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Abstract

The Ctadel code generator is a tool for the automatic generation of PDE based

scienti�c models and generates e�cient code for various computational platforms

from an independent high level language description. It was applied for the gen-

eration of code to compute the dynamical tendencies within the Hirlam weather

forecast model. In this paper we will use Ctadel for the implementation of numeri-

cal advection schemes for the Delwaq water quality model. This model is based on

the �nite volume discretization method. In this report we consider the generation

of 
ux-limiter upwind schemes. These schemes show less numerical di�usion, but

are still monotone, which are important properties for the modeling of advection

within water quality models. We discuss the generation of these methods and the

optimization of the resulting conditional loop nests within Ctadel.

1 Introduction

The need for portability and the ever increasing complexity of numerical methods im-

pede the fast development of programs for scienti�c computing. The strong demand for

e�ciency causes the speci�cation of the program to be contaminated with low-level im-

plementation details about the target architecture. This makes the program less portable,

maintainable and even intelligable. Numerical methods become more and more complex,

thereby increasing the burden of the program developer. It makes the job of program

writing errorprone and cumbersome.

This inhibiting e�ect was experienced with the Hirlam

1

weather forecast system [3]

and this experience has led to the development of the Ctadel code generator [21] for

PDE-based models. It is a Prolog based computer aided program implementation tool,

which generates multiple platform speci�c { with platform we denote the combination of

architecture and compiler { implementations from a single abstract high level speci�cation.

The high level language simpli�es the speci�cation of the PDE-based models and since

the problem is speci�ed on a higher level, application information is available, allowing
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more optimizations or code restructuring to be performed [19]. The code generator was

successfully applied for the generation of e�cient Fortran code to compute the explicit

dynamical tendencies in the Hirlam weather model [20].

After its successful employment for Hirlam, we are currently investigating the use

of Ctadel for the generation of code for the water quality model Delwaq [2] from Delft

Hydraulics. Water quality modeling is the description of the evolution of substances in

water due to transport, such as forcings by the 
ow of water (advection), and processes,

like chemical reactions. It is described by PDEs of the advection-di�usion-reaction type,

but in the actual model however a distinction is made between the advection-di�usion

part or transport kernel, and the reaction part or process kernel.

We begin our investigations with spatial discretization techniques for the advection

equation. This is a linear hyperbolic partial di�erential equation. Modeling hyperbolic

equations is not straightforward. First order accurate �nite di�erence methods su�er

from excessive numerical di�usion. Higher order discretizations can produce dispersive

ripples, which is an undesired property since these ripples have no physical meaning. In

many cases the quantities described by the advection equation are positive, for which the

oscillations can produce negative values. This causes the model to blow up if other parts

of the model cannot handle these negative values, as is the case for the reaction kernel

for water-quality modeling [2, 22].

As we will discuss in Section 3 higher order oscillation free schemes can not be con-

structed with linear �nite di�erence methods. Therefore a lot of research has been done

in the �eld of the numerical solution of hyperbolic PDEs or more speci�cally of advection

equations. This has resulted in a wide variety of more and more complex numerical meth-

ods which are hard to implement [22]. As we will show program generation is a useful

tool for the fast and e�cient implementation of these di�erent discretization techniques.

In this report we focus on the class of discretization methods called 
ux-limiting

TVD methods [10, 15]. This is a class of non-linear schemes based on the �nite volume

discretization approach. This class of methods was originally developed for the solution of

momentum equations in compressible 
ows. These methods handle shocks very well, show

little numerical di�usion, and produce no ripples. The treatment of shocks is of course

of less concern in water quality modeling, but because of the latter two characteristics,

these methods are now �nding widespread use in the solution of advection equations in

incompressible 
ows.

Examples of code generation for �nite volume methods are Roache and Steinberg [17],

which use the Macsyma computer algebra system to derive the �nite volume method

from the continuous equations, and a joined project between Delft Hydraulics and Twente

University [6]. In the latter project code is generated for the ISNaS 
ow solver based on

the �nite-volume method. The code generator is implemented in the Reduce computer

algebra system. Both articles do not treat 
ux limiting methods.

This paper is organized as follows. In the next section we shortly derive the advection

equation. This is done as an introduction to the advection equation and the �nite volume

method. In Section 3 we discuss why linear methods are not su�cient to overcome the

di�usion-oscillation controversy. After this section we derive the �nite volume method

and 
ux limiter schemes in Section 4. We elaborate the speci�cation of 
ux limiter

schemes for logically rectangular domains in Section 5. The schemes will result in perfectly

nested conditional loops. We distinguish three canonical code forms to write these .

The transformation of the Ctadel speci�cation to these canonical forms is explained in
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Figure 1: An in�nitesimal cube in rectangular coordinates

Section 6. After this the performance of these forms for a third order limited scheme is

shown in Section 7. Finally conclusions are drawn in Section 8.

2 The Advection Equation

As an introduction to the �nite volume method, we start with the derivation of the

advection equation from the general conservation principle.

Consider an in�nitesimal cube in rectangular coordinates [x; y; z] as is show in Fig-

ure 1. The cube has sides with length dx, dy and dz. A quantity q is given as a cell-

centered average in point O with velocity

~

V = [u; v; w]

T

. This quantity could for example

be temperature, density or concentration of a species. The general conservation law for a

quantity q in integral form is given as

@

@t

Z




q d
 +

Z

@


q

~

V � ~nds = 0 ; (1)

with 
 the volume of the cube, d
 an element of the volume, @
 the surface of the cube,

~n the outer unit normal and ds an element of the area. It states that the sum of the rate

of change inside the volume 
 and what 
ows over the boundary @
 must be zero. For

the in�nitesimal cube in Cartesian coordinates the integral over volume 
 can be written

as

@

@t
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q d
,

@q

@t

dx dy dz : (2)

The cube has six cell faces and the 
ux F = q

~

V � ~n ds at these cell faces are found by

Taylor expansion about point O, the center of the cube. Neglecting higher order terms,

the right face 
ux at

�

x +

1

2

dx

�

is given as
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dx dy dz

= q u dy dz +

1

2

@q u

@x

dx dy dz :

(3)

The integral over the surface of the cube therefore simpli�es to a sum of the six face 
uxes
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of the cube
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(4)

The substitution of Eq. (2) and Eq. (4) into Eq. (1) results in the conservation law for a

quantity q in di�erential form, which is a linear hyperbolic partial di�erential equation

@q

@t

+

@q u

@x

+

@q v

@y

+

@q w

@z

= 0 : (5)

This is the conservative form of the advection equation. In vector notation it is given as

@q

@t

= �r � q

~

V

= �

~

Vrq � qr �

~

V :

(6)

In the case of water modeling the 
ow is incompressible, which means that the density is

independent of time and space and therefore the continuity equation is given as [4]

r �

~

V = 0 : (7)

This allows Eq. (6) to be simpli�ed as

@q

@t

= �

~

Vrq

= �u

@q

@x

� v

@q

@y

� w

@q

@z

;

(8)

which is called the divergent form for the advection equation. For more details on the

derivation of the advection equation, the reader is referred to [4, 9, 11] .

3 Linear Discretization Schemes

For the numerical solution of the advection equation in practical scienti�c computing, a

proper discretization method needs to be chosen. As stated in Section 1, many methods

exist, each with their own numerical and computational characteristics. The basic dis-

cretization technique is the �nite di�erence technique. For this method the continuous

di�erential operators are directly, and since the advection equation is linear, the discrete

scheme is also linear.

Consider the one dimensional advection equation

@q

@t

= �u

@q

@x

for x 2 [x

l

; x

r

] : (9)

From an algorithmic point of view the most simple �nite di�erence method is the second-

order central di�erence scheme (CDS)

@q

i

@t

= �u

q

i+1

� q

i�1

2�x

; (10)
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where q(x) is discretized on an equidistant grid with mesh size �x, and q

i

is an abbrevi-

ation for q(x

l

+ i�x). We do not consider the discretization in time. But in fact, where

applicable in this paper, explicit time integration is assumed.

Although the CDS is second order accurate, it produces dispersive ripples [22]. It

was already stated in Section 1 that the generation of dispersive ripples can be very

undesirable. In case of positive quantities, negative values could be generated. This

can be solved pragmatically by adjusting the right hand side of Eq. (10) to zero if it is

negative, but this approach will make the scheme non conservative: the adjustment to

zero introduces additional arti�cial mass. But since this is a computational inexpensive

method, it has its application in practice, e.g. the Hirlam weather model [3].

A �nite di�erence scheme, which is not hindered by the generation of ripples, is the

�rst order upwind di�erence scheme (UDS)

@q

i

@t

= �u

8

>

>

<

>

>

:

q

i

� q

i�1

�x

if u > 0

q

i+1

� q

i

�x

otherwise :

(11)

The stencil is aligned with the direction of the 
ow, hence the name upwind scheme. Due

to this alignment, a selector, a conditional checking the sign of u, is necessary to adjust

the scheme to the actual direction of the 
ow. Unfortunately, since this method is only

�rst order accurate, it su�ers from excessive numerical di�usion [22].

In the search for higher order, but oscillation free schemes the notion of monotone

methods is introduced. This property implies that once the initial data q

i

is positive, it

remains positive. Unfortunately, the class of monotone methods is greatly restricted since

it is at most �rst order accurate. Related to this class are the monotonicity preserving

methods. It is a weaker constraint than the monotonicity constraint. The monotonicity

preservation condition states that if the initial data q

i

is monotone, q

0

i

� q

0

i+1

, the solution

will stay monotone at all time levels, q

n

i

� q

n

i+1

for all n, which means that no ripples will

be introduced. So if the solution is monotone and positive, no undershoots { potentially

negative values { will be generated.

However, it was found by Godunov [5] that linear monotonicity preserving methods

are equal to monotone methods, therefore at most �rst order accurate. This implies that

every linear discretization scheme will be at most �rst order accurate. As a result of the

Godunov theorem we have to rely on non-linear methods or high-resolution methods in

order to construct higher order monotonicity preserving methods. More details can be

found in [10, 15, 22].

4 Non-linear Discretization Schemes

A wide variety of non-linear positive discretization schemes exist, but most of these nu-

merical methods are rather ad-hoc. A class of methods which has a �rmer theoretical

basis is the class of 
ux-limiter methods. These methods belong to the class of Total

Variation diminishing (TVD), a concept introduced by Harten [7]. It can be shown that

TVD methods are monotonicity preserving, and therefore high-order positive schemes can

be constructed. The class of 
ux-limiter methods was �rst studied by Sweby [18].

Flux-limiting methods are based on the integral Eq. (1), formulation of the advection

equation, which results in the �nite volume approach [10, 16]. The approach can be
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Figure 2: Finite Volume Discretizations

understood as a discretization of the domain into cells of some form and a description of

the cell updates by computation of the 
uxes over the cell. The derivation of the method

is actually equal to the derivation of the di�erential form of the advection equation as

discussed in Section 2, but in opposite direction. Starting from a continuous PDE a

cell/
ux description is found by the application of the Gauss divergence theorem on the

integral of this continuous PDE over the volume of the cell. The properties of the scheme

are altered by changing the interpolation function of the 
ux. To prevent the generation of

ripples and therefore negative values, these 
uxes are limited, hence the name 
ux-limiter

methods.

4.1 Finite Volume Discretization

The �rst step in the �nite volume discretization is the division of the domain into adjacent

cells of some form like a rectangular box or a triangle in two dimensions, see Figure 2,

or their three dimensional extensions, a cube and a tetrahedron. By application of the

Gauss divergence theorem on the advection equation per cell, a description based on the


uxes over the cell faces is found. The Gauss divergence theorem for a vector �eld

~

F over

a closed volume 
 is given as

Z




r �

~

Fd
 =

Z

@


~

F � ~n ds : (12)

The vector ~n is the unit outer normal of the surface. After discretization of the domain

into cells and enumeration of the cells, we take the integral of the conservative advection

equation Eq. (6) over the volume of the cell. By application of Eq. (12) we �nd

@

@t

Z




q

i

d
 = �

Z




r � q

i

~

V d


= �

Z

@


q

i

~

V � ~n ds ;

(13)

where q

i

is the cell centered average of quantity q at cell i. Actually we see that the

conservation law Eq. (1) reappears.

Depending on the choice of the cell, the surface of the cell consists of a number of

cell faces, for example, four cell faces in the case of rectangular boxes and three in the
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Figure 3: Regular Finite Volume Discretization

case of triangles, as is shown in Figure 2. The integral of the 
ux over the surface of a

cell simpli�es to a sum of 
uxes over the cell faces, such that Eq. (13) reduces to

@q

i

@t




i

=

Z

@


F

i

� ~n ds

=

P

l

F

i;l

A

i;l

;

(14)

where 


i

is the discrete volume of cell i, l is the number of the face for cell i, A

i;l

is the

corresponding surface area of the cell face, and F

i;l

=

~

V

i;l

q

i;l

� ~n is the 
ux at face l for

cell i. In the case of rectangular boxes l ranges from 1 to 4 for each cell. The quantity q

however is not de�ned at the cell face, but in the center of the cell, and therefore some

kind of interpolation is necessary.

4.2 Interpolation of the 
ux

To continue the discussion on 
ux interpolation we restrict ourself to the discretization

using boxes. The quantity q is given at the cell center of the box and the velocities are

given normal to the cell face. In this case the grid reduces to a (logically) rectangular

two dimensional grid. In this approach the �nite volume grid coincides with the so-called

Arakawa-C grid for �nite di�erences [20], as shown in Figure 3. The quantities are given

as cell centered averages at the whole points of the grid. The normal velocities at the cell

faces are given at the half points of the grid. These kind of grids have the advantage that

neighboring points are found by direct addressing, no addition adjacency information is

therefore necessary.

After discretization with rectangular boxes of size dx; dy; dz and application of the

Gauss divergence theorem Eq. (12) on the integral of the advection equation Eq. (5) over

the box we have

@q

i;j

@t

dx dy dz = (f(u; q)

i+

1

2

;j

� f(u; q)

i�

1

2

;j

) dy dz+

(g(v; q)

i;j+

1

2

� g(v; q)

i;j�

1

2

) dx dz ;

(15)

where f(u; q) = u q is the 
ux function in the x-direction and g(v; q) = v q the 
ux

function in the y-direction. With f(q)

i+

1

2

;j

we denote that the arguments of the function
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need to be evaluated at that particular point, in other words f(u; q)

i+

1

2

;j

= u

i+

1

2

;j

q

i+

1

2

;j

.

As previously stated the quantity q is only de�ned at the whole grid points, like i + 1; j

and i; j. The value at i +

1

2

; j is found by linear interpolation.

For the speci�cation of linear interpolation schemes we make use of the Hildebrand

di�erence operators [8] combined with the index free notation, which is a preliminary to

the actual speci�cation in Ctadel. In the index free notation, the half/whole grid point

speci�cation is a property of a speci�c �eld. For example the quantity q is de�ned on

whole grid points, therefore q actually denotes q

i;j

. The velocity �eld u is staggered in the

x-direction only, therefore u actually denotes u

i+

1

2

;j

. This means that the 
ux function

f(u; q) in index free notation actually denotes f(u

i+

1

2

;j

; q

i;j

) = u

i+

1

2

;j

q

i;j

. The Hildebrand

shift operator E

x

denotes a shift of a whole grid point in the x-direction. This means

that E

x

q = q

i+1;j

and E

x

u = u

i+1

1

2

;j

. Larger shifts or negative shifts are given by a

super index, a negative shift of two is denoted as: E

�2

x

q = q

i�2;j

. We introduce the linear

interpolation function F

x

, using the Hildebrand di�erence operators

F

x

(f) =

f + E

x

(f)

2

; (16)

and analogously for the y-direction. Using the interpolation operator F the 
ux functions

at the cell faces can be interpolated as

f

i+

1

2

;j

= f(u; F

x

(q)) = f(u;

q+E

x

(q)

2

) = u

i+

1

2

;j

q

i;j

+q

i+1;j

2

g

i;j+

1

2

= g(v; F

y

(q)) = g(v;

q+E

y

(q)

2

) = v

i;j+

1

2

q

i;j

+q

i;j+1

2

:

(17)

The interpolation of f

i�

1

2

;j

is similar to f

i+

1

2

;j

, but one grid point shifted.

The interpolation form for which the interpolation function is applied to the quantity

q only, it is called state-interpolation. The interpolation function F

x

could also be applied

to the complete 
ux function, which gives

f

i+

1

2

;j

= F

x

(f(u; q)) =

f(u; q) + E

x

(f(u; q))

2

=

u

i+

1

2

;j

q

i;j

+ u

i+1

1

2

;j

q

i+1;j

2

(18)

This form of interpolation is called 
ux-interpolation. Both forms of interpolation have a

potentially di�erent numerical behavior. For more details the reader is referred to [10,13].

The order of the �nite volume method is altered by choice of the interpolation func-

tion. Linear interpolation results in a second order central scheme [10]. A �rst order,

oscillation free, approximation is found by a one sided upwind scheme (given in index free

notation)

F

x

(f(u; q)) =

(

f(u; q) ifu > 0

E

x

(f(u; q)) otherwise :

(19)

By using a larger stencil higher order interpolation functions are constructed. A wide

variety of higher order interpolation schemes can be constructed using the �-interpolation

function introduced by van Leer [14]

F

x

(f) = f +

1 + �

4

(E

x

(f)� f) +

1� �

4

�

f � E

�1

x

(f)

�

(20)

with �1 � � � 1. For the values � = 1,�1 and

1

3

the scheme is equal to respectively

a second-order central, a second-order upwind, and a third order upwind biased scheme.

Note that in the case of upwind schemes, the �-interpolation function Eq. (20) should be

extended with an upwind selector, like the �rst order upwind scheme Eq. (19).
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4.3 Flux-Limiting methods

The construction of linear advection schemes ends up in a paradox: we either have a

monotone, but �rst order and di�usive method or we have on non-monotone, but higher

order and less-di�usive method. We would like to have a scheme which has the best of

both worlds: a scheme which is of higher order and therefore less di�usive, but which

still is monotone. As stated in Section 3 this can not be achieved with linear methods,

because of the Godunov theorem, but instead we have to rely on non-linear methods.

The solution is to use a combination of the two schemes: use a �rst order monotone

method and switch over to a higher order method where it is save to do so, such that

no wiggles are introduced. Or seen from an opposite view, use a higher-order method

and add some dissipation, which is to switch over to a �rst order method, to damp the

ripples when strong gradients exist. The selection is done on the actual solution, which

makes the method non-linear. This is the way 
ux-limiting methods work. Based on the

smoothness of the solution a choice is made between a higher-order interpolation function

(F

H

x

) and a �rst order interpolation function (F

L

x

). If the higher-order method is seen

as a �rst-order method plus a correction, the limited 
ux interpolation function can be

written as [15]

F

x

= F

L

x

+	

�

F

H

x

� F

L

x

�

; (21)

where 	 is the switching function or limiter. When 	 is equal to zero we have a �rst

order method and when it is equal to one we have a higher order method. Any value

between zero and one results in a blend between the two methods.

The initial de�nition Eq. (21) of a 
ux limiter scheme allows a lot of freedom for

the speci�cation of a scheme, but following Zijlema and Wesseling [23] the class of one-

dimensional 
ux-limiting methods can been reduced to a canonical form, where the inter-

polation function is given as a limited upwinding method and di�erent schemes are found

by choosing a speci�c limiter function. The interpolation function is given as

F

x

(f) =

(

f

i

+

1

2

	(r

+

) (f

i

� f

i�1

) if u

i+

1

2

> 0

f

i+1

+

1

2

	(r

�

) (f

i+2

� f

i+1

) otherwise ;

(22)

or given in index-free notation with Hildebrand operators

F

x

(f) =

(

f +

1

2

	(r

+

x

)�f if u > 0

E

x

f +

1

2

	(r

�

x

)�E

x

f otherwise ;

(23)

where the operator � denotes the forward di�erence �f

i

= f

i+1

� f

i

. The functions

r

+

and r

�

are called smoothness monitor and give an indication of the smoothness of

the solution and therefore an indication of the application anti-di�usive term. They are

de�ned as

r

+

x

(q) =

q

i+1

� q

i

+ �

q

i

� q

i�1

+ �

=

�q + �

rq + �

r

�

x

(q) =

q

i+1

� q

i

+ �

q

i+2

� q

i+1

+ �

=

�q + �

�E

x

q + �

;

(24)

where r denotes the backward di�erence rf

i

= f

i

� f

i�1

and �, a small enough number

(e.g. � = 10

�7

), to protect the smoothness monitors against division by zero, which is the

case for uniform solutions.

Monotonicity preserving schemes are found by constructing real limiters following the

monotonicity domain of Sweby [18], as is shown in Figure 4. In order to be monotonicity
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Figure 4: The Sweby Monotonicity Domain

preserving, the value of 	 should be inside the grey area for every value of r. The dark grey

area denotes the second order monotonicity preserving area. Based on the monotonicity

domain of Sweby, a wide variety of limiters exist. For example the lower bound of second

order monotone schemes is outlined by the Minmod limiter

	(r) = max(0; min(r; 1)) : (25)

A limiter which follows the upper bound of the Sweby domain is the Superbee limiter

	(r) = max(0; min(2r; 1); min(r; 2)) : (26)

All limiters constructed following the monotonicity domain of Sweby fall in the domain

set out by these two limiters [18]. There is no such a thing as the ultimate limiter, but

the choice of a limiter depends on the modeled problem.

Within the framework of canonical form Eq. (22), a linear 	 operator can be con-

structed, which resembles the linear non-monotone � scheme Eq. (20). This operator is

given as

	(r)

�

=

1

2

(1 + �) r +

1

2

(1� �) ; (27)

with �1 � � � 1. A limited version of the � scheme is found by limiting Eq. (27) to the

Sweby domain, Figure 4, resulting in the following limiter

	

�

(r) = max[0; min(2;

1

2

(1 + �)r +

1

2

(1� �); 2r)] ; (28)

with �1 � � � 1. The limited form of the � =

1

3

third order upwind biased scheme is

found for � =

1

3

, see [13].

5 Abstract Speci�cation in Ctadel

The speci�cation of �nite volume schemes consist of three parts: the de�nition of the

domain by cells, the de�nition of the 
ux interpolation functions and the cell update

function. As an example of how �nite volume schemes are speci�ed inCtadel we consider
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Name Symbol Notation Meaning

Shift E

x

fd shift(F,X) E

x

f

i

= f

i+1

E

N

x

fd shift(F,X,N) E

N

x

f

i

= f

i+N

Forward Di�erence �

x

fd forward(F,X) �

x

f

i

= f

i+1

� f

i

Backward Di�erence r

x

fd backward(F,X) r

x

f

i

= f

i

� f

i�1

Central Di�erence �

x

fd central(F,X) �

x

f

i

= f

i�1

� f

i+1

Table 1: The Hildebrand di�erence operators

the two-dimensional advection equation. We use rectangular boxes as cell form, such that

the �nite volume grid �ts in the logically rectangular grid with discrete size (i; j) 2

[1::`]� [1::m], as was discussed in Section 4.2.

The �rst part of the Ctadel speci�cation is given by the declaration of the concen-

tration �eld q and the normal velocity �elds u and v at the cell faces

q :: real(0 .. infinity) ~ "kg/m^3" field (x(grid), y(grid)) on i=1..l by j=1..m.

u :: real ~ "m/s" field (x(half), y(grid)) on i=0..l by j=1..m.

v :: real ~ "m/s" field (x(grid), y(half)) on i=1..l by j=0..m.

The �elds are all of type real. Range information and units are declared if appropriate.

The concentration is de�ned as an positive real and since it is a cell centered value as

is shown in Figure 3, it is de�ned at the whole grid points in each direction, denoted

by x(grid), y(grid) grid staggering type. The u and the v �elds are given at the cell

faces in the x-direction and y-direction respectively. After the speci�cation of the grid

staggering, the size of the �elds are given. Note that the domains for the u and v are one

point larger in their particular direction. After de�nition of the staggering information,

the size of the domain is set.

The second part of the speci�cation consists of the de�nition of the cell face interpo-

lation functions. We use a �eld for the cell faces in each direction. The declaration of the

cell faces �eld is similar to the velocity �elds

f :: real ~ "kg/s" field (x(half), y(grid)) on i=0..l by j=1..m.

g :: real ~ "kg/s" field (x(grid), y(half)) on i=1..l by j=0..m.

We now have to de�ne the interpolation functions itself. Expressions in Ctadel

are given by implicit indexing with the use of the Hildebrand di�erence operators as was

shown in Section 4.2. The operators, their de�nition and their Ctadel name are shown

in Table 1.

With the use of these operators the di�erence expressions are speci�ed which de�ne

the cell face interpolation functions. As an example we consider the �rst order upwind

scheme, Eq. (19), with zero in
ow boundaries. The cell face in the x and y-direction are

de�ned as is shown in Figure 5.

Three operators are introduced for the speci�cation of conditional expressions. A condi-

tional expression is denoted by the binary in�x operator if. The �rst argument is the

expression and is only assigned if the second argument the condition evaluates to true.

Conditional expressions with two branches are constructed by using the binary case op-

erator \\. Multiple branches are denoted by appending extra operators. The post�x

otherwise operator denotes the last branch in a case construct and is added for readabil-

ity. Nested conditionals are constructed by using parenthesis to denote the associativity.

By using the operators, we are able to de�ne the uds scheme from Figure 5 in Ctadel as
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x-direction

if u

i+

1

2

;j

> 0 then

if i == 0 then

f

i+

1

2

;j

= 0

else

f

i+

1

2

;j

= u

i;j+

1

2

q

i;j

dy

else

if i == l then

f

i+

1

2

;j

= 0

else

f

i+

1

2

;j

= u

i;j+1

1

2

q

i+1;j

dy

y-direction

if v

i;j+

1

2

> 0 then

if j == 0 then

g

i;j+

1

2

= 0

else

g

i;j+

1

2

= v

i;j+

1

2

q

i;j

dx

else

if j == m then

g

i;j+

1

2

= 0

else

g

i;j+

1

2

= v

i;j+1

1

2

q

i;j+1

dx

Figure 5: Flux de�nition for UDS Scheme

f = (0 if i==0 \\

u*q*dy otherwise) if u > 0 \\

(0 if i==l \\

u*fd_shift(q,x)*dy otherwise).

g = (0 if j==0 \\

v*q*dx otherwise) if v > 0 \\

(0 if j==m \\

v*fd_shift(q,y)*dx otherwise).

The third part is the de�nition of the update function for the cell (its time derivative)

Eq. (14). The cell update is the sum of all cell faces.

@q

i;j

@t

= �

f

i;j

� f

i�1;j

+ g

i;j

� gi; j � 1

dy dx

: (29)

The update for the two-dimensional problem is given as

dqdt :: real(0 .. inf) ~ "kg/m^3/s" field (x(grid), y(grid)) on i=1..l by j=1..m.

dqdt = -(fd_backward(f,x) + fd_backward(g,y))/(dy*dx).

5.1 Exploiting Structural Symmetry using Operators

There is a structural equivalence between the de�nition of the interpolation function for

the two cell faces. From a local point of view, that is seen from the cell face itself, the

schemes are exactly the same. Due to the logically rectangular grid, this results globally

in an interchange of indices. An advantage over regular programming languages is that

this structural equivalence can be exploited by using operators. This allows the �rst order

upwind scheme to be written as

uds(Q,U,X) := (0 if pnt(X) == lb(pnt(X)) \\

U otherwise) if U>0 \\

(0 if pnt(X) == ub(pnt(X)) \\

fd_shift(U,X) otherwise)

f = u*uds(q,u,x)*dy.

g = v*uds(q,v,y)*dx.

12



x-direction

if u

i+

1

2

;j

> 0 then

if i == 0 then

f

1

2

;j

= 0

elseif i == 1 then

f

3

2

;j

= u

1+

1

2

;j

1

2

(q

1;j

+ q

2;j

) dy

elseif i == l then

f

l+

1

2

;j

= u

l+

1

2

;j

�

q

l;j

+

1

2

(q

l;j

� q

l�1;j

)

�

dy

else

f

i+

1

2

;j

= u

i+

1

2

;j

�

q

i;j

+

1

2

	(r

+

i+

1

2

;j

)(q

i;j

� q

i�1;j

)

�

dy

else

if i == 0 then

f

1

2

;j

= u

1

2

;j

�

q

1;j

+

1

2

(q

1;j

� q

2;j

)

�

dy

else if i == l� 1 then

f

l�

1

2

;j

= u

l�

1

2

;j

1

2

�

q

l;j

� q

l�1;j

�

dy

else if i == l then

f

l+

1

2

;j

= 0

else

f

i+

1

2

;j

= u

i+1

1

2

;j

�

q

i;j

+

1

2

	(r

�

i+

1

2

;j

)(q

i+1;j

� q

i+2;j

)

�

dy

y-direction

if v

i;j+

1

2

> 0 then

if j == 0 then

g

i;

1

2

= 0

elseif j == 1 then

g

i;

3

2

= v

i;1+

1

2

1

2

(q

i;1

+ q

i;2

) dx

elseif j == m then

g

i;m+

1

2

= v

i;m+

1

2

�

q

i;m

+

1

2

(q

i;m

� q

i;m�1

)

�

dx

else

g

i;j+

1

2

= v

i;j+

1

2

�

q

i;j

+

1

2

	(r

+

i;j+

1

2

)(q

i;j

� q

i;j�1

)

�

dx

else

if j == m then

g

i;

1

2

= v

i;

1

2

�

q

i;1

+

1

2

(q

i;1

� q

i;2

)

�

dx

else if j == m� 1 then

g

i;m�

1

2

= v

i;m�

1

2

1

2

(q

i;m

� q

i;m�1

) dx

else if j == m then

g

i;m+

1

2

= 0

else

g

i;j+

1

2

= v

i;j+1

1

2

�

q

i;j+1

+

1

2

	(r

�

i;j+

1

2

)(q

i;j+1

� q

i;j+2

)

�

dx

Figure 6: Flux de�nition for the limited � =

1

3

scheme

The capital identi�ers Q, U and X denote formal parameters, to be replaced by actual

parameters when the operator is actually referenced. The operator pnt returns the discrete

index of a continuous coordinate. The lb and ub operators return the lower and upper

bound of the de�ned �eld in the speci�ed direction, so lb(i) returns 0 for f and 1 for g

and ub(i) returns l for f and m for g.

The use of symbolic operators also simpli�es the speci�cation of state versus 
ux

interpolation functions as was discussed in Section 4.2. In the examples above a state

interpolation is given. A 
ux interpolation is simply de�ned by putting the multiplication

with the velocity �eld inside the operator

f = uds(u*q,u,x)*dy. % Flux interpolation

g = uds(v*q,v,y)*dx. % Flux interpolation

5.2 Speci�cation of Flux Limiter Schemes

Within the current framework the speci�cation of 
ux limiter schemes follows naturally.

The interpolation function becomes more complicated, since it is extended to higher order

schemes.

The higher order schemes have larger stencils and order reduction is necessary to

reduce the stencil near the boundary. As an example we consider the speci�cation of

the limited � =

1

3

scheme given in Section 4.3. The scheme consists of an upwind and a

downwind branch. Each of the branches contains the scheme and three exceptions near

boundaries to reduce the stencil, shown in Figure 6 [13]. We �rst declare the two slope

monitor functions r

+

and r

�

as de�ned in Eq. (24)

rp(Q,X) := (fd_forward(Q,X)+eps)/(fd_backward(Q,X)-eps).

rm(Q,X) := (fd_forward(Q,X)+eps)/(fd_forward(fd_shift(Q,X),X)-eps).

At the boundaries the central scheme Eq. (16) is also used. This scheme is as declared as
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% Van Leer Kappa Scheme

kappa(R, K) := 1/2*(1+K)*R + 1/2*(1-K) if -1 <= K and K <= 1 \\

undefined otherwise.

% Differential Limiters

vanleer(R) := (R+abs(R))/(1+R).

albada(R) := (R^2+R)/(1+R^2).

ospre(R) := 3/2*(R^2+R)/(1+R+R^2).

% Non Differential Limiters

sweby(R, P) := max(0,max(min(P*R,1),min(R,P))).

chakravarthyosher(R, P) := max(0,min(R,P)).

mc(R) := max(0,min((1+R)/2,min(2,2*R))).

plk(R, K, M) := max(0,min(M,min(kappa(R,K),2*R))).

splk(R, K, M) := max(0,min(min(M,kappa(R,K),2*R),min(1/2*(1-K)*R+1/2*(1+K),2*R))).

rk(R, K) := (R+abs(R))*(-R^2+(3*K)*R-K)/(1+R)^2 if R <=1 and -1 <= K and K < 0 \\

(2+K)*R-K/(1+R) if R > 1 and -1 <= K and K < 0 \\

(R+abs(R))*((1+K)*R+1-K)/(1+R)^2 if 0 <= K and K <= 1 \\

undefined otherwise.

% Derived Limiters

superbee(R) := sweby(R,2).

minmod(R) := chakravarthyosher(R,1). % Sweby(R,1).

davis(R) := plk(R, -1, 1).

koren(R) := plk(R, 1/3, 2).

smart(R) := plk(R, 1/2, 4).

umist(R) := splk(R, 1/2, 2).

muscl(R) := splk(R, 0, 2).

Figure 7: Ctadel speci�cation of Limiters

cds(Q,X) := (Q + fd_shift(Q,X))/2.

The limited � scheme with order reduction is de�ned by the following operator, which

simply replaces the uds operator in the UDS example of Section 5

kscheme(Q,U,X) :=

(0 if pnt(X)==lb(pnt(X)) \\

cds(Q,X) if pnt(X)==lb(pnt(X))+1 \\

Q+1/2*fd_forward(Q,X) if pnt(X)==ub(pnt(X)) \\

Q+1/2*koren(rp(Q,X))*fd_forward(Q,X) otherwise

) if U > 0 \\

(fd_shift(Q,X) - 1/2*fd_forward(fd_shift(Q,X),X)) if pnt(X)==lb(pnt(X)) \\

cds(Q,X) if pnt(X)==ub(pnt(X))-1 \\

0 if pnt(X)==ub(pnt(X)) \\

fd_shift(Q,X) - 1/2*koren(rm(Q,X))*fd_forward(fd_shift(Q,X),X) otherwise

).

The operator koren is the � =

1

3

limiter 	 and is taken from a Ctadel library, given

in Figure 7. The limiters are de�ned as symbolic operators. The library is constructed by

recursive application of more generic functions. For example the Piecewise Linear Kappa

limiter (plk) is based on the linear � scheme (kappa). The derived � =

1

3

limiter is an

instance of this plk limiter.

6 Code Generation

The de�nition of the 
ux interpolation function in all directions consist of a conditional ex-

pression. The conditionals either denote scheme exceptions resulting from order reduction
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A.Fully Conditional Code

DOALL j = 1, m

DOALL i = 0, l

IF (0.LT.u(i,j)) THEN

IF (0.EQ.i) THEN

f(i,j) = 0E0

ELSE

f(i,j) = q(i,j)*u(i,j)*dy

ENDIF

ELSE

IF (i.EQ.l) THEN

f(i,j) = 0E0

ELSE

f(i,j) = q(i+1,j)*u(i,j)*dy

ENDIF

ENDIF

ENDDOALL

ENDDOALL

B. Loop Partitioned Code

DOALL j = 1, m

DOPAR

DOALL i = 1, l-1

IF (0.LT.u(i,j)) THEN

f(i,j) = q(i,j)*u(i,j)*dy

ELSE

f(i,j) = q(i+1,j)*u(i,j)*dy

ENDIF

ENDDO

IF (0.LT.u(0,j)) THEN

f(0,j) = 0E0

ELSE

f(0,j) = q(1,j)*u(0,j)*dy

ENDIF

IF (u(l,j).LE.0) THEN

f(l,j) = 0E0

ELSE

f(l,j) = q(l,j)*u(l,j)*dy

ENDIF

ENDDOPAR

ENDDOALL

C. Fully Distributed Code

DOPAR

DOALL j = 1, m

IF (0.LT.u(0,j)) THEN

f(0,j) = 0E0

ENDIF

ENDDOALL

DOALL j = 1, m

IF (u(l,j).LE.0) THEN

f(l,j) = 0E0

ENDIF

ENDDOALL

DOALL j = 1, m

DOALL i = 0, l-1

IF (u(i,j).LE.0) THEN

f(i,j) = q(i+1,j)*u(i,j)*dy

ENDIF

ENDDOALL

ENDDOALL

DOALL j = 1, m

DOALL i = 1, l

IF (0.LT.u(i,j)) THEN

f(i,j) = q(i,j)*u(i,j)*dy

ENDIF

ENDDOALL

ENDDOALL

ENDDOPAR

Figure 8: Canonical Code Forms

or denote upwind-downwind branches. Fields are implemented using multi-dimensional

arrays and are computed by loop constructs. The naive implementation of the abstract

Ctadel speci�cation, as discussed in Section 5, in Fortran will result in perfectly nested

conditional loops. The conditionals for the order reduction near the boundaries are simple

checks on the loop variables, which are determinable at run-time. This optimization of

the code is not straightforward and we will therefore discuss this transformation in this

section.

We consider again the �rst order UDS scheme with zero in
ow boundaries for a two

dimensional rectangular domain as de�ned in Section 5. It serves as an example of the

complexity of the interpolation speci�cation. For higher order schemes such as the limited

� =

1

3

scheme from Section 5.2 the complexity increases as higher order schemes have more

exceptions on the loop indices and also the expressions are more complex. In Figure 8

three di�erent codes for the computation of the UDS scheme cell face interpolation in the

x-direction are given. The loop for the computation of the cell face in the y-direction is

similar but with shifts applied to the opposite index.

The �rst code A is the direct implementation of the original abstract Ctadel spec-

i�cation in Section 5. This code is easy readable, but there is overhead due to the

conditionals on the loop variables. The second code B is semantically equivalent to A.

The conditionals on the loop variables are optimized as a result of loop partitioning. This

code has the least serial overhead and will perform best on serial architectures. The third

code C is the fully distributed form and is semantically equivalent to codes A and B, but

with the loops distributed and again the index variable conditionals optimized. This code

will perform best on vector machines, since these statements are translated to well vector-

izable guarded assignments. We call codes A till C canonical forms for the computation

of the cell faces for logically rectangular domains.
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These three code forms are semantically equivalent, but will perform di�erently on the

various architectures. Code restructuring will therefore be necessary to assure the perfor-

mance of the generated code. Code A however does not vectorize very well. Conditional

loop nests are vectorized using mask arrays (i.e. logical arrays) following the if-conversion

technique [24]. However no distinction is made between conditionals for loop indices and

other kinds of conditionals leading to the introduction of unnecessary logical arrays. The

di�erence between B and C is that code B has IF-THEN-ELSE statements and code C

has IF-THEN statements. If the latter is more e�cient on vector machines, the compiler

should be able to transform code B into C, but this will result in six loops (three times

IF-THEN-ELSE instead of the four loops of C and therefore will always perform slightly

worse.

The translation from code A to either code B or C is done by loop partitioning [12].

However, the conditional on the loop index is inside the upwind conditional. It is not

permitted to just simply interchange the conditionals. This would mean a violation of

semantics: The body of the conditional { in this case another conditional { is evaluated

before the condition is evaluated to true. But in the case of the upwind-downwind selection

this will not cause any harm and therefore it is clear that in cases like this it is allowed

to inter change the conditionals. We found that restructuring compilers do not perform

this loop partitioning, since they do not make this distinction between conditionals being

interchangeable or not, and we have therefore added the generation of the various code

forms to the target speci�c code transformations of Ctadel.

6.1 Code Restructuring in Ctadel

Within Ctadel system, code fragments are treated as algebraic expressions [21]. At the

intermediate level, all statements are seen as operators. This is similar to the way condi-

tionals are treated at the input level, discussed in Section 5. Code restructuring (either

semantics preserving or not) is performed by the General Purpose Algebraic Simpli�er

(GPAS). Transformations are constructed by de�nition of sets of simple rewrite rules.

Rules from these rule sets are applied by GPAS on an algebraic expression until no rule

can be applied anymore, thereby transforming the expression from one canonical form to

another canonical form. A similar restructuring approach has been adopted by Boyle [1].

Rule sets can either be combined in serial or in parallel. In serial composition, the rule

sets are applied one after the other. In parallel composition rule sets are intermixedly

applied.

Unlike optimizing compilers, the transformations in Ctadel are not applied in a

black-box fashion. Because Ctadel is a open and fully interactive environment, the user

has full freedom to apply arbitrary rule sets to the desired expressions. The user decides

which code form A, B or C will be produced. This decision is translated to a sequence of

rule sets. GPAS will then transform the initial code form to the desired code form. The

transformations described here are only applied to the cell face interpolation functions.

6.2 The Transformation Steps

We will now discuss the transformation process step by step. We recall the template

for the computation of the 
ux interpolation function of the UDS scheme after its initial

speci�cation, Figure 9. It is given in a pseudo Fortran. The DOALL statement is introduced
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DOALL i = lb,ub

f

i

:= (IF (u > 0) THEN

IF (i == lb) THEN

E

1

ELSE

E

2

ENDIF

ELSE

IF (i == ub) THEN

E

3

ELSE

E

4

ENDIF

ENDIF)

ENDDOALL

Figure 9: Template Upwind Scheme

due to the semantics of the declarative assignment from the initial speci�cation. The if-

statements are actually conditional expressions and there are no data dependencies (f

does not occur in the expressions E

k

; k 2 [1; 4]).

In order to retrieve code form A, it is su�cient to propagate the assignment inside

the conditional statements, such that the code is in imperative form, instead of functional

form. To retrieve code forms B or C four rule sets and an intermediate code form is

introduced where the if-nest is decoupled to a set of guarded assignments. The �rst rule set

transforms the initial speci�cation to the decoupled intermediate form. After decoupling

the conditionals on the loop variables 
attened by the second rule set. Flattening allows

the conditions to be interchanged such that the conditionals on the index variables can

be optimized. We have now retrieved code form C. Loopfusion, performed by the fourth

rule set will transform code form C to code form B. We will now discuss the four rule

sets.

6.2.1 IF-decoupling

The �rst decoupling stage of the transformation process consists of three distinct steps:

expansion of conditionals, assignment distribution and doall distribution.

In the �rst transformation step the conditionals are fully expanded by propagation

of the negated conditions to the other branches. This is allowed since there are no de-

pendencies between the various branches of the if-nest. Therefore the expanded if-nest

can be executed in parallel, resulting in a fully decoupled, commutable set of guarded

assignments. The transformation is given as

f

i

:= IF (c

1

) THEN

E

1

ELSE

E

2

ENDIF)

)

f

i

:=DOPAR

IF (c

1

) E

1

IF (:c

1

) E

2

ENDDOPAR

where the left part of rule denotes the pattern to be matched and the right part

denotes the pattern to be substituted. If-statements are expanded from the inner loop to
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the outer loop, such that nested if's are decoupled as well. After expansion of the if-nest

the assignment is distributed over the decoupled if-nest, such that the imperative form is

retrieved, by the following rule

f

i

:=DOPAR

IF (c

1

) E

1

IF (c

2

) E

2

ENDDOPAR

)

DOPAR

IF (c

1

) f

i

:= E

1

IF (c

2

) f

i

:= E

2

ENDDOPAR

After decoupling of the if-statements, the loop is fully distributed by propagation of

the doall loop over the statements.

DOALL i = lb,ub

DOPAR

S

1

S

2

ENDDOPAR

ENDDOALL

)

DOPAR

DOALL i = lb,ub

S

1

ENDDOALL

DOALL i = lb,ub

S

2

ENDDOALL

ENDDOPAR

After expansion, distribution and transformation of the logical expressions to DNF

form, the initial template Figure 9 is transformed to the intermediate canonical form,

shown in following code fragment

DOPAR

DOALL i = lb,ub

IF (u > 0) IF (i == lb) f := E

1

ENDDOALL

DOALL i = lb,ub

IF (u > 0) IF (i <> lb) f := E

2

ENDDOALL

DOALL i = lb,ub

IF (0 � u) IF (i == ub) f := E

3

ENDDOALL

DOALL i = lb,ub

IF (0 � u) IF (i <> ub) f := E

4

ENDDOALL

ENDDOALL

In this canonical form, the if-nest is fully decoupled by expansion. We now have a

set of parallel executable (doubly) guarded assignments.

6.2.2 IF-conversion

The simpli�cation of the conditionals on the loop variables is hindered by the fact that

they are "inner" conditionals, that is guarded by the upwind-downwind conditionals.

Straightforward simpli�cation would be a violation of semantic constraints, but as already

stated this is not always so. It is possible to exchange the conditionals in some cases. In

Ctadel, the absence of side e�ects allows interchanging of conditionals that are comprised

of so-called total expressions. The concept of total expressions originates from calculus,

where a total function denotes a function which is de�ned on the total domain. We de�ne

total expressions inductively as follows
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De�nition A function f : D ! R with domain D and range R, where D and

R are either the complete boolean, integer, real or complex domain, is called

total if for all x 2 D we have that f(x) 2 R. An algebraic expression e is

called a total expression if

� e consists of a constant or a variable;

� e is a function application e = f(e

1

; : : : ; e

k

) such that function f of arity

k > 0 is a total function and e

1

; : : : ; e

k

are total expressions.

Examples of total functions are sin, abs and multiplication, but also boolean op-

erators like or and the greater-than operator (>). Non-total functions are division and

square root. In our algebraic environment we consider array references as total functions

as well. Domain inference on the index variables is performed to the de�ne the actual

dimensions of the array such that totality of array references is guaranteed. Totality is

tested similar to its de�nition. First the atomic terms are tested for totality (constants

and variables are assumed so) and then the complete expression is checked by testing all

its function compositions.

After testing the "inner" conditional expressions for totality, the nested-if is 
attened

by combining conditions to a single conjunction. The conjunctive operator is considered

a commutative operator and therefore allows the interchange of the conditionals. This

transformation is de�ned as

IF (c

1

) IF (c

2

) f := E

1

if c

2

is total

)

IF (c

1

^ c

2

) f := E

1

Now that the if's are 
attened, it is possible to interchange the conditions, such that

the tests on loop variables can be optimized.

6.3 Index Conditional Optimization

The speci�cation of cell face interpolation functions contain tests on loop variables, where

the tests are either equalities or inequalities to lower and upperbounds of the loops. Two

rules are applied to optimize these tests. The �rst rule is the equality test

DOALL i = l,u

IF (i == c ^C

r

) S

ENDDOALL

)

IF (c � l ^ c � u) IF ([C

r

]

i=c

) [S]

i=c

The operator [C]

i=c

denotes that a certain function C is evaluated with index i = c.

In order to assure that the transformation is semantically equivalent, a conditional is

introduced to test if the iteration is within the iteration space. This guard can be removed

at generation time by range inference, which may �nd that the condition is true. The

range information is extra application information, which is otherwise not available in

regular programming languages.

Another simpli�cation is removal of the inequality to lower or upper bounds, which

can be considered as a kind of loop peeling. The simpli�cation of the inequality concerning

the lower bound is given as
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DOALL i = lb,ub

IF (i <> c) S

ENDDOALL

if c == lb

)

DOALL i = lb + 1,ub

S

ENDDOALL

and analogous for the upper bound.

After these transformation the fully distributed codeC of the initial speci�cation code

is found. From this code, code B is found by loopfusion and (re-)combining if-statements.

6.3.1 Loop Fusion

Loop fusion is the just the inverse transformation of loop distribution transformation.

For the kind of schemes considered here however the fusion is hindered by unequal loop

bounds. The fusion is continued after the equalization of all loops to the same inner

domain. This is performed by a loop peeling transformation, in which �rst the lower

bounds are equalized and than the upper bounds. Loop interchange for the combination

of the various loops is allowed, since the loops are composed by the parallel statement

composition operator.

The equalization of the lower bounds is de�ned by the following rule

DOPAR

DOALL i = l

1

,u

1

S

1

ENDDOALL

DOALL i = l

2

,u

2

S

2

ENDDOALL

ENDDOPAR

if l

1

< l

2

)

DOPAR

DOALL i = l

1

,l

2

� 1

S

1

ENDDOALL

DOALL i = l

2

,u

1

S

1

ENDDOALL

DOALL i = l

2

,u

2

S

2

ENDDOALL

ENDDOPAR

After the equalization of the lower bounds, the equalization of the upper bounds is

performed, which is given as

DOPAR

DOALL i = l,u

1

S

1

ENDDOALL

DOALL i = l,u

2

S

2

ENDDOALL

ENDDOPAR

if u

1

> u

2

)

DOPAR

DOALL i = l,u

2

S

1

ENDDOALL

DOALL i = u

2

+ 1,u

1

S

1

ENDDOALL

DOALL i = l,u

2

S

2

ENDDOALL

ENDDOPAR

After equalization more loopfusion can be performed. The fused statements con-

tain only conditionals for upwind-downwind selection. After fusion the code is further

optimized by combining upwind-downwind pairs.
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Vector Field Initial Distribution
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Figure 10: The Molenkamp-Crowley Test

IF (c

1

) THEN

S

1

ENDIF

IF (c

2

) THEN

S

2

ENDIF

if c

1

== :c

2

)

IF (c

1

) THEN

S

1

ELSE

S

2

ENDIF

We use here another criterium for the combination of if-statements than used in [19].

This is a more strict condition. The check is performed by structurally comparing the

conditions in DNF form, like in [19]. Because of this potential further combination of

upwind-downwind pairs, loop normalization instead of peeling to equalize the loops is not

performed. It would simply ruin the possibilities for combining conditionals.

7 Performance

In the previous section we have discussed the generation of the canonical code forms

for the computation of the cell face interpolation functions. We will now discuss the

performance of these canonical code forms for serial and vector architectures. As a test

case we take the two dimensional Molenkamp-Crowley test [22]. This is a well accepted

test for the numerical qualities of advection schemes. In this test the propagation of

an initial distribution in a rotating 
ow within a rectangular domain is measured, see

Figure 10. Since the exact solution of the advection equation after one rotation is equal

to the initial distribution, the test gives a good indication on the numerical qualities of

the applied scheme. It �ts our purposes as well, because it allows us to measure the

computational performance of the di�erent canonical code forms. Due to the rotating


ow a �fty percent hit rate for the upwind/downwind conditionals is achieved.

We consider the limited � =

1

3

scheme, completed with order reduction near the

boundaries as was discussed in Section 5.2. The scheme is tested on a domain of 20 by 20

grid points to a domain of 240 by 240 grid points with an increase of 20 by 20 grid points.
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HP 712/80 SP 2 (thinnode, one cpu)
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Figure 11: Timings for the serial architectures
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Figure 12: Timings for the vector architectures

The tested platforms are two serial architectures: a HP 712/80 Workstation (fort77

+O2) and a single-cpu thinnode SP2 (xlf -O3) and two vector architectures: a Cray C

90 (cft -Oscalar3 -Ovector3) and a Cray J 90 (cft -Oscalar3 -Ovector3), both on

one CPU. For the test the �rst ten time steps of a Four Stage Runge Kutta timestepping

scheme are timed, so the interpolation function and the update are computed 40 times.

In Figure 11 and Figure 12 timings are shown for serial and vector architectures

respectively. On the HP there is hardly any di�erence between the three codes. On the

SP 2 there is also not much di�erence. Surprisingly the distributed code performs slightly

better than the partitioned code. The loop overhead is larger than the overhead of the

conditionals. For serial architectures the performance is bound by the costs for memory

references. Which is the reason why only a moderate improvement is achieved. On vector

architectures the distributed code performs best. It was expected that codes B and C

would perform better than code A, since the latter is vectorized using the if-conversion

technique [24]. This will introduce new logical vector arrays and operations, which was

actually con�rmed by the hpm hardware performance monitor for the Cray machines. The
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compiler is presumable able to transform code B and C to an almost equal form, which

could explain why there is hardly any di�erence between those two code forms.

8 Summary and Further Research

In this paper we have discussed the relation between the �nite di�erence and �nite volume

discretization methods. Finite di�erence discretizations are easily automated by using

operator overloading techniques. Instead, the �nite volumes derivation relies on integral

transformations. We focused on the speci�cation of such methods within Ctadel. Some

new transformations where introduced to allow e�cient encoding of the conditions in

order to achieve optimal code. We showed that code generations allow very fast change of

schemes. By code generation, knowledge on e�cient implementation is hidden from the

user. From this better readable and understandable speci�cations are possible.

Currently we are incorporating the generation activities within the Delwaq model

itself. Our goal is to develop new schemes based on multi dimensional 
ux limiter methods

and implicit time integration for this model. The ability of automatic code generation

for implicit time integration methods is very interesting, since a minor change in the

numerical speci�cation (time level n to n+1) involves heavy programming to implement

this change of speci�cation. The generation of multi-dimensional schemes requires extra

study. Such schemes are not as well documented as one-dimensional schemes and the

implementation of such schemes is less straightforward.
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