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Abstract

This document starts the formalisation of the modellingglaage of thesOCCA OO method in the formal specifi-
cation language Z. It captures the “static” aspectSOCCA, i.e. the meaning 08OCCA language elements at the
type level, rather than “dynamic” aspects (dealing withitietance level (objects in execution)). It is restricteddoe

SOCCA,; proposed extensions are not formalised.
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1 Introduction

With this document, we start the formalisation ®OCCA in Z. In this introduction, we briefly summarisROCCA
and the formal specification language Z, and we explain ttasgof the formalisation, we discuss the part of the
formalisation addressed in this document, and the stracithat part.

1.1 SOCCA

SOCCA [EG94](Specification of Coordinated and Cooperative Atiig) is a graphical formalism and associated method
for object oriented modelling of software systems and saftnwdevelopment processes (see e.g. [DKW98]) which is un-
der active development at Leiden University. The main aitheSOCCA project is to extend object oriented modelling
with means to precisely describe communication in a wedgrated fashion.

SOCCA shares a lot of elements and concepts with other graphitafions in widespread use in the area of object
orientation, especially OMT [RBP91] and UML [UML97a]. This reduces the learning curve 8BCCA.

1.2 Goalsof theformalisation

Like many other visual languages for expressing objechtemodelsSOCCA is semi-formal: whileSOCCA allows
the modeller to express herself clearer than by using ndturguage only, there is no formal definition of the semantic
of SOCCA models yet. With this document, we start a proper formabsadf SOCCA by means of using a formal
specification language.

The benefits of applying formal methods in software engingeand computer science in general are well-known
[NAS95]. In addition to attempting to realise these bengfitere can be several goals specific to the development of a
formal specification of a modelling language [I8B®©CCA:

e Explaining the structure of models for teaching purposes.

e Preparing for building tools to support model developmerhsas graphical editors, analysis tools and a process
centered software engineering environment.

e Exploring the underlying structure of models, i.e. impraythe understanding of the language elements and their
interaction.

For teaching purposes, the focus of a formalisation shotifdguily be on explaining the concepts of the modelling
language, and showing how these apply in practice. A tutbkia approach supporting learning by example is probably
the most suitable in this case.

In building tools to support model development, a numbessifiés arise that are outside of the scope of the modelling
language itself, such as user interface design, suppogrtmrp-ware model development, and more basic decisions
like choosing efficient representations. While having aladefined semantics is very useful in building a tool and
handling these issues, the development of a formal semsastimuld not be influenced by issues pertaining only to tool
development, as addressing them would increase the sike sétmantics and lessen its generality and understarigabili

The approach we take here aims primarily at achieving a geadescription of the underlying structureROCCA
models, to highlight its concepts (language features) hatt interaction. The other goals, though important in them
selves, are secondary.



In light of the first goal, we combine our exposition of the cfieation with several examples, to make it more
accessible for those who do not kn@&®CCA very well yet. We do not employ a “translational approach2AP8])
(focusing on formalising individueBOCCA models): we want to formalisBOCCA language elements and their inter-
action in general. We believe that translational approastldvhave resulted in more direct and more easily understand
able formalisations, but that it would not have contribuésdmuch to a precise understanding of 8&CCA language
in general. Others believe differently, and a translati@pproach is employed in some UML formalisation efforts
(e.g. [BR98, SF97)).

SOCCA is still evolving, both as a method and as a language. Forahgulge, most of the evolution is in the
development of extensions; there is a cB@CCA language which by now has become fairly stable. The evaluifo
SOCCA since its original publication has for the most part beeweadriby practical experience. The development of this
formalisation has forced us to reexamine the core language & different perspective, which led to new insights and
made us modify some aspects of the core language. This dotsinedlects both the evolution 8OCCA concepts and
the evolution ofSOCCA notation.

It is not a goal of this formalisation to halt the evolution ®CCA as a language. Rather, we wish to provide a
baseline for extensions and changes to build upon.

13 Z

The formalisation is done in the formal specification largpiZ [Spi92].
Several factors positively influenced our choice of Z as frexgication language.

Abstraction level Z is suitable for specifications at a high level of abstractas it focuses on mathematical description
of systems, rather than expressing systems in terms ofiaydartmachine model. This allows one to focus on the
“what” rather than the “how”.

Widespread use Z has been applied successfully in a large number of divexgeqts in both industry and academia,
and there are numerous publications about it availabled§j0b

Mathematical foundation Z is founded in set theory and predicate logic, both branchesathematics that are familiar
to computer scientists. The particular set-theory undegly is non-exotic.

Standardisation Z is currently undergoing standardisation by the inteoretl standards body 1SO.

Tool support There are a number of tools available [ZZads] that provigipett for the development of Z specifications,
including pretty-printers, typecheckers and theorem @rav

Z unfortunately also has some drawbacks for our purpose.

Notation The Z notation is an acquired taste. It can be highly compadtadten allows for several ways to express
something. Unfortunately, the compactness is achievetidoyse of a plethora of symbols.

Not executable Z is by its nature not a language for writing executable dmations; most Z users rightly feel that
aiming for executable specifications results in specificetithat are not abstract and general enough and that are
too large. As one of the intended uses of this specificatifamté$ in the development of tool support fSOCCA,
we have chosen to keep the specification style constructherever we felt a constructive style would not be
awkward. It should be possible to translate large partse$pecification into a suitable language or animate it (see
e.g. [Dil94]) without great effort.

During the writing of this document, we have regularly chextkits Z parts using Z/EVES [Saa95, MS97, Saa97], a
theorem prover for Z. Information about it can be foundhtp://www.ora.on.ca/z-eves/welcome.html .

Where we judged it necessary, the notation in this documergegls that of regular Z [Spi92]. In such cases, we
incorporate instructions to introduce these extensioZ3EYES.

1.4 Scope of thisdocument

In this document, we formalise the “static”, “structuralSrcepts of theSOCCA language, i.e. the class level. In a
forthcoming document we will formalise the “dynamic” astge@ndividual objects on the instance level).

1.5 Conventionsused in this document

We use some conventions to make the structure of this dodumane clear:

e Formal Z text is preceded by a natural language explanafidhectopic covered. When aspects of Z text merit
comments, these comments directly follow the Z text; theygiwen in a bulleted list.

e Examples are set apart; they start withhdmple” in bold typeface, and end with tHe symbol at the right margin.



2 Z extensions and toolkit

In the course of the formalisation, we will need some smaltesions to Z. We will also encounter some notions from
discrete mathematics. We will define these here as a “tdakitibrary” for later use.
[Spi92] does not include the “is strict supersetf)(and “is superset or equal?)) infix relations.
Thus, we must introduce theses symbols to Z/EVES as syoletinents:
Syntax D inrel
Syntax D inrel

For these newly introduced syntactic elements, we sup@yfdlowing schema to allow Z/EVES to reason about
them.

—[X]
_D_,_D>_:PX&PX

VAB:PXeADB&BCA
VAB:PXeADB&BCA

2.1 Partial orders

In the formalisation, we need the notiongartial orders for instance to describe the nature of the inheritancéioalship.

partial-order[X] ==
{R: X X|R=R* A= (3xy: XeX£YA(XY) €ERA(Y,X) €ER)}

2.2 Coveringrelation

The covering relation (terminology from [DP90, 1.8, p. A)the relation depicted in a Hasse diagram (a “minimal”
depiction of a partial order, i.e. one without transitivgesl), with all reflexive edges added.

coveringX] ==
{R: X+ X|R* € partial-order[X] A
(Vx: X o (x,x) €R) A (VX,Y,Z: X| (X,Y) E RA(Y,2) E RAXFEYAYF#Z0 (X2 ¢R)}

3 Graphical notation and examples

In the course of the formalisation, we will use examplesltstrate the relationship between the formalisatioBOCCA
in Z and actuaBOCCA models.

The prevalent notation in OO has been shifting since thermiOCCA paper [EG94]. In our examples we have
updated the notation to as compatible with UML (which is ¢deed to be the emerging standard) as possible.

Our definition of the semantics §OCCA is in terms of an abstract syntax fSBOCCA, expressed as Z schemata
rather than in terms dOCCA's visual syntax, as this makes the task somewhat more mabkegerlhe precise visual
syntax ofSOCCA in most cases does not matter. In a few cases however, thgeivagraphical notations is significant
for interpretingSOCCA models.

Originally, SOCCA's class diagrams were depicted in EER style (see e.g. [EN%% will use UML-style class
diagrams here (see [UML97a]).

Example In the past,SOCCA class diagrams used the tree-like generalisation symbai fPMT ([RBP'91]) as
depicted in figure la.

This generalisation symbol might lead one to assume thatrgbsation is a relationship between a set of classes
(children) and classes (parent), instead of simply a aatiip between classes. [RB®1] is unclear in this regard, but
[Rum96, p. 326] is not: “Generalization is an n-ary relasioip, not a binary relationship. In this we differ from most
other authors”.

In UML, which can be seen as the proper successor notatioMfb¥notation, generalisation is a binary relationship.
[UML97b, sect. 4.24.2] explains that in UML the tree-sturetis only a display variation of class to class relatiopshi
the other being the separate target style depicted in figureA$ we shall see, generalisation (inheritance) is a binary
relationship inSOCCA.
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Design Test Design Test
Document Document Document Document
(a) Tree-like symbol (b) Separate target style

Figure 1: Different notations for inheritance

In practice, ndSOCCA models relied on the OMT interpretation of the generalisgtso this change in interpretation
does not affect existing models. m|

The examples will serve several purposes besides shd@ECA’s updated graphical notation. They will be used
to make the subject more concrete without losing abstnacéind to establish the relationship between the matheahatic
structures in the formalisation and the visual languagehitivwe expresSOCCA models.

4 Structure of the formalisation

The structure of the formalisation will follow the structusf SOCCA models closelySOCCA models consist of several
perspectives[EG94] details and motivates thézlecticapproach to modelling. The structure is also influenced by th
way schemas in Z specifications are ordered: they neveriadotavard references.

4.1 Perspective covered

In this formalisation, we address the four perspective8QCCA that are currently mature. Earlier material 8@CCA
also discusses process perspectiyéut no definite decisions have been made on its precise ndléamalism. The
perspectives we will formalise are:

The data per spective which focuses on the static, structural aspects of models.

Thebehaviour perspective which focuses on dynamic aspects of individual classes ajetts which are made avail-
able to other classes and objects.

Thefunctionality perspective which focuses on dynamic aspects of individual classes ajetts that are internal to
them.

The communication per spective which focuses on the communication between individualsgdagnd objects.

The perspectives are presented in this order, which turntdee nicely suited for a formalisation in Z, as no forward
references will be necessary in the formal text, while thalper of forward references in the informal text will be fairl
small.

42 Levds

The SOCCA formalisation as a whole covers three distinct levels:

The metaclass diagram level This level contains metaclasses IMetaclassandMetarelationshipvhich captureSOCCA
concepts like “class” and “relationship”.

Thetypelevel Thisisthe level at whiclBOCCA concept instances including concrete classesPergor) and concrete
relationships (e.gsMarriedTg reside. ASOCCA model deals mainly with this level.

Theinstancelevel This is the level of model instances, including objectsqglastances) and links (relationship in-
stances), e.glohnandMary as instances of the claBerson and the link{John,Mary)as instance of the relationship
isMarriedTa



Example See the UML-like diagram in figure 2. BofPerson andStudent are classes, instancesMétaclass
The relationshigsMarriedTo  betweenPerson and itself is an instance of the concepth\détarelationship
John andMary are bothPerson s (Mary is aStudent , which is a special kind dPerson ); the unnamed linkohn
IsMarriedTo Mary is an instance ofsMarriedTo

Metarelationship Metaclass Metaclass diagram level
(meta level)

Student Type level

John: Person Mary: Student Instance level

Figure 2: The levels in thEOCCA formalisation

O

In this document, we focus primarily on the type level. Adparf the metaclass diagram level are treated insofar as
they affect the formalisation of the type level; it has nogbeiscussed in prior work dBOCCA.

In other OO research, there is interest in providing a leedivieen class and instance level, the prototypical object
level [JBAG97], which describes prototypical behaviousefs of objects (a kind of universal quantification over séts
objects). While we are interested in extendB@CCA to address modelling at this level, there are currently mzcgte
proposals for it. Therefore, the prototypical object lagaiot addressed in this formalisation.

In order to properly formalise this complex structure, westrtake into account that Z's notion of equality differs
from that in object orientation. In object orientation thetion ofidentityis important: two instances that have the same
values for all their constituents need not be the same, Beddwiey may differ in their identity. Z’'s notion of equality i
mathematical: two instances (of e.g. schemata) are the gaand only if all their constituents (schema variables) are
equal.

This means that wherever we want to work with object oriéoma notion of equality in Z, we need to make the
identity of instances explicit, via a schema member.

5 Thedata perspective

Thedata perspectivin a SOCCA model describes the static structural aspects of the madthés. perspective is repre-
sented by a class diagram.

The data perspective describes the classes and the rstafien

Classes have attributes and methods. Special binaryamsaips between classes are thesfz] (inheritance, see
page 13), [gbart-of (aggregation, see page 17) anduggs(import, see page 17) relationships; there may also be other
“general” relationships relevant to the problem domainaatd) these need not be binary. These general relationsteips a
sometimes known asssociations

Note that often the termelationis used rather tharelationship In the context of this document, that term might lead
to confusion with the mathematical concept of relatiory _), so we will not use it. We will useelationshipto refer to
connections between classes (i.e. something we model).

Because of the amount of information involved, the clasgrdia is often split into several subdiagrams, such as
import/export diagrams, class diagrams without relatips inheritance diagrams and aggregation diagrams. &uch



split often has an informal meaning to the modeller, but istf® purposes of this formalisation merely a matter of
convenient representation; it has itself no formal sensanti

Example Infigure 3 afairly typical classdiagram is given that modlgt of an email system: a mailer uses an external
editor (to load a skeleton message, edit it and save it); agessare a kind of text, and consist of a header and a body
(each of which are texts in their own regard).

Notation-wise, we follow UML for classes, general relaghips, direction in which to read a relationship’s name,
inheritance and aggregation. For the uses relationshipjsgearrows (to indicate the direction) with filled heads (to
differentiate them from inheritance arrows).

Program

name

run

{save,load,edit} Edits »
Mailer —>
Editor _> Text <_
username
domainname load
perferred_editor save
current_mailbox edit
compose_message
Message

send_message
read_message

Q

Header Body

Figure 3: A class diagram.

O

In formalising the data perspectives, we start with theamotf types, then deal with classes: methods and attributes,
their visibility and their polymorphism. Then we proceediwielationships (including the special relationshipe lik
inheritance), and put the full data perspective together.

51 Types

In formalising the data perspective we need a number of tifsve deal with in an abstract manner, as given sets.

These include [2Hentityfor identifiers that provide identity to entities, [dentifierfor generic identifiers, [fleatureName
for names of methods and attributes MethodNamédor names of methods, [A}tributeNameor names of attributes,
[z]ClassNamédor class names, and RElationshipNaméor relationship names. The various subtypeidehtitywill be
used to clarify the relationship between concepts on thactess diagram level and the type level. Essentially, we wil
have an identity type for each concept in the metaclass atiadevel of which there are multiple instances on the type
level.

Note that for some concepts, likdass there is a field likenamethat can be used to uniquely identify an instance of
that concept. Nonetheless, for these concepts too we hapmasasddentity. We have several reasons for this.

¢ Name and identity are different concepts; in a formaligatitey should be separated. ldentity is an important
concept, that should not be hidden.



¢ |dentifying identity with a particular name (or other dbiuite) makes modifications more difficult (“Does this change
in name have other consequences?”).

e Some extensions @OCCA will cause particular names no longer to be unique. For eXamyhile in this for-
malisation, names of classes are unique, in an extensitrisdbrmalisation that would address the modularisation
mechanisms of [Hoe99], this would no longer be true, as nanesequired to be unique there only within a
module.

We declare the types as given sets:
[Identity, Identifier, FeatureNamgClassNamgRelationshipNanie
Within feature names, we distinguish between method anithait names:

‘ AttributeNameMethodName P FeatureName

‘ (AttributeNameMethodNamgpartitionFeatureName

For concrete applications (especially with a software footevelopingSOCCA models), it will be necessary to be
(much) more specific about these types (eFgdtureNameconsists of the strings of length 255 and less over the 1ISO
8859-15 character set”). Incorporating this specificitytia formalisation we undertake here would have been peassibl
However, this would have been distracting, increasing the sf the formalisation while reducing its generality and
clarity.

Within SOCCA models, there is a notion oftgpe systenfior the types of attributes, method arguments and return
values etc. The details of this type system are irrelevatttisospecification; they may even vary from model to model,
allowing one to use a type system that is appropriate for tbblem domain. We will therefore treat the type system in
an abstract fashion: we assume there is a set of basic tyjpegI(e, Nat}), a set of type constructors (efx,—,P})
that can be used to introduce new types (lfdet — Int), and a type compatibility relatior.

The basic types and type constructors we represent by gaéten s

[BasicTypeTypeConstructdr
Types are either basic types, or constructed from types plyiag type constructors to them:

Type::= basiq(BasicTyp&
| constructof(TypeConstructok seqType)

And the type relatior< expresses compatibility:
Syntax < inrel

| _=_:partial-orderTypg

5.2 Class

The concept otlass a unit of data and behaviour, is at the core of object orteman SOCCA. A class has a name,
some attributes, describing pieces of data, and some ngthedcribing pieces of behaviour and functionality: adio
which it can perform that can be viewed as one unit in its bieligivWe introduce it in several steps.

Example In figure 4 the data perspective part of an example classr(tiaken figure 3) is depicted: a rectangle, parti-
tioned in three parts, the first listing the class naivailer), the second containing the attributes (data) (esgrnamg
and the third listing the methods (operations). |

At first, we will focus only on the concept of class, i.e. thetantassdiagram level. Once we have that concept
described properly, we will derive from it the descriptidirctasses at the type level.
method An operation (of a class or object). Also known am@mber functior procedure or function of a class.

attribute Attributes are (types of) data associated with a class.
feature A method or attribute. In the €+ community, the ternrmemberis used.



Mailer

username
domainname
perferred_editor

current_mailbox

compose_message
send_message

read_message

Figure 4: A class.

__ProtoMetaClas$
name: ClassName
featuresmethodsattributes: P FeatureName

features= methodJ attributes
methodsC MethodName
attributesC AttributeName

5.3 Visibility
In OO formalisms, the concept ehcapsulations important: aspects of classes (like methods and atéshuand some-
times classes as a whole, have a restricted visibility foeoelements of a model.

The precise choice of visibility restriction mechanism g really relevant foSOCCA'’s goal of combining OO and
precise behaviour/communication/coordination desioript

In this formalisation, we will describe a basic visibilitgstriction mechanism, inspired by the one usedintCWe
expect current research @ CCA ([Hoe99]) to result in a more sophisticated visibility msion mechanism that will
address the visibility between classes and objects.

We distinguish between:

public A public feature may in principle be exported to every clabkte that public attributes are discouraged; we

recommend to make them private and manipulate them throygitié “get” (read access) and “set” (write access)
methods.

protected A protected method may not be exported for use by anothes glas call, but is available for use in defining
specialised classes. Similarly, a protected attributedessible by specialised classes, but not to unrelated ones
private A private feature may not be exported.

These visibilities influence what features a class will nith@amely the public and protected ones of ancestors) drat w
features other classes and objects can access (the pub$y @ng. for methods: what methods objects will be able to
call; we will detail this when formalising the uses relasbip (see page 17).

Visibility ::= public | protected| private

This way of specifying visibility is fairly crude, but seens be sufficient for most practical purposes in small to
medium sized models. If need be, the public/private/ptettscheme can be replaced by a more sophisticated visibil-
ity/access control mechanism. This scheme is not fundaher8OCCA, but we have to formalise it of course.

___ProtoMetaClasg
ProtoMetaClass
visibility : FeatureName» Visibility

domvisibility = features
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5.4 Binding

At this point, we are near a complete schemaGtass What is still missing has to do with support for inheritanBeie
to the existence of inheritance in object orientation, tdiems do not always refer to the same things in all contetkiis (
is sometimes known gsolymorphisnor overloading. We will look at a simple example of this first.

Example Consider the situation in figure 5 (this is not a syntactjcatirrect classdiagram: we have used an informal
annotation to indicate howge might be implemented). At the level &ferson , an implementation ofge is given.
Manager , a which inherits fromPerson does not redefine this binding, and thus inherits it. O

Person

[ (Today - date of birth)/365.25 ]
Date of birth

Age  becececccecaceccecaaaad

/\

Manager

Figure 5: Inheritance of bindings

In general, as a result of polymorphism by inheritance, tifiers (hames of methods) do not in all contexts refer to
the same thing (implementation). There is a context-degrtrixinding between names and what they refer to.

We make polymorphism explicit by expressibimding the coupling of identifiers to the entities they refer tor Fo
inheritance, we need the binding of feature names to thebfgtatures: feature names are inherited, but their impfeme
tation may be overridden.

For binding, we give features an identity (to be able to dgtish between them even when they have the same
values). While this is not strictly necessary (we couldvies feature’s identity from that of the class(es) it is botoyd
it makes things more manageable.

Conceptually, we will extend the types we are about to defiitke additional information during the course of the
formalisation. On the practical level, rather than chagdineir schemata and restating work, we will add the new
information to them via coupling through functions and tielaships.

Without a notion of identity, this type of coupling has unidaisle side effects: without identity, schemata that have
the same values are identical, resulting in couplings &pding into each other”. With a concept of identity, ensitileat
have the same values otherwise, need not be identical, sodiépse does not occur.

Featureldentity Pldentity
We use this identity in defining actual members:

__FEATURE
id : Featureldentity
signature: Type

METHOD,ATTRIBUTE PFEATURE

(METHOD, ATTRIBUTE partition FEATURE

A class can declare explicitly to which actual feature aipaldr feature identifier is bound. However, usually, most
of the binding pertaining to a particular class will havemaequired through the inheritance mechanism (see page 15);
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the only cases in which a class ought to declare a bindingaitkplare when a feature is new, redefined (methods only:
attributes cannot be redefined) or is inherited throughipialinheritance in an ambiguous manner.

We explicitly represent the bindings a class declares tirdwo partial functions. These functions are partial for
two reasons: not everWlethodNamehas to have a binding in the classdiagram and the binding eaacQuired by
inheritance. After we have formalised inheritance, we shibw how thdocalmethodbinding andlocalattributebinding
are combined to determine bindings within the class diagram whole (see page 15).

__ProtoMetaClas3
ProtoMetaClasg
localfeaturebinding FeatureNamer» FEATURE

domlocalfeaturebindingC features

This contains all we need for a schema to express the contefatss. The only thing we add to it alecalmethod-
bindingandlocalattributebindingwvhich provide us with convenient abbreviations for aspetlscalfeaturebindingthey
do not add anything new.

__MetaClass
ProtoMetaClas8
localmethodbindingdocalattributebinding: FeatureName~ FEATURE

localmethodbinding localattributebinding= localfeaturebinding
domlocalmethodbindingC methods

ranlocalmethodbindingc METHOD

domlocalattributebindingC attributes

ranlocalattributebindingC ATTRIBUTE

Classldentityis the second subtype tifentitywe need; more will follow later. All the subtypes are mutyalisjoint.

‘ Classldentity Pldentity

‘ disjoint{ClassldentityFeatureldentity
Individual classes are instances of MetaClass: they déraie structure fronMetaClassand have identity.

Class
|7identity: Classldentity

MetaClass

5.5 Reationships

The data perspective consists of a number of classes, ar@retationships between them.

Edits »

Editor Text

load

save

edit

Figure 6: A relationship.
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Example In figure 6 a relationship (from the earlier example in figuyds3depicted. The relationship is tieits
relationship betweeRditor andText An example instance could be the ordered pair (vim, retesit. m|

On the metaclassdiagram levBIDCCA has a few special relationships: §sps(import (e.g. [GIM91, sect 4.2.1.1,
the USES relation])), [fJart-of (aggregation, known from EER) and iga (inheritance), each with special properties
which we will describe later on. That these relationshipgs @r the metaclassdiagram level, rather than the type level,
can be seen as follows: we tend to speak about them as if theysivegular (“the uses relationship” etc.), but on the type
level, they are plural (“the uses relationship betweenschagnd class B”, “the uses relationship between class B and
class C” etc.); only on the metaclassdiagram level theyiagukar; the plural ones on the type level are instancesef th
singular ones on the higher level.

On the meta classdiagram leveBOCCA has general relationships, that are similar to assoc&ifiw(E)ER mod-
elling. These relationships are defined by the modeller piuza relationships that are specific to the domain being
modelled.

Meta relationships On the metaclassdiagram level, we distinguish four type=lationships: uses, partof, inheri-
tance, and general.

MetaRelationship:= UsesRelationshipPartOfRelationshig IsARelationshigp GeneralRelationship
Each of these can have instances on the type level; thesa@est have identity.

‘ Relationshipldentity P Identity

‘ disjoint{ClassldentityFeatureldentityRelationshipldentity
The actual instances are named, have an arity, and an orslrefiparticipants.

__Relationship
identity: Relationshipldentity
name: RelationshipName
type: MetaRelationship
arity : N
participants: secClass

#participants= arity

typee {UsesRelationshijfrartOfRelationshipsARelationship = arity = 2

¢ A modeller may choose to use a lax interpretation of the andenf the participants in a particular relationship.

e We do not require a namespace for the names of relationstghjs would conflicts with inheritance of relation-
ships.

¢ Usually, the name is indicated in the graphical notatiory éof general relationships.

Data per spectivedomain In a model’s data perspective, we describe classes an@nrelips between them.

—DataPerspectiveDomain
classes PClass
relationships P(Relationship

#classes= #{i : Identity| 3c: classes c.identity=i}

#relationships= #{i : Identity| 3r : relationshipse r.identity= i}

e The constraints express that each class and each genatanship has a unique identity.

e With this schema, we highlight the differences between thensional and extensional meanings (terminology
of [JBAG97]) of “class” and “relationship”ClassandRelationshipexpress the intensional meaning (a type of sets
of objects / links),classesandrelationshipsexpress the extensional meaning (the particular set ottsbjdinks in
a particular model).

On top of this “data structure”, we will add constraints tdyfulescribe the data perspective.
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Congtraintson thedomain Throughout the data perspective, we focus onlclassesthe concrete set of classes
involved, rather thai€lass(the set of all potential classes).
Thus, we do not consider all potential relationships, bly oglationships between the concrete clasststes

__DataPerspectiveDomainConstraints
DataPerspectiveDomain

Vrel : relationshipse
Vc: ran rel.participantse ¢ € classes

Namespace The classes form a namespace: a set of elements with a naniewlitich an element’s name is sufficient
to identify it.

—DataPerspectiveNameSpaces
DataPerspectiveDomain

Vc,d: classeg c.name= d.namee c =d

¢ Note that we do not have a similar namespace constraintgtiorships.

5.6 Inheritance

The inheritance relatiois-a is fundamental to the data perspective. It is a partial orthers it forms a hierarchy (there
are no cycles in the inheritance, except for the trivial éxdfle) ones). As a partial order, it is reflexive and trausiti
but the reflexive and transitive edges are seldomly drawherctass diagram (i.e. the class diagram usually depicts its
covering relation).

Note that thaés-arelations allows for multiple inheritance (classes havimgre than one parent class).

We also introduce ais-directly-arelation derived fronis-ato refer to a parent-child relation, rather than a ancestor-
descendant one.

—IsA
DataPerspectiveDomain
is-a: Class« Class
is-directly-a: Class« Class

is-directly-a= {r : Classx Class| 3g: relationships c,d : classe»
r = (c,d) A g.type= IsARelationship\ g.participants= (c,d)}

is-a= is-directly-&
is-a € partial-order|Clasg

Our notion of inheritance is based osubstitutivity a descendant class can occur and should be usable anywlgere a
of its ancestor classes can. This means that it has all tHe puld protected methods and attributes its parents hade, a
that it participates in the generalsesand part-of relationships they participate in: inheritance applieshe nonis-a
special relationships as well.

We define inheritance on the data perspective only; inlreréalays a role in the other perspectives, but in the other
perspectives, inheritance imposes no constraints aboaé iwhecessary for a consistent model. While it is possible t
have a notion for inheritance on another perspective, baypéhaviour perspective, there are often quite differtsutt,
equally valid notions of inheritance possible; [EE94] fostiance identifies two different, but equally valid, nosayf
inheritance of behaviour.

Example Consider the classdiagram (fragment) in figure 7Dasign is a Document, andProjectmanager
monitorsDocument , one can infer thaProjectmanager  monitorsDesign . In the example, we have drawn it as
dashed line. Itis customary not to draw the relationshigsided by inheritance in order not to clutter the class diagra
This example also shows why we did not impose a hamespactaohsn the names of relationships. If we did, we
would have to find a different name for the relationship betw&anagerandDesign Also note thaimonitors is a
directed relationship.
m|
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< Monitors
Document Manager

/\ 2

Design y

Figure 7: Inheritance of relationships

__DataPerspectivelnheritance
ISA

Vp,c:classed cis-ap e
(Vf : p.features| p.visibility f # privatee f € domc.visibility A p.visibility f = c.visibility f) A
(VR: relationshipg R.type# IsARelationship
Vi:1..Rarity | R.participants i= p ¢ 3S: relationshipse

Stype= RtypeA
Sarity = Rarity A
Sparticipants i=cA
(Vj:(1..Rarity)\ {i} e Sparticipants j= R.participants ))

e Private attributes and methods cannot be inherited; pexdesnd public ones are always inherited. We will for-
malise this in théataPerspectiveBindingchema (page ).

e Features that exist in both parent and child, have the sasitslity.
¢ If a parent participates in a particular rdle (positiongirelationship, its children can fulfill the same role.

Example For example, say we have a relationskide(Person,Good,Persom) describe a person selling a good
to another person, and we have specialised perSatessmarand Client then thesale relationship also encompasses
sale(Person,Good,Client3ale(Salesman,Good,Persarydsale(Salesman,Good,Client) O

As with is-a, in our diagrams we tend to leave out details that can beyeiagdrred: usually we only draw a rela-
tionship between the “highest” classes in k@ hierarchy it pertains to. In the previous example, we woukhvsale
betweerPerson GoodandPerson but we would not draw all the implications like betwe®alesmanGood Client

Inheritance of binding Now that we have formalised the inheritance relationshipcan deal with polymorphism
by inheritance formally. As discussed earlier, this is thepprty that a particular method or attribute name need not
always correspond to the same entity. Rather, in a particolatext (class), a particular identifier is bound to a pattr
entity. We express thisindingthrough functionsnethodbindingandattributebinding

These bindings are determined by inheritance and locatidirg (localmethodbindingndlocalattributebinding.

In the constraints omethodbinding@ndattributebinding we deal with the potential ambiguity resulting from mulkip
inheritance: if two parents of a class have a different lsigdor a particular method or attribute name, the child chess
to disambiguate by providing an explicit local binding fbat name.

methodbindings partial, as it is defined only for the concrete methods iwithe concreteclassesrather than all
potential methodsMETHOD) of all potential classes3lasy. Likewise forattributebinding As a side effect, this allows
for method names that do not have an implementation attachigtm: abstract methodsThese methods, also known
as pure virtual methods or deferred methods, are usefulibedhey allow the modeller to introduce an operation at
a suitable level high up in a class hierarchy at which the conatity can be expressed, but at which no reasonable
implementation can be specified.

¢ attributebindingis total on the concrete (class, attributename) pairs.



¢ methodbindings not necessarily total on the concrete (class, methodnaaies: it can be partial to indicate
abstract methods.

Example Multiple inheritance introduces a complication: how doéwdimg work when two (or more) parents of a
class have different bindings for a particular feature?
Consider for example, the informal classdiagram (fraginierfigure 8. A.c file is both aFile andC code;

Document
length unbound
File C code
number of <_ -
length length

|
|
.c file l
|
Explicitly provided binding :
length | & & 0 & & o - - = = = =

Figure 8: Binding and multiple inheritance

for File ,length isdefined as the line count; f@& code, length has a different definition: the number of statements
(as used in some definitions of (K)LOC).

We resolve this complication by requiring that, when two arenparents (herdsile andC code) have different
(non-empty) bindings for a particular featuderigth ), the child class.¢ file ) explicitly specifies a (potentially
new) binding (tonumber of statements ). When all parents that have a non-empty binding to the saaterfe it
is inherited (binding takes precedence over lack of binding a

15
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__DataPerspectiveBinding
DataPerspectivelnheritance
featurebindingmethodbindingattributebinding: Classx FeatureName~ FEATURE

featurebinding= methodbinding) attributebinding
dommethodbindingC Classx MethodName
ranmethodbindingc METHOD
domattributebindingC Classx AttributeName
ranattributebindingC ATTRIBUTE

Vp,c: Class| cis-ap e Vfn: FeatureName (p, fn) € domfeaturebinding/ p.visibility fn # privatee
(c,fn) € dom featurebinding
Vp1,pe,c: Class| p1 # p2 A cis-directly-ap; A c is-directly-aps e
Vfn: FeatureNamé
featurebinding(py , fn) # featurebinding(pz, fn) A
p; .visibility fn # private A ps.visibility fn # private e
fn € dom c.localfeaturebinding
Vc: Classe Va: FeatureName Vi : FEATUREe
(c,a) — i € featurebinding=
(ar i € c.localfeaturebindingv
(a— i ¢ c.localfeaturebindingh
(Vp: Class| cis-directly-ap e (p,a) — i € featurebinding))
Vc: classes Va: c.featuress Vp: classeg cis-ap A (p,a) € domfeaturebindings
(featurebinding(p, a)).signature= (featurebinding(c, a)).signature

Vc: Class fn: FeatureName (c,fn) € dom featurebindings
c.visibility fn = private =
- (3d: Class fny : FeatureName
((c,fn) # (d,fnz) A (featurebindindc, fn) = featurebindingd, fn2)))) A
c.visibility fn = protected=
(Vd: Class fny : FeatureName featurebindingc, fn) = featurebindingd, fny) e
fn=1fns A (Ip: Classe c is-ap A d is-ap A featurebindingp, fn) = featurebindingc, fn)))

Note

DataPerspectiveBinding
dom featurebindingC {p : Classx FeatureName Jc: classes 3f : c.featuress p= (c,f)}

e Once a member has become bound, it cannot become unboungeénialsed class.
¢ If there is no explicilocalmethodbindinga binding can be obtained through inheritance.

¢ A methodbindingentry is generated either by an expliicalmethodbindingor by unambiguous inheritance;
ambiguity due to multiple inheritance must be resolved bgxilicit localmethodbinding

e Signatures of members can only be changed through inhegitara fashion consistent with the type system em-
ployed in the model.

¢ All attribute names that actually occur are bound.
¢ When a binding is private, it is not shared.

¢ Protected bindings can only be shared by classes relatedaincastor with the same binding.

Theusesrelationship In a class diagram, there isusesrelationship between classes which describes import (arcs
are labelled with method names througgeslabel associated information like the method’s signature caadoessed
using the method name).

In many other formalisms, there is not much attention forommnternal to (an object of) a class: methods within a
class are automatically available for use by other methattsrmthe class.
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In SOCCA, there is no implicit import within a class; methods withiglass areot automatically available for use
by other methods within the class. Thus, even within a class@bject, one method can only call another method if it
has ausesrelationship to that class with that method in the labelBet

The reason for making this import within a class explicithattthis import has consequences for other parts of a
SOCCA model: namely, those parts that deal with coordination.

ForSOCCA, method invocations of methods within one object can ingiple be executed concurrently (iSOCCA
objects can be multi-threaded). Thus, intra-object metig®inecessitates coordination between threads. To eraphasi
the consequences of intra-object method use, it is madé&iiplthe data perspective through the uses relationship.

Thepublic, private, protectedisibility mechanism was popularised by the-€ programming language [Str97]. In
that language, the accessibility/visibility specified bgde keywords regulates access control on the basis oéslasly.

For example, an object of a particular class can accesst@rigatures of another object of that class. This is not the
case inNSOCCA, where this kind of access will be regulated too (see figur&\@) will specify this when formalising the
concepts dealing with the instance leveS®HCCA models.

callee member
caller | public protected private
same object Y Y Y
other object, same class Y N N
other object, descendant class’ N N
other unrelated object Y N N

Figure 9: Potential access.

Thus, there is no difference in accessibility betwgestectedandprivate members in a caller—callee situation. The
only difference betweeprotectedandprivateis thatprotectedmembers are used in defining members of a descendant
class.

_Uses
DataPerspectivelnheritance

uses Class¢« Class

useslabel (Classx Clasg + PMethodName

uses= {r : Classx Class| 3g: relationships c,d : classe>
r = (c,d) A g.type= UsesRelationship g.participants= (c,d)}

dom useslabek uses

Vc,d: classesM : PMethodNamé (c,d) — M € useslabeb
M C {m: d.methodd d.visibility m= public}u
(if c=dthen {m: d.methodg d.visibility m € {protectedprivate} } else @)

¢ We restrictuses anduseslabelto the concrete classes in our model.

e useslabels used to annotate edges with the names of methods thatede Ushe labelling is not inherited; there
need not be a relation between a parent classslabelnd an child class’. A particularseslabemay be the empty
set; this can occur between wholly unrelated classes, batvelhen two classes formally haveisesrelationship,
due to inheritance, which is not used.

e This schema only captures the constraints on the class l@ves is not sufficient to describe whether or not a
particular method of a particular object can be called. 8eenerchant example in [Hoe99]. On the instance
level, we will add additional constraints that preventaiént objects from using each other’s protected and private
methods.

The part-of relationship Thepart-of relationship describes aggregation between classes. &fedraggregation as
a binary relationship (a (single) pastpart of a whole) rather than an n-ary relationship (a set of gartesa whole).

__PartOf
DataPerspectivelnheritance
part-of : Class« Class

part-of = {r : Classx Class| 3g: relationships c,d : classes
r = (c,d) A g.type= PartOfRelationship\ g.participants= (c,d)}




18

¢ \We restrictpart-of to the concrete classeddsseyin our model, rather than all potential class€a&9.

¢ usesandpart-of are derived components ([Spi92, p. 3]); they do not imposttiadal constraints, but are merely
aliases (abbreviation definitions) for the binary relasiomderlying the relationships within this scheme. Unfortu
nately, Z has no syntactical construct to indicate this yjpease explicitly.

e There are no constraints grart-of. There are some constraints that are often, but not alwasonable, for

example thapart-of should be a forest (thus, something can nopbé-of itself, nor bepart-of two different
classes). One can also argue that it should be transitiv¢haiis a matter of preference.

Thefull data perspective At this point, we can put the data perspective together.

__DataPerspective
DataPerspectiveDomain
DataPerspectiveDomainConstraints
DataPerspectiveNameSpaces
DataPerspectivelnheritance
DataPerspectiveBinding
Uses
PartOf

As an illustration of inheritance of relationships, we camrsee

DataPerspectivé Vp,c,q: classeg c is-ap e
(p part-of g = c part-of ) A (q part-of p = q part-of c)

5.7 Discussion

In the process of formalisihnBOCCA a large number of choices have been made; we will motivateesafrthem, and
point out alternative choices.

We have chosen to model the identity ®OCCA entities separate from their names. This provides flexybiki
dealing with issues of unique names. The identities of anyeistunique globally within a model; its name may be
unique, or unique only within a particular namespace. Wik approach it is easy to modify the formalisation for
example to add a namespace constraint for relationships.

The formalisation does not address the actual type systbmtised irSOCCA models. We believe this to be a good
thing. The important concepts BOCCA are independent of any particular type system, so therernigad to formalise
a particular type system. Furthermore, a modeller shoufddeeto work with a type system that is natural for the subject
area at hand.

The visibility/hiding mechanism is to some degree simildowever, unlike the type system, it is quite difficult to
treat the visibility/hiding mechanism in an abstract fashi Rather than treat it abstractly, we have chosen to use a
concrete mechanism that is small, but sufficient for showlgissues involved. Like with the type system, the concrete
mechanism is not crucial 8OCCA and should be left to the modeller.

The section on binding shows how we integrate entities inbtoentomplete model fragments: via functions. This
allows us to some freedom in organising the formal matesiadl, more importantly, allows us to extend prior material
without restating it (recall that plain Z does not have thettiees for reuse that OO versions of Z have).

6 Thebehaviour and functionality per spectives

So far we have described the data perspectiveRID&CA model, which describes a static structure of classes amd the
relationships. Now we will describe two more perspectivESOCCA, which describe dynamic aspects ®OCCA
classes.

Thebehaviour perspectivdeals with visible behaviour (behaviour that is visible they classes); whereas thenc-
tionality perspectivalescribes hidden behaviour (which describes the funditgrad the various methods). Later on, in
the communication perspective, we will describe the camtibn between the behaviours of objects.

The behavioural aspects 8OCCA models are specified through State Transition Diagrams 3 Tddaphical dia-
grams containing states and labelled transitions betwesn.tAs we will see in the next section, our means of exprgssin
communication is based on STDs too.

In using STDs for the functionality perspectiv@CCA clearly differs from OMT, revised OMT and UML. Orig-
inally OMT ([RBP91]) used data flow diagrams for its “functional model”. Iviged OMT ([Rum96, p. 353]), “the
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functional model consists of use cases and operation gésas, as well as object interaction diagrams, pseudo code
designs, and actual code to specify how they work.” In UMEeréhis no clear equivalent for the functionality perspetiv
UML is only a notation; it offers several ways of expressioge perspectives; there is no associated method thatetarifi
which language elements are to be used for what perspeEtivénstance, UML still has data flow diagrams, but for the
description of behaviour perhaps statecharts can be usedalternative.

6.1 STDs

In Computer Science, behaviour is often expressed throbgtieect machines from Formal Language Theory (such as
Turing machines, finite state machines or stack automagae g [HU79]). In these abstract machines, there is a finite
control operating on a possibly potentially infinite staragructure. In th€ARADIGM formalism ([Gro88]), which is the
basis of the communication perspectiveSSBCCA, behaviour was expressed through semi-Markov decisiotegees,

a formalism well-known in Operational Research which caoress stochastic behaviour.

STDs are used iBOCCA because they are a mid-way compromise between semi-Magasidn processes and
Computer Science automata models. They are quite closeetéirtite state machines (FSMs) familiar to computer
scientists, but are allowed to have an infinite state spddiéacontrol — there is no additional storage structuregyth
can express non-determinism (as can many other automatalshdout they lack expressive power for describing true
stochastics which semi-Markov decision processes havealBe STDs are quite similar to FSMs, which are common
throughout computer science, we will describe them in an Hi8®manner. To emphasise the distinction between
the type level and the instance level, we will distinguistwsen STDs (on the type level) and STMs (state transition
machines, “STDs in action” on the instance level).

The way in which we use STDs in the formalisatiorSfD)CCA is different from that in Formal Language Theory. In
Formal Language Theory, STDs are primarily devices for getimegy languages, whose internal structure does not matter
much (often STDs are considered equivalent when they geniiasame language, which means no attention is given to
the exact sequence(s) of states involved in generatingcogrngsing a particular word). IBOCCA the precise structure
of STDs is highly relevant, as we focus on communication ketwSTMs, STDs in action. The possible behaviours
allowed by aSOCCA model result from the interaction between STMs.

An STD consists of a set of states (some marked as initiabafidal) and a transition relation between states marked
with symbols; a function does not suffice as an STD may be maerdhinistic. It provides a static description of behaviou
on the type level, i.e. it describes all possible behaviaather than any particular behaviour that is actually ateg in
an instance.

We introduce a type for the states of STDs.

[STATE

Transitions can in general be labelled with plain method e=fn external STDs), “act” labels (in internal STDs;
they indicate the activation of the STDs behaviour), orl"dabels (in internal STDs). It is often desirable to have th
option not to label transitions; for this we incluee

SYMBOL:= ml{{(MethodNamjp
| €|act{(MethodNamp | call{{(ClassNamex MethodNamg)

With these, we describe the structure of an STD in generath@meta classdiagram level):

—MetaSTD
states PSTATE

labels: PSYMBOL

transrel: (STATEx SYMBOL «+ STATE
initial : PSTATE

final : PSTATE

initial Ufinal C states

states# @ = initial # &

transrel C (statesx labels) x states

labels= {l : SYMBOL 3sy,s; : statess ((s,1),s;) € transrel}

And adding identity to it, we get regular STDs.
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STDIdentity: Pldentity

disjoint{ClassldentityFeatureldentityRelationshipldentitySTDIdentity

—_STD
Identity: STDIdentity
MetaSTD

Notes:

e STATEIs the type of states iBTDs; statesis the set of actual states in a specBi€D Therefore, botlinitial and
final have to be irstates

e STDs may have multiple initial and final states.

e Often, but not alwaystates# @, initial # &, final # @.

It is sometimes useful to be able to work with the edges diredisregarding their labels.

edges STD— (STATE«~ STATH

Vstd: STDe
edges std= {e: STATEx STATH 3p,q: STATH
e=(p,q) e (3sym: SYMBOLs (p,syn) — g € stdtransrel)}

To describe the realisation of behaviour of objects on tls¢aimce level, we will define State Transition Machines
(STMs): abstract processors that run exactly one prograisiptogram is described by an STD. Like for the STDs they
are instances of, we do not require STMs to be finite (althdhgih almost always are finite in practice). As we shall see,
a particular object may have multiple STMs running simutausly, allowing it to be multi-threaded.

6.2 Thebehaviour perspective: External behaviour STDs

With each class, we associate an STD that specifiegxternal behaviour The external behaviour STD of a class
describes behaviour that is visible to other classes, nathel order in which calls to methods the class exports are
accepted. Note that a class may also export methods to(ksglfif one object of a class may call the method of another
object of the same class, or for when one method of an objéstareother method of the same object).

Edges in the external behavio8iT D of a class are unlabelled or labelled with the names of ojpasexported by
that class to other classes or itself:

ExternSTD PSTD

Vs: ExternSTDe s.labelsC ranmlU {¢}

—BehaviourPerspective
DataPerspective
externalbehaviour Class« STD

externalbehaviou classes< ExternSTD
Vc: classesm: MethodName #{estd: STD| (c,estd € externalbehavioun ml me estdlabels} < 1

Vc: classes
{m: MethodNamé Jestd: STD| (c, estd € externalbehavious ml me estdlabels} C c.methods

¢ Note that not all the method names need to occur in the exteehaviour STD. For instance, it depends on the
particular model whether or not it is useful to include laJelr abstract methods in it.

¢ Note that even when a method name is used in the externalibeh&mD, there is no guarantee a call to it will
ever be handled. An external behaviour STD merely contithi@ order in which calls may be accepted.

¢ We allow for multiple external STDs. This feature has alsepubven useful in thesis projects [Wil95, vdZ96]. In
[Hoe99] this feature is being used to provide class-likecdpsons of sets of classes. For now, multiple external
STDs for the same class are disjoint in that a method nameaan as a label in at most one of them; possible
extensions in which this requirement is weakened may preeduliin modelling certain multithreaded systems.
It is useful for cases where one can distinguish a number stindt “facets” to an object. For example, take
a (composite) object representing a multi-windowed, nthlttaded application. In such an application, each
window can have its own functionality (methods), and its astate. It is rather natural to model this by several
disjoint external STDs.
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6.3 TheFunctionality perspective: Internal behaviour STDs

With each method of a class, we can associatentainal behaviour STDRhat describes how that method is realised.
Methods with which we do not associate an internal beha\#83Wb are termedbstract methods

An internal behaviour STD’s transitions are labelled witkthod calls to methods of the class it belongs to and
methods exported to that class by other classes (or itdéfflike other formalisms, irBOCCA methods within a class
are not automatically available for use within other methofithe same class; there has to be a suitably labaeled
relation from the class to itself.

Example In figure 10 you find a typical internal STD (belonging to a nzetkoo), which makes two calls (on&.bar
to a classB; the other tdBazwithin the class) and does some internal stuff (an unlatdétletransition).

Rather than using separate end stateg,teamsition from what is effectively an end state to the alititate, which is
also an end state, is provided. This convention is used ierae8SOCCA publications. The underlying intuition is that
of a process that in some sense becomes dormant after lgpadiail and is woken up by a new call.

act Foo call B.Bar call Baz

Figure 10: A typical internal STD

O

The transitions in an internal behaviour STD may be labelédt “act methodnanieg(indicating activation of the
execution ofmethodnampeor “call class.methodnaméindicating a request to start the executiomeéthodname

‘ InternSTD: PSTD

Vs: InternSTDe
s.labelsC {e} U (ranact) U (rancall) A
(V1:slabels i: sinitial; st: s.stateg (i,|) — ste s.transrele st¢ s.initial ) A
(Vs1,s : s.states | : slabels| (s;,1) — s € stransrelA | € ranacte s; € s.initial)

o Initial states do not connect to each other.
¢ All transitions from an initial state are labelled with arctalabel.

It is customary to leave out classnames in calls in the gcaphiotation of STDs where this does not introduce
ambiguity.

To describe the functionality perspective, we need to htiaiernal STDs ttMETHODs and ensure consistency with
theusesrelationship and the behaviour perspective.
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__FunctionalityPerspective
BehaviourPerspective
internalbehaviour METHOD-» STD

dominternalbehaviourC
{M : METHOD| 3c: classes m: MethodNam¢ m € c.methods
M = methodbindingc, m)}
raninternalbehaviourC InternSTD

Vc: classes Ym: c.methods M : METHOD; std: STD
| (c,m) — M € methodbinding\ (M, std) € internalbehavioure
(Vi:stdinitial; s: stdstates | : stdlabels| ((i,]) — s) € stdtransrele | = act m)

Vc,d: classes
useslabglc,d) =
{n: MethodNamé 3m: c.methodsstd: STD, M : METHOD e
(c,m) — M € methodbinding\ (M, std) € internalbehaviourA
call (d.namen) € stdlabels}

Vc: classesf : FeatureNamem: METHOD; s: STD| (c,f) — m € featurebindingh (m,s) € internalbehaviours
Je: ExternSTDs (c,€) € externalbehavioun ml f € elabels

e The transition(s) in the internal STD of a methwdstarting at an initial node are labelled withct nf, indicating
activation of the method invocation. Usually, there willyphe one initial node, but we have not ruled out multiple
initial nodes.

¢ Invocations of other methods are indicated bgalt classname.methodname”. This import is precisely what the
uses relationship describes.

e Methods for which an implementation (STD) is provided, nagtur as labels in an external STD of the class they
belong to.

When specifying the instance level, we will see how invamatiof methods of particular objects are done. At that
point, we will also see how the visibility restrictions diegl with objects (calls to private or protected members bEot
objects are disallowed, as described earlier) are impléder-or now, we restrict ourselves to indicating only treessl
of objects whose methods are invoked.

6.4 Discussion

We have described the behaviour and functionality pergmecbf SOCCA on the type level. IlBOCCA these per-
spectives are closely related in that they are both degtuilseng one concept: the State Transition Diagram. In the
next section, we will formalise the communication perspecof SOCCA at the type level. As we will show, the
communication perspective builds on the behaviour andtimmality perspectives in two ways: the formalism in which
communication is expressed 8DCCA is based on extensions of the notion of STD, and the commitimrcstructures
will be closely coupled to the external and internal STD$ thake up the behaviour and functionality perspectives.

7 Thecommunication per spective

The communication perspectiia SOCCA expresses how communication between instances of classasso It is
based oPARADIGM [Gro88]. As with the behaviour and functionality perspees, we use concepts based on STDs in
our description, rather than ones based on semi-Markosidegprocesses. We need to introduce several notions before
we can address the communication perspective.

7.1 Intuitive description

The communication perspective is wh&@©CCA differs the most from other object oriented modelling laages. If
presented in a purely factual or formal way, it can be quitentiag. Therefore we will give you a rough sketch of the
intuition underlying it first.

A fundamental observation about communicating processési their behaviour can be viewed as having two levels.
The first is the level ofocal behaviourwhich describes the pieces of behaviour that the processhana/which do not
require communication with other processes. Such locaiebr has parts in which no communication is desired, and
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no coordination is necessary, and parts in which communitéd desired to arrange coordination to prepare the way
for another piece of local behaviour. Until this communimathas taken place, the process is restricted to the current
piece of local behaviour. The second, more abstract, lewbhit ofglobal behaviouwhich describes how the processes’
behaviour may be switched from one piece of local behavimanbther through coordination by communication.

As we have seen earlier, BOCCA we describe the global behaviour of classes through anratt&TD, and the
local behaviour of methods through internal STDs. The cffié parts of local behaviour we describe dnpprocesses
andtraps A subprocess describes a temporary restriction of behgvagiece of local behaviour. #ap defines the part
of a subprocess where coordination is desired.

Example In figure 7.1, a simple STD is shown (labels are left out to kisépgs simple), together with two possible
subprocesses and their traps. The traps are shown as shiaded\When more than one trap is presented with a subpro-
cess, they are often given numbers. The subprocesses & yensions of the original STD (disregarding initial and
final states).

RO k) 0 Rl oe

(a) Full STD (b) Subprocess 1 (c) Subprocess 2

Figure 11: An STD with two subprocesses
|

In light of communication, we distinguish two roles of STEsnployeeandmanager An employee is an STD aug-
mented by a structure of subprocesses and traps knowmaiton and trap structure An employee is managed by
a manager (meaning the manager prescribes when and whiditibas the employee may make between its subpro-
cesses). The manager is an STD augmented with two funcfldrestate interpreterwhich maps its states to prescribed
subprocesses, and thetion interpretey which labels its transitions with traps that its emplogg@tust have reached for
the transition to be allowed.

In SOCCA, the external STDs form the basis for the managers, and teenal STDs for the employees. This
imposes more structure thanPARADIGM, where the choice of managers and employees was up to thdlemode

The notions of employee and manager are dual: an equallywialiv on a given model is that the employees manage
their manager. FOPARADIGM, this has been proved in [Mor93]. Using this duality, the capts of employee and
manager can be formalised more symmetrically; we do notidpdb this view is somewhat less natural.

There is a behavioural consistency that works in both domest an employee’s behaviour obeys the restriction
imposed by the current subprocess prescribed by the manabie the manager’'s behaviour obeys the restrictions
imposed by the subprocesses of its employees (not makiagsition labelled with a trap that has not been reached yet).

By itself, PARADIGM lacks the structure provided object orientatiorS@CCA and thus allows the modeller very
large degrees of freedom in modelling. 3@ CCA this freedom has been restricted through the object odesttecture,
making it more manageable. BOCCA, the modeller no longer has the freedom of choosing emplapeemanager
roles arbitrarily: a class’ external STD(s) gets the roleranager of the internal STD(s): the external STDs receive
messages (calls) and start up behaviours of internal STbBartdle them.

Example As anillustration of how the communication perspectivE@CCA is used, consider the following situation:
we have two classef,andB. MethodA.Callerneeds to perform a synchronised call to metBd@alleg i.e. it callsCallee
and has to wait until that call has been handled completely.

A RN R\

act caller call callee act caller call callee act caller

“QFOFO—=0 =Sl o [gFel 039
(a) STD (b) First subprocesR; (c) Second subprocess

Figure 12: Caller
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Caller's STD is depicted in figure 12(a). It has a fairly simple stune: activation, calCallee some internal stuff,
and repeat when desired.

The handling of the call t€alleeinduces two subprocesses: o, (depicted in figure 12(b)) in which the actual
call is allowed and in which the trapl expresses the waiting for the call to finish; the otR&(depicted in figure 12(c))
in which permission to perform the call is temporarily regdk its big trapT 2 indicating its willingness to regain that
permission as soon as possible.

act callee

o~ . — act callee O—@

(a) STD (b) First subprocesk; (c) Second subprocegs

Figure 13: Callee

Calleés structure is more simple thaDaller's: activation, and internal stuff (see figure 13(a)). LikeQaller, the
synchronised way we want to call it induces two subprocegsbedirst,E1 with trapT3 (in figure 13(b)) in whichCallee
waits to perform its activities; the secorteR with trap T4 (in figure 13(c)) in which performs them.

In this example, there is just one designated trap for eaopreuess; this need not be in the general case: there can
be more than one designated trap.

callee @
{T1,T3}
O (=
€
€
g (T1,74)

(a) External STD oA (b) Corresponding man-
ager

Figure 14: External STD and corresponding manager

In figure 14, a suitable manager is depicted. The state andlitian interpreters are indicated by an appropriate la-
belling of the states and transitions respectively. |

7.2 Subprocess

The basic idea is that a process’s full behaviour is desgrifyean STD, but that most of the time it is useful to view a
process as being insubproces®f that STD. A subprocess functions as a temporary regnain what behaviour the
process is allowed to exhibit. Itis an STD too.

Communication between processes is required to make asldteveen subprocesses.

isSubProcessOfSTD+« STD

Vstd, subp: STDe subp isSubProcessGtd <
subpstatesC stdstatesA
subplabelsC stdlabelsA
subptransrel C stdtransreln ((subpstatesx subplabels) x subpstates
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¢ Note that the initial and final states of a subprocess of an &€Mot required to come from that STD: a subprocess
has its own initial and final states, unrelated to those oFB it relates to.

e |tis easy to see th& isSubProcessOf 8n STD is its owrtrivial subprocess

7.3 Trap

A trap is a set of states within a particular subprocess that, ogmehed, cannot be left while the behaviour restriction
expressed by the subprocess holds. The traps a modelleseshaalicate that a process is ready to switch from one
subprocess to another. That a subprocess has reached daeamot mean that it is idle. It can still perform useful
actions. That it has reached a trap merely means that it leedra final phase of the behaviour restriction imposed by
its current subprocess.

We introduce a relation to check if a particular set of stegestrap of an STD.

isTrapOf: PSTATE«~ STD

VS:PSTATEe Vstd: STDe
S isTrapOfstd <
S£TA
(Vs,t: stdstatese
V1 : stdlabels| se SA ((s1),t) € stdtransrelet € S)

e Itis easy to see thatd.states isTrapOf stdrhis is known as thérivial trap: the trap consisting of all states of a
subprocess.

A trap can lead from a subprocess to another subprocess.

isTrapConnectionOf STDx PSTATEx STD+« STD

Vstd subp ,subp : STD trap: PSTATEs
(subp ,trap, subp ) isTrapConnectionOftd <
(subp isSubProcessOdtd A
subp isSubProcessOdtd A
trap isTrapOfsubp A
((subp = subp) V (trap C subp.initial A trap C subp .final)))

7.4 Partition and Trap Structure

Often we consider an STD with a particular set of associatbgrecesses that “cover” the STD. Such a set of subpro-
cesses, each with its own set of traps is known parttion and trap structuref that STD.

Such a structure shows how the behaviours of the STD ardipaetil in the light of communication. The modeller
has degrees of freedom in choosing the subprocesses, dnd thi#m, in choosing the relevant traps.

We define a relation to check if a set of STDs and set of stafedégd a partition and trap structure of a given STD.

isPartitionAndTrapStructureOf (P(STDx P(PSTATH)) «» STD

Vpart: P(STDx P(PSTATE); std: STDe
(part,std) € isPartitionAndTrapStructureO&>
{state: STATH| Jpartstd: part e statec (first partstd.stateg = std statesn
(J{trans: (STATEx SYMBOL) <> STATE]|
Jpartstd: (STDx P(PSTATE) e trans= (first partstd.transrel} = stdtransrelA
(Vsubp: STD traps: P(PSTATE | (subptraps) € part e
subp isSubProcessGfd A
(Vtrap : PSTATE]| trap € trapse
trap isTrapOfsubpA
(Isubp : STD, traps; : P(PSTATE | (subp, traps;) € part e
(Ictrap: traps, e (subpctrap, subp) isTrapConnectionOstd))))

e The subprocesses in the partition and trap structure chee8TD in both states and labels.

e The subprocesses are connected via traps.
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¢ In the graphical notation, traps are named; in the abstragtrifax there is no need to name them, as they are
uniquely identified within their subprocesses.

e The connection constraint is local only; we do not imposeahability constraint between subprocesses in a
partition and trap structure in general.

7.5 Employee process

An STD with a partitioning into subprocesses, each with ao$étaps that connects it to the others, is known as an
employee (process)

__employee
std: STD
pts: P(STDx (P(PSTATH))

pts isPartitionAndTrapStructureGdtd

Often, the employees follow the pattern of having two subpsses, one containing the “act” label(s) (corresponding
to “starting”), one without (corresponding to “functiogi). Discussion of such patterns is outside the scope of this
paper; we refer you to [Bru98].

7.6 Manager process

A manager (procesdy an STD that describes the coordination that takes pla@wemployee processes change sub-
process. The states of a manager are used to prescribe flrecesses of its employees; the transitions of a manager are
labelled with the traps (of its employees) that need to behea before the transition is possible.

With each manager, for each of his employees, comstte and transition interpretewhich describes how the
manager relates to the employee: it maps each state of thegera8TD to the subprocesses it prescribes to the employee
and maps each transition label of the manager STD to the tfajss particular employee that have to be reached in
order for the transition to be allowed.

Example See the manager in figure 14. lIts state interpreter, whiotidabach state of the manager STD with the
subprocesses the manager in that state prescribes to itsye®p, is given in figure 15 Similarly, its transition intester,
which labels each transition of the manager STD with the §étaps of its employees that have to be reached for the
transition to be allowed, is given in figure 16.

State | Subprocess of Callef Subprocess of Callee

top R1 E1l
right R1 E2
bottom | R2 E1l

Figure 15: The state interpreter

Transition | Trap(s) of Caller| Trap(s) of Callee
top — right T1 T3

right — bottom | T1 T4

bottom— top | T2 none

Figure 16: The transition interpreter

O

In earlierSOCCA publications, this was termed tk&te action interpreterThe term “action” originates in decision
process theory; in light of our use of STDs, the term “traositis clearer. Also, originally the state action intergae
described the relation between a manager and all its emrggoyla the formalisation, it is more convenient to split this
out for each employee, and distinguish the state and tramgiarts of the state and transition interpreter.

We use abbreviation definitions to make state and tranditienpreters more visible.
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stateint== STATE-+ STD
transint== (STATEx SYMBOL x STATE+ (PSTATH

—_managet
std: STD
empsti: sed employeex stateintx transint)

(Vi:1..4#empstie
(Ve: employeesi: stateint ti : transint| (e, si,ti) = empsti i
domsi = std statesA
domti = {t: (STATEx SYMBOL x STATH 3s;,s; : stdstates sym: SYMBOLe
t=((s1,sym,s2) At € stdtransrel} A
(Vs1,s : stdstates sym: stdlabels| ((s;,sym,s;) € stdtransrele
si 5 isSubProcessOd.std A
si $ isSubProcessOd.std A
ti ((s,sym),sp) isTrapOfsi s A
(sisi,ti ((s1,sym,s2),si ) isTrapConnectionOg.std)))

e The state interpreters map states of the manager to apg®pribprocesses of the employee at hand.
e The action interpreters map transitions of the managerpoogpiate traps of the employee at hand.

e All transitions in the manager's STD, interpreted to any lefrh employees involved, corresponds to a proper
connection between two (possibly identical) subprocegisea relevant trap (possibly the trivial one).

And we define some auxiliary functions to handle managereraasily: one to get a manager’'s employees.

HasEmployeesmanager— Pemployee

V' m: managere
HasEmployees =
{i : employee 3si: stateint ti : transinte
(i,si,ti) € ranm.empst}

An another for the reverse.

HasManagers employee— Pmanager

Ve: employegm: managere
m € HasManagers e= e € HasEmployees m

7.7 Thefull communication perspective

Now we can put these concepts together to express the comationi perspective. The internal STDs of the various
methods are employees of the external STD of their classgaa manager.
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_CommunicationPerspective
DataPerspective
BehaviourPerspective
FunctionalityPerspective
managers Pmanager
employeesPemployee
externalstds PSTD
internalstds PSTD
asmanager STD-» manager
asemployeeSTD-+ employee

externalstds= ranexternalbehaviour

internalstds= raninternalbehaviour

Vm: managers Jestd: externalstd® m.std = estd

VYm: managers HasEmployees g &

Ve: employees HasManagers & &

Ve: employees Jistd: internalstdse e.std= istd
domasmanager= externalstds\ ranasmanager= managers
Vs: externalstd® (asmanager sstd=s

domasemployee-= internalstdsA ranasemployee= employees
Vs: internalstdse (asemployee)sstd=s

Vc: classes
{e: employeé Jextstd: STDe ((c, extstd € externalbehaviourA (e € HasEmployeesasmanager extsjol} =
{e: employee$ Imn: MethodNameM : METHOD ¢
((mne c.methods\ methodbindingc, mn) = M) v
(3d: classe» mne useslabeld, c) A methodbindingd, mn) = M)) A
asemployeéinternalbehaviour M = e}

e The external STDs are the basis for the managers; the manageage the employees based on the internal STDs.

¢ The managers manage the employees corresponding to st iciternal STDs and the internal STDs of methods
the class uses.

7.8 Discussion

We have illustratedSOCCA’s communication perspective by giving an intuitive degtion and an example. Then
we rephrased thBPARADIGM concepts which lie at the core OCCA’s description of communication in terms of
STDs. Lastly, we have shown how the flexibility and power & dommunication concepts froRARADIGM is made
manageable by tightly coupling tHRARADIGM structures of manager and employee to the concepts of aitarm
external STDs (from the behaviour and functionality pecsipes) that were themselves structured through the piesi
of object orientation in the data perspective.

We have identified the manager STDs with the external STDsge#lss the employee STDs with the internal STDs.
This is a simplification of the reality of modelling. In theafégy of modelling, one starts with a simple external STD
which is later refined in light of communication. The resudtiSTD is also an external STD, but one which is suited
for the manager role. Similarly, the internal STDs are refiteeform the employee STDs. The precise notion of refine-
ment/extension/compatibility involved is currently ungteod in an intuitive fashion only; we hope to formalisenithe
future.

8 Lessonslearned

Working on the formalisation has made us focus on aspe@©OGCA that we were not as sharply aware of until now.
e The concept of binding which captures the meaning of polyhiem by inheritance.
e The similarities between methods and attributes, which miéad through the concept of feature.
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¢ The possibility of explaining the concepts 8OCCA with as few forward references as possible (Z’s “no forward
references” nature forced us to write the formal text withfouward references; the order this imposed allowed
us to structure the informal text (natural language desorippf SOCCA’s concepts) so as to contain but a few
forward references.

Also, it forced us to make some decisions about3RECCA core language.
¢ We decided to make the core language have multiple extefria$ $er class.

¢ We have chosen a visibility mechanism (admitedly a crude baeone which practical experience has shown to
be quite powerful).

9 Futurework

In this document we have focussed on the more syntacticactspf SOCCA models, describing the structure of
SOCCA models on the class level. Currently, this work is being maéel to formalise the instance level 8OCCA
models, including the concepts of object, link and Statenditaon Machine. Such a description of the instance level
of SOCCA models will hopefully provide the basis for extendiB@ CCA to encompass a prototypical instance level
between the type and instance levels which will give modgleore expressive power.

10 Discussion
10.1 Redated work on SOCCA

The structure of the specification here can be viewed as ditipldefining a meta class diagram 80OCCA. This
implicitly defined meta class diagram is quite similar to time developed in [Sch97]. Some noteworthy differences are

¢ No self-referential approach. In [Sch97]S®DCCA class diagram is used to chart the relationships between the
various SOCCA concepts. In this documenBOCCA is described through Z, which is a quite different, more
mathematically oriented, specification language.

e In our Z approach, the concepts of attributes and methodsréfied through the feature concept.

The most important difference is that Z's no forward refeemnature has forced us to focus on a no forward references
exposition of the concepts BOCCA's class/type level. This has provided us with a natural omlevhich SOCCA'’s
concepts can be introduced.

10.2 Reéated work on other OO formalisms

Work has been done on the formalisation of other graphicaiobleriented formalisms, like OMT and UML.

Self-referential approach The UML's authors have chosen to describe UML's semantiggels by means of UML
itself through using a metaclass diagram, augmented widlirlg fow-level logical notation, the Object Constrainti-a
guage.

We believe that describing the semantics of an OO formaligmnméans of a different, not object oriented, language
is a more fruitful approach, as it forces one to step outdiddramework of concepts employed in the OO formalism and
translate those concepts themselves.

Trandational approach [SF97] reports about a formalisation of UML using Z. Therea ikey difference between
their approach and ours.

[SF97] shows how a particular given UML model can be traegldb Z and argues that the approach used can be
extended to an algorithm to translate UML models to Z in geh@ssuming syntactic validity). This has been termed a
“translational approach” ([EA98]).

Our work does not focus on translating individual models td&RAther, we show hoOCCA concepts, and from
thereSOCCA models, are translated to Z. We do not assume that modelskeavedetermined to be syntactically valid
by an external algorithm, but give an abstract synta®OICCA in Z by means of which syntactic correctness can be
determined.
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