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Abstract

String transductions that are de�nable in monadic second-order

(mso) logic (without the use of parameters) are exactly those real-

ized by deterministic two-way �nite state transducers. Nondetermin-

istic mso de�nable string transductions (i.e., those de�nable with the

use of parameters) corespond to compositions of two nondeterministic

two-way �nite state transducers that have the �nite visit property.

Both families of mso de�nable string transductions are characterized

in terms of Hennie machines, i.e., two-way �nite state transducers with

the �nite visit property that are allowed to rewrite their input tape.

Introduction

In language theory, it is always a pleasant surprise when two formalisms, in-

troduced with di�erent motivations, turn out to be equally powerful, as this

indicates that the underlying concept is a natural one. Additionally, this

means that notions and tools from one formalism can be made use of within

the other, leading to a better understanding of the formalisms under con-

sideration. Most famous in this respect are of course the regular languages

[Yu97], that can be de�ned using a computational formalism (�nite state au-

tomata, either deterministic or nondeterministic), but also have well-known

grammatical (right-linear grammars), operational (rational operations), al-

gebraic (congruences of �nite index), and logical (monadic second-order logic
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of one successor) characterizations [MCPi43, RaSc59, Cho56, Kle56, Myh57,

Ner58, B�uc60, Elg61].

In this paper we study `regular' (string-to-string) transductions, rather

than regular languages, and we obtain the equivalence of particular compu-

tational and logical formalisms, modestly following in the footsteps of B�uchi

and Elgot. Their original work [B�uc60, Elg61], demonstrating how a log-

ical formula may e�ectively be transformed into a �nite state automaton

accepting the language speci�ed by the formula when interpreted over �nite

sequences, shows how to relate the speci�cation of a system behaviour (as

given by the formula) to a possible implementation (as the �nite state behav-

iour of an automaton). In recent years much e�ort has been put into trans-

forming these initial theoretical results into software tools for the veri�cation

of �nite state systems, model checking, see the monograph [Kur94]. Gener-

alizations of the result of B�uchi and Elgot include in�nite strings [B�uc62],

trees [Don70, ThWr68], traces (a syntactic model for concurrency) [Ebi95],

texts (strings with an additional ordering) [HoPa97], and tree-to-tree trans-

ductions [BlEn97, EnMa98]. We refer to [Tho97] for an overview of the study

of formal languages within the framework of mathematical logic.

We give a short description of the two formalisms of `regular' string trans-

ductions that we study in this paper. We mainly consider the deterministic

case.

A two-way �nite state transducer (or two-way generalized sequential ma-

chine, 2gsm) is a �nite state automaton equipped with a two-way input

tape, and a one-way output tape. Such a transducer may freely move over

its input tape, and may typically reverse or copy parts of its input string.

It is, e.g., straightforward to construct a transducer realizing the relation

f(w;ww) j w 2 fa; bg

�

g. It should be clear from this example that regu-

lar languages are not closed under 2gsm mappings, contrary to their closure

under one-way gsm mappings.

However, it is well known [RaSc59, She59, HoUl79] that two-way �nite

state automata accept only regular languages, and consequently (using a

straightforward direct product construction) the regular languages are closed

under inverse 2gsm transductions. From this general result we may infer a

large number of speci�c closure properties of the regular languages, such as

closure under the `root' operation

p

K = fw j ww 2 Kg. It is maybe less well

known that the (deterministic) 2gsm mappings are closed under composition

[ChJ�a77]. This result is used as a powerful tool in this paper.
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The monadic second-order (mso) logic of one successor is a logical frame-

work that allows one to specify string properties using quanti�cation over

sets of positions in the string. As stated above, B�uchi and Elgot proved that

the string languages speci�ed by mso de�nable properties are exactly the

regular languages. The logic has a natural generalization to graphs, with

quanti�cation over sets of nodes, and predicates referring to node labels and

edge labels. It is used to de�ne graph-to-graph transductions, by specifying

the edges of the output graph in terms of properties of (copies of) a given

input graph [Cou97, Eng97]. This is just a special case of the notion of

interpretation of logical structures, well known in mathematical logic (see,

e.g., [See92, Section 6]). These mso de�nable graph transductions play an

important role in the theory of graph rewriting, as the two main families

of context-free graph languages can be obtained by applying mso de�nable

graph transductions to regular tree languages [EnOo97, CoEn95].

Here we consider mso de�nable string transductions, i.e., the restriction

of mso de�nable graph transductions to linear input and output graphs. It

is known that mso de�nable (string) transductions are closed under compo-

sition, and that the regular languages are closed under inverse mso de�nable

transductions (recall that regular is equivalent to mso de�nable), see, e.g.,

[Cou94].

Apart from these similar closure properties there is more evidence in the

literature that indicates the close connection between 2gsm transductions and

mso de�nable transductions. First, various speci�c 2gsm transductions were

shown to be mso de�nable, such as one-way gsm mappings, mirror image,

and mapping the string w onto w

n

(for �xed n), cf. [Cou97, Prop 5.5.3].

Second, returning to the theory of graph grammars, it is explained in [Eng97,

pages 192{8] that the ranges (i.e., output languages) of mso de�nable (string)

transductions are equal to the (string) languages de�ned by linear context-

free graph grammars, which, by a result of [EnHe91], equal the ranges of 2gsm

transductions. Consequently, the two families of transductions we consider

have the same generative power (on regular input). This, however, does not

answer the question whether they are the same family of transductions (cf.

Section 6 of [Cou94]). In this paper we answer this question positively (in

the deterministic case). Thus, string transductions that are speci�ed in mso

logic can be implemented on 2gsm's, and vice versa.

Our paper is organized as follows.

In a preliminary section we mainly recall notions and notations regarding
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graphs, in particular mso logic for graphs and strings. Moreover, we recall

the usual, natural representation of strings as linear graphs that allows a

transparent interpretation of strings and string languages within the setting

of the mso logic for graphs.

In Section 2 we study two-way machines, our incarnation of two-way

generalized sequential machines. We extend the basic model by allowing the

machines to `jump' to new positions on the tape (not necessarily adjacent

to the present position) as speci�ed by an mso formula that is part of the

instructions. This `hybrid' model (in between logic and machine) facilitates

the proof of our main result. We consider yet another variant of the 2gsm

which allows `regular look-around', i.e., the ability to test the strings to

the left and to the right of the reading head for membership in a regular

language. The equivalence of the basic 2gsm model and our two extended

models (in the deterministic case) is demonstrated using the closure of 2gsm

under composition and using B�uchi and Elgot's result for regular languages.

In Section 3 we recall the de�nition of mso de�nable graph transduction,

and restrict that general notion to mso de�nable string transductions by con-

sidering graph representations for strings. In addition to the representation

of Section 1, we use an alternative, natural and well-known, graph represen-

tation for strings. Again it uses linear graphs, with labels on the edges rather

than on the nodes to represent the symbols of the string. These two repre-

sentations di�er slightly, due to an unfortunate minor technicality involving

the empty string; the second representation gives more uniform results.

The main result of the paper is presented as Theorem 23: the equivalence

of the (deterministic) 2gsm from Section 2, and the mso de�nable string

transductions from Section 3. Section 4 contains the proof of this result.

In order to transform a 2gsm into the mso formalism we consider the `com-

putation space' of a 2gsm on a given input. This is the graph which has

a node for each pair consisting of a tape position and a state of the 2gsm.

These nodes are connected by edges representing the possible moves of the

2gsm. The transduction is then decomposed into (basically) two construc-

tions, each of which is shown to be mso de�nable. First the computation

space is de�ned in terms of the input string, then the computation path for

the input (and its resulting output string) is recovered from the computation

graph. One implication of the main result then follows by the closure of mso

de�nable (graph!) transductions under composition. The reverse implication

is obtained by transforming an mso de�nable string transduction into a 2gsm

equipped with mso instructions, the tool we introduced in Section 2.
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In Section 5 we study nondeterminism. This feature can be added to

mso de�nable transductions by introducing so-called `parameters': free set

variables in the de�nition of the transduction [Cou97]. The output of the

transduction for a given input may then vary for di�erent valuations of these

parameters. These transductions are closed under composition, as opposed

to those realized by nondeterministic 2gsm. We conclude that as opposed to

the deterministic case, the two nondeterministic families are incomparable.

Finally, we observe that the family of nondeterministic mso transductions is

equal to the family of transductions de�ned by composing a (nondetermin-

istic) relabelling and a deterministic transduction.

Finite visit machines form the topic of our �nal section, Section 6. These

machines have a �xed bound on the number of times each of the positions

of their input tape may be visited during a computation. We characterize

the nondeterministic mso de�nable string transductions as compositions of

two nondeterministic 2gsm's with the �nite visit property. Additionally we

demonstrate that an arbitrary composition of nondeterministic 2gsm's real-

izes a nondeterministic mso de�nable string transduction if and only if that

transduction is �nitary, i.e., it has a �nite number of images for every input

string.

A more direct characterization can be obtained by considering Hennie

transducers, i.e., �nite visit 2gsm's that are allowed to rewrite the symbols

on their input tape. These machines characterize the mso de�nable trans-

ductions, both in the deterministic case [ChJ�a77] and the nondeterministic

case.
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1 Preliminaries

We recall some notions and results regarding graphs and their monadic sec-

ond order logic.

By jwj we denote the length of the string w.

We use

�

to denote the composition of binary relations (note the order):

R

1

�

R

2

= f(w

1

; w

3

) j there exists w

2

such that (w

1

; w

2

) 2 R

1

; (w

2

; w

3

) 2

R

2

g, and extend it to families of binary relations: F

1

�

F

2

= fR

1

�

R

2

j R

1

2

F

1

; R

2

2 F

2

g.

A binary relation R is functional, if (w; z

1

) 2 R and (w; z

2

) 2 R imply

z

1

= z

2

. It is �nitary, if each original is mapped to only �nitely many images,

i.e., the set fz j (w; z) 2 Rg is �nite for each w in the domain of R.

Graphs. Let � and � be alphabets of node labels and edge labels, respec-

tively. A graph over � and � is a triple g = (V;E; `), where V is the �nite set

of nodes, E � V ��� V the set of edges, and ` : V ! � the node labelling.

The set of all graphs over � and � is denoted by GR(�;�). We allow graphs

that have both labelled and unlabelled nodes and edges by introducing a des-

ignated symbol � to represent an `unlabel' in our speci�cations, but we omit

this symbol from our drawings. We write GR(�;�) and GR(�; �) to distin-

guish the cases when all nodes are unlabelled, and all edges are unlabelled,

respectively.

Logic for graphs. For alphabets � and �, the monadic second-order logic

MSO(�;�) expresses properties of graphs over � and �. The logical language

uses both node variables x; y; : : : and node-set variables X; Y; : : :.

There are four types of atomic formulas: lab

�

(x), meaning node x has

label � (with � 2 �); edge



(x; y), meaning there is an edge from x to y with

label  (with  2 �); x = y, meaning nodes x and y are equal; and x 2 X,

meaning x is an element of X.

As usual, formulas are built from atomic formulas with the propositional

connectives :;^;_;!, using the quanti�ers 8 and 9 both for node variables

and node-set variables.

A useful example [ThWr68] of such a formula is the binary predicate �

claiming the existence of a (directed) path from x to y:

x � y = (8X)[(x 2 X ^ closed(X))! y 2 X]
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where closed(X) = (8z

1

)(8z

2

)(z

1

2 X ^ edge(z

1

; z

2

) ! z

2

2 X), and

edge(z

1

; z

2

) =

W

2�

edge



(z

1

; z

2

). We also use x � y, where one addition-

ally requires that x 6= y; for acyclic graphs this expresses the existence of a

nonempty path from x to y.

Let ' be a formula of MSO(�;�) with set � of free variables (of either

type), and let g = (V;E; `) be a graph in GR(�;�). Let � be a valuation of

', i.e., a mapping that assigns to each node variable x 2 � an element �(x)

of V , and to each set variable X 2 � a subset �(X) of V . We write g; � j= '

if ' is satis�ed in the graph g, where the free variables of ' are valuated

according to �.

Let '(x

1

; : : : ; x

m

; X

1

; : : : ; X

n

) be an MSO(�;�) formula with free node

variables x

i

and free node set variables X

j

, and let u

1

; : : : ; u

m

be nodes of

graph g, and U

1

; : : : ; U

n

sets of nodes of g. We write g j= '(u

1

; : : : ; u

m

; U

1

; : : : ;

U

n

) whenever g; � j= '(x

1

; : : : ; x

m

; X

1

; : : : ; X

n

), where � is the valuation with

�(x

i

) = u

i

, �(X

j

) = U

j

.

Let � be a �nite set of variables. The set f0; 1g

�

of 0; 1-assignments to

elements of � is �nite, and may be considered as an alphabet. A �-valuated

graph over � and � is a graph in GR(� � f0; 1g

�

;�), such that for every

node variable x in � there is a unique node of the graph of which the label

(�; f) 2 �� f0; 1g

�

satis�es f(x) = 1.

Clearly, such a �-valuated graph g determines a graph gj� in GR(�;�),

by dropping the f0; 1g

�

component of its node labels, as well as a valuation

�

g

of the variables in �, by taking

{ for a node variable x 2 �, �

g

(x) = u, where u is the unique node having

a label (�; f) with f(x) = 1,

{ for a node-set variable X 2 �, �

g

(X) = U , where U consists of all

nodes v having a label (�; f) with f(X) = 1.

For a formula ' of MSO(�;�) with free variables in �, and a �-valuated

graph g we write g j= ' if ' is true for the underlying graph under the

implicitly de�ned valuation, i.e., if gj�; �

g

j= '; ' de�nes the graph language

GL(') = fg 2 GR(� � f0; 1g

�

;�) j g j= 'g. A graph language is mso

de�nable if there exists a closed mso formula that de�nes the language.

String representation. A string w 2 �

�

of length k can be represented

by the graph nd-gr(w) in GR(�; �), consisting of k nodes labelled by the
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consecutive symbols of w, with k � 1 (unlabelled) edges representing the

successor relation for the positions of the string. In the �gure below, we

show nd-gr(ababb). Note that for the empty string �, nd-gr(�) is the empty

graph. With this representation, a formula ' of MSO(�; �) de�nes the string

language L(') = fw 2 (�� f0; 1g

�

)

�

j nd-gr(w) j= 'g, where � is the set of

free variables of '; note that nd-gr(w) is a �-valuated graph over � and �.

a

b

a

b b

Given the close connection between the positions and their successor re-

lation in a string w on the one hand, and the nodes and their connecting

edges in nd-gr(w) on the other, we say that a string w satis�es a formula '

if nd-gr(w) j= '.

String languages de�nable by monadic second-order formulas are exactly

the regular languages, as shown by B�uchi and Elgot.

1 Proposition ([B�uc60, Elg61])

1. L(') is a regular string language for every formula ' of MSO(�; �).

2. A string language K � �

�

is regular i� there is a closed formula ' of

MSO(�; �) such that K = L(').

We will also refer to Proposition 1 as `B�uchi's result', with due apologies

to Elgot.

Observe that the set of all strings over a �xed alphabet � forms an mso

de�nable graph language via the above representation. The de�ning formula

for the set fnd-gr(w) j w 2 �

�

g over MSO(�; �) expresses the existence of

an initial and a �nal node (provided the graph is nonempty) and demands

that every node has at most one direct successor (i.e., the edge relation is

functional); `guards' (9x)true! are added in order to make the empty string

� satisfy the formula.

(9x)true! (9x)(8y)(x � y ^ :(y � x))

^ (9x)true! (9x)(8y)(y � x ^ :(x � y))

^ (8x)(8y

1

)(8y

2

)((edge(x; y

1

) ^ edge(x; y

2

))! y

1

= y

2

)

As a consequence, the set of graphs representing a string language K,

fnd-gr(w) j w 2 Kg is an mso de�nable graph language for every regular

language K.
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2 Two-Way Machines

We present our (slightly nonstandard) model of two-way generalized sequen-

tial machines (2gsm), or two-way �nite state transducers. In order to facil-

itate the proof of the equivalence of two-way �nite state transductions and

logically de�nable transductions we extend the basic model to a machine

model that has its input tests as well as moves speci�ed by mso formulas.

We prove the equivalence of this extended model to the basic model. An

important tool in this proof is the observation that a two-way automaton is

able to keep track of the state of another (one-way) �nite state automaton

(proved in Lemma 3 of [HoUl67], see also p. 212 of [AHU69]). We formalize

this fact by extending the 2gsm with the feature of `regular look-around'.

The equivalence of this model with the basic model is then proved using

the related result of [ChJ�a77] stating that deterministic two-way �nite state

transductions are closed under composition. The equivalence of the regular

look-around model with the mso formula model is proved using B�uchi's result

(Proposition 1).

Since we need several types of two-way machines, we �rst introduce a

generic model, and then instantiate it in several ways.

A two-way machine (2m) is a �nite state device equipped with a two-

way input tape (read only), and a one-way output tape. In each step of a

computation the machine reads an input symbol, changes its internal state,

outputs a string, and moves its input head, all depending on the symbol read

and the original internal state.

We specify a 2m as a constructM = (Q;�

1

;�

2

; �; q

in

; q

f

), where Q is the

�nite set of states, �

1

and �

2

are the input alphabet and output alphabet, q

in

and q

f

are the initial and the �nal state, and � is a �nite set of instructions.

Each instruction is of the form (p; t; q

1

; �

1

; �

1

; q

0

; �

0

; �

0

), where p 2 Q�fq

f

g

is the present state of the machine, t is a test to be performed on the input,

and the triples (q

i

; �

i

; �

i

), i = 1; 0, �x the action of the machine depending

on the outcome of the test t: q

i

2 Q is the new state, �

i

2 �

�

2

is the string

written on the output tape, and �

i

describes the (deterministic) move of the

reading head on the input tape. The precise form of these instructions varies

from one model to another, in particular the form of the test t, and the moves

�

i

.

The above instruction can be expressed as the following informal code.
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label p: if t then write �

1

; move �

1

; goto q

1

else write �

0

; move �

0

; goto q

0

fi

The string on the input tape is marked by two special symbols, ` and

a, indicating the boundaries of the tape. So, when processing the string

�

1

� � ��

n

, �

i

2 �

1

, the tape has n + 2 reachable positions 0; 1; : : : ; n; n +

1, containing the string `�

1

� � ��

n

a. The reading head is on one of these

positions.

The 2mM realizes the transduction m � �

�

1

� �

�

2

, such that (w; z) 2 m

whenever there exists a computation with `wa on the input tape, starting

in initial state q

in

with the input head on position 0 (where the symbol ` is

stored), and ending in the accepting state q

f

, while z has been written on

the output tape.

A 2m is deterministic if for each state p there is at most one instruction

(p; t; q

1

; �

1

; �

1

; q

0

; �

0

; �

0

) that starts in p. Note that the transduction m

realized by a deterministic 2mM is a partial function m : �

�

1

! �

�

2

because

the �

i

in the instructions describe deterministic moves of the reading head.

We consider the usual two-way generalized sequential machine (2gsm),

introduced in [AhUl70], and two new instantiations of the generic 2m model,

the 2gsm with regular look-around, and the 2gsm with mso-instructions.

2gsm. For the basic 2gsm model each instruction (p; t; q

1

; �

1

; �

1

; q

0

; �

0

; �

0

)

in � satis�es t 2 �

1

[ f`;ag, and �

i

2 f�1; 0;+1g, i = 1; 0.

Executing an instruction (p; �; q

1

; �

1

; �

1

; q

0

; �

0

; �

0

) 2 � the 2gsm, assum-

ing it is in internal state p, when reading � on its input tape, changes its

state to q

1

, writes �

1

to its output tape, and moves its head from the present

position i to the position i+ �

1

(provided 0 � i+ �

1

� n+1); if � is not read

on the input tape it acts similarly according to the triple (q

0

; �

0

; �

0

). Recall

that there are no instructions starting in the �nal state.

It is more customary to formalize the instructions of a 2gsm as 5-tuples

(p; �; q; �; �), not having the `else-part' of our instructions. These two ap-

proaches are easily seen to be equivalent. Obviously, the 5-tuple can be ex-

tended to an 8-tuple by adding a dummy `else-part', as in (p; �; q; �; �; p; �; 0).

Conversely, one of our instructions (p; �; q

1

; �

1

; �

1

; q

0

; �

0

; �

0

) can be replaced

by the `if-part' (p; �; q

1

; �

1

; �

1

) and all alternatives (p; �

0

; q

0

; �

0

; �

0

), �

0

6= �.

For determinism we require each state to have at most one instruction,

whereas the customary notion considers both state and input symbol. This,
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somewhat unusual, formulation allows us to have the above common de�-

nition of determinism for all necessary instantiations of our generic model,

without having to worry about the mutual exclusiveness of the tests t. This

is the reason for choosing our 8-tuple formalism.

The �rst of the two translations (from 5-tuple model to our 8-tuple model)

does not respect determinism. We can solve this by checking all alternatives

in a given state consecutively, as follows. Let (p; �

i

; q

i

; �

i

; �

i

), i = 1; : : : ; k be

all the instructions for state p in a deterministic (5-tuple) 2gsm, which means

that the �

i

are di�erent. Introduce k + 1 copies p = p

(1)

; p

(2)

; : : : ; p

(k)

; p

(k+1)

of p. Then, the instructions (p

(i)

; �

i

; q

i

; �

i

; �

i

; p

(i+1)

; �; 0), i = 1; : : : ; k, o�er

the same alternatives, but sequentially rather than in parallel.

2 Example. Consider the string transduction

f (a

i

1

ba

i

2

b � � �a

i

n

ba

i

n+1

; a

i

1

b

i

1

a

i

2

b

i

2

� � �a

i

n

b

i

n

a

i

n+1

) j n � 0; i

1

; : : : ; i

n+1

� 0 g:

An obvious deterministic 2gsm reads each segment of a's from left to right

while copying it to the output. When encountering a b it rereads the segment

from right to left. This second pass it writes b's to the output tape.

This machine can be implemented by taking �

1

= �

2

= fa; bg, Q =

f0; 1; 2; 3; 4; 5g, q

in

= 0, q

f

= 5, and � consisting of the instructions

(0;`; 1; �;+1; 0; �; 0)

(1; a; 1; a;+1; 2; �; 0)

(2; b; 3; �;�1; 5; �; 0)

(3; a; 3; b;�1; 4; �;+1)

(4; a; 4; �;+1; 1; �;+1)

Note that the last three elements of the �rst instruction are irrelevant.

The computation of the 2gsm on input aaabbaba can be visualized as in

Figure 1, where we have labelled the edges of the computation by the strings

that are written to the output (with � omitted, for convenience). 2

Look-around. A 2gsm with regular look-around (2gsm-rla) extends the

basic 2gsm model, by allowing more complicated tests. In an instruction

(p; t; q

1

; �

1

; �

1

; q

0

; �

0

; �

0

) 2 � all components are as before for the 2gsm,

except the test t, which does not consist of a single letter �, but of a triple

11



`

0

3

a

1

3

4

a

b

a

1

3

4

a

b

a

1

3

4

a

b

b

1

2

4

3

b

1

2

4

3

a

1

3

4

a

b

b

1

2

4

a

1

a

a

1

2

5

Figure 1: Computation for (a

3

b

2

aba; a

3

b

3

aba) of 2gsm from Example 2

t = (R

`

; �; R

r

), where � 2 (�

1

[ f`;ag), and R

`

; R

r

are regular languages

such that R

`

; R

r

� (�

1

[ f`;ag)

�

. This test t is satis�ed if � is the symbol

under the reading head, and the strings to the left and the right of the head

belong to R

`

and R

r

respectively.

Obviously, it su�ces to have tests (R

`

; �; R

r

) such that R

`

�� �R

r

� `�

�

1

a.

For a given 2gsm-rla, an equivalent 2gsm-rla with that property is obtained by

changing each test (R

`

; �; R

r

) into (R

0

`

; �; R

0

r

) where R

0

`

= R

`

\`�

�

1

(with the

exception that R

0

`

= f�g when � = `), and similarly for R

0

r

. We observe here

that this notion of `regular look-around' generalizes the well-known notion

of regular look-ahead for one-way automata (see, e.g., [Nij82, Eng77]).

Mso instructions. For a 2gsm with mso-instructions (2gsm-mso) the test

and the moves of each instruction are given by mso formulas. To be pre-

cise, for (p; t; q

1

; �

1

; �

1

; q

0

; �

0

; �

0

) 2 �, t is given as a formula '(x) in

MSO(�

1

[ f`;ag; �) with one free node variable x, and the moves �

i

are

given by functional formulas '

i

(x; y) in MSO(�

1

[ f`;ag; �) with two free

node variables x and y (see below for the meaning of `functional').

A test t = '(x) is evaluated for the string on the input tape with x

valuated as the position taken by the reading head; more precisely, as our

logic is de�ned for graphs, t is true whenever nd-gr(`wa) j= '(u), where w

is the input string, and u is the node corresponding to the position of the

reading head.

12



The 2gsm-mso does not move step-wise on the input tape, but it `jumps'

as speci�ed by the formulas '

i

(x; y), as follows. Assuming the machine is in

position u, it moves to a position v for which nd-gr(`wa) j= '

i

(u; v), where

we have identi�ed positions on the input tape with their corresponding nodes

of the graph nd-gr(`wa).

To guarantee that the '

i

(x; y) describe deterministic moves of the reading

head, we require that the relations speci�ed by '

i

(x; y) are functional, for

each input string w, i.e., for every position u there is at most one position

v such that nd-gr(`wa) j= '

i

(u; v). Note that functionality is expressible in

the logic: (8x)(8y

1

)(8y

2

)[ '

i

(x; y

1

) ^ '

i

(x; y

2

) ! y

1

= y

2

]. Consequently, it

is decidable; we may use B�uchi's result (Proposition 1, which is e�ective) to

verify that it is satis�ed by every string in `�

�

1

a.

3 Example. Consider again the string transduction m =

f (a

i

1

ba

i

2

b � � �a

i

n

ba

i

n+1

; a

i

1

b

i

1

a

i

2

b

i

2

� � �a

i

n

b

i

n

a

i

n+1

) j n � 0; i

1

; : : : ; i

n+1

� 0 g:

We use the predicate next

a

(x; y) to specify the �rst position y following

x that is labelled by a:

x � y ^ lab

a

(y) ^ (8z) [ (x � z ^ z � y)! :lab

a

(z) ]

Similarly we construct an expression �s

a

(x; y) denoting the �rst a in the

present segment of a's,

y � x ^ (8z)(y � z ^ z � x! lab

a

(z)) ^ :(9z)(edge

�

(z; y) ^ lab

a

(z))

Using these predicates we build a deterministic 2gsm-mso that realizes

m. In state 1 it walks along a segment of a's, copying it to the output tape.

Then, when the segment is followed by a b, it jumps back to the �rst a of the

segment for a second pass, in state 2. When the end of the segment is reached

for the second time, the machine jumps to the next segment, returning to

state 1. At the last a of the input the machine jumps to the right end marker,

and halts in the �nal state 3.

Let �

1

= �

2

= fa; bg, Q = f1; 1

0

; 2; 2

0

; 3g, q

in

= 2

0

, q

f

= 3, and �

consisting of the transitions

(1; (9y)(edge

�

(x; y) ^ lab

a

(y)); 1; a; edge

�

(x; y); 1

0

; �; x = y)

(1

0

; (9y)(edge

�

(x; y) ^ lab

b

(y)); 2; b; �s

a

(x; y); 3; �; lab

a

(y))

13



` a a a b b a b a a

2

0

1 1

2 2 2

2

0

1

1

0

2

2

0

1

3

1

1

0

1

0

a

a a

b

b b

a

b

a

Figure 2: Computation for (a

3

b

2

aba; a

3

b

3

aba) of 2gsm-mso from Example 3

(2; (9y)(edge

�

(x; y) ^ lab

a

(y)); 2; b; edge

�

(x; y); 2

0

; �; x = y)

(2

0

; (9y)(x � y ^ lab

a

(y)); 1; a; next

a

(x; y); 3; �; lab

a

(y))

The computation of the machine on input a

3

b

2

aba can be visualized as in

Figure 2 (where, again, � is omitted from the edges of the computation). 2

Without loss of generality we assume that the 2m's we consider never

write more than one symbol at a time, i.e., for each instruction (p; �; q

1

; �

1

; �

1

;

q

0

; �

0

; �

0

) we have j�

i

j � 1 (for i = 1; 0).

We abbreviate deterministic 2m's by adding a `d' to the usual abbrevia-

tion, hence we speak of 2dgsm, 2dgsm-rla, and 2dgsm-mso. The families of

string transductions realized by these three types of deterministic sequential

machines are denoted by 2DGSM, 2DGSM

RLA

, and 2DGSM

MSO

, respec-

tively.

Unlike their nondeterministic counterparts ([Kie75], see also Lemma 26

and the remark following it), deterministic 2gsm's are closed under compo-

sition, as was demonstrated by Chytil and J�akl. As an essential part of the

proof the fact is used (proved in [HoUl67]) that a 2dgsm can keep track of the

state of another (deterministic) one-way �nite state automaton working on

the same tape (from left to right or from right to left). For the left-to-right

case, it is clear how to do this as long as the reading head moves to the right.

Backtracking (`undoing' a move) on the occasion of a step to the left, needs

a rather ingenious back and forth simulation of the automaton.

14



4 Proposition ([ChJ�a77]) 2DGSM is closed under composition.

In the remainder of this section we show that the three types of de-

terministic machines de�ned above are all equivalent, i.e., that 2DGSM =

2DGSM

RLA

= 2DGSM

MSO

.

Every 2gsm is of course a simple 2gsm-rla, using trivial look-around tests,

i.e., tests of the form (R

`

; �; R

r

), with R

`

= `�

�

1

, and R

r

= �

�

1

a (with the

exceptions R

`

= f�g when � = `, and R

r

= f�g when � = a).

It follows from B�uchi's result, Proposition 1, that any 2gsm-rla can be

reinterpreted as a 2gsm-mso by changing the speci�cation of the tests and

moves into formulas, as follows.

First, consider a look-around test t = (R

`

; �; R

r

). Let  

`

(x) be a formula

expressing that the string to the left of position x belongs to the regular

language R

`

. It can be obtained from a closed formula  de�ning R

`

by

restricting quanti�cation to the positions to the left of x, i.e., by replacing

subformulas (9y)�(y) by (9y)(y � x^ �(y)) and (9Y )�(Y ) by (9Y )((8y)(y 2

Y ! y � x) ^ �(Y )).

Similarly, we obtain a formula  

r

(x) expressing that the string to the

right of position x belongs to the regular language R

r

. Clearly, the test t is

equivalent to the formula '

t

(x) =  

`

(x) ^ lab

�

(x) ^  

r

(x).

Finally, one-step moves are easily translated into formulas. A move � =

+1 is equivalent to stating that the new position is next to the original:

edge

�

(x; y). Of course, � = �1 is symmetric, whereas � = 0 is expressed by

x = y. Note that these formulas are functional.

These observations prove the �rst relations between the families of trans-

ductions.

5 Lemma. 2DGSM � 2DGSM

RLA

� 2DGSM

MSO

.

The feature of 2dgsm's that they can keep track of the state of a one-way

�nite state automaton (cf. the remark before Proposition 4), is modelled

by us as regular look-around. Thus, for readers familiar with this feature it

should be quite obvious that 2DGSM

RLA

� 2DGSM. Here we prove it using

Proposition 4.

6 Lemma. 2DGSM

RLA

� 2DGSM.
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Proof. By Proposition 4, 2DGSM is closed under composition. We prove

the lemma by decomposing a given 2dgsm-rla M into a series of 2dgsm's,

together realizing the transduction ofM.

The �nal 2dgsm performs the required transduction, whereas all the other

transductions `preprocess the tape', by adding to the original input the out-

come of the various tests of M. As we also need this information for the

positions containing the end-of-tape markers ` and a, we start by a trans-

duction that maps input w to the string .w/, where . and / are new symbols.

Information concerning the end-of-tape positions is added to these new sym-

bols. The other machines may ignore ` and a, and treat . and / as if they

where these end-of-tape markers.

For each look-around test t = (R

`

; �; R

r

) of M we introduce a 2dgsm

M

t

that copies the input, while adding to each position the outcome of the

test t for that position in the original string (ignoring any other additional

information a previous transduction added to the string). The machineM

t

itself can be seen as the work of three consecutive 2dgsm's. The �rst one,

simulating a �nite state automaton recognizing R

`

, checks on each position

whether the pre�x read belongs to R

`

. It adds this information to the symbol

at that position. The second transducer, processing the input from right to

left, simulating a �nite state automaton for the mirror image of R

r

, adds

information concerning the su�x. Note that the input has been reversed in

the process. This can be undone by another reversal performed by a third

2dgsm.

Once the value of each look-around test ofM is added to the original in-

put string, obviously the transduction ofM can be simulated by an ordinary

2dgsm. 2

B�uchi's result (Proposition 1) allows us to show that the 2gsm-mso can

be simulated by the 2gsm-rla. Additionally we need the following (folklore)

result on the structure of certain regular languages (cf. [Pix96, Lemma 8.1]).

7 Lemma. Let � � � be alphabets, and let R � �

�

be a regular language

such that each string of R contains exactly one occurrence of a symbol from

�. Then we may write R as a �nite union of disjoint languages R

`

� a � R

r

,

where a 2 �, and R

`

; R

r

� (���)

�

are regular languages.

Proof. Let A be a deterministic �nite automaton accepting R. Every path

(in the state transition diagram of A) from the initial state to a �nal state

16



passes exactly one transition labelled by a symbol from �. For any such

transition (p; a; q) of A let R

`

consist of all strings that label a path starting

in the initial state of A and ending in p, and symmetrically, let R

r

consist of

all strings that label a path from q to one of the �nal states of A. Obviously,

R

`

and R

r

are regular, and R is the union of the languages R

`

� a �R

r

taken

over all such transitions. Since A is deterministic, these languages are easily

seen to be disjoint. 2

8 Lemma. 2DGSM

MSO

� 2DGSM

RLA

.

Proof. We show how to simulate the instructions of a 2gsm-mso by a 2gsm-

rla. Recall that such an instruction is speci�ed as (p; t; q

1

; �

1

; �

1

; q

0

; �

0

; �

0

),

where t is a formula '(x) with one free node variable, and the moves �

i

are

(functional) formulas '

i

(x; y) with two free node variables.

Tests: unary node predicates. Consider a test '(x) in MSO(�

1

[ f`;ag; �).

It can easily be simulated by regular look-around tests. Identifying (�

1

[

f`;ag) � f0; 1g

fxg

with (�

1

[ f`;ag) � f0; 1g, consider the language L('),

which is regular by Proposition 1. As each string of this language contains

exactly one symbol with 1 as its second component, it can be written as

a �nite union of languages R

`

� (�; 1) � R

r

, with regular languages R

`

; R

r

�

((�

1

[ f`;ag)�f0g)

�

, and � 2 �

1

[ f`;ag, see Lemma 7. This implies that

the test '(x) can be simulated by a �nite disjunction of the look-around tests

(R

0

`

; �; R

0

r

), where each R

0

`

; R

0

r

is obtained from the corresponding R

`

; R

r

by

dropping the second component (the 0-part) of the symbols. Of course, this

disjunction is computed by testing each of its alternatives consecutively.

Moves: binary node predicates. Once the test of an instruction is evaluated,

one of its moves is executed, and the output is written. This move is given

as a formula '(x; y), specifying a functional relation between the present

position x and the next position y on the input. Where the 2dgsm-mso may

`jump' to its next position, independent of the relative positions of x and y,

a 2dgsm-rla can only step to one of the neighbouring positions of the tape,

and has to `walk' to the next position when simulating this jump.

Before starting the excursion from x to y the 2dgsm-rla determines the

direction (left, right, or stay) by evaluating the tests (9y)(y � x ^ '(x; y)),

(9y)(x � y ^ '(x; y)), and (9y)(x = y ^ '(x; y)) using the method that we

have explained above. Since '(x; y) is functional, at most one of these tests

is true.
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In the sequel we assume that our target position y lies to the left of the

present position x, i.e., test (9y)(y � x^'(x; y)) is true. The right-case can

be treated in an analogous way; the stay-case is trivial.

Similarly to the case of tests, identify (�

1

[ f`;ag) � f0; 1g

fx;yg

with

(�

1

[ f`;ag)� f0; 1g

2

, and consider L(y � x ^ '(x; y)). Each string of this

language contains exactly one symbol with (0; 1) as its second component,

the position of y, and it precedes a unique symbol with (1; 0) as its second

component, the position of x; all other symbols carry (0; 0). It can be written

as a �nite disjoint union of languagesR

`

�(�; 0; 1)�R

m

�(�; 1; 0)�R

r

, with regular

languages R

`

; R

m

; R

r

� ((�

1

[f`;ag)�f(0; 0)g)

�

and �; � 2 �

1

[f`;ag, by

applying Lemma 7 twice.

Our moves are functional, meaning that there is a unique position y that

satis�es the predicate '(x; y) with x the present position. Still before starting

the excursion from x to the new position y, the 2dgsm-rla determines which

language in the union above describes this position by performing the regular

look-around tests (R

0

`

�� �R

0

m

; �; R

0

r

), where each R

0

`

; R

0

m

; R

0

r

is obtained from

the corresponding R

`

; R

m

; R

r

by deleting the second component (the (0,0)-

part) of the symbols.

The 2dgsm-rla now moves to the left. In each step it checks whether the

segment of the input string between the present position (candidate y) and

the starting position (corresponding to x) belongs to the regular language

R

0

m

. This can be done by simulating a �nite automaton for (the mirror

image of) R

0

m

in the �nite state control.

Each time this segment belongs toR

0

m

, it performs the rla-test (R

0

`

; �;�

�

1

a),

to verify the requirement on the initial segment of the input. Once this last

test is satis�ed, it has found the position y and writes the output string. 2

We summarize.

9 Theorem. 2DGSM = 2DGSM

RLA

= 2DGSM

MSO

.

A similar result can be obtained for nondeterministic gsm's by the same

line of reasoning. However, in Lemma 6 we need the inclusion 2DGSM

�

2NGSM � 2NGSM rather than 2DGSM

�

2DGSM � 2DGSM (Proposi-

tion 4). This new inclusion can be proved like the latter one [ChJ�a77].
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3 MSO De�nable String Transductions

As explained in the Preliminaries, we consider mso logic on graphs as a means

of specifying string transductions, rather than dealing directly with strings.

Although we are mainly interested in graph transductions that have

string-like graphs as their domain and range, occasionally we �nd it useful

to allow more general graphs as intermediate products of our constructions.

In this section we recall the de�nition of mso graph transductions, and

from it we derive two families of mso de�nable string transductions, which

di�er in the way strings are represented by graphs. We present basic exam-

ples, and characterize the relation between the two families we have de�ned.

We start with the general de�nition.

An mso de�nable transduction [Cou91, Cou94, Eng91a, EnOo97, See92]

is a (partial) function that constructs for a given input graph a new output

graph as speci�ed by a number of mso formulas. Here we consider the de-

terministic (or, `parameterless') mso transductions of [Cou94]. For a graph

satisfying a given domain formula '

dom

we take copies of each of the nodes,

one for each element of a �nite copy set C. The label of the c-copy of node

x (c 2 C) is determined by a set of formulas '

c

�

(x), one for each symbol �

in the output alphabet. We keep only those copies of the nodes for which

exactly one of the label formulas is true. Edges are de�ned according to

formulas '

c

1

;c

2



(x; y): we construct an edge with label  in the output graph

from the c

1

-copy of x to the c

2

-copy of y whenever such a formula holds.

10 De�nition. An mso de�nable (graph) transduction � : GR(�

1

;�

1

) !

GR(�

2

;�

2

) is speci�ed by

{ a closed domain formula '

dom

,

{ a �nite copy set C,

{ node formulas '

c

�

(x), with one free node variable x, for every � 2 �

2

and every c 2 C, and

{ edge formulas '

c

1

;c

2



(x; y) with two free node variables x; y, for every

 2 �

2

and all c

1

; c

2

2 C,

where all formulas are in MSO(�

1

;�

1

).

For g 2 GL('

dom

) with node set V

g

, the image �(g) is the graph (V;E; `),

de�ned as follows. We will write u

c

rather than (u; c) for elements of V

g

�C.
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{ V = fu

c

j u 2 V

g

; c 2 C;

there is exactly one � 2 �

2

such that g j= '

c

�

(u)g;

{ E = f(u

c

1

; ; v

c

2

) j u

c

1

; v

c

2

2 V;  2 �

2

; g j= '

c

1

;c

2



(u; v)g, and

{ `(u

c

) = � if g j= '

c

�

(u), for u

c

2 V , � 2 �

2

.

2

11 Example. Let � = fa; bg. As a simple example we present an mso graph

transduction from GR(�; �) to GR(�; fa; b; �g) that transforms a linear graph

representing a string into a ladder, while moving the symbols from the nodes

to the steps.

Domain formula '

dom

expresses that the input graph is a string repre-

sentation (see the end of Section 1).

The copy set C is f1; 2g.

Each node is copied twice: '

1

�

= '

2

�

= true.

Unlabelled edges are copied twice, one of these in reverse:

'

1;1

�

= edge

�

(x; y), '

2;2

�

= edge

�

(y; x), '

1;2

�

= '

2;1

�

= false.

Labelled edges are introduced:

'

1;2

�

= (x = y) ^ lab

�

(x), '

1;1

�

= '

2;1

�

= '

2;2

�

= false, for � = a; b.

a

b

a

b b

a

b

a

b b

2

The family of mso de�nable graph transductions is denoted by grMSO.

Its basic properties are summarized below, see, e.g., [Cou97, Prop. 5.5.6].
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12 Proposition.

1. grMSO is closed under composition.

2. The mso de�nable graph languages are closed under inverse mso de�n-

able graph transductions.

We now consider mso de�nable graph transductions as a tool to specify

string transductions.

There are two equally natural (and well-known) ways of representing a

string as a graph. First, as we have seen in the Preliminaries, for a string

w 2 �

�

of length k, we may represent w by the graph nd-gr(w) in GR(�; �),

consisting of k nodes labelled by the consecutive symbols of w, and k � 1

(unlabelled) edges representing the successor relation for the positions of the

string. Dually, w can be represented by the graph ed-gr(w) in GR(�;�),

consisting of k+1 (unlabelled) nodes, connected by k edges that form a path

labelled by the symbols of w. In the �gure below we show ed-gr(ababb). Note

that ed-gr(�) consists of one unlabelled node.

a

b

a

b b

It will turn out that the `edge graph representation' of strings is more

naturally related to two-way machines than the `node graph representation'.

13 De�nition.

1. Let �

1

;�

2

be two alphabets, and let m � �

�

1

� �

�

2

be a string trans-

duction.

i. Its translation to graphs f(ed-gr(w); ed-gr(z)) j (w; z) 2 mg in

GR(�;�

1

)�GR(�;�

2

) is denoted by ed-gr(m);

ii. its translation to graphs f(nd-gr(w); nd-gr(z)) j (w; z) 2 mg in

GR(�

1

; �)�GR(�

2

; �) is denoted by nd-gr(m).

2. MSOS denotes the family of all string transductionsm such that ed-gr(m)

belongs to grMSO, and MSOS

nd

denotes the family of all string trans-

ductions m such that nd-gr(m) belongs to grMSO.

2
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1 1 1

2 2 2

1

2

1

3

a a a

b b b

a

b

a

Figure 3: Edge representation for (a

3

b

2

aba; a

3

b

3

aba), cf. Example 14

A transduction in MSOS is called an mso de�nable string transduction,

and a transduction in MSOS

nd

is called a �-restricted mso de�nable string

transduction. The reason for this terminology will be explained in Lemma 18.

14 Example. Consider the transduction ed-gr(m), where m is the string

transduction from Example 2,

f (a

i

1

ba

i

2

b � � �a

i

n

ba

i

n+1

; a

i

1

b

i

1

a

i

2

b

i

2

� � �a

i

n

b

i

n

a

i

n+1

) j n � 0; i

1

; : : : ; i

n+1

� 0 g:

The formulas for the construction of the output graph have nodes as their

reference points, whereas the information (symbols) is attached to the edges.

Hence we frequently use the formula out

�

(x) = (9y)edge

�

(x; y).

As in Example 3 we have an expression �s

0

a

(x; y) denoting the �rst node

in the present segment of a's, this time referring to outgoing edges:

y � x ^ (8z)(y � z ^ z � x! out

a

(z)) ^ :(9z)(edge

a

(z; y))

Similarly, we have the edge variant next

0

a

(x; y) by replacing the subfor-

mulas lab

a

(y) by out

a

(y) in the original formula next

a

(x; y).

Choosing the copy set C = f1; 2; 3g, and the domain formula de�ning

edge representations of strings, the transduction ed-gr(m) is de�ned by the

following formulas.

'

1

�

= out

a

(x)

'

2

�

= out

a

(x) ^ (9y)(x � y ^ out

b

(y))

'

3

�

= :out

a

(x) ^ :out

b

(x), the �nal node of the string,

'

1;1

a

= edge

a

(x; y)
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'

1;2

a

= (9z)(edge

a

(x; z) ^ :out

a

(z)) ^ �s

0

a

(x; y)

'

1;3

a

= :(9z)('

1;1

a

(x; z) _ '

1;2

a

(x; z))

'

2;2

b

= edge

a

(x; y)

'

2;1

b

= (9z)(edge

a

(x; z) ^ :out

a

(z)) ^ next

0

a

(x; y)

'

2;3

b

= :(9z)('

2;1

b

(x; z) _ '

2;2

b

(x; z))

'

3;j

�

= false, for j = 1; 2; 3.

The construction is illustrated in Figure 3 for (a

3

b

2

aba; a

3

b

3

aba) 2 m.

Note that we have put the copy numbers within the nodes. 2

The transition from one graph representation to the other is (essentially)

de�nable as mso graph transduction, and will be heavily used in the sequel.

We discuss this in the next example.

15 Example. The graph transduction ed2nd = f (ed-gr(w); nd-gr(w)) j w 2

�

�

g : GR(�;�)! GR(�; �) from the edge representation of a string into its

node representation is mso de�nable, as follows.

{ '

dom

expresses that the input is a string representation, an edge-labelled

path (consisting of at least one node);

{ the copy set C equals f1g;

{ '

1

�

= (9y)(edge

�

(x; y)) , i.e., the label � is moved from the edge to

its source node. None of these formulas is true for the �nal node of the

input graph, which means that this node is not copied;

{ '

1;1

�

=

W

�2�

edge

�

(x; y) , i.e., edges are copied, without their labels.

The inverse mapping ed2nd

�1

= f (nd-gr(w); ed-gr(w)) j w 2 �

�

g :

GR(�; �) ! GR(�;�) is not mso de�nable: The representation nd-gr(�) of

the empty string has no nodes that can be copied to obtain the single node

of ed-gr(�).

If we omit the empty string, the graph transduction nd2ed = f (nd-gr(w);

ed-gr(w)) j w 2 �

�

; w 6= � g can be de�ned as follows.

{ '

dom

again expresses that the input is a string representation, a (non-

empty) node-labelled path;
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{ the copy set equals f1; 2g;

{ '

1

�

= true, '

2

�

= :(9y)(edge

�

(x; y)) , i.e., all nodes are copied once,

except the last one which gets two copies;

{ '

1;1

�

= edge

�

(x; y) ^ lab

�

(x) , i.e., the label is moved from the node

to its outgoing edge;

{ '

1;2

�

= (x = y) ^ lab

�

(x) , which deals with the last edge;

{ '

2;1

�

= '

2;2

�

= false.

2

The above example illustrates an important technical point: every mso

graph transduction maps the empty graph to itself (provided it belongs to

the domain). This means that, when using the node-encoding nd-gr for

strings, the empty string can only be mapped to itself. As we do not want

to restrict ourselves to this kind of transductions, we have chosen to consider

both variants of mso de�nable string transductions. Although nd-gr(w) is

a slightly more direct graph representation of the string w in terms of its

positions and their successor relation, the advantage of ed-gr(w) is that it is

never empty and thus satis�es all the usual logical laws.

The transition from node representation to edge representation for strings

does not inuence the validity of B�uchi's result.

16 Proposition. A string language K � �

�

is regular i� there is a closed

formula ' of MSO(�;�) such that K = fw 2 �

�

j ed-gr(w) j= 'g.

Proof. Rather direct, using B�uchi's result (Proposition 1(2)) and Proposi-

tion 12(2). We consider one implication (from right to left) only.

Let the string language K � �

�

be de�ned by the closed formula ' of

MSO(�;�), as in the statement of the lemma (using the edge representation).

We show that there exists a formula de�ningK using the node representation.

Consider the mso de�nable graph transduction nd2ed mapping nd-gr(w) to

ed-gr(w) for all non-empty w 2 �

�

, cf. Example 15. The graph language

nd2ed

�1

(GL(')) = fnd-gr(w) j w 2 �

�

; w 6= �; ed-gr(w) j= 'g is mso de�n-

able, say by an mso formula  of MSO(�; �). It de�nes the string language

L( ) = fw 2 �

�

j nd-gr(w) j=  g = fw 2 �

�

j ed-gr(w) j= ';w 6= �g =

K �f�g. If � =2 K, then we are done; otherwise, consider L( _:(9x)true).

2
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The families MSOS

nd

and MSOS are equal, up to a small technicality

involving the empty string |a point already illustrated in Example 15, and

in the proof of Proposition 16.

To prove this, we use the following basic fact (cf. [Cou94, Proposi-

tion 3.3]).

17 Lemma. Let �

1

and �

2

be mso de�nable graph transductions from GR(�

1

;

�

1

) to GR(�

2

;�

2

).

If �

1

and �

2

have disjoint domains, then also �

1

[ �

2

2 grMSO.

Proof. Consider �

i

�xed by the copy set C

i

and formulas '

dom;i

, '

c

�;i

, and

'

c

1

;c

2

;i

. We may assume that C

1

and C

2

are disjoint.

The domain formula for the union is the disjunction '

dom;1

_ '

dom;2

; its

copy set is C = C

1

[ C

2

.

The node formulas and the edge formulas for both transductions are also

taken together (by disjunction), but we ensure that they are applicable only

for the appropriate input by changing '

c

�;i

to '

dom;i

^ '

c

�;i

, and similarly for

the edge formulas. We add '

c

1

;c

2



= '

c

2

;c

1



= false for c

1

2 C

1

, c

2

2 C

2

,  2 �

2

.

2

18 Lemma. Let m � �

�

1

� �

�

2

be a string transduction. Then

m 2 MSOS

nd

i� m 2 MSOS and (�; z) 2 m implies z = �.

Proof. (1) From left to right; assumem 2 MSOS

nd

, i.e., nd-gr(m) 2 grMSO.

We splitm into the mappings m̂ = f(w; z) 2 m j z 6= �g, and m

�

= f(w; z) 2

m j z = �g.

As nd-gr(m) 2 grMSO, also ed-gr(m̂) = ed2nd

�

nd-gr(m)

�

nd2ed is mso

de�nable, by Proposition 12(1).

By Proposition 12(2), the domain of ed-gr(m

�

) is mso de�nable as it is

the inverse image of fnd-gr(�)g for the transduction ed2nd

�

nd-gr(m). Now

it is easily seen that ed-gr(m

�

) 2 grMSO using for '

dom

the formula de�ning

the domain of ed-gr(m

�

), C = f1g, '

1

�

= :(9y)edge(x; y), and '

1;1



= false.

The union ed-gr(m) = ed-gr(m̂)[ed-gr(m

�

) is mso de�nable by Lemma 17.

Hence, m 2 MSOS. We have discussed already that the image of � under m

must be � (provided � belongs to the domain of m) as nd-gr(�) has no nodes

to copy.

(2) From right to left; assume m 2 MSOS, i.e., ed-gr(m) 2 grMSO.
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Then also nd-gr(m̂) = nd2ed

�

ed-gr(m)

�

ed2nd is mso de�nable, where

m̂ = m� f(�; �)g.

We are ready when � does not belong to the domain of m. Otherwise, as

the transduction f(nd-gr(�); nd-gr(�))g, mapping the empty graph to itself,

is easily seen to be mso de�nable, nd-gr(m) 2 grMSO follows by Lemma 17.

2

We �nally observe that, from Proposition 12(1), it immediately follows

that MSOS is closed under composition. Together with the closure under

composition of 2DGSM (Proposition 4) this has been a strong indication for

the equality of these two families, proved in the next section.
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4 Logic and Machines

In this section we establish our main result, the equivalence of the deter-

ministic two-way sequential machines from Section 2, and the mso de�nable

string transductions from Section 3: MSOS = 2DGSM.

The �rst steps towards this result were taken already in Section 2 when

we introduced the 2gsm with mso instructions, and showed its equivalence

to the basic two-way generalized sequential machine.

One technical notion that will be essential to bridge the �nal gap between

logic and machine is modelled after Figure 1 in Example 2. That �gure

depicts the computation of a 2gsm on a given input string. The input string

w can naturally be represented by nd-gr(`wa) with nodes corresponding to

positions on the tape. On the other hand, the output string z is represented

as ed-gr(z

0

) where the edges conveniently correspond to steps of the 2gsm

from one position to another (and where z is obtained from z

0

by erasing �,

i.e., by removing the unlabelled edges).

We introduce a notation for this representation. Let m : �

�

1

! �

�

2

be

a string transduction. We use tape(m) to denote the graph transduction

f (nd-gr(`wa); ed-gr(z)) j (w; z) 2 m g from GR(�

1

[f`;ag; �) to GR(�;�

2

).

19 Example. Consider the transduction tape(m), where m is the string

transduction from Example 2,

f (a

i

1

ba

i

2

b � � �a

i

n

ba

i

n+1

; a

i

1

b

i

1

a

i

2

b

i

2

� � �a

i

n

b

i

n

a

i

n+1

) j n � 0; i

1

; : : : ; i

n+1

� 0 g:

Previously we have shown that m 2 2DGSM, here we will demonstrate

that tape(m) is an mso de�nable graph transduction.

Recall the predicate next

�

(x; y) from Example 3.

For tape(m) the domain formula speci�es linear graphs of the form nd-gr(`wa),

w 2 fa; bg

�

, the copy set C is f1; 3; 5g, and we have formulas

'

1

�

= lab

a

(x),

'

3

�

= lab

a

(x) ^ (9y)(x � y ^ lab

b

(y)),

'

5

�

= lab

a

(x),

'

1;1

a

= edge

�

(x; y),

'

1;3

a

= (x = y) ^ :(9z)(edge

�

(x; z) ^ lab

a

(z)),

'

1;5

a

= edge

�

(x; y),
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a

Figure 4: Mso transduction tape(m) from Example 19

'

3;3

b

= edge

�

(y; x),

'

3;1

b

= (9z)(next

b

(x; z) ^ next

a

(z; y)) ^ :(9z)(edge

�

(z; x) ^ lab

a

(z)),

i.e., connect to the �rst a of the next segment when we are at the �rst

a of the present segment,

'

3;5

b

= :(9z)('

3;1

b

(x; z) _ '

3;3

b

(x; z)),

'

i;j

�

= false, in all other cases.

Note that the output of the transduction (cf. the lower graph in Figure 4)

is obtained by contracting unlabelled paths in the computation graph of the

2dgsm from Example 2, Figure 1. 2

The observation from the example is generally true: a string transduction

m is realized by a 2dgsm if and only if its graph representation tape(m) is

mso de�nable. We prove the two implications separately.

20 Lemma. Let m : �

�

1

! �

�

2

be a string transduction.

If m 2 2DGSM, then tape(m) 2 grMSO.

Proof. LetM = (Q;�

1

;�

2

; �; q

in

; q

f

) be a 2dgsm realizing the string trans-

ductionm : �

�

1

! �

�

2

, and consider a �xed input string w = �

1

� � ��

n

, �

i

2 �

1

for i = 1; : : : ; n. Additionally we use �

0

= ` and �

n+1

= a.

We can visualize the `computation space' ofM on w by constructing a

graph 

M

(w) that has as its nodes the pairs hp; ii, where p is a state ofM,
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/
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/
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b
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1

2

5
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4

3

b
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1

2

5

/

4
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a
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1
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/
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a
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b
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/
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/
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a
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Figure 5: Computation space 

M

(a

3

b

2

aba) for the 2dgsmM in Example 2

and i 2 f0; 1; : : : ; n; n+ 1g is one of the positions of the input tape carrying

`wa. The edges of 

M

(w) are chosen in accordance with the instruction set �

ofM: for each instruction t = (p; �; q

1

; �

1

; �

1

; q

0

; �

0

; �

0

) in � there is an edge

from hp; ii to hq

1

; i+ �

1

i if �

i

equals �, and an edge from hp; ii to hq

0

; i+ �

0

i

otherwise. The edge is labelled by the output symbol �

i

2 �

2

[ f�g. In this

context we will consider � as a labelling symbol (rather than as a string of

length zero) in order to avoid notational complications.

In Figure 5 we illustrate the computation space for the 2dgsm from Exam-

ple 2 on input a

3

b

2

aba (with output � omitted, as usual). The computation

on that input is represented as a bold path (cf. Figure 1).

As M is deterministic, every node of 

M

(w) has at most one outgoing

edge. The output of the computation of M on w can then be read from



M

(w) by starting in node hq

in

; 0i, representing M in its initial con�gura-

tion, and following the path along the outgoing edges. The computation is

successful if it ends in a �nal con�guration hq

f

; ki. We will mark the initial

and �nal nodes of 

M

(w) by special labels . and /, the other nodes remain

unlabelled (represented in our speci�cation by `�').

Note that the graph 

M

(w) does not only represent the computation of
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M on w starting in the initial state and 0-th position of the tape (marked

by `) but rather all possible computations that result from placingM on an

arbitrary position of the tape, in an arbitrary state.

We construct a series of mso graph transductions, the composition of

which maps nd-gr(`wa) to ed-gr(z) for each (w; z) 2 m. As grMSO is closed

under composition (Proposition 12), this proves the lemma.

The �rst graph transduction �

1

maps nd-gr(`wa) to 

M

(w). The sec-

ond graph transduction �

2

selects the path in 

M

(w) corresponding to the

successful computation ofM on w (if it exists) by keeping only those nodes

that are reachable from the initial con�guration and lead to a �nal con�gu-

ration. The last graph transduction �

3

removes edges labelled by � (used as

a symbol representing the empty string) while contracting paths consisting

of these edges.

Step one: constructing 

M

(w). Let �

1

: GR(�

1

[ f`;ag; �) ! GR(f�; .; /g;

�

2

[ f�g) be the graph transduction that constructs 

M

(w). We follow the

general description above, and formalize �

1

as mso transduction.

The domain formula of the transduction speci�es that the graph is of the

form nd-gr(`wa) for some string w. The copy set equals C = Q, where Q

is the set of states ofM. The node hq; ii of 

M

(w) is identi�ed with u

q

i

, the

q-copy of the node u

i

of nd-gr(`wa) corresponding to the i-th position of the

input tape, labelled with �

i

.

The labels of the edges are chosen according to the instructions of M.

For � 2 �

2

[ f�g, p; q 2 Q, and � 2 f�1; 0;+1g let step[�]

p;q

�

(x) be the

following disjunction, where the unspeci�ed `dots' range over their respective

components:

_

(p;�;q;�;�;:;:;:)2�

lab

�

(x) _

_

(p;�;:;:;:;q;�;�)2�

� 6=�

lab

�

(x)

Then,

'

p;q

�

= (edge

�

(x; y) ^ step[+1]

p;q

�

(x))

_ (x = y ^ step[0]

p;q

�

(x))

_ (edge

�

(y; x) ^ step[�1]

p;q

�

(x))
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All copies of the nodes are present, with special labels for initial and �nal

nodes:

'

q

.

= lab

`

(x), when q = q

in

, and '

q

.

= false, otherwise.

'

q

/

= true, when q = q

f

, and '

q

/

= false, otherwise.

'

q

�

= :'

q

.

(x) ^ :'

q

/

(x).

Note that we assume that q

in

6= q

f

, in order to avoid that both '

q

.

and '

q

/

are de�ned for the initial node. This is the case whenM accepts any input

in its initial state without executing instructions. We satisfy the assumption

by adding additional instructions to a new �nal state.

Step two: selecting the computation path. The transduction �

2

: GR(f�; .; /g;

�

2

[ f�g)! GR(�;�

2

[ f�g) removes nodes that are not on the path from

the node labelled by . to a node labelled by / (if it exists). Nodes that are

not on such a path do not correspond to the con�gurations that are part of

the (successful) computation of M on w. Note that if such a path exists,

then it is unique.

Recall that the predicate � speci�es the existence of a path from x to y.

By x �

�

y we restrict ourselves below to a path containing only edges with

label �.

Formally,

'

dom

= (9x)(9y)[lab

.

(x) ^ lab

/

(y) ^ x � y],

C = f1g,

'

1

�

(x) = (9y)(9z)[lab

.

(y) ^ y � x ^ lab

/

(z) ^ x � z]

and, for � 2 �

2

[ f�g, '

1;1

�

(x; y) = edge

�

(x; y).

Step three: contracting �-paths. The last graph transduction of three, �

3

:

GR(�;�

2

[ f�g) ! GR(�;�

2

) deletes all nodes that have an outgoing �-

labelled edge, and contracts each �-path to its last node.

This can be speci�ed with the trivial copy set C = f1g, node formula

'

1

�

= :(9y)(edge

�

(x; y)), and edge formulas '

1;1

�

= (9z)(edge

�

(x; z)^z �

�

y),

for � 2 �

2

. 2
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Now that the 2dgsm has learned to understand the language of monadic

second-order logic, cf. Theorem 9, the converse of the previous result has a

rather straightforward proof.

21 Lemma. Let m : �

�

1

! �

�

2

be a string transduction.

If tape(m) 2 grMSO, then m 2 2DGSM.

Proof. Starting with the mso transduction tape(m) : GR(�

1

[ f`;ag; �)!

GR(�;�

2

) we build a 2dgsm-msoM for m that closely follows the mso spec-

i�cation of tape(m).

Assume tape(m) is speci�ed by domain formula '

dom

, copy set C, node

formulas '

c

�

, c 2 C, and edge formulas '

c

1

;c

2

�

, c

1

; c

2

2 C, � 2 �

2

. The state

set ofM is (in principle) equal to the copy set C: when '

c

1

;c

2

�

(u; v) is true

for a pair u; v of nodes, then M, visiting the position corresponding to u

of the input tape in state c

1

, may move to the position corresponding to v

changing to state c

2

, while writing � to the output tape.

Note that, for each input graph g, tape(m)(g) de�nes a graph represen-

tation of a string, hence at most one of these formulas de�nes an edge in

a given position (node) and a given state (copy). However, in general the

formula '

c

1

;c

2

�

is only functional as far as graphs g satisfying the domain

formula '

dom

are concerned, and for these graphs only when restricted to

nodes for which the respective c

1

and c

2

copies are de�ned. Since our formal

de�nition of 2dgsm-mso demands functional moves, we consider the formulas

 

c

1

;c

2

�

(x; y) = '

c

1

;c

2

�

(x; y) ^ '

c

1

�

(x) ^ '

c

2

�

(y) ^ '

dom

.

The instructions ofM are of the form

(c

1

; (9y)( 

c

1

;c

2

�

(x; y)); c

2

; �;  

c

1

;c

2

�

(x; y) )

{ but this is 5-tuple notation, and has to be replaced by 8-tuples where for

a �xed state c

1

each of the alternatives (c

2

; �) 2 C � �

2

has to be tested

consecutively, as explained in the paragraph about 2gsm in Section 2 (using

additional states).

If none of the edge formulas gives a positive result, the present node has

no successor, which indicates the last position of the output string. In that

case, the series of consecutive tests ends up in the �nal state q

f

.

Initially M has to �nd the unique node of the output graph that has

no incoming edges. We solve this by adding the new initial state q

in

from

which this node is found by testing all possibilities, but again in a consecutive
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fashion, for c

2

2 C:

(q

in

; (9y)['

c

2

�

(y) ^ :incom

c

2

(y)]; c

2

; �; '

c

2

�

(y) ^ :incom

c

2

(y) )

where incom

c

2

(y) abbreviates (9z)

W

c

1

2C;�2�

2

( 

c

1

;c

2

�

(z; y)). 2

22 Lemma. Let � be an alphabet. The transduction tape(id) : GR(� [

f`;ag; �) ! GR(�;�) mapping nd-gr(`wa) to ed-gr(w) is an element of

grMSO, as is its inverse tape(id)

�1

.

Proof. The identity on �

�

is easily performed by an 2dgsm. Hence tape(id) 2

grMSO, by Lemma 20.

As for the inverse tape(id)

�1

, note that mapping ed-gr(w) to ed-gr(`wa)

is mso de�nable because ed-gr(w) has at least one node, which may be copied

to provide the additional nodes that are connected by edges labelled by `

and a to the original graph. We now compose this mapping by ed2nd, which

is mso de�nable by Example 15. 2

We complete the section by deriving the equivalence between the mso de-

�nable string transductions and the deterministic two-way �nite state trans-

ductions, uniting logic and machines.

23 Theorem. MSOS = 2DGSM.

Proof. By our previous lemma, the transduction tape(id) from nd-gr(`wa)

to ed-gr(w), for w 2 �

�

1

, is an element of grMSO, as is its inverse tape(id)

�1

.

By the equalities tape(m) = tape(id)

�

ed-gr(m), and ed-gr(m) = tape(id)

�1

�

tape(m), and the closure of grMSO under composition (Proposition 12), we

have m 2 MSOS i� (by de�nition) ed-gr(m) 2 grMSO i� tape(m) 2 grMSO.

The result now follows from Lemmas 20 and 21 demonstrating tape(m) 2

grMSO i� m 2 2DGSM. 2

As an immediate consequence of this result and Lemma 18 we obtain the

equivalence between the corresponding �-restricted transductions.

We use 2DGSM� to denote those relations m in 2DGSM that satisfy

(�; z) 2 m implies z = �, cf. Lemma 18.

24 Corollary. MSOS

nd

= 2DGSM�.
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5 Nondeterminism

In this section we de�ne the nondeterministic mso de�nable graph transduc-

tions, and their derived string relatives. We observe that nondeterministic

mso transductions are related to the deterministic mso transductions via

relabelling of the input.

A nondeterministic variant of mso de�nable transductions is considered

in [Cou91, Cou94]. All the formulas of the deterministic version may now

have additional free node-set variables X

1

; : : : ; X

k

, called `parameters', the

same for each of the formulas. For each valuation of the parameters (by sets

of nodes of the input graph) that satis�es the domain formula, the other

formulas de�ne the output graph as before. Hence each valuation may lead

to a di�erent output graph for the given input graph: nondeterminism.

More formally, a nondeterministic mso de�nable (graph) transduction � �

GR(�

1

;�

1

)�GR(�

2

;�

2

) is speci�ed by

{ a set of parameters X

1

; : : : ; X

k

, k � 0,

{ a domain formula '

dom

(X

1

; : : : ; X

k

),

{ a �nite copy set C,

{ node formulas '

c

�

(x;X

1

; : : : ; X

k

) for � 2 �

2

, c 2 C, and

{ edge formulas '

c

1

;c

2



(x; y;X

1

; : : : ; X

k

) for  2 �

2

, c

1

; c

2

2 C,

where all formulas are in MSO(�

1

;�

1

).

Recall from Section 1 that an input graph together with a valuation of

the parameters can be represented by a �-valuated graph g which has node

labels in �

1

� f0; 1g

�

(where � = fX

1

; : : : ; X

k

g) such that gj�

1

is the input

graph, and �

g

is the valuation. By de�nition, g 2 GL('

dom

) i� gj�

1

; �

g

j=

'

dom

(X

1

; : : : ; X

k

).

For each g 2 GL('

dom

) we de�ne the graph �̂ (g) similar to �(g) in De-

�nition 10. The nodes of �̂ (g) are de�ned using gj�

1

j= '

c

�

(u; U

1

; : : : ; U

k

),

where U

i

= �

g

(X

i

), rather than g j= '

c

�

(u), and similarly for the edges

and node labelling of �̂ (g). The transduction � is then de�ned as follows:

� = f (gj�

1

; �̂(g)) j g 2 GL('

dom

) g.

25 Example. Let m � fag

�

� fa; b;#g

�

be the relation

f (a

n

; w#w) j n � 0; w 2 fa; bg

�

; jwj = n g:
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The relation ed-gr(m) can be realized by a nondeterministic mso de�nable

transduction, with parameters X

a

and X

b

. The nodes of the input graph are

copied twice, and the parameters determine whether the outgoing edge of a

node in the input is copied as a-edge or b-edge, respectively.

The components of the transduction are as follows. The copy set equals

C = f1; 2g, the domain formula '

dom

(X

a

; X

b

) expresses that the input graph

is a string representation, and additionally that the sets X

a

and X

b

form a

partition of its nodes.

All input nodes are copied twice: '

1

�

(x;X

a

; X

b

) = '

2

�

(x;X

a

; X

b

) = true.

The edge labels are changed according to the sets X

a

and X

b

, additionally

the last node of the �rst copy is connected to the �rst node of the second

copy by an #-edge:

'

1;1

�

(x; y;X

a

; X

b

) = '

2;2

�

(x; y;X

a

; X

b

) = edge

a

(x; y) ^ x 2 X

�

,

for � = a; b,

'

1;2

#

(x; y;X

a

; X

b

) = :(9z)edge

a

(x; z) ^ :(9z)edge

a

(z; y),

'

i;j

�

(x; y;X

a

; X

b

) = false, for all other combinations i; j; �.

Mapping aaa to abb#abb can be realized by taking the valuation �(X

a

) = f1g,

�(X

b

) = f2; 3; 4g.

Note that this example can be changed such that it uses only one para-

meter, as the sets represented by the parameters are complementary. 2

We use grNMSO, NMSOS

nd

, and NMSOS to denote the nondeterministic

counterparts of the families grMSO, MSOS

nd

, and MSOS, respectively. The

family of (nondeterministic) 2gsm transductions is denoted by 2NGSM.

Unlike the deterministic case, the power of the nondeterministic 2gsm

is incomparable to that of the nondeterministic mso de�nable string trans-

duction. First, because the number of parameter valuations is �nite, every

nondeterministic mso transduction is �nitary. This is not true for the 2gsm,

which can realize the (non-�nitary) transduction f (a

n

; a

mn

) j m;n � 1 g, by

nondeterministically choosing the number m of copies made of the input.

On the other hand, the nondeterministic mso transduction of the previous

example cannot be realized by a 2gsm.

26 Lemma. Let m � fag

�

� fa; b;#g

�

be the relation f (a

n

; w#w) j n �

0; w 2 fa; bg

�

; jwj = n g. Then m =2 2NGSM.
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Proof. Assume m is realized by a (nondeterministic) 2gsmM with k states.

Choose n such that 2

n

> k � (n+ 2). Consider the behaviour ofM on input

a

n

. The input tape, containing `a

n

a, has n + 2 positions. Hence, M has

k � (n+ 2) con�gurations on this input. Consider the con�guration assumed

by M when it has just written the symbol # on its output tape. As there

are 2

n

possible output strings w#w for a

n

, there exist two strings w

1

and

w

2

for which this con�guration is the same. This means that we can switch

the computation of (a

n

; w

1

#w

1

) halfway to the computation of (a

n

; w

2

#w

2

)

obtaining a computation for (a

n

; w

1

#w

2

) with w

1

6= w

2

, which is not an

element of m. 2

It is not di�cult to see that the relation m from the lemma, can be real-

ized by the composition of two 2gsm's, the �rst nondeterministically mapping

a

n

to a string w 2 fa; bg

�

with jwj = n, the second (deterministically) dou-

bling its input w to w#w. This shows that 2NGSM is not closed under

composition, as proved in [Kie75] for the corresponding families of output

languages. In fact, the families 2NGSM

k

of compositions of k 2gsm trans-

ductions form a strict hierarchy, as proved in [Gre78c, Eng82, Eng91b] (again

for the corresponding families of output languages).

However, the nondeterministic mso transductions are closed under com-

position [Cou97, Prop. 5.5.6].

27 Proposition. grNMSO, and consequently NMSOS and NMSOS

nd

are

closed under composition.

By grREL we denote the family of (nondeterministic) node relabellings

for graphs. A relation in GR(�

1

;�)�GR(�

2

;�) is a node relabelling if there

exists a relation R � �

1

� �

2

such that the images of a graph g are exactly

those graphs that can be obtained from g by replacing every occurrence of a

node label � by an element of R(�), leaving edges and their labels unchanged.

We use REL to denote the family of (nondeterministic) string relabellings,

related to grREL through the mapping nd-gr.

We observe the following elementary relationship between deterministic

and nondeterministic mso de�nable graph transductions.

28 Theorem. grNMSO = grREL

�

grMSO.
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Proof. The proof of the �rst inclusion grNMSO � grREL

�

grMSO is

implicit in our de�nition of grNMSO. The nondeterminism of an mso trans-

duction � with parameters X

1

; : : : ; X

k

can be `pre-processed' by a relabelling

� that maps each node label � 2 �

1

nondeterministically to a symbol

(�; f) 2 �

1

� f0; 1g

�

, where � = fX

1

; : : : ; X

k

g. The valuation of X

i

has

now become a part of the labelling, and we change the domain formula

'

dom

(X

1

; : : : ; X

k

), the node formulas '

c

�

(x;X

1

; : : : ; X

k

), and the edge for-

mulas '

c

1

;c

2



(x; y;X

1

; : : : ; X

k

) that specify the mso transduction accordingly.

Each atomic subformula y 2 X

i

in such a formula is replaced by the disjunc-

tion

W

f(X

i

)=1;�2�

1

lab

(�;f)

(y), and each atomic subformula lab

�

(y) is replaced

by

W

f :�!f0;1g

lab

(�;f)

(y). In this way we obtain `deterministic' equivalents

'̂

dom

, '̂

c

�

(x), '̂

c

1

;c

2



(x; y) for mso transduction �̂ . We now have � = �

�

�̂ which

follows by observing that for a graph g 2 GR(�

1

� f0; 1g

�

; �), g j= '̂

dom

if

and only if gj�

1

; �

g

j= '

dom

(X

1

; : : : ; X

k

), and similarly for the other formulas.

For the converse inclusion grNMSO � grREL

�

grMSO, it su�ces to

note that each nondeterministic node relabelling is a nondeterministic mso

de�nable graph transduction. The inclusion then follows from the closure of

grNMSO under composition, Proposition 27.

Let R � �

1

��

2

de�ne a graph node relabelling. We formalize it as mso

graph transduction from GR(�

1

;�) to GR(�

2

;�) by choosing parameters

X

�

, � 2 �

2

, with the intended meaning that a node belonging to X

�

will be

relabelled into � .

The domain formula '

dom

expresses that the X

�

form an `admissable'

parameter set by demanding each node to be in exactly one of the X

�

, and

additionally, if a node has label �, then X

�

containing this node satis�es

� 2 R(�):

(8x)

_

�2�

2

(x 2 X

�

^

^

�

0

6=�

x =2 X

�

) ^ (8x)

^

�2�

1

(lab

�

(x)!

_

�2R(�)

x 2 X

�

)

Each node is copied once, relabelled according to X

�

:

C = f1g,

'

1

�

= x 2 X

�

, � 2 �

2

,

'

1;1



= edge



(x; y),  2 �.

2
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As we have observed, any string relabelling can be `lifted' to a graph node

relabelling using the graph interpretation nd-gr of strings. By restricting the

previous result to those graph transductions that result from strings, we ob-

tain a result for mso de�nable string transductions in the node interpretation.

29 Corollary. NMSOS

nd

= REL

�

MSOS

nd

.

In addition to REL, we need MREL denoting the family of marked string

relabellings, that map a string w �rst to the `marked version' `wa, and then

apply a string relabelling.

30 Theorem. NMSOS = MREL

�

MSOS.

Proof. First, the inclusion from left to right. Let m 2 NMSOS, i.e.,

ed-gr(m) 2 grNMSO.

Consider the string transduction m

0

= f (`wa; z) j (w; z) 2 m g. Then

m

0

is an element of NMSOS

nd

, as nd-gr(m

0

) equals the composition tape(id)

�

ed-gr(m)

�

ed2nd of (nondeterministic) mso de�nable graph transductions,

where tape(id) is the mapping from nd-gr(`wa) to ed-gr(w), cf. Lemma 22.

By the corollary above, and Lemma 18, m

0

2 REL

�

MSOS

nd

� REL

�

MSOS. Consequently, as m equals the `marking' from w to `wa followed by

m

0

, m 2 MREL

�

MSOS.

For the reverse inclusion, NMSOS � MREL

�

MSOS, note that every

marked relabelling can be decomposed into a marking and a relabelling,

each of which we will show to be a (nondeterministic) mso transduction.

The inclusion then follows from the closure of NMSOS under composition.

The marking mapping w to `wa is easily seen to be an element of MSOS,

either by direct construction, or by constructing a 2dgsm for that task, and

applying Theorem 23.

Finally, to show that REL � NMSOS one closely follows the argu-

mentation in the proof of grREL � grNMSO, Theorem 28. As we rela-

bel edges, rather than nodes, in the representation ed-gr(w) of a string w,

but still have parameters ranging over nodes, we use the parameters for

the source node of an edge to determine the new label of its outgoing edge

(cf. Example 25): '

dom

is as before, but we now have '

1

�

= true, and

'

1;1

�

= edge(x; y) ^ (x 2 X

�

). 2
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For completeness we note that the above result cannot be strengthened

to NMSOS = REL

�

MSOS, as the relations on the right side are functional

for the empty string �. This is not necessarily true for NMSOS.

31 Example. The string transduction f(�; a); (�; b)g in a

�

� fa; bg

�

is real-

ized by the following nondeterministic mso transduction, in the edge repre-

sentation. The single parameter X determines whether � is mapped to a or

to b. Let

'

dom

= (9x)( (8y)(y = x) ^ :edge

a

(x; x) ),

C = f1; 2g,

'

1

�

= '

2

�

= true,

'

1;1

�

= '

2;1

�

= '

2;2

�

= false, for � 2 fa; bg, and

'

1;2

a

= x 2 X,

'

1;2

b

= :(x 2 X).

2

Combining the previous two results (that relate the nondeterministic and

deterministic mso transductions) with the equalities between deterministic

mso transductions and deterministic gsm mappings of Theorem 23, we di-

rectly obtain the following result.

32 Theorem.

NMSOS = MREL

�

2DGSM and NMSOS

nd

= REL

�

2DGSM�.
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6 Finite Visit Machines

Rajlich [Raj75] observes that 2gsm are more powerful than 2dgsm (as gen-

erative devices, by considering their output languages, i.e., the ranges of the

transductions). He demonstrates that this is mainly due to the ability of

the 2gsm to visit each of the positions of its input an unbounded number of

times.

Motivated by this result, we consider transducers that have a �xed bound

on the number of times they visit each of their input positions {we call

this the �nite visit property{ and relate these to the (nondeterministic) mso

transductions.

We show that the nondeterministic mso de�nable string transductions are

exactly those transductions that are realized by the composition of two 2gsm

with the �nite visit property. Note that one direction of this result follows

from Theorem 32.

Moreover, we characterize the nondeterministic mso de�nable string trans-

ductions as those compositions of 2gsm's that realize �nitary transductions,

i.e., transductions that de�ne a �nite number of images for every input string.

A more direct characterization can be obtained by considering 2gsm that

are allowed to rewrite the symbols on their input tape (but with the �-

nite visit property). These machines exactly match the mso de�nable string

transductions, both in the deterministic case and the nondeterministic case.

The �nite visit property was studied in, e.g., [Hen65, Raj75, Gre78a,

Gre78b, Gre78c, ERS80, Eng82].

6.1 Finite visit two-way generalized sequential machines

A computation of a 2gsm is called k-visiting if each of the positions of the

input tape is visited at most k times. The 2gsm M is called �nite visit,

if there is a constant k such that, for each pair (w; z) in the transduction

realized byM, there exists a k-visiting computation for (w; z). The family of

string transductions realized by �nite visit nondeterministic 2gsm is denoted

by 2NGSM

�n

.

Note that our de�nition is rather weak, as the machine may have many

computations that are not k-visiting, either without any chance of reaching

the �nal state, or with loops in the computation that produce no output.

If a deterministic 2gsm visits a position of the input tape twice in the same

state, then the computation will enter an in�nite loop that will not reach the
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�nal state. This implies the well-known fact that every deterministic 2gsm

is �nite visit, where we choose for k the number of states of the machine. A

similar argument enables us to prove the following characterization of �nite

visit transductions in terms of transductions that map each input string into

a �nite number of output strings.

33 Lemma. Let m be a string transduction. Then

m 2 2NGSM

�n

i� m 2 2NGSM and m is �nitary.

Proof. Clearly, the length of the output of a k-visiting computation on

input w is at most k times the length of `wa. Hence the implication from

left to right.

As for the other implication, assume that the �nitary transduction m is

realized by a 2gsm M. If during a (successful) computation for (w; z) 2

m, M visits the same position twice in the same state, then it did not

write symbols to the output in the meantime, because otherwise M has

in�nitely many output strings for the present input, as an easy pumping

argument shows. Hence we may omit this excursion from the computation.

Consequently, there is a computation ofM for (w; z) that does not visit each

of the tape positions more than k times, where k is the number of states of

M. HenceM itself is �nite visit. 2

It is well known (see, e.g., [Fis69, ChJ�a77, Gre78a, Gre78b, AhUl70])

that the computation of a �nite visit 2gsm on an input tape can be coded

as a string of `visiting sequences' (strongly related to `crossing sequences', cf.

[Rab63, Hen65, HoUl79, Bir96]). We recall how this can be done, without

going into details.

We consider several types of visits during a computation, di�ering in the

direction (�1, 0, or +1) of the steps taken by the machine just before and

just after the visit. Additionally, a visit may be either the �rst or the last

visit of the computation.

Given a computation of a 2gsm, the visiting sequence of a position of the

input tape is the sequence that starts with the symbol � on the tape, followed

by the consecutive visits of the machine to that position. Each of the visits

is given as a 4-tuple (

�

�; p;

+

�; �) consisting of the direction

�

� of the move

before the visit, the state p during the visit, the direction

+

� of the move after

the visit, and the string � written to the output during that move. For the

�rst visit we take

�

� = �, for the last visit we take

+

� = �.

We illustrate this notion with an example.
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Figure 6: Visiting sequences for Example 2, cf. Example 34.

34 Example. Consider the 2dgsm from Example 2. Each of the visiting

sequences during a successful computation is one of the following.

h `; (�; 0;+1; �); (�1; 3;+1; �) i

h `; (�; 0;+1; �) i

h a; (+1; 1;+1; a); (�1; 3;�1; b); (+1; 4;+1; �) i

h a; (+1; 1;+1; a) i

h b; (+1; 1; 0; �); (0; 2;�1; �); (+1; 4;+1; �); (�1; 3;+1; �) i

h b; (+1; 1; 0; �); (0; 2;�1; �); (+1; 4;+1; �) i

h a; (+1; 1; 0; �); (0; 2; 0; �); (0; 5; �; �) i

These visiting sequences are depicted in a suitable graphical manner in Fig-

ure 6, cf. Figure 1. 2

Each visiting sequence must satisfy some syntactical constraints.

First, the directions of the visits are `alternating'. This means that the

�rst visit enters from the left (

�

� = +1, with the exception for � = ` which

starts in the initial state with

�

� = �); then, if the move after the i-th visit

equals

+

� = �1; 0;+1, then the move prior to the i+1-st visit to the same

position must equal

�

�

0

= +1; 0;�1, respectively. Only the last visit of a
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sequence can have

+

� = �, in case the state is �nal, signalling the end of a

computation.

Secondly, the direction

+

� of the move after the visit, and the string �

written to the output, must correspond to an instruction of the machine for

the given input symbol � and the given state p. Additionally, when

+

� = 0,

the new state given by the instruction must match the next visit of the

visiting sequence.

Clearly, also neighbouring visiting sequences for a given computation

must satisfy several constraints. If a visiting sequence has k `crossings' to

the right, either outgoing visits (

�

�; p;+1; �) or incoming visits (�1; p;

+

�; �)

{they alternate{ then the visiting sequence to the right has exactly k match-

ing crossings to the left, matching both in direction (which implicitly follows

from the restrictions on single visiting sequences above) and in state change

for the machine. Note that a visit (�1; p;+1; �) represents two crossings.

Finally, the �rst visiting sequence of a computation should start with a

visit (�; q

in

;

+

�; �), and exactly one visiting sequence should end with a visit

(

�

�; q

f

; �; �).

When we bound the number of visits to each position, the visiting se-

quences come from a �nite set, and we can interprete these sequences as

symbols from a �nite alphabet. Each k-visiting computation is speci�ed by

a string over this alphabet, and we will call these strings k-tracks. (E.g., the

track in Figure 7 speci�es the computation of the 2dgsm of Example 2 on

input a

3

b

2

aba, cf. Figure 1). It should be obvious from the above remarks

that the language of such speci�cations is regular (see, e.g., Lemma 2.2 of

[Gre78a], or Lemma 1 of [ChJ�a77]). For instance, it is the heart of the proof

in [HoUl79, Theorem 2.5] of the result that two-way �nite state automata

are equivalent to their one-way counterparts [RaSc59, She59].

35 Proposition. Let M be a 2gsm, and let k be a constant. The k-tracks

for successful k-visiting computations ofM form a regular language.

From this result, using standard techniques (see e.g., [ChJ�a77, Lemma 1])

we obtain the following decomposition of �nite visit nondeterministic 2gsm

transductions. Note that this decomposition already features in Theorem 32

as characterization of NMSOS.

36 Lemma. 2NGSM

�n

� MREL

�

2DGSM = NMSOS.
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Figure 7: Track for `a

3

b

2

abaa, Example 2.

Proof. LetM be a 2gsm, �nite visit for constant k; each pair (w; z) in the

transduction realized byM can be computed by a k-visiting computation.

We may decompose the behaviour ofM on input w as follows. First, a

relabelling of `wa guesses a string of k-visiting sequences, one for each posi-

tion of the input tape. Then, a 2dgsm veri�es in a left to right scan whether

the string speci�es a valid computation, a track, of M for w, cf. Proposi-

tion 35. If this is the case, the 2dgsm returns to the left tape marker ` and

simulatesM on this input, following the k-visiting computation previously

guessed.

When changing from one tape position to a neighbouring position, the

2dgsm records the `crossing number' of that move, i.e., the number of times

it crossed the border between these two tape positions (in one direction or

another). The crossing number can be read by inspecting the directions of the

moves stored in the visiting sequence. It is used to `enter' the next visiting

sequence at the right visit, cf. Figure 7. 2

37 Theorem. NMSOS = 2NGSM

�n

�

2NGSM

�n

.

Proof. By the last lemma, 2NGSM

�n

� NMSOS. As the right-hand side

of this inclusion is closed under composition (Proposition 27) we have the

inclusion 2NGSM

�n

�

2NGSM

�n

� NMSOS.

According to Theorem 32, NMSOS equals MREL

�

2DGSM. The inclu-

sion from left to right follows from the fact that both MREL � 2NGSM

�n

and 2DGSM � 2NGSM

�n

. 2
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It is instructive to note that this characterization implies the (apparently

new) result that 2NGSM

�n

�

2NGSM

�n

is closed under composition. This

should be contrasted to the fact that 2NGSM

�n

itself is not closed under

composition. This follows from the observation from the preceding section,

that the relationm from Example 25 does not belong to 2NGSM � 2NGSM

�n

(Lemma 26). As we have observed, it can be realized as combination of two

2gsm's, the �rst one nondeterministically changing a string a

n

to a string

w 2 fa; bg

�

with jwj = n, the second one duplicating w into w#w. Both of

these 2gsm's are �nite visit. (Alternatively, by Example 25, m 2 NMSOS

which equals 2NGSM

2

�n

as we just have seen.)

The families 2DGSM, 2NGSM

�n

, and 2NGSM

2

�n

form a hierarchy of trans-

ductions. However, as far as their output languages are concerned (ranges,

or equivalently, with regular input) these three families are equally powerful

[Kie75, Gre78b].

Recall that the families 2NGSM and NMSOS are incomparable, see the

discussion preceding Lemma 26. We have a surprising characterization for

their intersection.

38 Theorem. 2NGSM \ NMSOS = 2NGSM

�n

.

Proof. Obviously 2NGSM

�n

� 2NGSM, while 2NGSM

�n

� NMSOS by

Theorem 37, which proves the inclusion from right to left.

The reverse implication is immediate from Lemma 33: recall that trans-

ductions in NMSOS are �nitary because the number of parameter valuations

is �nite. 2

Combining this theorem and the related Lemma 33, we obtain that a

2gsm string transduction is mso de�nable if and only if it is �nitary. This

generalizes a similar result of Courcelle [Cou94, Proposition 6.1] for rational

transductions (i.e., string transductions realized by 2gsm never moving to

the left). It can be extended to arbitrary compositions of two-way gsm's, as

we shall see in our next main result, Theorem 42.

As a preparation to this result (and its proof) we like to point out that

`pumping' computations for �nite visit transductions (iterating suitable seg-

ments of tracks) does not only result in duplication of parts of the output,

but may also rearrange neighbouring segments of the output. We illustrate

this with an example.
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39 Example. The 2gsm M has states 1 to 6, initial state 1, �nal state

6, and transitions (p; �; q; �; �; p; �; 0) where the move q; �; � for each pair

p 2 f1; 2; : : : ; 5g, � 2 f`; a; b;ag is given in the following matrix.

1 2 3 4 5

` 1; �;+1 3; b; 0 3; �;+1 5; b; 0 5; �;+1

a 1; a;+1 2; a;�1 3; a;+1 4; a;�1 5; a;+1

b 2; �;�1 4; �;�1 1; �;+1 5; �;+1 3; �;+1

a 2; c; 0 2; �;�1 4; c; 0 4; �;�1 6; �; 0

(Note that the machine is nondeterministic in our setting, but is obtained

by adding dummy alternatives to a deterministic automaton in the 5-tuple

framework, see Section 2.)

On each segment of a's of the input M makes �ve passes in states 1 to

5, each in alternate directions, while copying the letters to the output.

On a letter b the machine does not generate output, but it performs a

permutation of the order in which the two neighbouring segments of a's are

read. This is best explained by looking at the computations on the input

strings a

3

b

i

a

2

, i = 0; 1; 2 as depicted in Figure 8. The output strings for these

inputs are given in the following table.

input string output string

a

5

= a

3

b

0

a

2

a

5

ca

5

ba

5

ca

5

ba

5

= a

3

(a

2

ca

2

)(a

3

ba

3

)(a

2

ca

2

)(a

3

ba

3

)a

2

a

3

b

1

a

2

a

6

ba

5

ca

5

ba

5

ca

4

= a

3

(a

3

ba

3

)(a

2

ca

2

)(a

3

ba

3

)(a

2

ca

2

)a

2

a

3

b

i

a

2

, i � 2 a

6

ba

6

ba

5

ca

4

ca

4

= a

3

(a

3

ba

3

)(a

3

ba

3

)(a

2

ca

2

)(a

2

ca

2

)a

2

As we have seen, the introduction of the symbol b in the input does not

generate new output. Instead, it rearranges the parts of the computation

that extend to both sides of the symbol.

Consider the boundary between two tape positions, where we want to

insert a symbol b. Let x

1

; z

1

; x

2

; z

2

; x

3

; z

3

be the strings written to the output

during the consecutive parts of the computation that visit the left (x

i

) and

right (z

i

) segments of the tape, see Figure 9. The output generated is thus

x

1

z

1

x

2

z

2

x

3

z

3

.

Now, we introduce b at the selected boundary, and obtain the new output

x

1

x

2

z

1

x

3

z

2

z

3

. This rearrangement of the output can be formalized by the

application of the substitution �

b

: [z

1

; z

2

; z

3

 �; z

1

; z

2

z

3

] { where z

i

is a

formal parameter rather than a speci�c string.
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1
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a

a

a

a

a

a

1

2
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4

5

a

a

a

a

a

a

1

2

3

4

5

a

a

a

a

a

a

1

2

3

4

5

a

a

a

a

a

a

1

2

3

4

5

6

c

c

`

1

2

3

4

5

b

b

a

1

2

3

4

5

a

a

a

a

a

a

1

2

3

4

5

a

a

a

a

a

a

1

2

3

4

5

a

a

a

a

a

b

1

3

2

5

4

a

1

2

3

4

5

a

a

a

a

a

a

1

2

3

4

5

a

a

a

a

a

a

1

2

3

4

5

6

c

c

`

1

2

3

4

5

b

b

a

1

2

3

4

5

a

a

a

a

a

a

1

2

3

4

5

a

a

a

a

a

a

1

2

3

4

5

a

a

a

a

a

b

1

3

2

5

4

b

1

3

2

5

4

a

1

2

3

4

5

a

a

a

a

a
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1
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1

3

2
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b
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1
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Figure 8: Computations for Example 39
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The e�ect of introducing bb can be computed by the composition �

b

�

b

:

[z

1

; z

2

; z

3

 �; �; z

1

z

2

z

3

], which de�nes the rearrangement x

1

x

2

x

3

z

1

z

2

z

3

of

the output. Note that �

i

b

= �

2

b

for i � 2. 2

40 Lemma. Let m be a �nitary string transduction, and let X be a family

of string transductions.

If m 2 X

�

2NGSM

�

2DGSM, then m 2 X

�

MREL

�

2DGSM.

Proof. Assume that the �nitary transduction m is a composition m =

m

0

�

m

1

�

m

2

as in the statement of the lemma; m

0

2 X, m

1

realized by

the 2gsm M

1

, and m

2

realized by the 2dgsm M

2

. As to be expected, the

unknown family X will not feature in our arguments, but later will enable

us to apply the result in a context. In fact, we show how to replace m

1

�

m

2

by �m

1

�

�m

2

2 MREL

�

2DGSM such that m

0

�

m

1

�

m

2

= m

0

�

�m

1

�

�m

2

.

Hence m

1

�

m

2

equals �m

1

�

�m

2

on the range of m

0

.

Reconsider the proof of Lemma 36, where a k-visit 2gsm is decomposed

into a relabelling that guesses a k-visiting sequence for each position of the

input tape, and a 2dgsm that veri�es in a single left-to-right pass whether

the resulting string de�nes a k-track, and then deterministically simulates

the speci�ed computation for the original input. Alternatively, by combining

the veri�cation phase with the relabelling, we may decompose the k-visit

2gsm into a one-way gsm that nondeterministically writes a k-track, and a

2dgsm simulating the computation.

We apply that new decomposition toM

2

, and immediately observe that

the �rst phase (guessing and writing a track) can be performed byM

1

using

a straightforward direct product construction.

Summarizing: we have replaced the composition m

1

�

m

2

by a new com-

position m

0

1

�

m

0

2

realized byM

0

1

followed byM

0

2

, whereM

0

1

is a 2gsm that

writes valid tracks for the 2dgsmM

0

2

. LetM

0

2

be k-visit.

We continue by demonstrating that we need not consider all computations

of M

0

1

, instead it su�ces to put a bound on the number of visits that the

machine makes to each of the positions of its input. This will change the

transduction m

0

1

realized byM

0

1

, but not the compositionm

0

�

m

0

1

�

m

0

2

(due

to m being �nitary).

Consider the behaviour ofM

0

1

on input w, where w is in the range of m

0

.

Fix a position on the tape `wa and a state ofM

0

1

, and split the output of

M

0

1

during the computation into segments, corresponding to the consecutive
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Figure 9: Visualization of rearrangements

49



visits to the selected position in the selected state. M

0

1

writes xy

1

y

2

� � � y

t

z

where y

i

is written during the excursions in between consecutive visits. We

assume t � 1.

Returning to the same position and state, each of the excursions can be

repeated in (or omitted from) the computation ofM

0

1

, so the machine may

produce every string xyz, y 2 fy

1

; y

2

; : : : ; y

t

g

�

as possible output on input

w. By our previous construction, each output ofM

0

1

forms a k-track for the

second machineM

0

2

. This implies thatM

0

2

does not generate output during

any of its visits to the segments y

i

, as m is supposed to be �nitary.

At �rst glance, the excursion ofM

0

1

writing y = y

1

� � � y

t

can be omitted:

the second machineM

0

2

does not generate output when it visits the segment

y during its simulation of the speci�ed computation. However, the previous

example shows that y (or in fact any segment y

i

) may have its e�ect on the

output of M

0

2

by rearranging parts of the adjacent computation that leave

the segment y (to the left or to the right) in order to return there later.

We consider the computation ofM

0

2

speci�ed by the track xyz from the

viewpoint of the segment y. Starting from the leftmost position of x, the

computation enters y from the left. Before leaving the segment for the last

time, the computation makes several tours outside y.

Such a tour ofM

0

2

to the left of the segment y, in x, corresponds to two

consecutive visits (

�

�; p;�1; �) and (+1; p

0

;

+

�

0

; �) in the �rst visiting sequence

of y, meaning the computation leaves the segment to the left in state p,

returning there later in state p

0

. A symmetric observation holds for tours to

the right, in z, and consecutive visits in the last visiting sequence of y.

Hence, the relative order of those tours that leave to the left is �xed

by the last visiting sequence of x, similarly for the tours to the right. The

relative order of all tours (left and right taken together) is determined by the

segment y. Replacing y by another string in fy

1

; y

2

; : : : ; y

t

g

�

will not change

the tours in x and z, but it may rearrange the relative order of tours to the

left and tours to the right.

A visiting sequence for M

0

2

contains at most k visits. Hence, there are

less than k tours to each side of the segment. Together these at most 2k

tours may be ordered in less than � =

�

2k

k

�

ways (the orders of the tours at

the same side of the segment are �xed).

Now we are able to apply a pumping argument to the segment y =

y

1

� � � y

t

. If t > �, then two of the pre�xes y

1

� � � y

i

1

, y

1

� � � y

i

2

, i

1

< i

2

,

de�ne the same rearrangement on the adjacent tours, and thus we may re-
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place y

1

� � � y

i

2

by y

1

� � � y

i

1

in the output xyz of M

0

1

. The resulting track

xy

1

� � � y

i

1

y

i

2

+1

� � � y

t

z de�nes a computation forM

0

2

that results in the same

output as the original track xyz. Thus, we may assume that t � �.

Consequently, we allow for all possible rearrangements, and hence for all

possible outputs ofM

0

2

, by taking � as the bound on the number of visits of

M

0

1

to a �xed position in a �xed state.

Now that we have limited the number of visits ofM

0

1

to � times the size

of its state set, we can replaceM

0

1

by a decomposition in MREL

�

2DGSM,

using again the argumentation of Lemma 36. Thus, m

0

1

�

m

0

2

is replaced by a

composition in (MREL

�

2DGSM)

�

2DGSM. The result follows, as 2DGSM

is closed under composition, Proposition 4. 2

The variable familyX in the previous result allows us to apply the lemma

in the context of an arbitrary sequence of 2gsm transductions.

41 Theorem. Let m be a string transduction, and let k � 1.

If m 2 2NGSM

k

, and m is �nitary, then m 2 MREL

�

2DGSM.

Proof. Observe that 2NGSM

�

MREL � 2NGSM by an obvious construc-

tion.

Let k � 1. Assume that m 2 2NGSM

k

�

2DGSM is �nitary. We have

by the previous lemma, m 2 2NGSM

k�1

�

MREL

�

2DGSM, which equals

2NGSM

k�1

�

2DGSM for k > 1 (and which equals MREL

�

2DGSM for

k = 1).

Hence, by induction on k, m 2 2NGSM

k

�

2DGSM implies m 2 MREL

�

2DGSM, for a �nitary string transduction m. As 2NGSM

k

�

2DGSM �

2NGSM

k

, the theorem follows. 2

42 Theorem. Let m be a string transduction. Then

m 2 NMSOS i� m 2

S

k�1

2NGSM

k

and m is �nitary.

Proof. By Theorem 37, NMSOS = 2NGSM

2

�n

� 2NGSM

2

. Additionally,

elements of NMSOS are necessarily �nitary. This proves the implication

from left to right. The reverse implication follows from the last result and

the characterization NMSOS = MREL

�

2DGSM from Theorem 32. 2
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It is shown in [Eng82, Theorem 4.9] that every functional transduction in

S

k�1

2NGSM

k

is in 2DGSM. Together with Theorem 23 (MSOS = 2DGSM)

this gives the following counterpart of Theorem 42.

43 Theorem. Let m be a string transduction. Then

m 2 MSOS i� m 2

S

k�1

2NGSM

k

and m is functional.

A Venn diagram is given in Figure 10, page 56. It illustrates the results

from Lemma 33, and Theorems 38, 42, and 43.

6.2 Hennie machines

Extending a �nite visit 2gsm with the possibility to rewrite the contents of

the cell of the input tape that it is visiting, we obtain the Hennie machine,

introduced in [Hen65] as an accepting device, and considered as transducer

in [Raj75] (under the name `bounded crossing transducer'). Alternatively, a

Hennie machine is a linear bounded automaton (as transducer, so equipped

with a one-way output tape) that is �nite visit. We �nd it, somewhat dis-

guised, in [Gre78b] as `one way �nite visit preset Turing machine', where the

`preset working tape' should be interpreted as input tape, and the `one way

input tape' as output tape.

It should be clear how to extend our basic 2sm model to allow for writing

on the input tape, thus we will refrain from giving the full 10-tuple formaliza-

tion. The families of string transductions realized by nondeterministic and

deterministic Hennie machines are denoted by NHM and DHM, respectively.

44 Example. Once again consider our running nondeterministic example

(cf. Example 25)

m = f (a

n

; w#w) j n � 0; w 2 fa; bg

�

; jwj = n g:

It can be realized by a Hennie machine moving in two consecutive left-to-

right passes over the input. First it nondeterministically rewrites the input

a

n

into a string w with jwj = n, while writing this string to the output tape,

then it writes w again to the output, copying it from the rewritten input

tape. Obviously, the machine is 3-visit. 2

45 Theorem. NMSOS = NHM.
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Proof. In view of Theorem 32 it su�ces to prove the equality NHM =

MREL

�

2DGSM.

The inclusion of NHM in MREL

�

2DGSM can be proved as Lemma 36,

which states this inclusion for 2NGSM

�n

: the relabelling guesses a string of

visiting sequences for the computation of the Hennie machine on the input

string; the 2dgsm veri�es that this string is a track and simulates the compu-

tation. Note that a visiting sequence of a Hennie machine should also record

the symbol at the position of the input tape at each visit. It is straigthfor-

ward to adapt the notions of visiting sequence and k-track in this way, such

that Proposition 35 still holds (see [Gre78a, Gre78b, Bir96]).

The reverse inclusion is almost immediate. In two phases the Hennie

machine may simulate the composition, �rst writing the image of the marked

relabelling on the tape, and then simulating the 2dgsm on this new tape.

There is a minor technicality: for a given input w the initial tape contains

`wa, and the Hennie machine is supposed to overwrite this string with its

relabelling and add two new tape markers (for the simulation of the 2dgsm).

Instead, it keeps the relabelling of the tape markers in its �nite state memory,

rather than overwriting them. 2

Restating the above result as NHM = MREL

�

2DGSM, it generalizes

the result of Rajlich [Raj75, Theorem 2.1] that the output languages of non-

deterministic Hennie machines equal the output languages of two-way deter-

ministic generalized sequential machines, see also [Gre78a, Thm 2.15(2)].

The above demonstration of the inclusion MREL

�

2DGSM � NHM can

easily be extended to a proof of NHM

�

NHM � NHM. A Hennie machine

can simulate the composition of two of its colleagues by writing the visiting

sequences of the �rst machine onto the input tape. The output tape is

contained in this string, conveniently folded over the input tape, ready to be

used by the second machine.

We have, however, the closure of NHM under composition for free as a

consequence of the above characterization and Proposition 27.

46 Corollary. NHM is closed under composition.

In [ChJ�a77] it is noted that the inclusion DHM

�

2DGSM � 2DGSM

can be proved analogously to their result that 2DGSM

�

2DGSM � 2DGSM

(i.e., 2DGSM is closed under composition, Proposition 4). That of course

implies the equality of the families of transductions realized by deterministic
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Hennie machines and those realised by deterministic 2gsm. This equality is

rephrased as follows.

47 Theorem. MSOS = DHM.

Proof. In view of Theorem 23 it su�ces to prove the equality DHM =

2DGSM. The inclusion DHM � 2DGSM is immediate. We demonstrate

the reverse inclusion, much along the lines as sketched in [ChJ�a77], see also

[Eng82, Theorem 4.9].

By Theorem 45, NHM = MREL

�

2DGSM. Hence, any Hennie trans-

duction m

H

can be decomposed into a marked relabelling � and a determin-

istic 2gsm transduction m

2

. We will argue that for a deterministic Hennie

transduction this (nondeterministic) marked relabelling can be realized by a

deterministic 2gsm, which shows DHM � 2DGSM by the closure of 2DGSM

under composition.

Let m

H

be a deterministic Hennie transduction, and let m

H

= �

�

m

2

be

the decomposition as above. Let w be an input string. As m

H

is functional,

m

H

(w) = m

2

(w

0

) for any marked relabelling w

0

2 �(w) that belongs to

the domain of m

2

. As this domain dom(m

2

) is a regular language [RaSc59,

She59], a 2dgsm-rla can be constructed that �nds and outputs such a marked

relabelling by one pass from left to right over the input, using its look-

around to check the remainder of the input for a relabelling of the present

input symbol that leads to an element of dom(m

2

). This means that the

2dgsm-rla looks ahead to test the su�x of the tape for membership in the

language �

�1

(L(A

q

)), where A

q

is a (�xed) one-way deterministic �nite state

automaton accepting dom(m

2

) except that the initial state is changed to q

which is the state where A would be after reading the output generated by

the 2dgsm-rla on the pre�x, including the relabelling chosen for the present

symbol. 2

Finale. In this section we have obtained a rather precize characterization

of mso de�nable string transductions in terms of Hennie transductions, both

in the deterministic and in the nondeterministic case. Intuitively an impor-

tant reason for this equivalence is the inherent boundedness of both types of

transductions: mso de�nable transductions have a bound on the number of

copies, whereas Hennie machines have a bound on the number of visits to

each of the tape positions.
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In case of determinism these two families are equal to the family of trans-

ductions realized by two-way generalized sequential machines, Theorem 23.

This should be contrasted to nondeterministic transductions, where 2gsm

are unable to record choices made during the computation, whereas Hennie

machines may use their tape for this purpose.

We summarize.

48 Theorem.

1. MSOS = DHM = 2DGSM.

2. NMSOS = NHM = MREL

�

2DGSM = 2NGSM

2

�n

.

Now that the families NMSOS and 2NGSM have shown to be incompara-

ble, unlike their deterministic counterparts, one may look for natural variants

of the families that have the same power. For machines we have discussed

such a variant. Indeed, by extending the model with the power of rewriting

its input tape (and at the same time demanding the �nite visit property)

we obtain the Hennie transductions. We leave it as an open problem how

to introduce a variant of nondeterminism for mso de�nable transductions

that corresponds to 2ngsm. Additionally, we did not consider transductions

realized by one-way transducers.
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k�1

2NGSM

k

2NGSM

NMSOS = 2NGSM

2

�n

2NGSM

�n

MSOS = 2DGSM functional

�nitary

Figure 10: Relationships between our main families of transductions
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