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Abstract. This paper presents an overview of the activities carried out

within the ESPRIT project OCEANS whose objective is to investigate

and develop advanced compiler infrastructure for embedded VLIW pro-

cessors. This combines high and low-level optimisation approaches within

an iterative framework for compilation.

1 Introduction

Embedded applications have become increasingly complex during the last few

years. Although the appearance of sophisticated hardware solutions, such as

those exploiting instruction-level parallelism, aims to provide improved perfor-

mance, it also creates a burden for application developers. The traditional task

of optimising assembly code by hand becomes unrealistic due to the high com-

plexity of hardware/software and the need for sophisticated compiler technology

is evident.

Within the OCEANS project, the consortium intends to design and imple-

ment an optimising compiler that utilises aggressive analysis techniques and

integrates source-level restructuring transformations with low-level, machine de-

pendent, optimisations [1, 16, 18]. A major objective of the project is to provide
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a prototype framework for iterative compilation where feedback from the low-

level is used to guide the selection of a suitable sequence of source-level trans-

formations and vice versa. Although the back-end target can be any VLIW or

superscalar architecture, the Philips TriMedia (TM1000) VLIW processor [10]

is currently used for the validation of the system.

In this paper, we present the work that has been carried out during the

�rst 15 months since the project started (September 1996); this has largely

concentrated on the development of the necessary compiler infrastructure. An

overall description of the system is given in Section 2. Sections 3 and 4 present

the high-level and the low-level subsystems respectively, while the steps that

have been taken towards their integration are highlighted in Section 5. Finally,

some results from the initial validation of the system are shown in Section 6,

and the paper is concluded with Section 7.

2 An Overview of the OCEANS Compiler System

The OCEANS compiler is centred around two major components: a high-level

restructuring system, MT1, and a low-level system for supporting assembly lan-

guage transformations and optimisations, Salto, which is coupled with Sea,

a set of classes that provide an abstract view of the assembly code, and tools

for software pipelining (PiLo) and register allocation (LoRa). Their interaction

is illustrated in Figure 1 which shows the overall organisation of the OCEANS

compilation process. In particular, a program is compiled in three main steps:

{ First, MT1 performs lexical, syntax and semantic analysis of a source For-

Tran program (File.f) and constructs an internal data representation on

which data dependence analysis is performed. Then, a sequence of source

program transformations speci�ed in a Strategy Speci�cation Language (SSL)

can be applied. Each transformation is also speci�ed using a Transformation

De�nition Language (TDL).

{ The restructured source program is then fed into the code generator which

generates sequential assembly code. This code makes use of virtual registers

and is annotated with instruction identi�ers that are used to identify com-

mon objects in MT1 and Salto. Along with the assembly code (File.s)

comes a �le written in an Interface Language (File.IL) that provides infor-

mation on data dependences and control 
ow graphs.

{ Finally, Salto (coupled with Sea) is in charge of producing the �nal code

after performing code scheduling and register allocation. At this step guarded

instructions are also created (so that instructions can move across branches)

and resource constraints are taken into account.

The above process is repeated iteratively until a certain level of performance

is reached; thus, di�erent optimisations, both at the source-level and the low-

level, can be checked and evaluated. An important feature of the system is also

the existence of a client-server protocol that has been implemented in order to

provide easy access to the compiler over the Internet, for all the members of the
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Fig. 1. The Compilation Process.

consortium. Thus, on each participating site, a client driver has been installed

that can establish contact with the server at Leiden through sockets. MT1 and

the code generator are located at Leiden, and Salto, Sea, PiLo and LoRa are

located at Rennes. In this way, all partners can have access to the latest version

of the compiler, while all development is kept local.

3 High-Level Transformations

Optimizing and restructuring compilers incorporate a number of program trans-

formations that replace program fragments by semantically equivalent frag-

ments [20, 21]. The aim is to obtain more e�cient code for a given target ar-

chitecture. However, the order in which transformations are applied cannot be

de�ned ad hoc. The problem of �nding an optimum order (or strategy), com-

monly known as the phase ordering problem, is traditionally approached by com-

pilers in a static way: transformations and their application order are hard-coded.

Within the MT1 compilation system [3, 6, 9] this problem is solved by provid-

ing a Transformation De�nition Language [4] and a Strategy Speci�cation Lan-

guage [2]. Transformations and strategies can be speci�ed in these languages and

then loaded dynamically into the compiler and executed.



3.1 Transformation De�nition Language

The TDL is based on pattern matching. The general form of a transformation

is the following:

transform

input pattern

into

output pattern

condition

condition

;

The user can specify an input pattern, a transformed output pattern and a

condition where the transformation can be legally and/or bene�cially applied.

Patterns may contain expression and statement variables. When a pattern is

matched against the code these variables are bound to actual expressions and

code fragments, respectively. The expression and statement variables can be

used in turn in the speci�cation of the output pattern and the condition. This

mechanism allows one to specify a large number of transformations, such as loop

interchange, loop distribution or loop fusion. However, it is not powerful enough

to express other important transformations, such as loop unrolling where the

loop body needs to be duplicated, and each occurrence of the loop index I needs

to be replaced by I+1 in the copy of the loop body. Therefore, the TDL also

allows for user-de�ned functions in the output pattern. User-de�ned functions

are the interface to the internal data structures of the compiler. In this way, any

algorithm for transforming the code can be implemented and made accessible

to the TDL. Similarly, various tests on the structure and properties of the code

can be implemented.

For example, the following TDL description implements loop unrolling. In

this, !en are expression variables and !sn are statement variables. The user-

de�ned function tdl replace is used to replace in the program fragment desig-

nated by !s1 the expression !e1 by the third argument.

transform

list(do(!e1, !e2, !e3, 1, !s1), !s2)

into

list(do(!e1, !e2, (!e2 - 1) + ((!e3 - !e2 + 1) / 2) * 2, 2,

merge(!s1, tdl_replace(!s1, !e1, !e1 + 1))),

list(if(((!e3 - !e2 + 1) / 2) * 2 .neq. (!e3 - !e2 + 1),

tdl_replace(!s1, !e1, !e3)), !s2))

condition

tdl_isint(!e2) and tdl_isint(!e3)

;

3.2 Strategy Speci�cation Language

The capability of specifying transformations is only one part of the general prob-

lem of obtaining optimal code by means of program transformations. The order in



which transformations have to be applied needs to be considered also. Therefore,

a Strategy Speci�cation Language (SSL) has been implemented. This language

contains sequential composition of transformations, a choice construct and two

repetitive constructs and it allows the speci�cation of an optimising strategy at

a more abstract level than the source code level.

An if statement consists of a transformation that acts as a condition, a

then part and an optional else part. The transformation in the condition can

be applied successfully or not. If it is successful, the transformations in the then

part are to be executed. Optionally, in the else part a list of transformations

can be given which should be executed in case the transformation matched but

was not applied successfully due to failing conditions.

The two repetitive constructs consist of a transformation to be checked and a

statement list to be executed if the condition is true or false, respectively. They

consist of a while-endwhile and a repeat-until construct.

The language contains a mechanism for applying sequences of transforma-

tions only if they can all be applied, by means of a roll back statement. Any

number of transformations can be grouped together in the roll back construct.

If any of the transformations fails, the entire construct fails and no changes are

made to the program under consideration. If all transformations in the group are

successfully applied, the result is rolled forward. This means that the fragment

that matched the �rst transformation is replaced in the program by the result

of all transformations in this fragment.

Examples of how to specify strategies in SSL can be found in [2].

4 Low-Level Optimisations

Low-level optimisations are built on the top of Salto, a retargetable system

for assembly language transformation and optimisation. Its objective is to pro-

vide the user with a single environment for implementing algorithms needed for

performance tuning of low-level codes [17]. To facilitate the implementation of

optimisations, a set of classes has been designed, Sea (Salto Enhanced Ab-

straction), that provides an abstract view of the assembly code which is more

pertinent to the code scheduling and register allocation problems. The most im-

portant features of Sea are that it allows the evaluation of various code trans-

formations before producing the �nal code, and that it separates the implemen-

tation of the global low-level optimisation strategy from the implementation of

individual optimisation sequences.

The Sea model contains two kinds of objects:

code fragments, which are parts of the control 
ow graph. The following ob-

jects can be used in Sea: seaINST: an instruction object; seaCF, an unstruc-

tured set of code fragments; seaSCF, a structured subset of control 
ow graph

with a unique entry point; seaSBk, a superblock; seaBBk, a basic block; and

�nally, seaLoop, a structured piece of code that has loop properties. Figure 2

illustrates the corresponding class hierarchy.
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Fig. 2. Sea class hierarchy.
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Fig. 3. Typical usage of Sea classes.

transformations to be applied to subgraphs. All transformations are charac-

terized by the following main methods: preCond() returns the set of control


ow subgraphs that quali�es for the transformation; apply() applies the

transformation to a given subgraph, and �nally, getStatus() that returns

the status of the transformation after application. The status can be success

or failure, and the reason of the failure can be extracted through a generic

diagnostics mechanism.

The usage of the Sea objects is shown in �gure 3. A transformation is tried on

a cloned piece of code, then according to performance or size criteria one of the

solutions found is chosen and propagated to the low-level program representation

using the rebuild() method.

The following optimisations are currently available within Sea:

{ Register renaming renames local registers in each basic block.

{ Superblock construction merges a set of basic block into a superblock [14].

{ Guard insertion adds guards to instructions to remove jumps and thus allow

scheduling across jumps [13].

{ Loop unrolling (also available at the high-level).

{ Local/superblock scheduling [14, 15].

{ Software pipeline generates a modulo scheduling of the loop body. The imple-

mentation is based on the tools PiLo [19] and LoRa [11]. PiLo and LoRa

are optimisation kernels based on periodic scheduling and graph colouring

algorithms. Sea sends data dependencies between instructions, the archi-

tectural information and rebuilds the new code according to the produced

scheduling and register allocation scheme.

{ Register allocation; this can be performed either before or after scheduling

the instructions.

5 Integration

5.1 The Interface Language

In order to transmit information between the various components of the com-

piler, an Interface Language (IL) was designed. This allows the propagation of



information, such as data dependences and loop control data, from MT1 to

Salto, as well as feedback information from the scheduled code, to which a

given sequence of transformations has been applied, back to MT1.

An IL description consists of three sections: a list of keywords that speci�es

the list of attributes that can apply to an object; a default level setting that

indicates the type of code the objects belong to; and, a list of object references

which specify the nature, contents and attributes of an object. These sections

are illustrated in the example given in Figure 4 which is further explained next.

More details on the IL can be found in [8].

5.2 Information Forwarded and Feedback

Data dependences are propagated from MT1 to Salto and are used for memory

disambiguation. Based on the results of high-level data dependence analysis,

Salto may safely assume that all load and store operations refer to di�erent

memory locations unless it is speci�ed in the .IL �le that they refer to the same

location.

The feedback from Sea to MT1 (�le Report.IL in Figure 1) contains in-

formation on the code structure, the basic blocks, as well as a record of the

transformations that were applied. An example is given in Figure 4. Data re-

lated to each basic block include the total number of assembly instructions, the

critical path for scheduling the code, the number of cycles of the scheduled code,

and a grouping depending on the nature of the instructions. In the example,

it can be seen that the compaction rate of the scheduled code (as speci�ed by

.nbCycles) is close to optimum (as speci�ed by .CriticalPath).

MT1 uses the feedback from Salto in order to build an internal data struc-

ture that can be accessed by the TDL by means of user-de�ned functions. For

the SSL, identity transformations are de�ned that match against an arbitrary

program fragment, such as a DO loop. User-de�ned functions in the condition can

check for the identity of the loop and the suggestions made by Salto. When

such a transformation is used as the condition for an if construct in the SSL, we

are able to select the transformations we want to apply next to this fragment.

Initially, MT1 compiles the program without performing any restructuring

and the compiled program is scheduled by Salto. Salto identi�es the code

fragments that can be improved. It reports its diagnostics to a cost model that

makes a decision on what kind of restructuring could be performed next. Then,

MT1 reads the suggestions for restructuring and performs these. It is intended

that the optimum transformation sequence for a program fragment is found by

following a systematic approach for searching through a domain of possible trans-

formations. Thus, the optimisation process is represented by a search tree whose

nodes contain the parameter settings used for a given transformation and the

performance returned. First, each di�erent transformation is applied once and

then the same follows for each branch of the tree. The search space is minimised

by using a threshold condition for terminating branches that are not likely to

yield an optimum result in their descendants. Some preliminary experiments us-



// final code structure description

#(SS 9961 , DESC = { #(SS 9870 )})

//basic blocks data

#(BB 9870).nbAsm := 73

#(BB 9870).CriticalPath := 18

#(BB 9870).nbCycles := 20

#(BB 9870).nbLoad := 6

#(BB 9870).nbStore := 3

#(BB 9870).nbAlu := 60

// transformation history for block 9870

// order is the order number of the transformation

#(BB 2).became := {#(BB 9870)}

#(BB 9870).renameLocalReg := {{order, 0}, {from, 2}, {to, 2}, {Status, oK}}

#(BB 9870).collapsing := {{order, 1}, {from, 2}, {to, 9870}, {Status, oK}}

#(BB 9870).guards := {{order, 2}, {from, 9870}, {to, 9870}, {Status, oK}}

#(BB 9870).scheduling := {{order, 3}, ..., {Status, oK}, {nbCycles, 20}}

#(BB 9870).registerAllocation := {{order, 4},..., {Status, oK}}

// transformation history for loop 1

#(SS 1).became := {#(SS 9961)}

#(SS 9961).copy := {{order, 0}, {from, 1}, {to, 9976}, {Status, oK}}

#(SS 9961).copy := {{order, 1}, {from, 9976}, {to, 9961}, {Status, oK}}

#(SS 9961).unroll := {{order, 2}, ... , {Status, oK}, {Unroll, 3}}

Fig. 4. Feed back information.

ing this strategy can be found in [12]; ongoing work is investigating the feasibility

of this approach.

6 Validation of the Initial System

In order to validate the compiler, four public domain multimedia codes have

been selected. These are a low bit-rate encoder/decoder for H.263 bitstreams,

an MPEG2 encoder/decoder, an implementation of the CCITT G.711, G.721 and

G.723 voice compression standards, and the Persistence of Vision Ray-Tracer for

creating 3D graphics. These codes were pro�led and analysed and the most time-

consuming parts were identi�ed and provided an initial focus of attention [5].

At the high-level, initial experimentation aimed at identifying those trans-

formations that appear to be the most crucial in optimising code scheduling as

well as to improve the performance of the code generator. The inspection of the

benchmarks revealed that they contain many imperfectly nested double or triple

loops where much overhead can be caused due to branch delays. In order to

deal with such loops, a transformation that converts the imperfectly nested loop

into a single loop has been suggested. This is achieved by: moving all the code
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step 1 local scheduling unroll�u unroll�u software pipelining

step 2 reg. allocation superblock superblock

step 3 scheduling reg. allocation

step 4 reg. allocation scheduling

Fig. 5. Sequences of optimisations; u is the unroll factor.

inside the innermost loop and properly guarding it; collapsing (or coalescing)

the resulting perfect loop nest to a single loop; and, �nally, adding extra code to

maintain the proper values of the original loop indices without resorting to the

expensive div and mod operations. Preliminary experiments have shown that the

length of the resulting schedule can be as much as 40% shorter than the original

schedule [5].

At the low-level, the initial validation of the system has been carried out by

applying four di�erent optimisation sequences:

{ S

0

is the simplest sequence. First, the code is scheduled locally and then

register allocation is performed.

{ S

1

(u) is based on unrolling the loop body u times. The unrolled body is

transformed into a superblock, and conditional instructions are eliminated

through the insertion of guards, resulting in a large basic block. As in S

0

,

register allocation is performed after local scheduling.

{ S

2

(u) is similar to S

1

(u) except that register allocation is performed be-

fore scheduling. This decreases the code compaction potential, but usually

requires less registers, allowing this sequence to succeed when S

1

(u) fails

due to a lack of registers. Currently, this is the least e�ective optimisation

sequence, since register allocation introduces many anti-dependences.

{ S

3

consists in applying a software pipelining algorithm. This sequence is

limited to loops whose bodies constitute a single basic block.

A summary is given in Figure 5.

The above optimisation sequences were validated using the OCEANS set

of benchmarks and targeting the TriMedia architecture [10]. Indicative results,

using the most-time consuming loops of the H263 application, are illustrated

in Figure 6. Every optimisation sequence has been applied to each of the six

selected loops and the size of the resulting VLIW code and the speed of the

loop, i.e. the number of cycles per iteration, were computed. From the table,

a well-known result is observed: the more we unroll a loop, the faster it runs

| cf. columns S

1

(2), S

1

(3), S

1

(4) | but at the expense of a larger code size.

As expected S

2

(2) yields too poor performance and large code because of the

presence of false dependences. Finally, software pipelining (S

3

) gives the best

performance but at the expense of a very large increase in code size. Note that

this transformation failed with the last loop, due to a lack of registers.

Using these results more general problems are addressed by the compiler.

For instance, in most embedded applications, it is necessary to answer globally



Optimisation sequences C code

S

0

S

1

(2) S

1

(3) S

1

(4) S

2

(2) S

3

speed 8 6 5 5 7 3 for (i=xa;i<xb; i++)

size 8 12 16 20 13 75 { d[i]=s[i]*om[i];

}

speed 9 7 6 6 10 5 for (i=xa; i<xb; i++)

size 9 13 18 22 19 55 { d[i]+=s[i]*om[i];

}

speed 12 8 8 7 12 6 for (i=xa; i<xb; i++)

size 12 16 24 28 24 121 { dp[i]+=(((unsigned int)(sp[i]

+sp2[i]+1))>>1)*om[i];

}

speed 15 10 9 9 16 6 for (i=xa; i<xb; i++)

size 15 20 28 34 31 172 { dp[i]+=(((unsigned int)(sp[i]+

sp[i+1]+1))>>1)*OM[c][j][i];

}

speed 15 10 10 8 17 7 for (i=xa; i<xb; i++)

size 15 19 29 33 33 179 { dp[i]+=(((uint)(sp[i]+sp2[i]+

sp[i+1]+sp2[i+1]+2))>>2)*om[i];

}

speed 19 13 12 11 30 { for (k=0; k<5; k++)

size 19 25 36 44 59 { { xint[k]=nx[k]>>1;

xh[k]=nx[k] & 1;

yint[k]=ny[k]>>1;

yh[k]=ny[k] & 1;

s[k]=src+lx2*(y+yint[k])+x+xint[k];

}

Fig. 6. Time consuming loops extracted from H263

questions such as: \Given a maximum code size, what is the highest performance

that can be achieved?", or \Given a performance goal, what is the smallest code

size that can be achieved?". Within the OCEANS compiler this trade-o� is eval-

uated quantitatively by applying a novel compiler strategy based on an integer

linear optimisation model. Thus, the choice of the most suitable optimisation is

made a posteriori, when the impact of each possible transformation is known.

More details can be found in [7].

7 Conclusion and Future Work

The previous sections outlined the current status of the OCEANS compiler.

Although the results obtained so far, using the initial prototype, are satisfactory

(comparing with a production compiler), the implementation work still continues

on both the high and low levels. A major part of the work during the next months

and until the end of the project is devoted to the integration of the two levels

and the development of a framework for iterative compilation. It is also noted



that e�ort is currenly being undertaken to develop a java front-end. Finally,

it is intended that the system be made publically available in due time (at the

moment Salto is already available).
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