
Adaptive Information Filtering:

improvement of the matching technique and

derivation of the evolutionary algorithm

D.R. Tauritz and I.G. Sprinkhuizen-Kuyper

LIACS, Leiden University

fdtauritz,kuyperg@cs.leidenuniv.nl

http://www.wi.leidenuniv.nl/home/fdtauritz,kuyperg

April 1999

Abstract

Adaptive Information Filtering is concerned with �ltering information streams

in changing environments. The changes may occur both on the transmission

side (the nature of the streams can change) and on the reception side (the in-

terests of a user can change). The research described in this report details the

progress made in a prototype Adaptive Information Filtering system based on

weighted trigram analysis and evolutionary computation. The main improve-

ments of the algorithms employed by the system concern the computation

of the distance between weighted trigram vectors and a further analysis of

the two-pool evolutionary algorithm. We tested our new prototype system

on the Reuters-21578 text categorization test collection.

Contents

1 Introduction 2

2 Overview of the AIF system 4

3 Measuring distance in weighted trigram frequency vector

space 4

4 Applying evolutionary computation to classi�cation 8

4.1 Expanding object set . 9

4.2 Shifting window . 9

4.3 Age . 10

4.4 Two pool . 11

5 A new adaptive information �ltering system prototype 11

6 The Reuters-21578 text categorization test collection 13

7 Conclusions 16

A Appendix A - C++ source code for document extraction 18

B Appendix B - C++ source code for trigram frequency vector

creation 23

1

1 Introduction

We live in what is often termed the \information age". It might more ap-

propriately be called the \data age", for only relevant data is information,

and �nding relevant data among the ever greater accumulations of available

data is becoming increasingly more di�cult. One of the �elds dealing with

this problem is Information Filtering (IF). IF is the process of �ltering data

streams in such a way that only particular data are preserved, depending on

certain information needs. The IF environment is the combination of data

stream and information needs. When the data stream and the information

needs are not changing over time the IF environment is said to be static.

When, however, the IF environment is dynamic, as opposed to static, an

adaptive information �ltering (AIF) system is called for. An AIF system is

an IF system capable of adapting to changes in both the data stream and

the information needs.

One of the essential ingredients in any information retrieval (IR) or IF

system is its ability to match a query (in the case of an IR system) or a pro�le

(in the case of an IF system) with the documents available for perusal. While

optimally a semantical match should be performed, that is not currently

feasible and we have to be satis�ed with a syntactical match. A good general

reference to the �eld of IR/IF is [4].

The most widely employed syntactical representation of textual docu-

ments is based on term indexing (see for example [6]). In manual indexing

keywords are manually assigned to a document, while in automatic indexing

the frequencies of all the terms occuring in a document are indexed. Term

indexing has several drawbacks, such as its sensitivity to spelling variations

and errors, its static nature (the terms need to be known beforehand which

is �ne for IR but not for IF) and its reliance on linguistic preprocessing, such

as stop word removal and word stemming, to make it e�ective.

Another approach which in the last decade has received quite a bit of

attention is based on the so-called n-gram analysis [3]. The n stands for

a positive integer. Application of n-gram analysis produces an n-gram fre-

quency vector which holds the frequencies of all the distinct character com-

binations of length n. In 1-gram analysis the occurrence of single letters is

determined, in 2-gram analysis that of pairs of letters, in 3-gram analysis

that of triplets, etc. When talking about a speci�c value of n, especially

for lower values of n, often its Latin name is used instead of the numeric

value, so 2-grams are often called bi-grams or bigrams, 3-grams trigrams,

4-grams quadgrams, but 7-grams usually just 7-grams. For example, the

word \coconut" consists of the bigrams \co", \oc", \on", \nu" and \ut", all

with a frequency of one except for \co" which has a frequency of two. The

2

trigrams are \coc",\oco",\con",\onu" and \nut", all with a frequency of one.

The use of n-gram analysis has many advantages over term-based systems,

such as being more robust when dealing with spelling variations or errors

and not requiring linguistic preprocessing which facilitates the deployment

of n-gram-based systems in multi-topic or multi-language environments [2].

However, also an n-gram-based system can potentially bene�t from prepro-

cessing, since for example when the stop word `the' is removed, the trigram

`the' becomes of signi�cance.

In [9] it was shown that term indexing | traditionally used in IR/IF

systems | is in general not suited for AIF, but that weighted trigram analysis

is. See [8] for an example of a term-based AIF system for use in a restricted

domain. A prototype AIF system based on weighted trigram analysis was

introduced in [9] and [10]. For n < 3 n-gram analysis does not provide

su�cient syntactical information [7] and for n > 3 advanced sparse vector

representations are required which will be employed in future versions of our

AIF system.

The matching technique used in the original prototype AIF system was

based on the Euclidean metric, which is a special case of the Minkowski `

p

-

metric, namely for p equal to two (p equal to one is called the Manhattan

metric). This report details the advances made in the matching technique.

An important improvement is normalizing the weighted trigram vectors in-

stead of the trigram vectors themselves. It also introduces the Manhattan

metric as a possible alternative to the Euclidean metric in the prototype AIF

system. For a general introduction to measurements in information science

see [1].

A crucial step in working with weighted trigram analysis is to �nd the

right weight vector. Our �rst prototype AIF system introduced a novel two-

pool evolutionary algorithm (EA) for optimizing weight vectors. EAs are a

class of optimization algorithms which come in handy when no a-priori solu-

tions to a speci�c optimization problem are available. They work by evolving

a population of trial solutions using techniques inspired by evolutionary biol-

ogy. For an easy introduction to evolutionary computation (EC) see chapter

4 of [9]; for a more comprehensive introduction to EC see [5]. This report

provides a full derivation of the two-pool EA, showing that it is a special

case of a whole family of classi�cation EAs.

A new prototype AIF system based on the improved matching technique

has been constructed. This report describes the new system and presents the

results of testing it on the Reuters-21578 text categorization test collection.

Using a standard test collection will facilitate comparing these results with

other case studies. The Reuters collection has embedded tags indicating

common usage in text categorization tests. They were not suitable for our

3

purposes which prevents our results from being compared to previous studies

which did employ those tags. However, as the collection is readily available

and later in this report we describe how we obtained the training and test

sets for our research, the code for which follows in appendix A, we facilitate

conducting studies which can be compared to our results.

The report is structured as follows. In section 2 we give a global descrip-

tion of the complete system. In section 3 we describe the distance measures.

The details of the two-pool EA are presented in section 4. In section 5 our

new prototype AIF system is explained, while section 6 describes the Reuters-

21578 test collection and the results of our experiments with that collection.

Finally, section 7 gives our conclusions, while two appendices contain C++

code for tools we used in our experiments.

2 Overview of the AIF system

This section is meant to illustrate the working of the system as a whole with-

out drowning the reader in all the details which are given later in this report.

The core of the system is the clustering cycle (see �gure 1). The clustering

algorithm uses a weight vector to compare the trigram frequency vector of

a document with the prototype vectors of the clusters and decides in what

cluster the document will be classi�ed. Depending on the parameters of the

cluster algorithm, the prototype vector of the chosen cluster will shift a bit in

the direction of the newly presented document vector. The prototype vectors

are initialized by averaging the trigram vectors of a number of documents

belonging to each cluster (class).

The weight vector and the parameters of the cluster algorithm (the cluster

radius and the shift factor) are determined by the EA. So the EA works on a

population of individuals each containing a chromosome with genes existing

of the components of the weight vector and the parameters of the cluster

algorithm. The �tness of an individual is determined by dividing the number

of documents it has correctly classi�ed by the total number of documents it

has classi�ed.

3 Measuring distance in weighted trigram fre-

quency vector space

The performance of a matching technique is called its discriminating power.

The higher the discriminating power, the better a technique is able to sep-

arate documents which are semantically dissimilar and to group together

4

EA algorithm
cluster

vectors

prototype

vector
document

trigram

document

cluster parameters

weight vector and

cluster parameters
weight vector and

fitness of the

classification
document

Figure 1: Schematic overview of the adaptive IF system.

documents which are semantically similar. In [9] it was shown that the

combination of weighted trigram analysis (each trigram is assigned a weight

indicating its relative importance) and the Euclidean distance metric has

su�cient discriminating power for document classi�cation.

The size of the alphabet used will be indicated with jaj. Consider two

document vectors d

1

and d

2

. Let f = (f

1

; f

2

; � � � ; f

n

) and g = (g

1

; g

2

; � � � ; g

n

)

with n = jaj

3

be the corresponding trigram frequency vectors for these doc-

uments. Let w = (w

1

; w

2

; � � � ; w

n

) with w

i

� 0, i = 1; � � � ; n be the weight

vector giving the relative importance of the di�erent trigram frequencies. The

weighted trigram vectors x = (x

1

; � � � ; x

n

) and y = (y

1

; � � � ; y

n

) corresponding

to f and g respectively are de�ned as follows: x

i

= f

i

w

i

and y

i

= g

i

w

i

for

i = 1; � � � ; n.

In [9] it was argued that the trigram frequency vectors had to be normal-

ized to prevent the length of a document in
uencing the distance metric. This

was accomplished by introducing

~

f = (

~

f

1

;

~

f

2

; � � � ;

~

f

n

) with

~

f

i

= f

i

=

P

n

j=1

f

j

and ~g = (~g

1

; ~g

2

; � � � ; ~g

n

) with ~g

i

= g

i

=

P

n

j=1

g

j

and de�ning ~x = (~x

1

; ~x

2

; � � � ; ~x

n

)

and ~y = (~y

1

; ~y

2

; � � � ; ~y

n

) as follows: ~x

i

=

~

f

i

w

i

and ~y

i

= ~g

i

w

i

. The match be-

tween d

1

and d

2

was estimated by applying the Euclidean distance metric to

~x and ~y:

�(~x; ~y) =

v

u

u

t

n

X

i=1

(~x

i

� ~y

i

)

2

(1)

5

However, in [9] the weights were not normalized, which allowed the fol-

lowing to happen (for simpli�cation an alphabet of four symbols will be used

for this and all subsequent examples):

Proportional weight vector example

In this example the weight vectors are proportional. And, since

the weights indicate relative importance, we want the result to be

the same for both weight vectors. Given the normalized trigram

frequency vectors

~

f = (0:2; 0:0; 0:3; 0:5) and ~g = (0:4; 0:0; 0:6; 0:0)

and weight vector w = (1; 2; 1; 2), the weighted trigram vec-

tors are ~x = (0:2; 0:0; 0:3; 1:0) and ~y = (0:4; 0:0; 0:6; 0:0). This

yields the Euclidean distance �(~x; ~y) � 1:063. With the weight

vector w = (2; 4; 2; 4) the weighted trigram vectors are ~x =

(0:4; 0:0; 0:6; 2:0) and ~y = (0:8; 0:0; 1:2; 0:0). This yields a Eu-

clidean distance of �(~x; ~y) � 2:126. The results are not the same

because the weighted vectors were not normalized.

We want the weighted distribution to in
uence only the distance, not the ac-

tual sizes of the weights | just as we want the trigram frequency distribution

to in
uence the distance, not the actual sizes of the frequencies. It would

appear that normalizing the weights will solve this problem. This can be ac-

complished by introducing ~w = (~w

1

; ~w

2

; � � � ; ~w

n

) with ~w

i

= w

i

=

P

n

j=1

w

j

and

de�ning x̂ = (x̂

1

; x̂

2

; � � � ; x̂

n

) and ŷ = (ŷ

1

; ŷ

2

; � � � ; ŷ

n

) as follows: x̂

i

=

~

f

i

~w

i

and

ŷ

i

= ~g

i

~w

i

. The match between d

1

and d

2

can then be estimated by applying

the Euclidean distance metric to x̂ and ŷ:

�(x̂; ŷ) =

v

u

u

t

n

X

i=1

(x̂

i

� ŷ

i

)

2

(2)

But there are still more problems lurking in the woods. Consider for

instance the results of a slightly modi�ed version of the above example using

normalized trigram frequency vectors and a normalized weight vector:

Normalized weight vector example (1)

If the fourth normalized weight is zero, only the �rst three tri-

grams are considered, and as both trigram frequency vectors

convey the same information about the trigrams being consid-

ered, namely that the third trigram is twice as prevalent as the

�rst one, the distance between them should be zero. Given the

normalized trigram frequency vectors

~

f = (0:2; 0:0; 0:3; 0:5) and

~g = (0:4; 0:0; 0:6; 0:0) then using the normalized weight vector

~w = (0:3; 0:4; 0:3; 0:0), the weighted trigram vectors are x̂ =

6

(0:06; 0:0; 0:09; 0:0) and ŷ = (0:12; 0:0; 0:18; 0:0). This yields the

Euclidean distance �(x̂; ŷ) � 0:108. The distance is not zero,

indicating that there is still a
aw in the matching technique.

Another problem is illustrated by the following example:

Normalized weight vector example (2)

If the second normalized trigram frequency is zero for both tri-

gram vectors, only the �rst, third and fourth normalized trigram

frequencies are considered. And if both normalized weight vectors

convey the same information about the trigrams being consid-

ered, namely that the fourth is twice as important as the �rst and

the third, the distance should be the same for both normalized

weight vectors. Given the normalized trigram frequency vectors

~

f = (0:2; 0:0; 0:3; 0:5) and ~g = (0:4; 0:0; 0:6; 0:0) and normalized

weight vector ~w = (0:1; 0:6; 0:1; 0:2), the weighted trigram vectors

are x̂ = (0:02; 0:0; 0:03; 0:1) and ŷ = (0:04; 0:0; 0:06; 0:0). This

yields the Euclidean distance �(x̂; ŷ) � 0:106. With the normal-

ized weight vector ~w = (0:2; 0:2; 0:2; 0:4) the weighted trigram

vectors are x̂ = (0:04; 0:0; 0:06; 0:2) and ŷ = (0:08; 0:0; 0:12; 0:0).

This yields the Euclidean distance �(x̂; ŷ) � 0:213. The distances

are not the same, again indicating a
aw in the matching tech-

nique.

In the last two examples the indicated
aw is caused by one and the same

mistaken assumption, that is, that we can normalize the trigram frequency

vectors independently from the weight vectors. If we want to measure the

distance between two weighted trigram frequency vectors then those are the

vectors that need to be normalized. This can be accomplished by introducing

x = (x

1

; � � � ; x

n

) with x

i

= x

i

=

P

n

j=1

x

j

and y

i

= y

i

=

P

n

j=1

y

j

.

The match between d

1

and d

2

can then be estimated by applying the

Euclidean distance metric to x and y:

�(x; y) =

v

u

u

t

n

X

i=1

(x

i

� y

i

)

2

(3)

Applying this to the last two examples produces the correct results.

An alternative to the Euclidean metric is the Manhattan metric. Using

it the match between d

1

and d

2

can be estimated as follows:

�

0

(x; y) =

n

X

i=1

jx

i

� y

i

j (4)

7

4 Applying evolutionary computation to clas-

si�cation

In our AIF system the classi�cation of a document vector is dependent on

the weight vector being used. We determine this vector by using an evolu-

tionary algorithm (EA). In this section we will consider the development of

classi�cation EAs (CEAs) more generally, but for our concrete system the

members of a population are weight vectors, the score of a member is the

number of correctly classi�ed documents and its age is the total number of

documents it has classi�ed.

The set of objects to classify will be denoted with S and the number of

objects in S with jSj. For short � will stand for an object and c(�) for the

class � maps to. The set P = fP

1

; P

2

; � � � ; P

pop size

g is the population of

trial solutions with pop size a positive integer. For the purpose of indexing

the population members we de�ne i as an integer between 1 and pop size.

Two essential components of any CEA are the evaluation of all the popu-

lation members and, based on that, the evolvement of the population. The

evolvement component will be denoted with EVOLVE (P). The evaluation

component will be denoted with EVAL(S; P) and is de�ned as follows:

EVAL(S; P) : 8P

i

2 P determine FITNESS(S; P

i

) (5)

The �tness of a trial solution given an object set is the average score of

that trial solution on classifying all the objects in the object set. The range

of the �tness is from zero to one with zero being the worst (all classi�cations

incorrect) and one the best (all classi�cations correct). The �tness function

is de�ned as follows:

FITNESS(S; P

i

) =

P

8�2S

RESULT (�; P

i

)

jSj

(6)

The result of classifying an object given a trial solution is either zero

(incorrect) or one (correct). The result function is de�ned as follows:

RESULT (�; P

i

) =

(

0 if classify(�; P

i

) 6= c(�)

1 if classify(�; P

i

) = c(�)

(7)

The result function works by comparing the actual mapping of an object

to the mapping of that object computed using a trial solution. The function

which performs that computation is de�ned as:

CLASSIFY (�; P

i

) = the class � maps to using P

i

(8)

The CEA can then be de�ned as given in Algorithm 1.

8

Algorithm 1 Static object set

initialize S, P

EVAL(S,P)

while (not termination condition) do

EVOLVE (P)

EVAL(S; P)

end

4.1 Expanding object set

If S expands in time we can simply execute Algorithm 1 after each expansion

to �nd a mapping from object space to class space at any given time. If the

set of objects is smaller than the object space and represents it better as it

expands, then the mapping found by the CEA will better approximate the

mapping from object space to class space as time progresses. In this case it is

likely that the mapping found at any particular time is a good approximation

of the mapping to be found the following time and therefore would make a

good starting point for the next search. Time will be denoted with � and

the object added to S at � = �̂ with �

�̂

. The new algorithm is given as

Algorithm 2.

Algorithm 2 Expanding object set

� 1

initialize S, P

repeat forever

EVAL(S; P)

while (not termination condition) do

EVOLVE (P)

EVAL(S; P)

end

� � + 1

add �

�

to S

end

4.2 Shifting window

There are a number of reasons why we may not want to use an ever expanding

set of objects to �nd a mapping from object space to class space. For one,

this requires an ever increasing amount of computational resources, both in

9

terms of memory and in CPU cycles. And secondly, the mapping may change

over time so that obtaining c(�)'s might prove to be an expensive operation

or it is even possible that old c(�)'s are not obtainable at all. In this case

we can impose a shifting window on S limiting the number of objects to be

used in the evolutionary process at any given time. The size of the shifting

window will be indicated with w. The new algorithm is given in Algorithm

3.

Algorithm 3 Shifting window

� 1

initialize S, P

repeat forever

EVAL(S; P)

while (not termination condition) do

EVOLVE (P)

EVAL(S; P)

end

� � + 1

add �

�

to S

if (� > w) then remove �

��w

from S

end

4.3 Age

One thing we lose by employing a shifting window is the information on how

well trial solutions performed on objects no longer contained in S. And the

smaller w is, the greater this loss. To preserve this information in our shifting

window CEA we introduce the concepts of member age and member score.

The age of a member is de�ned as the number of population generations

since the creation of that member and is denoted with P

age

i

. The score of a

member is de�ned as the number of correct classi�cations it has made since

its creation and is denoted with P

score

i

. The �tness function is now de�ned

as:

FITNESS(P

i

) =

P

score

i

P

age

i

: (9)

And the evaluation component becomes:

EVAL(S; P) : 8P

i

2 P : 8� 2 S :

P

age

i

 P

age

i

+ 1; P

score

i

 P

score

i

+ RESULT (�; P

i

)

and compute FITNESS(P

i

)

10

4.4 Two pool

One of the consequences of the new way of determining �tness is that as the

age of a member increases so does its statistical reliability in approximating

the true �tness of a member, that is, its �tness if computed using S equal

to the entire object space. If, when producing o�spring, the new member's

score and age are set to zero, as opposed to basing them on those of its

parent(s), its statistical reliability plunges and time is needed to recover

some measure of reliability. In that case it is necessary to prevent the new

member from participating in the evolution process until it matures. This

can be accomplished by splitting the population into two pools, namely a

child pool P

c

and an adult pool P

a

with P = P

c

[P

a

, jP

c

j the number of

members in P

c

, jP

a

j the number of members in P

a

and age threshold the

age at which members are moved from P

c

to P

a

. The resulting algorithm is

given in Algorithm 4.

Algorithm 4 Two pool

� � + 1

initialize S; P

c

repeat forever

EVAL(S; P)

while (not termination condition) do

if (jP

a

j > 0) EVOLVE (P

a

)

EVAL(S; P)

8P

i

2 P

c

: if (P

age

i

= age threshold) move P

i

from P

c

to P

a

end

� � + 1

add �

�

to S

if (� > w) then remove �

��w

from S

end

5 A new adaptive information �ltering sys-

tem prototype

The prototype AIF system introduced in [9] was completely rewritten in-

corporating the new distance measures presented in section 3 and using the

two-pool CEA derived in section 4. Another change is that the weights

are expressed in
oating point numbers instead of integers, allowing much

more gradual change during mutation. A signi�cant improvement has been

11

made in how the system measures its performance; in addition to tracking

the lowest, average and highest �tness values, the new system also measures

the actual system performance. System performance is expressed in correct

classi�cations per document, ranging from zero for all documents classi�ed

incorrectly, to one for a perfect classi�cation record. While the �tness values

o�er insight into how the CEA is doing and can, to a certain degree, be

indicative of how the system is performing, system performance is by far the

best basis for comparisons.

In order to accurately measure the performance of the system thousands

of documents need to be classi�ed. The c(�)'s should to be provided via user

feedback. Until the system is ready for trial deployment, however, it will be

necessary to simulate this user feedback. One way this can be accomplished

is by employing a test set of documents for which the c(�)'s are known. The

CEA is a special case of Algorithm 4, namely with shifting window size set

to one and with a termination condition such that the inner loop is executed

only once for each outer loop. The population members each consist of

their score, their age, the radius parameter used by one of the CLASSIFY

functions and a full set of weights. The system can then be described as

given in Algorithm 5.

Algorithm 5 AIF two pool

� 1, initialize prototype vectors

initialize P

c

repeat forever

EVAL(�

�

; P)

if (jP

a

j > 0) EVOLVE (P

a

)

8P

i

2 P

c

: if (P

age

i

= age threshold) move P

i

from P

c

to P

a

� � + 1

end

The prototype vectors representing the category cluster centers are ini-

tialized by calculating for each the average of a certain number of trigram

vectors. The initialization of the population is done by setting the scores and

ages to zero, the radius to a random value within a user speci�ed range and

assigning positive random values to the weights.

There are two CLASSIFY (�; P

i

) functions. The one determines if the

distance between � and the closest class to � is within the maximum class

radius as set in the parameter �le. If so, it returns the index of that class,

if not, it returns a value indicating no class was close enough. The other

simply determines the class closest to �. The distance functions used are the

12

Manhattan distance function �

0

(x; y) and the Euclidean distance function

�(x; y) as derived in section 3.

There are two evolvement algorithms, one with crossover (resulting in two

children produced by two selected parents) and one without crossover (re-

sulting in one child which is a copy of the selected child). In both algorithms

the generated child(ren) are mutated (see below) and the weakest adult(s) is

(are) removed for the generated child(ren).

The form of crossover employed is uniform crossover, in which each gene

of a child has an equal chance to come from either parent. Mutation is

performed by adding with a certain probability Gaussian noise to the genes

of a member. Parent selection is done by selecting �tter members with an

exponentially higher probability; this causes selective pressure. If no adult

gets selected by this process, the �ttest adult is selected by default.

The user de�nable parameters for the new AIF system are as follows. For

the CEA the user can specify the size of the population (positive integer), the

age threshold (positive integer), the number of adults to replace after each

evaluation (positive integer), the selective pressure rate (real value between

0 and 1), crossover (enabled/disabled), the chance that a gene gets mutated

(real value between 0 and 1) and the amount of Gaussian noise used during

mutation (real value between 0 and 1). Note that after two times the age

threshold generations, the size of the child pool is the age threshold times

the number of adults to replace after each evaluation, assuming the total

population size is larger or equal. So, for example, if the size of the population

is 100, the age threshold 10 and the number of adults to replace after each

evaluation is 4, then after 20 generations the child pool will stabilize at size 40

and the adult pool at size 60. For the clustering algorithm the user can specify

the distance function to be used (Manhattan or Euclidean), the number of

vectors used for averaging during the initialization of the prototype vectors

(positive integer) and the range of the radius values (positive real values).

For each experiment the user can further specify the number of clusters and

the size and number of passes for the training and the test set.

6 The Reuters-21578 text categorization test

collection

The experiments conducted with the �rst prototype of the AIF system used

Internet newsgroup articles from a number of carefully selected moderated

newsgroups. This is not satisfactory for two reasons. First, while the moder-

ation process tends to eliminate most of the personal messages, it allows a lot

13

of meta-messages, such as announcements, the topics are often interpreted

very broadly and the article contents can be relevant to multiple topics. And

secondly, unless one carefully archives, indexes and makes available, the arti-

cles used in an experiment, it is not possible for other researchers to reproduce

reported experimental results.

A collection of documents without the above mentioned drawbacks was

desired to facilitate experimentation with the new AIF system. The construc-

tion of a large high-grade text categorization test collection is extremely time

consuming, therefore we decided to use a standardized collection instead of

creating one of our own. The collection we selected was the Reuters-21578

text categorization collection.

The documents in the Reuters-21578 collection appeared on the Reuters

newswire in 1987. The collection is downloadable from David D. Lewis'

professional home page

1

. The documents in the Reuters-21578 collection are

in SGML format and tagged for the purpose of splitting into training and test

sets as used in published studies concerning text classi�cation. This was done

to allow the results of di�erent studies to be compared. For our purposes,

however, a subset of the collection was needed. First of all it was required

that a document be indexed with only one topic, which limited the subset

to 9494 documents. And, secondly, it was required that the document be a

regular text document which further limited the subset to 8654 documents.

From that subset only those documents belonging to the ten most frequent

topics in the subset, as listed in Table 1, were employed.

The source code for extracting the textual documents from the SGML

collection �le is presented in Appendix A. The extractor program scans the

SGML �le, checking each of the 21578 document tags to �nd the single topic

regular text documents belonging to the topics listed in Table 1 and saves

those documents as regular text �les in subdirectories named for the ten

topics. The source code for creating trigram frequency vector �les from the

extracted documents is presented in Appendix B. The trigram program treats

text �les as a string of characters, using a shifting window of size three to

determine the trigram frequencies. Letters are handled case-insensitive and

all other characters are interpreted as the space character. Any sequence of

spaces is replaced by a single space. Thus the trigram alphabet consists of

27 characters, namely `a' through `z' and the space delimeter. The number

of distinct trigrams is then 27

3

= 19683.

We did experiments using a growing number of the selected topics in Table

1 from the Reuters-21578 collection. Our results are given in Table 2. The

experiments used the Manhattan metric as distance measure. It was decided

1

currently at http://www.research.att.com/home/lewis

14

Table 1: Subset of Reuters-21578 used in experiments

tag topic size

acq Mergers/Acquisitions 2125

co�ee Co�ee 114

crude Crude Oil 355

earn Earnings and Earnings Forecasts 3735

interest Interest Rates 211

money-fx Money/Foreign Exchange 259

money-supply Money Supply 97

ship Shipping 156

sugar Sugar 135

trade Trade 333

Table 2: Test set results (percentage correctly classi�ed)

Topics Unweighted Average Best System

Co�ee, trade 99.0 99.5 100 100

+ crude 93.3 98.6 100 98.7

+ money-fx 89.5 96.6 98.1 96.5

+ sugar 89.2 97.0 100 95.6

+ money-supply 83.1 93.9 100 89.7

+ ship 78.5 89.2 96.3 85.9

+ interest 77.2 88.2 93.7 84.9

to classify in closest cluster regardless of distance to that cluster. We averaged

30 document vectors in order to properly initialise the prototype vectors. For

each experiment the training set was comprised of thirty document vectors

for each topic and the test set of �fty document vectors for each topic (except

for Money-Supply the sample was slightly smaller). The population size was

200, the age threshhold 25, the number of adults which got replaced each

generation was 2, the selective pressure was 0.1, crossover was enabled, the

mutation chance was 0.5, the mutation rate was 0.00001 and the training set

was presented 20 times.

The �rst column of Table 2 lists the test set results for classifying without

the use of weights. The second column lists the average adult population

member score, the third column the best adult population member score

and the fourth column the system score. The results show that the new

matching technique presented in this report allows even unweighted trigram

analysis to perform reasonably well for a small number of topics. When

the number of topics increases the superiority of weighted trigram analysis

15

is clearly demonstrated by the system scores. Preliminary results indicate

that when progressively more training time is allocated as the number of

topics increases, the test set results for weighted trigram analysis are greatly

improved.

7 Conclusions

In this report we described a complete revision of the prototype AIF system

introduced in [9] and [10]. From the results presented in section 6 we can

draw a number of conclusions. First of all, the discriminating power has been

signi�cantly increased as a result of the new matching technique presented in

section 3. Secondly, the combination of the new matching technique and the

AIF two-pool CEA delivers greatly improved system performance. As a result

of the improved system performance it is now feasible to experiment with

eight and more clusters instead of only four clusters (more than four clusters

caused strong degradation of performance in the old system). But while the

case for generalization and scalability has been further strengthened, there

is still a lot of work to be done to prove it conclusively.

Obviously a lot more experimental data is needed. A major hurdle has

been the amount of computational time required to perform an experiment,

as well as huge long term storage and RAM requirements. The recent move

in long term storage from huge sparse trigram frequency vectors to compact

trigram frequency vectors resulted in a reduction in the amount of storage

space required of between 90 and 95 percent. We are now looking into doing

the same for the internal representation of the trigram frequency vectors and

possibly the weight vectors too, which should reduce RAM requirements com-

parably. It should also reduce the amount of computational time signi�cantly

allowing much larger experiments. Another area we have to concentrate on

is the �ne tuning of the two-pool EA. Other potential improvements to our

AIF system we will investigate are support for n-grams with user de�nable

values of n and larger alphabets. Further in the future we will be looking at

more advanced clustering algorithms which will be able to add new clusters

and in which each cluster would have an independent radius.

References

[1] Boyce, Bert R., Meadow, Charles T., Kraft, Donald H. (1994). Measure-

ment in Information Science, Academic Press.

16

[2] Cavnar, William B. (1994). \Using An N-Gram-Based Document Rep-

resentation With A Vector Processing Retrieval Model" in \Overview of

the Third Text REtrieval Conference (TREC-3)", D.K. Harman (ed.),

National Institute of Standards and Technology (NIST) Special Publi-

cations 500-225, April 1995.

[3] De Heer, T. (1982). \The Application of the Concept of Homeosemy to

Natural Language Information Retrieval", Information Processing and

Management 18, No.5, pp.229{236.

[4] Jones, Karen Sparck, Willett, Peter (eds.) (1997). Readings in Informa-

tion Retrieval, Morgan Kaufman, July 1997.

[5] Michalewicz, Zbigniew (1996). Genetic Algorithms + Data Structures =

Evolution Programs, 3rd revised and extended edition, Springer-Verlag.

[6] Rijsbergen, C.J., van (1979). Information Retrieval, 2nd edition, But-

terworths, London.

[7] Schmidt, S., and Teufel, B. (1988). \Full text retrieval based on syntactic

similarities", Information Systems, Vol. 13, No. 1, pp. 65{70.

[8] Sheth, Beered Dilip (1994). \A Learning Approach to Personalized Infor-

mation Filtering", M.Sc. thesis, Massachusetts Institute of Technology,

United States of America.

[9] Tauritz, Daniel R. (1996). Adaptive Information Filtering as a means

to overcome Information Overload, M.Sc. thesis, Internal Report 96{35,

Department of Computer Science, Leiden University, The Netherlands.

Available via:

http://www.wi.leidenuniv.nl/MScThesis/IR96-35.html

[10] Tauritz, Daniel R., Kok, Joost N., Sprinkhuizen-Kuyper, Ida G. (1997).

\Adaptive Information Filtering using Evolutionary Computation",

Joint Conference of Information Sciences 1997, Vol.1, pp.77{80.

17

A Appendix A - C++ source code for docu-

ment extraction

Here is a sample of reut2.sgm:

<REUTERS TOPICS="YES" LEWISSPLIT="TRAIN" CGISPLIT="TRAINING-SET"

OLDID="5552" NEWID="9">

<DATE>26-FEB-1987 15:17:11.20</DATE>

<TOPICS><D>earn</D></TOPICS>

<PLACES><D>usa</D></PLACES>

<PEOPLE></PEOPLE>

<ORGS></ORGS>

<EXCHANGES></EXCHANGES>

<COMPANIES></COMPANIES>

<UNKNOWN>

F

f0762reute

r f BC-CHAMPION-PRODUCTS-<CH 02-26 0067</UNKNOWN>

<TEXT>

<TITLE>CHAMPION PRODUCTS <CH> APPROVES STOCK SPLIT</TITLE>

<DATELINE> ROCHESTER, N.Y., Feb 26 - </DATELINE><BODY>Champion

Products Inc said its board of directors approved a two-for-one

stock split of its common shares for shareholders of record as of

April 1, 1987. The company also said its board voted to recommend

to shareholders at the annual meeting April 23 an increase in the

authorized capital stock from five mln to 25 mln shares.

Reuter

</BODY></TEXT>

</REUTERS>

This particular sample is converted and then saved in the �le 0.art located

in subdirectory earn and looks like this:

Champion Products Inc said its

board of directors approved a two-for-one stock split of its

common shares for shareholders of record as of April 1, 1987.

The company also said its board voted to recommend to

shareholders at the annual meeting April 23 an increase in the

authorized capital stock from five mln to 25 mln shares.

Reuter

18

The C++ source code of the extractor programs is as follows:

// Title : Reuters collection extractor

// Author : Daniel R. Tauritz

// Created : 15 September 1998

#include <fstream.h>

#include <stdlib.h>

#include <string.h>

void my_itoa(int,char[]);

void main(void) {

// Initialize

typedef char string[30];

string

topic[10]={"acq","coffee","crude","earn","interest","money-fx",

"money-supply","ship","sugar","trade"};

unsigned topic_counter[10]={0,0,0,0,0,0,0,0,0,0};

char line[256],label[50];

unsigned article,counter,marker,ch,listed,loop;

unsigned single_topic_articles=0,listed_articles=0,

listed_normal_articles=0;

string filemask,s;

// Open Reuters collection data file

ifstream datafile ("reut2.sgm");

if (!datafile) {

cerr << "Error! Unable to open reut2.sgm" << endl;

exit(1);

}

// Read data file

for (article=1;article<=21578;article++) {

// Find topics line

do {

datafile.getline(line,255,'\n');

} while (strncmp(line,"<TOPICS>",8));

// Determine number of topics

19

counter=0;

for (ch=9;ch<=strlen(line)-9;ch++)

if (line[ch]=='D') counter++;

// Continue processing article if single topic

if (counter==2) {

single_topic_articles++;

// Determine topic label

marker=11;

do {

label[marker-11]=line[marker++];

} while (line[marker]!='<');

label[marker-11]='\0';

// Continue processing if listed topic

listed=0;

for (loop=0;loop<10;loop++)

if(strcmp(topic[loop],label)==0) listed=loop+1;

if (listed) {

listed_articles++;

// Find text line

do {

datafile.getline(line,255,'\n');

} while (strncmp(line,"<TEXT",5));

// Continue processing if content type is normal

if (line[5]=='>') {

listed_normal_articles++;

// Construct filename

strcpy(filemask,topic[listed-1]);

strcat(filemask,"\\");

my_itoa(topic_counter[listed-1],s);

strcat(filemask,s);

strcat(filemask,".art");

// Find start of body

for (loop=0;loop<6;loop++) datafile >> s[loop];

s[6]='\0';

20

while (strcmp(s,"<BODY>")!=0) {

for (loop=0;loop<5;loop++) s[loop]=s[loop+1];

datafile >> s[5];

}

// Open file for writing

ofstream destfile (filemask);

if (!destfile) {

cerr << "Error! Unable to open destination file." << endl;

exit(1);

}

// Extract article to file

for (loop=0;loop<7;loop++) datafile.get(s[loop]);

s[7]='\0';

while (strcmp(s,"</BODY>")!=0) {

destfile << s[0];

for (loop=0;loop<6;loop++) s[loop]=s[loop+1];

datafile.get(s[6]);

}

// Close file and increase counter

destfile.close();

topic_counter[listed-1]++;

}

}

}

}

// Close data file

datafile.close();

// Print statistics

cout << "Single topic articles : " << single_topic_articles << endl;

cout << "Total listed articles : " << listed_articles << endl;

cout << "Listed 'normal' articles: " << listed_normal_articles << endl;

}

void reverse(char s[])

{

char c;

21

int i,j;

for (i=0,j=strlen(s)-1;i<j;i++,j--) {

c=s[i];

s[i]=s[j];

s[j]=c;

}

}

void my_itoa(int n,char s[])

{

int i,sign;

if ((sign=n)<0)

n=-n;

i=0;

do {

s[i++]=(char)(n%10+'0');

} while ((n/=10)>0);

if (sign<0)

s[i++]='-';

s[i]='\0';

reverse(s);

}

// --- End of file ---

22

B Appendix B - C++ source code for tri-

gram frequency vector creation

The sample text �le presented in appendix A is converted and saved as �le

0.vec in subdirectory earn and looks like this:

314

219

2

315

1

323

2

339

1

364

1

375

1

377

1

...

The 314 at the top of the �le indicates the sum of the trigram

frequencies. All the numbers after that are grouped into pairs, the

�rst number indicating the trigram and the second the frequency.

For example, the 219 was derived by 0 � 26

2

+ 8 � 27

1

+ 3 � 27

0

which corresponds with the trigram aid and the 2 indicates that

it occurred two times.

The C++ source code of the extractor programs is as follows:

// Title : Trigram

// Author : Daniel R. Tauritz

// Created: 19 January 1999

//

// Input : Either a text file to be processed or a text file containing

// the filenames of the text files to be processed (note that in

// the latter case the filenames need to contain one single dot)

// Output: Trigram frequency vector files of the form:

// {(total number of trigrams),(trigram index,trigram frequency),

// (trigram index,trigram frequency),...,

23

// (trigram index,trigram frequency)}

#include <ctype.h>

#include <string.h>

#include <stdlib.h>

#include <iostream.h>

#include <fstream.h>

#include <math.h>

void loop(char *);

void process(char *,char *);

const unsigned num_of_trigrams = 19683; // 27^3

unsigned vector[num_of_trigrams];

char trigram[4];

int main(int argc,char *argv[]) {

cout << "Performing trigram analysis" << endl;

// Parse arguments

switch (argc) {

case 2:

loop(argv[1]);

break;

case 3:

process(argv[1],argv[2]);

break;

default:

cout <<

"Format: 'trigram inputfile outputfile' or 'trigram indexfile'" <<

endl;

exit(1);

}

return 0;

}

void loop(char *indexfilename) {

ifstream indexfile (indexfilename);

if (!indexfile) {

cerr << "Error: Unable to open " << indexfilename << endl;

24

exit(1);

}

char inputfilename[255],outputfilename[255];

while (indexfile >> inputfilename) {

strcpy(outputfilename,inputfilename);

// Find dot in outputfilename (dot in filename required!)

unsigned i=0;

while (outputfilename[i]!='.') i++;

// Replace suffix with "vec"

outputfilename[i+1]='v';

outputfilename[i+2]='e';

outputfilename[i+3]='c';

outputfilename[i+4]='\0';

process(inputfilename,outputfilename);

}

return;

}

void process(char *inputfilename,char *outputfilename) {

// Init trigram frequency vector

for (unsigned i=0; i<num_of_trigrams;i++) vector[i]=0;

// Open user specified file

ifstream inputfile (inputfilename);

if (!inputfile) {

cerr << "Error: Unable to open specified file" << endl;

exit(1);

}

// Perform trigram analysis

unsigned index;

unsigned total=0;

trigram[0] = '*';

trigram[1] = '*';

char c;

inputfile.get (c);

trigram[3] = '\0';

25

do {

c = tolower(c);

if (c >= 'a' && c <= 'z')

trigram[2] = c;

else trigram[2] = '*';

if (!((trigram[0] == '*' && trigram[1] == '*') ||

(trigram[1] == '*' && trigram [2] == '*'))) {

index = 0;

for (unsigned pos=0; pos<3; pos++) {

if (trigram[pos] == '*')

index += (unsigned)pow(27,2-pos) * 26;

else

index += (unsigned)pow(27,2-pos) * (trigram[pos] - 'a');

}

vector[index]++;

total++;

}

trigram[0] = trigram[1];

trigram[1] = trigram[2];

} while (inputfile.get(c));

// Close inputfile

inputfile.close();

// Open output file

ofstream outputfile (outputfilename);

if (!outputfile) {

cerr << "Error: Unable to open outputfile" << endl;

exit(1);

}

// Write trigram frequency vector

outputfile << total << endl;

for (i=0;i<num_of_trigrams;i++) {

if (vector[i] != 0) {

outputfile << i << endl;

outputfile << vector[i] << endl;

}

26

}

// Close output file

outputfile.close();

return;

}

// --- End of file ---

27

