
Technical Report 98–09 August 1998

Rijksuniversiteit te LeidenRijksuniversiteit te Leiden

Vakgroep Informatica

Macro Tree Transducers, Attribute Grammars,

and MSO Definable Tree Translations

Joost Engelfriet

Sebastian Maneth

Department of Computer Science
Leiden University
P.O. Box 9512
2300 RA Leiden
The Netherlands

Macro Tree Transducers, Attribute Grammars,

and MSO De�nable Tree Translations

�

Joost Engelfriet and Sebastian Maneth

Leiden University, Department of Computer Science, PO Box 9512, 2300 RA Leiden,

The Netherlands, email: fengelfri, manethg@wi.leidenuniv.nl

Abstract

A characterization is given of the class of tree translations de�nable in monadic

second order logic (MSO), in terms of macro tree transducers. The �rst main result is

that the MSO de�nable tree translations are exactly those tree translations realized by

macro tree transducers (MTTs) with regular look-ahead that are single use restricted.

For this the single use restriction known from attribute grammars is generalized to

MTTs. Since MTTs are closed under regular look-ahead, this implies that every MSO

de�nable tree translation can be realized by an MTT. The second main result is that

the class of MSO de�nable tree translations can also be obtained by restricting MTTs

with regular look-ahead to be �nite copying, i.e., to require that each input subtree

is processed only a bounded number of times. The single use restriction is a rather

strong, static restriction on the rules of an MTT, whereas the �nite copying restriction

is a more liberal, dynamic restriction on the derivations of an MTT.

1 Introduction

Formulas in monadic second order logic (MSO) can be used to de�ne functions from graphs

to graphs (cf. [Cou94]), called MSO (graph) transductions. MSO transductions have nice

properties, comparable to those of �nite state transductions on strings. In particular, they

are closed under composition and they preserve the class of context-free graph languages.

In fact, there are two large classes of context-free graph languages, namely, those generated

by hyperedge replacement (HR, see, e.g., [Hab92, DKH97, Eng97]) and those generated

by node replacement (NR, see, e.g., [ER97]). Both of them are preserved by (two di�erent

types of) MSO transductions. Moreover, both of them can be characterized in terms of

MSO transductions: they are obtained by applying MSO transductions to regular tree

languages [EvO97, CE95].

If, for an MSO transduction, we restrict the input and output graphs to be (node-labeled,

ordered) trees, then we obtain a function from trees to trees, i.e., a tree translation. In

�

This work was supported by the EC TMR Network GETGRATS.

1

[BE98] the class of MSO de�nable tree translations was investigated and it was proved

that it equals the class of tree translations realized by attributed tree transducers (ATTs)

with look-ahead which are single use restricted (sur). ATTs are a variation of attribute

grammars in which all attribute values are trees (see [F�ul81, FV98]), and the sur property

is a well-known restriction on the rules of an attribute grammar (introduced in [Gan83]):

each attribute is used at most once. Like for attribute grammars, the class of translations

realized by sur ATTs is closed under composition, which does not hold for unrestricted

ATTs (see also [K�uh97]). This closure property remains when look-ahead is added. The

look-ahead of an ATT can be understood as a preprocessing attribute grammar, all at-

tributes of which are �nite-valued and which merely relabels each node of the input tree.

Note that ATTs are not closed under look-ahead [FV95], and in particular that not every

translation realized by a sur ATT with look-ahead can be realized by an ATT without

look-ahead.

In this paper we want to characterize the class of MSO de�nable tree translations in terms

of macro tree transducers (MTTs). MTTs are a well-known model of syntax-directed

semantics that combines the features of top-down tree transducers and of context-free tree

grammars [Eng80, CF82, EV85, FV98]. Each translation realized by an ATT can also

be realized by an MTT, but not vice versa [Eng80, Fra82]. Even if we add look-ahead

to an ATT, the corresponding translation can still be realized by an MTT. In fact, after

de�ning an appropriate sur property for MTTs (related to, but di�erent from the one

in [K�uh97, K�uh98]), we prove that the class of translations realized by sur ATTs with

look-ahead is precisely the class of translations realized by sur MTTs with regular look-

ahead. Unlike ATTs, MTTs are closed under regular look-ahead [EV85]. Hence, every

MSO de�nable tree translation can be realized by an MTT.

Let us discuss this result in more detail. There is a close relationship between the states

of an MTT and the synthesized attributes of an ATT, and between the parameters of

an MTT and the inherited attributes of an ATT. Through this relationship the single use

restriction for ATTs can be generalized to MTTs and it can be shown that, in the presence

of look-ahead, the classes of translations realized by single use restricted MTTs and ATTs

are equal. This is our �rst main result. Given a tree translation � de�ned in MSO we can,

via the result of [BE98], construct an MTT with regular look-ahead which is single use

restricted and which realizes � . Conversely, given a single use restricted MTT with regular

look-ahead we can construct a corresponding MSO transducer. However, the single use

restriction is a rather strong restriction on the rules of an MTT. Thus, only for relatively

few MTTs we can obtain equivalent MSO transducers using the above equivalence.

Our second main result tries to compensate this inconvenience. We give a much larger

class of transducers for which the translations they realize are MSO de�nable. This class

is obtained by restricting the MTTs to be �nite copying. The notion of �nite copying was

introduced in [AU71] for generalized syntax-directed translation schemes, which are closely

related to top-down tree transducers. For top-down tree transducers it was investigated in

[ERS80]. Intuitively, an MTT is �nite copying, if each input subtree and each parameter

is copied only a bounded number of times. In contrast to the single use restriction, �nite

copying is a dynamic restriction which is not immediate from the rules of an MTT. We

prove that �nite copying MTTs with regular look-ahead realize exactly the same class

of translations as single use restricted MTTs with regular look-ahead. Hence, we obtain

2

another characterization of the MSO de�nable tree translations. Since, in terms of the

transducers, �nite copying is a much weaker restriction than single use, the class of trans-

ducers for which we can now obtain an equivalent MSO transducer is much larger.

As mentioned in the beginning of this introduction, the class of context-free graph lan-

guages (HR or NR) can be obtained by applying MSO graph transductions to regular

tree languages. Thus, if we apply MSO tree transductions to regular tree languages, we

obtain the class of tree languages which can be generated by context-free graph grammars

(which turns out to be the same for HR and NR). By our results this is the class of output

languages of sur (or, equivalently, �nite-copying) MTTs taking regular tree languages as

input. A related result has recently been proved in [Dre97]. In fact, the results of [Dre97]

can be used to obtain, in a more direct way, the above characterization by MTTs of the

tree languages generated by context-free graph grammars, as shown in [EM].

This paper is structured as follows. Section 2 contains basic notions concerning trees,

tree translations, and tree languages. In Section 3 we recall the notions of macro tree

transducer and attributed tree transducer, we introduce the concept of state sequences of

MTTs, and we recall from [BE98] the notion of attributed relabeling (which de�nes the

look-ahead of an attributed tree transducer). In Section 4 we prove the equivalence of

attributed relabelings and top-down relabelings (a very restricted type of top-down tree

transducer) with regular look-ahead. Section 5 concerns the single use property. This

property is introduced for MTTs together with a variant, called strongly single use. After

investigating the relationship between the two variants, we are ready to prove our �rst

main result, namely that sur ATTs and sur MTTs, both with look-ahead, realize the same

class of translations. In Section 6 we de�ne the notion of �nite-copying for MTTs (based

on state sequences) and prove our second main result, namely that �nite copying MTTs

with regular look-ahead and sur MTTs with regular look-ahead realize the same class of

translations. In Section 7 we present some consequences of our results and mention some

open problems.

The reader is assumed to be familiar with macro tree transducers and attribute grammars.

Monadic second order logic and MSO translations are not discussed in this paper, except

in Section 7.

2 Preliminaries

The set f0; 1; : : : g of natural numbers is denoted by N. The empty set is denoted by ?.

For k 2 N, [k] denotes the set f1; : : : ; kg; thus [0] = ?. For a set A, P(A) is its powerset,

jAj is its cardinality, and A

�

is the set of all strings over A. The empty string is denoted by

", and the length of a string w is denoted jwj. For strings v; w

1

; : : : ; w

n

2 A

�

and distinct

a

1

; : : : ; a

n

2 A, we denote by v[a

1

 w

1

; : : : ; a

n

 w

n

] the result of (simultaneously)

substituting w

i

for every occurrence of a

i

in v. Note that [a

1

 w

1

; : : : ; a

n

 w

n

] is a

homomorphism on strings. For a condition P on a and w we use, similar to set notation,

[a w j P] to denoted the substitution [L], where L is the list of all a w for which

condition P holds.

For functions f :A! B and g:B ! C their composition is (f � g)(x) = g(f(x)); note that

the order of f and g is nonstandard. For sets of functions F and G their composition is

3

F �G = ff � g j f 2 F; g 2 Gg.

Let) � A � A be a binary relation on A. Its transitive reexive closure is denoted by

)

�

. If, for a 2 A, there is exactly one b 2 A such that (i) a)

�

b and (ii) there is no

b

0

2 A such that b) b

0

, then b is said to be the normal form of a (with respect to)) and

is denoted by nf(); a).

In the remainder of this section we recall some basic notions concerning trees, tree trans-

lations, and tree languages (see, e.g., [GS84]).

2.1 Ranked Alphabets and Trees

A set � together with a mapping rank

�

: �! N is called a ranked set. For k � 0, �

(k)

is the

set f� 2 � j rank

�

(�) = kg; we also write �

(k)

to indicate that rank

�

(�) = k. For sets �

and A, h�; Ai = ��A; if � is ranked, then so is h�; Ai, with rank

h�;Ai

(h�; ai) = rank

�

(�)

for every h�; ai 2 h�; Ai. A ranked alphabet is a �nite ranked set.

For the rest of this paper we choose the set of input variables to be X = fx

1

; x

2

; : : : g

and the set of parameters to be Y = fy

1

; y

2

; : : : g. For k � 0, X

k

= fx

1

; : : : ; x

k

g and

Y

k

= fy

1

; : : : ; y

k

g.

Let � be a ranked set. The set of trees over �, denoted by T

�

, is the smallest set of strings

T � (�[f(;); ; g)

�

such that if � 2 �

(k)

, k � 0, and t

1

; : : : ; t

k

2 T , then �(t

1

; : : : ; t

k

) 2 T .

For � 2 �

(0)

we denote the tree �() also by �. For a set A, the set of trees over � indexed

by A, denoted by T

�

(A), is the set T

�[A

, where for every a 2 A, rank

A

(a) = 0. If A = Y ,

then T

�

(Y) is the set of trees (over �) with parameters. For every tree t 2 T

�

, the set

of occurrences (or, nodes) of t, denoted by Occ(t), is a subset of N

�

which is inductively

de�ned as follows: if t = �(t

1

; : : : ; t

k

) with � 2 �

(k)

and k � 0, and for all i 2 [k]; t

i

2 T

�

,

then Occ(t) = f"g [

S

i2[k]

fiu j u 2 Occ(t

i

)g. Thus, the occurrence " represents the root of

a tree. For an occurrence u the i-th child of u is represented by the occurrence ui, and for

convenience we let u0 denote u. In particular this means that 0 denotes the occurrence ".

The usual pre-order of the nodes of t (which, in fact, is the lexicographical order on N

�

)

is denoted <; thus, " < iu, if u < v then iu < iv, and if i < j then iu < jv. For a tree

t 2 T

�

, yt denotes the yield of t, i.e., the string in (�

(0)

)

�

obtained by reading the leaves

of t in pre-order; if �

(0)

contains the special symbol e, then e is interpreted as the empty

string " (thus, y(�(a; �(e; b))) = ab).

2.2 Tree Substitution

Let � be a ranked set. For every tree t 2 T

�

and every occurrence u of t, the label of

t at occurrence u is denoted by t[u]; we also say that t[u] occurs in t at node u. The

subtree of t at occurrence u is denoted by t=u. The substitution of the tree s 2 T

�

at

occurrence u in t is denoted by t[u s]; it means that the subtree t=u is replaced by

s. Formally, these notions can be de�ned as follows: t["] is the �rst symbol of t (in �),

t=" = t, t[" s] = s, and if t = �(t

1

; : : : ; t

k

), i 2 [k], and u 2 Occ(t

i

), then t[iu] = t

i

[u],

t=iu = t

i

=u, and t[iu s] = �(t

1

; : : : ; t

i

[u s]; : : : ; t

k

). Since trees are strings, we will

also use string substitution for trees, taking care that the resulting string is a tree again.

4

Thus, for t; s 2 T

�

and � 2 �, t[� s] denotes the substitution of (every occurrence of)

� by s in t; if � 2 �

(k)

with k � 1, then s should also be a symbol in �

(k)

.

Let �

1

; : : : ; �

n

be distinct elements of �, n � 1, and for each i 2 [n] let s

i

be a tree

in T

�

(Y

k

), where k = rank

�

(�

i

). For t 2 T

�

, the second order substitution of �

i

by s

i

in t, denoted by t[[�

1

 s

1

; : : : ; �

n

 s

n

]] is inductively de�ned as follows (abbreviating

[[�

1

 s

1

; : : : ; �

n

 s

n

]] by [[: : :]]). For t = �(t

1

; : : : ; t

k

) with � 2 �

(k)

, k � 0, and

t

1

; : : : ; t

k

2 T

�

, (i) if � = �

i

for an i 2 [n], then t[[: : :]] = s

i

[y

j

 t

j

[[: : :]] j j 2 [k]] and

(ii) otherwise t[[: : :]] = �(t

1

[[: : :]]; : : : ; t

k

[[: : :]]). For a condition P on � and s, we use [[�

s j P]] to denote the substitution [[L]], where L is the list of all � s for which condition

P holds.

Note that (just as ordinary substitution) second order substitution is associative, i.e., that

t[[� s]][[� s

0

]] = t[[� s[[� s

0

]]]] and if �

0

6= � then t[[� s]][[�

0

 s

0

]] = t[[�

0

s

0

; � s[[�

0

 s

0

]]]], and similar for the general case (cf. Sections 3.4 and 3.7 of [Cou83]).

The notion of second order substitution is closely related to that of a tree homomorphism;

associativity of second order substitution corresponds to the fact that tree homomorphisms

are closed under composition (cf. Theorem IV.3.7 of [GS84]).

2.3 Tree Translations and Tree Languages

Let � and � be ranked alphabets. A subset L of T

�

is called a tree language. A (total)

function � : T

�

! T

�

is called a tree translation or simply translation. For a tree language

L � T

�

, �(L) denotes the set ft 2 T

�

j t = �(s) for some s 2 Lg. For a class T of

tree translations and a class L of tree languages, T (L) denotes the class of tree languages

f�(L) j � 2 T ; L 2 Lg.

A �nite state tree automaton is a tuple (P;�; h), where P is a �nite set of states, � is a

ranked alphabet of input symbols such that � is disjoint with P , and h is a collection of

mappings such that for every � 2 �

(k)

, h

�

is a mapping from P

k

to P . The extension

~

h of h

to a mapping from T

�

to P is recursively de�ned as

~

h(�(s

1

; : : : ; s

k

)) = h

�

(

~

h(s

1

); : : : ;

~

h(s

k

))

for every � 2 �

(k)

, k � 0, and s

1

; : : : ; s

k

2 T

�

. Throughout this paper we simply write

h(s) to mean

~

h(s), for s 2 T

�

.

A tree language L is regular (or, recognizable) if there is a �nite state tree automaton

(P;�; h) and a subset F of P such that L = fs 2 T

�

j h(s) 2 Fg. The class of regular tree

languages is denoted by REGT.

For a tree language L, yL = fyt j t 2 Lg and for a class of tree languages L, yL =

fyL j L 2 Lg. For a tree translation � , y� = f(s; yt) j (s; t) 2 �g and for a class of tree

translations T , yT = fy� j � 2 T g.

3 Tree Transducers

In this section we recall the basic notions of macro tree transducers [Eng80, CF82, EV85]

and attributed tree transducers [F�ul81, EF81, CF82] (an extensive survey of these two

models of syntax-directed semantics is presented in the recent monograph [FV98]). More-

over, for macro tree transducers we introduce the notion of state sequence (De�nition 3.7),

5

and for attributed tree transducers we recall from [BE98] the notion of an attributed re-

labeling (De�nition 3.16).

3.1 Macro Tree Transducers

A macro tree transducer is a syntax-directed translation device in which the translation of

an input tree may not only depend on its subtrees but also on its context. The subtrees are

represented by input variables, as usual. The context information is handled by parameters.

Recall that for k;m � 0, X

k

denotes the set fx

1

; : : : ; x

k

g of input variables, and Y

m

denotes

the set fy

1

; : : : ; y

m

g of parameters. In this paper we will only consider total deterministic

macro tree transducers.

De�nition 3.1 (macro tree transducer, top-down tree transducer, top-down relabeling)

A macro tree transducer (for short, MTT) is a tuple M = (Q;�;�; q

0

; R), where Q is

a ranked alphabet of states, � and � are ranked alphabets of input and output symbols,

respectively, q

0

2 Q

(0)

is the initial state, and R is a �nite set of rules; for every q 2 Q

(m)

and � 2 �

(k)

with m; k � 0 there is exactly one rule of the form

hq; �(x

1

; : : : ; x

k

)i(y

1

; : : : ; y

m

)! �

in R, where � 2 T

hQ;X

k

i[�

(Y

m

).

A top-down tree transducer is a macro tree transducer all states of which are of rank

zero. If all rules of a top-down tree transducer are of the form hq; �(x

1

; : : : ; x

k

)i !

�(hq

1

; x

1

i; : : : ; hq

k

; x

k

i) with � 2 �

(k)

, � 2 �

(k)

, and q; q

1

; : : : ; q

k

2 Q, thenM is a top-down

relabeling (for short, T-REL). 2

A rule of the form hq; �(x

1

; : : : ; x

k

)i(y

1

; : : : ; y

m

)! � is called the (q; �)-rule and its right-

hand side is denoted by rhs

M

(q; �) (the indexM is dropped if it is clear from the context);

it is also called a q-rule or a �-rule. Recall from Section 2.1 that hQ;X

k

i is the ranked set

Q�X

k

, where every hq; x

i

i has the rank of q.

The derivation relation of an MTT works on trees in T

hQ;T

�

i[�

; for technical reasons (cf.

Lemma 3.4 below) we extend it to trees with parameters, i.e., trees in T

hQ;T

�

i[�

(Y).

De�nition 3.2 (derivation relation, translation)

Let M = (Q;�;�; q

0

; R) be an MTT. The derivation relation induced by M, denoted by

)

M

, is the binary relation on T

hQ;T

�

i[�

(Y) such that, for every �

1

; �

2

2 T

hQ;T

�

i[�

(Y),

�

1

)

M

�

2

if and only if there exist u 2 Occ(�

1

), � 2 �

(k)

, s

1

; : : : ; s

k

2 T

�

, q 2 Q

(m)

, and

t

1

; : : : ; t

m

2 T

hQ;T

�

i[�

(Y) such that �

1

=u = hq; �(s

1

; : : : ; s

k

)i(t

1

; : : : ; t

m

) and

�

2

= �

1

[u �] with � = rhs(q; �)[hq

0

; x

i

i hq

0

; s

i

i j hq

0

; x

i

i 2 hQ;X

k

i][y

j

 t

j

j j 2 [m]]:

The translation realized by M, denoted by �

M

, is the total function

f(s; t) 2 T

�

� T

�

j hq

0

; si)

�

M

tg:

2

6

The class of all translations which can be realized by macro tree transducers is denoted by

MTT. The classes of translations realized by top-down tree transducers and by top-down

relabelings are denoted by T and T -REL, respectively.

Let us now add regular look-ahead to a macro tree transducer [EV85, Eng77].

De�nition 3.3 (MTT with regular look-ahead)

A macro tree transducer with regular look-ahead (for short, MTT

R

) is a tuple M =

(Q;P;�;�; q

0

; R; h), where (P;�; h) is a �nite state tree automaton, called the look-ahead

automaton of M, the components Q, �, �, and q

0

are as in De�nition 3.1, and R is a �nite

set of rules of the following form. For every q 2 Q

(m)

, � 2 �

(k)

, and p

1

; : : : ; p

k

2 P with

m; k � 0 there is exactly one rule of the form

hq; �(x

1

; : : : ; x

k

)i(y

1

; : : : ; y

m

)! � hp

1

; : : : ; p

k

i (�)

in R, where � 2 T

hQ;X

k

i[�

(Y

m

). 2

A rule of the form (�) is called the (q; �; hp

1

; : : : ; p

k

i)-rule and its right-hand side �

is denoted by rhs

M

(q; �; hp

1

; : : : ; p

k

i) (M is dropped if it is clear from the context).

The derivation relation)

M

of M is de�ned as in De�nition 3.2, with rhs(q; �) replaced

by rhs(q; �; hh(s

1

); : : : ; h(s

k

)i) and the translation �

M

realized by M is de�ned as in

De�nition 3:2. The class of all translations which can be realized by MTT

R

s is denoted

by MTT

R

; it is shown in Theorem 4.21 of [EV85] that MTT

R

= MTT. The class of

all translations which can be realized by MTT

R

s with states of rank zero only, i.e., by

top-down tree transducers with regular look-ahead (for short, T

R

s), is denoted by T

R

.

The class of all translations realized by top-down relabelings with regular look-ahead (for

short, T

R

-RELs) is denoted by T

R

-REL.

In Sections 5 and 6 several subclasses of MTT

R

will be de�ned by putting restrictions on

MTT

R

s. We �x the following convention: If X is a restriction on MTT

R

s, then an MTT

M = (Q;�;�; q

0

; R) satis�es X, if the MTT

R

(Q; fpg;�;�; q

0

; f(r hp; : : : ; pi) j r 2 Rg; h)

satis�es X, where h

�

(p; : : : ; p) = p for every � 2 �. Moreover, if MTT

R

X

is the class of

translations realized by MTT

R

s which satisfy X, then we denote by MTT

X

the class of

translations realized by MTTs which satisfy X (in the above sense). By T

R

X

we denote the

class of translations realized by T

R

s which satisfy X, and by T

X

we denote the class of

translations realized by top-down tree transducers which satisfy X (de�ned as above for

MTTs).

The next lemma will be used in proofs by induction on the structure of the input tree.

Let M = (Q;P;�;�; q

0

; R; h) be an MTT

R

. For every q 2 Q

(m)

and s 2 T

�

let

the q-translation of s, denoted by M

q

(s), be the unique tree t 2 T

�

(Y

m

) such that

hq; si(y

1

; : : : ; y

m

))

�

M

t. Note that, for s 2 T

�

, �

M

(s) = M

q

0

(s). The q-translations

of trees in T

�

can be characterized inductively as follows.

Lemma 3.4 (Lemma 4.8 of [EV94]) Let M = (Q;P;�;�; q

0

; R; h) be an MTT

R

. For

every q 2 Q, � 2 �

(k)

, k � 0, and s

1

; : : : ; s

k

2 T

�

,

M

q

(�(s

1

; : : : ; s

k

)) = rhs(q; �; hh(s

1

); : : : ; h(s

k

)i)[[hq

0

; x

i

i M

q

0

(s

i

) j hq

0

; x

i

i 2 hQ;X

k

i]]:

2

7

State Sequences of MTTs

The notion of state sequence was introduced in [ERS80] for top-down tree transducers.

We now generalize this notion to MTT

R

s. To motivate the de�nition, we �rst discuss and

prove a generalization of Lemma 3.4.

Let M = (Q;P;�;�; q

0

; R; h) be an MTT

R

. Lemma 3.4 shows how the translation of a

tree can be expressed in terms of the translations of its direct subtrees. More generally, we

wish to know how the translation of a tree s depends on the translations of a subtree s=u,

for a given node u of s. To see this, we have to know how M translates the \context" of

u in s, i.e., the tree s[u x

1

]. However, M cannot process s[u x

1

] unless it knows the

look-ahead state p of the subtree s=u. Thus, more precisely, we de�ne the context of u in

s to be the tree s[u p] where p = h(s=u), viewed as a symbol of rank 0. Now, clearly, if

we extend the look-ahead automaton of M by putting h

p

() = p, M translates the context

s[u p] into a tree which still contains state calls hq

0

; pi. Then, the translation of s is

obtained from this tree by the second order substitution [[hq

0

; pi M

q

0

(s=u)]]. We will

now prove this formally, and we start by formalizing the translation by M of the context

of u in s. To do this, it is technically convenient to view the state calls hq

0

; pi as new

output symbols, just as we viewed the look-ahead state as a new input symbol.

For a ranked alphabet hQ;P i, let hhQ;P ii be a fresh copy of hQ;P i, i.e., hhQ;P ii = fhhq; pii j

q 2 Q; p 2 Pg, where hhq; pii is a new symbol of the same rank as hq; pi.

The q-translation by M of the context of u in s is now de�ned to be

^

M

q

(s[u h(s=u)]),

where

^

M is the following extension of M .

De�nition 3.5 (extension of M)

Let M = (Q;P;�;�; q

0

; R; h) be an MTT

R

. The extension of M , denoted by

^

M , is

the MTT

R

(Q;P;

^

�;

^

�; q

0

;

^

R;

^

h), where

^

� = � [fp

(0)

j p 2 Pg,

^

� = � [hhQ;P ii,

^

R =

R [fhq; pi(y

1

; : : : ; y

m

)! hhq; pii(y

1

; : : : ; y

m

) j hq; pi 2 hQ;P i

(m)

g,

^

h

p

() = p for p 2 P , and

^

h

�

(p

1

; : : : ; p

k

) = h

�

(p

1

; : : : ; p

k

) for � 2 �

(k)

, k � 0, and p

1

; : : : ; p

k

2 P . 2

Now,

^

M

q

(s[u p]) is a tree (with parameters) over � [hhQ; fpgii and if we replace in

^

M

q

(s[u p]) each hhq

0

; pii by M

q

0

(s=u), then we obtain M

q

(s). This then generalizes the

inductive characterization of M

q

(s) in Lemma 3.4 from the application of a rule at the

root of s to an arbitrary node u of s. It is stated in the next lemma, for the slightly more

general case that s=u may also contain look-ahead states.

Lemma 3.6 Let M = (Q;P;�;�; q

0

; R; h) be an MTT

R

and

^

M = (Q;P;

^

�;

^

�; q

0

;

^

R;

^

h)

its extension. Let q 2 Q, s 2 T

^

�

, u 2 Occ(s), and p =

^

h(s=u), such that s[u p] contains

exactly one occurrence of an element of P . Then

^

M

q

(s) =

^

M

q

(s[u p])[[hhq

0

; pii

^

M

q

0

(s=u) j q

0

2 Q]]:

Proof. This lemma is proved by induction on the structure of s. Let q 2 Q

(m)

and s =

�(s

1

; : : : ; s

k

) with � 2

^

�

(k)

, k � 0, and s

1

; : : : ; s

k

2 T

^

�

. Let [[: : :]] denote the substitution

[[hhq

0

; pii

^

M

q

0

(s=u) j q

0

2 Q]]. If u = ", then

^

M

q

(s[" p])[[: : :]] =

^

M

q

(p)[[: : :]] =

8

hhq; pii(y

1

; : : : ; y

m

)[[: : :]] =

^

M

q

(s=") =

^

M

q

(s). Otherwise u = iv with i 2 [k] and v 2

Occ(s

i

). Then

^

M

q

(s[iv p])[[: : :]] =

^

M

q

(�(s

1

; : : : ; s

i�1

; s

i

[v p]; s

i+1

; : : : ; s

k

))[[: : :]]. Let

� = rhs

^

M

(q; �; h

^

h(s

1

); : : : ;

^

h(s

i�1

);

^

h(s

i

[v p]);

^

h(s

i+1

); : : : ;

^

h(s

k

)i). By Lemma 3.4 the

above equals ��

1

� � ��

i�1

[[hr; x

i

i

^

M

r

(s

i

[v p]) j r 2 Q]]�

i+1

� � ��

k

[[: : :]], where �

j

=

[[hr; x

j

i

^

M

r

(s

j

) j r 2 Q]] for j 2 [k]. By associativity of second order substitution

this equals �[[: : :]]�

0

1

� � ��

0

i�1

[[hr; x

i

i

^

M

r

(s

i

[v p])[[: : :]] j r 2 Q]]�

0

i+1

� � ��

0

k

, where

�

0

j

= [[hr; x

j

i

^

M

r

(s

j

)[[: : :]] j r 2 Q]] for j 2 [k]. Since s[u p] contains exactly

one occurrence of an element in P ,

^

M

r

(s

j

) does not contain elements of hhQ; fpgii for

j 2 [k]�fig. Also � 2 T

hQ;X

k

i[�

(Y

m

) and hence �[[: : :]] = � and �

0

j

= �

j

for j 2 [k]�fig.

Since s=u = s

i

=v,

^

M

r

(s

i

[v p])[[: : :]] =

^

M

r

(s

i

[v p])[[hhq

0

; pii

^

M

q

0

(s

i

=v) j q

0

2 Q]]

which equals

^

M

r

(s

i

) by induction. Therefore [[hr; x

i

i

^

M

r

(s

i

[v p])[[: : :]] j r 2 Q]] = �

i

and we get ��

1

� � ��

k

which is equal to

^

M

q

(s) by Lemma 3.4. 2

Obviously,

^

M

q

(s) =M

q

(s) for every s 2 T

�

; thus, in this case, the �rst and third hat can

be removed in the displayed formula of Lemma 3.6. In particular (since �

M

(s) =M

q

0

(s)),

for every tree s 2 T

�

and every node u of s, the translation �

M

(s) of the input tree s

can be expressed in terms of the q-translations M

q

(s=u) of the subtree s=u. The states

q that are used in this expression form the state sequence of s at u. In other words, the

state sequence of s at u is the sequence of states that occur in

^

M

q

0

(s[u h(s=u)]), the

q

0

-translation of the context of u in s.

De�nition 3.7 (state sequence)

Let M = (Q;P;�;�; q

0

; R; h) be an MTT

R

, s 2 T

�

, and u 2 Occ(s). Let p = h(s=u) and

� =

^

M

q

0

(s[u p]) 2 T

hhQ;fpgii[�

, and let fv 2 Occ(�) j �[v] 2 hhQ; fpgiig = fv

1

; : : : ; v

n

g

with v

1

< � � � < v

n

. The state sequence of s at u, denoted by sts

M

(s; u), is the sequence of

states q

1

� � � q

n

such that �[v

i

] = hhq

i

; pii for every i 2 [n]. 2

The following small example illustrates De�nition 3.7.

Example 3.8 Consider the MTT

R

M = (Q;P;�;�; q

0

; R; h), where Q = fq

(0)

0

; q

(2)

1

; q

(0)

2

;

q

(0)

3

; q

(1)

4

g, P = fp; p

0

g, � = f�

(2)

;

(1)

; �

(0)

; �

(0)

g, and � = �. Moreover, let h

�

(p

0

; p

0

) = p

and h

(p) = p, and let R contain, among others, the following rules.

hq

0

; (x

1

)i ! hq

1

; x

1

i(hq

2

; x

1

i; hq

3

; x

1

i) hpi

hq

1

; �(x

1

; x

2

)i(y

1

; y

2

) ! �(hq

1

; x

2

i(y

2

; y

1

); hq

4

; x

1

i(y

1

)) hp

0

; p

0

i

hq

2

; �(x

1

; x

2

)i ! hq

2

; x

2

i hp

0

; p

0

i

hq

3

; �(x

1

; x

2

)i ! hq

3

; x

2

i hp

0

; p

0

i

Consider s = (�(s

1

; s

2

)) and assume that h(s

1

) = h(s

2

) = p

0

. Then a derivation by M

looks as follows.

hq

0

; (�(s

1

; s

2

))i)

M

hq

1

; �(s

1

; s

2

)i(hq

2

; �(s

1

; s

2

)i; hq

3

; �(s

1

; s

2

)i)

)

M

�(hq

1

; s

2

i(hq

3

; �(s

1

; s

2

)i; hq

2

; �(s

1

; s

2

)i); hq

4

; s

1

i(hq

2

; �(s

1

; s

2

)i))

)

�

M

�(hq

1

; s

2

i(hq

3

; s

2

i; hq

2

; s

2

i); hq

4

; s

1

i(hq

2

; s

2

i)

9

Then sts

M

(s; ") = q

0

, sts

M

(s; 1) = q

1

q

2

q

3

, sts

M

(s; 11) = q

4

, and sts

M

(s; 12) = q

1

q

3

q

2

q

2

because

^

M

q

0

(s[" p]) =

^

M

q

0

(p) = hhq

0

; pii,

^

M

q

0

(s[1 p]) =

^

M

q

0

((p)) = hhq

1

; pii(hhq

2

; pii; hhq

3

; pii),

^

M

q

0

(s[11 p

0

]) =

^

M

q

0

((�(p

0

; s

2

))) = �(�(�; �); hhq

4

; p

0

ii(�)), and

^

M

q

0

(s[12 p

0

]) =

^

M

q

0

((�(s

1

; p

0

))) = �(hhq

1

; p

0

ii(hhq

3

; p

0

ii; hhq

2

; p

0

ii); hhq

2

; p

0

ii),

where we assume that M

q

1

(s

2

) = �(y

1

; y

2

), M

q

3

(s

2

) = �, M

q

2

(s

2

) = �, and M

q

4

(s

1

) = y

1

.

2

It should be noted here that the notion of state sequence for MTTs in general, is less

straightforward (and maybe less intuitive) than for top-down tree transducers. For a top-

down tree transducer M , a state sequence q

1

� � � q

n

(at node u of s) means that the trees

M

q

1

(s=u); : : : ;M

q

n

(s=u) will be subtrees of �

M

(s), in the same order. This is because

hhq

1

; pii; : : : ; hhq

n

; pii label leaves of

^

M

q

0

(s[u p]). For an arbitrary MTT M , however,

hhq

1

; pii; : : : ; hhq

n

; pii may occur nested in each other. Let, for instance,

^

M

q

0

(s[u p]) be

hhq

1

; pii(hhq

2

; pii; hhq

3

; pii), i.e., the state sequence is q

1

q

2

q

3

. Then M

q

1

(s=u) is a part of

�

M

(s), though not a subtree of course. However, �

M

(s) does not containM

q

2

(s=u) at all if

the parameter y

1

does not occur in M

q

1

(s=u), and it contains M

q

2

(s=u) twice if y

1

occurs

twice in M

q

1

(s=u). Also, even if M

q

1

(s=u) contains y

1

and y

2

exactly once, M

q

2

(s=u)

and M

q

3

(s=u) appear in reversed order in �

M

(s) if M

q

1

(s=u) contains �rst y

2

and then

y

1

. Thus, in Example 3.8 (with u = 1 and s=u = �(s

1

; s

2

)), M

q

1

(s=u) = �(�(y

2

; y

1

); y

1

),

M

q

2

(s=u) = �, M

q

3

(s=u) = �, and �

M

(s) = �(�(�; �); �). Altogether this means that the

deletion, copying, and permutation of parameters inuences the relationship between the

state sequence and the way in which �

M

(s) contains the q-translations of s=u.

3.2 Attributed Tree Transducers

Attributed tree transducers are attribute grammars, in which all attribute values are trees

and the only operation in the semantic rules is the substitution of trees for the leaves of a

given tree. Moreover, an attributed tree transducer takes as input the set T

�

of trees over

a ranked alphabet �, instead of the set of derivation trees of a context-free grammar, as

it is the case for an attribute grammar.

The symbols �; �1; �2; : : : are called node variables and are used in the rules of an at-

tributed tree transducer to indicate nodes of an input tree. If � denotes a node u, then �i

denotes its i-th child ui. We also de�ne �0 = � (recall from Section 2.1 that u0 = u).

De�nition 3.9 (attributed tree transducer)

An attributed tree transducer (for short, ATT) is a tuple A = (Syn; Inh;�;�; root; a

0

; R),

where Syn and Inh are disjoint alphabets, the elements of which are called synthesized

and inherited attributes, respectively, � and � are ranked alphabets of input and output

symbols, respectively, root is a symbol of rank 1 with root 62 �, called root marker, and a

0

is a synthesized attribute, called initial attribute. Let �

root

denote the ranked alphabet

�[froot

(1)

g and let Att denote the set Syn[Inh. Before de�ning R we �x two auxiliary

notions.

10

For every � 2 �

(k)

, the set of inside attributes of �, denoted by ins

�

, is the set fha; �i j

a 2 Syng [fhb; �ii j b 2 Inh; i 2 [k]g and the set of outside attributes, denoted by

outs

�

, is the set fhb; �i j b 2 Inhg [fha; �ii j a 2 Syn; i 2 [k]g. For the root marker,

ins

root

= fha

0

; �ig [fhb; �1i j b 2 Inhg and outs

root

= fha; �1i j a 2 Syng.

R = (R

�

j � 2 �

root

) is a collection of �nite sets of rules such that for every � 2 �

root

and

hc; �i 2 ins

�

there is exactly one rule of the form hc; �i ! � in R

�

, where � 2 T

�

(outs

�

).

2

For � 2 �

(k)

root

and hc; �i 2 ins

�

, the rule hc; �i ! � in R

�

is called the (hc; �i; �)-rule and

� is denoted by rhs

A

(hc; �i; �) (A is dropped if it is clear from the context).

Note that, by the rules in R

�

, each inside attribute of � is de�ned in terms of the outside

attributes of � (i.e., we assume Bochmann Normal Form [Boc76]). Note also that our def-

inition of ATTs in De�nition 3.9 is di�erent from the original de�nition in [F�ul81]. There,

for every inherited attribute b, the right-hand side of the (hb; �1i; root)-rule is restricted

to trees over �. In the appendix of [Gie88] this di�erence was pointed out and the term

full attributed tree transducer was used to refer to the transducers of De�nition 3.9.

In what follows let A = (Syn; Inh;�;�; root; a

0

; R) be an ATT.

De�nition 3.10 (derivation relation induced by an ATT)

Let s be a tree in T

�

root

. The derivation relation induced by A on s, denoted by)

A;s

, is the

binary relation over T

�

(hAtt;Occ(s)i) such that �

1

)

A;s

�

2

for �

1

; �

2

2 T

�

(hAtt;Occ(s)i),

if there is an attribute instance hc; vi 2 hAtt;Occ(s)i, an occurrence u 2 Occ(�

1

) with

�

1

=u = hc; vi, and

� either c 2 Syn, s[v] = � with � 2 �

(k)

root

, k � 0, and

�

2

= �

1

[u �] with � = rhs(hc; �i; �)[hd; �ii hd; vii j d 2 Att; 0 � i � k]

� or c 2 Inh and v = vj for some v 2 Occ(s), s[v] = � with � 2 �

(k)

root

, k � 1, j 2 [k],

and

�

2

= �

1

[u �] with � = rhs(hc; �ji; �)[hd; �ii hd; vii j d 2 Att; 0 � i � k]:

2

In the same sense as attribute grammars, ATTs can be circular (see [F�ul81] for the notion

of circularity of ATTs). In the remainder of this paper we always mean noncircular ATTs

when referring to ATTs.

If an ATT is noncircular, then the derivation relation on any tree root(s), s 2 T

�

, is

conuent and terminating (see, e.g., [FHVV93]). Thus, every attribute instance hc; vi 2

hAtt;Occ(root(s))i has a unique normal form nf()

A;root(s)

; hc; vi) 2 T

�

; intuitively, this

is the value of the attribute c at node v. Let us now de�ne the translation realized by an

ATT.

11

De�nition 3.11 (translation realized by A)

The translation realized by A, denoted by �

A

, is the total function

f(s; t) 2 T

�

� T

�

j t = nf()

A;root(s)

; ha

0

; "i)g:

2

The class of all translations which can be realized by attributed tree transducers is denoted

by ATT.

Consider an input tree s 2 T

�

and an attribute instance hc; vi 2 hAtt;Occ(s)i. The normal

form of hc; vi with respect to)

A;s

depends only on attribute instances of the form hb; "i,

where b is an inherited attribute; in other words, nf()

A;s

; hc; vi) 2 T

�

(hInh; f"gi). The

next lemma shows how the attributes of an input tree �(s

1

; : : : ; s

k

) can be expressed in

those of its subtrees s

1

; : : : ; s

k

, allowing proofs by induction on the structure of the input

tree.

Lemma 3.12 Let s = �(s

1

; : : : ; s

k

), k � 0, � 2 �

(k)

root

, and s

1

; : : : ; s

k

2 T

�

.

(1) For i 2 [k] and hc; vi 2 hAtt;Occ(s

i

)i,

nf()

A;s

; hc; ivi) = nf()

A;s

i

; hc; vi)[h�; "i nf()

A;s

; h�; ii) j � 2 Inh]:

(2) Let a 2 Syn (with a = a

0

if � = root), b 2 Inh, and j 2 [k].

Then nf()

A;s

; ha; "i) = rhs(ha; �i; �)�

1

�

2

and nf()

A;s

; hb; ji) = rhs(hb; �ji; �)�

1

�

2

,

where �

1

is the substitution

[h�; �ii nf()

A;s

; h�; ii) j � 2 Syn; i 2 [k]]

and �

2

is the substitution

[h�; �i h�; "i j � 2 Inh]:

Note that (1) is applicable to nf()

A;s

; h�; ii), with c = � and v = ". 2

Dependencies

Often one is interested in the set of inherited attributes on which a synthesized attribute

depends, at the root of an input tree s. We call such a dependency is-dependency. If we

know the is-dependencies for s

1

; : : : ; s

k

, then we can easily determine the is-dependency

for the tree s = �(s

1

; : : : ; s

k

) using the rules in R

�

.

De�nition 3.13 (is-dependency)

An is-dependency is a subset of Inh � Syn. Let � 2 �

(k)

root

and let d

1

; : : : ; d

k

be is-

dependencies. The is-dependency of � with d

1

; : : : ; d

k

, denoted by is

�

(d

1

; : : : ; d

k

), equals

f(b; a) 2 Inh� Syn j there is a path in g from hb; �i to ha; �ig;

12

where g is the directed graph (V;E) with V = ins

�

[outs

�

and E = f(hc; �ii; hc

0

; �ji) 2

outs

�

� ins

�

j hc; �ii occurs in rhs(hc

0

; �ji; �)g [f(hb; �ii; ha; �ii) j (b; a) 2 d

i

; i 2 [k]g.

The graph g is called the dependency graph of � with d

1

; : : : ; d

k

and is denoted by

D

�

(d

1

; : : : ; d

k

).

Let s = �(s

1

; : : : ; s

k

), � 2 �

(k)

root

, k � 0, and s

1

; : : : ; s

k

2 T

�

. The is-dependency of s,

denoted by is(s), is recursively de�ned as is

�

(is(s

1

); : : : ; is(s

k

)).

The set of all is-dependencies of A, denoted by IS(A), is the set fis(s) j s 2 T

�

g. 2

Note that IS(A) is �nite and can be constructed e�ectively. In fact, it is the smallest set

of is-dependencies that is closed under all is

�

, � 2 �. Note that A is noncircular if and

only if all graphs D

�

(d

1

; : : : ; d

k

) with � 2 �

(k)

root

and d

1

; : : : ; d

k

2 IS(A) are acyclic (cf.

[Knu68, FV98]).

We will use the following lemma that relates is-dependencies to normal forms. It can easily

be proved using Lemma 3.12.

Lemma 3.14 Let s = �(s

1

; : : : ; s

k

), � 2 �

(k)

root

, and s

1

; : : : ; s

k

2 T

�

. Then, for a 2 Syn,

b 2 Inh, c 2 Att, and 0 � i � k,

(i) nf()

A;s

; ha; "i) contains hb; "i if and only if (b; a) 2 is(s).

(ii) nf()

A;s

; hc; ii) contains hb; "i if and only if there is a path from hb; �i to hc; �ii in

D

�

(is(s

1

); : : : ; is(s

k

)). 2

Note that is(root(s)) = ?; in (i) above, this corresponds to the fact that nf()

A;root(s)

;

ha

0

; "i) 2 T

�

.

The dependency graph of a tree s has as nodes all attribute instances hAtt;Occ(s)i and

as edges the dependencies according to the rules in R.

De�nition 3.15 (dependency graph)

Let s = �(s

1

; : : : ; s

k

), � 2 �

(k)

root

, k � 0, and s

1

; : : : ; s

k

2 T

�

. The dependency graph of s,

denoted by D(s), is the graph (V;E) with V = hAtt;Occ(s)i and E = f(hc; uii; hc

0

; uji) 2

V � V j i; j 2 N; hc; �ii occurs in rhs(hc

0

; �ji; s[u])g. 2

Attributed Relabelings

A translation � from trees to trees is called a relabeling, if for (s; t) 2 � , t is obtained from

s by merely changing the labels of the nodes of s. The classes DBQREL and DTQREL

of �nite state relabelings of [Eng77, Eng75], which are based on bottom-up and top-down

tree transducers, respectively, are well-known classes of (partial) relabelings. The class

T-REL of top-down relabelings (De�nition 3.1) is, in fact, the class of total relabelings in

DTQREL, and T

R

-REL is its obvious extension with regular look-ahead. If we denote by

B-REL the class of total relabelings in DBQREL, then it is easy to show that B-REL �

T

R

-REL (cf. Lemma 2.10(3) of [Eng77]).

13

In [BE98] a class of relabelings which is based on attribute grammars was considered. We

will show in Section 4 that these attributed relabelings have the same power as top-down

relabelings with regular look-ahead (T

R

-REL). An attributed relabeling is an attribute

grammar, all attributes of which may only have �nitely many values. Depending on these

values the labels of the output tree are computed.

We want to de�ne attributed relabelings in terms of ATTs. Since it is not possible for an

ATT to compute a label according to values of other attributes, we need to add the ability

to evaluate expressions in an algebra W over �nite domains (cf. [CF82]). An ordinary

ATT A can be used to compute the new label for each node as a W -expression (in some

attribute a

0

). For an input tree s the relabeled tree t is obtained by replacing the label of

each node u by the value of nf()

A;root(s)

; ha

0

; 1ui), interpreted in W. Note that 1u is the

node of root(s) corresponding to node u of s.

De�nition 3.16 (attributed relabeling)

An attributed relabeling is a triple A = (A;�;W), where A = (Syn; Inh;�;�; root; a

0

; R)

is an ATT, � is a ranked alphabet, and W is a function such that for every c 2 Att, W (c)

is a �nite set, W (a

0

) = �, and for every 2 �

(k)

with k � 0, W () is a �nite function. For

� 2 �

(k)

root

, each rule in R

�

is of the form hc; �i ! (hd

1

; �

1

i; : : : ; hd

n

; �

n

i) with hc; �i 2 ins

�

,

 2 �

(n)

, n � 0, hd

i

; �

i

i 2 outs

�

for i 2 [n], W ():W (d

1

) � � � � �W (d

n

) ! W (c), and if

c = a

0

, then W ()(s

1

; : : : ; s

n

) 2 �

(k)

for all s

i

2W (d

i

).

The translation realized by A, denoted by �

A

, is the total function

f(s; t) 2 T

�

� T

�

j Occ(s) = Occ(t);8u 2 Occ(s): t[u] = val

W

(nf()

A;root(s)

; ha

0

; 1ui))g;

where val

W

is the (partial) valuation function induced by the �-algebra W, de�ned for all

well-typed trees in T

�

in the usual way. 2

Note that the translation realized by A does not depend on the (ha

0

; �i; root)-rule of A.

The class of all translations which can be realized by attributed relabelings is denoted by

ATT-REL. An attributed tree transducer with look-ahead (for short, ATT

R

) M consists of

an attributed relabelingA and an ATT B. Intuitively, A gathers \look-ahead" information

that can be used by B. The translation realized by M is the composition �

A

� �

B

. The

class ATT-REL � ATT of all translations which can be realized by ATT

R

s is denoted by

ATT

R

. It should be clear that the ATT

R

s realize the same class of translations as those

of [BE98] which are de�ned using a model of attribute grammars closely related to ATTs.

As discussed in the Introduction, it is shown in [BE98] that the class of MSO de�nable

tree translations equals ATT

R

sur

: the class of translations realized by single use restricted

ATT

R

s.

4 Top-Down and Attributed Relabelings

In the next section we want to prove our �rst main result: the classes ATT

R

sur

andMTT

R

sur

of translations realized by single use restricted ATT

R

s and single used restricted MTT

R

s,

respectively, are equal (Theorem 5.14). By de�nition, ATT

R

sur

= ATT-REL � ATT

sur

14

(cf. De�nition 5.1). Thus, as a �rst step towards this result, we characterize the class

ATT-REL in terms of (very simple) macro tree transducers: we prove in this section that

the classes ATT-REL and T

R

-REL are equal. The proof is split into two lemmas.

Lemma 4.1 T

R

-REL � ATT-REL.

Proof. Let M = (Q;P;�;�; q

init

; R; h) be a T

R

-REL. We will construct an attributed

relabeling A = (A;�;W) such that �

A

= �

M

. For each node u of the input tree s of

M , the ATT A computes in an inherited attribute the state q in which M processes the

subtree s=u (i.e., the unique state q in the state sequence of s at u). The look-ahead state

p of M on s=u is computed in a synthesized attribute.

Let A = (Syn; Inh;�;�; root; a

0

; R) with

� Syn = fa

0

; pg

� Inh = fqg

� � = finit

(0)

g [fl

(k+1)

�

j � 2 �

(k)

g [fg

(k)

�

j � 2 �

(k)

g [ff

(k+1)

�;i

j � 2 �

(k)

; i 2 [k]g

� For � 2 �

(k)

, R

�

contains the rules

ha

0

; �i ! l

�

(hq; �i; hp; �1i; : : : ; hp; �ki)

hp; �i ! g

�

(hp; �1i; : : : ; hp; �ki)

hq; �ii ! f

�;i

(hq; �i; hp; �1i; : : : hp; �ki) for every i 2 [k]:

R

root

= fhq; �1i ! init; ha

0

; �i ! ha

0

; �1ig.

It is straightforward to show that is(s) = f(q; a

0

)g for every s 2 T

�

and that, consequently,

A is noncircular.

The mappingW is de�ned as W (a

0

) = �, W (p) = P , and W (q) = Q for the attributes of

A and as follows for the symbols in �. Let W (init) = q

init

and for every � 2 �

(k)

, r 2 Q,

and p

1

; : : : ; p

k

2 P , W (l

�

)(r; p

1

; : : : ; p

k

) = rhs

M

(r; �; hp

1

; : : : ; p

k

i)["], W (g

�

)(p

1

; : : : ; p

k

) =

h

�

(p

1

; : : : ; p

k

), and for i 2 [k], W (f

�;i

)(r; p

1

; : : : ; p

k

) = q

i

, where q

i

2 Q is the state such

that rhs

M

(r; �; hp

1

; : : : ; p

k

i)[i] = hq

i

; x

i

i.

Although it is quite obvious that �

A

= �

M

, we will give a detailed correctness proof in

order to illustrate the use of Lemmas 3.12 and 3.4. In the correctness proof below, we

assume that the valuation function val

W

is extended to trees in T

�

(Q[P) in the obvious

way.

In the following let s 2 T

�

and u 2 Occ(s). By the de�nition of attributed relabelings,

�

A

(s)[u] = val

W

(nf()

A;root(s)

; ha

0

; 1ui)). By Lemma 3.12(1), this equals val

W

(nf()

A;s

;

ha

0

; ui)�), where � = [hb; "i nf()

A;root(s)

; hb; 1i) j b 2 Inh]. Since Inh = fqg and

nf()

A;root(s)

;hq; 1i) = init, � = [hq; "i init]. By applying val

W

inside � we get

val

W

(nf()

A;s

;ha

0

; ui)[hq; "i q

init

]). By point (b) of the claim below (with r = q

init

) this

means that �

A

(s)[u] =M

q

init

(s)[u] which proves the correctness of the construction.

Claim: (a) val

W

(nf()

A;s

; hp; ui)) = h(s=u) and

(b) for r 2 Q, val

W

(nf()

A;s

; ha

0

; ui)[hq; "i r]) =M

r

(s)[u].

15

Both statements are proved by induction on the structure of s. Let s = �(s

1

; : : : ; s

k

),

k � 0, � 2 �

(k)

, and s

1

; : : : ; s

k

2 T

�

.

(a) If u = ", then by Lemma 3.12(2) and (1), val

W

(nf()

A;s

; hp; "i)) = val

W

(��) with

� = rhs

A

(hp; �i; �),

� = [ha; �ji nf()

A;s

j

; ha; "i)[hb; "i nf()

A;s

; hb; ji) j b 2 Inh] j a 2 Syn; j 2 [k]];

and 	 = [hb; �i hb; "i j b 2 Inh]. Since � = g

�

(hp; �1i; : : : ; hp; �ki), we can reduce the

substitution � to synthesized attributes of the form hp; �ji. Applying val

W

, � becomes

[hp; �ji val

W

(nf()

A;s

j

; hp; "i)[hb; "i nf()

A;s

; hb; ji) j b 2 Inh]) j j 2 [k]]

which equals [hp; �ji h(s

j

) j j 2 [k]] by the induction hypothesis. Thus val

W

(��) =

val

W

(g

�

(h(s

1

); : : : ; h(s

k

))) = h

�

(h(s

1

); : : : ; h(s

k

)) = h(s) = h(s=").

Otherwise u = iv with i 2 [k] and v 2 Occ(s

i

). Then by Lemma 3.12(1) val

W

(nf()

A;s

;

hp; ivi)) = val

W

(nf()

A;s

i

;hp; vi)) which equals h(s

i

=v) = h(s=iv) by the induction hypoth-

esis.

(b) If u = ", then val

W

(nf()

A;s

; ha

0

; "i)[hq; "i r]) = val

W

(��	[hq; "i r]), where

� = rhs

A

(ha

0

; �i; �) and � and 	 are as above. By Claim (a) we can replace hp; �ji

by h(s

j

) in � = l

�

(hq; �i; hp; �1i; : : : ; hp; �ki) to get val

W

(l

�

(r; h(s

1

); : : : ; h(s

k

))). By the

de�nition of W (l

�

), this equals rhs

M

(r; �; hh(s

1

); : : : ; h(s

k

)i)["] =M

r

(s)["].

Otherwise u = iv with i 2 [k] and v 2 Occ(s

i

). By Lemma 3.12(1) val

W

(nf()

A;s

;

ha

0

; ivi)[hq; "i r]) = val

W

(nf()

A;s

i

; ha

0

; vi)[hq; "i nf()

A;s

; hq; ii)][hq; "i r]). With

Lemma 3.12(2) we get val

W

(nf()

A;s

i

; ha

0

; vi)[hq; "i ��	[hq; "i r]]), where � equals

rhs

A

(hq; �ii; �) and � and 	 are as above. By Claim (a), we can replace hp; �ji by h(s

j

) in

� = f

�;i

(hq; �i; hp; �1i; : : : ; hp; �ki) to get val

W

(nf()

A;s

i

;ha

0

; vi)[hq; "i f

�;i

(r; h(s

1

); : : : ;

h(s

k

))]). Let � = rhs

M

(r; �; hh(s

1

); : : : ; h(s

k

)i) = �(hr

1

; x

1

i; : : : ; hr

k

; x

k

i). If we apply val

W

inside the substitution, then since val

W

(f

�;i

(r; h(s

1

); : : : ; h(s

k

))) = r

i

, we get

val

W

(nf()

A;s

i

;ha

0

; vi)[hq; "i r

i

]) which equals, by the induction hypothesis,M

r

i

(s

i

)[v] =

�(M

r

1

(s

1

); : : : ;M

r

k

(s

k

))[iv] = �[[hq

0

; x

i

i M

q

0

(s

i

) j hq

0

; x

i

i 2 hQ;X

k

i]][iv] = M

r

(s)[iv] by

Lemma 3.4. 2

Lemma 4.2 ATT-REL � T

R

-REL.

Proof. Let A = (A;�;W) be an attributed relabeling with A = (Syn; Inh;�;�; root; a

0

;

R). The T

R

-REL M = (Q;P;�;�; q

init

; R; h) is de�ned as follows. Let Q = fq

init

g [Q

0

,

where Q

0

consists of all mappings which associate with every c 2 Att a value in W (c).

For � 2 �

(k)

and q

0

; q

1

; : : : ; q

k

2 Q we denote by R

�

(q

0

; q

1

; : : : ; q

k

) the predicate which

is true if and only if all rules in R

�

are satis�ed by the values given by the mappings

q

0

; q

1

; : : : ; q

k

; this means that for every rule hc; �ii ! (hd

1

; �i

1

i; : : : ; hd

n

; �i

n

i) in R

�

,

q

i

(c) =W ()(q

i

1

(d

1

); : : : ; q

i

n

(d

n

)). Similarly R

root

(q

1

) denotes the predicate which is true

if and only if all rules of the form hb; �1i ! � in R

root

with b 2 Inh are satis�ed by

the values given by q

1

. Let P = P(Q

0

) and de�ne the look-ahead automaton of M as

follows. For � 2 �

(k)

, k � 0, and p

1

; : : : ; p

k

2 P , let h

�

(p

1

; : : : ; p

k

) = fq 2 Q

0

j there are

16

unique q

i

2 p

i

for i 2 [k] such that R

�

(q; q

1

; : : : ; q

k

)g. For q 2 Q, � 2 �

(k)

, k � 0, and

p

1

; : : : ; p

k

2 P , let

hq; �(x

1

; : : : ; x

k

)i ! �(hq

1

; x

1

i; : : : hq

k

; x

k

i) hp

1

; : : : ; p

k

i

be in R, where � 2 �

(k)

and q

1

; : : : ; q

k

2 Q

0

are de�ned as follows.

� q 2 Q

0

. If there are unique q

i

2 p

i

for all i 2 [k] such that R

�

(q; q

1

; : : : ; q

k

), then these

are the q

1

; : : : ; q

k

and � = q(a

0

); otherwise � and q

1

; : : : ; q

k

are chosen arbitrarily.

� q = q

init

. If there are unique q

0

2 h

�

(p

1

; : : : ; p

k

) and q

i

2 p

i

for all i 2 [k] such

that R

root

(q

0

) and R

�

(q

0

; q

1

; : : : ; q

k

), then these are the q

1

; : : : ; q

k

and � = q

0

(a

0

);

otherwise � and q

1

; : : : ; q

k

are chosen arbitrarily.

Let us �rst explain the construction informally (an example is given in Example 4.3). From

now on let val

W

be extended to T

�

(

S

c2Att

W (c)) in the obvious way. Let s 2 T

�

. Every

attribute instance hc; ui 2 hAtt;Occ(s)i has a unique normal form with respect to)

A;s

.

It is a tree in T

�

(hInh; f"gi). The look-ahead automaton of M is de�ned in such a way

that h(s) contains all mappings q in Q

0

such that for every a 2 Syn, q(a) = val

W

(nf()

A;s

; ha; "i)[hb; "i q(b) j b 2 Inh]). Hence, if we �x the values of the inherited attributes at

the root of s = �(s

1

; : : : ; s

k

) by a mapping q 2 Q

0

, then the rules in R

�

�x all mappings

q

1

; : : : ; q

k

2 Q

0

at the subtrees s

1

; : : : ; s

k

(with q

i

2 h(s

i

)). In particular this means that

the value of a

0

at the root of s is �xed as q(a

0

) which, by the de�nition of attributed

relabeling, is the symbol which replaces � in s. Hence for every q 2 Q

0

, � 2 �

(k)

, and

p

1

; : : : ; p

k

2 P , the states q

1

; : : : ; q

k

2 Q

0

and the symbol � 2 � are uniquely determined.

For the tree root(s), the rules in R

root

together with h

�

(h(s

1

); : : : ; h(s

k

)) �x the state q

0

at

the root of s, and thus, by the arguments above, the states q

1

; : : : ; q

k

which must process

the subtrees s

1

; : : : ; s

k

. Thus, for every node u of s that is not the root, the state q in

which M processes the subtree s=u consists of the values of the attributes of that node in

root(s).

We now prove the correctness of M , starting with the correctness of the look-ahead au-

tomaton. In the following let, for q 2 Q

0

, �

q

= [hb; "i q(b) j b 2 Inh] and let, for s 2 T

�

,

ism(s) = fq 2 Q

0

j 8a 2 Syn: q(a) = val

W

(nf()

A;s

; ha; "i)�

q

)g. We want to prove that for

every s 2 T

�

, h(s) = ism(s).

Let s = �(s

1

; : : : ; s

k

) with � 2 �

(k)

, k � 0, and s

1

; : : : ; s

k

2 T

�

. Let (V;E) be the

dependency graph D

�

(is(s

1

); : : : ; is(s

k

)) and de�ne V

0

= fv 2 V j :9v

0

2 V such that

(v

0

; v) 2 Eg and for n � 1, V

n

= fv 2 V j 8v

0

2 V , if (v

0

; v) 2 E, then v

0

2 V

�

for some

� < ng. Since A is noncircular, (V;E) is acyclic and each v 2 V is in a unique V

n

.

First we show that for q

i

2 ism(s

i

) and an arbitrary q

0

2 Q

0

such that R

�

(q

0

; q

1

; : : : ; q

k

),

the values of all attributes in hAtt; f0; : : : ; kgi are correct with respect to the values of the

inherited attributes given by q

0

.

Claim 1: If hc; �ji 2 ins

�

[outs

�

, q

0

2 Q

0

, and, for i 2 [k], q

i

2 ism(s

i

) such that

R

�

(q

0

; q

1

; : : : ; q

k

), then q

j

(c) = val

W

(nf()

A;s

; hc; ji)�

q

0

).

Claim 1 is proved by induction on n, where v = hc; �ji 2 V

n

.

If c 2 Inh and j = 0, then val

W

(nf()

A;s

; hc; "i)�

q

0

) = val

W

(hc; "i�

q

0

) = q

0

(c).

17

If hc; ji 2 hSyn; [k]i, then by Lemma 3.12(1), val

W

(nf()

A;s

;hc; ji)�

q

0

) equals

val

W

(nf()

A;s

j

;hc; "i)	

j

�

q

0

), where 	

j

= [hb; "i nf()

A;s

; hb; ji) j b 2 Inh]. Since substi-

tution is associative we can move �

q

0

inside 	

j

. Now the substitution 	

j

can be reduced

to those attributes hb; "i which appear in nf()

A;s

j

; hc; "i). By Lemma 3.14(i) and the

de�nition of V

n

, the corresponding attributes hb; ji are in V

�

for some � < n. Thus,

after applying val

W

inside the substitution, we can use the induction hypothesis to get

val

W

(nf()

A;s

j

; hc; "i)�

q

j

). Since q

j

2 ism(s

j

), this equals q

j

(c).

If hc; �ji 2 ins

�

, then by Lemma 3.12(2), val

W

(nf()

A;s

; hc; ji)�

q

0

) = val

W

(��

1

�

2

�

q

0

),

where � = rhs(hc; �ji; �), �

1

= [ha; �ii nf()

A;s

; ha; ii) j a 2 Syn; i 2 [k]], and �

2

=

[hb; �i hb; "i j b 2 Inh]. We can move �

q

0

inside �

1

and �

2

(by associativity and

since ��

q

0

= �). By applying val

W

inside �

1

this means that ha; �ii is replaced by

val

W

(nf()

A;s

; ha; ii)�

q

0

). Since, by the de�nition of V

n

, ha; �ii 2 V

�

for some � < n, this

equals q

i

(a) by the induction hypothesis. Altogether we get val

W

(�[ha; �ii q

i

(a) j a 2

Syn; i 2 [k]][hb; �i q

0

(b) j b 2 Inh]). By R

�

(q

0

; q

1

; : : : ; q

k

) this equals q

j

(c). This ends

the proof of Claim 1.

The correctness of the look-ahead, i.e., h(s) = ism(s) follows directly from Claim 2.

Claim 2: q

0

2 ism(s) if and only if there are unique q

i

2 ism(s

i

) for i 2 [k] such that

R

�

(q

0

; q

1

; : : : ; q

k

).

The if-part of Claim 2 follows from Claim 1 with j = 0 and c 2 Syn.

We now show the only-if-part. The uniqueness of the q

j

is immediate from Claim 1. It

remains to prove their existence. For n � 0 and v = hc; �ji 2 V

n

with j 2 [k] de�ne

q

j

(c) =

�

val

W

(nf()

A;s

j

; hc; "i)�

q

j

); if c 2 Syn

val

W

(�[ha; �ii q

i

(a) j a 2 Syn; i 2 [k]][hb; �i q

0

(b) j b 2 Inh]); if c 2 Inh;

where � = rhs(hc; �ji; �). All ha; �ii which appear in � are in V

�

for some � < n and, by

Lemma 3.14(i), the same is true for all hb; �ji such that hb; "i occurs in nf()

A;s

j

;hc; "i).

Hence the above de�nes all q

j

by induction on n. Clearly, q

j

2 ism(s

j

) for j 2 [k]. Now de-

�ne q

0

0

2 Q

0

as follows. For a 2 Syn let q

0

0

(a) = rhs(ha; �i; �)[h�; �ii q

i

(�) j � 2 Syn; i 2

[k]][hb; �i q

0

(b) j b 2 Inh] and for b 2 Inh let q

0

0

(b) = q

0

(b). Then R

�

(q

0

0

; q

1

; : : : ; q

k

).

By Claim 1, q

0

0

(a) = val

W

(nf()

A;s

; ha; "i)�

q

0

0

) for all a 2 Syn. Since �

q

0

0

= �

q

0

and, by

assumption, q

0

2 ism(s), this means that q

0

0

= q

0

and hence R

�

(q

0

; q

1

; : : : ; q

k

). This ends

the proof of Claim 2.

Let us now prove the correctness of �

M

. Let s 2 T

�

. Analogous to Claims 1 and 2, but

using the (acyclic) graph (V;E) = D

root

(is(s)), the following two claims can easily be

shown.

Claim 1(root): If q

0

2 ism(s) and R

root

(q

0

), then q

0

(c) = val

W

(nf()

A;root(s)

; hc; 1i)) for

every c 2 Att.

Claim 2(root): There is a unique q

0

2 ism(s) such that R

root

(q

0

).

It should now be clear from the de�nition of the rules ofM that M

q

init

(s) =M

q

0

(s), where

q

0

is the unique element of ism(s) with R

root

(q

0

).

The correctness of �

M

, i.e., that M

q

init

(s)[u] = val

W

(nf()

A;root(s)

;ha

0

; 1ui)) then follows

from Claim 3 with Lemma 3.12(1) and the fact that, by Claim 1(root), �

q

0

= [hb; "i

val

W

(nf()

A;root(s)

;hb; 1i)) j b 2 Inh].

18

Claim 3: For every q 2 h(s) and every u 2 Occ(s), M

q

(s)[u] = val

W

(nf()

A;s

;ha

0

; ui)�

q

).

This claim is proved by induction on the structure of s. Let s = �(s

1

; : : : ; s

k

) with � 2 �

(k)

,

k � 0, and s

1

; : : : ; s

k

2 T

�

. Then M

q

(s)[u] = �[[: : :]][u], where � = rhs

M

(q; �; hh(s

1

); : : : ;

h(s

k

)i) and [[: : :]] = [[hq

0

; x

i

i M

q

0

(s

i

) j hq

0

; x

i

i 2 hQ;X

k

i]]. Since q 2 h(s), there are

unique q

i

2 h(s

i

) for i 2 [k] such that R

�

(q; q

1

; : : : ; q

k

). Then � = �(hq

1

; x

1

i; : : : ; hq

k

; x

k

i)

with � = q(a

0

). Note that, by Claim 2, q 2 ism(s) and q

i

2 ism(s

i

).

If u = " then M

q

(s)["] = �[[: : :]]["] = q(a

0

). Since q 2 ism(s) this equals val

W

(nf()

A;s

;

ha

0

; ui)�

q

).

If u = iv with i 2 [k] and v 2 Occ(s

i

), then M

q

(s)[iv] = �[[: : :]][iv] = �(M

q

1

(s

1

); : : : ;

M

q

k

(s

k

))[iv] = M

q

i

(s

i

)[v] which, by induction, equals val

W

(nf()

A;s

i

; ha

0

; vi)�

q

i

. By

Claim 1, q

i

(b) = val

W

(nf()

A;s

; hb; ii)�

q

) for all b 2 Inh. Thus, omitting val

W

and moving

�

q

outside of �

q

i

, the above becomes val

W

(nf()

A;s

i

; ha

0

; vi)[hb; "i nf()

A;s

; hb; ii) j b 2

Inh]�

q

) which, by Lemma 3.12(1), equals val

W

(nf()

A;s

; ha

0

; ivi)�

q

). This ends the proof

of Claim 3. 2

The following example illustrates the construction in the proof of Lemma 4.2.

Example 4.3 Let A = (A;�;W) with A = (Syn; Inh;�;�; root; a

0

; R) with Syn =

fa

0

; atg, Inh = fbelowg, � = f

(1)

; �

(1)

; e

(0)

g, � = f

(1)

;#

(1)

; �

(1)

; e

(0)

g, and � =

fl

(2)

#

; l

(0)

�

; l

(0)

e

; 0

(0)

; 1

(0)

g. In the sequel let B = f0; 1g. Let W (at) = B , W (below) = B ,

W (a

0

) = �, W (l

#

) : B � B ! �, W (l

�

);W (l

e

) 2 �, W (0);W (1) 2 B and let W (l

#

)(x; y)

equal if x = y = 0 and # otherwise, W (l

�

)() = �, W (l

e

)() = e, W (0)() = 0, and

W (1)() = 1.

R consists of the following sets of rules:

R

= fhbelow; �1i ! 0; hat; �i ! 0; ha

0

; �i ! l

#

(hbelow; �i; hat; �1i)g,

R

�

= fhbelow; �1i ! 1; hat; �i ! 1; ha

0

; �i ! l

�

g,

R

e

= fhat; �i ! 0; ha

0

; �i ! l

e

g, and

R

root

= fhbelow; �1i ! 0; ha

0

; �i ! ha

0

; �1ig,

The attributed relabeling A takes a monadic tree s over � as input and generates a tree

over � which is obtained from s by changing all 's occurring directly above or directly

below a star in s into a cross (#). Thus, the tree s = �e is translated by A into the

tree #�#e (in monadic trees we might leave out the parentheses). If s[u] = �, then

the attributes hat; ui and hbelow; u1i have the value 1 (and otherwise 0). The reader may

verify that for s = �e, nf()

A;root(s)

; ha

0

; ui) equals l

#

(0; 0) for u = 1, l

#

(0; 1) for

u = 11, l

�

for u = 1

3

, l

#

(1; 0) for u = 1

4

, l

#

(0; 0) for u = 1

5

, and l

e

for u = 1

6

. Hence

�

A

(s) = #�#e.

Let us now construct a top-down relabelingM with regular look-ahead by the construction

given in the proof of Lemma 4.2. Note that the translation realized by A can neither be

realized by a top-down tree transducer nor by a bottom-up tree transducer, i.e., �

M

62

T-REL[B-REL, cf. the discussion in Section 3. Let M = (Q

0

[fq

init

g; P;�;�; q

init

; R; h).

The set Q

0

equals fq

bb

0

g

= f(below; b); (at; b

0

); (a

0

; g)g j b; b

0

2 B ; g 2 �g and P = P(Q

0

).

The rules of the look-ahead automaton of M are h

e

() = fq

00e

; q

10e

g and for p 2 P ,

h

�

(p) = fq

01�

; q

11�

g if p contains exactly one state of the form q

1bg

with b 2 B and g 2 �,

19

and h

�

(p) = ? otherwise; h

(p) = fq

00

; q

10#

g if p contains exactly one state of the form

q

00g

with g 2 � but no state of the form q

01g

, h

(p) = fq

00#

; q

10#

g if p contains exactly

one q

01g

but no q

00g

, h

(p) = fq

00

; q

00#

g if p contains exactly one state of the form q

00g

and one state of the form q

01g

, and h

(p) = ? otherwise.

Clearly, only the look-ahead states fq

00e

; q

10e

g, fq

01�

; q

11�

g, fq

00

; q

10#

g, and fq

00#

; q

10#

g

which we denote by e, �, , and #, respectively, are needed.

Consider the input tree s = �e. The look-ahead automaton arrives for s=1 in state ,

for s=11 in #, for s=111 in �, for s=1

4

and s=1

5

in , and for s=1

6

in e. The non-dummy

-rules and the derivation for s by M are as follows.

hq

00

; (x

1

)i ! (hq

00e

; x

1

i) hei hq

init

; �ei)

M

hq

00#

; �ei

hq

00

; (x

1

)i ! (hq

00

; x

1

i) hi)

M

#hq

01�

; �ei

hq

00

; (x

1

)i ! (hq

00#

; x

1

i) h#i)

M

#�hq

10#

; ei)

hq

00#

; (x

1

)i ! #(hq

01�

; x

1

i) h�i)

M

#�#hq

00

; ei

hq

10#

; (x

1

)i ! #(hq

00e

; x

1

i) hei)

M

#�#hq

00e

; ei

hq

10#

; (x

1

)i ! #(hq

00

; x

1

i) hi)

M

#�#e

hq

10#

; (x

1

)i ! #(hq

00#

; x

1

i) h#i

hq

10#

; (x

1

)i ! #(hq

01�

; x

1

i) h�i

The unique state q

0

2 h(s) for which R

root

(q

0

) holds is q

00

. Hence M

q

init

(s) = M

q

00

(s)

for s 2 T

�

. 2

From Lemmas 4.1 and 4.2 the following theorem is obtained.

Theorem 4.4 ATT-REL = T

R

-REL.

In Theorem 10 of [BE98] it is proved that the class ATT-REL of attributed relabelings is

equal to the class MSO-REL of MSO de�nable relabelings. By Proposition 2 of [BE98],

MSO relabelings are closed under composition and hence ATT-REL is closed under com-

position. Together with Theorem 4.4 this means that the class of top-down relabelings

with regular look-ahead is closed under composition.

Lemma 4.5 T

R

-REL � T

R

-REL = T

R

-REL.

Note that in the framework of top-down tree transducers a proof of Lemma 4.5 would

involve a straightforward product construction.

From Lemma 4.5 it follows in particular that T

R

-REL is closed under composition with

T -REL. The class B-REL of (total deterministic) bottom-up �nite state relabelings is

included in T

R

-REL, cf. the discussion at the beginning of the subsection on attributed

relabelings in Section 3. Hence T

R

-REL is closed under composition with B-REL. Since,

moreover, T

R

-REL = B-REL � T -REL (cf. Theorem 2.6 of [Eng77]), it follows that

ATT-REL is the composition closure of B-REL and T-REL, i.e., of the (total deterministic)

bottom-up and top-down (�nite state) relabelings. This, and its equivalence with the MSO

relabelings, shows that it is a natural and robust class of relabelings.

20

5 Single Use Restricted Tree Transducers

The main aim of this paper is to give a characterization in terms of MTTs of the class

ATT

R

sur

of translations realized by single use restricted (for short, sur) ATT

R

s, which

coincides with the class of MSO de�nable tree translations [BE98]. Such a characterization

is given in this section by generalizing the sur property from ATTs to MTTs. As it turns

out, using the straightforward extension of the sur property from ATTs to MTTs (called

strongly single use restricted, or ssur) it is not possible to prove the equivalence between

MTT

R

ssur

and ATT

R

sur

. In fact, MTT

R

ssur

does not even contain all top-down relabelings

(Theorem 5.6). Rather, using a slightly weaker restriction, which for MTTs might be the

more natural notion of single use restriction, we prove thatMTT

R

sur

= ATT

R

sur

. Indeed, the

sur MTT

R

s are equivalent to the composition T

R

-REL �MTT

ssur

, which allows us to use

Theorem 4.4 for the proof of MTT

R

sur

= ATT

R

sur

, because ATT

R

sur

= ATT-REL � ATT

sur

by de�nition.

5.1 Single Use Restricted ATTs

Consider for an ATT A the dependency graph D(s) of an input tree s. This graph has

the following properties. For an attribute c and a node u of s there is an edge from hc; ui

to an attribute instance hd; vi in D(s), if there is a derivation step hd; vi)

A;s

� such that

hc; ui occurs in �. In other words, hd; vi depends on hc; ui. There may be several attribute

instances hd; vi that depend on hc; ui, or none at all. In terms of the dependency graph

this means that D(s) is a jungle; that is, a forest with sharing of subtrees between the

trees of the forest.

Let us now consider the special case that for every input tree s, the graph D(s) is a forest,

hence no sharing occurs and thus the out-degree of every node is either zero or one. This

can be ensured by allowing each outside attribute of an input symbol � to be used at

most once in the rules in R

�

. An ATT A with the latter property is called single use

restricted. This property was introduced by Ganzinger [Gan83] as the \syntactic single

used restriction". An interesting property of such ATTs is that the class of translations

which can be realized by them is closed under composition [Gan83, Gie88, K�uh97], whereas

this is not the case for the class ATT (cf. Corollary 4.1 of [F�ul81]).

De�nition 5.1 (single use restricted)

Let A = (Syn; Inh;�;�; root; a

0

; R) be an ATT. Then A is single use restricted (for short,

sur), if for all � 2 �

(k)

root

, hc; �i; hc

0

; �

0

i 2 ins

�

, � = rhs(hc; �i; �), �

0

= rhs(hc

0

; �

0

i; �),

u 2 Occ(�), and u

0

2 Occ(�

0

),

if �[u] = �

0

[u

0

] 2 outs

�

, then hc; �i = hc

0

; �

0

i and u = u

0

:

2

The class of all translations which can be realized by sur ATTs is denoted by ATT

sur

. The

class ATT-REL�ATT

sur

is denoted by ATT

R

sur

. Indeed, ATT

R

sur

is the class which will be

proved to be equal to MTT

R

sur

.

21

An obvious dynamic consequence of the static sur property is that if ha

0

; "i)

�

A;root(s)

�, then each attribute instance hc; ui 2 hAtt;Occ(root(s))i occurs at most once in �.

Intuitively this means that nf()

A;root(s)

; hc; ui) occurs at most once as a subtree in the

output tree nf()

A;root(s)

; ha

0

; "i).

Let us investigate the is-dependencies of sur ATTs, cf. De�nition 3.13. Let A be an ATT

and let f � Inh� Syn be an is-dependency. It should be intuitively clear that if A is sur,

then f is a partial function of type Inh! Syn. This is proved in the next lemma.

Lemma 5.2 Let A be a sur ATT. Then every element of IS(A) is a partial function.

Proof. Let A = (Syn; Inh;�;�; root; a

0

; R). Recall that IS(A) = fis(s) j s 2 T

�

g.

We prove that is(s) is a partial function by induction on the structure of s. Let s =

�(s

1

; : : : ; s

k

), k � 0, � 2 �

(k)

, s

1

; : : : ; s

k

2 T

�

, and f = is(s) = is

�

(is(s

1

); : : : ; is(s

k

)).

We assume that f is not a partial function and show that a contradiction follows. If f is not

a partial function, then there are distinct a; a

0

2 Syn, b 2 Inh such that (b; a); (b; a

0

) 2 f .

Thus there are paths w = hc

1

; �

1

i � � � hc

n

; �

n

i and w

0

= hc

0

1

; �

0

1

i � � � hc

0

m

; �

0

m

i inD

�

(is(s

1

); : : : ;

is(s

k

)) such that hc

i

; �

i

i; hc

0

j

; �

0

j

i 2 (ins

�

[outs

�

) for i 2 [n] and j 2 [m], hc

1

; �

1

i = hc

0

1

; �

0

1

i =

hb; �i, hc

n

; �

n

i = ha; �i, and hc

0

m

; �

0

m

i = ha

0

; �i. Let i 2 [min(m;n)] such that (i) for every

j < i, hc

j

; �

j

i = hc

0

j

; �

0

j

i and (ii) hc

i

; �

i

i 6= hc

0

i

; �

0

i

i. Thus, i is the smallest index such that

the i-th elements of w and w

0

are di�erent. Such an index exists because the paths w and w

0

end in di�erent attribute instances (of out-degree zero). If hc

i

; �

i

i 2 ins

�

, then hc

i�1

; �

i�1

i

occurs in both rhs(hc

i

; �

i

i; �) and rhs(hc

0

i

; �

0

i

i; �) which contradicts the sur property of A; if

hc

i

; �

i

i 2 outs

�

, then a contradiction to the induction hypothesis follows (for is(s

�

), where

�� = �

i

). 2

Let A be a sur ATT and let g be a dependency graph of some � 2 �

(k)

with d

1

; : : : ; d

k

2

IS(A). If each node of g has out-degree zero or one, then we say that g is a forest (note

that g is also acyclic). Every dependency graph g of A is a forest.

Lemma 5.3 Let A = (Syn; Inh;�;�; root; a

0

; R) be a sur ATT. For every � 2 �

(k)

root

and

d

1

; : : : ; d

k

2 IS(A), D

�

(d

1

; : : : ; d

k

) is a forest.

Proof. We assume that D

�

(d

1

; : : : ; d

k

) = (V;E) is not a forest and show that a

contradiction follows. If (V;E) is not a forest, then there is a node hc; �ii 2 V with

out-degree greater than or equal to two. Hence there are hc

1

; �j

1

i; hc

2

; �j

2

i 2 V with

hc

1

; �j

1

i 6= hc

2

; �j

2

i such that (hc; �ii; hc

1

; �j

1

i); (hc; �ii; hc

2

; �j

2

i) 2 E. If hc; �ii 2 outs

�

then hc; �ii occurs in both rhs(hc

1

; �j

1

i; �) and rhs(hc

2

; �j

2

i; �) which contradicts the sur

property of A. Otherwise c 2 Inh and i 2 [k] and hence by the de�nition of dependency

graph, both (c; c

1

) and (c; c

2

) are in d

i

. Thus d

i

is not a partial function which contradicts

Lemma 5.2. 2

5.2 Single Use Restricted MTTs

The aim of this subsection is to de�ne a natural and static notion of single use restriction

for MTTs such that the class MTT

R

sur

coincides with the class ATT

R

sur

(as proved in the

22

next subsection). An MTT generates trees according to the states in which a subtree is

processed and according to the parameters in which the context information is processed

(just like recursive procedures with parameters). Roughly speaking the states of an MTT

correspond to the synthesized attributes of an ATT and the parameters of an MTT cor-

respond to the inherited attributes of an ATT. However, one reason why this comparison

falls short is that each state of an MTT has its \own" set of parameters, whereas inherited

attributes are associated with every symbol of the input tree. In this sense the single use

restriction of using an (outside) inherited attribute at most once means that any param-

eter y

j

may occur at most once in each right-hand side of a rule of an MTT (i.e., each

right-hand side is linear or non-copying, with respect to the parameters). We call this

property single use restricted in the parameters.

De�nition 5.4 (single use restricted in the parameters)

An MTT

R

M = (Q;P;�;�; q

0

; R; h) is single use restricted in the parameters (for short,

surp), if for every q 2 Q

(m)

, j 2 [m], � 2 �

(k)

, and p

1

; : : : ; p

k

2 P , y

j

occurs at most once

in rhs(q; �; hp

1

; : : : ; p

k

i). 2

The class of all translations which can be realized by surp MTT

R

s is denoted by MTT

R

surp

.

Recall that, implicitly, this de�nes the class MTT

surp

by the convention below De�nition

3.3.

A rather obvious dynamic consequence of the surp property is that every M

q

(s) 2 T

�

(Y)

contains each parameter at most once.

It remains to �nd a restriction for MTTs which corresponds to the restriction on (outside)

synthesized attributes of sur ATTs, i.e., a restriction on the states which appear in the

right-hand sides of the rules of an MTT. For sur ATTs we wanted the dependency graphs

to be forests, which could be ensured by allowing every outside attribute to be used at

most once. In the case of an MTT M we can �nd a similar notion of dependency for

the states of M (disregarding its parameters). In fact, it is well known, and can easily

be understood from Lemma 3.4, that an MTT can be viewed as an attribute grammar

with the states as synthesized attributes (and no inherited attributes). The value of an

attribute q at node u of s is the q-translation M

q

(s=u) and the only operation in the

semantic rules is second order substitution. We now consider the dependency graphs of

this attribute grammar. More precisely, a state q depends on the states which appear

in the right-hand sides of the q-rules. Thus, for every input symbol �, q may depend on

di�erent states (and in the case of regular look-ahead for every tuple of look-ahead states).

If, for an input tree s, we associate with every node in s the states of M , then we can

de�ne a notion of dependency graph similar to the one for ATTs. There is an edge from

q at node ui to q

0

at node u, if hq; x

i

i occurs in the (q

0

; �)-rule of M , where � is the label

of u. A natural way to ensure that each such dependency graph is a forest, is to require

that, for each q and each x

i

, there is at most one occurrence of hq; x

i

i in the right-hand

sides of all �-rules (or, all (�; hp

1

; : : : ; p

k

i)-rules in the case of regular look-ahead). We

call an MTT with the latter property strongly single use restricted in the input (for short,

ssuri). This property was introduced in [K�uh97] where it is called \single-used" (see also

[K�uh98]).

23

De�nition 5.5 (strongly single use restricted in the input)

LetM = (Q;P;�;�; q

0

; R; h) be an MTT

R

and let Q be a nonempty subset of Q. ThenM

is strongly single use restricted in the input (for short, ssuri) with respect to Q, if for all � 2

�

(k)

, k � 0, p

1

; : : : ; p

k

2 P; q; q

0

2 Q, � = rhs(q; �; hp

1

; : : : ; p

k

i), �

0

= rhs(q

0

; �; hp

1

; : : : ; p

k

i),

u 2 Occ(�), and u

0

2 Occ(�

0

),

if �[u] = �

0

[u

0

] 2 hQ;X

k

i, then q = q

0

and u = u

0

:

If M is ssuri with respect to Q, then M is called ssuri. 2

The class of all translations that can be realized by ssuri MTT

R

s is denoted by MTT

R

ssuri

.

The class MTT

R

ssuri;surp

will also be denoted by MTT

R

ssur

. We note that the class of

translations realized by the single-used MTTs of K�uhnemann is denoted by MT

su

in

[K�uh97]. There is a subtle di�erence between our class MTT

ssur

and the class MT

su

because K�uhnemann uses a slightly di�erent model of MTTs in which, just like for ATTs,

input trees are of the form root(s); cf. the discussion following Lemma 5.11.

As it turns out, with the above de�nition of ssuri, MTT

R

ssuri;surp

does not equal ATT

R

sur

.

In fact, the restriction of being ssuri is so strong that not even every top-down relabeling

can be realized by an MTT

R

ssur

. This fact is proved in the next theorem (using Lemmas

6.6 and 6.7 which will be proved in the next section).

Theorem 5.6 T-REL * MTT

R

ssur

.

Proof. Consider the T-REL A = (Q

A

;�;�; q

in

; R

A

) with Q

A

= fq

in

; qg, � = � =

fa

(1)

; b

(1)

; e

(0)

g, and R

A

= fhq

0

; a(x

1

)i ! a(hq

0

; x

1

i); hq

0

; b(x

1

)i ! b(hq; x

1

i); hq; a(x

1

)i !

b(hq; x

1

i); hq; b(x

1

)i ! b(hq; x

1

i); hq

0

; ei ! e; hq; ei ! eg. Clearly, �

A

(a

n

e) = a

n

e and

�

A

(a

n

bwe) = a

n

bb

jwj

e with n � 0 and w 2 fa; bg

�

.

Assume now that there is an MTT

R

ssur

M = (Q;P;�;�; q

0

; R; h) such that �

M

= �

A

. By

Lemma 6.6 we may assume that M is nondeleting. This means (by Lemma 6.7) that for

every q 2 Q

(m)

, s 2 T

�

, and j 2 [m], y

j

appears in M

q

(s). Now consider the look-ahead

automaton of M for input trees of the form (ab)

l

e with l � 0. Since P is �nite there must

be m

0

> m � 0 such that p = h((ab)

m

0

e) = h((ab)

m

e). Let n = m

0

�m and s = (ab)

m

e.

Then h((ab)

kn

s) = p for every k � 0.

For all i � 1, �

i

=

^

M

q

0

((ab)

in

p) must contain at least one element of hhQ; fpgii, where

^

M is the extension of M (see De�nition 3.5); this is because otherwise, by Lemma 3.6,

M

q

0

((ab)

(i+k)n

s) = �

i

[[hhq; pii M

q

((ab)

kn

s) j q 2 Q]] = �

i

for every k � 0, which

contradicts �

M

= �

A

. However, �

i

cannot contain hhq

0

; pii. In fact, suppose that it

does contain hhq

0

; pii. Then, by Lemma 3.6, �

M

((ab)

in

s) =

^

M

q

0

((ab)

in

s) = �

i

[[hhq; pii

M

q

(s) j q 2 Q]]. Since M

q

0

(s) = ab

2m�1

e, this equals �

0

[hhq

0

; pii ab

2m�1

e], where

�

0

= �

i

[[hhq; pii M

q

(s) j q 2 Q � fq

0

g]]. By the nondeleting property of M , �

0

con-

tains hhq

0

; pii, and so �

M

((ab)

in

s) has a subtree ab

2m�1

e. This contradicts the fact that

�

M

((ab)

in

s) = ab

2(in+m)�1

e, because in � 1.

Since Q is �nite, there are q 2 Q and i; k � 1 such that hhq; pii occurs in both

^

M

q

0

((ab)

in

p)

and

^

M

q

0

((ab)

(i+k)n

p). By Lemma 3.6,

^

M

q

0

((ab)

(i+k)n

p) equals

^

M

q

0

((ab)

kn

p)[[hhq

0

; pii

^

M

q

0

((ab)

in

p) j q

0

2 Q]]. Hence there is a q

0

2 Q such that hhq

0

; pii occurs in

^

M

q

0

((ab)

kn

p)

24

and hhq; pii occurs in

^

M

q

0

((ab)

in

p). We know that �

k

does not contain hhq

0

; pii, and so

q

0

6= q

0

. This contradicts the following claim (with w = (ab)

in

, q

1

= q

0

, and q

2

= q

0

).

Claim: Let q

1

; q

2

2 Q and w 2 fa; bg

�

. If hhq; pii occurs in both

^

M

q

1

(wp) and

^

M

q

2

(wp),

then q

1

= q

2

.

We prove this by induction on the length of w. If w = " then

^

M

q

1

(wp) = hhq

1

; pii and

^

M

q

2

(wp) = hhq

2

; pii. Thus q = q

1

= q

2

.

If w = cv with c 2 fa; bg and v 2 fa; bg

�

, then, by Lemma 3.4,

^

M

q

1

(cvp) = rhs

M

(q

1

; c; hp

0

i)[[hr; x

1

i

^

M

r

(vp) j r 2 Q]] and

^

M

q

2

(cvp) = rhs

M

(q

2

; c; hp

0

i)[[hr; x

1

i

^

M

r

(vp) j r 2 Q]], where p

0

=

^

h(vp).

Hence, for � 2 [2], there is a state r

�

2 Q such that hr

�

; x

1

i occurs in rhs

M

(q

�

; c; hp

0

i) and

hhq; pii occurs in

^

M

r

�

(vp). By induction, r

1

= r

2

. By the de�nition of ssuri this means

that q

1

= q

2

. 2

We will prove that T

R

-REL � MTT

ssur

= ATT

R

sur

. The T

R

-REL can be incorporated

into the MTT, if we allow a slightly weaker restriction than ssuri, called suri. For this

restriction, which we will discuss now, we will prove that MTT

R

suri;surp

= ATT

R

sur

.

In the notion of dependency as described above, since we associate all states of M with

each node of s, and in particular with the root of s, a dependency graph of a ssuri MTT is

in general a forest rather than a tree. However, only the tree that contains the initial state

q

0

(at the root of s) is involved in the computation of the output tree. Again we want

to �nd a natural restriction on the rules of M such that the \initial dependency graph",

i.e., the dependency graph restricted to the states that are connected to q

0

(at the root

of s), is a tree. Consider three states q

1

; q

2

; q

3

such that hq; x

i

i occurs in the right-hand

side of each (q

m

; �)-rule for m 2 [3]. For the initial dependency graph to be a tree, none

of the q

1

; q

2

; q

3

should occur together in it, at the same node with label �. We can try to

partition the set of states Q of M into sets Q

1

; : : : ; Q

n

of states which may occur together

in this way. Then we have to make sure that at any node u the states occurring in the

initial dependency graph at u are all in one particular Q

j

. This can be done by requiring

that for all right-hand sides of (q; �)-rules with q 2 Q

j

, the set of states q

0

such that hq

0

; x

i

i

occurs in them, is again contained in one particular Q

l

. We call an MTT for which such

a partition � = fQ

1

; : : : ; Q

n

g exists single use restricted in the input.

De�nition 5.7 (single use restricted in the input)

Let M = (Q;P;�;�; q

0

; R; h) be an MTT

R

. Then M is single use restricted in the

input (for short, suri), if there is a partition � of Q and a collection of mappings T =

(T

�;hp

1

;:::;p

k

i

: �� [k]! � j � 2 �

(k)

; p

1

; : : : ; p

k

2 P) such that

(i) for every Q 2 �, M is ssuri with respect to Q and

(ii) for all � 2 �

(k)

, p

1

; : : : ; p

k

2 P , Q 2 �, i 2 [k], q 2 Q, � = rhs(q; �; hp

1

; : : : ; p

k

i),

u 2 Occ(�), and r 2 Q,

if �[u] = hr; x

i

i; then r 2 T

�;hp

1

;:::;p

k

i

(Q; i):

The partition � is called a sur partition for M and T is called a collection of sur mappings

for M. 2

25

The class of all translations which can be realized by suri MTT

R

s is denoted by MTT

R

suri

.

Altogether we say that an MTT

R

is single use restricted (for short, sur), if it is both suri

and surp. We also denote the class MTT

R

suri;surp

by MTT

R

sur

.

A dynamic consequence of the sur property (both suri and surp) is that every state se-

quence sts

M

(s; u) of M , cf. De�nition 3.7, contains each state at most once (cf. the claim

in the proof of Theorem 6.12). Intuitively this means, by Lemma 3.6 and the remark

below De�nition 5.4, that each M

q

(s=u) occurs at most once as a part of the output tree

M

q

0

(s).

Note also that M is suri with sur partition � = ffqg j q 2 Qg if and only if M is linear

in the input (i.e., no right-hand side of a rule contains two occurrences of the same input

variable x

i

).

We now want to investigate how ssuri MTTs are related to suri MTTs. Clearly, every

ssuri MTT M is also suri; just take as sur partition for M the singleton consisting of the

set of states of M . As it turns out, suri MTTs are just top-down relabelings with regular

look-ahead, followed by ssuri MTTs. We will only need this result for surp MTTs.

Lemma 5.8 T

R

-REL �MTT

ssuri, surp

� MTT

R

suri, surp

.

Proof. Let A = (Q

A

; P;�;�; q

A

; R

A

; h) be a T

R

-REL and letM = (Q;�;�; q

0

; R) be an

MTT

ssuri, surp

. We now de�ne, by a straightforward product construction, an MTT

R

suri, surp

M

0

which realizes the translation �

A

� �

M

. Let M

0

= (Q

0

; P;�;�; (q

0

; q

A

); R

0

; h) with

� Q

0

= Q�Q

A

and for every (q; r) 2 Q

0

, rank

Q

0

((q; r)) = rank

Q

(q),

� and R

0

constructed as follows. Let q 2 Q

(m)

; r 2 Q

A

; � 2 �

(k)

; p

1

; : : : ; p

k

2 P , and let

rhs

A

(r; �; hp

1

; : : : ; p

k

i) = �(hr

1

; x

1

i : : : ; hr

k

; x

k

i) with � 2 �

(k)

and r

1

; : : : ; r

k

2 Q

A

.

Then, let the rule

h(q; r); �(x

1

; : : : ; x

k

)i(y

1

; : : : ; y

m

)! � hp

1

; : : : ; p

k

i

be in R

0

, where � is obtained from rhs

M

(q; �) by replacing every occurrence of hq; x

i

i

by h(q; r

i

); x

i

i, where q 2 Q and i 2 [k].

Obviously M

0

is surp, because M is surp and the right-hand sides of rules in M

0

are

obtained from those of M by a renaming of states only. Furthermore, M

0

is suri. In fact,

let Q

r

= f(q; r) j q 2 Qg for r 2 Q

A

, � = fQ

r

j r 2 Q

A

g, and T

�;hp

1

;:::;p

k

i

(Q

r

; i) = Q

r

with

hr; x

i

i = rhs

A

(r; �; hp

1

; : : : ; p

k

i)[i]. Then � is a sur partition for M

0

and (T

�;hp

1

;:::;p

k

i

j � 2

�

(k)

; p

1

; : : : ; p

k

2 P) is a collection of sur mappings for M

0

. This is shown as follows.

Let r 2 Q

A

, � 2 �

(k)

, p 2 P

k

, and i 2 [k]. In the (r; �; p)-rule of A there is an occurrence

of hr

i

; x

i

i. Also, there is one particular output symbol � 2 � at the root of rhs

A

(r; �; p).

If we consider the right-hand sides of the �-rules of M , then, since M is ssuri, there are

no occurrences of hq; x

i

i and hq

0

; x

i

i such that q 6= q

0

. If we now consider the right-hand

sides of the ((q; r); �; p)-rules of M

0

for di�erent q 2 Q, then for x

i

there is at most one

occurrence of h(q; r

i

); x

i

i with q 2 Q. Thus, M

0

is ssuri with respect to Q

r

for r 2 Q

A

,

and r

i

determines the value of the sur mapping T

�;p

for (Q

r

; i), viz., Q

r

i

.

26

The correctness of the construction can be shown by proving that for every (q; r) 2 Q

0

and

s 2 T

�

, M

0

(q;r)

(s) =M

q

(A

r

(s)); this can easily be proved by induction on the structure of

s using Lemma 3.4. 2

Lemma 5.9 MTT

R

suri, surp

� T

R

-REL �MTT

ssuri, surp

.

Proof. Let M = (Q;P;�;�; q

0

; R; h) be an MTT

R

suri, surp

, let � be a sur partition for

M , and let T be a collection of sur mappings for M . Let us now de�ne a T

R

-REL A and

an MTT

ssuri, surp

M

0

such that �

A

� �

M

0

= �

M

.

Let A = (�; P;�;�; Q

0

; R

A

; h) with

� Q

0

2 � such that q

0

2 Q

0

,

� � = f(�;Q; hp

1

; : : : ; p

k

i)

(k)

j � 2 �

(k)

; Q 2 �; p

1

; : : : ; p

k

2 Pg,

� for every � 2 �

(k)

, Q 2 �, and p

1

; : : : ; p

k

2 P the rule

hQ;�(x

1

; : : : ; x

k

)i ! (�;Q; hp

1

; : : : ; p

k

i)(hQ

1

; x

1

i; : : : ; hQ

k

; x

k

i) hp

1

; : : : ; p

k

i

is in R

A

, where Q

i

= T

�;hp

1

;:::;p

k

i

(Q; i) for i 2 [k].

Let M

0

= (Q;�;�; q

0

; R

0

) such that for every q 2 Q

(m)

, � 2 �

(k)

, Q 2 �, and p

1

; : : : ; p

k

2

P the rule

hq; (�;Q; hp

1

; : : : ; p

k

i)i(y

1

; : : : ; y

m

)! �

is in R

0

, where � = rhs

M

(q; �; hp

1

; : : : ; p

k

i) if q 2 Q and otherwise � = dummy, where

dummy is an arbitrary symbol in �

(0)

.

Let s be a tree in T

�

and let u be a node in s labeled by �. The top-down relabeling

A replaces � by (�;Q; hp

1

; : : : ; p

k

i) where hp

1

; : : : ; p

k

i are the look-ahead states at the

children of u, and Q 2 � is determined by T in an obvious top-down fashion. We observe

here that it can be shown that Q contains all states ofM that appear in its state sequence

sts

M

(s; u), cf. De�nition 3.7 and the claim in the proof of Theorem 6.12. This is the

intuition behind the requirement q 2 Q in the de�nition of the rules of M

0

.

The rules of M

0

have the same right-hand sides as the rules of M (plus dummies),

thus M

0

is surp. Instead of using the look-ahead automaton, M

0

obtains the look-

ahead information from the input symbol. It is ssuri because the set of right-hand

sides of (q; (�;Q; hp

1

; : : : ; p

k

i))-rules of M

0

consists of dummies and of right-hand sides

of (q; �; hp

1

; : : : ; p

k

i)-rules of M with q 2 Q which are ssuri by the de�nition of suri.

The correctness of the construction can be shown by proving that M

0

q

(A

Q

(s)) =M

q

(s) for

all Q 2 �, s 2 T

�

, and q 2 Q. As in the previous lemma, the proof is straightforward by

induction on the structure of s, using Lemma 3.4. 2

Note that in the proof we did not use the fact that � is a partition; it might be any subset

of P(Q) such that q

0

2

S

�.

By Lemmas 5.8 and 5.9 we obtain the following theorem.

27

Theorem 5.10 MTT

R

sur

= T

R

-REL �MTT

ssur

.

In the constructions in the proofs of Lemmas 5.8 and 5.9, the parameters of the involved

macro tree transducers are not taken into account. Therefore it is easy to see that corre-

sponding results hold for top-down tree transducers, i.e., T

R

sur

= T

R

-REL � T

ssur

.

5.3 Comparison of Single Use Restricted ATTs and MTTs

It is well known that every ATT A can be turned into an MTT M such that M and A

realize the same translation. The states of M correspond to the synthesized attributes

of A and the parameters of M correspond to the inherited attributes of A. However,

every state of M has a �xed number of parameters, whereas a synthesized attribute may

depend on any number of inherited attributes (depending on the input subtrees). For

a particular subclass of ATT, called absolutely noncircular [KW76], the set of inherited

attributes on which a synthesized attribute depends is �xed for every input symbol. Then,

M can be constructed straightforwardly [CF82]. For a general ATT A an MTT M can be

constructed by assuming \worst case" dependencies, i.e., that each synthesized attribute

depends on all inherited attributes [Fra82, FV97, FV98] (technically this means that each

state ofM is of rank jInhj). Clearly, a rule ofM will delete parameters when it corresponds

to a synthesized attribute which actually does not depend on all inherited attributes.

If we add regular look-ahead to M , then the situation is di�erent. The information we

need, i.e., for an input tree s the set of inherited attributes that each synthesized attribute

depends on at the root of s, is precisely the is-dependency of s (De�nition 3.13). The is-

dependencies can be determined by regular look-ahead. Thus for every ATT A an MTT

R

M can be constructed such that �

M

= �

A

, in exactly the same way as for the absolutely

noncircular case. This result has already been mentioned in [Eng80, Eng81]. As the one

of [CF82], our construction has the additional property that if A is sur, then M is sur

(i.e., suri and surp).

Lemma 5.11 ATT � MTT

R

and ATT

sur

� MTT

R

sur

.

Proof. Let A = (Syn; Inh;�;�; root; a

0

; R) be an ATT with Inh = fb

1

; : : : ; b

N

g and let

b

1

; b

2

; : : : ; b

N

be an arbitrary but �xed order on Inh.

It su�ces to construct a (strongly sur) MTT

R

M with f(root(s); t) j (s; t) 2 �

A

g � �

M

.

This is due to the fact that if f(root(s); t) j (s; t) 2 �

0

:T

�

! T

�

g � � 2 MTT

R

, then �

0

2

MTT

R

and if � 2 MTT

R

ssur

, then �

0

2 MTT

R

sur

. This can be shown as follows. Let M =

(Q;P;�

root

;�; q

0

; R

M

; h) be an MTT

R

and de�ne M

0

= (Q[fq

(0)

root

g; P;�;�; q

root

; R

0

; h),

where R

0

consists of all non-root rules in R

M

and for � 2 �

(k)

, k � 0, and p

1

; : : : ; p

k

2 P

of the rule hq

root

; �(x

1

; : : : ; x

k

)i ! � hp

1

; : : : ; p

k

i, where � = rhs

M

(q

0

; root; hpi)[[hq; x

1

i

rhs

M

(q; �; hp

1

; : : : ; p

k

i) j q 2 Q]], with p = h

�

(p

1

; : : : ; p

k

).

Intuitively, a (q

root

; �)-rule of M

0

incorporates both the (q

0

; root)-rule and the (q; �)-rules

of M . Obviously M

0

q

(s) = M

q

(s) for every q 2 Q and s 2 T

�

. Using this, Lemma 3.4,

and associativity of second order substitution, it is straightforward to show that for every

s 2 T

�

, M

0

q

root

(s) = M

q

0

(root(s)). If M is ssur, then M

0

is sur with sur partition � =

28

ffq

root

g; Qg. Clearly M

0

is ssuri with respect to Q; M

0

is ssuri with respect to fq

root

g

because, since M is ssur, no element of hQ;X

k

i occurs more than once in the right-hand

sides rhs

M

(q; �; hp

1

; : : : ; p

k

i) for q 2 Q. The same is true for rhs

M

(q

0

; root; hpi), and hence

also for rhs

M

0

(q

root

; �; hp

1

; : : : ; p

k

i).

Let us now construct an MTT

R

(or MTT

R

ssur

) M with f(root(s); t) j (s; t) 2 �

A

g � �

M

.

The states of M correspond to the synthesized attributes of A and the parameters of M

correspond to the inherited attributes of A. Each state gets as parameters only those

inherited attributes it depends on (in the order �xed above). Since this depends on the

subtree, we need states of the form (a; I), where a 2 Syn and I is the set of inherited

attributes that a depends on. The look-ahead automaton is used to determine for an

input tree s and every a 2 Syn the correct set I, i.e., to determine the is-dependency is(s)

of s: I = (is(s))

�1

(a).

Let M = (Q;P;�

root

;�; q

0

; R

0

; h), where

� Q = Syn�P(Inh) with rank

Q

((a; I)) = jIj for (a; I) 2 Q.

� q

0

= (a

0

;?).

� P = IS(A).

� For every (a; I) 2 Q

(m)

, � 2 �

(k)

root

and p

1

; : : : ; p

k

2 P with m; k � 0 let the rule

h(a; I); �(x

1

; : : : ; x

k

)i(y

1

; : : : ; y

m

)! � hp

1

; : : : ; p

k

i

be in R

0

, where � = dummy 2 �

(0)

if � = root and (a; I) 6= (a

0

;?) or if

(is

�

(p

1

; : : : ; p

k

))

�1

(a) 6= I; otherwise � = trans

�;I;hp

1

;:::;p

k

i

(ha; �i). For every hc; �i 2

ins

�

, trans

�;I;hp

1

;:::;p

k

i

(hc; �i) is recursively de�ned to be obtained from rhs

A

(hc; �i; �)

by the following replacements. Let I = fb

�

1

; : : : ; b

�

m

g with �

1

< �

2

< � � � < �

m

.

(R1) Replace every occurrence of hb; �i by y

j

, if b = b

�

j

and j 2 [m]; otherwise

replace it by an arbitrary dummy 2 �

(0)

.

(R2) Replace every occurrence of ha

0

; �ii with a

0

2 Syn and i 2 [k] by

h(a

0

; I

0

); x

i

i(trans

�;I;hp

1

;:::;p

k

i

(hb

�

1

; �ii); : : : ; trans

�;I;hp

1

;:::;p

k

i

(hb

�

r

; �ii));

where I

0

= fb

�

1

; : : : ; b

�

r

g = p

�1

i

(a

0

) with �

1

< � � � < �

r

.

� The look-ahead automaton of M is de�ned as follows. For � 2 �

(k)

, k � 0, and

p

1

; : : : ; p

k

2 P , let h

�

(p

1

; : : : ; p

k

) = is

�

(p

1

; : : : ; p

k

) and, for p 2 P , let h

root

(p) =

dummy 2 P .

Consider the dependency graph g = D

�

(p

1

; : : : ; p

k

). Since A is noncircular, g is acyclic.

For hc; �i 2 ins

�

, the recursive de�nition of trans follows the paths in g which lead to hc; �i,

going backwards. More precisely, if there is a path from hb; �ii to hc; �i with b 2 Inh and

i 2 [k], then the call of trans for hc; �i recursively calls trans on hb; �ii. The recursion of

trans terminates, because g is acyclic.

We now prove the correctness of the construction, i.e., that �

M

(root(s

0

)) = �

A

(s

0

) for

every s

0

2 T

�

. This follows from Claim 1(b), with s = root(s

0

) and (a; I) = (a

0

;?).

29

Claim 1: Let � 2 �

(k)

root

, k � 0, s

1

; : : : ; s

k

2 T

�

, and s = �(s

1

; : : : ; s

k

).

(a) If � 2 � then h(s) = is(s).

(b) For a 2 Syn (with a = a

0

for � = root), M

(a;I)

(s)� = nf()

A;s

;ha; "i), where I =

fb

�

1

; : : : ; b

�

m

g = (is(s))

�1

(a) with �

1

< � � � < �

m

and � denotes the substitution [y

j

hb

�

j

; "i j j 2 [m]].

This is proved by induction on the structure of s. Let the induction hypothesis be denoted

by IH1. For (a), h(s) = h

�

(h(s

1

); : : : ; h(s

k

)), which, by the de�nition of h

�

, is equal

to is

�

(h(s

1

); : : : ; h(s

k

)) and by IH1(a) equal to is

�

(is(s

1

); : : : ; is(s

k

)) = is(s). In what

follows let, for i 2 [k], p

i

= h(s

i

) which, by Claim 1(a), equals is(s

i

). To prove (b),

consider Claim 2 which concerns all inside attributes of �. By the de�nition of the rules

of M , rhs

M

((a; I); �; hp

1

; : : : ; p

k

i) = trans

�;I;hp

1

;:::;p

k

i

(ha; �i) and hence, by Lemma 3.4,

Claim 1(b) follows from Claim 2 by taking c = a and l = 0. Note that nf()

A;s

; ha; 0i)

contains no hb; "i with b 2 Inh� I, because I = (is(s))

�1

(a) and thus b 2 I if and only if

(b; a) 2 is(s) if and only if nf()

A;s

; ha; 0i) contains hb; "i, by Lemma 3.14(i).

Claim 2: For every hc; �li 2 ins

�

such that nf()

A;s

; hc; li) contains no hb; "i with b 2 Inh�I,

trans

�;I;hp

1

;:::;p

k

i

(hc; �li)[[� � �]]� = nf()

A;s

; hc; li);

where [[� � �]] denotes the substitution [[h(a

0

; I

0

); x

i

i M

(a

0

;I

0

)

(s

i

) j h(a

0

; I

0

); x

i

i 2 hQ;X

k

i]].

Claim 2 is proved by induction on the recursive de�nition of trans. Let � = rhs

A

(hc; �li; �).

Then, by the de�nition of trans, trans

�;I;hp

1

;:::;p

k

i

(hc; �li)[[� � �]]� = ��

1

�

2

[[� � �]]�, where

�

1

and �

2

are the substitutions corresponding to the replacements of the inherited and

synthesized attributes in the de�nition of trans, respectively (see (R1),(R2)). Note that �

1

does not introduce dummies because, by assumption, � contains no hb; �i with b 2 Inh�I.

Now �

2

and [[� � �]] can be combined, because �

2

introduces states of the form h(a

0

; I

0

); x

i

i

which are replaced by [[� � �]]. We get

��

1

�[ha

0

; �ii M

(a

0

;I

0

)

(s

i

)�

0

j a

0

2 Syn; i 2 [k]; I

0

= p

�1

i

(a

0

) = fb

�

1

; : : : ; b

�

r

g];

where �

0

is the substitution [y

j

 trans

�;I;hp

1

;:::;p

k

i

(hb

�

j

; �ii)[[� � �]]� j j 2 [r]]. We can now

apply IH1(b) to get

��

1

�[ha

0

; �ii nf()

A;s

i

; ha

0

; "i)�

00

j a

0

2 Syn; i 2 [k]; I

0

= p

�1

i

(a

0

) = fb

�

1

; : : : ; b

�

r

g];

where �

00

is equal to

[hb; "i trans

�;I;hp

1

;:::;p

k

i

(hb; �ii)[[� � �]]� j b 2 I

0

]:

Since ha

0

; �ii occurs in �, there is an edge from ha

0

; �ii to hc; �li in g = D

�

(p

1

; : : : ; p

k

).

Since b 2 I

0

= p

�1

i

(a

0

), there is an edge from hb; �ii to ha

0

; �ii in g. Thus, if there is a

path from hb

0

; �i to hb; �ii in g, then there is also a path from hb

0

; �i to hc; �li in g. Hence,

by Lemma 3.14(ii), if hb

0

; "i occurs in nf()

A;s

; hb; ii) then it also occurs in nf()

A;s

; hc; li).

Hence, nf()

A;s

; hb; ii) with b 2 I

0

does not contain occurrences of hb

0

; "i with b

0

2 Inh� I

and we can apply IH2 to hb; �ii. Thus, �

00

= [hb; "i nf()

A;s

;hb; ii) j b 2 I

0

]. Again by

Lemma 3.14(ii), nf()

A;s

i

; ha

0

; "i) does not contain occurrences of hb; "i with b 2 Inh� I

0

.

Therefore we can extend �

00

to replace all hb; "i with b 2 Inh. The same holds for the

30

substitution �

1

� = [hb; �i hb; "i j b 2 I]. We get

�[hb; �i hb; "i j b 2 Inh]

[ha

0

; �ii nf()

A;s

i

; ha

0

; "i)[hb; "i nf()

A;s

; hb; ii) j b 2 Inh] j a

0

2 Syn; i 2 [k]]:

By Lemma 3.12 this is equal to nf()

A;s

; hc; li) which �nishes the proof of Claim 2.

Assume now that A is sur. We need to show that M is ssur, i.e., both ssuri and surp.

Intuitively this is because the recursion of trans follows the paths in D

�

(p

1

; : : : ; p

k

) and

D

�

(p

1

; : : : ; p

k

) is a forest (see Lemma 5.3). Formally, we �rst prove the following claim by

induction on the recursive de�nition of trans and then show that ssuri of M follows.

Let � 2 �

(k)

root

, k � 0, p

1

; : : : ; p

k

2 P , I = fb

�

1

; : : : ; b

�

m

g with �

1

< � � � < �

m

, hc; �i 2 ins

�

,

and h(a; I

0

); x

i

i 2 hQ;X

k

i.

Claim 3: (a) If h(a; I

0

); x

i

i occurs in trans

�;I;hp

1

;:::;p

k

i

(hc; �i), then there is a path from

ha; �ii to hc; �i in D

�

(p

1

; : : : ; p

k

).

(b) h(a; I

0

); x

i

i occurs in trans

�;I;hp

1

;:::;p

k

i

(hc; �i) at most once.

In the following let � = trans

�;I;hp

1

;:::;p

k

i

(hc; �i), � = rhs

A

(hc; �i; �), Occ

a;i

= fw 2 Occ(�) j

�[w] = ha; �iig, and g = D

�

(p

1

; : : : ; p

k

) = (V;E). Let u; v 2 Occ(�) with �[u] = �[v] =

h(a; I

0

); x

i

i. Let us denote the induction hypothesis by IH3.

Case (i): u 2 Occ(�) � Occ

a;i

, i.e., h(a; I

0

); x

i

i occurs in a recursive call trans

�;I;hp

1

;:::;p

k

i

(

hb; �ji), where b 2 p

�1

j

(a

0

) and ha

0

; �ji occurs in �. By IH3(a) there is a path w from ha; �ii

to hb; �ji in g. Since (b; a

0

) 2 p

j

and ha

0

; �ji occurs in �, there are edges (hb; �ji; ha

0

; �ji)

and (ha

0

; �ji; hc; �i) in E, respectively, and hence there is a path ! = wha

0

; �jihc; �i from

ha; �ii to hc; �i in g, which proves the (a) part of Claim 3. Let us now prove part (b) by

showing that u = v.

� v 2 Occ(�) � Occ

a;i

: Let v occur in trans

�;I;hp

1

;:::;p

k

i

(hb

0

; �j

0

i), where b

0

2 p

�1

j

0

(a

00

)

and ha

00

; �j

0

i occurs in �. As for u, there is a path w

0

from ha; �ii to hb

0

; �j

0

i in g,

and hence a path !

0

= w

0

ha

00

; �j

0

ihc; �i from ha; �ii to hc; �i in g. Since ! and !

0

are

both from ha; �ii to hc; �i, and since g is a forest by Lemma 5.3, they must be the

same, and hence in particular hb; �ji = hb

0

; �j

0

i. Thus, since both (b; a

0

) and (b; a

00

)

are in p

j

, and since p

j

is a partial function by Lemma 5.2, a

0

= a

00

. Since A is sur,

this means that u and v occur in the same recursive call of trans. Hence u = v by

IH3(b).

� v 2 Occ

a;i

: Thus �[v] = ha; �ii. Let hb

0

; �

0

i be the second node in !. Since ! has

more than one edge, hb

0

; �

0

i 6= hc; �i. Then ha; �ii occurs in both rhs

A

(hc; �i; �) and

rhs

A

(hb

0

; �

0

i; �) which contradicts sur of A.

Case (ii): u 2 Occ

a;i

: Thus �[u] = ha; �ii and therefore there is an edge from ha; �ii to hc; �i

in g which proves Claim 3(a). Again let us prove that u = v. The case v 2 Occ(�)�Occ

a;i

is analogous to the second case of Case (i). If v 2 Occ

a;i

, then �[u] = �[v] = ha; �ii implies

u = v by the sur property of A, which proves Claim 3(b).

We now show that M is ssuri. Let � 2 �

(k)

root

, q

1

; q

2

2 Q, p

1

; : : : ; p

k

2 P , �

1

= rhs

M

(q

1

; �;

hp

1

; : : : ; p

k

i), and �

2

= rhs

M

(q

2

; �; hp

1

; : : : ; p

k

i). Let u 2 Occ(�

1

) and v 2 Occ(�

2

) such

that �

1

[u] = �

2

[v] = h(a; I); x

i

i 2 hQ;X

k

i. If q

1

= q

2

then, by Claim 3(b), u = v. If

31

q

1

6= q

2

, then by Claim 3(a), there is a path in D

�

(p

1

; : : : ; p

k

) from ha; �ii to ha

1

; �i

and from ha; �ii to ha

2

; �i, where q

1

= (a

1

; I

1

) and q

2

= (a

2

; I

2

) with a

1

6= a

2

(because

otherwise one is a dummy rule). This contradicts Lemma 5.3, i.e., that D

�

(p

1

; : : : ; p

k

) is

a forest.

The surp property of M can be proved similarly. It follows immediately from (b) of

the following claim, which is similar to Claim 3. Let � 2 �

(k)

root

, p

1

; : : : ; p

k

2 P , I =

fb

�

1

; : : : ; b

�

m

g with �

1

< � � � < �

m

, hc; �i 2 ins

�

, and j 2 [m].

Claim 4: (a) If y

j

occurs in trans

�;I;hp

1

;:::;p

k

i

(hc; �i), then there is a path from hb

�

j

; �i to

hc; �i in D

�

(p

1

; : : : ; p

k

).

(b) y

j

occurs in trans

�;I;hp

1

;:::;p

k

i

(hc; �i) at most once. 2

Consider the \single-used" MTTs of [K�uh97]. The model of macro tree transducer of

K�uhnemann has a \built-in" root symbol, just like our ATTs. Hence, MT

su

= ff(s; t) j

(root(s); t) 2 �g j � 2 MTT

ssuri

g. By the proof of Lemma 5.11, this means that ATT

sur

�

MT

R

su

. Hence, in the presence of regular look-ahead for the MTT, it answers the question

whether ATT

sur

� MT

su

which is mentioned as an open problem in [K�uh97].

It is well known that MTTs are more powerful than ATTs, and thus in general for an

MTTM , there is no ATT A such that �

A

= �

M

. Classes of MTTs for which an equivalent

ATT exists are considered in [CF82, FV97]. Let us discuss why a construction does not

work in which the synthesized attributes of A are the states of M and the parameters of

M correspond to the inherited attributes of A. Since each state of M has its own set of

parameters, we need for each state q of rank m, m inherited attributes (q; 1); : : : ; (q;m).

If hq; x

i

i(t

1

; : : : ; t

m

) occurs in the right-hand side of a (q

0

; �)-rule, then t

j

de�nes the

value for the inherited attribute (q; j). Hence, the (h(q; j); �ii; �)-rule of A is constructed

from t

j

. Clearly, if there is more than one occurrence of hq; x

i

i in the �-rules of M ,

then this construction only works if each occurrence has the same trees t

1

; : : : ; t

m

as

parameters (or if di�erent parameters will be deleted during the derivation ofM ; in [FV97]

a characterization of ATT in terms of MTTs is given which is based on this observation).

If M is ssuri, then there is at most one occurrence of hq; x

i

i in the �-rules of M and hence

we can construct A in the way as described above. Moreover, if M is also surp, then A is

sur. The construction is a special case of the one in [CF82] (and hence even produces an

absolutely noncircular ATT). We repeat the construction here for completeness sake, and

to prove the sur property of the ATT. A di�erent proof of the inclusion MTT

ssuri

� ATT

is given in Theorem 6.12 of [K�uh97].

Lemma 5.12 MTT

ssuri

� ATT and MTT

ssuri;surp

� ATT

sur

.

Proof. Let M = (Q;�;�; q

0

; R) be an MTT

ssuri

. Before we construct an ATT A which

realizes the same translation as M , let us �rst de�ne some auxiliary notions.

Let � 2 �

(k)

, q 2 Q

(m)

, and i 2 [k]. Since M is ssuri, there is at most one q

0

2 Q and

one u 2 Occ(rhs

M

(q

0

; �)) such that hq; x

i

i occurs in rhs

M

(q

0

; �) at u. We denote q

0

by

r(hq; x

i

i; �). For j 2 [m] the tree rhs

M

(q

0

; �)=uj is called the j-th parameter tree of hq; x

i

i

for � and is denoted by p(hq; x

i

i; �; j).

Let q 2 Q

(m)

. Then we de�ne the substitution �

q

= �

0

�

00

q

, where �

0

= [[hq

0

; x

i

i hq

0

; �ii j

32

hq

0

; x

i

i 2 hQ;Xi]] and �

00

q

= [y

j

 h(q; j); �i j j 2 [m]]. Note that, in the substitution

�

0

, hq

0

; x

i

i is of rank rank

Q

(q

0

) and hq

0

; �ii is of rank zero (thus, e.g., hq

0

; x

i

i(t

1

; : : : ; t

m

)�

0

equals hq

0

; �ii).

Let us now construct the ATT A = (Syn; Inh;�;�; root; a

0

; R

0

) as follows.

� Syn = Q and a

0

= q

0

� Inh = f(q; j) j q 2 Q; j 2 [rank

Q

(q)]g

� Let � 2 �

(k)

. For every q 2 Syn let the rule

hq; �i ! rhs

M

(q; �)�

q

be in R

0

�

and for every (q; j) 2 Inh and i 2 [k] let the rule

h(q; j); �ii ! �

be in R

0

�

, where � = p(hq; x

i

i; �; j)�

r(hq;x

i

i;�)

if r(hq; x

i

i; �) exists and otherwise

� = dummy for an arbitrary symbol dummy 2 �

(0)

.

Let R

0

root

= fhq

0

; �i ! hq

0

; �1ig [fhb; �1i ! dummy 2 �

(0)

j b 2 Inhg.

The synthesized attributes of A are the states of M and for every parameter y

j

of a state

q 2 Q there is an inherited attribute (q; j) in A. Let q 2 Q and � 2 �. If a state

hq

0

; x

i

i occurs in rhs(q; �) in a non-parameter position (i.e., in rhs(q; �) only symbols in �

occur on the path from the root to hq

0

; x

i

i), then this state corresponds to the synthesized

attribute q

0

at the i-th child of �, i.e., to the attribute hq

0

; �ii. If hq

0

; x

i

i(t

1

; : : : ; t

m

)

occurs in rhs(q; �), then t

1

; : : : ; t

m

de�ne the inherited attributes (q

0

; 1); : : : ; (q

0

;m) at the

i-th child of �, i.e., the inherited attributes h(q

0

; 1); �ii; : : : ; h(q

0

;m); �ii. If there are no

such state calls for q

0

in any rhs(q; �), then dummy-rules are added. For an example see

Example 5.13.

We now show the correctness of the construction of A. For s 2 T

�

we say that A is

noncircular on s if and only if the dependency graph D(s) of s is acyclic; obviously, A

is noncircular if it is noncircular on every s 2 T

�

. For s 2 T

�

, nf()

A;root(s)

; hq

0

; "i) is

equal to nf()

A;s

;hq

0

; "i)[hb; "i dummy j b 2 Inh], by the de�nition of the root-rules. By

Claim 1 this is equal to M

q

0

(s), because rank

Q

(q

0

) = 0.

Claim 1: Let q 2 Q

(m)

and s 2 T

�

. Then

(a) A is noncircular on s, and

(b) nf()

A;s

;hq; "i) =M

q

(s)	

q

, where 	

q

= [y

j

 h(q; j); "i j j 2 [m]].

This is proved by induction on the structure of s. Let s = �(s

1

; : : : ; s

k

), k � 0, � 2 �

(k)

,

and s

1

; : : : ; s

k

2 T

�

. The induction hypothesis is denoted by IH1. To prove part (a),

assume that A is circular on s. By IH1(b), nf()

A;s

i

; hq; "i) is in T

�

(fh(q; j); "i j j 2 [m]g).

Thus, by Lemma 3.14, there are (q

1

; j

1

); : : : ; (q

n

; j

n

) 2 Inh and i

1

; : : : ; i

n

2 [k], such that

(i) for every � 2 [n], h(q

�

; j

�

); "i occurs in nf()

A;s

i

�

; hq

�

; "i),

(ii) for every � 2 [n� 1], hq

�+1

; �i

�+1

i occurs in rhs

A

(h(q

�

; j

�

); �i

�

i; �), and

33

(iii) hq

1

; �i

1

i occurs in rhs

A

(h(q

n

; j

n

); �i

n

i; �).

But in terms of M this means that for every � 2 [n� 1], hq

�+1

; x

i

�+1

i occurs in the j

�

-th

parameter tree of hq

�

; x

i

�

i for � and hq

1

; x

i

1

i occurs in the j

n

-th parameter tree of hq

n

; x

i

n

i.

Since M is ssuri, there is at most one occurrence of hq

�

; x

i

�

i in the set of right-hand sides

of �-rules. This means that there is a �-rule, the right-hand side � of which contains

hq

1

; x

i

1

i(: : : ; hq

2

; x

i

2

i(: : : hq

n

; x

i

n

i(: : : ; hq

1

; x

i

1

i(: : :); : : :) : : :); : : :). Hence there are at least

two occurrences of hq

1

; x

i

1

i in � which contradicts ssuri of M and proves part (a) of

Claim 1. In fact, this even shows that A is absolutely noncircular, with the \worst case"

assumption that each q 2 Syn depends on all (q; j) 2 Inh.

Part (b) of Claim 1 follows from Claim 2 (and Lemma 3.4) by taking t = rhs

M

(q; �).

Claim 2: Let t 2 T

hQ;X

k

i[�

(Y

m

). If t is a subtree of rhs

M

(q; �), then nf()

A;s

; t�

q

�) =

t[[: : :]]	

q

, where � = [hc; ��i hc; �i j hc; ��i 2 outs

�

] and [[: : :]] = [[hq

0

; x

i

i M

q

0

(s

i

) j

hq

0

; x

i

i 2 hQ;X

k

i]].

We prove Claim 2 by induction on the structure of t. The induction hypothesis is denoted

by IH2.

If t = y

j

2 Y

m

, then nf()

A;s

; t�

q

�) = nf()

A;s

; h(q; j); "i) = h(q; j); "i and y

j

[[: : :]]	

q

=

y

j

	

q

= h(q; j); "i.

If t = �(t

1

; : : : ; t

l

) with � 2 �

(l)

, l � 0, and t

1

; : : : ; t

l

2 T

hQ;X

k

i[�

(Y

m

), then nf()

A;s

;�(t

1

;

: : : ; t

l

)�

q

�) = �(nf()

A;s

; t

1

�

q

�); : : : ;nf()

A;s

; t

l

�

q

�)). Since t

1

; : : : ; t

l

are subtrees of t

and hence subtrees of rhs

M

(q; �), we can apply IH2 to get �(t

1

[[: : :]]	

q

; : : : ; t

l

[[: : :]]	

q

) which

is equal to �(t

1

; : : : ; t

l

)[[: : :]]	

q

.

If t = hq; x

n

i(t

1

; : : : ; t

l

) with hq; x

n

i 2 hQ;X

k

i

(l)

, l � 0, and t

1

; : : : ; t

l

2 T

hQ;X

k

i[�

(Y

m

),

then hq; x

n

i(t

1

; : : : ; t

l

)[[: : :]]	

q

is equal to M

q

(s

n

)[y

j

 t

j

[[: : :]]	

q

j j 2 [l]]. By adding an

extra substitution 	

q

we get

M

q

(s

n

)	

q

[h(q; j); "i t

j

[[: : :]]	

q

j j 2 [l]]:

Since t appears in rhs

M

(q; �), for each j 2 [l] the rule h(q; j); �ni ! t

j

�

q

is in R

0

�

. By

IH2, we can replace t

j

[[: : :]]	

q

by nf()

A;s

; t

j

�

q

�) = nf()

A;s

; h(q; j); ni). We get

M

q

(s

n

)	

q

[h(q; j); "i nf()

A;s

; h(q; j); ni) j j 2 [l]]:

The substitution of h(q; j); "i with j 2 [l] can be extended to all hb; "i with b 2 Inh,

because only attributes of the form h(q; j); "i occur in M

q

(s

n

)	

q

. Applying IH1 we get

nf()

A;s

n

;hq; "i)[hb; "i nf()

A;s

; hb; ni) j b 2 Inh] which is by Lemma 3.12 equal to

nf()

A;s

; hq; ni) = nf()

A;s

; hq; �ni�) = nf()

A;s

; t�

q

�). This �nishes the proof of Claim 2.

It remains to show that if M is surp, then A is sur. Assume that A is not sur. Then there

are � 2 �

(k)

, k � 0, hc; �i 2 outs

�

, and hd

1

; �

1

i; hd

2

; �

2

i 2 ins

�

such that hc; �i occurs in

both rhs

A

(hd

1

; �

1

i; �) and rhs

A

(hd

2

; �

2

i; �), and either (i) hd

1

; �

1

i 6= hd

2

; �

2

i or (ii) there

are two occurrences of hc; �i in rhs

A

(hd

1

; �

1

i; �).

Let us �rst consider the case that hc; �i = hq; �ii with i 2 [k]. If d

1

; d

2

2 Syn, then by

the de�nition of the rules of A, hq; x

i

i occurs in both rhs

M

(d

1

; �) and rhs

M

(d

2

; �) which

contradicts ssuri of M for case (i). For case (ii) it means that there are two occurrences

of hq; x

i

i in rhs

M

(d

1

; �) which also contradicts ssuri of M . If d

1

2 Syn and d

2

2 Inh, then

34

hq; x

i

i occurs in rhs

M

(d

1

; �) in a non-parameter position, and it occurs in a parameter

tree, which contradicts ssuri of M . If d

1

; d

2

2 Inh, then (i) hq; x

i

i occurs in two distinct

parameter trees or (ii) there are two distinct occurrences of hq; x

i

i in one parameter tree,

which both contradict ssuri of M .

We now consider the case that hc; �i = h(q; j); �i with (q; j) 2 Inh. If d

1

; d

2

2 Syn, then

by the de�nition of the rules of A this means that d

1

= d

2

= q; hence case (i) cannot

occur and case (ii) means that there are two distinct occurrences of y

j

in rhs

M

(q; �) which

contradicts surp of M . If d

1

2 Syn and d

2

2 Inh, then y

j

occurs in a non-parameter

position in rhs

M

(q; �) and in a parameter tree in rhs

M

(q; �) which contradicts surp of

M . If d

1

; d

2

2 Inh, then (i) y

j

occurs in two distinct parameter trees in rhs

M

(q; �) or (ii)

there are two distinct occurrences of y

j

in one parameter tree of rhs

M

(q; �), which both

contradict surp of M . 2

The construction in the proof of Lemma 5.12 is illustrated by the following very simple

example.

Example 5.13 Let M = (Q;�;�; q

0

; R) be the MTT with Q = fq

(0)

0

; q

(1)

; q

0

(1)

g, � =

f�

(2)

; �

(0)

g, � = f�

(0)

g; R contains the following rules (we do not show the q

0

-rules).

hq; �(x

1

; x

2

)i(y) ! hq

0

; x

1

i(hq; x

2

i(y))

hq

0

; �(x

1

; x

2

)i(y) ! hq; x

1

i(y)

hq; �i(y) ! y

hq

0

; �i(y) ! y

By the construction in the proof of Lemma 5.12, A = (Q; f(q; 1); (q

0

; 1)g;�;�; root; q

0

; R

0

)

with

R

0

�

= f hq; �i ! hq

0

; �1i R

0

�

= f hq; �i ! h(q; 1); �i

hq

0

; �i ! hq; �1i hq

0

; �i ! h(q

0

; 1); �i g

h(q; 1); �1i ! h(q

0

; 1); �i

h(q

0

; 1); �1i ! hq; �2i

h(q; 1); �2i ! h(q; 1); �i

h(q

0

; 1); �2i ! dummy g

To illustrate Claim 1 (in the proof of Lemma 5.12), let s = �(�; �). Then hq

0

; �(�; �)i(y)

)

M

hq; �i(y))

M

y = M

q

0

(s). The corresponding derivation by A is hq

0

; "i)

A;s

hq; 1i)

A;s

h(q; 1); 1i)

A;s

h(q

0

; 1); "i. And hq; �(�; �)i(y))

M

hq

0

; �i(hq; �i(y)))

M

hq

0

; �i(y))

M

y and the corresponding derivation hq; "i)

A;s

hq

0

; 1i)

A;s

h(q

0

; 1); 1i)

A;s

hq; 2i)

A;s

h(q; 1); 2i)

A;s

h(q; 1); "i. 2

Altogether we have shown in this and the previous section that in the presence of regu-

lar look-ahead for sur MTTs and look-ahead for sur ATTs, the corresponding classes of

translations coincide. This is our �rst main result.

35

Theorem 5.14 ATT

R

sur

= MTT

R

sur

.

Proof. By Theorem 5.10 and Lemma 5.12, MTT

R

sur

= T

R

-REL �MTT

ssur

� T

R

-REL �

ATT

sur

. By Theorem 4.4 and the de�nition of ATT

R

sur

this proves thatMTT

R

sur

� ATT

R

sur

.

By Theorem 4.4 and Lemma 5.11, ATT

R

sur

� T

R

-REL � MTT

R

sur

which equals MTT

R

sur

because by Theorem 5.10 and Lemma 4.5, MTT

R

sur

is closed under left composition with

T

R

-REL. 2

Note that, by Theorem 5.10, an alternative way of expressing this result is that

T

R

-REL �ATT

sur

= T

R

-REL �MTT

ssur

.

6 Finite Copying MTTs

In the previous section we have investigated single use restricted MTT

R

s. The distinction

between the copying done by states and that done by parameters led to the notions of suri

and surp, which together form the single use restriction for MTT

R

s. In this section we

want to introduce a more liberal, dynamic way of restricting the copying power of MTT

R

s,

yet obtaining the same class MTT

R

sur

of translations realized by sur MTT

R

s.

The notion of �nite copying was introduced by Aho and Ullmann [AU71] for generalized

syntax-directed translation schemes, which are closely related to top-down tree transduc-

ers. Finite copying top-down tree transducers were further investigated in, e.g., [ERS80].

Intuitively a top-down tree transducer is �nite copying, if every input subtree s=u is pro-

cessed only a bounded number of times. Since the state sequence of s at u contains

precisely the states that process the tree s=u, this means that the lengths of the state

sequences are bounded. For macro tree transducers we take this de�nition over and call it

�nite copying in the input (for short, fci). But a macro tree transducer can also copy by

means of its parameters, cf. also the discussion at the end of Section 3.1. Thus, we also

de�ne a notion of �nite copying in the parameters (for short, fcp). Intuitively it means

that each parameter may only be copied a bounded number of times in the q-translation

of an input tree. For the notion of state sequence of an MTT

R

, see De�nition 3.7.

De�nition 6.1 (�nite copying in the input)

Let M = (Q;P;�;�; q

0

; R; h) be an MTT

R

. Then M is �nite copying in the input (for

short, fci), if there is an N 2 N such that for every s 2 T

�

and u 2 Occ(s): jsts

M

(s; u)j �

N . The number N is called an input copying bound for M . 2

For a ranked alphabet �, a tree t 2 T

�

(Y), and j � 1, we denote by c

j

(t) the number of

occurrences of y

j

in t, i.e., c

j

(t) = jfu 2 Occ(t) j t[u] = y

j

gj.

De�nition 6.2 (�nite copying in the parameters)

Let M = (Q;P;�;�; q

0

; R; h) be an MTT

R

. Then M is �nite copying in the parameters

(for short, fcp), if there is an N 2 N such that for every q 2 Q

(m)

, s 2 T

�

, and j 2 [m],

c

j

(M

q

(s)) � N . The number N is called a parameter copying bound for M . 2

36

The class of translations which can be realized by MTT

R

s which are fci is denoted by

MTT

R

fci

, and analogously for fcp. We say that an MTT

R

is �nite copying (for short, fc),

if it is both, fci and fcp. The class MTT

R

fci;fcp

of translations realized by fc MTT

R

s is also

denoted by MTT

R

fc

. The class T

fc

of translations realized by �nite copying top-down tree

transducers is the one known from the literature (e.g., [ERS80]).

A rather obvious consequence of the �nite copying property is that there is a bound on the

number of translations M

q

(s=u) of an input subtree s=u that occur as part of the output

tree �

M

(s). In fact, if M has input copying bound I and parameter copying bound N ,

then this bound is I � N

I�1

. To see this, recall Lemma 3.6. The number of hhq; pii's in

^

M

q

0

(s[u p]) is bounded by I, and every M

q

(s=u) is copied at most N

I�1

times by the

others. We note that this property could have been taken as alternative de�nition of fci,

for fcp MTT

R

s.

It will be shown in this section thatMTT

R

fc

= MTT

R

sur

. We have already observed (without

proof, after De�nitions 5.4 and 5.7) that every MTT

R

sur

is �nite copying: the parameter

copying bound is 1 and the input copying bound is jQj, the number of states. Thus, as

will be proved in detail in Theorem 6.12, MTT

R

sur

� MTT

R

fc

. We now turn to the proof of

the other inclusion.

If an MTT

R

M is fcp, then it can be turned into a surp MTT

R

M

0

; the look-ahead of M

0

is used to determine how many copies of each parameter a state needs. The construction

preserves the fci property.

Lemma 6.3 MTT

R

fcp

� MTT

R

surp

and MTT

R

fci;fcp

� MTT

R

fci;surp

.

Proof. Let M = (Q;P;�;�; q

0

; R; h) and let N be a parameter copying bound for M .

Thus, for every s 2 T

�

, q 2 Q

(m)

, and j 2 [m], c

j

(M

q

(s)) � N . We will construct a surp

MTT M

0

from M in such a way that for every q 2 Q

(m)

the numbers c

j

(M

q

(s)), j 2 [m],

of occurrences of y

j

in M

q

(s) are determined by the look-ahead automaton of M

0

. This is

possible because the set ft 2 T

�

(Y

m

) j c

j

(t) = (f(q))(j)g for a �xed mapping f(q): [m]!

f0; : : : ; Ng is a regular tree language; together with the fact that regular tree languages

are preserved by inverse macro tree transductions (Theorem 7.4(1) of [EV85]) this means

that we can determine the numbers c

j

(M

q

(s)) (i.e., the mappings f(q)) by regular look-

ahead; indeed, below we give a construction of such a look-ahead automaton. Then, in

the rules of M

0

we simply provide the correct amount of copies of each parameter; i.e.,

we replace every occurrence of hq; x

i

i(t

1

; : : : ; t

m

) by h(q; w); x

i

i(t

1

; : : : ; t

1

| {z }

w(1) times

; : : : ; t

m

; : : : ; t

m

| {z }

w(m) times

),

where (q; w) is a new state of rank c

1

(M

q

(s

i

)) + � � � + c

m

(M

q

(s

i

)) and w(j) = c

j

(M

q

(s

i

))

is the number of copies of y

j

in M

q

(s

i

) which is determined by look-ahead.

We now turn to the formal construction. Let M

0

= (Q

0

; P

0

;�;�; (q

0

; �); R

0

; h

0

) be the

MTT

R

with Q

0

= f(q; w) j q 2 Q

(m)

; w: [m]! f0; : : : ; Ngg, rank

Q

0

((q; w)) = w(1) + � � � +

w(m), and P

0

= P � F , where F is the set of all functions f which associate with each

q 2 Q

(m)

a function f(q) from [m] to f0; : : : ; Ng. For a function w: [m] ! f0; : : : ; Ng we

de�ne the function W : [m]! f0; : : : ; Ng such that W (j) = w(1) + � � � +w(j) for j 2 [m].

Thus, rank

Q

0

((q; w)) =W (m) for q 2 Q

(m)

.

The look-ahead automaton of M

0

is constructed in such a way that for s 2 T

�

it arrives

37

in state (p; f), where p = h(s) and f is a mapping with (f(q))(j) = c

j

(M

q

(s)) for every

q 2 Q

(m)

and j 2 [m]. Formally, for � 2 �

(k)

with k � 0 and (p

1

; f

1

); : : : ; (p

k

; f

k

) 2 P

0

,

h

0

�

((p

1

; f

1

); : : : ; (p

k

; f

k

)) = (p

0

; f

0

), where p

0

= h

�

(p

1

; : : : ; p

k

) and for every q 2 Q

(m)

and

j 2 [m], (f

0

(q))(j) = copy

j

(rhs

M

(q; �; hp

1

; : : : ; p

k

i)). For t 2 T

hQ;X

k

i[�

(Y

m

), copy

j

(t) is

recursively de�ned as follows. If t 2 Y

m

, then copy

j

(t) = c

j

(t). If t = �(t

1

; : : : ; t

l

) with

� 2 �

(l)

, l � 0, and t

1

; : : : ; t

l

2 T

hQ;X

k

i[�

(Y

m

), then copy

j

(t) = copy

j

(t

1

)+ � � �+copy

j

(t

l

).

If t = hr; x

i

i(t

1

; : : : ; t

l

) with hr; x

i

i 2 hQ;X

k

i

(l)

, l � 0, and t

1

; : : : ; t

l

2 T

hQ;X

k

i[�

(Y

m

), then

copy

j

(t) = (f

i

(r))(1) � copy

j

(t

1

) + (f

i

(r))(2) � copy

j

(t

2

) + � � � + (f

i

(r))(l) � copy

j

(t

l

).

For every (q; w) 2 Q

0

with q 2 Q

(m)

, � 2 �

(k)

, m; k � 0, and (p

1

; f

1

); : : : ; (p

k

; f

k

) 2 P

0

, let

the rule

h(q; w); �(x

1

; : : : ; x

k

)i(y

1

; : : : ; y

W (m)

)! � h(p

1

; f

1

); : : : ; (p

k

; f

k

)i (�)

be in R

0

, such that � = dummy 2 �

(0)

if f

0

(q) 6= w, where (p

0

; f

0

) = h

0

�

((p

1

; f

1

); : : : ;

(p

k

; f

k

)), and otherwise � = rhs

M

(q; �; hp

1

; : : : ; p

k

i)R

1

R

2

, where R

1

denotes the substitu-

tion

[[hr; x

i

i h(r; w

r

); x

i

i(y

1

; : : : ; y

1

| {z }

w

r

(1) times

; : : : ; y

n

; : : : ; y

n

| {z }

w

r

(n) times

) j hr; x

i

i 2 hQ;X

k

i

(n)

; w

r

= f

i

(r)]]

and R

2

denotes the replacement, for every j 2 [m], of the �-th occurrence of y

j

(with

respect to pre-order) by y

new

, where new =W (j � 1) + �. This ends the de�nition of M

0

.

An example is given in Example 6.4.

It is straightforward to show (by induction on the structure of s) that the look-ahead

automaton of M

0

is de�ned in such a way that for every s 2 T

�

, if h

0

(s) = (p

0

; f

0

), then

p

0

= h(s) and for every q 2 Q

(m)

and j 2 [m], f

0

(q)(j) = c

j

(M

q

(s)). In the induction

step this follows from Lemma 3.4 and a proof of the fact that for t 2 T

hQ;X

k

i[�

(Y

m

) and

j 2 [m], copy

j

(t) = c

j

(t[[: : :]]), where [[: : :]] = [[hr; x

i

i M

r

(s

i

) j hr; x

i

i 2 hQ;X

k

i]]. This

also shows that M

0

is well de�ned: the numbers computed by its look-ahead automaton

are indeed in f0; : : : ; Ng.

Let us now show thatM

0

is surp. Consider a rule inR

0

of the form (�), such that f

0

(q) = w.

Claim 1: Let t 2 T

hQ;X

k

i[�

(Y

m

). For every j 2 [m], c

j

(tR

1

) = copy

j

(t).

This is proved by induction on the structure of t. If t = y

l

2 Y

m

, then c

j

(y

l

R

1

) =

c

j

(y

l

) = copy

j

(y

l

). If t = �(t

1

; : : : ; t

l

) with � 2 �

(l)

, l � 0, and t

1

; : : : ; t

l

2 T

hQ;X

k

i[�

(Y

m

),

then c

j

(�(t

1

; : : : ; t

l

)R

1

) = c

j

(t

1

R

1

) + � � � + c

j

(t

l

R

1

). By the induction hypothesis this

equals copy

j

(t

1

) + � � � + copy

j

(t

l

) = copy

j

(�(t

1

; : : : ; t

l

)). If t = hr; x

i

i(t

1

; : : : ; t

l

) with

hr; x

i

i 2 hQ;X

k

i

(l)

, l � 0, and t

1

; : : : ; t

l

2 T

hQ;X

k

i[�

(Y

m

), then c

j

(hr; x

i

i(t

1

; : : : ; t

l

)R

1

)

equals

c

j

(h(r; w

r

); x

i

i(t

1

R

1

; : : : ; t

1

R

1

| {z }

w

r

(1) times

; : : : ; t

l

R

1

; : : : ; t

l

R

1

| {z }

w

r

(l) times

));

where w

r

= f

i

(r). This equals w

r

(1) � c

j

(t

1

R

1

) + w

r

(2) � c

j

(t

2

R

1

) + � � � + w

r

(l) � c

j

(t

l

R

1

).

By applying the induction hypothesis we get w

r

(1) � copy

j

(t

1

) + � � � + w

r

(l) � copy

j

(t

l

) =

copy

j

(hr; x

i

i(t

1

; : : : ; t

l

)), which �nishes the proof of Claim 1.

38

By Claim 1 and the de�nition of f

0

, c

j

(�R

1

) = w(j) for every j 2 [m], where � =

rhs

M

(q; �; hp

1

; : : : ; p

k

i). By the de�nition of R

2

it follows immediately that c

�

(�) =

c

�

(�R

1

R

2

) = 1 for every � 2 [W (m)]; hence M

0

is surp.

The correctness of M

0

follows from Claim 2 by taking q = q

0

and w = �.

Claim 2: Let q 2 Q

(m)

and s 2 T

�

, and let w = f

0

(q), where (p

0

; f

0

) = h

0

(s). Then

M

0

(q;w)

(s)�

w

=M

q

(s), where �

w

= [y

�

 y

j

j j 2 [m];W (j � 1) + 1 � � �W (j)].

Claim 2 is proved by induction on the structure of s. Let s = �(s

1

; : : : ; s

k

) with � 2 �

(k)

and s

1

; : : : ; s

k

2 T

�

, and let h

0

(s

i

) = (p

i

; f

i

) for i 2 [k]. By the de�nition of the rule

(�) of M

0

, M

0

(q;w)

(�(s

1

; : : : ; s

k

))�

w

equals �R

1

R

2

[[]]�

w

, where � = rhs

M

(q; �; hp

1

; : : : ; p

k

i)

and [[]] = [[h(r; w

r

); x

i

i M

0

(r;w

r

)

(s

i

) j h(r; w

r

); x

i

i 2 hQ

0

;X

k

i]]. Clearly, since [[]] does not

introduce parameters, the substitutions [[]] and �

w

can be interchanged, and since R

2

�

w

is the identity on �R

1

because (as shown above) c

j

(�R

1

) = w(j) for every j 2 [m], we get

�R

1

[[]]. Since second order substitution is associative we can combine R

1

and [[]] to get

�[[hr; x

i

i M

0

(r;w

r

)

(s

i

)�

w

r

j hr; x

i

i 2 hQ;X

k

i

(n)

; w

r

= f

i

(r)]];

where �

w

r

is the substitution [y

�

 y

j

j j 2 [n];W

r

(j � 1) + 1 � � � W

r

(j)]. By the

induction hypothesis, M

0

(r;w

r

)

(s

i

)�

w

r

=M

r

(s

i

). Thus we get �[[hr; x

i

i M

r

(s

i

) j hr; x

i

i 2

hQ;X

k

i]] which, by the correctness of the �rst part of the look-ahead of M

0

, equals M

q

(s)

and �nishes the proof of Claim 2.

It remains to show that if M is fci, then so is M

0

. If M is fci, then there is an I � 0, such

that I is an input copying bound for M . Let

^

M and

^

M

0

be the extensions of M and M

0

,

respectively (see De�nition 3.5). Let (p; f) 2 P

0

and let s 2 T

�

(f(p; f)g) such that (p; f)

occurs at most once in s. The following claim is the \extended" version of Claim 2. Let

q 2 Q

(m)

, m � 0, (p

0

; f

0

) =

^

h

0

(s), and w = f

0

(q).

Claim 3:

^

M

0

(q;w)

(s)�

w

=

^

M

q

(s[(p; f) p])	, where �

w

is as in Claim 2 and 	 =

[[hhr; pii hh(r; w

r

); (p; f)ii(y

1

; : : : ; y

1

| {z }

w

r

(1) times

; : : : ; y

n

; : : : ; y

n

| {z }

w

r

(n) times

) j r 2 Q

(n)

; w

r

= f(r)]].

This claim is proved by induction on the structure of s.

If s = (p; f), then

^

M

0

(q;w)

((p; f))�

w

equals hh(q; w); (p; f)ii(y

1

; : : : ; y

W (m)

)�

w

. By ap-

plying �

w

we get hh(q; w); (p; f)ii(y

1

; : : : ; y

1

| {z }

w(1) times

; : : : ; y

m

; : : : ; y

m

| {z }

w(m) times

). Since f

0

= f , this equals

hhq; pii(y

1

; : : : ; y

m

)	 =

^

M

q

(p)	 =

^

M

q

(s[(p; f) p])	. The proof for s = �(s

1

; : : : ; s

k

) is as

in Claim 2, except that the induction hypothesis is

^

M

0

(r;w

r

)

(s

i

)�

w

r

=

^

M

r

(s

i

[(p; f) p])	.

Then �[[hr; x

i

i

^

M

r

(s

i

[(p; f) p])	 j hr; x

i

i 2 hQ;X

k

i]] equals

^

M

q

(s[(p; f) p])	 be-

cause � = rhs

M

(q; �; hp

1

; : : : ; p

k

i) contains no elements of hhQ; fpgii.

Let s 2 T

�

and u 2 Occ(s). Then sts

M

0

(s; u) is the sequence of states which occur

in

^

M

0

(q

0

;�)

(s[u (p; f)]), where (p; f) = h

0

(s=u). By Claim 3,

^

M

0

(q

0

;�)

(s[u (p; f)])

equals

^

M

q

0

(s[u p])	. The number of occurrences of hhq; pii with q 2 Q in

^

M

q

0

(s[u

p]) is bounded by I. Hence the number of occurrences of elements of hhQ

0

; f(p; f)gii in

^

M

0

(q

0

;�)

(s[u (p; f)]) is also bounded. In particular, the number I � N

I�1

is an input

copying bound forM

0

. This is true because at most I occurrences of elements in hhQ; fpgii

are present in

^

M

q

0

(s[u p]), and the substitution of an occurrence v of hhr; pii by 	

39

produces at most N copies of each subtree of v. 2

Let us consider a simple example illustrating the construction in the proof of Lemma 6.3.

Example 6.4 Let M = (Q; fpg;�;�; q

0

; R; h) be the MTT

R

fcp

with Q = fq

(0)

0

; q

(3)

g, � =

f

(1)

; �

(0)

; �

(0)

g, � = f�

(5)

; �

(3)

; �

(0)

g, h

�

(p; : : : ; p) = p for every � 2 � and R consisting

of the following rules (we omit the q

0

-rules).

hq; (x

1

)i(y

1

; y

2

; y

3

) ! hq; x

1

i(y

3

; y

2

; y

1

) hpi

hq; �i(y

1

; y

2

; y

3

) ! �(y

3

; y

2

; y

2

; y

3

; y

2

)

hq; �i(y

1

; y

2

; y

3

) ! �(y

1

; y

1

; y

2

)

Clearly, N = 3 is a parameter copying bound for M . We now construct the MTT

R

surp

M

0

, following the construction in the proof of Lemma 6.3. For convenience, we de-

note a function w: [m] ! f0; : : : ; 3g by the string w(1) � � �w(m); in particular � is de-

noted by ". Let M

0

= (Q

0

; P

0

;�;�; (q

0

; "); R

0

; h

0

). The set Q

0

of states of M

0

equals

f(q

0

; ")

(0)

, (q; 000)

(0)

, (q; 001)

(1)

; : : : ; (q; 333)

(9)

g. Since P is a singleton we simply let

P

0

= F = ff

000

; f

001

; : : : ; f

333

g, where f

ijk

(q

0

) = " and f

ijk

(q) = ijk for i; j; k 2 f0; : : : ; 3g.

Then h

�

() = f , where (f(q))(j) = copy

j

(rhs

M

(q; �; hi)) = copy

j

(�(y

3

; y

2

; y

2

; y

3

; y

2

)) =

copy

j

(y

3

)+copy

j

(y

2

)+ � � �+copy

j

(y

2

). For j = 1; 2; 3 this equals 0, 3, and 2, respectively.

Thus h

�

() = f

032

. For � we get h

�

() = f

210

. For let us only consider those look-

ahead states which actually occur in computations; then h

(f

032

) = f

230

, h

(f

210

) = f

012

,

h

(f

230

) = f

032

, and h

(f

012

) = f

210

.

Let us now construct the rules of M

0

. Again we consider only those rules that will

actually occur in derivations of M

0

. For the ((q; 032); ; hf

230

i)-rule we show in detail

how the right-hand side is obtained. By de�nition, we get h(q; x

1

i(y

3

; y

2

; y

1

)R

1

R

2

=

h(q; 230); x

1

i(y

3

; y

3

; y

2

; y

2

; y

2

)R

2

= h(q; 230); x

1

i(y

4

; y

5

; y

1

; y

2

; y

3

). The rules are as follows.

h(q; 032); (x

1

)i(y

1

; : : : ; y

5

) ! h(q; 230); x

1

i(y

4

; y

5

; y

1

; y

2

; y

3

) hf

230

i

h(q; 230); (x

1

)i(y

1

; : : : ; y

5

) ! h(q; 032); x

1

i(y

3

; y

4

; y

5

; y

1

; y

2

) hf

032

i

h(q; 210); (x

1

)i(y

1

; y

2

; y

3

) ! h(q; 012); x

1

i(y

3

; y

1

; y

2

) hf

012

i

h(q; 012); (x

1

)i(y

1

; y

2

; y

3

) ! h(q; 210); x

1

i(y

2

; y

3

; y

1

) hf

210

i

h(q; 032); �i(y

1

; : : : ; y

5

) ! �(y

4

; y

1

; y

2

; y

5

; y

3

)

h(q; 210); �i(y

1

; y

2

; y

3

) ! �(y

1

; y

2

; y

3

)

Let us now verify (see Claim 2) that for the input s = (�), M

0

(q;230)

(s)�

230

=M

q

(s). We

get h(q; 230); (�)i(y

1

; : : : ; y

5

))

M

0

h(q; 032); �)i(y

3

; y

4

; y

5

; y

1

; y

2

))

M

0

�(y

1

; y

3

; y

4

; y

2

; y

5

).

The substitution �

230

replaces both y

1

and y

2

by y

1

and it replaces y

3

; y

4

, and y

5

by

y

2

. Thus �(y

1

; y

3

; y

4

; y

2

; y

5

)�

230

= �(y

1

; y

2

; y

2

; y

1

; y

2

). For M , hq; (�)i(y

1

; y

2

; y

3

))

M

hq; �i(y

3

; y

2

; y

1

))

M

�(y

1

; y

2

; y

2

; y

1

; y

2

). 2

Before we show that every fci MTT

R

surp

can be turned into an equivalent one which is suri,

we need the following normal form.

40

Nondeleting Normal Form

In proofs it is sometimes useful to know that all parameters which occur in the rules of

an MTT

R

M are actually used to generate output, i.e., that for a state q of rank m all

parameters in Y

m

occur in the right-hand side of each q-rule. We call an MTT with this

property nondeleting (in the parameters). The nondeleting property is comparable with

the reducedness of context-free grammars. For the IO macro grammars, which can be

seen as MTTs without input and with strings in the right-hand sides of the rules, Fischer

proves a nondeleting (\argument-preserving") normal form in Theorem 3.1.10 of [Fis68].

Our proof will be essentially the same, but it will need regular look-ahead to preserve the

determinism of the MTT. Given an arbitrary MTT

R

, how can we construct a nondeleting

MTT

R

M

0

which realizes the same translation as M? The set of parameters occurring in

the right-hand side of a q-rule can be any subset of Y

m

. Thus, by taking states of the form

(q; I) with I � [m] we can code the information, which parameters are needed, into the

states ofM

0

. However, how do we know which parameters, occurring in the right-hand side

of a (q; �)-rule will be deleted during the computation of M? Similar to the discussion in

the proof of Lemma 6.3, this is a regular property, and thus can be determined by regular

look-ahead. Indeed, this follows by the facts that ft 2 T

�

(Y

m

) j there is an i 2 I such that

y

i

occurs in tg is regular for every I � [m] and that regular tree languages are closed under

inverse macro tree transductions (cf. Theorem 7.4 of [EV85]); just consider �

M

q

whereM

q

is equal to M but with initial state q. However, below we give a concrete construction.

We now de�ne the notion of nondeleting for MTT

R

's.

De�nition 6.5 (nondeleting)

LetM = (Q;P;�;�; q

0

; R; h) be an MTT

R

. If for every q 2 Q

(m)

, � 2 �

(k)

, p

1

; : : : ; p

k

2 P ,

and j 2 [m], y

j

occurs in rhs(q; �; hp

1

; : : : ; p

k

i), then M is nondeleting. 2

Let us now show that the nondeleting property is a normal form for MTT

R

's.

Lemma 6.6 For every MTT

R

M there is a nondeleting MTT

R

M

0

such that �

M

0

= �

M

.

The construction involved preserves fci, suri, ssuri, fcp, and surp.

Proof. Let M = (Q;P;�;�; q

0

; R; h). The construction of M

0

is similar to the con-

struction in the proof of Lemma 6.3. In fact, instead of determining by regular look-ahead

the precise number c

j

(M

q

(s)) of occurrences of y

j

in M

q

(s), we now only need to de-

termine whether y

j

occurs in M

q

(s) or not. Again, this is done by regular look-ahead.

We denote by F the set of all functions which associate with every q 2 Q

(m)

a subset of

[m]. For a subset I of N we denote by I(j) the j-th element of I with respect to <. Let

M

0

= (Q

0

; P

0

;�;�[fd

(2)

g; (q

0

;?); R

0

; h

0

), where Q

0

= f(q; I)

(jIj)

j q 2 Q

(m)

; I � [m]g and

P

0

= P � F .

The look-ahead automaton of M

0

is de�ned as follows. For � 2 �

(k)

and (p

1

; f

1

); : : : ;

(p

k

; f

k

) 2 P

0

let h

0

�

((p

1

; f

1

); : : : ; (p

k

; f

k

)) = (p

0

; f

0

), where p

0

= h

�

(p

1

; : : : ; p

k

) and for

every q 2 Q

(m)

, f

0

(q) = oc(rhs

M

(q; �; hp

1

; : : : ; p

k

i)). For every t 2 T

hQ;X

k

i[�

(Y

m

), oc(t) �

[m] is recursively de�ned as follows. If t = y

j

2 Y

m

, then oc(t) = fjg. If t = �(t

1

; : : : ; t

l

)

with � 2 �

(l)

, l � 0, and t

1

; : : : ; t

l

2 T

hQ;X

k

i[�

(Y

m

), then oc(t) = oc(t

1

) [� � � [oc(t

l

). If

41

t = hr; x

i

i(t

1

; : : : ; t

l

) with hr; x

i

i 2 hQ;X

k

i

(l)

, l � 0, and t

1

; : : : ; t

l

2 T

hQ;X

k

i[�

(Y

m

), then

oc(t) =

S

foc(t

j

) j j 2 f

i

(r)g.

For every (q; I) 2 Q

0

, � 2 �

(k)

, k � 0, and (p

1

; f

1

); : : : ; (p

k

; f

k

) 2 P

0

, let the rule

h(q; I); �(x

1

; : : : ; x

k

)i(y

1

; : : : ; y

jIj

)! � h(p

1

; f

1

); : : : ; (p

k

; f

k

)i (�)

be in R

0

, such that � = d(y

1

; d(y

2

; : : : d(y

jIj�1

; y

jIj

))) if I 6= f

0

(q), where (p

0

; f

0

) =

h

0

�

((p

1

; f

1

); : : : ; (p

k

; f

k

)), and otherwise � = rhs

M

(q; �; hp

1

; : : : ; p

k

i)R

1

R

2

, where R

1

de-

notes the substitution

[[hr; x

i

i h(r; I

r

); x

i

i(y

I

r

(1)

; : : : ; y

I

r

(n)

) j hr; x

i

i 2 hQ;X

k

i; I

r

= f

i

(r); n = jI

r

j]]

and R

2

= [y

I(j)

 y

j

j j 2 [jIj]]. This ends the construction of M

0

.

It is straightforward to show (by induction on the structure of s) that the look-ahead

automaton of M

0

is de�ned in such a way that for every s 2 T

�

, if h

0

(s) = (p

0

; f

0

), then

p

0

= h(s) and f

0

(q) = fj j y

j

occurs in M

q

(s)g for every q 2 Q. In the induction step it

can be shown (using Lemma 3.4) that for t 2 T

hQ;X

k

i[�

(Y

m

), oc(t) = par(t[[: : :]]), where

[[: : :]] = [[hr; x

i

i M

r

(s

i

) j hr; x

i

i 2 hQ;X

k

i]] and par(t) = fj 2 [m] j y

j

occurs in tg.

Let us now show that M

0

is nondeleting. Consider a rule (�) in R

0

.

Claim 1: For t 2 T

hQ;X

k

i[�

(Y

m

), par(tR

1

) = oc(t).

This claim can be proved by induction on the structure of t. Since it is very similar to the

proof of Claim 1 in the proof of Lemma 6.3 we omit it.

If the ((q; I); �; h(p

1

; f

1

); : : : ; (p

k

; f

k

)i)-rule does not have a dummy right-hand side d(y

1

;

: : : d(y

jIj

)), then I = f

0

(q) = oc(�), where � = rhs

M

(q; �; hp

1

; : : : ; p

k

i). By Claim 1,

par(�R

1

) = I and hence, by the de�nition of R

2

, par(�) = par(�R

1

R

2

) = [m] and thusM

0

is nondeleting.

The correctness of the construction follows from Claim 2 by taking q = q

0

and I = ?.

Claim 2: Let q 2 Q

(m)

and s 2 T

�

, and let I = f

0

(q), where (p

0

; f

0

) = h

0

(s). Then

M

0

(q;I)

(s)�

I

=M

q

(s), where �

I

= [y

j

 y

I(j)

j j 2 [jIj]].

This claim can be proved by induction on the structure of s (similar to the proof of Claim 2

in the proof of Lemma 6.3).

We now show that if M is fci, then so is M

0

. If M is fci, then there is an N � 0 such

that N is an input copying bound for M . Let

^

M and

^

M

0

be the extensions of M and

M

0

, respectively. Let (p; f) 2 P

0

and let s 2 T

�

(f(p; f)g) such that (p; f) occurs at most

once in s. The following claim is the \extended" version of Claim 2. Let q 2 Q

(m)

,

(p

0

; f

0

) =

^

h

0

(s), and I = f

0

(q).

Claim 3:

^

M

0

(q;I)

(s)�

I

=

^

M(s[(p; f) p])	, where �

I

is as in Claim 2 and 	 = [[hhr; pii

hh(r; I

r

); (p; f)ii(y

I

r

(1)

; : : : ; y

I

r

(n)

) j r 2 Q; I

r

= f(r); n = jI

r

j]].

This claim can be proved by induction on the structure of s (similar to the proof of Claim 3

in the proof of Lemma 6.3).

Let s 2 T

�

and u 2 Occ(s). Then sts

M

0

(s; u) is the sequence of states which occur in

^

M

0

(q

0

;?)

(s[u (p; f)]), where (p; f) = h

0

(s=u). By Claim 3,

^

M

0

(q

0

;?)

(s[u (p; f)]) equals

^

M

q

0

(s[u p])	. Since each I

r

is a subset of [m], where m = rank

Q

(r), the substitution

42

	 can only delete and hence the number of occurrences of states in

^

M

0

(q

0

;?)

(s[u (p; f)])

is less than or equal to the one in

^

M

q

0

(s[u p]). Hence M

0

has the same input copying

bound N as M .

Assume now that M is suri. Thus there is a sur partition � = fQ

1

; : : : ; Q

n

g and a collec-

tion of sur mappings T forM . Then it is easy to verify that �

0

= fQ

0

1

; : : : ; Q

0

n

g with Q

0

i

=

f(q; I) 2 Q

0

j q 2 Q

i

g is a sur partition forM

0

and that T

0

with T

0

�;h(p

1

;f

1

):::;(p

k

;f

k

)i

(Q

0

j

; i) =

Q

0

�

for every � 2 �

(k)

, j 2 [n], i 2 [k], and (p

1

; f

1

); : : : ; (p

k

; f

k

) 2 P with T

�;hp

1

;:::;p

k

i

(Q

j

; i)=

Q

�

is a collection of sur mappings for M

0

. In particular, if M is ssuri (i.e., n = 1), then

so is M

0

.

If M is fcp then there is a parameter copying bound N

0

for M . For (q; I) 2 Q

0

(m)

and

j 2 [m], c

j

(M

0

(q;I)

(s)) = c

I(j)

(M

q

(s)) by Claim 2. Hence M

0

has the same parameter

copying bound N

0

as M . Clearly, if M is surp, then so is M

0

. 2

We now want to prove that each fci MTT

R

surp

M can be turned into a suri MTT

R

surp

M

0

which realizes the same translation as M . By Lemma 6.6 we may assume that M

is nondeleting. It turns out that the type of second order substitution inherent in the

derivation of an MTTM which is both surp and nondeleting, is rather restricted and as a

result the state sequences of M are easy to compute (in a way that is known for top-down

tree transducers). In fact, in a derivation step hq; �(s

1

; : : : ; s

k

)i(t

1

; : : : ; t

m

))

M

� all the

trees t

1

; : : : ; t

m

each appear exactly once in � (only the order may change). Now consider

an input tree s, a node u of s, and the state sequence sts

M

(s; u) = q

1

� � � q

n

. Recall that

this is the sequence of states which appear in

^

M

q

0

(s[u h(s=u)]) (in pre-order). Then

the state sequence of s at a child ui of u can be computed in the following way: Simply

consider all occurrences of elements of hQ; fx

i

gi in �

�

= rhs(q

�

; �; hh(s

1

); : : : ; h(s

k

)i) for

all � 2 [n]. Since M is surp and nondeleting, we know that all these occurrences will

appear in

^

M

q

0

(s[ui h(s=ui)]); of course, we do not know their precise order. Hence,

from �

1

; : : : ; �

n

we can compute a permutation of sts

M

(s; ui). We will now formalize this.

First we need an easy lemma. Recall that c

j

(t) is the number of occurrences of y

j

in t, cf.

De�nition 6.2.

Lemma 6.7 Let M = (Q;P;�;�; q

0

; R; h) be a nondeleting MTT

R

surp

. For every s 2 T

�

,

q 2 Q

(m)

, m � 1, and j 2 [m], c

j

(M

q

(s)) = 1.

Proof. This lemma is proved by induction on the structure of s. Let s = �(s

1

; : : : ; s

k

),

� 2 �

(k)

, k � 0, s

1

; : : : ; s

k

2 T

�

, and p

i

= h(s

i

) for i 2 [k]. Then c

j

(M

q

(s)) = c

j

(�[[: : :]]),

where � = rhs(q; �; hp

1

; : : : ; p

k

i) and [[: : :]] = [[hr; x

i

i M

r

(s

i

) j hr; x

i

i 2 hQ;X

k

i]]. By in-

ductionM

r

(s

i

) contains each parameter exactly once, and so the substitution [[: : :]] changes

only the order of the parameters which occur in �. Thus c

j

(�[[: : :]]) = c

j

(�), and c

j

(�) = 1

because M is nondeleting and surp. 2

We now turn to the computation of state sequences.

De�nition 6.8 Let M be an MTT

R

and Q its set of states. Let k � 0, � 2 T

hQ;X

k

i

(Y),

and i 2 [k]. The state sequence of x

i

in �, denoted by sts

M

(�; i) is the sequence q

1

� � � q

n

43

of all states in Q such that hq

1

; x

i

i; : : : ; hq

n

; x

i

i occur in � at occurrences u

1

; : : : ; u

n

, re-

spectively, and u

1

< � � � < u

n

. 2

Lemma 6.9 Let M = (Q;P;�;�; q

0

; R; h) be a nondeleting MTT

R

surp

. Let s 2 T

�

,

u 2 Occ(s), sts

M

(s; u) = q

1

� � � q

n

, and s[u] = � 2 �

(k)

. Let, for every j 2 [k], p

j

=

h(s=uj) and for every � 2 [n], �

�

= rhs

M

(q

�

; �; hp

1

; : : : ; p

k

i). Then, for every i 2 [k],

sts

M

(�

1

; i) � � � sts

M

(�

n

; i) is a permutation of sts

M

(s; ui).

Proof. Let

^

M be the extension of M . By the de�nition of state sequences, sts

M

(s; ui)

consists of the states r

1

; : : : ; r

m

such that hhr

1

; p

i

ii; : : : ; hhr

m

; p

i

ii are all elements of

hhQ; fp

i

gii that occur in

^

M

q

0

(s[ui p

i

]). Let us apply Lemma 3.6 to s[ui p

i

]. We

get

^

M

q

0

(s[ui p

i

]) =

^

M

q

0

(s[ui p

i

][u p])[[hhq

0

; pii

^

M

q

0

(s[ui p

i

]=u) j q

0

2 Q]]

which equals

^

M

q

0

(s[u p])[[]], where [[]] is the substitution

[[hhq

0

; pii

^

M

q

0

(�(s

1

; : : : ; s

i�1

; p

i

; s

i+1

; : : : ; s

k

)

| {z }

~s

) j q

0

2 Q]]

with s

j

= s=u

j

for j 2 [k] � fig. We know that sts

M

(s; u) = q

1

� � � q

n

and hence that

hhq

1

; pii; : : : ; hhq

n

; pii are all elements of hhQ; fpgii that occur in

^

M

q

0

(s[u p]). Moreover

^

M

q

0

(s[u p]) 2 T

�

(hhQ; fpgii). Thus, all elements of hhQ; fp

i

gii in

^

M

q

0

(s[u p])[[]] can

only stem from the substitution [[]]. Since

^

M is surp and nondeleting, it follows from

Lemma 6.7 that the replacement of an occurrence of hhq

0

; pii by

^

M

q

0

(~s) does not delete or

introduce new elements of hhQ; fpgii. Therefore, all elements of hhQ; fp

i

gii that occur in

^

M(s[u p])[[]] occur in the trees

^

M

q

1

(~s); : : : ;

^

M

q

n

(~s). For � 2 [n],

^

M

q

�

(~s) = �

�

[[hq

0

; x

�

i

^

M

q

0

(s

�

) j � 2 [k] � fig]]�, where � = [hr; x

i

i hhr; p

i

ii j r 2 Q]. And hence, since

^

M

q

0

(s

�

) =M

q

(s

�

) 2 T

�

(Y), the sequence of all states that occur in

^

M

q

�

(~s) is sts

M

(�

�

; i).

Altogether this means that sts

M

(�

1

; i) � � � sts

M

(�

n

; i) is a permutation of the elements of

hhQ; fp

i

gii that appear in

^

M

q

0

(s[ui p

i

]), i.e., of the elements in sts

M

(s; ui). 2

In Lemma 5.3 of [vV96] it is proved that yT

fc

(REGT) � yT

ssur

(REGT). The idea is to

use as states of the ssur top-down tree transducer M

0

the state sequences of the �nite

copying top-down tree transducer M (with a bar on one state of the state sequence). We

now use the same idea to prove the following more general lemma (see also Corollary 7.5).

Lemma 6.10 MTT

R

fci;surp

� MTT

R

suri;surp

.

Proof. Let M = (Q;P;�;�; q

0

; R; h) be an MTT

R

fci;surp

. By Lemma 6.6 we may assume

that M is nondeleting. Let N be an input copying bound for M . We want to construct

an MTT

R

suri;surp

M

0

such that �

M

0

= �

M

.

Intuitively, in the states of M

0

we compute the state sequences of M (modulo a permuta-

tion); if the state sequence of s at u (of M) is w = q

1

� � � q

n

, then the corresponding state

sequence of M

0

is q

0

1

� � � q

0

n

with q

0

j

= (q

1

� � � q

j

� � � q

n

). Thus, the particular state q

j

of M

44

processing s=u is marked by a bar in the corresponding state q

1

� � � q

j

� � � q

n

of M

0

. In this

way, no state of M

0

appears more than once in a state sequence of M (cf. the remark

following De�nition 5.7). Since M

0

can compute the state sequences of M in a top-down

fashion as shown in Lemma 6.9, M

0

will be suri.

For a string w = q

1

� � � q

n

2 Q

�

and j 2 [n], let w

j

denote the string q

1

� � � q

j�1

q

j

q

j+1

� � � q

n

obtained from w by \marking" the j-th element q

j

, and let Marked(w) = fw

j

j j 2 [n]g.

We de�ne M

0

= (Q

0

; P;�;�; q

0

; R

0

; h), where Q

0

= fq

1

� � � q

j

� � � q

n

j q

1

; : : : ; q

n

2 Q;n 2

[N]; j 2 [n]g with rank

Q

0

(q

1

� � � q

j

� � � q

n

) = rank

Q

(q

j

). For q

1

� � � q

j

� � � q

n

2 Q

0

(m)

, � 2 �

(k)

,

and p

1

; : : : ; p

k

2 P , let the rule

hq

1

� � � q

j

� � � q

n

; �(x

1

; : : : ; x

k

)i(y

1

; : : : ; y

m

)! � hp

1

; : : : ; p

k

i

be in R

0

, where � = dummy 2 �

(0)

, if there is an i 2 [k] such that the length of

sts

M

(�

1

; i) � � � sts

M

(�

n

; i) is greater thanN , where �

�

= rhs

M

(q

�

; �; hp

1

; : : : ; p

k

i) for � 2 [n];

otherwise � is obtained from rhs

M

(q

j

; �; hp

1

; : : : ; p

k

i) by replacing, for every i 2 [k], the

�-th occurrence of hq; x

i

i with q 2 Q, by hsts

M

(�

1

; i) � � � sts

�

M

(�

j

; i) � � � sts

M

(�

n

; i); x

i

i. Note

that this string

sts

M

(�

1

; i) � � � sts

�

M

(�

j

; i) � � � sts

M

(�

n

; i) is of the form wqw

0

with w;w

0

2 Q

�

.

An example of this construction is given in Example 6.11. Let us now prove the correctness

of M

0

. For a sequence q

1

� � � q

n

of states in Q and s 2 T

�

we say that q

1

� � � q

n

occurs on s,

if there is an ~s 2 T

�

and a u 2 Occ(~s) such that ~s=u = s and q

1

� � � q

n

is a permutation of

sts

M

(~s; u). Since the sequence q

0

occurs on s for every s 2 T

�

, the following claim proves

the correctness of M

0

.

Claim: Let q

1

; : : : ; q

n

2 Q and s 2 T

�

such that q

1

� � � q

n

occurs on s. Then for every

j 2 [n], M

0

q

1

���q

j

���q

n

(s) =M

q

j

(s).

This is proved by induction on the structure of s. Let s = �(s

1

; : : : ; s

k

), � 2 �

(k)

, k � 0,

and s

1

; : : : ; s

k

2 T

�

. For i 2 [k], let p

i

= h(s

i

) and for j 2 [n], let �

j

= rhs

M

(q

j

; �; hp

1

; : : : ;

p

k

i). By Lemma 3.4, M

0

q

1

���q

j

���q

n

(s) = rhs

M

0

(q

1

� � � q

j

� � � q

n

; �; hp

1

; : : : ; p

k

i)[[: : :]], where

[[: : :]] denotes the substitution [[hw; x

i

i M

0

w

(s

i

) j hw; x

i

i 2 hQ

0

;X

k

i]]. Since q

1

� � � q

n

occurs on s and M is nondeleting and surp, we know by Lemma 6.9 that for every

i 2 [k], sts

M

(�

1

; i) � � � sts

M

(�

n

; i) occurs on s

i

. Therefore the (q

1

� � � q

j

� � � q

n

; �; hp

1

; : : : ; p

k

i)-

rule has a non-dummy right-hand side. Hence M

0

q

1

���q

j

���q

n

(s) equals ��[[: : :]], where � =

rhs

M

(q

j

; �; hp

1

; : : : ; p

k

i) and � denotes the replacement of the �-th occurrence of hq; x

i

i

by hsts

M

(�

1

; i) � � � sts

�

M

(�

j

; i) � � � sts

M

(�

n

; i); x

i

i. We can apply the induction hypothesis

and obtain that M

0

wqw

0

(s

i

) with wqw

0

= sts

M

(�

1

; i) � � � sts

M

(�

n

; i) equals M

q

(s

i

), because

sts

M

(�

1

; i) � � � sts

M

(�

n

; i) occurs on s

i

. If we now combine the substitutions � and [[: : :]],

then we get ��

0

, where �

0

denotes the second order substitution of replacing the �-th

occurrence of hq; x

i

i by M

q

(s

i

) for hq; x

i

i 2 hQ;X

k

i. This equals �[[hq; x

i

i M

q

(s

i

) j

hq; x

i

i 2 hQ;X

k

i]] =M

q

j

(s).

SinceR

0

consists of dummy-rules and rules which are obtained from rules ofM by renaming

of states, M

0

is surp. It remains to show that M

0

is suri. Let � = fMarked(w) j w 2

Q

�

; jwj 2 [N]g and for q

1

� � � q

n

2 Q

�

with n 2 [N], � 2 �

(k)

, p

1

; : : : ; p

k

2 P , and i 2 [k],

let

T

�;hp

1

;:::;p

k

i

(Marked(q

1

� � � q

n

); i) = Marked(sts

M

(�

1

; i) � � � sts

M

(�

n

; i));

45

where �

�

= rhs

M

(q

�

; �; hp

1

; : : : ; p

k

i) for � 2 [n]. It follows directly from the de�nition of

the rules of M

0

that � is a sur partition for M

0

and that T is a collection of sur mappings

for M

0

. 2

The following example illustrates the construction in the proof of Lemma 6.10.

Example 6.11 We consider a �nite copying top-down tree transducer, without regular

look-ahead. Let M = (Q;�;�; q

0

; R) with Q = Q

(0)

= fq

0

; q

1

; q

2

g, � = f

(1)

;

0

(1)

; �

(0)

g,

� = f�

(2)

;

(1)

; �

(0)

g, and R consisting of the following rules.

hq

�

; (x

1

)i ! (hq

�

; x

1

i) for � 2 f0; 2g

hq

1

; (x

1

)i ! �(hq

2

; x

1

i; hq

2

; x

1

i)

hq

0

;

0

(x

1

)i ! �(hq

1

; x

1

i; hq

0

; x

1

i)

hq

�

;

0

(x

1

)i ! � for � 2 f1; 2g

hq

�

; �i ! � for � 2 f0; 1; 2g

Using Lemma 6.9, it is straightforward to verify that M is fci and N = 3 is an input

copying bound for M . However, M is not suri (just consider the (q

1

;)-rule).

We now construct a suri top-down tree transducer M

0

which realizes the same translation

as M , following the construction in the proof of Lemma 6.10. Let M

0

= (Q

0

;�;�; q

0

; R

0

)

with Q

0

= Q

0

(0)

= fr

1

� � � r

j

� � � r

n

j r

1

; : : : ; r

n

2 Q;n 2 [3]; j 2 [n]g. We only show the rules

in R

0

which will actually be used in derivations by M

0

.

hq

0

; (x

1

)i ! (hq

0

; x

1

i)

hq

1

q

0

; (x

1

)i ! �(hq

2

q

2

q

0

; x

1

i; hq

2

q

2

q

0

; x

1

i)

hq

1

q

0

; (x

1

)i ! (hq

2

q

2

q

0

; x

1

i)

hw; (x

1

)i ! (hw; x

1

i) for w 2 Marked(q

2

q

2

q

0

)

hq

0

;

0

(x

1

)i ! �(hq

1

q

0

; x

1

i; hq

1

q

0

; x

1

i)

hq

1

q

0

;

0

(x

1

)i ! �

hq

1

q

0

;

0

(x

1

)i ! �(hq

1

q

0

; x

1

i; hq

1

q

0

; x

1

i)

hq

2

q

2

q

0

;

0

(x

1

)i ! �

hq

2

q

2

q

0

;

0

(x

1

)i ! �

hq

2

q

2

q

0

;

0

(x

1

)i ! �(hq

1

q

0

; x

1

i; hq

1

q

0

; x

1

i)

and the right-hand side of each �-rule of M

0

equals �. Obviously, M

0

is suri and its sur

partition contains Marked(q

0

), Marked(q

1

q

0

), and Marked(q

2

q

2

q

0

). Consider the input tree

s =

0

0

�. As the reader may verify, t = �

M

(s) = �(�(�; �); �(�; �)). The state

sequences of M are as follows: sts

M

(s; ") = q

0

, sts

M

(s; 1) = q

1

q

0

, sts

M

(s; 11) = q

2

q

2

q

0

,

sts

M

(s; 111) = q

2

q

2

q

0

, and sts

M

(s; 1111) = q

1

q

0

. To illustrate the claim in the proof of

Lemma 6.10, consider the corresponding derivation of M

0

.

hq

0

; si)

M

0

�(hq

1

q

0

;

0

�i; hq

1

q

0

;

0

�i)

)

�

M

0

�(�(hq

2

q

2

q

0

;

0

�i; hq

2

q

2

q

0

;

0

�i); (hq

2

q

2

q

0

;

0

�i))

)

�

M

0

�(�((hq

2

q

2

q

0

;

0

�i); (hq

2

q

2

q

0

;

0

�i)); (hq

2

q

2

q

0

;

0

�i))

)

�

M

0

�(�(�; �); �(hq

1

q

0

; �i; hq

1

q

0

; �i))

)

�

M

0

t

2

46

We are now ready to prove our second main result.

Theorem 6.12 MTT

R

fc

= MTT

R

sur

.

Proof. MTT

R

fc

� MTT

R

sur

holds because MTT

R

fc

= MTT

R

fci;fcp

� MTT

R

fci;surp

(by

Lemma 6.3) and MTT

R

fci;surp

� MTT

R

suri;surp

= MTT

R

sur

(by Lemma 6.10).

Hence it remains to show that MTT

R

sur

� MTT

R

fc

. In fact we will show that every MTT

R

sur

is an MTT

R

fc

. Let M = (Q;P;�;�; q

0

; R; h) be an MTT

R

suri;surp

. By Lemma 6.6 we may

assume that M is nondeleting. Let � be a sur partition for M .

We �rst show that M is fci. From the next claim it follows that N = max(jQj j Q 2 �) is

an input copying bound for M .

Claim: Let s 2 T

�

and u 2 Occ(s). Then

(i) fq 2 Q j q occurs in sts

M

(s; u)g � Q for some Q 2 � and

(ii) no state appears more than once in sts

M

(s; u).

This is proved by induction on u. For u = ", sts

M

(s; ") = q

0

and thus (i) and (ii)

hold. Let sts

M

(s; u) = q

1

� � � q

n

. By the induction hypothesis, q

1

; : : : ; q

n

2 Q for some

Q 2 � and q

1

; : : : ; q

n

are pairwise di�erent. By Lemma 6.9, sts

M

(s; ui) is a permutation

of w = sts

M

(�

1

; i) � � � sts

M

(�

n

; i), where �

�

= rhs

M

(q

�

; �; hp

1

; : : : ; p

k

i) for � 2 [n], s[u] =

� 2 �

(k)

, and p

j

= h(s=uj) for j 2 [k]. By the de�nition of suri, all states in w are in

T

�;hp

1

;:::;p

k

i

(Q; i) 2 � which proves (i) for ui. Since M is ssuri with respect to Q, (ii) holds

for ui.

SinceM is nondeleting and surp, it follows from Lemma 6.7 thatM is fcp and that N

0

= 1

is a parameter copying bound for M . 2

7 Main Result and Consequences

In [BE98] it is shown that the class MSOTT of tree translations de�nable by monadic

second order logic is equal to the class ATT

R

sur

, cf. the Introduction. By the results pre-

sented in this paper we can now give a characterization of the class MSOTT in terms of

macro tree transducers. By the results of Section 5, the class MSOTT is equal to the

class MTT

R

sur

of translations realized by single use restricted macro tree transducers with

regular look-ahead. By the results of Section 6, this class is equal to the class MTT

R

fc

of

translation realized by �nite copying macro tree transducers with regular look-ahead.

From Theorems 5.14 and 6.12 we obtain the following main result.

Theorem 7.1 MSOTT = ATT

R

sur

= MTT

R

sur

= MTT

R

fc

.

Since MTTs are closed under regular look-ahead (Theorem 4.21 of [EV85]), i.e., MTT

R

=

MTT, it follows that each MSO de�nable tree translation can be realized by an MTT.

Corollary 7.2 MSOTT � MTT.

47

The inclusion is proper because for an MSO de�nable tree translation the size of the

output tree is linear in the size of the input tree (and already a top-down tree transducer

can translate a monadic tree of size n into the full binary tree of size 2

n

� 1).

As discussed in the Introduction, it is known from [EvO97, CE95] that the class of context-

free graph languages (see, e.g., [Eng97]) can be obtained by applying MSO graph transduc-

tions to regular tree languages. Hence, the class of tree languages generated by context-

free graph grammars equals the class MSOTT (REGT) of MSO de�nable tree translations

applied to regular tree languages. In fact, this holds for both well-known types of context-

free graph grammars, namely, hyperedge replacement (HR) and node replacement (NR),

because the classes of tree languages they generate coincide (cf. Section 6 of [Eng97]).

Since REGT is closed under T

R

-REL (cf. Corollary IV.6.7 in [GS84]) it follows from

Theorem 5.10 that MTT

R

sur

(REGT) = MTT

ssur

(REGT). It is also well known (see., e.g.,

Theorem IV.4.6 of [GS84]) that regular look-ahead can be simulated by a relabeling of the

input tree, and hence MTT

R

fc

(REGT) = MTT

fc

(REGT). Thus, applying Theorem 7.1

we obtain the following corollary.

Corollary 7.3 MTT

ssur

(REGT) = MTT

fc

(REGT) is the class of tree languages gener-

ated by (HR or NR) context-free graph grammars.

In [Dre97] Drewes shows that the class of tree languages generated by context-free graph

grammars can be obtained by evaluating the output tree languages of �nite-copying top-

down tree transducers in an algebra of (hyper)graphs in which each operation is a substi-

tution into a tree graph. In [EM] it is shown that this type of evaluation can be carried

out by macro tree transducers which are simple (i.e., linear and nondeleting) both in

the input variables and in the parameters. This means that Drewes' result is equivalent

with a similar characterization as Corollary 7.3 of the class of tree languages generated by

context-free graph grammars, namely, that it is the class MTT

fci;sp

(REGT) of output tree

languages of macro tree transducers which are fci and simple in the parameters (i.e., surp

and nondeleting), taking regular tree languages as input. This characterization follows

from Corollary 7.3 by Lemmas 6.3 and 6.6.

From [BE98] it is known that the class MSOTT

dir

of so-called direction-preserving MSO

tree translations is equal to the class ATT

R

os;sur

of tree translations which can be realized

by sur ATTs that have only synthesized attributes. It is well known that ATTs with

synthesized attributes only correspond to top-down tree transducers (see, e.g., [CF82,

F�ul81]). This means that ATT

R

os

= T

R

. We now consider the inuence of the sur property.

Theorem 7.4 MSOTT

dir

= ATT

R

os;sur

= T

R

sur

= T

R

fc

.

Proof. MSOTT

dir

= ATT

R

os;sur

by Theorem 18 of [BE98].

Let us now show that ATT

R

os;sur

� T

R

sur

. By de�nition and Theorem 4.4, ATT

R

os;sur

=

ATT-REL � ATT

os;sur

= T

R

-REL � ATT

os;sur

. By the proof of Lemma 5.11 it follows

that ATT

os;sur

� T

R

sur

(in fact, even T

sur

, because the regular look-ahead is not needed).

Hence ATT

R

os;sur

� T

R

-REL�T

R

sur

. The latter equals T

R

sur

because T

R

sur

is closed under left

composition with T

R

-REL, which follows from T

R

sur

= T

R

-REL �T

ssur

as mentioned at the

end of Section 5.2, together with Lemma 4.5.

48

From the proof of Lemma 5.12 it follows that T

ssur

� ATT

os;sur

. Hence together with

T

R

sur

= T

R

-REL � T

ssur

we get T

R

sur

� ATT

R

os;sur

and therefore ATT

R

os;sur

= T

R

sur

.

From the proofs of Lemma 6.10 and Theorem 6.12 it follows immediately that T

R

sur

= T

R

fc

.

2

If we apply the classes in Theorem 7.4 to REGT, then we obtain the following corollary.

Corollary 7.5 MSOTT

dir

(REGT) = ATT

os;sur

(REGT) = T

ssur

(REGT) = T

fc

(REGT).

In [Rao97] a special type of tree grammar is investigated which generates tuples of trees.

It is straightforward to see that these grammars correspond to sur ATTs which have

synthesized attributes only (cf. [vV96]). In [Rao97] it is also proved that T

fc

(REGT) is the

class of tree languages which they generate, i.e., ATT

os;sur

(REGT). For the corresponding

classes of yield languages this equivalence is proved in Section 4 of [vV96], and also in

[Wei92] using di�erent formalisms. It is also easy to see (cf. [vV96]) that this is the class

of multiple context-free languages of [SMFK91]. These equivalences are discussed in more

detail in Section 6 of [Eng97] (where the tree grammars of [Rao97] are called multiple

regular tree grammars).

Instead of taking regular tree languages as input, we can also consider the classes of output

tree languages of these tree transducers, i.e., the special case of taking the regular tree

language T

�

of all trees over � as input. For a class X of tree transducers we denote by

OUT (X) the class of output tree languages generated by X. It is known from [Man96]

that every regular tree language is the output tree language of a �nite copying top-down

tree transducer with input copying bound 1. Hence, REGT � OUT (T

fc

). It follows that

for each class X which is closed under left composition with T

fc

, OUT (X) = X(REGT).

Examples of such classes are T

fc

and MTT

fc

. For strongly sur top-down tree transducers

(and probably even for ssur MTTs) this does not seem to be the case.

Let MSOTS denote the class of MSO de�nable tree-to-string translations. It is easy to

see that there is an MSO transducer which translates a monadic tree t = a

1

(a

2

(� � � a

n

(e)))

into the string a

1

� � � a

n

. This injective translation is denoted by p and is, as for yield (cf.

Section 2.3), extended to translations and classes of translations. Conversely, there is an

MSO transducer which de�nes p

�1

, i.e., translates a string a

1

� � � a

n

into the monadic tree

a

1

(� � � a

n

(e)) (recall from Section 2.3 that e is the special symbol with ye = "). Since MSO

graph transductions are closed under composition we get that MSOTS = pMSOTT

mon

,

where MSOTT

mon

denotes the class of MSO de�nable tree translations with monadic

output alphabet. Let us now prove that this class equals yT

R

fc

. For a classX of translations

we use the subscript mon to denote the restriction of X to translations with monadic

output alphabets.

Note that an alternative proof of pMTT

R

mon

= yT

R

can be found in Theorem 8.7(a) of

[EV88].

Lemma 7.6 pMTT

R

mon

= yT

R

and pMTT

R

fc;mon

= yT

R

fc

.

Proof. Let M be a T

R

and let M

0

be an MTT

R

mon

. We may assume that q

0

does

not appear in any right-hand side of a rule of M . Furthermore we may assume that

49

M

0

is nondeleting and has no state of rank greater than one (to see this, just apply

Lemma 6.6 and remove the output symbol d and all states of rank greater than one). Let

M = (Q;P;�;�; q

0

; R; h) and M

0

= (Q

0

; P

0

;�;�

0

; q

0

0

; R

0

; h

0

), with (�

0

)

(0)

= feg. We say

that M is related to M

0

, if Q = fq

(0)

j q 2 Q

0

g, P

0

= P , q

0

0

= q

0

, h

0

= h, and for every

q 2 Q, � 2 �

(k)

, k � 0, and p

1

; : : : ; p

k

2 P ,

y(rhs

M

(q; �; hp

1

; : : : ; p

k

i)) = �(rhs

M

0

(q; �; hp

1

; : : : ; p

k

i));

where for every t 2 T

hQ

0

;X

k

i[�

0
(Y

1

), �(t) is recursively de�ned as follows. If t = y

1

or t = e,

then �(t) = ". If t 2 hQ

0

;X

k

i

(0)

, then �(t) = t. If t = �(t

1

) with � 2 (hQ

0

;X

k

i[�

0

)

(1)

and

t

1

2 T

hQ

0

;X

k

i[�

0(Y

1

), then �(t) is the string ��(t

1

). Note that �t = pt for t 2 T

�

0

.

Let M be related to M

0

. Then y�

M

(s) = p�

M

0

(s) for every s 2 T

�

. This follows from the

following claim (with q = q

0

).

Claim: For every q 2 Q and s 2 T

�

, yM

q

(s) = pM

0

q

(s).

This is proved by induction on s. Let s = �(s

1

; : : : ; s

k

) with � 2 �

(k)

, k � 0, and

s

1

; : : : ; s

k

2 T

�

. Then pM

0

q

(s) = p(�[[: : :]]) with � = rhs

M

0

(q; �; hp

1

; : : : ; p

k

i), p

i

= h(s

i

),

and [[: : :]] = [[hq

0

; x

i

i M

0

q

0

(s

i

) j hq

0

; x

i

i 2 hQ

0

;X

k

i]]. If we move p inside the substitution

[[: : :]] and apply the induction hypothesis, then we get �(�)[] with [] = [hq

0

; x

i

i yM

q

(s

i

) j

hq

0

; x

i

i 2 hQ;X

k

i], because Q = fq

(0)

j q 2 Q

0

g and second order substitution of monadic

trees corresponds to ordinary substitution of their �-translations. Since M is related to

M

0

this equals y�[] with � = rhs

M

(q; �; hp

1

; : : : ; p

k

i). By moving the yield outside of []

we obtain yM

q

(s).

It is easy to see that the extended version of this claim, i.e., y

^

M

q

(s[u p]) = p

^

M

0

q

(s[u

p]) can be proved similarly (where p is extended to T

hhQ;fpgii[�

0 in the obvious way) and

hence, M is fc if and only if M

0

is fc.

We now show that for every T

R

M there is a related MTT

R

M

0

and vice versa. Let

M and M

0

be as above. If M is given, de�ne Q

0

= fq

0

(0)

g [fq

(1)

j q 2 Q � fq

0

gg,

�

0

= f�

(1)

j � 2 �

(0)

g [fe

(0)

g, and for every q 2 Q, � 2 �

(k)

, and p

1

; : : : ; p

k

2 P , let

rhs

M

0

(q; �; hp

1

; : : : ; p

k

i) equal p

�1

(y�)[e y

1

] if q 6= q

0

and otherwise it equals p

�1

(y�),

where � = rhs

M

(q; �; hp

1

; : : : ; p

k

i). Conversely, if M

0

is given, de�ne Q = fq

(0)

j q 2 Q

0

g,

� = fd

(2)

; e

(0)

g [f�

(0)

j � 2 �

0

(1)

g, and for every q 2 Q, � 2 �

(k)

, and p

1

; : : : ; p

k

2

P , let rhs

M

(q; �; hp

1

; : : : ; p

k

i) be any tree t 2 T

hQ;X

k

i[�

with yt = �(�), where � =

rhs

M

0

(q; �; hp

1

; : : : ; p

k

i). Obviously, M is related to M

0

for both de�nitions. 2

SinceMSOTS = pMSOTT

mon

and, by Theorem 7.1, MSOTT = MTT

R

fc

we get MSOTS =

pMTT

R

fc;mon

. Together with Lemma 7.6 we obtain the following characterization of the

class of MSO de�nable tree-to-string translations as a corollary.

Theorem 7.7 MSOTS = yT

R

fc

.

It follows from [EvO97, CE95] that the class of string languages generated by context-

free graph grammars equals the class MSOTS (REGT) of MSO de�nable tree-to-string

translations applied to regular tree languages. As a corollary we get a result known from

[EH91] (cf. Section 6 of [Eng97]).

50

Corollary 7.8 yT

fc

(REGT) is the class of string languages generated by (HR or NR)

context-free graph grammars.

It is easy to see, cf. Example 1(6, yield) of [BE98], that there is an MSO transducer

which translates a tree t into its yield yt. It is also easy to see, that there is an MSO

transducer which translates a string w into a tree t such that the yield of t equals w.

It simply translates a string a

1

� � � a

n

into the tree �(a

1

; �(a

2

; : : : �(a

n

; e))). Since MSO

transductions are closed under composition, this means that MSOTS = yMSOTT. By

Theorems 7.1 and 7.7 we obtain the following corollary.

Corollary 7.9 yMTT

R

fc

= yT

R

fc

.

If we consider \attributed tree-to-string transducers" (ATS transducers), i.e., attribute

grammars in which all attribute values are strings and the only semantic operation is

concatenation of strings, then, in view of Theorems 7.1 and 7.4, Corollary 7.9 can be

formulated as ATS

R

sur

= ATS

R

os;sur

, where ATS denotes the class of tree-to-string transla-

tions realized by ATS transducers. Hence, for sur ATS with look-ahead, the presence of

inherited attributes has no inuence on the translational power.

Corollary 7.10 yMTT

fc

(REGT) = yT

fc

(REGT).

Note that T

fc

(REGT) is properly included in MTT

fc

(REGT), e.g., the monadic tree lan-

guage fa

n

(b

n

(e)) j n � 0g over the ranked alphabet fa

(1)

; b

(1)

; e

(0)

g is in MTT

fc

(REGT)

but not even in T (REGT) because the monadic tree languages in T (REGT) are regular;

this was by mistake mentioned as an open problem in Section 6 of [Eng97]. Note also

that yT (REGT) is properly included in yMTT (REGT); as an example, the language

f(a

n

b)

2

n

j n � 1g is obviously in yMTT (REGT), but not in yT (REGT) as shown in

Theorem 3.16 of [Eng82].

Weak Finite Copying

Our de�nition of �nite copying for MTT

R

s is a generalization of the one for top-down

tree transducers. It does not distinguish states which contribute to the output from those

which do not (due to deletion or erasing). A more appropriate, but rather technical notion

of �nite copying does not consider states which do not contribute to the output. We now

shortly discuss this possibility and show that the corresponding translations can still be

realized be �nite copying MTT

R

s.

Consider an MTT

R

M = (Q;P;�;�; q

0

; R; h) and a tree s 2 T

�

with u 2 Occ(s) and

p = h(s=u). Let � =

^

M

q

0

(s[u p]) and v 2 Occ(�) with �[v] = hhq; pii for some q 2 Q.

There are two ways in which this occurrence of hhq; pii will not contribute to the output:

(i) v is deleted , i.e., v has a pre�x v

0

i such that �[v

0

] = hhq

0

; pii and y

i

does not occur

in M

q

0

(s=u) or (ii) v is erased , i.e., M

q

(s=u) 2 Y . We say that v is productive, if v is

neither deleted nor erased. We now de�ne a notion of �nite copying which distinguishes

productive from nonproductive occurrences of hhq; pii. An MTT

R

M is weak �nite copying

in the input (for short, wfci) if there is an N 2 N such that for every input tree s and

51

u 2 Occ(s), jpsts

M

(s; u)j � N , where psts

M

(s; u) equals sts

M

(s; u) restricted to states

which occur at productive nodes of

^

M

q

0

(s[u h(s=u)]). The MTT

R

M is weak �nite

copying (for short, wfc) if it is wfci and fcp. We use the abbreviations wfci and wfc as

subscripts for classes of translations realized by the corresponding MTTs. Note that for

top-down tree transducers the two notions wfc and fc are the same.

Consider now a wfc MTT

R

. Is there a �nite copying MTT

R

which realizes the same

translation as M? In other words, is it possible to remove all nonproductive occurrences?

It is straightforward to prove that the construction of a nondeleting MTT

R

(Lemma 6.6)

preserves wfci. Hence, we can remove deleted occurrences. It remains to remove erasing

occurrences. This can be done quite similar to the nondeleting normal form. An MTT

R

M

is nonerasing if for every q 2 Q, � 2 �

(k)

, and p

1

; : : : ; p

k

2 P , rhs

M

(q; �; hp

1

; : : : ; p

k

i) 62 Y .

Clearly, if M is nonerasing then M

q

(s) 62 Y for all q 2 Q and s 2 T

�

.

Lemma 7.11 For every MTT

R

M there is a nonerasing nondeleting MTT

R

M

0

such that

�

M

0

= �

M

. The construction involved preserves fcp, and if M is wfci then M

0

is fci.

Proof. Let M = (Q;P;�;�; q

0

; R; h). By Lemma 6.6 (and the above remark) we may

assume that M is nondeleting. Hence, if the right-hand side � of some q-rule is in Y ,

then q 2 Q

(1)

and � = y

1

. De�ne M

0

= (Q;P

0

;�;�; q

0

; R

0

; h

0

), where P

0

= f(p; S) j p 2

P; S � Q

(1)

g. For every q 2 Q

(m)

, � 2 �

(k)

, k;m � 0, and (p

1

; S

1

); : : : ; (p

k

; S

k

) 2 P

0

let

�

q

= rhs

M

(q; �; hp

1

; : : : ; p

k

i) and � = [[hq

0

; x

i

i y

1

j hq

0

; x

i

i 2 hQ;X

k

i; q

0

2 S

i

]]. Then

h

0

�

((p

1

; S

1

); : : : ; (p

k

; S

k

)) = (p; S), where p = h

�

(p

1

; : : : ; p

k

) and S = fq 2 Q j �

q

� = y

1

g.

Let the rule

hq; �(x

1

; : : : ; x

k

)i(y

1

; : : : ; y

m

)! � h(p

1

; S

1

); : : : ; (p

k

; S

k

)i

be in R

0

, where � = �

q

� if �

q

� 6= y

1

and otherwise � = dummy(y

1

) with dummy 2 �

(1)

.

Intuitively, the look-ahead automaton of M

0

determines all erased occurrences and the

substitution � removes them from the right-hand sides. By construction,M

0

is nonerasing

and nondeleting. Let s 2 T

�

. It should be clear that h

0

(s) = (p; S) with p = h(s) and

S = fq 2 Q j M

q

(s) = y

1

g, and that for every q 2 Q, if M

q

(s) 62 Y then M

0

q

(s) = M

q

(s).

Hence �

M

0

= �

M

and the construction of M

0

preserves fcp. Now let M be wfci. To prove

that M

0

is fci, it can be shown that for every s 2 T

�

and every u 2 Occ(s) with u 6= "

^

M

0

q

(s[u (p; S)]) =

^

M

q

(s[u p])[hhr; pii hhr; (p; S)ii j r 62 S][[hhr; pii y

1

j r 2 S]];

where (p; S) = h

0

(s=u). This implies that sts

M

0

(s; u) is equal to sts

M

(s; u) restricted to

states that occur at non-erased nodes, which is equal to psts

M

(s; u); thus, sts

M

0

(s; u) =

psts

M

(s; u). 2

From Lemma 7.11 we obtain the following theorem.

Theorem 7.12 MTT

R

wfc

= MTT

R

fc

.

We will now show that MTT

wfc

is closed under regular look-ahead.

52

Lemma 7.13 MTT

R

wfc

=MTT

wfc

.

Proof. Let M = (Q;P;�;�; q

0

; R; h) be an MTT

R

wfc

with P = fp

1

; : : : ; p

n

g. For k � 0

let bal(k) be the balanced n-ary tree of height k which contains, for every i < k, at the

i-th level only the symbol h�; x

i

i (of rank n) and at the leaf i

1

� � � i

k

with i

1

; : : : ; i

k

2 [n]

the symbol hp

i

1

; : : : ; p

i

k

i. Thus, bal(0) = hi, bal(1) = h�; x

1

i(hp

1

i; : : : ; hp

n

i), bal(2) =

h�; x

1

i(h�; x

2

i(hp

1

; p

1

i; : : : ; hp

1

; p

n

i); h�; x

2

i(hp

2

; p

1

i; : : : ; hp

2

; p

n

i); : : : ; h�; x

2

i(hp

n

; p

1

i; : : : ;

hp

n

; p

n

i)), etc.

The construction of M

0

is similar to the one in Theorem 4.21 of [EV85], where it is proved

that MTT

R

= MTT. It has a special \test state" � which simulates the look-ahead

automaton by deleting all its parameters, except the one corresponding to the correct

look-ahead state. De�ne M

0

= (Q

0

;�;�; q

0

; R

0

) with Q

0

= f�

(n)

g[Q. For every q 2 Q

(m)

and � 2 �

(k)

let

hq; �(x

1

; : : : ; x

k

)i(y

1

; : : : ; y

m

)! �

be in R

0

, where � = bal(k)[hr

1

; : : : ; r

k

i rhs

M

(q; �; hr

1

; : : : ; r

k

i) j r

1

; : : : ; r

k

2 P]. For

every � 2 �

(k)

let the rule

h�; �(x

1

; : : : ; x

k

)i(y

1

; : : : ; y

n

)! �

be in R

0

, where � = bal(k)[hr

1

; : : : ; r

k

i y

j

j r

1

; : : : ; r

k

2 P; h

�

(r

1

; : : : ; r

k

) = p

j

].

Let s 2 T

�

. Since M

0

�

(s) = y

i

if h(s) = p

i

, it is straightforward to see that for every

q 2 Q, M

0

q

(s) = M

q

(s). It can be shown that for every u 2 Occ(s), if h(s=u) = p

i

,

then

^

M

0

�

(s[u p]) = hh�; pii(y

j

1

; : : : ; y

j

n

), where

^

h(s[u p

i

]) = p

j

�

for � 2 [n], and

^

M

0

q

(s[u p])[[hh�; pii y

i

]][hhq; pii hhq; p

i

ii j q 2 Q] =

^

M

q

(s[u p

i

]), where p is the

unique (dummy) look-ahead state of M

0

. Hence, psts

M

0

(s; u) = psts

M

(s; u) and hence, if

M is wfc then so is M

0

. 2

Altogether we obtain the following theorem.

Theorem 7.14 MSOTT = MTT

wfc

.

Future Work

Let us discuss some questions which could be subject to future research.

Let us consider Theorem 6.12 again. What is the correspondence between the input

copying bound N of an MTT

R

fc

and the sur partition of the corresponding MTT

R

sur

? For

surp MTT

R

s we know the answer. For N � 1, let MTT

R

fci(N);surp

denote the class of

translations realized by MTT

R

surp

s with input copying bound less than or equal to N , and

let MTT

R

suri(N);surp

denote the class of translations realized by MTT

R

suri;surp

s for which the

size of each Q in the sur partition � is less than or equal to N . Then it can be shown that

MTT

R

fci(N);surp

= MTT

R

suri(N);surp

, as follows. Let M be an MTT

R

fci;surp

with input copying

bound N . Then, by the proof of Lemma 6.10 (and Lemma 6.6), there is an MTT

R

suri;surp

53

M

0

such that for each Q in the sur partition of M

0

, jQj = jMarked(w)j and jwj � N .

Hence MTT

R

fci(N);surp

� MTT

R

suri(N);surp

. In the proof of Theorem 6.12 it is shown that

MTT

R

sur

� MTT

R

fci;surp

. Let M be an MTT

R

suri(N);surp

and let � be a sur partition for

M . It is shown in the proof of Theorem 6.12 that max(jQj j Q 2 �) is an input copying

bound for M . However, there it is assumed that M is nondeleting and the construction

of a nondeleting MTT in the proof of Lemma 6.6 does not preserve the sizes of the sets in

the sur partition. But clearly, if sts

M

(s; u) = q

1

� � � q

n

then sts

M

(s; ui) contains the same

or less states as sts

M

(�

1

) � � � sts

M

(�

n

), where �

�

= rhs

M

(q

�

; �; hp

1

; : : : ; p

k

i), cf. Lemma 6.9.

Hence the claim in the proof of Theorem 6.12 can also be proved for deleting MTT

sur

s

and hence max(jQj j Q 2 �) is an input copying bound for M .

There seems to be a relation between the number of synthesized attributes of an ATT

R

sur

and the maximal size of the elements of the sur partition of an MTT

R

sur

. However, from

our constructions this relationship is not immediate.

From Corollary 7.2 we know that every MSO de�nable tree translation can be realized by

an MTT. Is it decidable for an MTT M , whether �

M

is MSO de�nable? What classes

of macro tree transducers that are larger than those of fc MTT

R

s and wfc MTTs can be

de�ned such that the translations realized by them are MSO de�nable?

It is shown in Theorem 4.2.1 of [EV85] that MTT

R

= MTT, but the construction does

not preserve the fc and sur properties. For weak fc we have shown in Theorem 7.14 that

MTT

R

wfc

= MTT

wfc

. Is MTT

fc

properly included in MTT

R

fc

? And the analogous question

for sur.

References

[AU71] A. V. Aho and J. D. Ullman. Translations on a context-free grammar. Inform.

and Control, 19:439{475, 1971.

[BE98] R. Bloem and J. Engelfriet. A comparison of tree transductions de�ned by

monadic second order logic and by attribute grammars. Technical Report 98-

02, Leiden University, January 1998. (to appear in J. of Comp. Syst. Sci.)

http://www.wi.leidenuniv.nl/TechRep/1998/tr98-02.html.

[Boc76] G. V. Bochmann. Semantic evaluation from left to right. Commun. ACM,

19:55{62, 1976.

[CE95] B. Courcelle and J. Engelfriet. A logical characterization of the sets of hyper-

graphs de�ned by hyperedge replacement grammars. Math. Systems Theory,

28:515{552, 1995.

[CF82] B. Courcelle and P. Franchi-Zannettacci. Attribute grammars and recursive

program schemes. Theoret. Comput. Sci., 17:163{191 and 235{257, 1982.

[Cou83] B. Courcelle. Fundamental properties of in�nite trees. Theoret. Comput. Sci.,

25:95{169, 1983.

54

[Cou94] B. Courcelle. Monadic second-order de�nable graph transductions: a survey.

Theoret. Comput. Sci., 126:53{75, 1994.

[DKH97] F. Drewes, H.-J. Kreowski, and A. Habel. Hyperedge replacement graph gram-

mars. In G. Rozenberg, editor, Handbook of Graph Grammars and computing

by graph transformation, Volume 1, chapter 2, pages 95{162. World Scienti�c,

Singapore, 1997.

[Dre97] F. Drewes. A characterization of the sets of hypertrees generated by hyperedge-

replacement graph grammars. Technical Report Bericht Nr. 3/97, Universit�at

Bremen, 1997. (to appear in Theory of Comput. Sys.).

[EF81] J. Engelfriet and G. Fil�e. The formal power of one-visit attribute grammars.

Acta Informatica, 16:275{302, 1981.

[EH91] J. Engelfriet and L. Heyker. The string-generating power of context-free hy-

pergraph grammars. J. of Comp. Syst. Sci., 43:328{360, 1991.

[EM] J. Engelfriet and S. Maneth. Tree languages generated by context-free graph

grammars. Manuscript.

http://www.wi.leidenuniv.nl/~maneth/TAGT98.ps.gz.

[Eng75] J. Engelfriet. Bottom-up and top-down tree transformations | a comparison.

Math. Systems Theory, 9(3):198{231, 1975.

[Eng77] J. Engelfriet. Top-down tree transducers with regular look-ahead. Math. Sys-

tems Theory, 10:289{303, 1977.

[Eng80] J. Engelfriet. Some open questions and recent results on tree transducers and

tree languages. In R.V. Book, editor, Formal language theory; perspectives and

open problems. New York, Academic Press, 1980.

[Eng81] J. Engelfriet. Tree transducers and syntax-directed semantics. Technical Re-

port Memorandum 363, Technische Hogeschool Twente, 1981. Also in: Pro-

ceedings of 7th Colloquium on Trees in Algebra and Programming (CAAP

1982), Lille, France, 1982.

[Eng82] J. Engelfriet. Three hierarchies of transducers. Math. Systems Theory, 15:95{

125, 1982.

[Eng97] J. Engelfriet. Context-free graph grammars. In G. Rozenberg and A. Salomaa,

editors, Handbook of Formal Languages, Volume 3, chapter 3. Springer-Verlag,

1997.

[ER97] J. Engelfriet and G. Rozenberg. Node replacement graph grammars. In

G. Rozenberg, editor, Handbook of Graph Grammars and computing by graph

transformation, Volume 1, chapter 1, pages 1{94. World Scienti�c, Singapore,

1997.

[ERS80] J. Engelfriet, G. Rozenberg, and G. Slutzki. Tree transducers, L systems, and

two-way machines. J. of Comp. Syst. Sci., 20:150{202, 1980.

55

[EV85] J. Engelfriet and H. Vogler. Macro tree transducers. J. of Comp. Syst. Sci.,

31:71{146, 1985.

[EV88] J. Engelfriet and H. Vogler. High level tree transducers and iterated pushdown

tree transducers. Acta Informatica, 26:131{192, 1988.

[EV94] J. Engelfriet and H. Vogler. The translation power of top-down tree-to-graph

transducers. J. of Comp. Syst. Sci., 49:258{305, 1994.

[EvO97] J. Engelfriet and V. van Oostrom. Logical description of context-free graph

languages. J. of Comp. Syst. Sci., 55(3):489{503, 1997.

[FHVV93] Z. F�ul�op, F. Herrmann, S. V�agv�olgyi, and H. Vogler. Tree transducers with

external functions. Theoret. Comput. Sci., 108:185{236, 1993.

[Fis68] M.J. Fischer. Grammars with macro-like productions. PhD thesis, Harvard

University, Massachusetts, 1968.

[Fra82] P. Franchi-Zannettacci. Attributes semantiques et schemas de programmes.

PhD thesis, Universit�e de Bordeaux I, 1982. Th�ese d'Etat.

[F�ul81] Z. F�ul�op. On attributed tree transducers. Acta Cybernetica, 5:261{279, 1981.

[FV95] Z. F�ul�op and S. V�agv�olgyi. Attributed tree transducers cannot induce all de-

terministic bottom-up tree transformations. Inform. and Comput., 116(2):231{

240, 1995.

[FV97] Z. F�ul�op and H. Vogler. A characterization of attributed tree transformations.

Technical Report TUD/FI97/15, Technical University of Dresden, 1997.

[FV98] Z. F�ul�op and H. Vogler. Syntax-Directed Semantics. Formal Models based

on Tree Transducers. EATCS-monographs on Theoretical Computer Science.

Springer-Verlag, to appear 1998.

[Gan83] H. Ganzinger. Increasing modularity and language-independency in automati-

cally generated compilers. Science of Computer Programming, 3:223{278, 1983.

[Gie88] R. Giegerich. Composition and evaluation of attribute coupled grammars. Acta

Informatica, 25:355{423, 1988.

[GS84] F. G�ecseg and M. Steinby. Tree Automata. Akad�emiai Kiad�o, Budapest, 1984.

[Hab92] A. Habel. Hyperedge Replacement: Grammars and Languages, volume 643 of

Lecture Notes in Computer Science. Springer-Verlag, 1992.

[Knu68] D.E. Knuth. Semantics of context-free languages. Math. Systems Theory,

2:127{145, 1968. (Corrections in Math. Systems Theory, 5:95-96, 1971).

[K�uh97] A. K�uhnemann. Berechnungsst�arken von Teilklassen primitiv-rekursiver Pro-

grammschemata. PhD thesis, Technical University Dresden, 1997.

56

[K�uh98] A. K�uhnemann. Bene�ts of tree transducers for optimizing functional pro-

grams. (to appear in Proc. FST&TCS '98), 1998.

[KW76] K. Kennedy and S. K. Warren. Automatic generation of e�cient evaluators for

attribute grammars. In Conf. Rec. of 3rd Symp. on Principles of Programming

Languages, pages 32{49, 1976.

[Man96] S. Maneth. On the generating power of deterministic tree transducers. Techni-

cal Report TUD/FI96/19, Technical University of Dresden, 1996. (to appear

in Inform. and Comput.).

[Rao97] J.-C. Raoult. Rational tree relations. Bull. Belg. Math. Soc., 4:149{176, 1997.

See also \Recursively de�ned tree transductions", Proc. RTA'93, LNCS 690,

pages 343-357.

[SMFK91] H. Seki, T. Matsumura, M. Fujii, and T. Kasami. On multiple context-free

grammars. Theoret. Comput. Sci., 88:191{229, 1991.

[vV96] N. van Vugt. Generalized context-free grammars. Master's thesis, Internal

Report 96-12, Department of Computer Science, Leiden University, 1996.

[Wei92] D. J. Weir. Linear context-free rewriting systems and deterministic tree-

walking transducers. In Proc. 30th Annual Meeting of the Association for

Computational Linguists, 1992.

57

