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Abstract

Recent superscalar processors that use deep

pipelines and wide issue rates, highly depend on ef-

�cient branch prediction to obtain a large amount

of instruction level parallelism. Much work has

been carried out in this area and the outcome of

branches is very predictable. Mostly, superscalar

processors are used in a multiprogramming envi-

ronment to obtain higher throughput. In this pa-

per, we analyze the impact of process switches

on prediction accuracy and show that the accu-

racy of branch prediction is still high in a multi-

programming environment where process switches

occur in the order of milliseconds. However, in

multi-threading architectures, the prediction accu-

racy will be severely degraded due to the high fre-

quency of process switches.

1 Introduction

In order to fully exploit the performance of re-

cent superscalar processors, e�ective branch pre-

diction schemes are essential. To improve branch

prediction accuracy, many hardware and software

schemes have been proposed.

In [11] [12], two-level adaptive branch predic-

tion is introduced. This scheme adjusts its pre-

diction dynamically according to the behavior of

the branch instructions and achieves substantially

higher accuracy than other schemes.

In [5], a compiler synthesized dynamic branch

prediction is proposed using pro�le feedback infor-

mation. At compile time, explicit instructions per

branch are added into compiled code to predict the

direction of branches. The experiments show that

the performance of this algorithm is signi�cantly

better than other branch prediction strategies.

In [2], the prediction accuracy of indirect jumps

is considered. It is shown that a prediction schemes

based on a branch target bu�er are not e�ective for

indirect branches. To improve the accuracy of in-

direct jumps, a target cache is introduced. The

target cache uses branch history to distinguish dif-

ferent dynamic occurrences of each indirect branch.

This mechanism reduce the indirect jump mispre-

diction rate by 63.3 to 93.4 percent in SPECint

benchmarks.

Using these techniques, the outcome of branches

is very predictable and the accuracy of branch pre-

diction reaches more than 97 percent. With an ac-

curate branch predictor, a processor can keep its

execution units busy and maintains a high issue

rate.

In addition, to increase the total throughput,

these high performance processors are mostly used

in a multiprogramming environment. In this envi-

ronment several processes are running concurrently

and these processes are scheduled by the operating

system. In the UNIX operating system, a process
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switch occurs every small interval of time [1]. If

there are inter-process communications, this inter-

val becomes much shorter based on the frequency

of communications [7].

In such an environment, the branch predictor

may be inuenced since after a process switch,

the contents of branch predictor tables will be

ushed or most likely the information of the pre-

vious process will be used.

In [3], the impact of process switches on the ac-

curacy of branch prediction is examined. A new

hybrid branch predictor is introduced and it is

shown that this hybrid mechanism is more accu-

rate especially in the presence of process switches.

Multiple branch predictors including a static pre-

dictor whose prediction accuracy is independent of

process switches are used to improve the prediction

accuracy. To model process switches, all history

information is reinitialized. However, in a real ar-

chitecture the information of the previous process

will likely be used after a process switch. In our

experiments, we �nd that the prediction accuracy

is highly depend on the way of initialization of pat-

tern history tables.

In this paper we present a detailed analysis of

the two-level adaptive branch predictor in a mul-

tiprogramming environment and extend previous

work in two ways. First, we examine the impact of

initialization of pattern history tables in di�erent

ways. Second, we also consider the multi-threading

architectures, in which even a second level cache

miss may cause a process switch.

This paper is organized as follows. In Section 2,

the structure of the contemporary two-level adap-

tive branch predictor is explained. Section 3 con-

siders the interval of process switches in general

purpose processors and multi-threading architec-

tures. Section 4 describes the simulation method

and benchmarks. The simulation results are pre-

sented in Section 5. Finally, Section 6 provides

concluding remarks.

2 Branch Prediction Model

In this section, the concept of two-level adap-

tive branch prediction is described. A two-level

adaptive branch predictor consists of two levels of

branch history information [11] [12]. At the �rst

level, the outcome of branches is kept in a register.

This is called the branch history register (BHR). A

k-bit BHR keeps the outcome of the last k branches

dynamically.

The second level of the predictor keeps branch

behavior for each pattern of the BHR. This is called

pattern history table (PHT). To obtain a branch

behavior an n-bit counter is used. This counter is

incremented if a branch is taken and decremented

if not taken. A branch is predicted as 'taken' if

the value of this counter is greater than one half

of its maximum value, otherwise predicted as 'not

taken'. The structure of two-level adaptive branch

predictor is shown in �gure 1.
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Figure 1: Structure of Two-Level Branch Predictor

There are nine variations of two-level adap-

tive branch predictor (see table 1). At the �rst

level, there are three variations to keep branch his-

tory information, Global(G), per-Set(S) and Per-

address(P). In the Global history scheme, only

one BHR is used for every branch. The BHR is

updated with the results from all the branches.

In the per-Set history scheme, one BHR is asso-

ciated with a set of branches. The outcome of

branches from the same set is kept in each BHR.

In the Per-address history scheme, the outcome of

each branch is kept in its own BHR. Therefore,

there is no interference among di�erent branches.

At the second level, pattern history tables also

have three variations, global(g), per-set(s) and per-

address(p). In the global history table, only one

PHT is used by all branches. In the per-set his-

tory table, one PHT is associated with a set of

branches. In the per-address history table, each

entry is indexed by the branch address and each

branch has own PHT.

In [12], the cost e�ectiveness of these branch pre-

dictor has been intensively examined. The results

show that the e�ective implementation cost ranges

from 2K to 128K bits.

In the following, GAg, GAs, SAg and SAs are
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Variations Description

GAg Global Adaptive Branch Prediction using one global pattern history table

GAs Global Adaptive Branch Prediction using per-set pattern history tables

GAp Global Adaptive Branch Prediction using per-address pattern history tables

PAg Per-address Adaptive Branch Prediction using one global pattern history table

PAs Per-address Adaptive Branch Prediction using per-set pattern history tables

PAp Per-address Adaptive Branch Prediction using per-address pattern history tables

SAg Per-Set Adaptive Branch Prediction using one global pattern history table

SAs Per-Set Adaptive Branch Prediction using per-set pattern history tables

SAp Per-Set Adaptive Branch Prediction using per-address pattern history tables

Table 1: Variations of Two-level Adaptive Branch Predictor

considered as a suitable candidate for a branch pre-

dictor which has a 2K to 128K-bit PHT.

3 Process Switch Interval

In the UNIX operating system, a process switch oc-

curs at �xed intervals of time, from 150 ms to 200

ms [1]. However, this value becomes more shorter

if there are inter-process communications. In [7], a

detailed decomposition of execution time for ker-

nel services is presented. The characteristics of a

modern UNIX operating system (Silicon Graphics

IRIX 5.3) have been evaluated using three types of

workloads (program development workload, data-

base workload and engineering workload). The

database workload requires many kernel services

to handle inter-process communication. This re-

sults in both a high system call and a high process

switching rate. Using a MIPS R4400-like processor

(200MHz), a process switch occurs every 1.2 ms on

average. In other workloads, the average process

switch intervals are 10.9 ms and 29.4 ms.

In multi-threading architectures [6], many

threads and lightweight processes are running con-

currently and process switches occur very fre-

quently. In such architectures, even second level

cache misses may cause process switches. Ta-

ble 2 shows the data cache hitrate, the number of

process switches and the average interval of process

switches where a data cache miss causes a process

switch. In compress, the cache hitrate is more than

98 percent. However, the average interval of a

process switch that would be caused by a cache

miss is very frequent, every 143 clock cycles.

We assume that in general purpose processors,

a process switch occurs between 1 ms and 200 ms.

In multi-threading architectures, it happens more

frequently. These time intervals in general purpose

Cache Size 64K Byte

Hit Rate (%) Number of Switches

LU 97.8 11261 (216 clocks)

OCEAN 93.7 45395 (74 clocks)

WATER 99.9 4186 (6348 clocks)

compress 98.8 14642 (143 clocks)

Table 2: Cache Hit Rate and Number of Process

Switches

processors correspond to a number of clock cycles

in a 200 MHz processor between 2 � 10

5

and 4 �

10

7

. For multi-threading architectures, we set the

minimum time interval 100 clock cycles considering

cache misses. In such a short time interval, only a

few branches occur.

4 Simulation Methodology

In this section we discuss our methodology of mea-

suring the impact of a multiprogramming envi-

ronment on branch prediction accuracy. Since

the frequency of process switches depends on a

�xed time interval, precise clock cycles including

pipeline stalls and cache misses are required to

evaluate the impact of process switches.

4.1 Simulation Environment

In this paper, an instruction level simulator, called

ISIS [9], is used. An instruction level simulator

simulates the behavior of a processor on the assem-

bler level. ISIS actually simulates a MIPS R3000

processor pipeline, instruction and data cache.

Therefore, exact behavior of each pipeline state
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and pipeline stall can be simulated. This feature is

particularly important for the study of the branch

prediction considering the e�ect of multiprogram-

ming environment where a process switch occurs

after �xed number of clock cycles. For this ex-

periment, branch prediction units are implemented

and integrated into ISIS.

4.2 Applications

Three applications from the SPLASH benchmark

suites [10] [8] and one application from SPECint95

have been selected for the evaluation. SPLASH

benchmark programs are designed for multiproces-

sors. However, as these benchmarks contain su�-

cient number of branches and demand high cache

performance, they are suitable for the study of

branch prediction in a multiprogramming environ-

ment. Table 3 lists characteristics of these appli-

cations.

� SPLASH

{ LU

This program factors a dense matrix into

the product of a lower triangular and

an upper triangular matrix. We use the

non-contiguous block allocation version.

{ OCEAN

This program studies the role of eddy

and boundary currents in inuencing

large-scale ocean movements.

{ WATER

This application evaluates forces and po-

tentials that occur over time in a system

of water molecules. In this study, the

spatial version of WATER is used.

� SPECint95

{ compress

Compress reduces the size of the named

�les using adaptive Lempel-Ziv coding.

Compressed �les can be restored to their

original form using Uncompress.

4.3 Parameters of Simulation

In this paper, a 2-bit counter is used in the PHT.

We initialize the PHT in di�erent ways after a

process switch to examine how these values a�ect

prediction accuracy. (Note that if the value of PHT

indicates 00 or 01, the branch is predicted as 'not

taken', otherwise predicted as 'taken'.)

Benchmarks Dynamic Conditional Execution

Branches (Taken:%) Cycles

LU 177756 (86.1 %) 2422913

OCEAN 122102 (96.0 %) 3354252

WATER 4249633 (54.6 %) 26570457

compress 183393 (64.7 %) 2090057

Table 3: Characteristics of Benchmark Programs

1. PHT is reset to 00, 01, 10 or 11.

2. The contents of the PHT before the process

switch is used.

In a real architecture, to reset the PHT is ex-

pensive and the PHT is most likely left unchanged

after a process switch. Therefore, we have included

the second case also in our study where the PHT

left by the previous process is used. To model sec-

ond case, the PHT is set randomly after a process

switch occurs. Note that in many applications,

more than half of the outcomes of branches are

'taken'. Therefore, the contents of the PHT may

be biased towards 10 or 11. Hence, the e�ect of a

process switch may be less severe and this model

may be pessimistic.

In the following experiment, we use these PHT

sizes 2K, 8K, 32K and 128K bits. The detailed

parameters of branch predictors are shown in table

4.

Bits of BHR Sets of Sets of

(PHT size: BHR PHT

2K, 8K, 32K, 128K)

GAg 10, 12, 14, 16 1 1

GAs 8, 10, 12, 14 1 4

SAg 10, 12, 14, 16 4 1

SAs 8, 10, 12, 14 4 4

Table 4: Parameters of Branch Predictor

5 Simulation Results

In this section, we present the results of our ex-

periments into prediction accuracy in a multipro-

gramming environment. In the following exper-

iments, the contents of BHR are ushed after a

process switch. Figures 2 to 5 show the branch ac-

curacy of our four benchmarks where the PHT is
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Figure 2: LU: PHT Size 8K

(a) 00 (b) 01 (c) 10 (d) 11 (e) random

initialized in di�erent ways. The interval between

process switches is set from 100 to 1000K (10000K

in WATER) clock cycles. Figures 6 to 9 show the

average branch prediction accuracy of four bench-

marks. Finally, the results of the sensitivity on

di�erent PHT sizes are shown.

5.1 Impact of Process Switches

First, case (e) in all �gures where the contents of

the PHT are initialized randomly after a process

switch, none of branch predictor maintains high

prediction accuracy if a process switch occurs

within 100K clock cycles in every benchmark.

Even with larger size of the PHT, the results show

the same tendency (shown in [4]).

Assume we have a 200MHz RISC processor

(same clock rate as R4400), there is a no signi�cant

impact on the branch predication if the interval of

process switches is longer than 0.5 ms.

In general purpose processors, a process switch

occur from 150 ms to 200 ms. In this case, the

results are very optimistic. Even in a database

workload, where a process switch occurs every 1.2

ms, there is little impact of process switches.

However, in multi-threading architectures, the

frequency of process switches is much higher. If the

process switch occurs every 100 cycles due to sec-

ond level cache misses, the accuracy of branch pre-

diction is severely degraded. In this case, a branch

predictor needs some scheme to reduce the impact

of a process switch.

5.2 Di�erent Initialization

The results of case (a) to (d), sets the PHT after a

process switch, highly depend on the characteris-

tic of applications. The results of LU and OCEAN

are the most intriguing ones. If the value of the

PHT is set to be 01 or 11, almost the entire in-

uence of process switches is eliminated. LU and

OCEAN are scienti�c programs and most branches

are taken. Therefore, these applications are partic-

ularly predictable. However, they are also sensitive

to the exact value to which the PHT is reset. If

the PHT is set to 00, 01 or if the value of previous

process is used, the prediction accuracy is severely

degraded. In this case, the PHT should be set to

10 or 11 after a process switch.

WATER and compress behave badly and the
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Figure 3: OCEAN: PHT Size 8K

(a) 00 (b) 01 (c) 10 (d) 11 (e) random

value of the PHT does not a�ect the accuracy

of the branch prediction as much as in LU and

OCEAN. However, in WATER the result of set-

ting the PHT to 10 shows the best performance.

In general, many branches are 'taken'. One solu-

tion to reduce the impact of process switches is

setting the PHT to 10 after a process switch.

5.3 Sensitivity on Di�erent PHT Size

Figure 10 shows the sensitivity of branch predic-

tion accuracy. In this �gure, PHT is set randomly

after a process switch. Each line shows the pre-

diction accuracy where a process switch occurs be-

tween 100 and 10K clock cycles. Remarkably, with

larger sizes of the PHT, the accuracy of branch pre-

diction drops signi�cantly. In all schemes, branch

predictors with a larger size of PHT are more sensi-

tive to process switches, especially where a process

switch occurs every 10K to 100K clock cycles.

Since larger size of branch predictors need more

branches to �ll its table, they require more clock

cycles to predict the branch outcome correctly.

6 Concluding Remarks

In this paper, we have examined the impact of a

process switch on branch prediction accuracy. The

performance of four variations of two-level adap-

tive branch predictors, GAg, GAs, SAg and SAs

were evaluated.

Choosing a reasonable hardware size for a

branch predictor, our results show that the in-

uence of a process switch can be ignored if the

process switch occurs less than once at every 100K

clock cycles.

This results suggest that in general purpose

processors, there is no signi�cant inuence of

process switches on branch prediction accuracy.

However, in multi-threading architectures where

cache misses cause process switches, the frequency

of process switches is much higher and the pre-

diction accuracy will be severely degraded. In

such cases, some scheme to reduce the impact of a

process switch is necessary to maintain high pre-

diction accuracy. According to our results, it is

promising to set the PHT to 10 after a process

switch. Adding hardware which sets the PHT af-

ter a process switch, eliminates almost the entire

6



0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

2 3 4 5 6 7

(a) 
GAg
GAs
SAg
SAs

GAg
GAs
SAg
SAs

Iteration of Flush (log)

P
re

di
ct

io
n 

A
cc

ur
ac

y 
(%

)

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

2 3 4 5 6 7

GAg
GAs
SAg
SAs

GAg
GAs
SAg
SAs

(b) 

Iteration of Flush (log)

P
re

di
ct

io
n 

A
cc

ur
ac

y 
(%

)

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

2 3 4 5 6 7

GAg
GAs
SAg
SAs

GAg
GAs
SAg
SAs

(c) 

Iteration of Flush (log)

P
re

di
ct

io
n 

A
cc

ur
ac

y 
(%

)

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

2 3 4 5 6 7

GAg
GAs
SAg
SAs

GAg
GAs
SAg
SAs

(d) 

Iteration of Flush (log)

P
re

di
ct

io
n 

A
cc

ur
ac

y 
(%

)

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

2 3 4 5 6 7

GAg
GAs
SAg
SAs

GAg
GAs
SAg
SAs

(e) 

Iteration of Flush (log)

P
re

di
ct

io
n 

A
cc

ur
ac

y 
(%

)

Figure 4: WATER: PHT Size 8K

(a) 00 (b) 01 (c) 10 (d) 11 (e) random

inuence of a process switch in applications like LU

and OCEAN. The results of sensitivity also suggest

that it is e�ective having multiple small PHTs for

a set of processes instead of having one large PHT.

Future work will address this problem and pro-

pose a simple scheme to enhance the accuracy in

this situation.
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Figure 6: Average Accuracy of Four Apprications: PHT Size 2K
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Figure 7: Average Accuracy of Four Apprications: PHT Size 8K
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Figure 8: Average Accuracy of Four Apprications: PHT Size 32K
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Figure 9: Average Accuracy of Four Apprications: PHT Size 128K
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Figure 10: Sensitivity of Four Branch Predictors
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