
Instance Level Packages for UML

P.J. 't Hoen

?

, G. Busatto, and L.P.J. Groenewegen

Leiden University, Leiden Institute of Advanced Computer Science, P.O. Box 9512,

2300 RA Leiden, The Netherlands

Abstract. Current OO modelling languages like UML and program-

ming languages like Java use some form of modules of classes to restrict

the possible interaction between objects. Class visibility is however not

su�cient to forbid all undesired interaction between objects. Objects

instantiated from a class of a module can interact with other objects

instantiated from the private classes of this module. In the paper we

explain by means of an example why this can be a problem. We need

not only the concept of private class, but also the concept of private ob-

ject. We introduce instance level modules to encapsulate objects when

we need multiple instances of a module of classes. We base our example

modules and de�nitions on packages from the industry standard UML.

1 Introduction

When an OO model (or program) is constructed, a set of classes is the end result

of an analysis of the problem domain. See [RBP

+

91, Mey97, Boo91, GJM91,

UML97, RTF99] and [Str97, GM95] for details. When classes are conceptually

related, or may not be accessible to all other classes of the model, they are placed

into distinct modules. These class modules make the structure of the model

more explicit and can be used for the desired encapsulation. Limited visibility of

classes is used to ensure only authorised access exists between the various objects

instantiated from the classes. Restricting visibility between classes using only

class modules is however not su�cient to remove all undesired access between

objects. We give a small example to illustrate our point.

Consider a simple class module Bank which represents a basic bank and a

class Customer which models a customer of the bank. The bank manages the

accounts of its customers, gives loans, reposesses houses and so on. The class

module Bank for our example only contains two classes; one for the front o�ce

dealing with the outside world and one for the internal accounting a�airs. The

�rst class fronto�ce is public, i.e. it is visible to the rest of the classes of the

model. Speci�cally, an object of type Customer can access the front o�ces of a

bank. The second class accounting for the internal a�airs of the bank is private to

the module. Only objects instantiated from classes representing the front o�ce or

accounting department are able to access the internal a�airs of a bank. Thus, the

accounting departments of a bank are hidden from an object of type Customer

?

Please use the primary author's contact address: hoen@wi.LeidenUniv.nl



and a bank can keep up its professional businesslike appearance. Class visibility

is su�cient to ensure that objects instantiated from classes not belonging to

Bank can not access the accounting departments.

There is however a problem if we want to consider more than one bank. Our

model or program then needs to include two (or more) representations of real

life banks and we want to limit the possible interactions between the di�erent

institutes using our previously developed class module Bank . We get multiple

sets of objects instantiated from the classes fronto�ce and accounting where

each separate set represents one of the banks. An instance of Customer can

still only access the front o�ces of the various banks. An object representing a

part of any bank can however access all objects from all other banks, including

the objects which represent the accounting department(s) as any object of type

fronto�ce or accounting can access any object of type accounting . This is not

a realistic representation of the cut-throat world of banking. The encapsulation

rules for classes however make no distinction between the di�erent instances of

Bank . All objects instantiated from the classes of Bank have the same access

right. Class visibility as commonly applied is only su�cient to ensure that objects

instantiated from the private classes of a class module are not accessed by objects

instantiated from classes outside of the class module.

An elegant solution to this problem is to use object modules, i.e. modules

of objects. Analogous to class modules, object modules group objects. For the

example, we place each separate set of objects which represents one bank into

one separate object module. This is useful by itself as by placing these objects

into modules we make the common role of these objects in our model explicit.

More importantly, we use these same object modules to restrict further the visi-

bility of the objects of the various accounting departments. Each object module

encapsulates all objects of type accounting . By hiding within the object modules

the objects which are instantiated from the private classes from the class module

we ensure that there is no undesired access from the objects of one bank to the

private objects of a di�erent bank. Object modules add visibility constraints

for objects not de�ned by the visibility constraints for the parent classes. We

introduce the concepts of public and private objects. We de�ne instance level

modules as special object modules which model di�erent instances of one class

module.

In Section 2, we once more present the above scenario but now more formally

using UML diagrams as de�ned in [UML97, RTF99] as UML is becoming a de

facto standard for OO notation. For modules we use UML packages. This means

we have class and object packages. In Section 3, we de�ne instance level packages,

a special type of object package and we show how the problem scenario from

the introduction and Section 2 using these instance level packages is resolved. In

Section 4 we make some concluding remarks.



2 Problem Scenario

In Section 1, we have sketched a problem scenario involving a customer and one

or more banks. In this Section we model this same scenario using the notation for

classes and UML modules, i.e packages. We �rst present the necessary classes and

packages. We then present the scenario for one customer and just one bank. We

extend this example by adding one bank to show the speci�c problems involved

with two or more banks. Section 3 gives a general solution for this type of

scenario.

Based on the original scenario from Section 1, we de�ne a class Customer and

a Package Bank . The customer can add and withdraw money from his account

through the front o�ce of the bank. The internal administration of the bank is

done by the accountancy department of the bank.

In [UML97, RTF99], the notation for classes and packages is de�ned as:

{ A class is drawn as a solid-outline rectangle with 3 compartments separated

by horizontal lines. The top name compartment holds the class name and

other general properties of the class; the middle list compartment holds a list

of attributes; the bottom list compartment holds a list of operations. Both

of the last two compartments may be suppressed.

{ A package is shown as a large rectangle with a small rectangle (a \tab")

attached on one corner (usually the left side of the upper side of the large

rectangle). It is a manila folder shape. The visibility of a package element

outside the package may be indicated by preceding the name of the element

by a visibility symbol ('+' for public, or '-' for private).

The concept packages for UML is very general as packages can contain just about

any model element UML cares to de�ne. We call packages restricted to contain

only classes class packages.

Figure 1 gives the problem scenario in a UML static structure diagram.

The diagram includes the class Customer and the class package Bank with two

classes fronto�ce and accounting . The class Customer can use the public class

fronto�ce to access his money but not the private class accounting .

+front
office

put
get

Customer

status
consult

-accounting

Bank

Fig. 1. The Bank and the Customer

We �rst instantiate the classes to concrete objects where we describe how one

instance of customer interacts with the objects of just one bank. Objects in UML



are usually drawn in a separate object diagram. For UML, an object diagram is

a graph of instances, including objects and data values. A static object diagram

is an instance of a class diagram; it shows a snapshot of the detailed state of

an instance of the model at a point in time. An object represents a particular

instance of a class. The object notation is derived from the class notation by

underlining instance-level elements.

In Figure 2, one customer c can choose from either of the two front o�ces

f

1

or f

2

of the same bank. The front o�ces of this bank share the accounting

department a. The customer c can however not access a as the parent of a, the

class accounting , is hidden from the parent of c, i.e. the class Customer . This

type of constraint is enforced by the encapsulation of classes by class packages.

f2:frontoffice

f1:frontoffice

a:accountingc:Customer

Fig. 2. A customer and a bank with two front o�ces

Consider however the case where we want to model two distinct banks. We

then have two sets of objects where the �rst set represents one bank and the

second set the other. We add as objects an f

0

: fronto�ce and an a

0

: accounting

to represent the second bank. The objects from the set ff

1

; f

2

; ag represent our

original bank while the objects from the set ff

0

; a

0

g represent the newly added

second bank. We now however have the undesired situation of Figure 3. An

object f

i

: fronto�ce or a : accounting from the �rst bank can access the internal

accounting department a

0

: accounting of the second bank. Speci�cally, objects

from the �rst set can access the objects representing the internal accounting

departments of second bank. We would like there to be a \�rewall" indicated by

the dotted line which prevents the access from f

i

or a to a

0

.

f1:frontoffice

f’:frontoffice a’:accounting

f2:frontoffice

Fig. 3. A second bank



The next Section de�nes this �rewall by introducing instance level packages.

These are special packages of objects which represent the instances of a class

package.

3 Instance Level Packages

In the previous section, we claim that we solve the problem of the incorrect

visibility of the objects instantiated from the private classes of a class package

by introducing special packages of objects. Before we substantiate this claim, we

�rst make some general remarks on the use of packages and objects in UML. We

then give a solution for the example scenario. Based on this example, we give

the desired de�nition of instance level packages.

In [UML97, RTF99], a package is a grouping of any model elements. We

have already seen in Section 2 how packages are used to group and encapsulate

classes and this is the main role of packages in UML. The objects themselves in

UML only play a secondary role. The use of object diagrams is fairly limited,

mainly to show examples of data structures. Although this is not done, i.e. the

possibility is largely ignored, UML allows for packages to group and encapsulate

objects. We call packages which only contain objects object packages. There are

useful opportunities for object packages as is shown below.

In Figure 4, in order to resolve the problems of the scenario, we place the two

banks into distinct object packages. One object package contains the objects f

1

,

f

2

and a of the �rst bank while the second object package contains the objects f

0

and a

0

of the second bank. All objects of type accounting are encapsulated by the

object packages. These objects have the visibility speci�er private. The objects

representing the front o�ces are left public. According to the visibility rules for

package elements, only object f

0

is visible outside of the package SecondBank .

Objects which represent the �rst bank can no longer access a

0

which is private

for the second package. The customer c, if located outside of the two packages,

is not a�ected an can still open an accounts at any of the o�ces of the two

banks. The objects packages extend the encapsulation of class packages. By

extending encapsulation we mean that our speci�c object packages from Figure

4 ensure that for objects not only the visibility between the parent classes is

considered, but that also the visibility of objects belonging to di�erent sets of

objects instantiated from the same classes of one class package is considered.

The concept of private classes is quite common. The class accounting is such

a class of the class package Bank in Figure 1. We now also have the concept of a

private object. Object a

0

of the object package SecondBank for Figure 3 is such

a private object.

As we already stated, it is already possible in UML to group objects into

packages: a package can contain any model elements. A package can also encap-

sulate its contained model elements. A package in UML is mainly a syntactical

tool to group and structure the classes of a model. By restricting ourselves to

a class package concept, we get a concept that is su�ciently clear to be able



+f1:frontoffice

-a:accounting

+f2:frontoffice

FirstBank: Bank

+f’:frontoffice -a’:accounting

SecondBank: Bank

Fig. 4. The two banks in packages

to de�ne a meaningful semantics for it. We de�ne object packages which are

instances of class packages.

In our application of packages, we have given a type to the packages of

objects. For example, we have introduced FirstBank : Bank . This is not de�ned

in [UML97, RTF99]. We de�ne: a package of objectsO is an instance of a package

of classes C when:

{ All objects of O are instances of classes of C . The objects contained by O

are only instances of the classes contained by C .

{ The visibility speci�er of an object o : c ofO is equal to the visibility speci�er

of c for C . Public classes of C are mapped to public objects of O like private

classes of C are mapped to private objects of O .

When O is an instance of C we de�ne that O is an instance level package and

that O : C . The package O is not just any object package but a very speci�c

package which represents an instance of a class package.

With instances of class packages de�ned, we can distinguish between di�er-

ent instances of the same package. Object packages group the di�erent sets of

instantiated objects and allow the modeller to regulate the visibility of objects

instantiated from one class but which represent di�erent parts of a model.

Note however that we do not claim that using our de�nition of instance level

packages is the only way to instantiate the classes of a package. For example,

if for the problem scenario we only want to have one instance of the package

Bank , i.e. only one bank, then it is not a problem to instantiate the classes

and leave the objects ungrouped. The visibility rules for classes are su�cient for

preventing instances of Customer to access the instances of Accounting . Also, if

the modeller wants for the di�erent instances of Bank to access directly their

respective accounting departments, then by all means, go ahead and instantiate

the classes of Bank as unencapsulated sets of objects. Otherwise, the modeller

can use instance level packages as we have de�ned to limit the visibility of

objects.

We envision the new use of object packages in UML in two speci�c ways.

Object packages either play a role for the object diagram or for the class diagram.

For the object diagram, instance level packages can be used to give examples

of multiple instances of packages of classes. We have used this for our problem



scenario to model how two di�erent banks can communicate. Alternatively, pack-

ages of objects can be used to group related objects which represent di�erent

model parts. These same packages can be used to encapsulate private objects.

Class packages can be found from these object packages much in the same as

classes are found which capture the shared properties of a set of objects. The

discovered class packages then represent the common role of a set of di�erent

types of objects.

In their second role, instance level packages play an indirect role for the class

diagram. We have seen for the example of Section 2 that we want to have the

possibility to discern the di�erent instances of one class package. For this purpose

we have de�ned instance level packages. We need to be able to indicate in the

class diagram that certain packages can only be instantiated to these instance

level packages. For this purpose we add the stereotype distinct. Stereotypes rep-

resent one of the built-in extensibility mechanisms of UML and a stereotype in

UML represents a usage distinction of a model element. A package of classes with

the stereotype distinct can only be instantiated to instance level packages. The

objects instantiated from the classes of the package P with stereotype distinct

may only occur in the object diagram in packages of objects O where O : P .

The names of stereotypes in UML are put between << and >>. The general

presentation of a stereotype is to place the keyword string above the name of

the element. For Figure 5 we once more give the package of classes Bank and

we indicate that the package may only be instantiated to distinct instance level

packages.

<<distinct>>

+front
office

get
put status

consult

-accounting

Bank

Fig. 5. Bank can only be instantiated to instance level packages

Note that we do not claim that object packages have to exist for a program

which implements our example scenarios for Bank . Our object packages need

not necessarily be directly implemented at run time. We however do want to

express the possible legal interactions of the objects which represent di�erent

banks/instances of one class package. For our example, our instance level pack-

ages capture the fact that the accounting departments of each bank should be

private to the bank. A program should ensure that an object of one bank does



not access the accounting department of another bank. This can be done using

packages at runtime.

Up to now, we have kept our examples and �rst de�nition simple by ignoring

the possible hierarchical nature of packages; a package in UML can contain sub

packages. In general, a package may have as elements either non hierarchical

model elements like classes or (sub)packages. These elements of a class package

are respectively called class elements and (class) package elements. We call a

package which contains package elements a complex package. A package element

of a complex package is called a nested package. Likewise, for a complex package

which structures and encapsulates objects, we have object elements and package

elements.

With the above terminology, we can de�ne an instance of a complex class

package.

A complex object package O is an instance of a complex class package C i�

{ each object element of O is an instance of a class element c of C and the

visibility speci�er of o is equal to the visibility of c.

{ Each (complex) object package element op of O is an instance of a (complex)

class package element cp of C and the visibility speci�er of op is equal to

the visibility of cp.

When a (complex) object package O is an instance of a (complex) class package

C , then O : C where O is an instance level package.

The next Section has some concluding remarks.

4 Conclusions

We present some results and future work.

4.1 Results

We have shown that class visibility imposed by modules can be insu�cient to

de�ne properly for all cases when objects may access each other. This is a prob-

lem if we consider instantiating the classes of one module to two or more distinct

sets of objects where each set of objects collectively represents a distinct thing.

For our example we presented a module of classes which represents a bank at

the type level. We get multiple sets of objects at the instance level if we want

to model more than one bank; one set of objects for each separate bank. With

the existing visibility, the objects of one bank can however access the objects

instantiated from the public and private classes of any other bank. This is not

the intention of the modeller as this means that one bank can access all objects

of another bank including the objects instantiated from private classes which

should be private to the bank if they are only intended for internal use within

the other bank. This is a problem which occurs for any OO modelling language

which addresses the visibility of objects solely in terms of visibility of classes.

Speci�cally, this is a problem for UML and current programming languages such



as C++ and Java. We need not only the concept of private classes, but also the

concept of private objects.

To solve the above problem we de�ne instance level packages for UML. These

are special packages of objects. Any given instance level package is an instance

of one package of classes. All objects contained by this instance level package

are instances of the classes of this package of classes. Furthermore, all private

classes are instantiated to private objects. For our bank example, each instance

of the bank is placed in a separate instance level package which encapsulates the

objects of a bank that are intended solely for local use. These are precisely the

objects instantiated from the private classes of the bank. By giving semantics to

packages of classes, we can discriminate between the di�erent instances of one

package.

Taking into account possible instances of packages of classes allows the mod-

eller to work with objects on a more �ne-tuned level. During the development of

a model, objects are often used for giving example snapshots of a system under

development. Objects are also used to model the existence of speci�c instances

of classes for the �nal implementation. When not using packages of objects,

the grouping of objects is left implicit and only class visibility determines the

visibility of objects. The use of instances of packages makes the grouping of ob-

jects more explicit and allows a modeler to �ne-tune the visibilities of objects

belonging to di�erent sets of objects instantiated from the classes of a package.

4.2 Future Work

There are three de�nite targets for future work using the concepts of instance

level packages.

A �rst candidate is the addition of instance level packages for SOCCA. SOCCA

(Speci�cation of Coordinated and Cooperative Activities) is a graphical formal-

ism and associated method for object-oriented modelling which is under active

development at Leiden University. SOCCA allows for a precise and detailed spec-

i�cation of the communication and synchronisation between the modelled classes

and objects. SOCCA, based on [EG94], has been formalised for the type level in

[DGSK

+

99] using the formal language Z [Spi92]. UML-like packages for SOC-

CA are currently being formalised in [tHDG

+

99]. As a followup to [DGSK

+

],

instance level packages for SOCCA will be de�ned.

The second candidate is to use instance level packages within patterns [GHJV94].

The various patterns are de�ned in terms of classes and examples are used to

show how a pattern should be instantiated. Instance level packages can be used in

three ways within the pattern community if the classes of a pattern are contained

within a package. First of all, instance level packages can group the objects of

a pattern. This gives a clear boundary between the objects belonging to the in-

stance of the pattern and the rest of the model. The instance level package serves

as an aggregate for the objects of the pattern. Secondly, instance level packages

can serve to distinguish between the objects belonging to di�erent instances of

the same pattern. Lastly, instance level packages are still very general. Each class

of a package can be instantiated to any number of objects of an instance level



package. We can however re�ne the de�nition of an instance level package if a

pattern requires for a class belonging to the pattern to be instantiated a �xed

number of objects. This type of constraint can be incorporated into the de�ni-

tion of the instantiation of the pattern represented by the package of classes.

We then only allow for special instance instance level packages with the correct

number of objects.

A third topic for future research concerns possible further constraints on the

object package structure, and ways to specify such constraints in a model. For

example, once that we know that there exist instance level packages of type

Bank, how do we determine/constrain how many of such instance level packages

there are, and which objects belong to which packages?

A solution to a similar problem in the context of graph struturing is illus-

trated in [BEMW], in which a graph structuring concept, called graph packages,

is presented. Without going into further details (for which you can refer to

[BEMW]), we sketch how the concepts presented there can be transfered to the

object package case. The main idea is that instance level packages can be de-

termined by the information contained in the objects they have to group. In

our example, fronto�ce and accounting objects which have the same value for

attribute swiftcode shold be in the same Bank package. Their visibility can be de-

termined from the visibility of the corresponding classes with respect tothe Bank

class package. The number of existing Bank instance packages can be determined

by the number of di�erent existing swift codes.

More generally, this method, which we call descriptive approach, assumes

that we extend our modeling language and de�ne some kind of predicates, that

allow to describe the structure of instance level packages. Such predicate can use

information about object types, about possible links between objects, as well as

values contained in object �elds. We envision to obtain at least the following

advantages from the descriptive approach: Firstly, the package structure is de-

�ned in the model in a declarative way, making the reasons for the structuring

(e.g. , same swift code) explicitly visibible. Secondly, as far as possible imple-

mentations of object packages are concerned, by using predicates we do not need

to represent instance level packages in the running system, since it is su�cient

to add code to check that access restrictions between objects are not violated.

Such additional code for checking access restrictions can be systematically ob-

tained by the declarative de�nition of the packages. In our example, each time

a fronto�ce object requires to access an accounting object, a piece of code can

be added, to check whether the swiftcode �elds in both objects have the same

values.

We think the descriptive approach is an attractive solution for modeling,

designing, and implementing instance level package structures, and we aim for

an implementation in the near future.

References

[BEMW] Giorgio Busatto, Gregor Engels, Katharina Mehner, and Annika Wagner.

A framework for adding packages to graph transformation approaches.



Presented at TAGT98, Paderborn, 16-20 November 1998.

[Boo91] Grady Booch. Object oriented design with applications. Ben-

jamin/Cummings series in Ada and software engineering. Benjamin/

Cummings Pub. Co., Menlo Park, CA, USA, 1991.

[DGSK

+

] J.H.M. Dassen, L.P.J. Groenewegen, I.G. Sprinkhuizen-Kuyper, P.W.M.

Koopman, P.J. 't Hoen, and G. Engels. A formalisation of SOCCA us-

ing Z; part 2: the instance level concepts. Manuscript. This document

continues the formalisation of the modelling language of the SOCCA OO

method in the formal speci�cation language Z as started in [DGSK

+

99].

It captures the \dynamic" aspects of SOCCA, i.e. the meaning of SOCCA

language elements at the instance level (objects in execution).

[DGSK

+

99] J.H.M. Dassen, L.P.J. Groenewegen, I.G. Sprinkhuizen-Kuyper, P.W.M.

Koopman, P.J. 't Hoen, and G. Engels. A formalisation of SOCCA using

Z; part 1: the type level concepts. Technical Report 1999{03, Leiden

Institute of Advanced Computer Science, February 1999. Available on the

web as http://www.wi.leidenuniv.nl/TechRep/1999/tr99-03.ps.gz.

[EG94] Gregor Engels and Luuk P.J. Groenewegen. SOCCA: Speci�cations of

coordinated and cooperative activities. In A. Finkelstein, J. Kramer,

and B.A. Nuseibeh, editors, Software Process Modelling and Technology,

pages 71{102. Research Studies Press Ltd. / John Wiley & Sons Inc.,

1994. Taunton 1994.

[GHJV94] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design

Patterns | Elements of Reusable Object-Oriented Software. Addison-

Wesley professsional computing series. Addison-Wesley, 1994.

[GJM91] Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli. Fundamentals of

Software Engineering. Prentice-Hall, Inc., Englewood Cli�s, 1 edition,

1991.

[GM95] James Gosling and Henry McGilton. The Java Language Environment:

a white paper. Sun Microsystems, oct 1995.

[Mey97] Bertrand Meyer. Object-oriented Software Construction. Prentice-Hall,

Inc., New York, N.Y., second edition, 1997.

[RBP

+

91] James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy,

and William Lorensen. Object-Oriented Modeling and Design. Prentice-

Hall, Inc., 1991.

[RTF99] Uml speci�cation v. 1.3. Technical report, OMG Uni�ed Modeling Lan-

guage Revision Task Force (UML RTF), June 25 1999.

[Spi92] J. M. Spivey. The Z Notation: A Reference Manual. Prentice Hall Inter-

national Series in Computer Science, 2nd edition, 1992.

[Str97] Bjarne Stroustrup. The C

++

Programming Language. Addison-Wesley,

third edition, 1997.

[tHDG

+

99] P.J. 't Hoen, J.H.M. Dassen, L.P.J. Groenewegen, I.G. Sprinkhuizen-

Kuyper, P.W.M. Koopman, and G. Engels. SOCCA extended with uml

like packages. Technical report, liacs, April 1999.

[UML97] Uni�ed modeling language 1.0. Technical report, Rational Software Cor-

poration, January 13 1997.


