
Integrating Loop and Data Transformations for Global Optimisation

M.F.P. O’Boyle
Department of Computer Science

The University of Edinburgh
Edinburgh EH9 3JZ

United Kingdom
mob@dcs.ed.ac.uk

P.M.W. Knijnenburg
Department of Computer Science

Leiden University
Niels Bohrweg 1, 2333 CA Leiden

the Netherlands
peterk@cs.leidenuniv.nl

Abstract

This paper is concerned with integrating global data
transformations and local loop transformations in order to
minimise overhead on distributed shared memory machines
such as the SGi Origin 2000. By first developing an ex-
tended algebraic transformation framework, a new tech-
nique to allow the static application of global data trans-
formations, such as partitioning, to reshaped arrays is pre-
sented, eliminating the need for expensive temporary copies
and hence eliminating any communication and synchroni-
sation. In addition, by integrating loop and data transfor-
mations, any introduced poor spatial locality and expensive
array subscripts can be eliminated. A specific performance
improving algorithm is implemented giving significant im-
provements in execution time.

1. Introduction

In order to achieve acceptable performance on current
distributed shared memory machines, it is essential to ex-
ploit the available parallelism, make efficient use of the
memory hierarchy and minimise non-local memory ac-
cesses, load imbalance and synchronisation overhead. Typ-
ically, a loop based parallelisation approach [13] is used
which is local in nature, as each loop nest is separately ex-
amined and parallelised. Although each loop nest in isola-
tion may perform well, they may perform poorly when com-
bined due to significant communication and synchronisation
between loop nests.

Another approach is to consider data orientated paral-
lelisation [8], traditionally developed for distributed mem-
ory compilation but also used for distributed shared memory
[1, 6]. This approach is primarily concerned with mapping
arrays to processors and has a global, program wide, effect.
It tries to globally trade off costs for an entire program, in
contrast to loop based approaches. However, this global ap-

proach breaks down when a particular array has two differ-
ent layouts, for instance when it is reshaped at a subroutine
boundary. The partitioning of the original array and its re-
shaped instance must be consistent as they refer to the same
actual array elements. At present, there is no efficient sta-
tic means to apply data transformations such as partition-
ing to reshaped arrays. Expensive temporary copies must
normally be made at run-time on entry to the procedure and
restored on exit [5], introducing additional communication
and synchronisation.

Another problem associated with global data transforma-
tions is that in determining a parallelisation that is globally
acceptable, it may have an adverse affect on the performance
of a particular statement within a loop nest. For instance,
data alignment may transpose the layout of one array, re-
ducing overall communication between processors, but in
certain loop nests cause poor stride access through the local
data cache by destroying spatial locality.

These two problems of data parallelisation, namely, re-
shaped arrays and the adverse effect on local loop nests,
are the subject of this paper. By developing an extended
framework for loop and data transformations, we have de-
veloped a technique to statically determine the data lay-
out for reshaped arrays, eliminating the need for temporary
copies and the associated communication and synchronisa-
tion overhead. To solve the second problem of the (poten-
tial) local adverse effects of global data transformations on
loop nests, loop transformations can be used to undo these
adverse effects.

In order to optimise programs globally, it is essential that
a compiler is able to combine loop and data transformations.
Recent work [1, 4, 7, 12] has focussed on combining the
loop based parallelisation with data layout approaches [8] in
order to trade-off these conflicting requirements. However,
these approaches are restricted in that transformations, in-
cluding partitioning, strip-mining and linearisation, cannot
be directly incorporated within their representation.

This paper develops a new approach to combining loop



Original Code (1) Reshaped Array (2) Original Access (3) Reshaped Access (4)
REAL A(0:3,0:3)
Do i = 0, 2
Do j = 1,3

A(i,j) = A(i+1,j-1)
+ D(j,i)

Enddo
Enddo

call Reshape(a)

Subroutine Reshape (B)
REAL B(0:1,0:7)
Do j = 0, 7
Do i = 0,1
B(i,j) = B(i,j) + 1

Enddo
Enddo

a
b

After Data Transformation(5) Propagated Transformation (6) New Access (7) New Reshaped Access (8)

REAL A(0:3,0:3)
Do i = 0,2
Do j = 1,3

A(j,i) = A(j-1,i+1)
+ D(j,i)

Enddo
Enddo

call Reshape(A)

Subroutine Reshape (B)
REAL B(0:1,0:7)
Do j = 0, 7
Do i = 0,1
B(mod(4*mod((2*j+i),4)
+(2*j+i)/4,2),
(4* mod((2*j+i),4)
+(2*j+i)/4)/2) + = 1

Enddo
Enddo

a
b

Loop Restructuring (9) More Loop Restructuring (10) Access Pattern(11)

Subroutine Reshape (B)
REAL B(0:1,0:7)
Do j = 0, 3

Do i = 0,3
B(mod(j,2),2*i+j/2) += 1

Enddo
Enddo

Subroutine Reshape (B)
REAL B(0:1,0:7)
Do j1 = 0,1
Do j2 = 0,1
Do i = 0,3

B(j2,2*i+j1) +=1
Enddo
Enddo
Enddo

b
Data Restructuring (12) Loop and Data Restructuring (13) Access Pattern(14)

Subroutine Reshape (B)
REAL B(0:3,0:3)
Do j = 0, 7

Do i = 0,1
B(j/2,i+2*mod(j,2)) += 1

Enddo
Enddo

Subroutine Reshape (B)
REAL B(0:3,0:3)
Do j1 = 0,1
Do i = 0,1
Do j2 = 0,3

B(j2,i+2*j1) += 1
Enddo
Enddo
Enddo
Enddo

b

Figure 1. Transformations

and data transformations, introducing rank modifying trans-
formations which allow generalised linearisation and strip-
mining of loop and data spaces. Its main practical use is
that it allows, for the first time, the static application of data
transformations, such as global index reordering and data
partitioning, to reshaped arrays. Applying global data trans-
formations to reshaped arrays can, however, produce com-
plex and inefficient code but, by integrating loop and data
transformations, we can also systematically eliminate any
complex array access function introduced. This dramati-
cally improves spatial locality by restructuring data to have
stride-1 access wherever possible.

This paper is organised as follows. In the next section,
a motivating example showing the applicability of our inte-
grated approach is presented. Section 3 presents the notation
used within this paper and is followed by section 4 which de-

scribes the form and properties of our novel rank modifying
transformations. Section 5 presents an algorithms and ex-
perimental results for data layout propagation, showing the
significant improvement of such a scheme. Section 6 briefly
reviews related work and is followed by some concluding
remarks.

2. Example

In this section, we consider a simple example to illustrate
the two problems tackled in this paper. Consider the pro-
gram fragment in figure 1, box 1. In Fortran arrays are stored
column-wise and therefore the reference to arrayA has a non
stride-1 access pattern shown in box 3. The program frag-
ment in box 2 contains references to B which are reshaped



references to A1 with perfect stride-1 access, as shown in
box 4. Loop permutation to improve the access to array A
in box 1 is not possible due to the data dependence and thus
a compiler may wish to apply a data transformation as de-
scribed in [12] to ensure stride-1 access. This is a simple per-
mutation which gives the code in box 5 with the stride-1 ac-
cess pattern shown in box 7. Its effect must be propagated to
all accesses, including reshaped ones. Using the techniques
described in section 5, we can obtain the code in box 6 and
the access pattern shown in 8. It is clear that such access
functions will be expensive, possibly outweighing any ben-
efit to the improved stride access to A. Furthermore, this will
not improve the pathological “leapfrog” access to B.

The second table in figure 1 shows different attempts to
improve the loop structure and data access pattern of the
code in box 6. Using a combination of strip-mining and lin-
earisation, the loop can be transformed to that shown in box
9. The access pattern, shown in box 11, is unchanged, but
the access function is considerably simplified. By the ap-
plication of a further rank modifying loop transformation,
we have the code in box 10, where all mod and div op-
erators have been removed. This, however, does not affect
the data access pattern shown in box 11. If instead a data
transformation is applied to B, we have the code shown in
box 12. Finally, if both loop and data transformations are
combined, we obtain the code in box 13 which has stride-
1 access shown in box 14. Thus, by a combination of rank
modifying data and loop transformations, we have stride-1
access on all arrays without excessively expensive access
functions. In section 5 we develop automatic techniques
which select the appropriate transformations and show the
impact of such restructuring on actual performance.

3. Notation

In this section, we briefly describe the notation used to
describe those transformation used throughout the paper.

The loop indices, or iterators, can be represented as an
M � 1 column vector J = [j

1

; j

2

; : : : ; j

M

]

T where M is
the number of enclosing loops. The loop ranges can be de-
scribed by a system of inequalities defining the polyhedron
BJ � b. For ease of presentation, we assume that B is a
(2M �M ) integer matrix and b a (2M � 1) vector. The in-
teger values taken on by J define the iteration space of the
loop.

The data storage of an array A can also be viewed
as a polyhedron. We introduce formal indices I =

[i

1

; i

2

; : : : ; i

N

]

T , where N is the dimension of array A, to
describe the array index space. This space is given by the
polyhedronAI � a, where A is a (2N � N) integer ma-
trix and a a (2N � 1) vector. The integer values taken on

1Such aliasing can occur either due to equivalencing, or more usually,
due to reshaping across subroutine boundaries.

Real A(0:3,0:7), B(0:3,0:7)

Do j = 0,3
Do i = 0,3
A(i,j) = A(j,i) + B(i,j)
Enddo
Enddo

Figure 2. Example loop

by I define the index space of the array. In this paper we
assume that all lower bounds of arrays are zero.

We assume that the subscripts in a reference to an array
A can be written as UJ + u, where U is a (N �M) matrix
and u is a (N � 1) vector.

4. Rank Modifying Transformations

In this section, we first describe the form and properties
of rank modifying transformations. This is followed by an
illustrative example.

4.1. Data Transformations

A data transformation is applied to the index space of a
particular array and all accesses to that array throughout the
program and is therefore global in nature. A (k � N) lin-
earisation matrix L is a transformation which maps an N

dimensional index vector I to a new k < N dimensional
index vector I 0 = LI. Each array access U for an array
A must be globally updated such that U 0

= LU . Data trans-
formations are therefore left-hand transformations when ap-
plied to array access functions. The bounds of the new index
spaceA0

I

0

� a

0 must also be determined:

A

0

= XAL

y and a

0

= Xa (1)

and

X =

�

L 0

0 L

�

(2)

In equation (1),Ly is a transformation that is inverse toL on
the index space of A. That is, for every index point I of A,
L

y

(L(I)) = I. We call such an inverse transformation Ly

a local inverse for L on the index space of A.
Rank increasing transformations, such as strip mining,

for which k > N are denoted by S.

4.2. Loop Transformations

Loop transformations are applied to the iterators in a loop
nest and to all accesses within a loop nest and are thus lo-
cal in nature. A (k �M ) linearisation matrix L is a trans-
formation which maps an M dimensional iteration vector J



Data Loop Combined

�

1 4

�

Real A(0:31), B(0:3,0:7)

Do j = 0,3
Do i = 0,3

A(i+4*j) = A(j+4*i) +B(i,j)
Enddo
Enddo

Real A(0:3,0:7), B(0:3,0:7)

Do i = 0,15
A(mod(i,4),i/4) = A(i/4,mod(i,4))

+ B(mod(i,4),i/4)
Enddo

Real A(0:31), B(0:3,0:7)

Do i = 0,15
A(i) = A(i/4+4*(mod(i,4))

+ B(mod(i,4)+4*(i/4))
Enddo

�

(�)%2

(�)=2

�

Real A(0:1,0:1,0:7), B(0:3,0:7)

Do j = 0,3
Do i = 0,3
A(mod(i,2),i/2,j) =
A(mod(j,2),j/2,i) + B(i,j)

Enddo
Enddo

Real A(0:3,0:7), B(0:3,0:7)

Do j = 0,3
Do i2 = 0,1
Do i1 = 0,1
A(i1+2*i2,j) = A(j,i1+2*i2)

+ B(i1+2*i2,j)
Enddo

Enddo
Enddo

Real A(0:1,0:1,0:7), B(0:3,0:7)

Do j2 = 0,1
Do j1 = 0,1
Do i2 = 0,1
Do i1 = 0,1
A(i1,i2,j1+2*j2)

= A(j1,j2,i1+2*i2)
+ B(i1+2*i2,j1+2*j2)

Enddo
Enddo

Enddo
Enddo

Figure 3. Loop and Data Transformations

to a new k < M dimensional iteration vector J 0 = LJ .
Each access U within the loop nest must be updated such
that U 0

= UL

y. Thus, loop transformations are right-hand
acting transformations when applied to array accesses. The
new bounds of the new iteration space B0

J

0

� b

0 must be
determined:

B

0

= XBL

y and b

0

= Xb (3)

and X is defined in equation (2).

4.3. Form of Transformations

In this paper, we restrict our attention to generalised strip-
mining and linearisation. In order to describe such transfor-
mations in an algebraic framework, it is necessary that the
transformation matrices may now include integer division
and modulus operations as well as integers. If we need to
include the operation “divide by n” as an entry in a matrix,
we will write this entry as (�)=n. Likewise, we write (�)%n
for the “modulo n” operation.

We need to define how to calculate with these extended
matrices. Briefly, if we multiply a matrix with such entries
with a vector, we simply substitute the values of the vector
elements into the operation. For example,

�

(�)%4 1

(�)=4 2

��

2

3

�

=

�

2%4+ 3

2=4 + 6

�

=

�

5

6

�

(4)

On the other hand, if we multiply such a matrix by another
matrix, we multiply the input or result of the operation by
the appropriate integer. For example,

�

1 4

�

�

�

(�)%4

(�)=4

�

= [(�)%4 + 4 � ((�)=4)] (5)

This transformation maps an integer n to n%4+ 4 � (n=4).
It can easily be checked that n%4+4�(n=4) = n and hence
this transformation can be replaced by the 1�1 identity ma-
trix. Now on the index space of A(0:3,0:7),

�

(�)%4

(�)=4

�

�

�

1 4

�

=

�

1 0

0 1

�

(6)

Hence these matrices are inverse to one another over the in-
dex space of A. For a more formal discussion of how to in-
corporate div and mod operations in a matrix framework,
consult the full version of this paper.

4.4. Example

To illustrate this formulation, consider the program in fig-
ure 2 and the following transformation which maps the 2 di-
mensional array A to a 1 dimensional linearised form:

L =

�

1 4

�

and L

y

=

�

(�)%4

(�)=4

�

(7)

In the previous section we have shown that these matrices
are local inverses. The array accesses to A are updated thus:

�

1 4

�

�

�

0 1

1 0

� �

j

i

�

=

�

4 1

�

�

j

i

�

(8)

�

1 4

�

�

�

1 0

0 1

� �

j

i

�

=

�

1 4

�

�

j

i

�

(9)

i.e., A(i,j) 7! A(i+4*j) and A(j,i) 7! A(j+4*i).



The new index spaceA0

I

0

� a

0 is calculated as follows:

A

0

=

�

1 4 0 0

0 0 1 4

�

2

6

6

4

�1 0

0 �1

1 0

0 1

3

7

7

5

�

(�)%4

(�)=4

�

=

�

�1

1

�

(10)

I

0

=

�

1 4

�

�

i

1

i

2

�

=

�

j

0

1

�

(11)

a

0

=

�

1 4 0 0

0 0 1 4

�

2

6

6

4

0

0

3

7

3

7

7

5

=

�

0

31

�

(12)

giving
�

�1

1

�

�

j

0

1

�

�

�

0

31

�

(13)

i.e., A(0:31). The updated array access and index space
are shown in figure 3, row 1, column 2. The application of
a similar loop transformation is shown in column 3.

4.5. Combining Loop and Data Transformations

Although our formulation allows rank modifying loop
and data transformations to be applied independently, in
practice they are often combined. For instance, the strip-
mining data transformation gives rise to access functions
containing div and mod, both of which will be pro-
hibitively expensive. If, however, the surrounding loop
were also strip-mined, the accesses would become simpli-
fied. For example, consider the code in figure 3, row 2,
column 2, after the application of a rank-increasing data
transformation. If a related loop transformation is subse-
quently applied, we have the program shown in row 2, col-
umn 4, where the accesses to A are now simplified. Thus,
this framework allows a natural method to apply dimen-
sion changing transformations, frequently avoiding the use
of div and mod without the need for special optimisations
akin to strength reduction as described in [1].

5. Application : Handling Data Transforma-
tions in the Presence of Reshaped Arrays

This section is concerned with developing a technique to
allow the application of data transformations to reshaped ar-
rays without incurring excessive communication and syn-
chronisation overhead. We give a compiler algorithm to
generate the appropriate transformations and show experi-
mental results.

5.1. Combining Loop and Data Transformations for
Reshaped Arrays

This section describes a technique to apply data transfor-
mations to linearised arrays. This is followed by a section
describing how rank modifying loop transformation can re-
move some of the introduced div and mod operators. This
is then generalised to reshaped arrays.

5.1.1 Data Transformations on Linearised Arrays

Data transformations must be applied to every reference to
the particular array throughout the program. Difficulties oc-
cur when linearised references exist. Let I

1

be the index
space of the array to be transformed and I

2

= LI

1

be the
linearised space for some linearisation matrix L. We there-
fore have that I

1

= L

y

I

2

.
If we wish to apply a non-singular data transformationA

globally [12], this gives the new index domain I 0
1

= AI

1

.
Since I 0

2

= L

0

I

0

1

for some L0,

I

0

2

= L

0

I

0

1

= L

0

AI

1

= L

0

AL

y

I

2

(14)

Thus, when applyingA to the index domain I
1

, we must ap-
plyL0

AL

y to the linearised domain I
2

. Now, given two ref-
erences U

1

and U
2

, where U
2

is a linearised reference, then
on applying A we have as usual U 0

1

= AU

1

. However, for
the linearised access we have:

U

0

2

= L

0

AL

y

U

2

(15)

L andL0 and their inverses are readily derived from the array
bounds before and after applyingA.

5.1.2 Reducing Access Overhead for Linearised Ar-
rays

Rank modifying transformations will, in general, introduce
mod and div operations. We wish to remove these by in-
troducing new iterators. The operators are in this case in-
troduced the Ly matrix in equation (14). If we can apply a
transformation such that this Ly is eliminated, then the cor-
responding comples accesses will be also be eliminated.

Let the loop transformation T be defined as follows:

T = U

�1

L

y

U and T

�1

= U

�1

LU (16)

Applying T to U 0

2

gives the new access matrix:

U

0

2

T

�1

= L

0

AL

y

UU

�1

LU = L

0

AU (17)

which is free from any rank-increasing matrices. Thus, by
combining loop and data transformations within one frame-
work, we can can readily restructure programs so as to par-
tially undo the effect of previous transformations.



0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

64 128 256 512 1024

tim
e(

se
cs

)

Data Size

Example (N= 64,128,256,512,1024)

Initial Propagation
Loop Restructure

More Loop Restructure
Original

Data Transformation
Loop and Data Transformations

Figure 4. Example: N = 64; : : : ; 1024

5.1.3 Data Transformations for Reshaped Arrays

Application of data transformations for linearised accesses
is relatively straightforward in the sense that it is easy to de-
termine bothL0 andLy. Difficulties occur with reshaped ar-
rays in that the shape of the array after application of a data
transformation is not fixed, i.e., there are several legal new
array layouts. A reshaped array access can be considered to
be described by the following equation:

I

2

= SLI

1

(18)

The reshaped domain I
2

is considered to be constructed by
first linearising I

1

to a flat one-dimensional array which is
then strip-mined to the appropriate dimension and size. The
value of L is readily available given I

1

. So for any I
2

, the
matrix S is easily derived. Note that S � L 6= 1, otherwise
no reshaping takes place. We therefore have I

1

= L

y

S

y

I

2

.
If we wished to apply a data transformationA, this gives the
new index domain I 0

1

= AI

1

and from equation (18) we
have I 0

2

= S

0

L

0

I

0

1

and therefore

I

0

2

= S

0

L

0

I

0

1

= S

0

L

0

AI

1

= S

0

L

0

AL

y

S

y

I

2

(19)

An access U
2

to the reshaped array is transformed to U 0

2

:

U

0

2

= S

0

L

0

AL

y

S

y

U

2

(20)

We have S;L and thus Ly. Again, L0 is readily determined
after applyingA to I

1

. The difficulty occurs when deriving
S

0 as there are no restrictions on its form except for legality.
In other words the new dimensions of the reshaped array are
not fixed after applying a data transformation on the original
domain. To illustrate this, consider the original program in
figure 1 box 1 and the reshaped access to array A, namely,
B in box 2. If we choose S0

= S thereby preserving the
original shape of the array, we have the program in figure
1, box 6. As is immediately apparent, though correct, this
access function to B will be extremely costly.

1. Given the original reshaped array indicesI
2

, determine
the transformations L, S, Ly and Sy.

2. Given the data layout transformation A, update all re-
shaped array accesses such that U = AL

y

S

y

U

3. Update the reshaped array indices such that I 0
2

=

AL

y

S

y

I

2

.

4. Update the array declarationA0

I

0

2

� a

0 accordingly.

5. Let T = AL

y.

6. For each loop nest containing reference to the array, ap-
ply the loop transformation T , if it is legal to do so.

Figure 5. Propagation Algorithm

5.1.4 Reducing Acess Overhead for Reshaped Arrays

In this subsection we examine two methods to reduce over-
head due to global data transformations by applying a loop
transformations to remove some of those rank-increasing
transformations which introducemods. Let T be the follow-
ing loop transformation

T = U

�1

L

y

S

y

U and T

�1

= U

�1

SLU (21)

Applying such a transformation would have the following
affect on the accesses U 0

2

described in (20):

U

0

2

T

�1

= S

0

L

0

AL

y

S

y

UT

�1

= S

0

L

0

AU (22)

If this transformation is applied to the code in box 6 in
figure 1, we produce the program shown in box 9. There still
remain mods due to S0.

A possibly more straightforward approach would be to
select the reshaping matrix S0 to be S0

= L

0y. This has the
effect that arrays are remapped onto the same shape as the
original array when applying a propagated data transforma-
tion A. Thus equation (19) simplifies to:

I

0

2

= L

0

y

L

0

AL

y

S

y

I

2

= AL

y

S

y

I

2

(23)

If we apply this data transformation to the code in box 6
of figure 1, we arrive at the code in box 12. Finally, a sim-
ple method to improve performance is to examine the array
access matrix and then strip-mine those iterators which are
arguments of div or mod, and reorder the iterators to give
the code in box 13 with the stride-1 access shown in box 14.
In other words, apply a loop transformation T = AL

y and
update the loop bounds and array accesses accordingly.

5.2. Algorithm

Given the techniques developed in section 5.1, it is rel-
atively straightforward to incorporate then into a compiler



phase order. Consider the algorithm in figure 5. Within
our optimising compiler, this algorithm is applied after the
global data partitioning/alignment has been chosen and af-
ter barrier synchronisation placement has been determined,
but before loop optimisations and code generation. Once
our compiler has determined the global data layout, it must
consider reshaped arrays (step 1). The application of the re-
shaped data transformation (step 2) is followed by the up-
date of array declarations (steps 3 and 4) before a loop trans-
formation is constructed (step 5) to remove any remaining
mods etc (step 6). As step 6 may reorder the loop nest, its
legality must be checked before application.

5.3. Results

To show the use of the analysis developed in this section,
we ran each of the program versions shown in figure 1 on the
SGi Challenge for varying data sizes. Figure 4 shows their
relative performance compared to the original program. The
basic data propagation scheme is more than twice as poor
as the original. Although subsequent loop transformations
do not improve performance, they still do match the perfor-
mance of the original. When both loop and data transforma-
tions are applied we finally have an improvement over the
original. For N = 1024 this improvement is by over a fac-
tor of 4.

For a more realistic evaluation, we applied the al-
gorithm shown in figure 5 to the SPECfp92 benchmark
vpentatest. This program was selected as it contains
a subroutine call where two of the array arguments are re-
shaped. Both programs were parallelised by our compiler
[3] and the new algorithm was compared to the existing
technique of remapping array data at run time. The two ver-
sions were compared for data sizes n = 128, 256, 512 and
1024 and executed on an SGi Origin 2000 with optimisation
level -O3. The results are shown in figures 6, 7, 8 and 9,
where the x-axis corresponds to the number of processors
and the y-axis to 1/time in seconds. As can be seen, the code
generated by the algorithm (labelled “New”) is between a
factor of 2 and 4 times faster than the standard scheme (la-
belled “Remap”). For the smallest data size, however, nei-
ther implementation gives any speed-up. This is due to the
compiler deciding to partition on the first dimension, leading
to false sharing as the number of processors increases.

6. Related Work

There has been some recent work in integrating loop and
data transformations. Although loop transformation have
been generalised from a unimodular [2] to a non-singular
framework [11] and have been extended to statement-wise
transformations [10], the data transformations considered

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

1 2 4 8

1/
t

Number of processors

VPENTA (n=128)

New 
Remap

Figure 6. VPENTA: N = 128

0.000

0.050

0.100

0.150

0.200

0.250

0.300

0.350

0.400

0.450

0.500

1 2 4 8

1/
t

Number of processors

VPENTA (n=256)

New 
Remap

Figure 7. VPENTA: N = 256

0.000

0.020

0.040

0.060

0.080

0.100

1 2 4 8

1/
t

Number of processors

VPENTA (n=512)

New 
Remap

Figure 8. VPENTA: N = 512



0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

1 2 4 8

1/
t

Number of processors

VPENTA (n=1024)

New 
Remap

Figure 9. VPENTA: N = 1024

are more restricted. For instance, [4] only considers lineari-
sation while [1] allows just permutation and strip-mining.
In [1], loop based parallelisation is followed by array layout
modification to enhance spatial locality. In [4], a technique
combining restricted data transformations with unimodular
loop transformations is developed to improve memory ac-
cess patterns. This representation is subsequently used in
[7] to develop an alternative algorithm to improve memory
access behaviour. In [12], we extended the class of data-
transformations to the general non-singular but were unable
to incorporate linearisation or partitioning. In [5], the gen-
eral case of array aliasing, particularly across array bound-
aries, is considered and preliminary techniques to recover
the structure of linearised arrays are developed. They also
develop ad hoc techniques to recover loop structure after
data restructuring but cannot, at present, handle the applica-
tion of data transformations, such as data partitioning, across
aliased arrays. The techniques developed in this paper, how-
ever, allow the static application of data transformations, in-
cluding array partitioning across reshaped arrays, providing
the necessary results for [5].

7. Conclusion

In this paper, we have presented a new algebraic frame-
work that allows the integration of loop and data transfor-
mations. This has enabled existing transformations to be de-
scribed in a unifying manner and has also provided the basis
for new program optimisations. In particular, we have de-
veloped techniques which allow the application of optimis-
ing data transformations to reshaped arrays without incur-
ring excessively expensive code. Future work will consider
integrating this with complete inter-procedural analysis. Fu-
ture work will further investigate the mathematical proper-
ties of the transformation representation used in this paper
and, in particular, develop formal validity tests and investi-

gate further optimisation algorithms.

References

[1] J.M. Anderson S.P. Amarasinghe and M.S. Lam. Data and
Computation Transformations for Multiprocessors, Proc.
PPoPP, 1995.

[2] U. Banerjee. Loop Transformations for Restructuring
Compilers, Kluwer Academic Publishers, 1993.

[3] F. Bodin and M.F.P. O’Boyle. A Compiler Strategy for
SVM Third Workshop on Languages, Compilers and Run-
time Systems, New York, Kluwer Press, May 1995.

[4] M. Cierniak and W. Li. Unifying Data and Control Trans-
formations for Distributed Shared-Memory Machines,
Proc. PLDI, 1995.

[5] M. Cierniak and W. Li. Validity of Interprocedural Data
Remapping, Tech Rep 642, University of Rochester, 1996.

[6] T.E.Jeremiassen and S.J. Eggers, Reducing False Sharing
on Shared Memory Multiprocessors through Compile-
Time Data Transformations, Proc. PPoPP, 1995.

[7] M. Kandemir, J. Ramanujam and A. Choudhary, A Compiler
Algorithm for Optimizing Locality in Loop Nests, Proc.
ICS, 1997.

[8] K. Kennedy and U. Kremer. Automatic Data Layout for
High Performance Fortran, Proc. Supercomputing, 1995.

[9] D. Kulkarni and M. Stumm. Loop and Data Transforma-
tions: A Tutorial University of Toronto, Tech Rep CSRI-
337, June 1993.

[10] P.M.W. Knijnenburg, E. Ayguadé and J. Torres. Multi-
transformations of Nested Loops for Parallelizing Com-
pilers, Tech. Rep. 96–14, Leiden University, 1996.

[11] W. Li and K. Pingali. A Singular Loop Transformation
Framework Based on Non-singular Matrices, Int’l J. of
Parallel Programming, 22(2), pp. 183–205, 1994.

[12] M.F.P. O’Boyle and P.M.W. Knijnenburg, Non-Singular
Data Transformations: Definition, Validity and Applica-
tions, Proc. ICS, 1997.

[13] M.E. Wolf and M. Lam. A Loop Transformation Theory
and An Algorithm to Maximise Parallelism, ACM Trans-
actions on Parallel and Distributed Systems 2(4), October
1991.


