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Abstract

This document starts the formalisation of the modelling language of theSOCCA OO method in the formal specifi-
cation language Z. It captures the “static” aspects ofSOCCA, i.e. the meaning ofSOCCA language elements at the
type level, rather than “dynamic” aspects (dealing with theinstance level (objects in execution)). It is restricted tocore
SOCCA; proposed extensions are not formalised.
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1 Introduction
With this document, we start the formalisation ofSOCCA in Z. In this introduction, we briefly summariseSOCCA
and the formal specification language Z, and we explain the goals of the formalisation, we discuss the part of the
formalisation addressed in this document, and the structure of that part.

1.1 SOCCA
SOCCA [EG94](Specification of Coordinated and Cooperative Activities) is a graphical formalism and associated method
for object oriented modelling of software systems and software development processes (see e.g. [DKW98]) which is un-
der active development at Leiden University. The main aim oftheSOCCA project is to extend object oriented modelling
with means to precisely describe communication in a well-integrated fashion.

SOCCA shares a lot of elements and concepts with other graphical notations in widespread use in the area of object
orientation, especially OMT [RBP+91] and UML [UML97a]. This reduces the learning curve forSOCCA.

1.2 Goals of the formalisation
Like many other visual languages for expressing object oriented models,SOCCA is semi-formal: whileSOCCA allows
the modeller to express herself clearer than by using natural language only, there is no formal definition of the semantics
of SOCCA models yet. With this document, we start a proper formalisation of SOCCA by means of using a formal
specification language.

The benefits of applying formal methods in software engineering and computer science in general are well-known
[NAS95]. In addition to attempting to realise these benefits, there can be several goals specific to the development of a
formal specification of a modelling language likeSOCCA:

� Explaining the structure of models for teaching purposes.

� Preparing for building tools to support model development such as graphical editors, analysis tools and a process
centered software engineering environment.

� Exploring the underlying structure of models, i.e. improving the understanding of the language elements and their
interaction.

For teaching purposes, the focus of a formalisation should primarily be on explaining the concepts of the modelling
language, and showing how these apply in practice. A tutorial-like approach supporting learning by example is probably
the most suitable in this case.

In building tools to support model development, a number of issues arise that are outside of the scope of the modelling
language itself, such as user interface design, support forgroup-ware model development, and more basic decisions
like choosing efficient representations. While having a well-defined semantics is very useful in building a tool and
handling these issues, the development of a formal semantics should not be influenced by issues pertaining only to tool
development, as addressing them would increase the size of the semantics and lessen its generality and understandability.

The approach we take here aims primarily at achieving a precise description of the underlying structure ofSOCCA
models, to highlight its concepts (language features) and their interaction. The other goals, though important in them-
selves, are secondary.
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In light of the first goal, we combine our exposition of the specification with several examples, to make it more
accessible for those who do not knowSOCCA very well yet. We do not employ a “translational approach” ([EA98])
(focusing on formalising individualSOCCA models): we want to formaliseSOCCA language elements and their inter-
action in general. We believe that translational approach would have resulted in more direct and more easily understand-
able formalisations, but that it would not have contributedas much to a precise understanding of theSOCCA language
in general. Others believe differently, and a translational approach is employed in some UML formalisation efforts
(e.g. [BR98, SF97]).

SOCCA is still evolving, both as a method and as a language. For the language, most of the evolution is in the
development of extensions; there is a coreSOCCA language which by now has become fairly stable. The evolution of
SOCCA since its original publication has for the most part been driven by practical experience. The development of this
formalisation has forced us to reexamine the core language from a different perspective, which led to new insights and
made us modify some aspects of the core language. This documents reflects both the evolution ofSOCCA concepts and
the evolution ofSOCCA notation.

It is not a goal of this formalisation to halt the evolution ofSOCCA as a language. Rather, we wish to provide a
baseline for extensions and changes to build upon.

1.3 Z
The formalisation is done in the formal specification language Z [Spi92].

Several factors positively influenced our choice of Z as the specification language.

Abstraction level Z is suitable for specifications at a high level of abstraction, as it focuses on mathematical description
of systems, rather than expressing systems in terms of a particular machine model. This allows one to focus on the
“what” rather than the “how”.

Widespread use Z has been applied successfully in a large number of diverse projects in both industry and academia,
and there are numerous publications about it available [00bds].

Mathematical foundation Z is founded in set theory and predicate logic, both branchesof mathematics that are familiar
to computer scientists. The particular set-theory underlying Z is non-exotic.

Standardisation Z is currently undergoing standardisation by the international standards body ISO.

Tool support There are a number of tools available [ZZads] that provide support for the development of Z specifications,
including pretty-printers, typecheckers and theorem provers.

Z unfortunately also has some drawbacks for our purpose.

Notation The Z notation is an acquired taste. It can be highly compact and often allows for several ways to express
something. Unfortunately, the compactness is achieved by the use of a plethora of symbols.

Not executable Z is by its nature not a language for writing executable specifications; most Z users rightly feel that
aiming for executable specifications results in specifications that are not abstract and general enough and that are
too large. As one of the intended uses of this specification effort is in the development of tool support forSOCCA,
we have chosen to keep the specification style constructive wherever we felt a constructive style would not be
awkward. It should be possible to translate large parts of the specification into a suitable language or animate it (see
e.g. [Dil94]) without great effort.

During the writing of this document, we have regularly checked its Z parts using Z/EVES [Saa95, MS97, Saa97], a
theorem prover for Z. Information about it can be found athttp://www.ora.on.ca/z-eves/welcome.html .

Where we judged it necessary, the notation in this document exceeds that of regular Z [Spi92]. In such cases, we
incorporate instructions to introduce these extensions toZ/EVES.

1.4 Scope of this document
In this document, we formalise the “static”, “structural” concepts of theSOCCA language, i.e. the class level. In a
forthcoming document we will formalise the “dynamic” aspects (individual objects on the instance level).

1.5 Conventions used in this document
We use some conventions to make the structure of this document more clear:

� Formal Z text is preceded by a natural language explanation of the topic covered. When aspects of Z text merit
comments, these comments directly follow the Z text; they are given in a bulleted list.

� Examples are set apart; they start with “example” in bold typeface, and end with the2 symbol at the right margin.
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2 Z extensions and toolkit
In the course of the formalisation, we will need some small extensions to Z. We will also encounter some notions from
discrete mathematics. We will define these here as a “toolkit” or “library” for later use.

[Spi92] does not include the “is strict superset” (�) and “is superset or equal” (�) infix relations.
Thus, we must introduce theses symbols to Z/EVES as syntactic elements:

Syntax � inrel
Syntax � inrel

For these newly introduced syntactic elements, we supply the following schema to allow Z/EVES to reason about
them.

[X]

� ; � : PX$ PX

8A;B : PX � A� B, B� A

8A;B : PX � A� B, B� A

2.1 Partial orders
In the formalisation, we need the notion ofpartial orders, for instance to describe the nature of the inheritance relationship.

partial-order[X] ==

fR : X$ X j R= R� ^ : (9x;y : X � x 6= y^ (x;y) 2 R^ (y;x) 2 R)g

2.2 Covering relation
The covering relation (terminology from [DP90, 1.8, p. 7]) is the relation depicted in a Hasse diagram (a “minimal”
depiction of a partial order, i.e. one without transitive edges), with all reflexive edges added.

covering[X] ==

fR : X$ X j R� 2 partial-order[X] ^

(8x : X � (x;x) 2 R) ^ (8x;y;z : X j (x;y) 2 R^ (y;z) 2 R^ x 6= y^ y 6= z� (x;z) 62 R)g

3 Graphical notation and examples
In the course of the formalisation, we will use examples to illustrate the relationship between the formalisation ofSOCCA
in Z and actualSOCCA models.

The prevalent notation in OO has been shifting since the original SOCCA paper [EG94]. In our examples we have
updated the notation to as compatible with UML (which is considered to be the emerging standard) as possible.

Our definition of the semantics ofSOCCA is in terms of an abstract syntax forSOCCA, expressed as Z schemata
rather than in terms ofSOCCA’s visual syntax, as this makes the task somewhat more manageable. The precise visual
syntax ofSOCCA in most cases does not matter. In a few cases however, the change in graphical notations is significant
for interpretingSOCCA models.

Originally, SOCCA’s class diagrams were depicted in EER style (see e.g. [EN94]). We will use UML-style class
diagrams here (see [UML97a]).

Example In the past,SOCCA class diagrams used the tree-like generalisation symbol from OMT ([RBP+91]) as
depicted in figure 1a.

This generalisation symbol might lead one to assume that generalisation is a relationship between a set of classes
(children) and classes (parent), instead of simply a relationship between classes. [RBP+91] is unclear in this regard, but
[Rum96, p. 326] is not: “Generalization is an n-ary relationship, not a binary relationship. In this we differ from most
other authors”.

In UML, which can be seen as the proper successor notation to OMT’s notation, generalisation is a binary relationship.
[UML97b, sect. 4.24.2] explains that in UML the tree-structure is only a display variation of class to class relationships;
the other being the separate target style depicted in figure 1b. As we shall see, generalisation (inheritance) is a binary
relationship inSOCCA.
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Document
Design Test

Document

Document

(a) Tree-like symbol

Document
Design Test

Document

Document

(b) Separate target style

Figure 1: Different notations for inheritance

In practice, noSOCCA models relied on the OMT interpretation of the generalisation, so this change in interpretation
does not affect existing models. 2

The examples will serve several purposes besides showingSOCCA’s updated graphical notation. They will be used
to make the subject more concrete without losing abstraction, and to establish the relationship between the mathematical
structures in the formalisation and the visual language in which we expressSOCCA models.

4 Structure of the formalisation
The structure of the formalisation will follow the structure ofSOCCA models closely.SOCCA models consist of several
perspectives. [EG94] details and motivates thiseclecticapproach to modelling. The structure is also influenced by the
way schemas in Z specifications are ordered: they never contain forward references.

4.1 Perspective covered
In this formalisation, we address the four perspectives inSOCCA that are currently mature. Earlier material onSOCCA
also discusses aprocess perspective, but no definite decisions have been made on its precise role and formalism. The
perspectives we will formalise are:

The data perspective which focuses on the static, structural aspects of models.

The behaviour perspective which focuses on dynamic aspects of individual classes and objects which are made avail-
able to other classes and objects.

The functionality perspective which focuses on dynamic aspects of individual classes and objects that are internal to
them.

The communication perspective which focuses on the communication between individual classes and objects.

The perspectives are presented in this order, which turns out to be nicely suited for a formalisation in Z, as no forward
references will be necessary in the formal text, while the number of forward references in the informal text will be fairly
small.

4.2 Levels
TheSOCCA formalisation as a whole covers three distinct levels:

The metaclass diagram level This level contains metaclasses likeMetaclassandMetarelationshipwhich captureSOCCA
concepts like “class” and “relationship”.

The type level This is the level at whichSOCCA concept instances including concrete classes (e.g.Person) and concrete
relationships (e.g.isMarriedTo) reside. ASOCCA model deals mainly with this level.

The instance level This is the level of model instances, including objects (class instances) and links (relationship in-
stances), e.g.JohnandMary as instances of the classPerson, and the link(John,Mary)as instance of the relationship
isMarriedTo.
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Example See the UML-like diagram in figure 2. BothPerson andStudent are classes, instances ofMetaclass .
The relationshipIsMarriedTo betweenPerson and itself is an instance of the concept ofMetarelationship .
John andMary are bothPerson s (Mary is aStudent , which is a special kind ofPerson ); the unnamed linkJohn
IsMarriedTo Mary is an instance ofIsMarriedTo .

Student

MetaclassMetarelationship

John: Person Mary: Student

Person

IsMarriedTo

Metaclass diagram level

Type level

Instance level

(meta level)

Figure 2: The levels in theSOCCA formalisation

2

In this document, we focus primarily on the type level. Aspects of the metaclass diagram level are treated insofar as
they affect the formalisation of the type level; it has not been discussed in prior work onSOCCA.

In other OO research, there is interest in providing a level between class and instance level, the prototypical object
level [JBAG97], which describes prototypical behaviour ofsets of objects (a kind of universal quantification over setsof
objects). While we are interested in extendingSOCCA to address modelling at this level, there are currently no concrete
proposals for it. Therefore, the prototypical object levelis not addressed in this formalisation.

In order to properly formalise this complex structure, we must take into account that Z’s notion of equality differs
from that in object orientation. In object orientation the notion of identity is important: two instances that have the same
values for all their constituents need not be the same, because they may differ in their identity. Z’s notion of equality is
mathematical: two instances (of e.g. schemata) are the sameif and only if all their constituents (schema variables) are
equal.

This means that wherever we want to work with object orientation’s notion of equality in Z, we need to make the
identity of instances explicit, via a schema member.

5 The data perspective
Thedata perspectivein a SOCCA model describes the static structural aspects of the model.This perspective is repre-
sented by a class diagram.

The data perspective describes the classes and the relationships.
Classes have attributes and methods. Special binary relationships between classes are the [z]is-a (inheritance, see

page 13), [z]part-of (aggregation, see page 17) and [z]uses(import, see page 17) relationships; there may also be other
“general” relationships relevant to the problem domain at hand; these need not be binary. These general relationships are
sometimes known asassociations.

Note that often the termrelation is used rather thanrelationship. In the context of this document, that term might lead
to confusion with the mathematical concept of relation ($ ), so we will not use it. We will userelationshipto refer to
connections between classes (i.e. something we model).

Because of the amount of information involved, the class diagram is often split into several subdiagrams, such as
import/export diagrams, class diagrams without relationships, inheritance diagrams and aggregation diagrams. Sucha
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split often has an informal meaning to the modeller, but is for the purposes of this formalisation merely a matter of
convenient representation; it has itself no formal semantics.

Example In figure 3 a fairly typical classdiagram is given that modelspart of an email system: a mailer uses an external
editor (to load a skeleton message, edit it and save it); messages are a kind of text, and consist of a header and a body
(each of which are texts in their own regard).

Notation-wise, we follow UML for classes, general relationships, direction in which to read a relationship’s name,
inheritance and aggregation. For the uses relationship, weuse arrows (to indicate the direction) with filled heads (to
differentiate them from inheritance arrows).

Program

name

run

Mailer

username

domainname

perferred_editor

current_mailbox

compose_message

send_message

read_message

load

save

edit

Editor Text

Header Body

Message

Edits ▼{save,load,edit}

Figure 3: A class diagram.

2

In formalising the data perspectives, we start with the notion of types, then deal with classes: methods and attributes,
their visibility and their polymorphism. Then we proceed with relationships (including the special relationships like
inheritance), and put the full data perspective together.

5.1 Types
In formalising the data perspective we need a number of typesthat we deal with in an abstract manner, as given sets.

These include [z]Identityfor identifiers that provide identity to entities, [z]Identifierfor generic identifiers, [z]FeatureName
for names of methods and attributes, [z]MethodNamefor names of methods, [z]AttributeNamefor names of attributes,
[z]ClassNamefor class names, and [z]RelationshipNamefor relationship names. The various subtypes ofIdentitywill be
used to clarify the relationship between concepts on the metaclass diagram level and the type level. Essentially, we will
have an identity type for each concept in the metaclass diagram level of which there are multiple instances on the type
level.

Note that for some concepts, likeClass, there is a field likenamethat can be used to uniquely identify an instance of
that concept. Nonetheless, for these concepts too we have a separateIdentity. We have several reasons for this.

� Name and identity are different concepts; in a formalisation they should be separated. Identity is an important
concept, that should not be hidden.
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� Identifying identity with a particular name (or other attribute) makes modifications more difficult (“Does this change
in name have other consequences?”).

� Some extensions ofSOCCA will cause particular names no longer to be unique. For example, while in this for-
malisation, names of classes are unique, in an extension of this formalisation that would address the modularisation
mechanisms of [Hoe99], this would no longer be true, as namesare required to be unique there only within a
module.

We declare the types as given sets:

[Identity; Identifier;FeatureName;ClassName;RelationshipName]

Within feature names, we distinguish between method and attribute names:

AttributeName;MethodName: PFeatureName

hAttributeName;MethodNameipartitionFeatureName

For concrete applications (especially with a software toolfor developingSOCCA models), it will be necessary to be
(much) more specific about these types (e.g. “FeatureNameconsists of the strings of length 255 and less over the ISO
8859-15 character set”). Incorporating this specificity inthe formalisation we undertake here would have been possible.
However, this would have been distracting, increasing the size of the formalisation while reducing its generality and
clarity.

Within SOCCA models, there is a notion of atype systemfor the types of attributes, method arguments and return
values etc. The details of this type system are irrelevant tothis specification; they may even vary from model to model,
allowing one to use a type system that is appropriate for the problem domain. We will therefore treat the type system in
an abstract fashion: we assume there is a set of basic types (e.g. fInt;Natg), a set of type constructors (e.g.f�;!;Pg)
that can be used to introduce new types (likePInt ! Int), and a type compatibility relation�.

The basic types and type constructors we represent by given sets:

[BasicType;TypeConstructor]

Types are either basic types, or constructed from types by applying type constructors to them:

Type::= basichhBasicTypeii
j constructorhhTypeConstructor�seqTypeii

And the type relation� expresses compatibility:
Syntax � inrel

� : partial-order[Type]

5.2 Class
The concept ofclass, a unit of data and behaviour, is at the core of object orientation in SOCCA. A class has a name,
some attributes, describing pieces of data, and some methods, describing pieces of behaviour and functionality: actions
which it can perform that can be viewed as one unit in its behaviour. We introduce it in several steps.

Example In figure 4 the data perspective part of an example class (taken from figure 3) is depicted: a rectangle, parti-
tioned in three parts, the first listing the class name (Mailer), the second containing the attributes (data) (e.g.username),
and the third listing the methods (operations). 2

At first, we will focus only on the concept of class, i.e. the metaclassdiagram level. Once we have that concept
described properly, we will derive from it the description of classes at the type level.

method An operation (of a class or object). Also known as amember functionor procedure or function of a class.

attribute Attributes are (types of) data associated with a class.

feature A method or attribute. In the C++ community, the termmemberis used.
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Mailer

username

domainname

perferred_editor

current_mailbox

compose_message

send_message

read_message

Figure 4: A class.

ProtoMetaClass1
name: ClassName
features;methods;attributes: PFeatureName

features= methods[attributes

methods�MethodName

attributes� AttributeName

5.3 Visibility
In OO formalisms, the concept ofencapsulationis important: aspects of classes (like methods and attributes), and some-
times classes as a whole, have a restricted visibility for other elements of a model.

The precise choice of visibility restriction mechanism is not really relevant forSOCCA’s goal of combining OO and
precise behaviour/communication/coordination description.

In this formalisation, we will describe a basic visibility restriction mechanism, inspired by the one used in C++. We
expect current research onSOCCA ([Hoe99]) to result in a more sophisticated visibility restriction mechanism that will
address the visibility between classes and objects.

We distinguish between:

public A public feature may in principle be exported to every class.Note that public attributes are discouraged; we
recommend to make them private and manipulate them through explicit “get” (read access) and “set” (write access)
methods.

protected A protected method may not be exported for use by another class in a call, but is available for use in defining
specialised classes. Similarly, a protected attribute is accessible by specialised classes, but not to unrelated ones.

private A private feature may not be exported.

These visibilities influence what features a class will inherit (namely the public and protected ones of ancestors) and what
features other classes and objects can access (the public ones) (e.g. for methods: what methods objects will be able to
call; we will detail this when formalising the uses relationship (see page 17).

Visibility ::= public j protectedj private

This way of specifying visibility is fairly crude, but seemsto be sufficient for most practical purposes in small to
medium sized models. If need be, the public/private/protected scheme can be replaced by a more sophisticated visibil-
ity/access control mechanism. This scheme is not fundamental toSOCCA, but we have to formalise it of course.

ProtoMetaClass2
ProtoMetaClass1
visibility : FeatureName7! Visibility

domvisibility = features
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5.4 Binding
At this point, we are near a complete schema forClass. What is still missing has to do with support for inheritance. Due
to the existence of inheritance in object orientation, identifiers do not always refer to the same things in all contexts (this
is sometimes known aspolymorphismor overloading). We will look at a simple example of this first.

Example Consider the situation in figure 5 (this is not a syntactically correct classdiagram: we have used an informal
annotation to indicate howAge might be implemented). At the level ofPerson , an implementation ofAge is given.
Manager , a which inherits fromPerson does not redefine this binding, and thus inherits it. 2

Manager

Person

Age

Date of birth

(Today - date of birth)/365.25

Figure 5: Inheritance of bindings

In general, as a result of polymorphism by inheritance, identifiers (names of methods) do not in all contexts refer to
the same thing (implementation). There is a context-dependentbindingbetween names and what they refer to.

We make polymorphism explicit by expressingbinding: the coupling of identifiers to the entities they refer to. For
inheritance, we need the binding of feature names to the actual features: feature names are inherited, but their implemen-
tation may be overridden.

For binding, we give features an identity (to be able to distinguish between them even when they have the same
values). While this is not strictly necessary (we could derive a feature’s identity from that of the class(es) it is boundto),
it makes things more manageable.

Conceptually, we will extend the types we are about to define with additional information during the course of the
formalisation. On the practical level, rather than changing their schemata and restating work, we will add the new
information to them via coupling through functions and relationships.

Without a notion of identity, this type of coupling has undesirable side effects: without identity, schemata that have
the same values are identical, resulting in couplings “collapsing into each other”. With a concept of identity, entities that
have the same values otherwise, need not be identical, so this collapse does not occur.

FeatureIdentity: PIdentity

We use this identity in defining actual members:

FEATURE
id : FeatureIdentity
signature: Type

METHOD;ATTRIBUTE: PFEATURE

hMETHOD;ATTRIBUTEipartitionFEATURE

A class can declare explicitly to which actual feature a particular feature identifier is bound. However, usually, most
of the binding pertaining to a particular class will have been acquired through the inheritance mechanism (see page 15);
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the only cases in which a class ought to declare a binding explicitly are when a feature is new, redefined (methods only:
attributes cannot be redefined) or is inherited through multiple inheritance in an ambiguous manner.

We explicitly represent the bindings a class declares through two partial functions. These functions are partial for
two reasons: not everyMethodNamehas to have a binding in the classdiagram and the binding can be acquired by
inheritance. After we have formalised inheritance, we willshow how thelocalmethodbindings andlocalattributebindings
are combined to determine bindings within the class diagramas a whole (see page 15).

ProtoMetaClass3
ProtoMetaClass2
localfeaturebinding: FeatureName7! FEATURE

domlocalfeaturebinding� features

This contains all we need for a schema to express the concept of class. The only thing we add to it arelocalmethod-
bindingandlocalattributebindingwhich provide us with convenient abbreviations for aspectsof localfeaturebinding; they
do not add anything new.

MetaClass
ProtoMetaClass3
localmethodbinding; localattributebinding: FeatureName7! FEATURE

localmethodbinding[ localattributebinding= localfeaturebinding

domlocalmethodbinding�methods

ranlocalmethodbinding�METHOD

domlocalattributebinding� attributes

ranlocalattributebinding� ATTRIBUTE

ClassIdentityis the second subtype ofIdentitywe need; more will follow later. All the subtypes are mutually disjoint.

ClassIdentity: PIdentity

disjointhClassIdentity;FeatureIdentityi

Individual classes are instances of MetaClass: they derivetheir structure fromMetaClassand have identity.

Class
identity: ClassIdentity
MetaClass

5.5 Relationships
The data perspective consists of a number of classes, and some relationships between them.

load

save

edit

Editor Text

▼Edits

Figure 6: A relationship.
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Example In figure 6 a relationship (from the earlier example in figure 3) is depicted. The relationship is theEdits
relationship betweenEditor andText. An example instance could be the ordered pair (vim, report.tex). 2

On the metaclassdiagram level,SOCCA has a few special relationships: [z]uses(import (e.g. [GJM91, sect 4.2.1.1,
the USES relation])), [z]part-of (aggregation, known from EER) and [z]is-a (inheritance), each with special properties
which we will describe later on. That these relationships are on the metaclassdiagram level, rather than the type level,
can be seen as follows: we tend to speak about them as if they were singular (“the uses relationship” etc.), but on the type
level, they are plural (“the uses relationship between class A and class B”, “the uses relationship between class B and
class C” etc.); only on the metaclassdiagram level they are singular; the plural ones on the type level are instances of the
singular ones on the higher level.

On the meta classdiagram level,SOCCA has general relationships, that are similar to associations in (E)ER mod-
elling. These relationships are defined by the modeller to capture relationships that are specific to the domain being
modelled.

Meta relationships On the metaclassdiagram level, we distinguish four types ofrelationships: uses, partof, inheri-
tance, and general.

MetaRelationship::= UsesRelationshipj PartOfRelationshipj IsARelationshipj GeneralRelationship

Each of these can have instances on the type level; these instances have identity.

RelationshipIdentity: PIdentity

disjointhClassIdentity;FeatureIdentity;RelationshipIdentityi

The actual instances are named, have an arity, and an orderedset of participants.

Relationship
identity: RelationshipIdentity
name: RelationshipName
type: MetaRelationship
arity : N

1

participants: seqClass

#participants= arity

type2 fUsesRelationship;PartOfRelationship; IsARelationshipg ) arity = 2

� A modeller may choose to use a lax interpretation of the ordering of the participants in a particular relationship.

� We do not require a namespace for the names of relationships,as this would conflicts with inheritance of relation-
ships.

� Usually, the name is indicated in the graphical notation only for general relationships.

Data perspective domain In a model’s data perspective, we describe classes and relationships between them.

DataPerspectiveDomain
classes: PClass
relationships: P(Relationship)

#classes=#fi : Identityj 9c : classes� c:identity= ig

#relationships=#fi : Identityj 9 r : relationships� r:identity= ig

� The constraints express that each class and each general relationship has a unique identity.

� With this schema, we highlight the differences between the intensional and extensional meanings (terminology
of [JBAG97]) of “class” and “relationship”:ClassandRelationshipexpress the intensional meaning (a type of sets
of objects / links);classesandrelationshipsexpress the extensional meaning (the particular set of objects / links in
a particular model).

On top of this “data structure”, we will add constraints to fully describe the data perspective.
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Constraints on the domain Throughout the data perspective, we focus only onclasses, the concrete set of classes
involved, rather thanClass(the set of all potential classes).

Thus, we do not consider all potential relationships, but only relationships between the concrete classes (classes).

DataPerspectiveDomainConstraints
DataPerspectiveDomain

8 rel : relationships�
8c : ran rel:participants� c2 classes

Namespace The classes form a namespace: a set of elements with a name within which an element’s name is sufficient
to identify it.

DataPerspectiveNameSpaces
DataPerspectiveDomain

8c;d : classesj c:name= d:name� c= d

� Note that we do not have a similar namespace constraint for relationships.

5.6 Inheritance
The inheritance relationis-a is fundamental to the data perspective. It is a partial order; thus it forms a hierarchy (there
are no cycles in the inheritance, except for the trivial (reflexive) ones). As a partial order, it is reflexive and transitive,
but the reflexive and transitive edges are seldomly drawn in the class diagram (i.e. the class diagram usually depicts its
covering relation).

Note that theis-a relations allows for multiple inheritance (classes havingmore than one parent class).
We also introduce anis-directly-arelation derived fromis-a to refer to a parent-child relation, rather than a ancestor-

descendant one.

IsA
DataPerspectiveDomain
is-a : Class$Class
is-directly-a: Class$ Class

is-directly-a= fr : Class�Classj 9g : relationships; c;d : classes�
r = (c;d) ^ g:type= IsARelationship̂ g:participants= hc;dig

is-a= is-directly-a�

is-a2 partial-order[Class]

Our notion of inheritance is based onsubstitutivity: a descendant class can occur and should be usable anywhere any
of its ancestor classes can. This means that it has all the public and protected methods and attributes its parents have, and
that it participates in the general,usesandpart-of relationships they participate in: inheritance applies tothe non-is-a
special relationships as well.

We define inheritance on the data perspective only; inheritance plays a role in the other perspectives, but in the other
perspectives, inheritance imposes no constraints above what is necessary for a consistent model. While it is possible to
have a notion for inheritance on another perspective, say, the behaviour perspective, there are often quite different,but
equally valid notions of inheritance possible; [EE94] for instance identifies two different, but equally valid, notions of
inheritance of behaviour.

Example Consider the classdiagram (fragment) in figure 7: asDesign is a Document , andProjectmanager
monitorsDocument , one can infer thatProjectmanager monitorsDesign . In the example, we have drawn it as
dashed line. It is customary not to draw the relationships induced by inheritance in order not to clutter the class diagram.

This example also shows why we did not impose a namespace constraint on the names of relationships. If we did, we
would have to find a different name for the relationship betweenManagerandDesign. Also note thatmonitors is a
directed relationship.

2
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Document

Design

Manager
Monitors

Monitors

▲

Figure 7: Inheritance of relationships

DataPerspectiveInheritance
IsA

8p;c : classesj c is-ap �
(8 f : p:featuresj p:visibility f 6= private� f 2 domc:visibility ^ p:visibility f = c:visibility f ) ^
(8R : relationshipsj R:type 6= IsARelationship�

8 i : 1 : :R:arity j R:participants i= p � 9S: relationships�
S:type= R:type^
S:arity = R:arity ^
S:participants i= c^
(8 j : (1 : :R:arity)nfig � S:participants j= R:participants j))

� Private attributes and methods cannot be inherited; protected and public ones are always inherited. We will for-
malise this in theDataPerspectiveBindingschema (page ).

� Features that exist in both parent and child, have the same visibility.

� If a parent participates in a particular rôle (position) ina relationship, its children can fulfill the same role.

Example For example, say we have a relationshipsale(Person,Good,Person)to describe a person selling a good
to another person, and we have specialised personsSalesmanand Client then thesale relationship also encompasses
sale(Person,Good,Client), sale(Salesman,Good,Person)andsale(Salesman,Good,Client). 2

As with is-a, in our diagrams we tend to leave out details that can be easily inferred: usually we only draw a rela-
tionship between the “highest” classes in theis-ahierarchy it pertains to. In the previous example, we would draw sale
betweenPerson, GoodandPerson, but we would not draw all the implications like betweenSalesman, Good, Client.

Inheritance of binding Now that we have formalised the inheritance relationship, we can deal with polymorphism
by inheritance formally. As discussed earlier, this is the property that a particular method or attribute name need not
always correspond to the same entity. Rather, in a particular context (class), a particular identifier is bound to a particular
entity. We express thisbinding through functionsmethodbindingandattributebinding.

These bindings are determined by inheritance and local overriding (localmethodbindingandlocalattributebinding).
In the constraints onmethodbindingandattributebinding, we deal with the potential ambiguity resulting from multiple

inheritance: if two parents of a class have a different binding for a particular method or attribute name, the child classhas
to disambiguate by providing an explicit local binding for that name.

methodbindingis partial, as it is defined only for the concrete methods within the concreteclasses, rather than all
potential methods (METHOD) of all potential classes (Class). Likewise forattributebinding. As a side effect, this allows
for method names that do not have an implementation attachedto them:abstract methods. These methods, also known
as pure virtual methods or deferred methods, are useful because they allow the modeller to introduce an operation at
a suitable level high up in a class hierarchy at which the commonality can be expressed, but at which no reasonable
implementation can be specified.

� attributebindingis total on the concrete (class, attributename) pairs.
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� methodbindingis not necessarily total on the concrete (class, methodname) pairs: it can be partial to indicate
abstract methods.

Example Multiple inheritance introduces a complication: how does binding work when two (or more) parents of a
class have different bindings for a particular feature?

Consider for example, the informal classdiagram (fragment) in figure 8. A.c file is both aFile andC code ;

Document

length unbound

C code

length
number of

statements

number of

‘\n’

File

length

Explicitly provided binding

file

length

.c

Figure 8: Binding and multiple inheritance

for File , length is defined as the line count; forC code , length has a different definition: the number of statements
(as used in some definitions of (K)LOC).

We resolve this complication by requiring that, when two or more parents (here,File andC code ) have different
(non-empty) bindings for a particular feature (length ), the child class (.c file ) explicitly specifies a (potentially
new) binding (tonumber of statements ). When all parents that have a non-empty binding to the same feature it
is inherited (binding takes precedence over lack of binding). 2
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DataPerspectiveBinding
DataPerspectiveInheritance
featurebinding;methodbinding;attributebinding: Class�FeatureName7! FEATURE

featurebinding= methodbinding[attributebinding

dommethodbinding�Class�MethodName

ranmethodbinding�METHOD

domattributebinding�Class�AttributeName

ranattributebinding� ATTRIBUTE

8p;c : Classj c is-ap � 8 fn : FeatureNamej (p; fn) 2 domfeaturebindinĝ p:visibility fn 6= private�
(c; fn) 2 dom featurebinding

8p
1

;p
2

;c : Classj p
1

6= p
2

^ c is-directly-ap
1

^ c is-directly-ap
2

�

8 fn : FeatureNamej
featurebinding(p

1

; fn) 6= featurebinding(p
2

; fn) ^
p
1

:visibility fn 6= private^ p
2

:visibility fn 6= private�
fn2 dom c:localfeaturebinding

8c : Class� 8a : FeatureName� 8 i : FEATURE�
(c;a) 7! i 2 featurebinding,

(a 7! i 2 c:localfeaturebinding_
(a 7! i 62 c:localfeaturebindinĝ

(8p : Classj c is-directly-ap � (p;a) 7! i 2 featurebinding)))

8c : classes� 8a : c:features� 8p : classesj c is-ap^ (p;a) 2 domfeaturebinding�
(featurebinding(p;a)):signature� (featurebinding(c;a)):signature

8c : Class; fn : FeatureNamej (c; fn) 2 dom featurebinding�
c:visibility fn= private)

: (9d : Class; fn
2

: FeatureName�
((c; fn) 6= (d; fn

2

) ^ (featurebinding(c; fn) = featurebinding(d; fn
2

)))) ^

c:visibility fn= protected)
(8d : Class; fn

2

: FeatureNamej featurebinding(c; fn) = featurebinding(d; fn
2

) �

fn= fn
2

^ (9p : Class� c is-ap^ d is-ap^ featurebinding(p; fn) = featurebinding(c; fn)))

Note

DataPerspectiveBinding̀

dom featurebinding� fp : Class�FeatureNamej 9c : classes� 9 f : c:features� p= (c; f )g

� Once a member has become bound, it cannot become unbound in a specialised class.

� If there is no explicitlocalmethodbinding, a binding can be obtained through inheritance.

� A methodbindingentry is generated either by an explicitlocalmethodbinding, or by unambiguous inheritance;
ambiguity due to multiple inheritance must be resolved by anexplicit localmethodbinding.

� Signatures of members can only be changed through inheritance in a fashion consistent with the type system em-
ployed in the model.

� All attribute names that actually occur are bound.

� When a binding is private, it is not shared.

� Protected bindings can only be shared by classes related to an ancestor with the same binding.

The uses relationship In a class diagram, there is ausesrelationship between classes which describes import (arcs
are labelled with method names throughuseslabel; associated information like the method’s signature can beaccessed
using the method name).

In many other formalisms, there is not much attention for import internal to (an object of) a class: methods within a
class are automatically available for use by other methods within the class.
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In SOCCA, there is no implicit import within a class; methods within aclass arenot automatically available for use
by other methods within the class. Thus, even within a class or an object, one method can only call another method if it
has ausesrelationship to that class with that method in the labellingset.

The reason for making this import within a class explicit is that this import has consequences for other parts of a
SOCCA model: namely, those parts that deal with coordination.

ForSOCCA, method invocations of methods within one object can in principle be executed concurrently (i.e.SOCCA
objects can be multi-threaded). Thus, intra-object methoduse necessitates coordination between threads. To emphasise
the consequences of intra-object method use, it is made explicit in the data perspective through the uses relationship.

Thepublic, private, protectedvisibility mechanism was popularised by the C++ programming language [Str97]. In
that language, the accessibility/visibility specified by these keywords regulates access control on the basis of classes only.
For example, an object of a particular class can access private features of another object of that class. This is not the
case inSOCCA, where this kind of access will be regulated too (see figure 9). We will specify this when formalising the
concepts dealing with the instance level ofSOCCA models.

callee member
caller public protected private
same object Y Y Y
other object, same class Y N N
other object, descendant classY N N
other unrelated object Y N N

Figure 9: Potential access.

Thus, there is no difference in accessibility betweenprotectedandprivatemembers in a caller–callee situation. The
only difference betweenprotectedandprivate is thatprotectedmembers are used in defining members of a descendant
class.

Uses
DataPerspectiveInheritance
uses: Class$ Class
useslabel: (Class�Class) 7! PMethodName

uses= fr : Class�Classj 9g : relationships; c;d : classes�
r = (c;d) ^ g:type= UsesRelationship̂ g:participants= hc;dig

dom useslabel= uses

8c;d : classes; M : PMethodNamej (c;d) 7!M 2 useslabel�
M � fm : d:methodsj d:visibility m= publicg[

(if c= d then fm : d:methodsj d:visibility m2 fprotected;privategg else ?)

� We restrictusesanduseslabelto the concrete classes in our model.

� useslabelis used to annotate edges with the names of methods that are used. The labelling is not inherited; there
need not be a relation between a parent class’useslabeland an child class’. A particularuseslabelmay be the empty
set; this can occur between wholly unrelated classes, but also when two classes formally have ausesrelationship,
due to inheritance, which is not used.

� This schema only captures the constraints on the class level. This is not sufficient to describe whether or not a
particular method of a particular object can be called. See the merchant example in [Hoe99]. On the instance
level, we will add additional constraints that prevent different objects from using each other’s protected and private
methods.

The part-of relationship Thepart-of relationship describes aggregation between classes. We regard aggregation as
a binary relationship (a (single) partis part of a whole) rather than an n-ary relationship (a set of partsformsa whole).

PartOf
DataPerspectiveInheritance
part-of : Class$ Class

part-of = fr : Class�Classj 9g : relationships; c;d : classes�
r = (c;d) ^ g:type= PartOfRelationship̂ g:participants= hc;dig
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� We restrictpart-of to the concrete classes (classes) in our model, rather than all potential classes (Class).

� usesandpart-of are derived components ([Spi92, p. 3]); they do not impose additional constraints, but are merely
aliases (abbreviation definitions) for the binary relations underlying the relationships within this scheme. Unfortu-
nately, Z has no syntactical construct to indicate this typeof use explicitly.

� There are no constraints onpart-of. There are some constraints that are often, but not always reasonable, for
example thatpart-of should be a forest (thus, something can not bepart-of itself, nor bepart-of two different
classes). One can also argue that it should be transitive, but that is a matter of preference.

The full data perspective At this point, we can put the data perspective together.

DataPerspective
DataPerspectiveDomain
DataPerspectiveDomainConstraints
DataPerspectiveNameSpaces
DataPerspectiveInheritance
DataPerspectiveBinding
Uses
PartOf

As an illustration of inheritance of relationships, we can now see

DataPerspectivè 8p;c;q : classesj c is-ap �

(p part-of q) c part-of q) ^ (q part-of p) q part-of c)

5.7 Discussion
In the process of formalisingSOCCA a large number of choices have been made; we will motivate some of them, and
point out alternative choices.

We have chosen to model the identity ofSOCCA entities separate from their names. This provides flexibility in
dealing with issues of unique names. The identities of an entity is unique globally within a model; its name may be
unique, or unique only within a particular namespace. With this approach it is easy to modify the formalisation for
example to add a namespace constraint for relationships.

The formalisation does not address the actual type system tobe used inSOCCA models. We believe this to be a good
thing. The important concepts ofSOCCA are independent of any particular type system, so there is noneed to formalise
a particular type system. Furthermore, a modeller should befree to work with a type system that is natural for the subject
area at hand.

The visibility/hiding mechanism is to some degree similar.However, unlike the type system, it is quite difficult to
treat the visibility/hiding mechanism in an abstract fashion. Rather than treat it abstractly, we have chosen to use a
concrete mechanism that is small, but sufficient for showingthe issues involved. Like with the type system, the concrete
mechanism is not crucial toSOCCA and should be left to the modeller.

The section on binding shows how we integrate entities into more complete model fragments: via functions. This
allows us to some freedom in organising the formal material,and, more importantly, allows us to extend prior material
without restating it (recall that plain Z does not have the features for reuse that OO versions of Z have).

6 The behaviour and functionality perspectives
So far we have described the data perspective of aSOCCA model, which describes a static structure of classes and their
relationships. Now we will describe two more perspectives of SOCCA, which describe dynamic aspects ofSOCCA
classes.

Thebehaviour perspectivedeals with visible behaviour (behaviour that is visible to other classes); whereas thefunc-
tionality perspectivedescribes hidden behaviour (which describes the functionality of the various methods). Later on, in
the communication perspective, we will describe the coordination between the behaviours of objects.

The behavioural aspects ofSOCCA models are specified through State Transition Diagrams (STDs): graphical dia-
grams containing states and labelled transitions between them. As we will see in the next section, our means of expressing
communication is based on STDs too.

In using STDs for the functionality perspective,SOCCA clearly differs from OMT, revised OMT and UML. Orig-
inally OMT ([RBP+91]) used data flow diagrams for its “functional model”. In revised OMT ([Rum96, p. 353]), “the
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functional model consists of use cases and operation descriptions, as well as object interaction diagrams, pseudo code
designs, and actual code to specify how they work.” In UML, there is no clear equivalent for the functionality perspective.
UML is only a notation; it offers several ways of expressing some perspectives; there is no associated method that clarifies
which language elements are to be used for what perspective.For instance, UML still has data flow diagrams, but for the
description of behaviour perhaps statecharts can be used asan alternative.

6.1 STDs
In Computer Science, behaviour is often expressed through abstract machines from Formal Language Theory (such as
Turing machines, finite state machines or stack automata; see e.g. [HU79]). In these abstract machines, there is a finite
control operating on a possibly potentially infinite storage structure. In thePARADIGM formalism ([Gro88]), which is the
basis of the communication perspective ofSOCCA, behaviour was expressed through semi-Markov decision processes,
a formalism well-known in Operational Research which can express stochastic behaviour.

STDs are used inSOCCA because they are a mid-way compromise between semi-Markov decision processes and
Computer Science automata models. They are quite close to the finite state machines (FSMs) familiar to computer
scientists, but are allowed to have an infinite state space (of the control — there is no additional storage structure), they
can express non-determinism (as can many other automata models), but they lack expressive power for describing true
stochastics which semi-Markov decision processes have. Because STDs are quite similar to FSMs, which are common
throughout computer science, we will describe them in an FSM-like manner. To emphasise the distinction between
the type level and the instance level, we will distinguish between STDs (on the type level) and STMs (state transition
machines, “STDs in action” on the instance level).

The way in which we use STDs in the formalisation ofSOCCA is different from that in Formal Language Theory. In
Formal Language Theory, STDs are primarily devices for generating languages, whose internal structure does not matter
much (often STDs are considered equivalent when they generate the same language, which means no attention is given to
the exact sequence(s) of states involved in generating or recognising a particular word). InSOCCA the precise structure
of STDs is highly relevant, as we focus on communication between STMs, STDs in action. The possible behaviours
allowed by aSOCCA model result from the interaction between STMs.

An STD consists of a set of states (some marked as initial and/or final) and a transition relation between states marked
with symbols; a function does not suffice as an STD may be non-deterministic. It provides a static description of behaviour
on the type level, i.e. it describes all possible behaviours, rather than any particular behaviour that is actually occurring in
an instance.

We introduce a type for the states of STDs.

[STATE]

Transitions can in general be labelled with plain method names (in external STDs), “act” labels (in internal STDs;
they indicate the activation of the STDs behaviour), or “call” labels (in internal STDs). It is often desirable to have the
option not to label transitions; for this we include�.

SYMBOL::= mlhhMethodNameii
j � j acthhMethodNameii j callhh(ClassName�MethodName)ii

With these, we describe the structure of an STD in general (onthe meta classdiagram level):

MetaSTD
states: PSTATE
labels: PSYMBOL
transrel: (STATE�SYMBOL)$ STATE
initial : PSTATE
final : PSTATE

initial [final� states

states6=?) initial 6=?

transrel� (states� labels)�states

labels= fl : SYMBOLj 9s
1

;s
2

: states� ((s
1

; l);s
2

) 2 transrelg

And adding identity to it, we get regular STDs.
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STDIdentity: PIdentity

disjointhClassIdentity;FeatureIdentity;RelationshipIdentity;STDIdentityi

STD
Identity: STDIdentity
MetaSTD

Notes:

� STATEis the type of states inSTDs; statesis the set of actual states in a specificSTD. Therefore, bothinitial and
final have to be instates.

� STDs may have multiple initial and final states.

� Often, but not alwaysstates6=?, initial 6=?, final 6=?.

It is sometimes useful to be able to work with the edges directly, disregarding their labels.

edges: STD! (STATE$ STATE)

8std: STD�
edges std= fe : STATE�STATEj 9p;q : STATEj

e= (p;q) � (9sym: SYMBOL� (p;sym) 7! q2 std:transrel)g

To describe the realisation of behaviour of objects on the instance level, we will define State Transition Machines
(STMs): abstract processors that run exactly one program; this program is described by an STD. Like for the STDs they
are instances of, we do not require STMs to be finite (althoughthey almost always are finite in practice). As we shall see,
a particular object may have multiple STMs running simultaneously, allowing it to be multi-threaded.

6.2 The behaviour perspective: External behaviour STDs
With each class, we associate an STD that specifies theexternal behaviour. The external behaviour STD of a class
describes behaviour that is visible to other classes, namely the order in which calls to methods the class exports are
accepted. Note that a class may also export methods to itself(e.g. if one object of a class may call the method of another
object of the same class, or for when one method of an object calls another method of the same object).

Edges in the external behaviourSTDof a class are unlabelled or labelled with the names of operations exported by
that class to other classes or itself:

ExternSTD: PSTD

8s : ExternSTD� s:labels� ranml[f�g

BehaviourPerspective
DataPerspective
externalbehaviour: Class$ STD

externalbehaviour� classes�ExternSTD

8c : classes; m : MethodName�#festd: STDj (c;estd) 2 externalbehaviour̂ ml m2 estd:labelsg � 1

8c : classes�
fm : MethodNamej 9estd: STDj (c;estd) 2 externalbehaviour�ml m2 estd:labelsg � c:methods

� Note that not all the method names need to occur in the external behaviour STD. For instance, it depends on the
particular model whether or not it is useful to include labels for abstract methods in it.

� Note that even when a method name is used in the external behaviour STD, there is no guarantee a call to it will
ever be handled. An external behaviour STD merely constrains the order in which calls may be accepted.

� We allow for multiple external STDs. This feature has already proven useful in thesis projects [Wil95, vdZ96]. In
[Hoe99] this feature is being used to provide class-like descriptions of sets of classes. For now, multiple external
STDs for the same class are disjoint in that a method name can occur as a label in at most one of them; possible
extensions in which this requirement is weakened may prove useful in modelling certain multithreaded systems.
It is useful for cases where one can distinguish a number of distinct “facets” to an object. For example, take
a (composite) object representing a multi-windowed, multi-threaded application. In such an application, each
window can have its own functionality (methods), and its ownstate. It is rather natural to model this by several
disjoint external STDs.
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6.3 The Functionality perspective: Internal behaviour STDs
With each method of a class, we can associate aninternal behaviour STDthat describes how that method is realised.
Methods with which we do not associate an internal behaviourSTD are termedabstract methods.

An internal behaviour STD’s transitions are labelled with method calls to methods of the class it belongs to and
methods exported to that class by other classes (or itself).Unlike other formalisms, inSOCCA methods within a class
are not automatically available for use within other methods of the same class; there has to be a suitably labelleduses
relation from the class to itself.

Example In figure 10 you find a typical internal STD (belonging to a methodFoo), which makes two calls (one,B.bar
to a classB; the other toBazwithin the class) and does some internal stuff (an unlabelled (�) transition).

Rather than using separate end states, an� transition from what is effectively an end state to the initial state, which is
also an end state, is provided. This convention is used in severalSOCCA publications. The underlying intuition is that
of a process that in some sense becomes dormant after handling a call and is woken up by a new call.

act Foo call B.Bar call Baz

Figure 10: A typical internal STD

2

The transitions in an internal behaviour STD may be labelledwith “act methodname” (indicating activation of the
execution ofmethodname) or “call class.methodname” (indicating a request to start the execution ofmethodname).

InternSTD: PSTD

8s : InternSTD�
s:labels� f�g[ (ranact)[ (rancall) ^
(8 l : s:labels; i : s:initial ; st : s:statesj (i; l) 7! st2 s:transrel� st 62 s:initial) ^
(8s

1

;s
2

: s:states; l : s:labelsj (s
1

; l) 7! s
2

2 s:transrel^ l 2 ranact� s
1

2 s:initial)

� Initial states do not connect to each other.

� All transitions from an initial state are labelled with an “act” label.

It is customary to leave out classnames in calls in the graphical notation of STDs where this does not introduce
ambiguity.

To describe the functionality perspective, we need to attach internal STDs toMETHODs and ensure consistency with
theusesrelationship and the behaviour perspective.



22

FunctionalityPerspective
BehaviourPerspective
internalbehaviour: METHOD 7! STD

dominternalbehaviour�
fM : METHODj 9c : classes; m : MethodNamejm2 c:methods�

M = methodbinding(c;m)g

raninternalbehaviour� InternSTD

8c : classes� 8m : c:methods; M : METHOD; std: STD
j (c;m) 7!M 2methodbindinĝ (M;std) 2 internalbehaviour�

(8 i : std:initial ; s : std:states; l : std:labelsj ((i; l) 7! s) 2 std:transrel� l = act m)

8c;d : classes�
useslabel(c;d) =
fn : MethodNamej 9m : c:methods; std : STD; M : METHOD�

(c;m) 7!M 2methodbindinĝ (M;std) 2 internalbehaviour̂
call (d:name;n) 2 std:labelsg

8c : classes; f : FeatureName; m : METHOD; s : STDj (c; f ) 7!m2 featurebindinĝ (m;s) 2 internalbehaviour�
9e : ExternSTD� (c;e) 2 externalbehaviour̂ ml f 2 e:labels

� The transition(s) in the internal STD of a methodm starting at an initial node are labelled with “act m”, indicating
activation of the method invocation. Usually, there will only be one initial node, but we have not ruled out multiple
initial nodes.

� Invocations of other methods are indicated by “call classname.methodname”. This import is precisely what the
uses relationship describes.

� Methods for which an implementation (STD) is provided, mustoccur as labels in an external STD of the class they
belong to.

When specifying the instance level, we will see how invocations of methods of particular objects are done. At that
point, we will also see how the visibility restrictions dealing with objects (calls to private or protected members of other
objects are disallowed, as described earlier) are implemented. For now, we restrict ourselves to indicating only the class
of objects whose methods are invoked.

6.4 Discussion
We have described the behaviour and functionality perspectives of SOCCA on the type level. InSOCCA these per-
spectives are closely related in that they are both described using one concept: the State Transition Diagram. In the
next section, we will formalise the communication perspective of SOCCA at the type level. As we will show, the
communication perspective builds on the behaviour and functionality perspectives in two ways: the formalism in which
communication is expressed inSOCCA is based on extensions of the notion of STD, and the communication structures
will be closely coupled to the external and internal STDs that make up the behaviour and functionality perspectives.

7 The communication perspective
The communication perspectivein SOCCA expresses how communication between instances of classes occurs. It is
based onPARADIGM [Gro88]. As with the behaviour and functionality perspectives, we use concepts based on STDs in
our description, rather than ones based on semi-Markov decision processes. We need to introduce several notions before
we can address the communication perspective.

7.1 Intuitive description
The communication perspective is whereSOCCA differs the most from other object oriented modelling languages. If
presented in a purely factual or formal way, it can be quite daunting. Therefore we will give you a rough sketch of the
intuition underlying it first.

A fundamental observation about communicating processes is that their behaviour can be viewed as having two levels.
The first is the level oflocal behaviourwhich describes the pieces of behaviour that the process mayhave which do not
require communication with other processes. Such local behaviour has parts in which no communication is desired, and
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no coordination is necessary, and parts in which communication is desired to arrange coordination to prepare the way
for another piece of local behaviour. Until this communication has taken place, the process is restricted to the current
piece of local behaviour. The second, more abstract, level is that ofglobal behaviourwhich describes how the processes’
behaviour may be switched from one piece of local behaviour to another through coordination by communication.

As we have seen earlier, inSOCCA we describe the global behaviour of classes through an external STD, and the
local behaviour of methods through internal STDs. The different parts of local behaviour we describe bysubprocesses
andtraps. A subprocess describes a temporary restriction of behaviour, a piece of local behaviour. Atrap defines the part
of a subprocess where coordination is desired.

Example In figure 7.1, a simple STD is shown (labels are left out to keepthings simple), together with two possible
subprocesses and their traps. The traps are shown as shaded areas. When more than one trap is presented with a subpro-
cess, they are often given numbers. The subprocesses are partial versions of the original STD (disregarding initial and
final states).

(a) Full STD (b) Subprocess 1 (c) Subprocess 2

Figure 11: An STD with two subprocesses

2

In light of communication, we distinguish two roles of STDs:employeeandmanager. An employee is an STD aug-
mented by a structure of subprocesses and traps known as apartition and trap structure. An employee is managed by
a manager (meaning the manager prescribes when and which transitions the employee may make between its subpro-
cesses). The manager is an STD augmented with two functions.Thestate interpreter, which maps its states to prescribed
subprocesses, and theaction interpreter, which labels its transitions with traps that its employee(s) must have reached for
the transition to be allowed.

In SOCCA, the external STDs form the basis for the managers, and the internal STDs for the employees. This
imposes more structure than inPARADIGM, where the choice of managers and employees was up to the modeller.

The notions of employee and manager are dual: an equally valid view on a given model is that the employees manage
their manager. ForPARADIGM, this has been proved in [Mor93]. Using this duality, the concepts of employee and
manager can be formalised more symmetrically; we do not do this, as this view is somewhat less natural.

There is a behavioural consistency that works in both directions: an employee’s behaviour obeys the restriction
imposed by the current subprocess prescribed by the manager, while the manager’s behaviour obeys the restrictions
imposed by the subprocesses of its employees (not making a transition labelled with a trap that has not been reached yet).

By itself, PARADIGM lacks the structure provided object orientation ofSOCCA and thus allows the modeller very
large degrees of freedom in modelling. InSOCCA this freedom has been restricted through the object oriented structure,
making it more manageable. InSOCCA, the modeller no longer has the freedom of choosing employeeand manager
roles arbitrarily: a class’ external STD(s) gets the role ofmanager of the internal STD(s): the external STDs receive
messages (calls) and start up behaviours of internal STDs tohandle them.

Example As an illustration of how the communication perspective inSOCCA is used, consider the following situation:
we have two classes,AandB. MethodA.Callerneeds to perform a synchronised call to methodB.Callee, i.e. it callsCallee
and has to wait until that call has been handled completely.

act caller call callee

(a) STD

act caller

T1

call callee

(b) First subprocessR
1

act caller

T2

(c) Second subprocessR
2

Figure 12: Caller
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Caller’s STD is depicted in figure 12(a). It has a fairly simple structure: activation, callCallee, some internal stuff,
and repeat when desired.

The handling of the call toCalleeinduces two subprocesses: one,R1 (depicted in figure 12(b)) in which the actual
call is allowed and in which the trapT1 expresses the waiting for the call to finish; the other,R2 (depicted in figure 12(c))
in which permission to perform the call is temporarily revoked; its big trapT2 indicating its willingness to regain that
permission as soon as possible.

act callee

(a) STD

T3

(b) First subprocessE
1

act callee

T4

(c) Second subprocessE
2

Figure 13: Callee

Callee’s structure is more simple thanCaller’s: activation, and internal stuff (see figure 13(a)). Like in Caller, the
synchronised way we want to call it induces two subprocesses: the first,E1 with trapT3 (in figure 13(b)) in whichCallee
waits to perform its activities; the second,E2 with trapT4 (in figure 13(c)) in which performs them.

In this example, there is just one designated trap for each subprocess; this need not be in the general case: there can
be more than one designated trap.

ε

ε

callee

(a) External STD ofA

R1
E2

R1
E1

R2
E1

{T1,T3}

{T1,T4}

{T2}

(b) Corresponding man-
ager

Figure 14: External STD and corresponding manager

In figure 14, a suitable manager is depicted. The state and transition interpreters are indicated by an appropriate la-
belling of the states and transitions respectively. 2

7.2 Subprocess
The basic idea is that a process’s full behaviour is described by an STD, but that most of the time it is useful to view a
process as being in asubprocessof that STD. A subprocess functions as a temporary restriction on what behaviour the
process is allowed to exhibit. It is an STD too.

Communication between processes is required to make a switch between subprocesses.

isSubProcessOf: STD$ STD

8std;subp: STD� subp isSubProcessOfstd,
subp:states� std:stateŝ
subp:labels� std:labels^
subp:transrel� std:transrel\ ((subp:states�subp:labels)�subp:states)
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� Note that the initial and final states of a subprocess of an STDare not required to come from that STD: a subprocess
has its own initial and final states, unrelated to those of theSTD it relates to.

� It is easy to see thatS isSubProcessOf S: an STD is its owntrivial subprocess.

7.3 Trap
A trap is a set of states within a particular subprocess that, once reached, cannot be left while the behaviour restriction
expressed by the subprocess holds. The traps a modeller chooses indicate that a process is ready to switch from one
subprocess to another. That a subprocess has reached a trap,does not mean that it is idle. It can still perform useful
actions. That it has reached a trap merely means that it has entered a final phase of the behaviour restriction imposed by
its current subprocess.

We introduce a relation to check if a particular set of statesis a trap of an STD.

isTrapOf : PSTATE$ STD

8S: PSTATE� 8std : STD�
S isTrapOfstd,

S 6=? ^

(8s; t : std:states�
8 l : std:labelsj s2 S^ ((s; l); t) 2 std:transrel� t 2 S)

� It is easy to see thatstd.states isTrapOf std. This is known as thetrivial trap: the trap consisting of all states of a
subprocess.

A trap can lead from a subprocess to another subprocess.

isTrapConnectionOf: STD�PSTATE�STD$ STD

8std;subp
1

;subp
2

: STD; trap : PSTATE�
(subp

1

; trap;subp
2

) isTrapConnectionOfstd,
(subp

1

isSubProcessOfstd^
subp

2

isSubProcessOfstd^
trap isTrapOfsubp

1

^

((subp
1

= subp
2

) _ (trap� subp
2

:initial ^ trap� subp
1

:final)))

7.4 Partition and Trap Structure
Often we consider an STD with a particular set of associated subprocesses that “cover” the STD. Such a set of subpro-
cesses, each with its own set of traps is known as apartition and trap structureof that STD.

Such a structure shows how the behaviours of the STD are partitioned in the light of communication. The modeller
has degrees of freedom in choosing the subprocesses, and within them, in choosing the relevant traps.

We define a relation to check if a set of STDs and set of states isindeed a partition and trap structure of a given STD.

isPartitionAndTrapStructureOf: (P(STD�P(PSTATE)))$ STD

8part : P(STD�P(PSTATE)); std : STD�
(part;std) 2 isPartitionAndTrapStructureOf,

fstate: STATEj 9partstd: part � state2 (first partstd):statesg = std:stateŝ
S

ftrans: (STATE�SYMBOL)$ STATEj
9partstd: (STD�P(PSTATE)) � trans= (first partstd):transrelg = std:transrel^

(8subp: STD; traps: P(PSTATE) j (subp; traps) 2 part �
subp isSubProcessOfstd^
(8 trap : PSTATEj trap2 traps�

trap isTrapOfsubp^
(9subp

2

: STD; traps
2

: P(PSTATE) j (subp
2

; traps
2

) 2 part �
(9ctrap : traps

2

� (subp;ctrap;subp
2

) isTrapConnectionOfstd))))

� The subprocesses in the partition and trap structure cover the STD in both states and labels.

� The subprocesses are connected via traps.
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� In the graphical notation, traps are named; in the abstract Zsyntax there is no need to name them, as they are
uniquely identified within their subprocesses.

� The connection constraint is local only; we do not impose a reachability constraint between subprocesses in a
partition and trap structure in general.

7.5 Employee process
An STD with a partitioning into subprocesses, each with a setof traps that connects it to the others, is known as an
employee (process).

employee
std: STD
pts: P(STD� (P(PSTATE)))

pts isPartitionAndTrapStructureOfstd

Often, the employees follow the pattern of having two subprocesses, one containing the “act” label(s) (corresponding
to “starting”), one without (corresponding to “functioning”). Discussion of such patterns is outside the scope of this
paper; we refer you to [Bru98].

7.6 Manager process
A manager (process)is an STD that describes the coordination that takes place when employee processes change sub-
process. The states of a manager are used to prescribe the subprocesses of its employees; the transitions of a manager are
labelled with the traps (of its employees) that need to be reached before the transition is possible.

With each manager, for each of his employees, comes astate and transition interpreterwhich describes how the
manager relates to the employee: it maps each state of the manager STD to the subprocesses it prescribes to the employee
and maps each transition label of the manager STD to the trapsof this particular employee that have to be reached in
order for the transition to be allowed.

Example See the manager in figure 14. Its state interpreter, which labels each state of the manager STD with the
subprocesses the manager in that state prescribes to its employees, is given in figure 15 Similarly, its transition interpreter,
which labels each transition of the manager STD with the set of traps of its employees that have to be reached for the
transition to be allowed, is given in figure 16.

State Subprocess of Caller Subprocess of Callee
top R1 E1
right R1 E2
bottom R2 E1

Figure 15: The state interpreter

Transition Trap(s) of Caller Trap(s) of Callee
top! right T1 T3
right! bottom T1 T4
bottom! top T2 none

Figure 16: The transition interpreter

2

In earlierSOCCA publications, this was termed thestate action interpreter. The term “action” originates in decision
process theory; in light of our use of STDs, the term “transition” is clearer. Also, originally the state action interpreter
described the relation between a manager and all its employees. In the formalisation, it is more convenient to split this
out for each employee, and distinguish the state and transition parts of the state and transition interpreter.

We use abbreviation definitions to make state and transitioninterpreters more visible.
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stateint== STATE 7! STD
transint== (STATE�SYMBOL)�STATE 7! (PSTATE)

manager
std: STD
empsti: seq(employee�stateint� transint)

(8 i : 1 : :#empsti�
(8e : employee; si : stateint; ti : transint j (e;si; ti) = empsti i�

domsi= std:stateŝ
domti = ft : (STATE�SYMBOL)�STATEj 9s

1

;s
2

: std:states; sym: SYMBOL�
t = ((s

1

;sym);s
2

) ^ t 2 std:transrelg ^
(8s

1

;s
2

: std:states; sym: std:labelsj ((s
1

;sym);s
2

) 2 std:transrel�
si s

1

isSubProcessOfe:std^
si s

2

isSubProcessOfe:std^
ti ((s

1

;sym);s
2

) isTrapOf si s
1

^

(si s
1

; ti ((s
1

;sym);s
2

);si s
2

) isTrapConnectionOfe:std)))

� The state interpreters map states of the manager to appropriate subprocesses of the employee at hand.

� The action interpreters map transitions of the manager to appropriate traps of the employee at hand.

� All transitions in the manager’s STD, interpreted to any of them employees involved, corresponds to a proper
connection between two (possibly identical) subprocessesvia a relevant trap (possibly the trivial one).

And we define some auxiliary functions to handle managers more easily: one to get a manager’s employees.

HasEmployees: manager! Pemployee

8m : manager�
HasEmployees m=

fi : employeej 9si : stateint; ti : transint�
(i;si; ti) 2 ranm:empstig

An another for the reverse.

HasManagers: employee! Pmanager

8e : employee; m : manager�
m2 HasManagers e, e2 HasEmployees m

7.7 The full communication perspective
Now we can put these concepts together to express the communication perspective. The internal STDs of the various
methods are employees of the external STD of their class acting as manager.
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CommunicationPerspective
DataPerspective
BehaviourPerspective
FunctionalityPerspective
managers: Pmanager
employees: Pemployee
externalstds: PSTD
internalstds: PSTD
asmanager: STD 7!manager
asemployee: STD 7! employee

externalstds= ranexternalbehaviour

internalstds= raninternalbehaviour

8m : managers� 9estd: externalstds�m:std= estd

8m : managers� HasEmployees m6=?

8e : employees� HasManagers e6=?

8e : employees� 9 istd : internalstds� e:std= istd

domasmanager= externalstdŝ ranasmanager= managers

8s : externalstds� (asmanager s):std= s

domasemployee= internalstdŝ ranasemployee= employees

8s : internalstds� (asemployee s):std= s

8c : classes�
fe : employeej 9extstd: STD� ((c;extstd) 2 externalbehaviour) ^ (e2 HasEmployees(asmanager extstd))g=
fe : employeesj 9mn: MethodName; M : METHOD�

((mn2 c:methodŝ methodbinding(c;mn) = M) _

(9d : classes�mn2 useslabel(d;c) ^methodbinding(d;mn) = M)) ^

asemployee(internalbehaviour M) = eg

� The external STDs are the basis for the managers; the managers manage the employees based on the internal STDs.

� The managers manage the employees corresponding to their class’ internal STDs and the internal STDs of methods
the class uses.

7.8 Discussion
We have illustratedSOCCA’s communication perspective by giving an intuitive description and an example. Then
we rephrased thePARADIGM concepts which lie at the core ofSOCCA’s description of communication in terms of
STDs. Lastly, we have shown how the flexibility and power of the communication concepts fromPARADIGM is made
manageable by tightly coupling thePARADIGM structures of manager and employee to the concepts of internal and
external STDs (from the behaviour and functionality perspectives) that were themselves structured through the principles
of object orientation in the data perspective.

We have identified the manager STDs with the external STDs, aswell as the employee STDs with the internal STDs.
This is a simplification of the reality of modelling. In the reality of modelling, one starts with a simple external STD
which is later refined in light of communication. The resulting STD is also an external STD, but one which is suited
for the manager role. Similarly, the internal STDs are refined to form the employee STDs. The precise notion of refine-
ment/extension/compatibility involved is currently understood in an intuitive fashion only; we hope to formalise it in the
future.

8 Lessons learned
Working on the formalisation has made us focus on aspects ofSOCCA that we were not as sharply aware of until now.

� The concept of binding which captures the meaning of polymorphism by inheritance.

� The similarities between methods and attributes, which we unified through the concept of feature.
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� The possibility of explaining the concepts ofSOCCA with as few forward references as possible (Z’s “no forward
references” nature forced us to write the formal text without forward references; the order this imposed allowed
us to structure the informal text (natural language description of SOCCA’s concepts) so as to contain but a few
forward references.

Also, it forced us to make some decisions about theSOCCA core language.

� We decided to make the core language have multiple external STDs per class.

� We have chosen a visibility mechanism (admitedly a crude one, but one which practical experience has shown to
be quite powerful).

9 Future work
In this document we have focussed on the more syntactical aspects ofSOCCA models, describing the structure of
SOCCA models on the class level. Currently, this work is being extended to formalise the instance level ofSOCCA
models, including the concepts of object, link and State Transition Machine. Such a description of the instance level
of SOCCA models will hopefully provide the basis for extendingSOCCA to encompass a prototypical instance level
between the type and instance levels which will give modellers more expressive power.

10 Discussion

10.1 Related work on SOCCA
The structure of the specification here can be viewed as implicitly defining a meta class diagram ofSOCCA. This
implicitly defined meta class diagram is quite similar to theone developed in [Sch97]. Some noteworthy differences are

� No self-referential approach. In [Sch97] aSOCCA class diagram is used to chart the relationships between the
variousSOCCA concepts. In this document,SOCCA is described through Z, which is a quite different, more
mathematically oriented, specification language.

� In our Z approach, the concepts of attributes and methods areunified through the feature concept.

The most important difference is that Z’s no forward references nature has forced us to focus on a no forward references
exposition of the concepts onSOCCA’s class/type level. This has provided us with a natural order in which SOCCA’s
concepts can be introduced.

10.2 Related work on other OO formalisms
Work has been done on the formalisation of other graphical object oriented formalisms, like OMT and UML.

Self-referential approach The UML’s authors have chosen to describe UML’s semantics largely by means of UML
itself through using a metaclass diagram, augmented with a fairly low-level logical notation, the Object Constraint Lan-
guage.

We believe that describing the semantics of an OO formalism by means of a different, not object oriented, language
is a more fruitful approach, as it forces one to step outside the framework of concepts employed in the OO formalism and
translate those concepts themselves.

Translational approach [SF97] reports about a formalisation of UML using Z. There isa key difference between
their approach and ours.

[SF97] shows how a particular given UML model can be translated to Z and argues that the approach used can be
extended to an algorithm to translate UML models to Z in general (assuming syntactic validity). This has been termed a
“translational approach” ([EA98]).

Our work does not focus on translating individual models to Z. Rather, we show howSOCCA concepts, and from
thereSOCCA models, are translated to Z. We do not assume that models havebeen determined to be syntactically valid
by an external algorithm, but give an abstract syntax ofSOCCA in Z by means of which syntactic correctness can be
determined.
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