I ntegrating L oop and Data Transfor mations for Global Optimisation

M.F.P. O'Boyle
Department of Computer Science
The University of Edinburgh
Edinburgh EH9 3JZ
United Kingdom
nob@ics. ed. ac. uk

Abstract

This paper is concerned with integrating globa data
transformations and local loop transformations in order to
minimise overhead on distributed shared memory machines
such as the SGi Origin 2000. By first developing an ex-
tended algebraic transformation framework, a new tech-
nigue to alow the static application of global data trans-
formations, such as partitioning, to reshaped arrays is pre-
sented, eliminating the need for expensivetemporary copies
and hence eliminating any communication and synchroni-
sation. In addition, by integrating loop and data transfor-
mations, any introduced poor spatial locality and expensive
array subscripts can be eliminated. A specific performance
improving agorithm is implemented giving significant im-
provementsin execution time.

1. Introduction

In order to achieve acceptable performance on current
distributed shared memory machines, it is essentia to ex-
ploit the available parallelism, make efficient use of the
memory hierarchy and minimise non-local memory ac-
cesses, load imbalance and synchronisation overhead. Typ-
ically, a loop based parallelisation approach [13] is used
which islocal in nature, as each loop nest is separately ex-
amined and parallelised. Although each loop nest in isola-
tion may performwell, they may perform poorly when com-
bined due to significant communication and synchronisation
between loop nests.

Another approach is to consider data orientated paral-
Ielisation [8], traditionally developed for distributed mem-
ory compilation but also used for distributed shared memory
[1, 6]. Thisapproachis primarily concerned with mapping
arraysto processors and has aglobal, program wide, effect.
It tries to globally trade off costs for an entire program, in
contrast to loop based approaches. However, this global ap-

PM.W. Knijnenburg
Department of Computer Science
Leiden University
Niels Bohrweg 1, 2333 CA Leiden
the Netherlands
peterk@s. | ei denuni v. nl

proach breaks down when a particular array has two differ-
ent layouts, for instance when it is reshaped at a subroutine
boundary. The partitioning of the original array and its re-
shaped instance must be consistent asthey refer to the same
actual array elements. At present, there is no efficient sta-
tic means to apply data transformations such as partition-
ing to reshaped arrays. Expensive temporary copies must
normally be made at run-time on entry to the procedure and
restored on exit [5], introducing additional communication
and synchronisation.

Another problem associated with global datatransforma-
tionsisthat in determining a parallelisation that is globally
acceptable, it may have an adverse affect on the performance
of a particular statement within a loop nest. For instance,
data alignment may transpose the layout of one array, re-
ducing overall communication between processors, but in
certain loop nests cause poor stride access through the local
data cache by destroying spatial locality.

These two problems of data parallelisation, namely, re-
shaped arrays and the adverse effect on local oop nests,
are the subject of this paper. By developing an extended
framework for loop and data transformations, we have de-
veloped a technique to statically determine the data lay-
out for reshaped arrays, eliminating the need for temporary
copies and the associated communication and synchronisa-
tion overhead. To solve the second problem of the (poten-
tial) local adverse effects of global data transformations on
loop nests, loop transformations can be used to undo these
adverse effects.

In order to optimise programsglobally, it is essential that
acompiler isableto combineloop and datatransformations.
Recent work [1, 4, 7, 12] has focussed on combining the
loop based parallelisation with datalayout approaches[8] in
order to trade-off these conflicting requirements. However,
these approaches are restricted in that transformations, in-
cluding partitioning, strip-mining and linearisation, cannot
be directly incorporated within their representation.

This paper develops a new approach to combining loop

Original Code (1) Reshaped Array (2) Original Access (3) Reshaped Access (4)
REAL A(O:3,0:3)
Doi =0, 2 Subr outi ne Reshape (B)
A(i,j) = A(i+1,j-1) Doj =0, 7
+ D(j,i) Doi =01 a

Enddo B(i,j) =B(i,j) +1

Enddo Enddo b
Enddo
call Reshape(a)
After Data Transformation(5) Propagated Transformation (6) New Access (7) New Reshaped Access (8)
. . Subr outi ne Reshape (B)

EEA.L A(0:3,0:3) REAL B(0: 1, 0: 7)

1 =02 Doj =0, 7

Doj =138 Doi =01

ALY = A= T+1) B(mod(4* mod((2% +i), 4) a

Enddo X (2% +i))4,2),

Enddo (4* mod((2%j+i),4)
H(2*Xj+i)I4)12) + =1 b
Enddo

call Reshape(A) Enddo

Loop Restructuring (9)

More L oop Restructuring (10)

Access Pattern(11)

Subr outi ne Reshape (B)

Subrouti ne Reshape (B) REAL B(0:1,0:7)
REAL B(0:1,0:7) Dojl1=01
Doj =0, 3 Do j2 =0,1

Doi =0,3 Doi =0,3

B(mod(j,2),2*i+j/2) += 1 B(j2,2%i+j1) +=1

Enddo Enddo

Enddo Enddo b
Enddo

Data Restructuring (12)

Loop and Data Restructuring (13)

Access Pattern(14)

Subr outi ne Reshape (B)

Subr outi ne Reshape (B)
REAL B(0: 3, 0:3)

B(j2,i+2¥j1) += 1

REAL B(0: 3, 0: 3) Dojl=0.1
P Doi =0,1
Doj =0 7 Doj2 =03
Doi =0,1 P

B(j/2,i+2*mod(j,2)) += 1
Enddo Enddo
Enddo Enddo
Enddo
Enddo

b

Figure 1. Transformations

and datatransformations, introducing rank modifying trans-
formations which allow generalised linearisation and strip-
mining of loop and data spaces. Its main practical use is
that it allows, for thefirst time, the static application of data
transformations, such as global index reordering and data
partitioning, to reshaped arrays. Applying global datatrans-
formations to reshaped arrays can, however, produce com-
plex and inefficient code but, by integrating loop and data
transformations, we can also systematically eliminate any
complex array access function introduced. This dramati-
cally improves spatial locality by restructuring data to have
stride-1 access wherever possible.

This paper is organised as follows. In the next section,
a motivating example showing the applicability of our inte-
grated approachispresented. Section 3 presentsthe notation
used within this paper and isfollowed by section 4 which de-

scribesthe form and properties of our novel rank modifying
transformations. Section 5 presents an algorithms and ex-
perimental results for data layout propagation, showing the
significant improvement of such ascheme. Section 6 briefly
reviews related work and is followed by some concluding
remarks.

2. Example

In this section, we consider asimple exampletoillustrate
the two problems tackled in this paper. Consider the pro-
gramfragmentinfigurel, box 1. In Fortran arraysarestored
column-wiseand thereforethereferenceto array Ahasanon
stride-1 access pattern shown in box 3. The program frag-
ment in box 2 contains references to B which are reshaped

references to Al with perfect stride-1 access, as shown in
box 4. Loop permutation to improve the access to array A
inbox 1 isnot possible due to the data dependence and thus
a compiler may wish to apply a data transformation as de-
scribedin[12] to ensurestride-1 access. Thisisasimpleper-
mutation which givesthe codein box 5 with the stride-1 ac-
cess pattern shownin box 7. Itseffect must be propagated to
all accesses, including reshaped ones. Using the techniques
described in section 5, we can obtain the code in box 6 and
the access pattern shown in 8. It is clear that such access
functionswill be expensive, possibly outweighing any ben-
efit to theimproved stride accessto A. Furthermore, thiswill
not improve the pathological “leapfrog” accessto B.

The second table in figure 1 shows different attempts to
improve the loop structure and data access pattern of the
codein box 6. Using acombination of strip-mining and lin-
earisation, the loop can be transformed to that shown in box
9. The access pattern, shown in box 11, is unchanged, but
the access function is considerably simplified. By the ap-
plication of a further rank modifying loop transformation,
we have the code in box 10, where al nod and di v op-
erators have been removed. This, however, does not affect
the data access pattern shown in box 11. If instead a data
transformation is applied to B, we have the code shown in
box 12. Finaly, if both loop and data transformations are
combined, we obtain the code in box 13 which has stride-
1 access shown in box 14. Thus, by a combination of rank
modifying data and loop transformations, we have stride-1
access on al arrays without excessively expensive access
functions. In section 5 we develop automatic techniques
which select the appropriate transformations and show the
impact of such restructuring on actual performance.

3. Notation

In this section, we briefly describe the notation used to
describe those transformation used throughout the paper.

The loop indices, or iterators, can be represented as an
M x 1 column vector J = [j1, ja,---,jm]T where M is
the number of enclosing loops. The loop ranges can be de-
scribed by a system of inequalities defining the polyhedron
BJ < b. For ease of presentation, we assume that B isa
(2M x M) integer matrix and b a(2M x 1) vector. Thein-
teger values taken on by .J define the iteration space of the
loop.

The data storage of an array A can aso be viewed
as a polyhedron. We introduce formal indices 7 =
[i1,i2,...,in]T, where N is the dimension of array A, to
describe the array index space. This space is given by the
polyhedron AZ < a, where A isa (2N x N) integer ma-
trix and a a (2N x 1) vector. The integer values taken on

Lsych aliasing can occur either due to equivalencing, or more usually,
due to reshaping across subroutine boundaries.

Real A(0:3,0:7), B(0:3,0:7)

Doj =0,3
Doi =0,3
ACT,j) = A(j,i) + B(iLj)
Enddo

Enddo

Figure 2. Example loop

by Z define the index space of the array. In this paper we
assume that all lower bounds of arrays are zero.

We assume that the subscripts in a reference to an array
A can bewritten asi/J + u, wherel{ isa (N x M) matrix
anduisa(N x 1) vector.

4. Rank M odifying Transfor mations

In this section, we first describe the form and properties
of rank modifying transformations. Thisis followed by an
illustrative example.

4.1. Data Transfor mations

A datatransformation is applied to the index space of a
particular array and all accessesto that array throughout the
program and is therefore global in nature. A (k x N) lin-
earisation matrix L is a transformation which maps an N
dimensional index vector Z toanew k£ < N dimensional
index vector 7' = LZ7. Each array access U/ for an array
A must be globally updated such that /" = Li{. Datatrans-
formationsare thereforeleft-hand transformationswhen ap-
pliedto array accessfunctions. Theboundsof the new index
space A’Z' < a’ must also be determined:

A'=XAL!' and a’' = Xa (1)
and
L 0
X= { 0 L] 2

Inequation (1), Lt isatransformationthat isinverseto L on
the index space of A. That is, for every index point Z of A,
LY(L(T)) = Z. We call such an inverse transformation L*
alocal inversefor L onthe index space of A.

Rank increasing transformations, such as strip mining,
for which £ > N aredenoted by S.

4.2. Loop Transformations

Loop transformationsare appliedto theiteratorsin aloop
nest and to all accesses within aloop nest and are thus lo-
cal in nature. A (k x M) linearisation matrix L is atrans-
formation which mapsan M dimensional iteration vector .J

Loop

Combined

Data
Real A(0:31), B(0:3,0:7)
Doj =0,3
Doi =0,3

A(i +4%]) = A(j+4*i) +B(i,j)
Enddo
Enddo

Real A(0:3,0:7), B(0:3,0:7)

Doi =0,15

A(mod(i, 4),i/4) = A(i/4, mod(i,4))
+ B(mod(i,4),i/4)

Enddo

Real A(0:31), B(0:3,0:7)

Doi =0,15

A(i) = A(i/4+4* (mod(i, 4))
+ B(nod(i, 4) +4*(i/4))

Enddo

Real A(0:1,0:1,0:7), B(0:3,0:7)

Real A(0:3,0:7), B(0:3,0:7) Doj2 =01
Real A(0:1,0:1,0:7), B(0:3,0:7) Dojl=01
Doj =0,3 Doi2=0,1
Doj =0,3 Doi2 =0,1 Doil=0,1
() %2 Doi =0,3 Doil=01 A(i1,i2,j1+2%j2)
C)/2 A(nod(i,2),i/2,j) = A(I1+2%12,j) = A(j,i1+2*%i2) = A(j1,j2,i1+2%i2)
A(mod(j,2),j/2,i) + B(i,j) + B(i1+2*i 2,j) + B(i 1+2*%i 2,j 1+2*j 2)
Enddo Enddo
Enddo Enddo Enddo
Enddo Enddo
Enddo
Enddo

Figure 3. Loop and Data Transformations

toanew k < M dimensiond iteration vector .J' = L.J.
Each access ¢/ within the loop nest must be updated such
that /' = UL*. Thus, loop transformations are right-hand
acting transformations when applied to array accesses. The
new bounds of the new iteration space B'.J’ < b’ must be
determined:

B' = XBL' and b’ = Xb (3)
and X isdefined in equation (2).

4.3. Form of Transfor mations

Inthispaper, werestrict our attention to generalised strip-
mining and linearisation. In order to describe such transfor-
mations in an algebraic framework, it is necessary that the
transformation matrices may now include integer division
and modulus operations as well as integers. If we need to
include the operation “divide by n” as an entry in a matrix,
wewill writethisentry as () /n. Likewise, we write (-)%n
for the “modulo n” operation.

We need to define how to calculate with these extended
matrices. Briefly, if we multiply a matrix with such entries
with a vector, we ssimply substitute the values of the vector
elementsinto the operation. For example,

(%4 1 20 | 2%4+3 | _ |5 @
(/4 2 3| | 2/4+6 | | 6
On the other hand, if we multiply such a matrix by another

matrix, we multiply the input or result of the operation by
the appropriate integer. For example,

()< | U = tosas) @

Thistransformation maps an integer n to n%4 + 4 = (n/4).
It can easily be checked that n%4 + 4% (n/4) = n and hence
thistransformation can bereplaced by the 1 x 1 identity ma-
trix. Now on the index space of A(0: 3, 0: 7),

(1) %4 |10
{(.)/4 x[1 4]=1, (6)
Hence these matrices are inverse to one another over thein-
dex space of A. For amore formal discussion of how to in-

corporate di v and nod operationsin a matrix framework,
consult the full version of this paper.

4.4, Example

Toillustrate thisformulation, consider the programinfig-
ure 2 and the following transformation which mapsthe 2 di-
mensional array Ato a1l dimensional linearised form:

L=[1 4] andL*Z{((',))(?:] @

In the previous section we have shown that these matrices
arelocal inverses. The array accessesto A are updated thus:

(g]

B[]l

e, A(i,j) = A +4%]) andA(j , i) — A(j +4*i) .

Thenew index space A'7’ < a’ iscalculated asfollows:

giving
= 1< 5 13)

i.e, A(0: 31) . The updated array access and index space
are shown in figure 3, row 1, column 2. The application of
asimilar loop transformation is shown in column 3.

4.5. Combining Loop and Data Transfor mations

Although our formulation allows rank modifying loop
and data transformations to be applied independently, in
practice they are often combined. For instance, the strip-
mining data transformation gives rise to access functions
containing di v and nod, both of which will be pro-
hibitively expensive. If, however, the surrounding loop
were also strip-mined, the accesses would become simpli-
fied. For example, consider the code in figure 3, row 2,
column 2, after the application of a rank-increasing data
transformation. If a related loop transformation is subse-
quently applied, we have the program shown in row 2, col-
umn 4, where the accesses to A are now simplified. Thus,
this framework alows a natural method to apply dimen-
sion changing transformations, frequently avoiding the use
of di v and mod without the need for special optimisations
akin to strength reduction as described in [1].

5. Application : Handling Data Transforma-
tionsin the Presence of Reshaped Arrays

This section is concerned with devel oping atechniqueto
allow the application of datatransformationsto reshaped ar-
rays without incurring excessive communication and syn-
chronisation overhead. We give a compiler agorithm to
generate the appropriate transformations and show experi-
mental results.

5.1. Combining L oop and Data Transfor mationsfor
Reshaped Arrays

This section describes atechniqueto apply datatransfor-
mations to linearised arrays. Thisis followed by a section
describing how rank modifying loop transformation can re-
move some of the introduced di v and nod operators. This
isthen generalised to reshaped arrays.

5.1.1 DataTransformationson Linearised Arrays

Data transformations must be applied to every referenceto
the particular array throughout the program. Difficulties oc-
cur when linearised references exist. Let Z; be the index
space of the array to be transformed and 7, = L7; bethe
linearised space for some linearisation matrix L. We there-
forehavethat 7, = L1Z,.

If we wish to apply anon-singular data transformation A
globally [12], this gives the new index domain Z; = AZ;.
SinceZ) = L'T; for some L',

Ty = L'T} = L' AT, = L'AL'T, (14)

Thus, when applying A to theindex domain Z; , we must ap-
ply L' AL to thelinearised domain Z,. Now, given two ref-
erences/, and Us, where U, isalinearised reference, then
on applying A we have as usual U] = AU;. However, for
the linearised access we have:

Uy = L' AL U, (15)

Land L' andtheir inversesarereadily derived fromthearray
bounds before and after applying A.

5.1.2 Reducing Access Overhead for Linearised Ar-
rays

Rank modifying transformationswill, in general, introduce

nod and di v operations. We wish to remove these by in-

troducing new iterators. The operators are in this case in-

troduced the LT matrix in equation (14). If we can apply a

transformation such that this L is eliminated, then the cor-

responding comples accesses will be also be eliminated.
Let the loop transformation 7' be defined as follows:

T=U'L'U and T ' =U"'LU (16)
Applying T' to U givesthe new access matrix:
UT ' = L'ALT UYL = L' AU (17)

which is free from any rank-increasing matrices. Thus, by
combining loop and data transformationswithin one frame-
work, we can can readily restructure programs so as to par-
tially undo the effect of previous transformations.

Example (N=64,128,256,512,1024)
80.0

Initial Propagation ——
70.0 Loop Restructure. ===
More Loop Restructure -
Original ~x
Data-Transformation

E
Loop and Data Transformations -*--

60.0

40.0

time(secs)

30.0

20.0

10.0

0.0 o W
64 128 256 512 1024
Data Size

Figure 4. Example: N =64,...,1024

5.1.3 Data Transformationsfor Reshaped Arrays

Application of data transformations for linearised accesses
isrelatively straightforward in the sensethat it is easy to de-
termineboth L’ and L. Difficulties occur with reshaped ar-
raysin that the shape of the array after application of a data
transformation is not fixed, i.e., there are several legal new
array layouts. A reshaped array access can be considered to
be described by the following equation:

T, = SLT; (18)

The reshaped domain 7, is considered to be constructed by
first linearising Z; to aflat one-dimensiona array which is
then strip-mined to the appropriate dimension and size. The
value of L isreadily available given 7;. So for any 7, the
matrix S iseasily derived. Notethat S x L # 1, otherwise
no reshaping takes place. We thereforehave Z7; = LT S1Z,.
If wewished to apply adatatransformation A, thisgivesthe
new index domain Z; = AZ; and from equation (18) we
haveZ} = S'L'T] and therefore

T, =S'I'T, = S'I' AT, = S'L' ALTS'T, (19)
An access U, to the reshaped array is transformed to 43
Uy, =S'L' AL'STut, (20)

We have S, L and thus L. Again, L' isreadily determined
after applying A to Z; . The difficulty occurswhen deriving
S' asthereare no restrictionson itsform except for legality.
In other wordsthe new dimensions of the reshaped array are
not fixed after applying adatatransformation on the original
domain. To illustrate this, consider the original programin
figure 1 box 1 and the reshaped access to array A, namely,
Binbox 2. If we choose S’ = S thereby preserving the
original shape of the array, we have the program in figure
1, box 6. Asisimmediately apparent, though correct, this
access function to B will be extremely costly.

1. Giventheoriginal reshapedarray indicesZ,, determine
thetransformations I, S, Lt and S*.

2. Given the data layout transformation A, update al re-
shaped array accesses such that &/ = AL'Stu

3. Update the reshaped array indices such that 7, =
ALTSTT,.

4. Updatethe array declaration A'Z} < a’ accordingly.
5 LetT = AL".

6. For eachloop nest containing referenceto thearray, ap-
ply the loop transformation 7', if it islegal to do so.

Figure 5. Propagation Algorithm

5.1.4 Reducing Acess Overhead for Reshaped Arrays

In this subsection we examine two methods to reduce over-
head due to global data transformations by applying aloop
transformations to remove some of those rank-increasing
transformationswhich introducenods. Let T bethefollow-
ing loop transformation

T=U'L'STY and T'=U'SLU (21)

Applying such a transformation would have the following
affect on the accesses 4, described in (20):

UT ' =S'TALTSTUT* =S'L' AU (22)

If this transformation is applied to the code in box 6 in
figure 1, we producethe program showninbox 9. Theredtill
remain nodsdueto S’.

A possibly more straightforward approach would be to
select the reshaping matrix S’ tobe S’ = L't. This hasthe
effect that arrays are remapped onto the same shape as the
original array when applying a propagated data transforma-
tion A. Thus equation (19) smplifies to:

Ty = L'’ ALYSIT, = ALTST, (23)

If we apply this data transformation to the code in box 6
of figure 1, we arrive at the code in box 12. Finaly, asim-
ple method to improve performanceis to examine the array
access matrix and then strip-mine those iterators which are
arguments of di v or nod, and reorder the iterators to give
the codein box 13 with the stride-1 access shown in box 14.
In other words, apply aloop transformation 7 = AL and
update the loop bounds and array accesses accordingly.

5.2. Algorithm

Given the techniques developed in section 5.1, it isrel-
atively straightforward to incorporate then into a compiler

phase order. Consider the algorithm in figure 5. Within
our optimising compiler, this algorithm is applied after the
global data partitioning/alignment has been chosen and af -
ter barrier synchronisation placement has been determined,
but before loop optimisations and code generation. Once
our compiler has determined the global datalayout, it must
consider reshaped arrays (step 1). The application of there-
shaped data transformation (step 2) is followed by the up-
date of array declarations(steps 3 and 4) beforealoop trans-
formation is constructed (step 5) to remove any remaining
nods etc (step 6). As step 6 may reorder the loop nest, its
legality must be checked before application.

5.3. Results

To show the use of the analysis developed in this section,
weran each of the programversionsshown in figure 1 onthe
SGi Challenge for varying data sizes. Figure 4 shows their
relative performance comparedto the original program. The
basic data propagation scheme is more than twice as poor
as the original. Although subsequent loop transformations
do not improve performance, they still do match the perfor-
mance of the original. When both |oop and datatransforma-
tions are applied we finally have an improvement over the
origina. For N = 1024 thisimprovement is by over afac-
tor of 4.

For a more redlistic evaluation, we applied the al-
gorithm shown in figure 5 to the SPECfp92 benchmark
vpent at est. This program was selected as it contains
a subroutine call where two of the array arguments are re-
shaped. Both programs were parallelised by our compiler
[3] and the new algorithm was compared to the existing
technique of remapping array dataat run time. Thetwo ver-
sions were compared for datasizesn = 128, 256, 512 and
1024 and executed on an SGi Origin 2000 with optimisation
level -O3. The results are shown in figures 6, 7, 8 and 9,
where the z-axis corresponds to the number of processors
and the y-axisto L/timein seconds. Ascan be seen, the code
generated by the algorithm (labelled “New”) is between a
factor of 2 and 4 times faster than the standard scheme (la-
belled “Remap”). For the smallest data size, however, nei-
ther implementation gives any speed-up. Thisis dueto the
compiler deciding to partition on thefirst dimension, leading
to fal se sharing as the number of processorsincreases.

6. Related Work

There has been some recent work in integrating loop and
data transformations. Although loop transformation have
been generaised from a unimodular [2] to a non-singular
framework [11] and have been extended to statement-wise
transformations [10], the data transformations considered

1/t

1/t

11t

2.0
P e <
16
1.4
12 —
1.0
08
06
e
0.2
0.0
1 2 4

0.500
0.450
0.400
0.350
0.300
0.250
0.200
0.150

0.100

0.050 L7

0.000

0.100

0.080

0.060

0.040

0.020

0.000
1

VPENTA (n=128)

Number of processors

Figure 6. VPENTA: N = 128

VPENTA (n=256)

New ——

Remap ===

4
Number of processors

Figure 7. VPENTA: N = 256

VPENTA (n=512)

W ——

Remap -+

Number of processors

Figure 8. VPENTA: N =512

VPENTA (n=1024)

0.035

New ——
Remap——|

0.030

0.025

0.020

1t

0.015

0.010

0.005

0.000

4
Number of processors

Figure 9. VPENTA: N = 1024

are morerestricted. For instance, [4] only considerslineari-
sation while [1] allows just permutation and strip-mining.
In[1], loop based parallelisation isfollowed by array layout
modification to enhance spatial locality. In [4], atechnique
combining restricted data transformations with unimodular
loop transformations is developed to improve memory ac-
cess patterns. This representation is subsequently used in
[7] to develop an alternative algorithm to improve memory
access behaviour. 1n [12], we extended the class of data-
transformationsto the general non-singular but were unable
to incorporate linearisation or partitioning. In [5], the gen-
eral case of array aliasing, particularly across array bound-
aries, is considered and preliminary techniques to recover
the structure of linearised arrays are developed. They aso
develop ad hoc techniques to recover loop structure after
datarestructuring but cannot, at present, handle the applica-
tion of datatransformations, such asdatapartitioning, across
aliased arrays. Thetechniquesdevel opedin thispaper, how-
ever, alow the static application of datatransformations, in-
cluding array partitioning across reshaped arrays, providing
the necessary resultsfor [5].

7. Conclusion

In this paper, we have presented a new algebraic frame-
work that allows the integration of loop and data transfor-
mations. Thishas enabled existing transformationsto be de-
scribed in aunifying manner and has also provided the basis
for new program optimisations. In particular, we have de-
veloped techniques which allow the application of optimis-
ing data transformations to reshaped arrays without incur-
ring excessively expensive code. Futurework will consider
integrating thiswith compl eteinter-procedural analysis. Fu-
ture work will further investigate the mathematical proper-
ties of the transformation representation used in this paper
and, in particular, develop formal validity tests and investi-

gate further optimisation algorithms.

References

(1]

(2]

(3]

(4]

(9]

(6]

(8]

(9]

[10]

(1]

[12]

[13]

JM. Anderson S.P. Amarasinghe and M.S. Lam. Data and
Computation Transfor mationsfor M ultiprocessor s, Proc.
PPoPP, 1995.

U. Banerjee. Loop Transformations for Restructuring
Compilers, Kluwer Academic Publishers, 1993.

F. Bodin and M.F.P. O'Boyle. A Compiler Strategy for
SVM Third Workshop on Languages, Compilers and Run-
time Systems, New York, Kluwer Press, May 1995.

M. Cierniak and W. Li. Unifying Data and Control Trans-
formations for Distributed Shared-Memory Machines,
Proc. PLDI, 1995.

M. Cierniak and W. Li. Validity of Interprocedural Data
Remapping, Tech Rep 642, University of Rochester, 1996.

T.E.Jeremiassen and S.J. Eggers, Reducing False Sharing
on Shared Memory Multiprocessors through Compile-
Time Data Transfor mations, Proc. PPoPP, 1995.

M. Kandemir, J. Ramanujam and A. Choudhary, A Compiler
Algorithm for Optimizing Locality in Loop Nests, Proc.
ICS, 1997.

K. Kennedy and U. Kremer. Automatic Data Layout for
High Performance Fortran, Proc. Supercomputing, 1995.

D. Kulkarni and M. Stumm. Loop and Data Transforma-
tions: A Tutorial University of Toronto, Tech Rep CSRI-
337, June 1993.

PM.W. Knijnenburg, E. Ayguadé and J. Torres. Multi-
transformations of Nested L oops for Parallelizing Com-
pilers, Tech. Rep. 9614, Leiden University, 1996.

W. Li and K. Pingai. A Singular Loop Transformation
Framework Based on Non-singular Matrices, Int'l J. of
Parallel Programming, 22(2), pp. 183-205, 1994.

M.FP. O’'Boyle and PM.W. Knijnenburg, Non-Singular
Data Transformations: Definition, Validity and Applica-
tions, Proc. ICS, 1997.

M.E. Wolf and M. Lam. A Loop Transformation Theory
and An Algorithm to Maximise Parallelism, ACM Trans-
actions on Pardlel and Distributed Systems 2(4), October
1991.

