g [ fiu j i 2 [k]; u 2 O(t

i

)g. The label of s at u 2 O(s) and the subtree of s

(rooted) at u are denoted by lab(s; u) and s=u, respectively.

We �x the set X = fx

1

; x

2

; : : : g of variable symbols. For m � 0, let X

m

= fx

1

; : : : ; x

m

g

and abbreviate T

�;m

by T

�

(X

m

). Moreover,

~

T

�;m

is the subset of T

�;m

consisting of trees

s 2 T

�;m

in which every variable of X

m

occurs exactly once. For s 2 T

�;m

and trees

s

1

; : : : ; s

m

, we denote by s[s

1

; : : : ; s

m

] the tree obtained from s by replacing, for every

i 2 [m], every occurrence of x

i

in s by s

i

.

A tree language is a subset of T

�

. A tree transformation is a partial mapping � : T

�

! T

�

,

for some ranked alphabet �. The domain of � is dom(�) = fs 2 T

�

j 9t 2 T

�

: �(s) = tg.

For a class C of tree transformations, dom(C) = fdom(�) j � 2 Cg.

3 Partial Attributed Tree Transducers

A partial attributed tree transducer (for short, patt) is a tuple A = (S; I;�;�; a

0

; R),

where S and I are disjoint, unary ranked alphabets of synthesized and inherited attributes,

respectively, � and � are ranked alphabets (disjoint with S [ I) of input and output

symbols, respectively, and a

0

2 S is the initial attribute. The set R =

S

fR

�

j � 2 �g[R

root

is a �nite set of rules, such that for every � 2 �

(k)

with k � 0,

(1) for every a 2 S, the set R

�

contains at most one rule of the form a(0)! t[c

1

(i

1

); : : : ;

c

m

(i

m

)], where m � 0; t 2

~

T

�;m

; c

1

; : : : ; c

m

2 (S [ I); i

1

; : : : ; i

m

2 [0; k],
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(2) for every b 2 I and i 2 [k], the set R

�

contains at most one rule of the form

b(i)! t[c

1

(i

1

); : : : ; c

m

(i

m

)], where t[c

1

(i

1

); : : : ; c

m

(i

m

)] is as in (1).

Finally,

(3) for every b 2 I, the set R

root

contains at most one rule of the form b(0) ! t[c

1

(0); : : : ;

c

m

(0)], where m � 0; t 2

~

T

�;m

; and c

1

; : : : ; c

m

2 (S [ I).

The patt A is in Bochmann normal form (Bnf), if in (1) and (2), 8j 2 [m]: if c

j

2 S then

i

j

2 [k] and if c

j

2 I then i

j

= 0, and in (3), c

1

; : : : ; c

m

2 S. If � is monadic, then A is

called monadic.

Denote S [ I by Att . Let s 2 T

�

. We denote by Att(O(s)) the set fa(u) j a 2 Att and u 2

O(s)g. Notice that especially a

0

(0) 2 O(s). The derivation relation induced by A on

s is the binary relation )

A;s

over T

�

(Att(O(s))) such that, for �

1

; �

2

2 T

�

(Att(O(s))),

�

1

)

A;s

�

2

i� there is an occurrence v of �

1

with �

1

=v = c(u) 2 Att(O(s)), and one of the

following three conditions hold.

(1) c 2 S, lab(s; u) = � 2 �

(k)

, k � 0, and there is a rule c(0) ! t[c

1

(i

1

); : : : ; c

m

(i

m

)] in

R

�

such that �

2

is obtained from �

1

by substituting the tree t[c

1

(ui

1

); : : : ; c

m

(ui

m

)]

for �

1

=v.

(2) c 2 I, u = u

0

i, u

0

2 IN

�

, lab(s; u

0

) = � 2 �

(k)

, k � 1, i 2 [k], and there is a rule

c(i) ! t[c

1

(i

1

); : : : ; c

m

(i

m

)] in R

�

such that �

2

is obtained from �

1

by substituting

the tree t[c

1

(u

0

i

1

); : : : ; c

m

(u

0

i

m

)] for �

1

=v.

(3) c 2 I, u = 0, and there is a rule c(0) ! t[c

1

(0); : : : ; c

m

(0)] in R

root

such that �

2

is

obtained from �

1

by substituting the tree t[c

1

(0); : : : ; c

m

(0)] for �

1

=v.

The normal form nf ()

A;s

; �) of a � 2 T

�

(Att(O(s))) with respect to )

A;s

is unique, if

it exists (see, e.g., [FHVV93]). The tree transformation �

A

realized by A is de�ned as

�

A

(s) = nf ()

A;s

; a

0

(0)) if nf ()

A;s

; a

0

(0)) 2 T

�

(and unde�ned otherwise). The classes

of tree transformations induced by patt's and monadic patt's are denoted by PATT and

PATT

mon

, respectively.

Example 1 Let A

1

= (S; I;�;�; a

0

; R) be the patt with S = fstart;what; syn

a

; syn

b

g,

I = fok; inh

a

; inh

b

g, � = f�

(2)

; a

(0)

; b

(0)

g, � = fa

(1)

; b

(1)

;#

(0)

g, and R as follows.

R

�

= fstart (0)! what (1); inh

a

(1) ! syn

b

(2); inh

b

(1)! syn

a

(2); ok (2) ! ok(0)g

R

a

= fwhat (0)! a(inh

a

(0)); syn

a

(0)! a(ok(0))g

R

b

= fwhat (0)! b(inh

b

(0)); syn

b

(0) ! b(ok(0))g

R

root

= fok (0)! #g:

Note that A

1

is monadic and in Bnf. Consider s = �(a; b). Then start(0) )

A

1

;s

what(1)

)

A

1

;s

a(inh

a

(1)) )

A

1

;s

a(syn

b

(2)) )

A

1

;s

a(b(ok (2))) )

A

1

;s

a(b(ok (0))) )

A

1

;s

a(b(#)).

Hence, nf ()

A

1

;s

; start (0)) = a(b(#)) 2 T

�

and thus �

A

1

(�(a; b)) = a(b(#)). For s =

�(b; a) we obtain �

A

1

(s) = b(a(#)). Moreover, for every s

0

2 T

�

with s

0

62 f�(a; b); �(b; a)g,

�

A

1

(s

0

) is unde�ned because nf ()

A

1

;s

0

; start (0)) 62 T

�

. Thus, the domain dom(�

A

1

) of A

1

is the tree language f�(a; b); �(b; a)g. 2
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4 Tree-Walking Automata

The following de�nition of tree-walking automaton is the one of [EHvB99]. Note that we

allow \stay" moves only at the root of a tree; this is not a restriction because any stay

move at a non-root node can by simulated by an up move followed by a down move.

A tree-walking automaton (for short, twa) is a tuple M = (Q;�; �; q

0

; F ), where Q is a

�nite set of states, � is a ranked alphabet, q

0

2 Q is the initial state, F � Q is the set

of �nal states, and � : (Q � � � [0;m]) ! P(Q � f"; #

1

; : : : ; #

m

g) is a function, where

m = maxrank (�). The twa M is deterministic (for short, M is a dtwa), if j�(q; �; i)j � 1

for all q 2 Q, � 2 �, and i 2 [0;m].

Let s 2 T

�

be a tree. The set of con�gurations (of M on s) is Q�O(s). A con�guration

(q; u) is accepting, if q 2 F . The walk-relation of M on s is the binary relation `

M;s

over

Q � O(s) such that, for (q; u); (q

0

; u

0

) 2 Q � O(s), (q; u) `

M;s

(q

0

; u

0

) i� lab(s; u) = �,

u = vi, v 2 IN

�

, i 2 [0;m] (with i 6= 0 if u 6= 0), and either (i) (q

0

; #

j

) 2 �(q; �; i) and

u

0

= uj, or (ii) (q

0

; ") 2 �(q; �; i) and u

0

= v.

A walk of (of M on s) is a (possibly in�nite) sequence C

0

; C

1

; : : : of con�gurations such

that C

0

= (q

0

; 0) and, for every i � 0, C

i

`

M;s

C

i+1

. A walk is accepting if it contains

an accepting con�guration, and maximal if it is either in�nite or it is �nite and for its

last con�guration C there is no con�guration C

0

with C `

M;s

C

0

. The tree s is recognized

by M (in universal mode) if every maximal walk on s is accepting. The tree language

recognized by M (in universal mode) is denoted by L

U

(M). The classes of tree languages

recognized (in universal mode) by twa's and deterministic twa's are denoted UTWA and

DTWA, respectively. Note that if M is deterministic, then there is exactly one maximal

walk on s.

Example 2 Let M

1

= (Q;�; �; q

0

; F ) be the twa with Q = fq

0

; q; q

a

; q

b

; q

f

g, � as in the

previous example, F = fq

f

g, and the transition function � is de�ned as follows.

� �(q

0

; �; 0) = f(q; #

1

)g,

� �(q; a; 1) = f(q

a

; ")g, �(q; b; 1) = f(q

b

; ")g,

� �(q

a

; �; 0) = f(q

a

; #

2

)g, �(q

b

; �; 0) = f(q

b

; #

2

)g,

� �(q

a

; b; 2) = f(q

f

; ")g, �(q

b

; a; 2) = f(q

f

; ")g, and

� �(q; 
; i) = ? for all q, 
, i not de�ned above.

Note that M

1

is a dtwa. Consider s = �(a; b). Then (q

0

; 0) `

M

1

;s

(q; 1) `

M

1

;s

(q

a

; 0) `

M

1

;s

(q

a

; 2) `

M

1

;s

(q

f

; 0). Hence �(a; b) 2 L

U

(M

1

). It is easy to see that the tree language

L

U

(M

1

) recognized by M

1

is f�(a; b); �(b; a)g. 2

5 Main Result

Let M = (Q;�; �; q

0

; F ) be a twa. Since we consider universal acceptance, we may assume

w.l.o.g. that M stops walking once it is in a �nal state (the `stopping assumption'), i.e.,

4



for every q 2 F; � 2 �, and i 2 [0;m]: �(q; �; i) = ?. This is because all walks that

contain a �nal state are accepting. Then, L

U

(M) equals fs 2 T

�

j f(q

0

; 0)g j=

�

M;s

?g,

where j=

M;s

is the following extension of `

M;s

to sets. For K;K

0

� Q�O(s), K j=

M;s

K

0

,

i� 9(q; u) 2 K with q 2 F or N 6= ? and K

0

= N [ (K � f(q; u)g), where N = f(q

0

; u

0

) j

(q; u) `

M;s

(q

0

; u

0

)g. Note that in case q 2 F , by the stopping assumption N = ?.

Theorem (i) dom(PATT ) = UTWA and (ii) dom(PATT

mon

) = DTWA.

The proof is split up into the following two lemmas. We assume the stopping assumption

for the twa in the proof Lemma 3.

Lemma 3 (i) UTWA � dom(PATT ) and (ii) DTWA � dom(PATT

mon

).

Proof. First we prove (i). Let M = (Q;�; �; q

0

; F ) be a twa and let m = maxrank (�).

We now construct the patt A = (S; I;�;�; a

0

; R) with dom(�

A

) = L

U

(M). Let S =

Q � [0;m] [

�

Q � [0;m], I = Q � � [

�

Q � �, a

0

= hq

0

; 0i and � = f#

(0)

0

g [ f#

(�)

�

j � =

j�(q; �; i)j for some q 2 Q;� 2 �; i 2 [m]g. For every � 2 �

(k)

with k � 0, R

�

is the

smallest set satisfying conditions (1) { (4).

(1) For all q 2 Q and i 2 [0;m], if �(q; �; i) = f(q

1

;move

1

); : : : ; (q

�

;move

�

)g with � > 0,

then let hq; ii(0) ! #

�

(c

1

(i

1

); : : : ; c

�

(i

�

)) be in R

�

, where, for every j 2 [�], c

j

(i

j

) =

hq

j

; li(l), if move

j

=#

l

and c

j

(i

j

) = h �q

j

; �i(0), if move

j

=".

(2) For every 
 2 �; q 2 Q, and i 2 [k], if �(q; 
; i) = f(q

1

;move

1

); : : : ; (q

�

;move

�

)g with

� > 0, then let hq; 
i(i) ! #

�

(c

1

(i

1

); : : : ; c

�

(i

�

)) be in R

�

, where, for every j 2 [�],

c

j

(i

j

) = h �q

j

; li(i), if move

j

=#

l

and c

j

(i

j

) = hq

j

; 
i(0), if move

j

=".

(3) For all �q 2

�

Q; i 2 [k], and 
 2 �, let h�q; ii(0) ! hq; ii(i) and h�q; 
i(i) ! hq; �i(0) be in

R

�

. (Note that these rules do not depend on the transition function of M , hence we call

them \built in" rules.)

(4) For every q 2 F and i 2 [0;m], let hq; ii(0) ! #

0

and for every q 2 F; 
 2 � and

i 2 [k], let hq; 
i(i) ! #

0

be in R

�

.

The set R

root

is the smallest set satisfying the following conditions. For all � 2 � with

k � 0 and q 2 Q, if �(q; �; 0) = f(q

1

;move

1

); : : : ; (q

�

;move

�

)g with � > 0, then let

hq; �i(0) ! #

�

(c

1

(i

1

); : : : ; c

�

(i

�

)) be in R

root

, where, for every j 2 [�], c

j

(i

j

) = h �q

j

; li(0),

if move

j

=#

l

and c

j

(i

j

) = hq

j

; �i(0), if move

j

=".

Moreover, for every q 2 Q and � 2 �, let h�q; �i ! hq; �i be in R

root

(built in rules) and,

for every q 2 F and � 2 �, let hq; �i(0) ! #

0

be in R

root

.

Note that A is not in Bnf because there may be rules in R

root

which contain inherited

attributes in their right-hand side.

Let Att

0

= Q� [0;m][Q��. A tree t 2 T

�

(Att

0

(O(s)) is well-formed if, for every synthe-

sized attribute occurrence hq; ii(u) in t, i is the last letter of u (in case u = 0 also i = 0)

and, for every inherited attribute occurrence hq; �i(u) in t, lab(s; u) = � holds. Moreover,

for a well-formed tree t in T

�

(Att

0

(O(s)), let Conf(t) = f(q; u) j hq; di(u) occurs in tg.

Claim: Let s 2 T

�

.

(i) For all t; t

0

2 T

�

(Att

0

(O(s))), if t is well-formed and t )

A;s

t

1

)

�

A;s

t

0

such that the

5



rule applied in the �rst step is not a built in one and all rules applied in the further steps

are built in ones, then t

0

is also well-formed and Conf(t) j=

M;s

Conf (t

0

).

(ii) For allK;K

0

� Q�O(s), ifK j=

M;s

K

0

, then, for every well-formed t 2 T

�

(Att

0

(O(s)))

with Conf (t) = K, there is a well-formed t

0

2 T

�

(Att

0

(O(s))) with Conf (t

0

) = K

0

and

t)

�

A;s

t

0

.

It is straightforward to prove this claim by going through the di�erent cases of c 2 Att

0

for

c(u) in t; we omit this. Then, the equality dom(�

A

) = L

U

(M) can be proved as follows.

dom(�

A

) � L

U

(M): Let s 2 dom(�

A

), then there is a t 2 T

�

with (hq

0

; 0i; 0) )

�

A;s

t. Since

)

A;s

is con
uent, there are t

1

; : : : ; t

n

2 T

�

(Att(O(s))) and t

0

1

; : : : ; t

0

n

2 T

�

(Att

0

(O(s)))

such that (hq

0

; 0i; 0) )

A;s

t

1

)

�

A;s

t

0

1

)

A;s

: : : )

A;s

t

n

)

�

A;s

t

0

n

= t, the rules applied in

the single steps (hq

0

; 0i; 0) )

A;s

t

1

; : : : ; t

0

n�1

)

A;s

t

n

are not built in ones, and all rules

applied in the other steps are built in ones. Hence, by applying (i) successively we obtain

f(q

0

; 0)g = Conf ((hq

0

; 0i; 0)) j=

�

M;s

Conf (t) = ?, i.e., s 2 L

U

(M).

L

U

(M) � dom(�

A

): Let s 2 L

U

(M), i.e., let f(q

0

; 0)g j=

�

M;s

?. Then, by successive

application of (ii), there is a tree t 2 T

�

(Att

0

(O(s))) with Conf (t) = ? and (hq

0

; 0i; 0) )

�

A;s

t. Then t 2 T

�

(because Conf (t) = ?) and s 2 dom(�

A

).

Clearly, if M is deterministic, then A is a monadic. This proves (ii). 2

Consider some twa with (q; #

k

) 2 �(r; 
; i) and (r

0

; ") 2 �(q; �; k). Then the set R of the

patt A constructed in the proof of Lemma 3 contains the following rules.

R

�

� f hq; ki(0) ! : : : h�r

0

; �i(0) : : : ; R




� f hr; ii(0) ! : : : hq; ki(k) : : : ;

hq; �i(k) ! : : : hr

0

; �i(0) : : : ; hr; 
i(i) ! : : : h�q; ki(i) : : : ;

hr; 
i(i) ! : : : h�q; ki(i) : : : g hq; �i(k) ! : : : hr

0

; 
i(0) : : : g

The top-most two rules are due to condition (1) of the construction in the proof of

Lemma 3, and all other rules are due to condition (2).

Lemma 4 (i) dom(PATT ) � UTWA and (ii) dom(PATT

mon

) � DTWA.

Proof. First we prove (i). Let A = (S; I;�;�; a

0

; R) be a patt in Bnf and let m =

maxrank (�). We now construct the twa M = (Q;�; �; q

0

; ffg) with L

U

(M) = dom(�

A

).

Let Q = S [ (I � [0;m]) [ ffg, q

0

= a

0

, and de�ne transition function � as follows (for

technical convenience a 2 S is also denoted by ha; 0i in the sequel).

For every j 2 [0;m], � 2 �

(k)

, k � 0, and rule a(�) ! r[c

1

(i

1

); : : : ; c

n

(i

n

)] in R

�

, let

�(ha; �i; �; j) = f(f; ")g if n = 0 (i.e., t 2 T

�

), and otherwise let �(ha; �i; �; j) be the

smallest set such that for every c(i) 2 fc

1

(i

1

); : : : ; c

n

(i

n

)g,

� if c 2 S, then (c; #

i

) 2 �(ha; �i; �; j) and

� if c 2 I, then (hc; ji; ") 2 �(ha; �i; �; j).

Note that i = 0 in case c 2 I, because A is in Bnf. For every � 2 �

(k)

, k � 0, and rule

b(0) ! r[c

1

(0); : : : ; c

n

(0)] in R

root

, let �(hb; 0i; �; 0) = f(f; ")g if n = 0, and otherwise let

�(hb; 0i; �; 0) = f(c

1

; "); : : : ; (c

n

; ")g. Finally, let �(q; �; i) = ? for all q, �, i not de�ned

above.

6



Now, for a tree t 2 T

�

(Att(O(s))), de�ne Conf (t) = f(a; u) j a 2 S; a(u) occurs in tg [

f(ha; ii; v) j a 2 I; a(u) occurs in t; u = vi such that if u 6= 0 then i 6= 0g.

Claim: Let s 2 T

�

. Then (i) for all t; t

0

2 T

�

(Att(O(s))), if t )

A;s

t

0

then Conf(t) j=

�

M;s

Conf (t

0

), and (ii) For allK;K

0

� Q�O(s), ifK j=

M;s

K

0

, and there is a t 2 T

�

(Att(O(s)))

such that Conf(t) = K � ffg �O(s), then there is a t

0

2 T

�

(Att(O(s))) with Conf (t

0

) =

K

0

� ffg �O(s) and t)

�

A;s

t

0

.

Again we omit the proof of this claim (it can be done by straightforward case distinction).

The equality dom(�

A

) = L

U

(M) can be proved as follows.

dom(�

A

) � L

U

(M): Let s 2 dom(�

A

), i.e., let (hq

0

; 0i; 0) )

�

A;s

t for some t 2 T

�

. Then,

by applying (i) successively we obtain f(q

0

; 0)g = Conf ((hq

0

; 0i; 0)) j=

�

M;s

Conf (t) = ?,

i.e., s 2 L

U

(M).

L

U

(M) � dom(�

A

): Let s 2 L

U

(M), i.e., let f(q

0

; 0)g j=

�

M;s

?. Then, by (ii), there is a

tree t 2 T

�

(Att(O(s))) such that (hq

0

; 0i; 0) )

�

A;s

t and Conf(t) = ? � ffg � O(s) = ?.

Then t 2 T

�

hence s 2 dom(�

A

).

Clearly, if A is monadic, then M is deterministic, which shows (ii). 2

Consider some patt with R

�

= fa

0

(0) ! �(b

0

(0); a

0

(1)); b(1) ! �(b(0); a(1)); b(2) ! a(1)g,

where � has rank 2. Applying the construction in the proof of Lemma 4 we obtain, for

every j 2 [m], �(a

0

; �; j) = fhb

0

; ji; "); (a

0

; #

1

)g, �(hb; 1i; �; j) = f(hb; ji; "); (a; #

1

)g, and

�(hb; 2i; j) = f(a; #

1

)g.
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