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Abstract

This paper investigates the applicability of iterative search
techniques in program optimisation. Iterative compilation is
usually considered too expensive for general purpose com-
puting but is applicable to embedded applications where the
cost is easily amortised over the number of embedded sys-
tems produced. This paper presents a case study, where
an iterative search algorithm is used to investigate a non-
linear transformation space and find the fastest execution
time within a fixed number of evaluations. By using execu-
tion time as feedback, it searches a large but restricted trans-
formation space and shows performance improvement over
existing approaches. We show that in the case of large trans-
formation spaces, we can achieve within 0.3% of the best
possible time by visiting less then 0.25% of the space using
a simple algorithm and find the minimum after visiting less
than 1% of the space.

1. Introduction

The use of transformations to improve program perfor-
mance has been extensively studied for over 30 years. Such
work is based primarily on static analysis, possibly with
some profile information to determine the significant re-
gions of the code [8] and runtime dependent control-flow.
Each technique is characterised by trying (i) to determine
how a program would perform on a particular processor and
(ii) developing a program transformation such that the code
is likely to execute more efficiently. Such an approach re-
lies on modeling those features of the architecture and the
program that are considered important. Although there has
been improvement, much work remains because it is ex-
tremely difficult to accurately model program/machine in-
teraction. The problem is made worse in that the number of

�This research was partially supported by the ESPRIT IV reactive LTR
project OCEANS, under contract number 22729.

transformations to apply is potentially infinite.

This paper examines another approach to this problem by
first describing the problem as that of searching a non-linear
optimisation space in order to find the minimum. Analytic
techniques typically consider one parameter in the optimi-
sation space at a time, e.g., tile size, data layout etc. In prac-
tice, however, program transformations are not independent
in their effect on performance. Furthermore, the optimisa-
tion space is highly non-linear (see figure 1) with many lo-
cal minima. In order to search this space, we propose a tech-
nique based on iterative compilation: Different transforma-
tions are applied, corresponding to points in the transforma-
tion space, and evaluated by executing the program. In or-
der that such an approach is feasible, we need to minimise
the number of points evaluated. We show that in the case
of large transformation spaces, we can achieve within 0.3%
of the best possible time by visiting less then 0.25% of the
space using a simple algorithm and find the minimum after
visiting less than 1% of the space.

Although such an approach requires very long compilation
time since it now includes several runs of the program, it is
applicable in those instances where the same application is
to be executed many times. Embedded systems are an good
example of this and in the following section we briefly de-
scribe a compiler framework developed to optimise multi-
media codes for embedded systems.

This paper describes a case study to see if iterative compi-
lation can be worthwhile. A simple and well studied prob-
lem, matrix multiplication, is selected and executed on four
different processors for two different data sizes. This is fol-
lowed by the description of a simple search algorithm that
tries to find the best performance within the fewest number
of evaluations. This is repeated for a larger transformation
space. The algorithm is applied to the TriMedia TM1000
simulator (a VLIW processor produced by Philips aimed at
the embedded processor market [2]) and its behaviour eval-
uated. The paper finishes with a brief survey of related work
and some concluding remarks.
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Figure 1. Transformation Space for UltraSparc

2. Iterative Compilation

The reason that program optimisation is difficult is that we
are trying to minimise a function (execution time), which is
undecidable at compile time, over the infinite space of trans-
formations. One solution is to actually evaluate the program
at certain points in this space iteratively. Iterative compi-
lation is generally not considered a viable proposition due
the size of the space to be searched and hence the excessive
compilation time. This is not the case for embedded sys-
tems where there is just one application to be optimised and
long compilation times are acceptable if they increase per-
formance. As a guide executing MPEG-2 for a reasonable
number of frames takes less than 30 seconds on a TriMe-
dia TM1000. It typically takes an application programmer
3 months to produce an efficient implementation in which
time a quarter of a million versions could be evaluated and
even more if there is more than one platform.

Analytic techniques have produced good results but are lim-
ited to the number of parameters they can consider. The size
of the transformation space must be limited and assumptions
about the low-level compiler made. Furthermore, if a part of
the system changes that is not implicitly or explicit modeled,
such as the register allocation policy of the local compiler,
then analytic approaches are unable to adapt. Other factors
generally ignored, include the introduction of spill code and
instruction cache misses. Iterative compilation by definition
consider all parts of the system when deciding on the best
optimisation.

The Oceans project is an ESPRIT funded project, concerned
with developing an iterative compiler for embedded systems
[1]. In particular, we are targeting general purpose VLIW
processors of which the Philips TriMedia TM1000 [2] is typ-

ical. Economies of scale allow the production of cheaper
and faster general purpose processors over custom embed-
ded processors. However, such processors rely on efficient
software implementations of the embedded applications but
can afford long compilation times, hence our interest in iter-
ative compilation. It is the long term goal of this project to
successfully integrate static analysis and feedback informa-
tion for embedded application performance.

3. Problem Description

In this paper, matrix multiplication is selected as the case
study to optimise because (i) it is well known, allowing inde-
pendent comparison with other techniques; (ii) it forms the
core of the fdct in MPEG-2, and (iii) there are several legal
transformations that can be applied. Furthermore, if we can
show improvement for this extremely well-studied problem,
then it is likely that further improvement will be possible in
those programs that have received less attention.

The parameters of our experiment are as follows:

� Problem Size: N = 400 and N = 512

� Processor Type: UltraSparc, R10000, Pentium Pro, Al-
pha and TriMedia TM1000

� Transformation Space: Loop Unrolling 1 to 20, Tiling
1 to 100, Padding 1 to 10

We are interested in the correct combination of optimisa-
tions that minimises execution time on each processor for
each data size. In this work we only consider high level op-
timisations and the only feedback information used is exe-
cution time.

In the following sections, the properties of the optimisation
space are described and the impact of our algorithm in find-
ing minima. Initially, we consider just tiling and unrolling
for existing commodity processors. We then extend the ex-
periments to consider padding and then apply the algorithm
to the TriMedia TM1000 simulator.

4. Tiling and Unrolling

Figure 1 shows the execution time of matrix multiplication
on the UltraSparc for problem size N = 512 and for vary-
ing tile sizes and unroll factors. It is periodic with high fre-
quency oscillation and many local minima. Within such a
space it is difficult to find the absolute minimum. The graphs
in figures 2 to 5 show the areas of the transformation space
such that that transformed program has an execution time
within 20% of the absolute minimum for the four different
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Figure 2. Transformation Space Characteristics of UltraSparc

commodity processors and two different data sizes. The x-
axis denotes tile size and the y-axis denotes unroll factor.
The original1, minimum, maximum and average execution
time for the space is also shown as is the number of points
near 20% of the minimum execution time. What is immedi-
ately apparent is that the best transformation depends largely
on the processor and to a lesser extent on the data size. The
UltraSparc and Alpha perform best with a small unroll fac-
tor but the tile size varies. The Pentium has a more dispersed
range of minima while the R10000 has the largest percent-
age of points closest to the minimum. Such a characteris-
tic should increase the probability of finding a good result
within a reasonable number of samples. By way of contrast,
the number of minimal points is much smaller for the Al-
pha and there is a much wider range of performance val-
ues. Across the various examples, optimisation gives an im-
provement of between a factor of 1.8 and 10 over unopti-
mised code.

5. Iterative Strategy

As can be seen from the the graphs in figures 2 to 5, there
are several local minima per application and the minima
varies from one data size/processor to the next. Clearly any
algorithm that wishes to search the space must be robust
enough so as not to be trapped in a local minimum. There-
fore, techniques based on gradient approaches are not ap-
plicable. This must be balanced against searching too much
of the transformation space, especially those regions where

1All programs including transformed ones were compiled with -O2
optimisation

no suitable candidates can be found. This problem is com-
pounded by the occurrence of minimal points surrounded by
large values. It is not the purpose of this paper to propose the
best search algorithm for such spaces, instead we are inter-
ested in the applicability of such algorithms.

Our search algorithm visits a number of points at spaced in-
tervals, applying the appropriate transformation, executing
the transformed program and evaluating its worth by mea-
suring the execution time. Those points lying between the
current global minimum and the average are added to an or-
dered queue. Iteratively, such points are removed from the
queue and points within the neighbouring region are inves-
tigated, again at spaced intervals. This process is continued
until a specific number of points has been evaluated where-
upon the point with minimal value, i.e., the fastest trans-
formed program, is reported.

5.1. Step Size vs. Iteration Count

The step size within each of the transformation dimensions
is a key component of the search algorithm. The step size
that gives the biggest improvement depends not only on the
program/data size/processor but also on the total number
of evaluations to be undertaken. For instance, a particular
step size may be best if we are considering just 20 evalua-
tions, but if we increase this to 200, another step size may
be preferable. Despite this relationship, it was found that an
initial step size of five samples in any one dimension gave
a reasonable performance regardless of the number of eval-
uations undertaken or processor/data size/transformations
considered.
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Figure 3. Transformation Space Characteristics of R10000

5.2. Performance

Figures 6 and 7 gives the performance results of 4 of the 8
examples. The remaining 4 have similar performance. The
x-axis of each graph is the number of evaluations carried
out for each application of the iterative algorithm. The y-
axis shows the percentage difference from the absolute min-
imum. For instance, in the first graph after just one eval-
uation, the best performance found is 165% more than the
actual minimum. That is, it is 2.65 times slower than the
actual minimum. In the case of the Alpha it is 5.25 times
slower. In each case the search algorithm finds the minimum
in less than 200 steps or 10% of the search space. More im-
portantly, within 20 steps or 1% of the space, it is within
23.75% of the minimum. There is a rapid improvement in
performance up to about 20 steps, with a more gradual im-
provement later. Despite the difficult characteristics of the
transformation space, a relatively straightforward optimisa-
tion algorithm can find a very good implementation with a
relatively few number of evaluations.

6. Padding

In order to further investigate the worth of iterative compi-
lation, we extend the search space to include array padding
in the first dimension of each array up to a pad size of 10,
increasing the possible number of transformations to con-
sider to 20 000. Clearly, in practice, it is unrealistic to eval-
uate exhaustively the transformation space, but in order to
evaluate the performance of an iterative algorithm, we gen-
erated all possible transformed programs for two processors,

UltraSparc and Alpha, for data size N = 512. The evalua-
tion space is 4 dimensional and cannot be easily be presented
graphically. Instead, certain slices of the space are shown in
figures 8 and 9. In these figures, the areas of the transforma-
tion space that yield programs with an execution time within
20% of the minimum execution time are depicted.

Without padding, the best transformations for the Ultra-
Sparc are for the case when unroll factor is 3, as can be seen
in figure 2. When padding is also considered, however, none
of the points within 20% of the minimum have an unroll fac-
tor of 3. This demonstrates the close interaction of trans-
formations and the error introduced when considering them
separately. In fact, the majority of minimal points occur for
an unroll factor of 4, as shown in figure 8. Without padding,
the best tile size was found to be 73 (see figure 2) and in fig-
ure 8 the points near minimum for this tile size are shown
when padding is also considered. In fact, the best perfor-
mance found is when the tile size is 51, unrolling factor is
4 and padding size is 8. The execution time for this com-
pound transformation is now 1.2269, a 20% improvement in
execution time when compared to just unrolling and tiling.
Solving one or more transformations independently will not
give the best overall combination of transformations. In the
case of the Alpha processor, shown in figure 9, unrolling by
a factor of 4 still gives the best improvement, but now with
a tile size of 73 instead of 85 (see figure 5) and padding of
size 8. As in the case of the UltraSparc, the improvement is
an approximate 20% reduction in execution time compared
to the case where no padding was employed.

Although the number of points in the space has increased by
a factor of 10 to 20 000 points, the number of points needed
to be evaluated has not grown proportionally. In fact, within
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Figure 4. Transformation Space Characteristics of Pentium Pro

50 evaluations we have found a transformed program while
performance is within 0.3% of the global minimum on the
UltraSparc. This can be seen in figure 10 where there is a
rapid improvement in performance from over 7 times the
minimal execution time to within 0.3% of the minimum in
42 steps. Also shown in figure 10 is the same plot with the
first 20 iterations removed so as to give more detail on the
algorithms performance. A similar behaviour is also seen
in figure 11 for the Alpha. It, however, needs just over 82
steps to approach within 2% of the minimal possible exe-
cution time, finding the actual minimum within 136 evalua-
tions.

7. TriMedia TM1000

The previous sections have described the transformation
space and the performance of a search algorithm for several
commodity processors. We are particularly interested in ap-
plying such techniques to embedded processors, such as the
TriMedia TM1000. In this section we evaluate our iterative
approach to optimization by running the transformed pro-
grams on a cycle accurate simulator. As we are using a sim-
ulator rather than an actual processor, cycle counts are given
as the performance measure and smaller data sizes are con-
sidered, namely N = 64 and N = 128.

7.1. Performance

Figure 12 shows those points within 20% of the minimum
and their distribution for the case N = 64. This minimum
was found for unroll factor of 3 and a tile size of 21. The

performance of the search algorithm is also given. What is
immediately noticeable, is that the number of points needed
to sample does not scale down linearly with the size of the
transformation space, just as it did not scale up when con-
sidering padding (see section 6.).

Although this paper has evaluated all points in the trans-
formation space to give an absolute measure on the perfor-
mance improvement of the iterative algorithm, in practice
no absolute minimum will be available. Rather, the scheme
will evaluate points returning the best available as long as
sufficient time remains. This is the case with the final experi-
ment whereN = 128 on the TriMedia TM1000. Due to the
excessive simulation time it is not feasible to exhaustively
search the space, so no absolute measure of performance is
available. Nevertheless, the results in figure 13 show that the
iterative algorithm makes steady improvement, reducing the
execution time by a factor of 7 over the original program in
less than 60 evaluations.

8. Related Work and Discussion

There is a large body of working considering program trans-
formations to improve uniprocessor performance. In [3], an
analytic algorithm to give a good tile size to minimise in-
terference and exploit locality is presented. This work con-
sidered rectangular tiles whose dimensions are a function of
the iteration space and the cache organisation. This work
gives good performance improvements over existing tech-
niques but does not consider the impact of tiling on unrolling
or other transformations. For example, in [3] a tile size of
170 � 2 was shown to give the best performance on the Al-
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Figure 5. Transformation Space Characteristics of Alpha

pha for matrix multiplication when N = 256. Applying
this transformation gives an execution time of 0.794460 sec-
onds. On applying our iterative algorithm, however, we re-
duce this time to 0.33863 with a tile size of 17, unrolling fac-
tor of 18 and array padding of 8.

Static analysis could be used to “seed” the transformation
space, that is, give initial points to investigate. As sta-
tic analysis generally considers just one or two transforma-
tions, these points will form search hyper planes with po-
tentially many points to investigate. Further analysis tech-
niques could be used to reduce this number. In this paper
we have considered execution time as the metric for eval-
uating goodness of a transformation. As our system [1]
provides additional information, such as code size, register
pressure, slot utilisation etc., it is possible to statically eval-
uate the goodness of a transformation after code generation.
Although only approximate, as cache effects etc., cannot be
exactly determined, such information may be used to prune
transformed programs guaranteed to perform poorly.

Several researchers have considered using runtime informa-
tion to select the best implementation. They, however, de-
fine one or more options statically which are then consid-
ered at runtime. For example, in [5], whether or not a por-
tion of the iteration space should be tiled depends on run-
time characteristics and in [7], different synchronisation al-
gorithms are called depending on runtime behaviour. The
work in this paper, however, considers a much larger space
of optimisations at compile time without incurring runtime
overhead. Later work could combine the approaches by in-
cluding dynamic monitoring to select, at runtime, one of a
number of optimisations programs that were determined (at
compile time) to perform well under certain circumstances.

In [6], genetic algorithms are used to create and select trans-
formations for parallel optimisation. This work is similar in
spirit to the work presented in this paper but at present gen-
erates many illegal programs which must be discarded and
hence examines a much larger set of programs before find-
ing any improved solutions.

In this paper we have used a very simple search algorithm as
a basis for iterative compilation There is in fact a large liter-
ature on non-linear optimisation [4], though it is based on a
continuous underlying optimisation function rather than the
discrete space we consider. Techniques such as polynomial
fitting could be applied to help improve the performance of
the search algorithm. Although the best transformations to
select are interdependent, knowledge of the processor and
application domain could help bias the search space to first
consider the areas where the minima is most likely to exist.
For instance, in several of the examples, unrolling near a fac-
tor of 4 often leads to good results. However, this is not al-
ways the case (see Pentium figure 4).

Although the search spaces considered are large, the domain
is extremely limited. Only 3 transformations were applied
to a simple loop nest. For general programs, the space to
consider will be much greater. Future work needs to con-
sider the application of a iterative compilation to large pro-
grams. This paper has also focussed on parameterised trans-
formations. However, many transformations are not para-
meterised: they are either applied or not. For such transfor-
mations, search trees might be more appropriate.

While it may be feasible to efficiently search large transfor-
mation spaces, it is not necessarily always easy to generate
the transformed program. Applying a sequence of program
transformations corresponding to the position in the space is

Bodin et al. 6
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Figure 6. Search Algorithm Performance
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Figure 7. Search Algorithm Performance

limited by the form of code produced by any previous trans-
formation. In future, it will therefore necessary to develop
program transformation techniques to allow general itera-
tive compilation consisting of may compound transforma-
tions.

This paper has concentrated on the effect of temporal per-
formance. However, in embedded systems, code size is also
important as it determines the amount of ROM required [9].
If we have a cost metric which is a function of execution
time and code size, the techniques described in this paper
can be immediately applied.

Finally, the processor concerned strongly affects the likely-
hood of finding a good solution. Those processors which
have less non-linear optimisation spaces are likely to be eas-
ier to optimise for.

9. Conclusion

This paper has investigated the use of iterative compilation
as an program optimisation technique. By considering pro-
gram optimisation as searching a transformation space for
minima, we have shown that a simple search algorithm can
achieve good results. We have shown that iterative compila-
tion is a viable program optimisation approach, particularly
for embedded systems. Future work will consider larger ap-
plication programs and transformation spaces. The combi-
nation of static and iterative information to guide optimisa-
tion will also be considered. Finally, improved search algo-
rithms will be investigated.
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Figure 11. Performance of search algorithm : Alpha
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Figure 12. Minimal points and search algorithm performance for TM1000 N = 64
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Figure 13. Minimal points and search algorithm performance for TM1000 N = 128
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