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Abstract

For each integer k, we define in Monadic Second-Order logic a re-
lation that associates with every hypergraph of treewidth at most k
at least one of its tree-decompositions of width at most k. In “The
Monadic second-order logic of graphs, I : Recognizable sets of finite
graphs’, Courcelle proves that every set of graphs is recognizable if it
is definable in Monadic Second-Order logic and extends this result to
a refinement of MSO logic, the Counting Monadic Second-Order logic.
From all these results, it follows that Recognizability equals CMSO-
definability for sets of graphs of bounded tree-width.

Introduction

A fundamental theorem by Biichi [2] states that a language of words is
recognizable iff it is definable by some formula in Monadic second order logic
(MSOL). This result is extended to finite ranked ordered trees by Doner [8],
and to sets of finite unranked unordered trees by Courcelle [3]. This last
result deals with an extension of MSOL, called Counting monadic second-
order logic (CMSOL), that allows modular counting. These three results,
relate an algebraic aspect, namely Recognizability, to a logical one.

For graphs (by graph, we mean a finite graph), similar relationship have
been investigated. On the one hand, a graph can be viewed as a logical
structure, hence we have a notion of a definable set of graphs. On the other
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hand, Bauderon and Courcelle [1] propose an algebraic structure over sets of
graphs. The notion of a recognizable set of graphs follows, as an instance of
the general notion of recognizability introduced by Mezei and Wright [13].
Courcelle [3] proves that every CMSO-definable set of graphs is recognizable,
but not conversely.

However, in the same paper however, he conjectures that the converse
holds for an interesting class of graphs. More precisely, Robertson and
Seymour [14], in their study of minors, introduce the notions of tree-width
and tree-decomposition. Courcelle [4] conjectures that:

Conjecture 1 If a set of graphs of bounded tree-width is recognizable, then
it is CMSO-definable.

Such a conjecture has already been proved in several restricted cases.
Courcelle [4] shows it holds for graphs of tree-width at most 2. Kaller [12]
shows it holds for graphs of tree-width at most 3. Kabanets [11] shows
it holds for graphs of path-width at most k. To address this conjecture,
Courcelle [4] introduces the notion of a MSO-definable binary relation, a
MSO-transduction for short, over relational structures. Let us recall that
relational structures permit to code in a logical way different kinds of objects,
like graphs, hypergraphs, tree-decompositions and algebraic terms defined
on a finite signature. A MSO-transduction transforms a relational structure
S into a relational one S by defining S’ inside S by means of MSO-formulas.
Courcelle calls strongly context-free every set of graphs L that admits a MSO-
transduction which transforms every graph G' € L into an algebraic algebraic
term of value G (for a more precise definition, see [4]). Courcelle shows in [4]
that Conjecture 1 holds if the following one holds:

Conjecture 2 For every k, the set of graphs of tree-width < k is strongly
context-free.

The fact that Conjecture 2 is stronger than Conjecture 1 can be quickly
explained as below by showing how the MSO-transduction of Conjecture2
“transports” the inclusion “Recognizability C CMSO-definability” from the
class of sets of terms into the class of sets of graphs of bounded tree-width.
Let & > 0 and T} be the set of algebraic terms presented in [4] that
denote graphs of tree-width at most k. Let f; be the homomorphism that
associates with every term of T} the graph it denotes and let g; be the
MSO-transduction induced by Conjecture 2. Recognizability is preserved
by inverse homomorphism, and then by f,~ . Every recognizable subset of
T}, is CMSO-definable (see [3]). Due to Courcelle [4], CMSO-definability is



preserved by inverse MSO-transduction, and then by glgl. Then, for every
recognizable set L of graphs of bounded tree-width, the set g; ' (f; ' (L)) is
CMSO-definable and is equal to L, if Conjecture 2 holds.

Our main result is to prove Conjectures 1 and 2 (see Theorems 74
and 76). In fact, we will establish such results not uniquely for graphs but
for hypergraphs. More precisely, we will consider e-hypergraphs, which are
concrete unlabelled unoriented hypergraph with a distinguished hyperedge:
its source hyperedge. In order to establish Theorem 74, we will consider a
very similar object with the algebraic term: the e-tree-decomposition. Their
set is denoted by 7. An e-tree-decomposition is a tree-decomposition of
some e-hypergraph, called its value. Due to the fact that hyperedges are
placed “into” the nodes of the e-tree-decomposition, the tree of the e-tree-
decomposition is rooted and, then, any algebraic term can be viewed as an
e-tree-decomposition in which we order the childrens of every node.

In this article, we study the power of the MSO logic, by showing that
certain subsets of 7 are MSO-parsable. A subset L C T is MSO-parsable
if the converse of the mapping that associates to every tree-decomposition
of L its value is a MSO-transduction. In other words, if we can uniformly
“MSO-define” in terms of the values of L the set L itself. Unfortunately,
the subsets of 7 are not in general MSO-parsable: the set of all e-tree-
decompositions having for value an empty e-hypergraph (with no vertex
and no edge, except its source-edge) have a domain of size not uniformly
bounded and, then, cannot be MSO-defined in terms of their values. It
follows that for each k, Ti is not MSO-parsable, where Ty denotes the set
of all e-tree-decompositions of width at most & (having in each node at
most k + 1 vertices). In order to obtain a comparable statment than in
Conjecture 2, we call equivalent two e-tree-decompositions (resp. sets of)
having same value (resp. sets of values). Under this formalism, we can
present now our main technical result, established by Theorem 73:

1. For every k, T; contains an equivalent MSO-parsable set.

To prove it, we introduce an algebra II which produces subsets of T
and that verifies two properties. These properties, expressed respectively by
Theorems 72 and 65, are:

2. Each operation of II preserves MSO-parsability.
3. For every k, IT produces an equivalent subset of 7.

The algebra II is defined by six classes of n-ary operations on P(T).
The first one is the nullary operation that associates the set of all atomic



e-tree-decompositions, that have a unique node. The second kind of oper-
ation is the MSO-transduction that intersects every subset of 7 with some
given MSO-definable set. The third one is the MSO-transduction +, that
“adds” a unique vertex to every e-tree-decomposition. Obviously, the three
above operations preserve MSO-parsability. To define the fourth class of op-
erations, we introduce an higher-order substitution ® that associates with
every couple (u,v) € P(T)? the set of all e-tree-decompositions obtained by
refining some X € w thanks the set v, indeed by replacing simultaneously all
the nodes of X by e-tree-decompositions of v. An important property of ®
is the fact that it preserves MSO-parsability, under an additional condition.
Hence, we enrich IT with each operation of the form (u,v) — u® (vNType;,)
for some k, where T'ype,, contains every e-tree-decomposition having at most
k vertices incident with its source-edge. Theorem 71 states:

4. For each k, (u,v) = u ® (v N Types) preserves MSO-parsability.

Concerning the fifth class of II, let us just say that each of its operations is
a restriction of the hyperedge-substitution introduced in [1] (see also Habel
and Kreowski [10]) and is, in fact, a derived operation of (u,v) — u ®
(v N Typey,) for some k. The last operations of IT require the notion of an
internally connected e-hypergraph G, that is such that every pair of elements
of its domain is not separated by the extremities of its source-edge. In a
natural way, we extend internal connectivity on 7 (its so defined subset is
denoted 7; ) and introduce the notion of a critical edge in an e-hypergraph:
an edge e is critical if it is needed to internally connect the extremities of
the source-edge. That permits to consider a subset of 7; .: the set 7% of all
nowhere-critical e-tree-decompositions. The last class of II contains every
nullary operation — 7.7 N Ranky, for some k£ > 0, where Rankj, denotes the
set of all X € T whose every arc and every edge has a degree bounded by
k. Theorem 70 states:

5. For each k, T,%° N Ranky, is MSO-parsable.

Now, let us present the power of II, by showing how I produces an equiv-
alent subset of 7. The proof comports four steps. First one concerns the
internally connected e-tree-decompositions, which are linear, indeed hav-
ing a path-structure. This case is treated by using similar methods than
for the internally connected case presented below, and this in a more sim-
ple way. Let us just say that this case requires the operation + presented
above. Note that this result is similar with (but different from) the result
of Kabanets [11]. Second step concerns the internally connected e-tree-
decompositions, which are quasi linear, indeed obtained by substituting a



finite number of linear sets. Obviously, II produce such sets from linear
ones. Third step, the main difficult, concerns the internally connected e-
tree-decompositions. To treat this case, we define the set 7., that contains
every internally connected critical e-tree-decomposition, that is critical “ev-
erywhere”. The interest of a such set appears in the following equality:

6. Tic=T T

The above equality, easy to prove (see Theorem 50), implies that, for each
k, II produced an equivalent subset of 7; . N T, if IT produces an equivalent
subset of 7;°. N Ti. This last point is the object of Theorem 61 that states
that for each k the set 7., N 7Ty is equivalent with a quasi linear subset of
Tr. As a consequence of a such result, the most difficult one of this paper,
and of Lemma 44, it comes:

7. For every k, T, NT}, is equivalent with a quasi linear subset of T; .NTk.

Then, for each k, IT produces an equivalent subset of 7; . N 7. We jump
easily the fourth step by using the fact that every e-tree-decomposition of
Tr can be rewritten into an equivalent e-tree-decomposition of 7 that is
internally connected, except, possibly, “at the root”.

The paper is organized as follows.
The first section contains the necessarily definitions of hypergraphs, of e-
hypergraphs, of operations over hypergraphs and e-ehypergraphs and the
three notions of connectivity over e-hypergraphs: the internal connectivity
and two auxiliar ones, which are 2-edge-connectivity and connectivity.
The second section contains the definition of tree-decompositions, of a few
operations over e-tree-decompositions and the three notions of connectivity.
In Section 3, we define and study quasi-linear sets.
In Section 4, we introduce the notion of a nowhere-critical and of an
(everywhere-)critical e-tree-decomposition. We establish the equality 7;.. =
T2 @ T.S.. We define two other notion of criticality associated with the two
other notions of connectivity. That permits to study the linear and critical
case and the critical case (see Theorems 60 and 61).
In Section 5, we recall briefly MSO logic, define the algebra II and, by
Theorem 65, show that IT produces, for each k, an equivalent subset of 7.
In Section 6, we recall MSO-transductions and establish that each operation
of II preserves MSO-parsability. It follows Theorems 70, 74, and 76.
In Appendix a (resp. b and ¢), we prove Theorem 60 (resp. 61, 70).



Notation

We denote by [i,j] the set of integers {i,i + 1,...,7} and by [n] the
interval [1,n]. Let A be a set. The cardinality of A is denoted by card(A),
its powerset by P(A). The set of nonempty sequences of elements of A
is denoted by A", and sequences are denoted by (ai,...,a,) with com-
mas and parentheses. We use := for “equal by definition” i.e, for in-
troducing new notations, and :&, similarly, for introducing logical con-
ditions. A binary relation R C A x B is also called a transduction.
The domain of R is Dom(R) := {a € A | (a,b) € R}, and the image
of R is Im(R) := {b € B | (a,b) € R}. The composition of two rela-
tions R C Ax B,and § C B x C is denoted by So R C Ax C. R is
functional if card({b | (a,b) € R}) <1 for each a € Dom(R). We identify
functional relations R C A x B with partial functions R : A — B. The
restriction of a partial function f to a subset A’ of Dom(f) is denoted by
f | A'. If two partial functions f : A — B and g : A’ — B’ coincide
on Dom(f) N Dom(g), we denote by f U g their common extension into a
partial function AUA’" — BUB’. By a mapping, we mean a total function.

1 Hypergraph

We deal with a certain class of concrete unoriented unlabeled hyper-
graphs, which we call simply “e-hypergraphs”. Every e-hypergraph H is
defined in a very simple way: it is a hypergraph, denoted by Gy with
a distinguished edge: its “source-edge”. We extend to such hypergraphs
the operation of substitution defined by Bauderon and Courcelle [1] or by
Habel and Kreowski [10]. We recall the notion of an internally connected
e-hypergraph introduced in [4] that plays an important role in this arti-
cles and the both auxiliary notions of a connected e-hypergraph and of a
2-edge-connected e-hypergraph.

Definition 3 A hypergraph G is a sequence (Vg, Eg, verts), where V¢ is
the finite set of vertices, E¢ is the finite set of edges and verts is a mapping
Ec — P(V¢) that associates with every edge of G its set of extremities.
The sets Vi and Eg are supposed to be disjoint.

A vertex z and an edge e are incident if z is an extremity of e. Two
distinct vertices (resp. edges) are adjacent if they are incident to the same
edge (resp. vertex). A vertex is isolated if it is incident with no edge. The
degree of an edge is the number of its extremities. A graph is a hypergraph,



whose every edge has a degree 2. The empty hypergraph is the sequence
(0,0,0) denoted by 0.

Definition 4 A hypergraph G is a subhypergraph of a hypergraph H or is
contained in H, denoted by G C H, if Vg and Eg are subsets of Vg and
Ej, respectively, and if every edge d of G verifies: vertg(d) = verty(d).
Let G and H be two hypergraphs such that vertg(e) = verty(e) for each
e € Eg NEg. The union of G and H, denoted by G U H, is the minimal
hypergraph that contains G and H. The intersection of G and H, denoted
by G N H, is the maximal subhypergraph of both G and H.

Now we define the notion of a connected hypergraph. From a such
definition, it follows that every hypergraph with no vertex is connected if
and only if it contains a unique edge.

Definition 5 Let G be a hypergraph. A path of G is a nonempty sequence
p=(01,...,0m) € (VGUEg)T for some m > 1, with o; and 0; incident for
every i € [m — 1]. The initial (resp. terminal) extremity of p is o1 (resp. o).
An internal vertex of p is a vertex of the subsequence, eventually empty,
(02,...,0m—1). The path p is elementary if every two edges of the form
o; and o; with 1 < 4 < j < m are distinct. A path is a cycle having
as extremities two identical vertices. Let p and ¢ two paths of the form
respectively (o1,...,0pm) and (uy,...,upy) with o, = u;, the concatenation
of p and q is the path (o1,...,0m,u2,...,up). A hypergraph G is connected
if it is nonempty, and if every two elements of VqUEg are the extremities of
some path of G. A connected component of G is a maximal subhypergraph
of G that is connected. A connected hypergraph G is 2-edge-connected if it
contains at least one vertex, and if every two vertices of G are the extremities
of two edge-disjoint paths of G.

We need three useful operations on hypergraphs that enable us to define
from a hypergraph G and a set a new hypergraph that is necessarily a
subhypergraph of G (operations “\” and “|”) or not (operation \\).

Notation 6 Let G be a hypergraph and D a set. We denote by G\D
(resp. G | D) the maximal (resp. minimal) subhypergraph of G that does
not contain (resp. contains) any element of D (as edge or as vertex). If D
is a singleton {d}, G\D (resp. G | D) is denoted by G\d (resp. G | d). We
denote by G\\D the hypergraph (Vi — D,Eq, f) where f associates with
every edge d of G the set vertg(d) — D.



For instance, if e designs some edge of some hypergraph G, G | e denotes
a hypergraph with one edge and with vertices the extremities of e in G and
G | verti(e) denotes the discrete one with vertices the extremities of e. It
comes: (G [e)\e =G | vertg(e).

The next result, extension over hypergraphs of a classical result on
graphs, that can be found in [16], will be admitted:

Lemma 7 FEvery hypergraph G is 2-edge-connected if and only if G is con-
nected and if G\d is connected, for every edge d € Eg.

Let us define e-hypergraph.

Definition 8 An e-hypergraph H is a sequence (e, Vg, Ep, verty) where
(Vi,Ep,verty) is a hypergraph and ey an edge of Ep, the source-edge
of H. A source (resp. internal verter) of H is any vertex of verty(ep)
(resp. Vi — verty(er)). In order to simplify, (V, Ef, verty) is denoted
by Gy and H shall be identified with the pair (e, Gg). G denotes the set
of all e-hypergraphs.

The type of H is the degree of ef;. The rank of H is the maximal degree
of all of its edges. A subhypergraph (resp. connected component) of H is
a subhypergraph (resp. connected component) of Gg\ey (that is not an
e-hypergraph!).

Now, we recall the notion of an internally connected e-hypergraph due
to Courcelle [4]. We extend the notions of a connected hypergraph and
of a 2-edge-connected hypergraph to e-hypergraphs. These extensions are
made in two different way: either we consider the hypergraph Gy, or the
hypergraph Gp\ey. The reason is simple: it works! For instance, see
Lemmas 10 and 16.

Definition 9 (Connectivity) Let H € G. A path of H is a path of Gp.
It is internal in H if it belongs to IT, IT x S, S x [T or § x [T x S
with S := verty(ey) and I := (Eg U Vy) — ({eg} U verty(em)). A
subhypergraph K of H is internally connected in H if it is nonempty and if
every two elements of V g UEk are the extremities of some path of K internal
in H. An internally connected component of H is a maximal subhypergraph
of H to be internally connected in H. The e-hypergraph H is:

e internally connected if Gy \ep is internally connected in H.
e connected if Gp\ey is connected.

e 2-edge-connected if Gy is 2-edge-connected.



H is empty if Gg\eg = 0. An isolated vertez of H is an isolated vertex
of Gg\en. H is without-isolated-vertex if it does not contain any isolated
vertex. The set of all internally connected e-hypergraphs is denoted G; ..

Observe that the precedent definition requires for every internally con-
nected subhypergraph of some e-hypergraph to contain some non-source
edge or some internal-vertex. Consequence of the precedent definition and
of Lemma 10, we have the following characterization. The proof is left to
the reader.

Lemma 10 Every e-hypergraph H is 2-edge-connected if and only if it is
connected, and if H\d is connected, for every d € Eg\ep.

The notion of an internal-connectivity e-hypergraph is less natural than
the notion of a connected one. For example, two distinct internally con-
nected component of some e-hypergraph H are not necessarily disjoint:
eventually they can have in common certain source vertices of H. Nota-
tion 11 and Fact 12 permit to define the notion of an internally connected
e-hypergraph thanks the notion of a connected e-hypergraph. This charac-
terization will be useful in a large number of proofs.

Notation 11 Let H € G and D be a set. If D is disjoint with {ey} U
verty(er), we denote by H\D the e-hypergraph (ey,Gg\D). If D does
not contain any internal vertex of H, we denote by H\\D the e-hypergraph
(eH, GH\\D)

The proof of the next fact is easy and is omitted.
Fact 12 For every e-hypergraph H, the following assertions are equivalent:
e H is internally connected.
e H\\D is not defined or is internally connected, for every set D.
e H is connected and H\\D is internally connected, for some set D.
e H and H\\S are connected, with S the set of sources of H.

Now, let us present the operation of substitution. This definition is
more simple than in the case of concrete sourced-hypergraphs for at least
two reasons: the edge to substitute in H is necessarily the source-edge of
K, the substitution does not identify vertices of H.



Definition 13 Let H,K € G with Gg [ ex = Gg N Gg = Gg | ex
and ey # ex. We denote by H[K] the e-hypergraph (eq, (Gg UGKk)\ex).
Observing that H is the unique e-hypergraph L to verify L|K]| = H[K], H
is said the contezt of K in H[K].

Let m > 1 and H,Ki,...,K,, € G with (H[K1]...)[Kn] =
(H[Kr)] .- )[Krm)], for every permutation m on [m]. The e-hypergraph
(H[Ki]...)[Kp)] is denoted by H[Kj,..., Kpy].

A property @ is said substitution-closed in G if for every e-hypergraphs
H and K that verify ¢, the e-hypergraph H[K] verifies ¢ if it is defined.

In our formalism, we don’t orient the edges. The unique interest of a
such choice is the simplicity in which we manipulate the object: see for
example Fact 27 established in the next section. A counterpart of a such
simplicity (in comparison for example with the formalism of Bauderon and
Courcelle [1]) is the impossibility to extend such operations on isomorphic
class of e-hypergraphs. It is easy to exhibit four e-hypergraphs H, K, H', K’
with H (resp. K) isomorphic with H' (resp. K') such that H[K] and H'[K']
are defined but are not isomorphic. To assure a such isomorphism, it would
be necessarily to orient the replaced hyperedge, like it is made in [1]. How-
ever, the objects considered in this article are concrete. Hence, a such sim-
plification can be made.

The next fact establishes a classical property of the substitution: that is
context-free. The proof is easy and is omitted.

Lemma 14 Let G, H, K be three e-hypergraphs with (G[H])[K] defined. If
G[H[K]] (resp. (G|K])[H]) is defined, then it is equal to (G[H])[K].

Before to prove Lemma 16, a little fact that states that \\ commutes
with the substitution. Its proof is easy, and is omitted.

Fact 15 Let H,K two e-hypergraphs and D be a set with (H[K])\\D de-
fined. Then, (H[K])\\D = (H\\D)[K\\D].

Lemma 16 The properties “internally connected”, “connected”, “2-edge-
connected”, “nonempty” and “without-isolated-vertex” are substitution-
closed in G.

Proof.
Let G,H,K € G such that G = H[K]. By definition, we have : G¢\eg =
(GH U GK)\{eH, eK}. Then :

10



1. G is connected, if H and K are connected.
If Gy\{emn,ex} = 0, the conclusion is obvious. Otherwise, every
connected component of Gg\{em,ex} is not disjoint with Gg | ex.
The connectivity of Gx\ex implies G¢\eg and G connected.

2. @ is internal-connected, if H and K are internal-connected.
Let S := vertg(eg). The e-hypergraphs H and K are connected
(Fact 12), then G is connected (precedent point). The e-hypergraph
G\\S, equal to H\\S[K\\S] (Fact 15), is connected (H\\S and K\\S
are connected (Fact 12)). Then, G is internal-connected (Fact 12).

3. G is 2-edge-connected, if H and K are 2-edge-connected.
H and K are connected, then G too. For every d € Egs\ey, the e-
hypergraphs H\d and K\d are connected (Lemma 7), thus, G\d, equal
to (N\d)[P\d], is connected. Then, G is 2-edge-connected (Lemma 7).

4,5 G is nonempty (resp. without-isolated-vertex), if H and K are
nonempty (resp. without-isolated-vertex).
Evident. O

The next fact studies the converse of the precedent result.

Fact 17 Let H K € G with H[K]| defined. H is connected, if H[K] is
connected and if K is nonempty. H is internally connected, if H[K] is
internally connected and if K\\verty(eg) is nonempty.

Proof.
Let G,H, K € G such that G = H[K]. Let S := verty(er). We have :

e H is connected, if G is connected and if K is nonempty.
If H\eg is empty, the conclusion is obvious. Moreover, we suppose
H\ex nonempty. If a connected component L of H\ex is disjoint
with Gp | ek, L is disjoint with Gg\eg, is a connected component
of G disjoint with the nonempty subhypergraph Gg\ex of G. Con-
tradiction. Then, every connected component of H\eg is not disjoint
with Gz [ ex. Hence, H is connected.

e H is internally connected, if G is internally connected and if K'\\S is
nonempty.
G is connected (Fact 12), then H is connected (precedent point). G\\S

is connected (Fact 12), is equal to (H\\S)[K\\S] (Fact 15). H\\S is
connected (precedent point). H is internally connected (Fact 12). O

11



2 Tree-decomposition

In this section, we recall the notion of a tree-decomposition, introduced
by Robertson and Seymour in [14]. The definition of a tree-decomposition
we select, is the one in which every node of the tree is associates not to a
set of vertices of the tree-decomposed hypergraph, but to a subhypergraph
of this hypergraph. This definition can be found in [15].

That permits to define, in the same way than for hypergraphs, e-tree-
decompositions from tree-decomposition: an e-tree-decomposition X is a
tree-decomposition with a distinguished edge: its source-edge that is denoted
by ex. Their set is denoted by 7. The e-tree-decompositions are very near
with algebraic terms for two reasons. Firstly, every X € T contains an
e-hypergraph (its value denoted by val(X)) and a arborescent description
of it. Secondly, the tree can be considered as a rooted tree: it suffices to
consider as its root the unique node that contains the source-edge ex.

This proximity permits to extend on 7 some very useful tools usually
defined for terms. For example, we define the relation C and the operation
of substitution []. We obtain two non surprising but important properties:
it is context-free and commutes with val.

Before to recall the notion of a tree-decomposition, let us recall the trees.

Definition 18 A forest is a graph with no elementary cycle and with at
least one vertex. A tree is a connected forest. A vertex (resp. edge) of a
tree is called a node (resp. arc). For every tree T, its set of nodes Vp is
denoted by N, its set of arcs Ep is denoted by Ar. A tree is atomic if it
contains a unique node. A rooted tree is a pair (T, r) consisting of a tree T
and a distinguished node r called the root. Let s and ¢ be two nodes of a
rooted-tree (T,r). The node s is a descendant node of t if every path of T
from s to r contains ¢. The node s is a child (resp. the parent) of a node ¢,
if s and ¢ are adjacent and if s (resp. t) is a descendant node of ¢ (resp. s).
A leaf of (T,r) is a node with no children.

The below definition is illustrated by Example 20.

Definition 19 (Tree-decomposition) A tree-decomposition is a pair
(T,g) where T is a tree and where g associates with every node ¢ of T a
hypergraph ¢(t) such that:

o E ) NEyy = 0, for all distinct nodes s, of T'.

e for all nodes s,u of T', every node ¢ of the elementary path of T' with
extremities s and u, verifies: g(s) Ng(u) C g(¢).

12



The width of a tree-decomposition (7,g) is denoted by wd(T,g) and is
the maximum of card(V)) — 1 taken over all ¢ € Ny. The tree-width
of a hypergraph G, denoted by twd(G), is the minimum width of all
tree-decompositions (T, g) such that G = U;cn, 9(t). For every tree-
decomposition (7T,g) and every subset U C Ny (resp. subhypergraph

U C T), we denote by g(U) the hypergraph U,y 9(t) (resp. Uey,, 9(%))-

Example 20 Figure 1 represents, at the left side, a hypergraph G of
treewidth 2 and, at the right side, a tree-decomposition (7', g) of G of width
3. G contains 4 vertices (represented by dark disks) and 4 edges respectively
of degree 0, 1,2,3. The edge of degree 2 is represented by a simple line. The
other edges are represented by a white box linked to its extremities thanks
dark lines. T contains 3 nodes. Each of them is represented by a white disk.
The mapping g is representing by drawing in each node of T' the subhyper-
graph g(t) of G. The dotted lines permit for every vertex of G to relate its
different occurences that appear in the nodes of T'.

Figure 1: a tree-decomposition of a hypergraph.

Definition 21 An e-tree-decomposition X is a sequence (ex,Tx,gx),
where (Tx,gx) is a tree-decomposition and ex an edge of gx(Tx), the
source-edge of X. The hypergraph gx (T x), denoted by Gx, is supposed to
be disjoint with Tx. We denote by T the set of all e-tree-decompositions
and, for every k > —1, by T the set {X € T | wd(X) < k}.

Let X € T. The e-hypergraph denoted by X, the value of X, is the couple
(ex, Gx), denoted by val(X). An edge (resp. vertex, source, internal verter)
of X is an edge (resp. vertex, source, internal vertex) of val(X). The root
of X, denoted by rx, is the unique node ¢ of Tx such that ex € Eg ().
An arc (resp. node, leaf) of X is an arc (resp. node, leaf) of (Tx,rx). The
set of all nodes, arcs, vertices, edges of X are denoted respectively by Ny,
Ax, V)(, Ex.

Two e-tree-decompositions are equivalent if they have same value. For
each u C T, we denote by val(u) the set {val(X) | X € u}. Two subsets
u,v of T are equivalent if val(u) = val(v).
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In the next definition, we extend the substitution to 7 (see Example 23).

Definition 22 (Edge substitution) Let Y, Z € T with TyN(GzUTy) =
) = (GyUTy)NTz and val(Y)[val(Z)] defined. We denote by Y [Z] denote
the e-tree-decomposition (ey, T, g) where:

e T is obtained from Ty U Tz by adding the edge ez of extremities rz
and the unique node s of Y that verifies: ez € gy (s).

e g associates with every node s of T' the hypergraph gy (s)\ez if s is a
node of Y and gz(s)\ez, otherwise.

Let m > 1 and Y, Zy,...,Z, € T with (Y[Zi]..)[Zn] =
(Y[Zr@)l-- ) Zr(myl, for every permutation 7 on [m]. The e-tree-
decomposition (Y[Zi]...)[Zy] is denoted by Y[Zi,...,Z,]. For all sub-
sets u,v of T, we denote b u[v] the union u Uv U{H[Ky,..., K] | H €
u, Kiy..., Ky €v,m > 1}

Example 23 Figure 2 represents three e-tree-decompositions X, Y, Z that
verify X = Y[Z]. X is drawed at the top of the figure. Y (resp. Z) is drawed
at the bottom and at the left (resp. right) side. Source edge are represented
with thick edges. In concordance with the definition of [], the arc d of X
(edge of the tree Tx) is the unique edge shared by Y and Z and is the
source-edge of Y.

Figure 2: (hyper)edge-replacement.

The substitution defined above is context-free and commutes with the
valuation mapping val. These both properties are the object of the both
next facts. Lemma 24 is the direct consequence of Lemma 14. Its proof is
omitted. The proof of Lemma 25 is obvious and is omitted.
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Lemma 24 Let X,Y,Z € T with (X[Y]))[Z] defined. If X[Y[Z]]
(resp. (X[Z])[Y]) is defined, then it is equal to (X[Y])[Z].

Lemma 25 Let be an e-tree-decomposition of the form Y|[Zy,..., Zy] for
some m > 1. Then, val(Y[Z1,..., Zy)) = val(Y)[val(Z1),...,val(Zy,)].

As it can be observed in Example 23, every subtree of any e-tree-
decomposition determines a new e-tree-decompositions, contained in the
first. These notions are formalized below:

Definition 26 Let X € 7 and T a subtree of Tx. The e-tree-
decomposition generated by X and T is the sequence (e, T,g), denoted by
X|T, where:

e ¢ is ey if ry € N7 and, otherwise, the unique edge incident in Tx
with some node of T' and some node of the connected component of
T x\d that contains rx.

e g associates with every node ¢ of T’ the union gx () U Uy p, Ga with
D, the set of all arcs of A x — A7 incident in T x with ¢ and where G
designs for every arc d of X the unique connected hypergraph having
for unique edge d and for vertices Vg, () N Vgy(,) With u and v the
two extremities of d in T x.

These definitions are extended in the obvious way to every connected set
of nodes of X and to every node of X. Let d be an arc of X. We denote
by X 1 d (resp. X | d) the e-tree-decomposition generated by X and the
maximal subtree of T x\d that contains (resp. does not contain) rx.

An e-tree-decomposition Y is contained in X (resp. strictly), denoted by
Y C X, (resp. C) if Y = X|T for some subtree (resp. proper subtree) T’
of Tx. X € T is atomic if Tx is atomic. For every u C T, we denote by
atom(u) the set {X|t | X € u,t € Nx}.

Let X € T. The degree of some edge (resp. arc) d in X is the degree of
din Gy (resp. Gxy). The type of X is the degree of ex in X. The rank of
X is the maximal degree of all of its arcs and edges. For every integer [, the
set of all e-tree-decompositions of type (resp. rank) at most [ is denoted by
Type; (resp. Rank;). Type denotes the set of all e-tree-decompositions of
non null type.

An interesting property of the substitution [] in 7 is the fact that the
e-tree-decomposition result Y[Z] keeps every information contained in Y or
in Z. More precisely, the pair (Y[Z],ez) determines a unique pair {Y, Z}.
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This property due to the fact that edges are non-oriented is expressed by
Fact 27. Tts proof is easy and is omitted.

Fact 27 For every X,Y,Z € T, the following assertions are equivalent:
e X =YI[Z].
e X contains an arc d such that: (X1d, X |d) = (Y, Z).

A very useful operation over e-tree-decompositions is the contraction of
an arc. Clearly, a such operation preserves the value.

Definition 28 The e-tree-decomposition obtained from some X € T by
contracting some arc d of X is the sequence (ex,T,g) where:

e T is obtained from T x\d by identifying s with ¢, renamed ¢.

e g associates with every node u of T' the hypergraph gx (u) if u # t and
gx(s) Ugx(t), otherwise.

where s and ¢ are the extremities of d in T x with ¢ the parent of s.

The e-tree-decomposition obtained from X by contracting some set D of arcs
of X is the one obtained from X by contracting all arcs of D, one by one.

In a natural way, we extend the operation \\ on 7.

Notation 29 Let X be an e-tree-decomposition and D be a set that does
not contain any internal vertex of X. We denote by X\\D the e-tree-
decomposition (ex, Tx,h) where h associates with every node ¢ of X the

hypergraph gx (t)\\D.

The operation \\ verifies tow nice properties. It commutes with val and
with [], under certain condition. These both properties are the object of the
both following facts. Their proof are easy and are omitted.

Fact 30 Each e-tree-decomposition of the form X\\D  wverifies:
val(X\\D) = val(X)\\D.

Fact 31 Let Y,Z € T and let D be a set. If (Y[Z])\\D is defined, or if
Y\\D and Z\\D are defined, then (Y[Z]))\\D = (Y\\D)[Z\\D].

To conclude this section, we extend the different notions of connectivity
defined above over e-hypergraphs on e-tree-decompositions. A such exten-
sion is made in a very simple way: an e-tree-decomposition is “connected”
(generic term) if every e-hypergraph it contains is “connected”.
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Definition 32 (Connectivity) An e-tree-decomposition Y is connected
(vesp. internally connected, 2-edge-connected, nonempty, without-isolated-
vertez) if for every X C Y, the e-hypergraph val(X) is connected (resp. in-
ternally connected, 2-edge-connected, nonempty, without-isolated-vertex).
The set of all connected (resp. internally connected, 2-edge-connected) e-
tree-decompositions is denoted by 77, (resp. Ti.c, Ta.c)-

Interesting properties of these three notions of connectivity, they are
substitution-closed and hereditary in 7. This fact is the object of Lemma 35.

Definition 33 A property ¢ is hereditary in T if for every e-tree-
decomposition X that verifies ¢, every e-tree-decomposition contained in
X verifies ¢. A property ¢ is substitution-closed in T if for all e-tree-
decompositions Y and Z that verify ¢, the e-tree-decomposition Y[Z] is not
defined or verifies .

Fact 34 Let ¢ be a property such that for every X € T and every arc of X,
X1d and X |d verify ¢ if X verifies ¢. Then, ¢ is hereditary.

Proof.

Direct consequence of Fact 27 and the fact that for all e-tree-decompositions
W C X, X is of the form Y[Zy,...,2Z,] with W € {Y,Z,...,Zy,} or of
the form Y[W{[Zy,...,Zy]] for some Y, Z;,...,Z,, € T and some m > 1. O

Lemma 35 Fvery property defined in Definition 32 is hereditary and
substitution-closed in T .

Proof.

Let ¢ be a property defined in Definition 32. LC is transitive in T,
then ¢ is hereditary. Let d be an arc of some X € 7T such that
X 17d and X | d verify ¢. The fact that ¢ is hereditary, the equality
atom({X}) = atom({X 1d, X | d}), the fact that ¢ is substitution-closed
in G (Lemma 16) imply that X verifies ¢. Then, ¢ is substitution-closed. O

Definition 32 is not practical, when we have to establish that some e-
tree-decomposition is connected. The next lemma gives three definitions of
these notions of connectivity, that are equivalent and more simple.

Lemma 36 An e-tree-decomposition X is connected (resp. internally con-
nected, 2-edge-connected) if and only if val(X) is connected (resp. internally
connected, 2-edge-connected) and if every arc d of X is such that, respec-
tively:
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val(X | d) is connected.
val(X | d) is internally connected.

Gxy\d and Gxg\d are connected.

Proof.

An e-tree-decomposition X verifies @1 (resp. @j.c, p2) if val(X) is connected
(resp. internally connected, 2-edge-connected) and if for every arc d of X,
val(X | d) is connected (resp. val(X | d) is internally connected, G x\d
and Gxj\d are connected). As a consequence of Lemma 35 and of the
fact that every atomic e-tree-decomposition is connected (resp. internally
connected, 2-edge-connected) if and only if it verifies ¢ (resp. @ic, p2),
to conclude it suffices to prove that @1, ¢;. and o are hereditary and
substitution-closed. Observe that for all arcs ¢, d of some X € T, we have:
Xte=(Xtd)tcand X |c= ((X1d)lc)[X ]d], if ¢ is an arc of X 1d, we

have:

1

3,4

Xte=X1d[(X]d)tc] and X | c=(X]d)lc, if ¢ is an arc of X |d.

1 is substitution-closed.

Let X € T and d € Ax such that X 1 d and X | d verifying (.
Lemma 16 involves val(X') connected. Let c € Ax. Ifc = d, val(X | c)
is by hypothesis connected. If ¢ is an arc of X 1 d (resp. X | d),
val(X | c) is equal to val((X 1d){c)[val(X |d)] (resp. val((X |d)]c))
and is connected (by Lemma 16). Then, ¢; is substitution closed.

1 is hereditary.

Let X € T that verifies ¢; and let d € Ax. The e-hypergraph val(X 1
d) (resp. X | d) is, by Fact 17, (resp. by hypothesis) connected. Let ¢
be an edge of X 1d. The e-hypergraph H = val((X 1d) ] c) verifies
val(X | ¢) = H[val(X | d)] and, then, is connected (Fact 17). Then,
X 1 d verifies ;. Let ¢ be an edge of X | d. The e-hypergraph
val((X | d) | c) is equal to X | ¢ and then is connected. Then, X | d
verifies 1. Thus, ¢ is hereditary.

©;.c s substitution-closed and hereditary.
The proof is obtained from the ones of Point 1 and 2, by replacing
“connected” by “internally connected”.

9 is substitution-closed.

Let X € T and let d € Ax such that Y := X 1d and Z := X | d verify
2. val(X) is 2-edge-connected (Lemma 16). Let ¢ € Ax. If ¢ = d,
Gy \d and Gz\d are by hypothesis connected. Otherwise, (¢, Gxtc),
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equal to (¢, Gy.) (resp. (¢, Gze)[(d,Gy)) if ¢ is an arc of Y (resp. Z),
is connected, the e-hypergraph (¢, Gx.), equal to val(Y | ¢)[val(Z)]
(resp. Gyy) if ¢ is an arc of Y (resp. Z), is connected. Then, ¢y is
substitution-closed.

6 2 is hereditary.
Let X € T that verifies ¢o and let d € Ax. Let Y := X 1 d and
7Z :=X\l|d Let c € Ey. If c =d, (¢, Gy) is, by hypothesis, con-
nected. Otherwise, (¢, Gy) verifies (¢, Gx) = (¢, Gy)[val(Z)] with
(¢, Gx) connected and is connected (Fact 17). Then, val(Y) is 2-
edge-connected. Let ¢ € Ay. Let L := (¢, Gyy) and M := (¢, Gyy).
The e-hypergraph L verifies (¢, Gxy.) = L[val(Z)] (resp. is equal
to (¢,Gxy)) if d is an arc of X 1 ¢ (resp. X | ¢) and, by Fact 17
(resp. by hypothesis), is connected. M is equal to (¢, Gxy.) (resp. ver-
ifies (¢, Gx|c) = M[val(Z)]) if d is an arc of X t¢ (resp. X |¢) and, by
Fact 17 (resp. by hypothesis), is connected. Then, Y verifies 5. By a
symmetrical proof than above, we prove that Z verifies @o. Thus, @9
is hereditary. O

In a similar way than in Fact 12, we compare the notions of a connected
e-tree-decomposition and of an internally connected e-tree-decomposition.

Fact 37 For every X € T, the following assertions are equivalent:

o X is internally connected.
e X\\D is not defined or internally connected, for every set D.

e X is connected and X\\D is internally connected, for some set D.

X and X\\S are connected, with S the set of sources of X.

Proof.
Direct consequence of Definition 32 and Fact 12. O

3 Linearity and quasi-linearity

In this section, we define quasi-linear subsets of 7. This definition in-
duces a new measure of complexity over e-tree-decompositions, more pre-
cisely of their rooted trees. Hence, each e-tree-decomposition has two com-
plexities: this new one and the width. That permits to study these two
ones under “connectivity” constraints. Example 39 illustrates the below
definition.
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Definition 38 (Quasi-linearity) An e-tree-decomposition is linear if it
has a unique leaf. Their set is denoted by £. We define Ly := () and, for
each p > 0, we define £, := L[L,]. Every subset of £, for some p > 0 is
said quasi-linear.

Example 39 Figure 3 represents three e-tree-decompositions of Lo = L[L].
The value of each of them is an empty e-hypergraph (with no vertex and
having as unique edge the source edge). The source edge is represented by
a box. The first e-tree-decomposition in the left side is linear (€ £). The
other ones are not linear and, then, belong to Lo — L.

Figure 3: a quasi-linear set.

Note that above definition induces a new notion of complexity on 7
that associates with every X € 7 the unique integer p(X) > 1 such that
X € Lyx)—Lyx)—1- This complexity is near with the path-width of the tree
T x, usually denoted pwd (the path-width of a hypergraph is the smallest
width of all its “patmcompositions”, indeed tree-decomposition of the
form (T, g) with T a path). It is not difficult to prove that for every X € T,
the integer p(X) is, almost 1, the smallest width of path-decompositions
of (Tx,rx) that eliminates every child before every parent and, verifies:
pwd(Tx) < p(X) <2 (1 + pwd(Tx)).

In the next lemma, we present how to compute p(X) for each X € T:

Lemma 40 For every X € T, the integer p such that X € L, — L,
is px(rx) where px associates with every node t of X the integer defined
recursively in the following way:

e px(t) =1, if t is a leaf of X.
e px(t) = h(px(t1),...,px(tm)), with t1,... ty the childrens of t, oth-

erwise.
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where h associates with every sequence (nqi,...,ny,) € N™ for some
m > 1 the integer max{n; | i € [m]} if there is a unique integer j € [m]
such that n; = max{n; | i € [m]} and 1+max{n; | i € [m]}, otherwise.

Proof.

For every X € T, we denote by p(X) the unique integer p such that X €
L, — Ly 1 and by px (resp. h) the mapping defined in Lemma 40. Let us
prove p(X) = px(rx) for every X € T.

Clearly, every X € T with px(rx) = 1 is linear. Suppose there is [ > 1
such that every X € T with px(rx) <1 verifies p(X) < px(rx). Let X € T
such that px(rx) = [ + 1. Denote by P the minimal subtree of Ty that
contains every node ¢ of X such that: px(t) =1+ 1. As a consequence of
the definition of h, (P,rx) contains a unique leaf. Hence, X|P € L. Denote
by v the set of all e-tree-decompositions generated by X and by some tree
of Tx\Np. As a consequence of the definition of h, pz(t) = px(t) < I,
for every Z € v and every node t of Z. By induction, p(Z) < [ for every
i € [m]. The inclusion X € {X|P}[v] implies p(X) <1+1 < px(rx). Then,
p(X) < px(rx) for every X € T.

Clearly, every X € L verifies px(ry) = 1. Suppose there is [ > 1 such
that every X € L; verifies: px(rx) < p(X). Let X € £;11 — £L;. Thus, X is
equal to Y[Z1,...,Z,] for some m < 1,Y € £ and some Z1,...,Z, €T,
By induction, every i € [m] verifies pz (rz) < p(Z;) < I. Clearly,
px(t) = pz,(t), for every 7 € [m] and every node ¢ of Z;. Every leaf t of Y’
verifies px(t) < 141. We have: h(ay + by, ...,an + by) < h(ay,...,ap) +1,

for every sequences (ai,...,a,) € N} and (by,...,b,) € [0,I]" for some
n > 1. Then, every node ¢ of X verifies px () < py(t) +1 < p(X). Thus,
px(ryx) < p(X) for every X € T. O

The precedent lemma has two following corollaries.

Corollary 41 Every e-tree-decomposition of the form Y [Z] verifies:

e p(Y[Z]) =p(2) if p(Y) < p(Z).
o p(Y[Z]) <p(Y)+1 if p(Y) > p(Z).
where for each X € T, p(X) denotes the unique p such that X €
Ly, —Lp_1.
Proof.

For every X € T, we denote by p(X) the unique integer p such that X € £,—
Ly—1, by px (resp. h) the mapping defined in Lemma 40. Let X,Y,Z € T
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with X = Y[Z] and ¢ the integer max{p(Y),p(Z)}. Denote by U the e-
tree-decomposition generated by Y and the minimal subtree of Ty that
contains rx, the node of Y adjacent in Tx with rz and every node ¢ that
verifies: py (t) = g. Then, Y = U[Uy,...,Up] for some Uy,..., U, € T and
some m > 1. As a consequence of Lemma 40, p(U;) < ¢ for every i € [m)].
Denote by V' the e-tree-decomposition generated by Z and the minimal
subtree of Tz that contains every node t of Z such that: pz(t) = p(2).
Then, Z =V [V4,...,Vy] for some Vi,...,V,, € T and some n > 1. Clearly,
p(V;) < q for every i € [n]. The equality X = (U[V)[U1,...,Un,Vi,..., V4]
implies p(X) < p(U[V]) + ¢ — 1. Two cases appear:
(

e p(X) =p(2) if p(Y) <p(Z).
(Ty,rx) is a rooted path. It comes: p(U[V]) =1 and p(X) = p(Z).

o p(X) <14p(Y) if p(Y) > p(2).
The rooted trees (Ty,rx), (Typy),rx) are the “union” of two rooted
path. It comes: p(U[V]) <2 and p(X) <1+ p(Y). O

The proof of the next corollary uses the same technical than the prece-
dent one. It is left to the reader. Note that the complexity of the complete
binary rooted-tree with 2™ leaves is 1 + n.

Corollary 42 Fach e-tree-decomposition having n leaves belongs to
Liog(1+n)]-

To conclude this section, we study the five notions defined in Definitions 9
and 32 that concern e-hypergraphs and e-tree-decompositions and the two
notions of complexities defined on 7. Let us consider some H € G, some
property ¢ (in Definition 32) verified by H and k := twd(H). Let us define
T ={XeT|H=val(X)} and T, ;= {X € T | X |= ¢}. A first natural
question comes: is T, N T N T nonempty? The answer is yes. The proof
presents no difficulty and is made by using Lemma 36.

Let us interest to the notion of quasi-linearity. Denote by p the inte-
ger min{l | £L; N T N Ty # 0}. It follows a second natural question: is
L, N T, N TN Ty nonempty? If ¢ is the property “nonempty” or “without-
isolated-vertex”, the answer is yes. This result is the object of Lemma 43.
Otherwise, the answer depends on the graph. Nevertheless, if ¢ is the prop-
erty “internally connected”, L£,.(41) N T, N Tp N Tar # 0. This result is the
object of Lemma 44. Note that, by using similar technical, we can extend
this result to the properties “connected” and “2-edge-connected”.

Lemma 43 Let k,l be two integers. FEvery X € LiNTy admits an equivalent
e-tree-decomposition Y € L; NTy such that:
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e Y is nonempty, if val(X) is nonempty.
e Y is without-isolated-vertez, if val(X) is without-isolated-vertex.
e Y werifies every property o defined in Definition 32 and verified by X.

Proof.

Let k,l be two integers. For every X € T, we denote by |X| the sum
card(Nx) + > N, card(Vg,(y). An isolated-pair of X is pair (t,z)
where ¢ is a node of Nx\rxy and z is an isolated vertex and a source of
val(X|t). Clearly, every not without-isolated-vertex X € 7 admits a pair of
the form (¢,z) with ¢ € Nx and z an isolated vertex of val(X|¢). If val(X)
is without-isolated-vertex, x is incident in Gx with at least one edge of
Gx\ex and then is a source of X|t. Then, every without-isolated-vertex
e-tree-decomposition that denotes a without-isolated-vertex e-hypergraph
admits an isolated-pair.

Suppose there is n > 0 such that every X € £; N T, with |[X]| < n
admits an equivalent Y € £; N T, that verifies the condition of Lemma 43.
Let X € £;N T be an e-tree-decomposition with |X| = n. Denote by ¥
the e-tree-decomposition X if X is nonempty and the e-tree-decomposition
obtained from X by contracting an arc of X incident with a leaf [ of
X such that: gx(I) = 0. Denote by Z the e-tree-decomposition Y if
Y is without-isolated-vertex and, otherwise, the e-tree-decomposition
(ey, Ty, g) where g associates with every node s of Y the hypergraph gy (s)
if s # t and gy (s)\z otherwise, for some isolated-pair (¢,z) of Y. Clearly,
Y and Z belong to £; N 7 and are equivalent with X. FEvery property
defined in Definition 32 and verified by X, is verified by Y and by Z. If X
is nonempty and without-isolated-vertex, the conclusion is immediate. Oth-
erwise, Z verifies |Z| < n. The induction hypothesis permits to conclude. O

Now, we establish that every quasi-linear subset of 7 having for value a
set of internally connected e-hypergraphs can be rewritten into an equivalent
subset of 7; . N T that is quasi-linear too.

Lemma 44 For all k,l > 0, the set {X € LN T, | val(X) € G, .} is
equivalent with a subset of Ly.(11x) N Tic N T

Proof.

This proof comport two parts. A first one we treat the linear case. A
second one we treat the general case. For every X € T, we denote by p(X)
the unique integer p such that X € £, — L,_1. We denote by T the set of
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e-tee-decompositions that denote internally connected e-hypergraphs.

Part 1
For every X € T, we denote by |X| the number of its nodes and by f(X)
the integer max{1,1 + wd(X)}.

Suppose there is n > 0 such that every X € ZNL of size | X| < n admits
an equivalent e-tree-decomposition in Lrxy N Tie N Tya(x)- Let X € TN L
of size |X| = n+ 1. If X is atomic, if X contains no vertex or if val(X)
contains an isolated vertex (necessary, this vertex is unique), X admits
an equivalent atomic e-tree-decomposition in £ N 7;.. N Tyq(x). Moreover,
we suppose X not atomic, with at least one vertex and val(X) without-
isolated-vertex. We can suppose X nonempty and without-isolated-vertex
(Lemma 43). Denote by e the unique arc of X incident with rx and by
Ve the set of vertices Vg, (5) N Vg, (y) with s and ¢ the two extremities of
ein Tx. If V. = (), we have gx(rx)\ex = 0, the e-tree-decomposition
X' obtained from X by contracting e is equivalent with X, of width at
most wd(X) and verifies |X'| < |X|. The induction suffices to con-
clude. Moreover, we suppose V. # 0. Let Z = X|(Tx\rx). The set of
sources of 7 is the set V, and, then, is nonempty. 7 is nonempty and
without-isolated-vertex (Lemma 35), then there is an edge d in gz(I)\ez,
with [ the unique leaf of Z. The e-hypergraph val(X) is connected,
then Gz is connected (eventually Gz\ez is not connected). In conse-
quence, there is an internal-path p of val(Z) from d to a source of Z, noted s.

Denote by G1,..., Gy, the internally connected components of val(Z).
Without pert of generality, we can suppose d € Eg,. For every i € [m],
denote by K; the hypergraph obtained from G; by adding a new edge
noted d; of extremities the set of vertices of G; N gx(s) N gx(t) with s
and t the extremities of ez in Tx. By construction, (d;, K;) is internally
connected. For every i € [m], denote by Z; the sequence (d;, Tz,q)
where ¢ associates with every node ¢ of Z the intersection gz(t) N K;
if t # rz and (gz(t) N K;) U (K; | d;) if t = ryz. Clearly, for every
i € [m], Z; denotes (d;, K;) and belongs to Z N L N Tyqx). By induc-
tion, Z; admits an equivalent e-tree-decomposition Vi € Lx)NT;.cNTypa(x)-

The path p is an internal-path of (di, K;), contains no vertex of
(di, Ki)\\{s} for every ¢ € [2,m]. Then, for every i € [2,m], we have:
wd(Z;\\{s}) < wd(X) and, then, f(Z;\\s) < f(X). Then, for every
i € [2,m], Z;\\{s} belongs to ZN LN Tygx)—1 and admits, by induction, an
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equivalent W; € Lyxy—1 N Ti.c N Tyacx)- For every i € [2,m], denote by V;
the sequence (ew,, Tw;,g) where g associates with every node ¢ of W; the
unique hypergraph:

o gy (t), ift & N;.
e that contains s and verifies gy; (¢)\\{s} = gw;, (¢), if t € N;.

where N; is the minimal subtree of Ty; that contains every node u of
Vi such that an edge of gy; (u) is incident in Gz, with S.

Clearly, for every i € [2,m], V; belongs to Lrx)—1 N Tic N Twd(x)—1+41
and denotes val(Z;). Let U be an atomic e-tree-decomposition that
denotes (ex,gx(rx) U Uepy Ki | di). Rather to take isomorphic and
equivalent copies, we can suppose U[V1,...,V;,] defined. The equal-
ity val(X) = wval(U[Vi,...,Vn]), the internal-connectivity of val(X),
Lemma 25 and Fact 17, imply val(U) and U internally connected (U
is atomic). Hence, U[Vi,...,V,,] is equivalent with X and belongs to
Ly N Tie N Twd(x):

Part 2

Let k£ be an integer. Suppose, there is some n such that Z N L, N Ty is
equivalent with some subset L,.(;44) N Tic N Ty Let X € TN Ly N Ty
If X contains no vertex or if val(X) contains an isolated vertex (neces-
sary this vertex is unique), X admits an equivalent e-tree-decomposition
Y € LNT; .NT. If n =1, Part 1 suffices to conclude. Moreover, we suppose
X & LN T, with at least one vertex and val(X) without-isolated-vertex.
By Lemma 43, we can suppose X nonempty and without-isolated-vertex.

Denote by P the subpath of Tx that contains every node ¢ of X
associated to the value px(t) = px(rx) = p(X) (see Lemma 40). For every
node t of P, denote by u; the set of all e-tree-decompositions generated by
X and some maximal subtree of Tx\Np that contains a node adjacent
with ¢. We denote by u the union UteNP ug. It comes, u C L,,_1 N Ty.
In the same way than in Part 1, we can transform every Z € u into a set
vy CZINL,_1NT such that ULGUZ Gr\er, is the union of the distinct
internally connected component of val(Z) and such that for every L € zz,
we have: verty(ez) NV = verty(er). For every t € Np, we denote by
vy the set |J Zew, VZ- By induction, every v is equivalent with a subset of
WL m—1y.(14k) N Ti.e N T
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Denote by H the hypergraph gx(P) U UWE’U}t,tENP Gw | ew. De-
note by Y the sequence (ex,P,g) where g associates with every node
t of P the hypergraph gx(t) U Uyc,, Gw [ ew. Then, Y belongs
to £ N T, and verifies : val(X) = val(Y)[val(W;),...,val(W,,)] with
Wi, oo, Wit = Upen, we- val(X) is internally connected, then val(Y')
is internally connected (Fact 17). By induction, Y admits an equivalent
U € L1310 Tie N Ti. Without pert of generality, we can suppose that
U[Wy,...,Wp,] is defined. Then, X is equivalent with U[W,...,W,,] that
belongs to L1414y N Tic N T O

4 Criticality

This section comports three important results about criticality (Theo-
rems 50, 60 and 61).

Firstly, we define the notions of a nowhere-critical e-tree-decomposition
and of a (everywhere-)critical e-tree-decomposition. Their sets are respec-
tively denoted by 7,%¢ and T... Remarkable property, they suffice to product
T; . thanks the higher-order substitution ®, we define in this section. The-
orem 50 establishes: 7;. = T,%° ® T°.

The second result “decomposes” the critical and linear case thanks +.
More precisely, Theorem 60 states that every linear and critical e-tree-
decomposition can be produced thanks the mapping + by using linear and
internally connected e-tree-decompositions of smaller width.

The third result “decomposes” the critical case thanks []. More precisely,
Theorem 61 compares criticality and quasi-linearity and states that for every
k, the set 7.5, N T} is equivalent to a quasi-linear subset of 7;. This result is
the most difficult result of this paper.

The proofs of Theorems 60 and 61 have the same structure. In par-
ticular, they use two other notions of “criticalities” related to the no-
tions of a connected e-tree-decomposition and of a 2-edge-connected e-tree-
decomposition. These notions of a 1-critical e-tree-decomposition and of a
2-critical one are presented here.

An edge is said critical in an e-hypergraph if it is needed to inter-
nally connect its sources. This notion permits to define two kinds of in-
ternally connected e-tree-decompositions: the nowhere-critical ones and the
(everywhere)-critical ones. These notions are formalized below.

Definition 45 (Criticality) An edge d is critical in some e-hypergraph H
if d € Ep\en and if every internally connected subhypergraph of H\d does
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not contain every source of H.

An e-tree-decomposition X is critical if it is internally connected and if
every arc d of X is critical in val(X 1d). Their set is denoted by 7,%. An
e-tree-decomposition X is nowhere-critical if for every arc d of X and every
Y C X, d is not critical in val(Y). Their set is denoted by T;%°.

The both notions presented above are hereditary. This nice property is
expressed by Lemma 47. Previously, a little fact.

Fact 46 Let G,H,K € G; . with G = H[K]. Then:
e ex is critical in H if K contains at least one critical edge of G.
e for each d € Eg\ex, d is critical in H iff d is critical in G.

o cvery edge of B critical in G is critical in K.

Proof.

The sentence “internally connected” is abbreviated in “i.c”. Let G be an e-
hypergraph of the form H[K] for some i.c e-hypergraphs H and K. Denote
by S the set of sources of G and by D the set of critical edges of G. Let d
be an edge.

e ey is critical in H if DNEg # 0.
Every i.c subhypergraph of H\eg is i.c in G\d, for some d € Ex N D.
It does not contain S.

e discriticalin H if d € DN Eg.
Let L be an i.c subhypergraph of H\d. The hypergraph M, equal to
Lifex ¢ Ef, and to (LUGg)\ex, otherwise, isi.c. in G (Lemma 16),
in G\d and does not contain S. L does not contain S, d is critical.

e d € D ifdis critical in H and if d # ek.
Let M be an i.c subhypergraph of G. The hypergraph G is i.c. in
K,in G and in G\d. f M NGk = 0, M is i.c in H and does not
contain S. Otherwise, M contains Gg, is of the form (L U Gg)\ex
with L | ex = LN Gg = Ggi | ex. The hypergraph L is i.c in H
(Lemma 16) and does not contain S. In the both cases, M does not
contain S. Then, d € D.

e discriticalin K if d € D NEg.
Let L be an i.c subhypergraph of K\d. Suppose vertx(ex) C Vi
and denote by K' the i.c e-hypergraph (ex,(K | ex) U L). The e-
hypergraph H[K'] is i.c (Lemma 16). The hypergraph Gpg1 is a
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subhypergraph of G\d i.c in G that contains S. Contradiction. Then,
verty (ex) V. d is critical in K. ]

Lemma 47 The memberships X € T1C and X € TS, are hereditary.

Proof.

By Fact 34, to conclude it suffices to prove that for every X € 7, (resp.
€ 72¢) and every arc d of X, the inclusion {X 1d, X | d} C TS (resp.
C T,5¢). Let d be an arc of some X € 7;.. By Lemma 35, we have
(X 1d, X Ld} C Tip. T X € T, Fact 46 implies {X 1d, X L d} C T<. If

X € Th¢, val(atom({X})) = val(atom({X 1d})) U val({atom(X | d)})

i.c )

implies {X 1d, X | d} C T,nC. O

Now, let us define the main operation of this articles. This higher-order
substitution transforms e-tree-decompositions of some set u by replacing
simultaneously each of its nodes by some e-tree-decomposition of some set
v C T. The below definition is illustrated by Example 49.

Definition 48 (Higher-order substitution) Let u and v be two subsets
of 7. We denote by u®uw the set of all e-tree-decompositions X that contains
a set of arcs D such that:

e y contains the e-tree-decomposition obtained from X by contracting
Ax\D.

e ¢ contains every e-tree-decomposition generated by X and some max-
imal subtree of the forest Tx\D.

Example 49 Figure 4 represents three subsets u = {X},v = {Y},w =
{Z1,Z5,7Z3} of T that verify u = v ® w and a set D C Ax. X is the e-
tree-decomposition with 6 nodes. D is the set of arcs of X that are thick
drawing. Y, the e-tree-decomposition with 3 nodes, is obtained from X
by contracting Ax — D. w contains the three e-tree-decompositions with
two nodes. Each of them is generated by X and some maximal subtree of
Tx\D.

Now a easy but important result that decomposes 7;. . into 7,2 and 7.
Theorem 50 7;,.=T,"°®T°.

Proof.
As a consequence of the inclusion atom(7,%¢ ® 7,,) C atom(7,.) C 7; . and
of Lemma 35, we have: 7;. 2D T, ® 7,5.
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Figure 4: the higher-order substitution ®.

For every X € T, we denote by ||X|| the number of its nodes. Trivially,

we have: atom(7;.) C T.%° ® T,%.. Suppose there is n > 1 such that every
X € Ti.. with || X|| < n belongs to T,2°®7T°.. Let X € T with || X|| = n+1.
Denote by D the set of all e-tree-decompositions Y C X such that ry =rx
and such that every arc d of Y is critical in val(Y 1d). Trivially, D contains
the e-tree-decomposition generated by X and its root and is contained in
Te.
Let Y be a maximal element of (D,C). Denote by A the atomic e-tree-
decomposition obtained from Y by contracting all of its arcs. It comes Y €
{A} @ {Y} with A € T,2¢. If X =Y, that suffices to conclude. Otherwise,
X is of the form Y[Z1,...,Z,] for some Z1,...,Z, € T;. (Lemma 35). By
induction, for every ¢ € [m] there is an e-tree-decomposition P; € 7,%¢ and
a subset Q; C 7,5 such that Z; € {P;} ® Q;. It follows that X belongs to
{AP,....P]} @ ({Y}UQ1U...UQy} and then to {A[Py,...,P,]} ®TS.
To conclude, it suffices to prove: A[Pi,..., P,] € T C.

Let d be an arc of A[P,...,P,] and H € val(atom({A[P},..., Py,]})).
If d is an arc of some P; with 7 € [m], if H € val(atom({P,...,P,})), by
hypothesis d is not critical in H, if H = val(A), d is not an edge of val(A)
and then is not critical in val(A). Thus, every arc of some P; with 7 € [m],
is not critical in any e-hypergraph of val(atom({A[P:,..., Py]})). Let d be
an arc of the form ez, for some i € [m]. If H € val(atom({P,...,P,})),
d is trivially not critical in H. Suppose H = val(A4). Let W be the
e-tree-decomposition generated by X and by the union of the set of nodes
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of Y and the extremities of d in Tx. By hypothesis, W & D. Then, there
is an arc d’ of W not critical in W 1d'. If we suppose d # d’, d’ is an arc of
X that is not critical in Y 1d' (Fact 46). Contradiction. Thus, d = d' and d
is not critical in H. It comes A[Py,...,Py] € T,2C. O

In the almost same way than for internal-connectivity, we can associate
with the notion of a connected e-tree-decomposition the notion of a 1-critical
e-tree-decomposition. This extension is made with a little difference: we
impose that every leaf of some 1-critical e-tree-decomposition contains some
1-critical edge. It follows that every arc is 1-critical.

Definition 51 An edge d is 1-critical in some e-hypergraph H ifd € Eg\ey
and if every connected subhypergraph of H\d does not contain every source
of H. An e-tree-decomposition X is 1-critical if X € T . and if for every leaf
[ of X, the hypergraph gx (/) contains at least one 1-critical edge of val(X).
Their set is denoted by T,.

The similarity of the notions of a 1-critical edge and of a critical edge
has for consequence the next fact, that can be compared with Fact 46.

Fact 52 Let G,H,K € G with G = H[K]| and H, K connected. We have:

e ex is 1-critical in H if K contains at least one 1-critical edge of G.
e for each d € Eg\ex, d is 1-critical in H iff d is 1-critical in G.

o cvery edge of B 1-critical in G is 1-critical in K.

Proof.
The proof is obtained from the proof of Fact 46, by replacing the sentence
“internally connected” by “connected”. a

To associate with the notion of a 2-edge-connected e-tree-decomposition
the notion of 2-critical one, we define a circular-decomposition. Roughly
speaking, a circular-decomposition of an e-tree-decomposition X decom-
poses val(X) into a circuit, all whose nodes are subgraphs of val(X) and all
whose edges are edges of val(X) such that every leaf of X contains at least
one of these edges. These notions are formalized below:

Definition 53 A circular-decomposition of some hypergraph G is a pair
(R,S), with R a sequence (dy,...,d;_1) of [ distinct edges of G for some
[ > 2, with S a sequence (Gy,...,Gi—1) of [ disjoint hypergraphs with
GoU...UG—1 = G\{dy,...,d;_1} such that for every 7,5 € [0, — 1] the

following assertions are equivalent:
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e G | d; is not disjoint with Gj.
e je{i,(i+ 1)mod(l)}.

A circular-decomposition of some e-hypergraph H is a circular-
decomposition (R, S) of Gy with ey the first edge of R. For every sequence
S =(Gy,...,G,) and every hypergraph G (resp. e-hypergraph H = (e, G))
with G; N G defined for every i € [n], we denote by S TG (resp. ST H) the
empty sequence if S is empty, and, otherwise, the sequence obtained from
(GiNG,...,G,NG) by deleting every empty hypergraph.

A circular-decomposition of some X € T is a circular-decomposition
(R, S) of val(X) such that R contains at least an edge of every hypergraph
of the form gx (/) with [ a leaf of X. An e-tree-decomposition X is 2-critical
if X € To. and if X admits a circular-decomposition. Their set is denoted

by Ty

The notions of 1-critical e-tree-decomposition and of a 2-critical e-tree-
decomposition are hereditary. This result is the object of Lemma 57. Pre-
viously, let us establish the three following technical facts.

The next fact establishes the fact that every 1-critical edge disconnect
the sources, under an additional condition. This condition is required by
the degenerate case: the e-hypergraph H = (e, (), {d, e}, vert) with no vertex
and with exactly two edges is connected, has no source, admits d as 1-critical
edge but admits no circular-decomposition. The reason is the fact that the
e-hypergraph H\d is empty and, then, has no connected component!

Fact 54 For every edge d of some connected e-hypergraph H that contains
at least one vertezx, the following assertions are equivalent:

e d is a 1-critical edge of H.

e H admits circular-decomposition of the form ((eg,d),S) for some S.

Fact 55 Let G,H,K € G with G = H[K] and H, K connected. Let be a
circular-decomposition of G of the form ((eg,d),S) for some edge d and
some sequence S. Then:

e ((eg,ex), ST H) is a circular-decomposition of H, if d € Eg.
e ((ex,d),STK) is a circular-decomposition of K, if d € E.

e ((eg,d),STH) is a circular-decomposition of H, if d € Ey.
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Proof.
The proof is obtained by using Fact 54 and similar arguments that those in
proof of Fact 52. |

Fact 56 Let G,H,K € G with G = H[K] and H, K 2-edge-connected. Let
(R, S) be a circular-decomposition of G. If R contains some edge of K, then:

e (R1,ST1H) is a circular-decomposition of H.
e (Ry, ST K) is a circular-decomposition of K, where:

— Ry is obtained from S by replacing every maximal subsequence of
S of edges of Ex by eg.

— Ry is the concatenation of (ef) with the restriction of S on Ef.

Proof.

For every sequence of edges R = (dg,...,d;) for some [ > 0, we denote
by Ug the set {dp,...,d;}. For every sequence of disjoint hypergraphs
S = (Gy,...,G;) for some | > 0, we denote by Ug the hypergraph
GoU...UG|. Let (e,G) be an e-hypergraph of the form (e, H)[(d, K)] for
some 2-edge-connected e-hypergraphs (e, H) and (d, K). Let (R,S) be a
circular-decomposition of (e, G) with R = (dy,...,d;—1), S = (Go, ..., Gi—1)
such that R contains at least one edge of K. Denote by R; the sequence ob-
tained from R by replacing every maximal subsequence of R contained in E}
by d. Denote by Rs the concatenation of (d) with the restriction of R on Ej.

By hypothesis, R contains at least one edge of K, the sequence R;
contains d and for first edge e, the sequence Ry contains, by construction,
for first edge d and contains at least one edge of Ex\d. The intersection
UsNH and UsN K are defined. Then, Usng = H\Ug, and Usnx = K\Ug,.

By construction, the edges of Ry are distinct. Denote by iy (resp. jo)
the minimal (resp. maximal) integer of [0,/] such that d;,+; € Ex (resp.
dj, € Ex). Note I the set [0,4]U [jo + 1,/ —1] and J the set [ig+ 1, jo]. Let
d; be an edge of Eg with j € [0,] — 1]. The hypergraph H\d is connected
and is a subhypergraph of G\{d;,+1,d;,}. Then, dy and d; belong to some
common connected component of G\{d;,+1,d;,}. It follows: j € I. With a
symmetrical proof, we prove that for every edge d; € Ex with j € [0,] — 1],
we have: j € J. Then, Us NEy ={d; |j €I} and UrNEg ={d; | j € J}.
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The edges of R; are distinct.

Let j € J be an integer. Let us prove G; N H = ( for every
J €lio,jo[- The result is trivial in the case iy + 1 = jo. Suppose
ip +1 < jo. Let 5 € [ip + 1,70 — 1] be an integer. The hypergraph
Gig+1U...UGj—1 U (G [ {diy42,...,dj,—1}) is a connected subhypergraph
of G\{dj,+1,dj,} that contains d;,11 and, then, that does not contain dj.
The hypergraph H\d is connected. Then, it is a connected subhypergraph of
G\{diy+1,dj,} that contains dy and is disjoint with G;,41U...UG,—1. With
symmetrical argument, we prove G; N K = () for every j € [0,i[U]jo,! — 1].
The hypergraph G, (resp. Gj,) is by hypothesis not disjoint with G | d;,
and G [ diyy1 (vesp. G [ dj, and G | d(jy41)ymod1) and then is not disjoint
with H and K. It follows: SN K = (G;, N K,G;, N K) if ig + 1 = jo,
SNK = (Gio NnK, Gi0+1,...,Gj071,Gj0 N K) if 79 + 1 < jp. Denote
by (fo,...,fm) the sequence (d,d;y41,...,dj,) and by (Ky,...,Ky) the
sequence S M K. From precedent remarks, it follows that for every hyper-
graph of the form K; with j € [ig, jo] not disjoint with some hypergraph
of the form K | f; with i € [ip, jo], we have: j € {i, (i + 1)mod m}. The
2-edge-connectivity of K implies that every hypergraph of the form K; with
j € [0,m—1] is not disjoint with K [ f; and K | f; with j' = (j 4+ 1)modm.
Then, (Ry,S M K) is a circular-decomposition of (d, K). A symmetrical
proof, permits to establish (Ry, ST H) circular-decomposition of (e, H). O

Lemma 57 The memberships X € T,, X € T, are hereditary.

Proof.
Direct consequence of Lemma 35 and Facts 52 and 56. O

Now, let us define how to add one vertex to every e-tree-decomposition
of some set v C 7. This definition is illustrated by Example 59.

Definition 58 (+) For every u C T, we denote by +(u) the union of v and
the set of all e-tree-decompositions X that contains a vertex x such that u
contains (ex, Tx,g) with ¢g(t) = gx(¢)\\{z} for every node ¢ of X.

Example 59 Figure 5 represents two subsets v = {X} and v of T that
verifies v = +(u). X is represented at the left of the figure. v contains X
and all the others e-tree-decompositions represented in Figure 5. Except X,
every e-tree-decomposition of v is obtained from X by adding a new vertex
(drawed with a white disk) making incident to some edges of X.
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Figure 5: the unary operation +.

The next theorem states that + produces an equivalent set of LNT,<.N7T},
from a subset of £ N7, N T;_;. The whole Appendix a is devoted to its
proof.

Theorem 60 For each k > 0, the set LNT,S.NTy, is equivalent with a subset
of LN Tie N T N+2T0F(LNTie N Tin).

The next theorem states that [] produces an equivalent set of 7, N Ty
from £ N 7. The whole Appendix b is devoted to its proof.

Theorem 61 For each k > 0, T,5 N Ty is equivalent with a subset of
['2~(1+k)2 N 7.

5 An algebra of sets of e-tree-decompositions

In this section, we define II and present a fundamental property of II,
that states that Il produces an equivalent subset of 7, for each k. One
of the operations of II intersects every subset of 7 with some given MSO-
definable set. For this purpose, we recall briefly monadic second-order logic
and relational structures defined on a ranked alphabet R, (R-structure, for
short).

Definition 62 (MSO logic) Let R be a ranked alphabet such that each
element r in R has a rank p(r) in Ny. A symbol r € R is considered as
a p(r)-ary relation symbol. A R-structure is a tuple S = (Dg, (7s)recRr)
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where Dy is a finite (possibly empty) set, called the domain of S, and rg is

a subset of Dg(r) for each r in R. We denote by S(R) the set of R-structures.

Let S be an R-structure for some alphabet R. The formulas of monadic
second-order logic (called MSO-formulas for short) are written with vari-
ables of two types, namely lower case letters x,y,... called object vari-
ables, denoting elements of Dg, and upper case letters X,Y,... called
set variables, denoting subsets of Dg. The atomic formulas are of the
form z =y, z € X, r(z1,...,2,) (where r € R and n = p(r)), and for-
mulas are formed with propositional connectives and quantifications over
the variables. For every finite set W of object and set variables, we denote
by L(R,W) the set of all formulas that are written with relational symbol
from R and have their free variables in W. We also denote by L(R) the set
of closed formulas L(R, ).

Let ¢ € L(R,W) and let v be a W-assignment in S (i.e.,, y(X) is a
subset of Dg for every set variable X in W, and y(z) € Dg for every object
variable z in W). We write (S,v) = ¢ if and only if ¢ holds for S for 7. We
write S |= @ in the case where ¢ has no free variable. A set of R structures L
is MSO-definable if there is a formula ¢ in L(R) such that L is the set of
all R-structures S such that S = .

Any e-hypergraph H is represented by the R-structure |H| = (Vg U
Ep, (rg))rer) with R = {vr,ed,sr,ic}, where vr p|, ed|y and sry are
the unary predicates that define the vertex-set, the edge-set and the source-
edge, respectively, and where icjy|(d,z) & z € verty(d) is the binary
incidence relation. Clearly, for all G, H € G, |G| = |H| if and only if G = H.

Any e-tree-decomposition X is represented by the R'-structure |X| =
(Vx UEx UNx U Ax, (rx|)rer’) with R = {vr,ed,sr,nd, ar, ic, mp},
where vr|y|, ed|x|, nd|x|, ar|x| and sr|x| are the unary predicates that
define the vertex-set, the edge-set, the node-set, the arc-set and the source-
edge, respectively, where ic x|(d,r) & = € vertg, (d) V= € vertr,(d) is
the binary incidence relation, and where mp)x((t,2) & € Vg (1 UEg, ()
is the binary mapping relation. Clearly, for all X,Y € T, |X| = |Y| if and
only if X =Y. Hence, |X| “contains” |H|, the value of X.

Notation 63 (The algebra IT) We denote by II the algebra (P(T),F)
with F := {+,1}U{m, | ¢ € L(R')} U {ng, 0, px | k¥ > 0} where:

e 1 is the nullary operation — atom(7).
e m, is the unary operation u — {X € u : |X| |= ¢}, for each ¢ € L(R').

and where for each k > 0:

35



e ny is the binary operation (u,v) = u ® (v N Typey,).
e 0y is the binary operation (u,v) — u[{X € vNType, | val(X) € G, . }].
e p; is the nullary operation — 7.5° N Ranky,.

A subset of T is produced by 11 if it is denoted by some finite and well-formed
term built with symbols of F.

The next theorem resumes all precedent results of this paper. This
property is the first important one of I1. Prealably, a litle and obvious fact.

Lemma 64 The sets L, atom(T), T;., T for some k are MSO-definable.
Theorem 65 For every k, I produces an equivalent subset of Tj.

Proof.
Let £ > 0. We have:

1. Tj contains and is equivalent with ogy1(1 N Tk, u) with v = T;.. N Tg.

Let G € G with twd(G) < k. Denote by Ly,..., L, the internally
connected components of G. For every i € [m], let K; be the e-
hypergraph obtained from L; by adding a new edge, its source-edge,
of extremities the set of vertices of Gg N L;. Clearly, K; is an in-
ternally connected e-hypergraph of tree-width at most £ and is equal
to val(Y;) for some Y; € T, N T;. (Lemma 44). Let H = (eq, (Gg |
eq)U(Ky [ex,)U...U (K | ek, )). Every vertex of H is a source
of K, then K has at most k + 1 vertices, belongs to atom(7;) and
verifies G = H[K1,..., K;;]. Then, T; contains and is equivalent with
atom(7;)[Tr N Tic] = 0k+1(1 N Ty, u) with w = Tj.c N T

2. TieNTe = 011 (Prg1,w) with u =TS NTy.

Direct consequence of 7;.. = T,%°®T.S, (Theorem 50) and of the obvious
equalities (7% ® 7,%) N T, = (T2 N Ranky11) ® (T.5. N Tx) and T N
Typegt1 = T-

3. T.5.NTy is equivalent with a subset of 0g41[. .. 0f1[u,u]... u] (2-(1+
k)3 times) with u = LN Ti.e N Ty

Direct consequence of Theorem 61 and 44.

4. LNTie N T = 04y1(Prt1 N Lyu) N L with u=LNTSNTg.
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Direct consequence of Point 2 and of the obvious equality (u®v)NL =
(uNL)y® (vNL))NL for every u,v C T.

5. LNTENTy is equivalent with a subset of +276%(u) N LN T;..N Ty with
u=LNTieNTg1.

By Theorem 60.

Consequence of the obvious fact that 7;. N 7_; is equivalent with
1N 7;,.N7T_q, of the fact that the relation “contains and is equivalent
with” is transitive, of the fact that ogpi([...op41[u,u]... u] (2- (1 + k)3
times) with u = £ N 7; . N T is contained in 7; . N T, of Lemma 64 and of
Points 1,..,5, we can construct for every k a term of IT that denotes T. O

Note that the precedent proof permits to extend Theorem 65 to every
set of the form £LN7T;.N T or T;.N T for some k.

6 Each operation of II preserves MSO-parsability

In this last section, we establish our main result. For this purpose, we will
review, briefly, the notion of MSO-transduction of relational structures. We
show a fundamental property of II that states the MSO-parsability of every
set produced by II.

The notion of a MSO-transduction of relational structures is already
used in [4] and [5] and surveyed in [6]. A MSO-transduction transforms
a structure S into a structure S’ by defining S’ “inside” S by means of
MSO-formulas. More precisely, S’ is defined inside an intermediate structure
made of k£ disjoint copies of S, for some fixed k. This makes it possible to
construct S” with a domain larger than that of S (larger within the factor k).
The MSO-formulas that define S’ from S are collected in a tuple, called a
definition scheme. The definition scheme is thus the syntactic description
of the transduction.

Definition 66 (MSO-transduction) Let R and R’ be two ranked alpha-
bets of relation symbols. Let W be a finite set of set variables, the set of
parameters. An (R', R)-definition scheme is a tuple of formulas of the form

A= (‘pa Q[}la v 7wka (or,j)reR/’je[k]p(r)) where:
e k>0.

e o€ L(R,W).
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o 4 € L(R,W U {z}) for i € [K].
® 0,; € L(R,W U{z1,...,2,}) forr € R, j€ [k]P().

Let S € S(R), and let v be a W-assignment in S. An R'-structure S’ is
defined by A in (S,7), denoted by S’ = defa(S,7), if:

i (577) |: ®-
e Dy = {(d,i) | d € Dg,i € [k],(S,7,d) = ¢}

o for cach r € R": rgr = {((d1,%1),...,(d¢, 1)) | (S, 7, d1,...,dt) = 6y},
where j = (i1,...,1;) and t = p(r).

The transduction defined by A is the relation denoted by def A that contains
every pair of the form (S,S5") € S(R) x S(R') with S" = defa(S, ) for some
assignment vy in S. A transduction f is MSO-definable, a MSO-transduction
for short, if there is a definition scheme A such that f = defa or such that
for every (a,b) € f there is (a,c) € defa with b and ¢ isomorphic (with the
usual notion of isomorphism).

Definition 67 (MSO-parsability) A subset u of T is MSO-parsable if
{(Jval(X)|,|X]) | X € u} is a MSO-transduction.

Our proof requires a few properties of MSO-transductions. The both
next results are due to Courcelle in [4, 6].

Proposition 68 The composition of two MSO-definable transductions is
MSO-definable. The inverse image of a MSO-definable set of structures
under a MSO-definable transduction is MSO-definable.

Proposition 69 The domain of a MSO-definable transduction is MSO-
definable.

Now, let us consider the constant sets of II. Obviously, the set of all
atomic e-tree-decompositions is MSO-parsable (We recall that the domain
of every e-hypergraph contains the source-edge and, thus, is not empty).
The MSO-parsability of the second constant-set of II is the object of the
next theorem. Appendix c is devoted to its proof.

Theorem 70 For every k, the set T%C N Ranky41 is MSO-parsable.

38



The previous theorem permits to extend a well-known result due to
Courcelle: it enables us to define a class of context-free MSO-parsable
hypergraph-grammars that contains strictly the “regular” one defined by
Courcelle in [4]. It suffices to consider rule of productions (u,G) such that
every non terminal edge of G is not critical in G.

Remarkable property of ®: it preserves MSO-parsability, under an ad-
ditional condition.

Theorem 71 For each k, the operation u,v — u ® (v N Type,) preserves
MSO-parsability.

Proof.

Let £k > 0. This proof comports 4 parts. A first one, we translate
the problem into transduction of 72. A second one, we present e-tree-
decomposition with an “assignment”, their set is denoted by Tgss- A
third one, we transform such e-tree-decompositions into disjoint union of e-
tree-decompositions, their set is denoted by 74;s;. A fourth one, we conclude.

Part 1
For every X € T and every set D of arcs of X, we denote by:

e contr(X, D) the e-tree-decomposition obtained from X by contracting
Ax\D.

e part(X, D) the set of all e-tree-decompositions generated by X and
some maximal subtree of Tx\D.

Then, for every X € T, contr(X,0) is atomic. The domain of every e-
hypergraph is nonempty (it contains the source edge). Then, for every set
u C atom(7), the following assertions are equivalent:

e val(u) is MSO-definable.
e u is MSO-parsable.
e y is MSO-definable.

Then, every set u C T is MSO-parsable if and only if {(contr(X,0), X) |
X € u} is MSO-definable.

Part 2

Let X € T and D C Ax. A vertez-partition of (X, D) is a sequence of length
k of the form (Vi,...,V;,0,...,0) for some [ € [k] such that (Vi,...,V]) isa
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partition of UdeD,{t,u}:vertTX (d) Vex ()NMVgx(u) that verify Vg, (yNVgy ()N
ViNV; =0 for every d € D and all 1 <i < j <k with {t,u} = vertr(d).

Tassi denotes the set of all sequences of the form (X,D,Vi,..., Vi)
with X € 7, D a set of arcs of X and (V1,...,V,,) a vertex-partition
of (X,D). For every U € T,ssi, we denote by contr(U) the sequence
(contr(X,D),D,Vi,..., Vi) with U = (X,D,Vi,...,Vi). Clearly, Toss:i is
MSO-definable (the notion of “vertex-partition” is MSO-definable) and
contains contr(Tgssi)-

Part 3
An e-forest-decomposition X is a sequence of the form (D, F,h) where D,
F and h are respectively of the form {ex, | ¢ € [m]}, Tx, U...UTx,,
and gx, U...Ugyx,, for some X1,...,X,, €T of disjoint domains. Clearly,
a such decomposition into e-tree-decompositions is unique. It is denoted
by part(X). We denote by Tg; the set of all sequences U of the form
(e,D,F,h,v,01,...,60) where:

e céD.

e ({e}UD, F,h) is an e-forest-decomposition. The set part({e}UD, F, h)
is denoted by part(U).

e v is a function Ejpy — Ej(p) such that the transitive closure of v is
a partial order with e as the unique maximal element and such that
every e-hypergraph H € val(part(U)) verifies: {eg} = v(Eg\en).

e for every i € [k], 0; is a mapping V) — Vg such that
Dom(6),...,Dom(f;) is a partition of Vj,g), two distinct sources
of some Y € part(U) do not belong to same domain Dom(f;) with
i € [k] and such that for every i € [k] and every Y € part(U) with
ey # e, we have: 0;(vertyr)(ey)) = 0i(vert,r)(v(ey))).

Clearly, Tgisj is MSO-definable. For every U = (e, D,F,h,v,01,...,0;) €
Taisj» we denote by fus(U) the sequence (e,T,g,D,Im(6,),...,Im(6;)),
where T is obtained from F' by adding every edge d € D of extremities the
node t of F' verifying d € Ej,(;) and the node s of F' satisfying v~ 1(d) € Ej(s)
and where g associates with every node s of T' the hypergraph obtained from
h(t)\D by identifying every node z € Dom(#;) for some i € [k] with 6;(z).
Then, we have:

o fus(Taisj) C Tassi-

Consequence of the definitions of Tyss; and Tgis;.
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o {(U, fus(U)) | U € Taisj} is MSO-definable.
Direct consequence of the definition of fus.

o fus(Taisj) = Tassi-

Let U = (X,D,Vq,..., V%) be a sequence of Tyss;. Denote by F the
forest Tx\D. For every node ¢t of X, we denote by X; the e-tree-
decomposition generated by X and by the maximal subtree of F' that
contains ¢. Denote by h the mapping that associates with every node
t of F' the hypergraph obtained from gy, (t) by renaming (ey,, ) every
vertex of V; and (ey;,0) the source-edge of Y;. Denote by vy the map-
ping that associates with every edge d of X the edge (ey,,0) where
t is some node of X verifying d € Eg, (x,) and to every edge (of
h(FY)), of the form (d,0) with d an arc of X, the edge d. For every
i € k], denote by 6; the mapping that associates with every node of
the form (d, i) for some arc d of X, the original vertex of V). The
sequence W = (e, D, F,h,v,01,...,0;) belongs to Tgs; and verifies
U = fus(W). Then fus(Tais;) = Tassi-

o {(fus(U),U) | U € Tgis;} is MSO-definable.
Clearly, the mapping described in the precedent point is MSO-
definable. Then, {(fus(U),U) | U € Taisj} is MSO-definable.

For every U = (e,D,F,h,v,01,...,0r) € Taisj, we denote by contr(U)
the sequence (e, D, F' h',v,01,...,60,) where F' is obtained from F by
contracting every maximal subtree of F' into an isolated vertex and where
h' associates with every node s of F' the hypergraph h(T;) with T} the
maximal subtree of F' that contains t. Clearly, contr(7gis;) C Taisj and
fus(contr(U)) = contr(fus(U)), for every U € Tais;-

Part 4
Let u,v C T be two MSO-parsable sets. The set Type, is MSO-definable,
then v N Type;, is MSO-parsable. In order to simplify the proof, we can
suppose without pert of generality that v N T'ype;, = v.

Denote by wgis; the set {X € Tgis; | part(X) C v} and by v
the set {X € Tussi | part(X) C wv}. Clearly, {(contr(X),X) | X €
vdisj} is MSO-definable.  Then, {(fus(contr(X)),X) | X € vais},
{(fM(M(X))an(X)) | X € vdisj}’ {(contr(U),U) | U e Uassi} and
{(contr(X,D),X) | (X,D,Vi,..., Vi) € v4ssi} are MSO-definable.

Every X € u ® v admits D C Ay such that contr(X,D) € u,
part(X, D) C v and such that (X, D) admits a vertex-partition (the proof
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is obvious and is omitted). Then, {(val(X), X) | X € u®wv} is the composi-
tion of {(val(X), X) | X € u} and {(contr(X,D),X) | (X,D,Vi,...,Vk) €
Vgssi }- By Proposition 68, it is a MSO-transduction. Hence, u® (v NTypey,)
is MSO-parsable. |

The previous result can be extended to every operation of II. The fact
that w — {X € u | X |= ¢} for some MSO-formula and + preserves MSO-
parsability are the obvious consequence of their MSO-definability (as trans-
duction) and of Proposition 68. The fact that the fourth operation of T
preserves MSO-parsability is actually a consequence of Theorem 71. All
these results are contained in the second important property of II:

Theorem 72 Ewvery operation of 11 preserves MSO-parsability.

Proof.

We denote by Z the set {X € T | val(X) € G;.} and, for every k > 0,
by star; the mapping that associates with all subsets u,v of T the
set {Y[Z1,....Zn) | Y € u,Z1,...,Zn € vNINType,,m > 1}. As
a consequence of Theorem 71, of Proposition 68, of the fact that the
transductions + : v — +(u) and u - uN{X € T | X | ¢} for every
¢ € L(R'), are MSO-definable and then preserve MSO-parsability, of the
fact that the operation union ((u,v) — w U wv) preserves MSO-parsability
and of the equality u[v N Z N Type;] = v U v U stary(u,v) for every k > 0
and all u,v C T, to conclude it suffices to prove that for every k the binary
operation star preserves MSO-parsability.

Let £ > 0. Let us denote by Star; . the set of all not atomic e-tree-
decompositions X such that every leaves of X is adjacent with its root and
such that the value of any e-tree-decomposition generated by X and some
of its leaf is internally connected. For every X € Star;., we denote by
f(X) the set of all e-tree-decompositions generated by X and some of its
leaf, we denote by g(X) the e-tree-decomposition generated by X and its
root. For every H € G, every subset D C Epy\ey and every subset U D
verty(ey)U (Vy —verty (D)), we denote by h(H, D,U) the e-hypergraph
(e, Vi,egUD, j) with j the mapping that associates with every d € ey UD
the set verty(d) if d € D and the set U if d = ey. For every H € G, we
denote by h(H) the set of all e-hypergraphs of the form h(H, D,U) for some
sets D and U. Clearly, {(H,h(H)) | H € G} is MSO-definable. For every
X € Star;., we denote by h(X) the e-hypergraph h(val(X), D,U) with D
the set of edges of X that does not belong to gx(rx) and with U the set
of vertices of X that belong to gx(rx). It follows that the transduction
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{(val(X), h(val(X)) | X € Star;.} is equal to {(H,h(H)) | H € G} and,
then, is MSO-definable.

For every X € Star;., the set {Gy\ey | Y € f(X)} is the set
of all internally connected component of h(X). The notion of an inter-
nally connected component of some e-hypergraph is MSO-definable. Then,
{(val(X),{Gy\ey | Y € f(X)}) | X € Star;.} is MSO-definable. For all
distinct leaves s, ¢ of X, the hypergraphs Gy \ey and Gz\ez are nonempty
and distinct, where Y (resp. Z) designs the e-tree-decomposition generated
by X and s (resp. t). Thus, {(val(X), (X)) | X € Star;.} is MSO-
definable.

To define g(X) in terms of val(X), it suffices to define the subhyper-
graph gx(rx), obvious, augmented with each source-edge of some e-tree-
decomposition of f(X). Then, {(val(X),(f(X),g(X))) | X € Star;.} is
MSO-definable. Thus, {(val(X),X) | X € Star;.} is MSO-definable. The
set Star; . is MSO-parsable.

For every subsets u,v,w C T, let us denote by u ®" (v, w) the set that
contains every e-tree-decomposition of v ® (v U w) obtained from some
e-tree-decomposition of u by replacing its root by an element of v and other
nodes by elements of w. By a proof similar with the one of Theorem 71, we
prove that (u,v,w) = (Star; .®' (v,wNType)) preserves MSO-parsability.
Let u,v be two MSO-parsable subsets of 7. Clearly star; .(u,v) is equal to
Star;.. ® (u,v N Type,). Hence, star; . preserves MSO-parsability. O

Thus, thanks to Theorem 65 and 72, we obtain:
Theorem 73 For every k, T contains an equivalent MSO-parsable set.

Proof.
Direct consequence of Theorems 65 and 72. O

Note that the result of Theorem 65 can be extended to every set of
the form 7; . N T, LN Tie N T and LN T;c N Ty, for some k,I. Thus, by
Theorem 72, all these sets are MSO-parsable. In particular: LN 7, . N 7.
This result, that concerns “linear, internally connected k-trees” is similar
with the result of Kabanets [11] that concerns “k-paths”.

As a consequence of Theorem 73, we obtain by Theorem 74 our main
important result. The proof of Theorem 74 requires a few notations and
definitions, we will not present. We invite the reader to read [4]. We can say
simply that this result is equivalent to prove the existence of a transduction
that associates with every hypergraph of bounded tree-width an “reduced
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term”. A “term” is represented by a ordered tree, written with function
symbols of a fixed arity, constants, and variables. If an operation symbol
like 4 is associative and commutative, then a term like +(z,+(y, 2z)) can
be written equally well +(x,y, 2z) or +(y,x,2). The order of arguments is
irrelevant (in other words, they form a set and not a sequence). Then, the
successors of a node labelled + form a set (as opposed to a sequence), the
cardinality of which is not fixed. This idea has been introduced by Franchi-
Zannettacci in the context of attribute grammars [9]. A “reduced term” is a
term a term built with associative and commutative operation symbols and
operation symbol, denoting operations having no special property.

Theorem 74 For ecvery k, the set of graphs of tree-width at most k is
strongly context-free.

Proof.

Let k be an integer. Denote by R contains every atomic e-tree-decomposition
that designs an e-hypergraph H that verifies at least one of the following
assertions:

e H has at most one non-source edge.
e H has no isolated vertex and at most three edges.

e H has no isolated vertex and every pair of edges of Ef\ey have same
extremities.

We suppose in this proof, that if 7, and 7, ® R are equivalent and if
T ® R contains an equivalent MSO-parsable set, then val(7y) is strongly
context-free.

Denote by S the set of all X € T such that:
e X contains at most k + 1 vertices.
e atom({X}) CR.

e two edges of H distinct with ex having same extremities in G x belong
to some common hypergraph of the form gx (¢) with ¢ a leaf of X.

e for every node t of X, gx(t) contains at least one edge, has at least
two childrens in (Tx,rx) or one vertex that does not belong to gx ()
with r its parent in (Tx,ryx) if ¢t # rx.
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mic(S) C R implies: T, ® S C T, ® R C 7. Clearly, every e-hypergraph
having at most k+ 1 vertices belongs to val(S). Then, Ti, T, @R and T, ®S
are equivalent.

For every G € val(S), the cardinality of V¢ is at most k + 1 and the
cardinality of {{c | ¢ € Eg\eqg,vertg(c) = vertg(d)} | d € Eg\eg} is
at most 281, Tt follows that every e-tree-decomposition of S has at most
E + 1+ 251 leaves and at most 2 - (k + 1 + 2871) nodes. Then, S is MSO-
parsable.

By Theorem 73, T, contains an equivalent MSO-parsable set £. By
Theorem 71, £L ® S is MSO-parsable (we have: S C Type;, ;). The sets
atom(7;) and S are equivalent, then, £L ® § is equivalent with £. Thus,
L ® S is an equivalent and MSO-parsable subset of 7. O

Clearly, the above result is extended to every set of oriented (or not) hyper-
graphs having a bounded rank (and of tree-width at most some k).
Let us recall a fundamental result of Courcelle [3].

Theorem 75 FEvery CMSO-definable set of graphs is recognizable.

Using above theorem and the result of Courcelle [4] mentioned in the in-
troduction, we conclude and establish our main result that states the equiv-
alence of the notion of a recognizable set of graphs and of a CMSO-definable
set of graphs.

Theorem 76 Fuvery set of graphs of bounded tree-width is CMSO-definable
if and only if it is recognizable.

Clearly, the above result is extended to every set of oriented (or not)
hypergraphs having a bounded rank (and of tree-width bounded).
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Appendix a

This appendix is devoted to the proof of Theorem 60. The decomposition
of the linear and critical case is made in two steps. Firstly, we treat thanks
Lemma 79, the linear and critical case. That permits in an easy way to
prove Theorem 60.

A simple way to manipulate linear e-tree-decompositions is to consider
not a unique distinguished edge but a couple of distinguished edges. For
this reason, we define a 2e-path-decomposition that is an linear e-tree-
decomposition X with the distinguished edge ey at the root and a sec-
ond one, denoted dx, in the leaf. The operation of substitution [] in-
duces naturally on such structures an operation that “concatenates” 2e-
path-decompositions like words. For this reasons, we use the symbol W to
denote their set and the symbol ® to denote the operation of substitution
induced by [].

Definition 77 An 2e-hypergraph H is a sequence (ey, Vi, Ey,verty,dy)
where (Vg, Ep, verty) is a hypergraph, denoted by G, and where ey and
dj are two distinct edges of Gg. In order to simplify, every 2e-hypergraph
ma be identified with (ey, Gg,df).

Let H and K be two 2e-hypergraphs with ey # dix and Gy [ dyg =
GypNGg = Gk | ex. We denote by H® K the 2e-hypergraph (eg, (Gg U
GK)\eK, d}() .

An 2e-path-decomposition X is a sequence (ex,Tx,gx,dy), where
(ex,Tx,gx) is a linear e-tree-decomposition such that its unique leaf [
verifies dx € Eg, (5. Their set is denoted by W. For every k > —1, W
denotes the subset {X € W | wd(X) < k}.

In order to simplify, X can be identified with the pair (Y,dx). The
2e-hypergraph denoted by X is the sequence (ex,gx(Tx),dx), denoted by
val(X). For every 2e-path-decomposition Y' = (Y, ¢), Z' = (Z,d) such that
c=-ez and Y ® Z defined, we denote by Y’ ® Z’ the 2e-path-decomposition
(Y®Z,d). For every set u,v C W, we denote by u®v the union uvU{Y ® 7 |
Y € u,Z € v}. In a natural way, we extend C, + to W.

In a very natural way, we extend to W a few notions defined over T .

Definition 78 A 2e-path-decomposition X is internally connected, con-
nected, critical if respectively:

e (ex,Tyx,gy) is internally connected.
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e (ex,Tx,gx) is connected.
e X is connected and dx is critical in (ex, Gx).
Their sets are respectively denoted by W; ., Wi ., W¥ ..

The next lemma translates critical linear case into linear one with smaller

width.

Lemma 79 For every k, the set W{ .0\ W,; . N Wy is equivalent with some
subset of Wi.e N Wii1 N +5F W, . nWy).

Proof.

Let k£ be an integer. For every 2e-path-decomposition X and every arc
(resp. edge) d of X, we denote by gy (d) the hypergraph with no edge gx (s)N
gx(t) with s and t the extremities of d in Tx (resp. (Gx | d)\d). In
this proof, Q is a given 2e-path-decomposition, M a couple of hypergraphs
(L, M) such that ((eq,dq), M) is a circular-decomposition of (eq, T, ga)-
The union {eq,dq} U Aq is denoted by A. We denote by < the total order
on A induced by the path T by considering dg (resp. eq) the minimal
(resp. maximal) element of (A, <). For every hypergraph G, we denote
by |G| the number of its vertices. For every 2e-path-decomposition X, we
denote by:

e |X| the minimum of |gx(¢)| taken over all node ¢ of X (that is not
wd(X)!),

e [(X) the minimal integer [ such that +'(W;.NW;) contains X.
Clearly, we have:
(1) (X0Y)<IUX)+LY), forall Y, Z € W with Y ® Z defined.

For every hypergraph G, we denote by G!L the hypergraph (G\\Vax)\Exs.
For every 2e-hypergraph H with {ey,dy} disjoint with Er s, we de-
note by H!L the 2e-hypergraph (ey,Gy!L,dy). For every X € W with
{ex,dx} disjoint with Ez 57, we denote by X!L the 2e-path-decomposition
(ex,Tx,g,dx) where g associates with every node ¢ of X the hypergraph
gx (t)!L. Clearly, every X € W verifies:

(2) val(X!L) = val(X)!L, if X!L defined.
(3) (X'L)td = (X 1d)!L for every arc d of X.
(4) (X'L)}d = (X |d)!L for every arc d of X.
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In a symmetrical way, we define G!M, H!M and X!M and obtain similar
results. For every X C , we denote by:

first(X) the edge min_{c € {dx,ex} UAx | [gx(c)!L]| < |X!'L|}.
last(X) the edge max{c € {dx,ex} UAx | |gx(c)!L]| < |X!L|}.

We hayve:

(5)

(6)

first(X) < last(X), for every X C .

Let X C Q and ¢ some node of X such that: |gx(¢)!L| = |X!L|.
The edges d = dx|; and e = ex|; belong to A, verify d < e and
gx(e)Ugy(d) C gx(t). Tt follows first(X) < d < e < last(X).

1 <|X!L|, | X!M| <1+ kK, for every X C Q.

Let X C €. For every node ¢ of X, Vg () isequal to Vg, 4y, and, then,
is the disjoint union of Vg, )NV and of Vg, (y NV wd(Q) < k+1
implies |X!L| + |X!M| < |X| < 2 + k. By hypothesis, L is not
disjoint with Ggq [ eq and not disjoint with Ggq [ dg. The fact that
dx (resp. ex) is associated to the leaf (resp. root) of €2, implies that
V() N VL is nonempty, for every node ¢ of X. Same argument for
M. Tt follows: 1 < |X!L|, | X!M| <1+ k.

An 2e-hypergraph H is M-circular if :

H, H'L and H'M are internally connected.

((ex,dx), MM Gy) is a circular-decomposition of G x.

An 2e-path-decomposition X is M-circular if X € Wy and if for every
Y C X, val(Y) is M-circular. Their set is denoted by Wx,. We have:

(7)

the property “M-circular” is hereditary and substitution-closed.
Clearly, the property M-circular is hereditary. Let X be an
2e-path-decomposition of the form Y ©® Z with Y, Z € Wu.
By Point (2),val(X), val(X!L) and val(X!M), are equals respec-
tively to val(Y) ® val(Z), (val(Y)!L) ® (val(Z2)!L), (val(Y)!M) ®
(val(Z)!M), and by Lemma 16, are internally connected. The se-
quence ((ex,dx), MMNGy) is equal to ((ey,dz), (LN(GyUGz), M N
(Gy UGy))), and, clearly, is a circular-decomposition of Gx.

every X C Q is M-circular.

Let Y C Q. By Fact 55, ((ey,dy),M M Gy) is a circular-
decomposition of Gy. The membership Y € W . implies val(Y’) inter-
nally connected. Every internally connected component of val(Y')\dy
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is connected and, then is contained, either in L, or in M. The fact
that val(Y’) is internally connected implies that every internally con-
nected component contained in L (resp. M) contains at least one ex-
tremity of dy that is an internal-vertex of val(Y) and a vertex of L
(resp. M). Then, val(Y!L) and val(Y!M) are internally connected. §2
is M-circular. By Point (7), every Y C Q is M-circular.

Every X C Q admits an equivalent Y € Wy with [(Y') at most:

(9)

(10)

1, if X is atomic or if wd(X) < k.
The equality [(X) = 1 and Point (8) suffice to conclude.

Moreover, we suppose X not atomic and of width 1 + &.

3, if first(X) = dy and last(X) = ex.

Let f be an arc of X such that |gx(f)!M| < |X!M]|. Let fi; and
f2 twos symbols that do not belong to X. Denote by I; (resp. I3)
the connected hypergraph having for set of edges {fi} (resp. {f2})
and for set of vertices (V1 N vertg,(ex)) U (Vi N vertg, (f)).
(resp. (VL Nvertg, (ex)) U (Vi Nverta, (f))).

Let Y be the sequence (ex, Txif,g, fi) where g associates with every
node t of X 1 f the hypergraph gx(t) N ((Gx [ ex) UM U I;\f1)
augmented with I; if ¢ is the leaf of Txy. Clearly, Y belongs to
W. For every node ¢t of X 1 d, |gy(t)| is successively equal to
lgy (t) N L] + gy (t) N M|, |gx(f)!M] + |gx(t) N M| and, then is
at most |gx(t)] < wd(X) < k+ 1. Then, Y € Wy,1. By Point (8),
X1 f € Tyum, Then, YIM is isomorphic with X 1 d. Then, Y!M is
internally connected. Every vertex of Vy NV, is uniquely incident
with ex and f;, it follows that Y and Y!M are internally connected.
Clearly, ((ex, fi), M Mval(Y)) is equal to ((I1\f1) N L, Gxy N M))
and is a circular-decomposition of Y. By Fact 12, Y is internally
connected. Then, ¥ € Wr. (Gy | ey) N (Gy | dy) contains
gx(ex)Ngx(f) NI N L that is nonempty (((ex, f), M MNval(X1f))
is a circular-decomposition of val(X 1 d)). Let s be a vertex of
(Gy | ey)N(Gy [ dy). Clearly, Y\\{s} belongs to W; . N Wy. Then,
Y belongs to +(W,.. N Wy) and verifies [(Y) = 1.

Let W be the sequence (f2, Tx|f,g,dx) where g associates with every
node t of X | f the hypergraph gx(¢) N (I2\fo UM U (Gx | dx))
augmented with Iy if t = rxy. With similar arguments than for Y,
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(11)

(12)

(13)

we prove W € Ty and [(W) = 1.

Let U be the sequence (fi,Tx,g, f2) where g associates with every
node ¢ of X the hypergraph gx(¢) N (I;\f1 U L U (I2\ f2) augmented
with I; if ¢ = rx and with I if ¢ is the leaf of X. Let V be an
isomorphic and equivalent copy of U such that the domain of Ty is
disjoint with the domain of X. With similar arguments than for Y,
we prove V € Ty and [(W) = 1.

From the construction of Y, V, W, it follows that Y © V ® W is defined
and denotes val(X). By Point (1) and (8), Y ©V © W belongs to Wy
and verifies [(Y @ V © W) = 3.

3. (1+k), if first(X) = dy.

For every X C Q, we denote by f(X) the integer 2 + k — | X!L|. By
Point (6), every X C Q verifies 1 < f(X) < k + 1. Suppose there
is n > 1 such that every X C Q with first(X) = dx and f(X) <n
admits an equivalent Y € Wy with [(Y) <3 f(X). Let X C Q with
f(X) = n. Denote by 1 the element last(X).

If ] = ex, Point (10) and 1 < f(X) suffice to conclude. Moreover, we
suppose 1 < ex. By Point (5),1 € Ax. Clearly, we have first(X 11) =
1 = dy. From the maximality of 1, every node ¢ of X 11 verifies
IX!'L| < |gx(#)'L|, and, then f(X 1 1) < f(X). By recurrence’s
hypothesis, X 11 admits an equivalent 2e-path-decomposition V€ W, .
such that [(V) <3 (f(X) —1).

Clearly, first(X |1) = first(X) = dx = dxy and last(X |1) =1 =
exy. By Point (10), X |1 admits an equivalent 2e-path-decomposition

in W € Wy with [(W) = 3. Wihtout pert of generality, we can
suppose that the domains of Ty and V are disjoint.

Then, VOW belongs to W)y, (Point (7)), verifies [(VOW) = 3-(f(X))
(Point (1)) and is equivalent with val(V') ® val(W) = val(X).

3-(1+k), if last(X) = ex.
Symmetrical with the precedent proof.

6-(k+1).

Let f be an arc of X such that |gx(f)!L| < |X!L|. Clearly, we have:
first(X1f) = f = dxyr and last(X | f) = f = exyr. By Point (13)
(resp. Point (12)), X 1 f (resp. X | f) is equivalent with an internally
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connected 2e-path-decomposition V' (resp. W) in Wy such that: [(V)
(resp. [(W)) is at most 3 - (1 + k). Rather to take isomorphic copies,
we can suppose V @ W defined. V ® W belongs, by Point (7), to
W, denotes val(V) ® val(W) = val(X) and verifies, by Point (1):
(VoW)<6-(k+1).

(14) Every X € Wi N W, N WY, admits an equivalent 2e-path-
decomposition in Wj.. N Wy1 N +5F Wi N W),
Let X € Wr11 N Wi N WY .. By Fact 54, either X contains no ver-
tex and exactly two edges and belongs to Wy N W; ., or Gx admits a
circular-decomposition of the form ((ex,dx),S) for some sequence S.
X can be supposed equal to Q. Points (8) and (13) suffice to conclude.
O

Proof of Theorem 60.

Let k£ > 0. As a consequence of Lemma 79, the set LN T, N Tic N Tiq1 is
equivalent with some subset of £N 7;.. N Tpy1 N +5*(L N T;e N Ti). The set
atom(7;..NTx1) is obviously contained in LNT; N T N+H(LN T eNTg).
Obviously, for all sets u,v C T, the set +(u)[+(v)] is contained in +2(u[v]).
Then, to conclude it suffices to prove that £N 7S, N T;41 is equivalent with
uvw]] withu = LNT; N T N (HLNTicNTe)), v =LNTENTieNTt1)
and w = atom(7; . N Tgy1).

Let X € LN T%, N Ti4+1. Denote by 1x the unique leaf of X. Denote by
R the set of sources of X. Let suppose R = (). Two cases appear:

e X is atomic.
Trivially, X € atom(7; . N Tiy1).
e X is not atomic.

Let H be the e-hypergraph denoted by X|(Nx\ly). Let d be the
unique arc of X incident with lx. By hypothesis, there is no internally
connected component of H\d that contains R = (). By hypothesis,
H\d has no internally connected component. Then, H\d has no vertex
and no nonsource edge. X is equivalent with an e-tree-decomposition
of atom(7; . NT_1).

Moreover, we suppose R # (. Let P be the set of all nodes ¢t of X
such that gx(#) contains at least a vertex of R. From Definition 21, P
contains rx and there is a vertex s € R that belongs to RN (,cpgx ().
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The e-tree-decomposition Xy = X|P verifies Xo\\{s} € LN T N T
and, then, belongs to LN Tjc N Terr N +(L N T N Ti). The e-tree-
decomposition Xo = X|lx belongs to atom(7;. N Tx11). Then, if
Nx = P U{lx}, X is equal to Xp, Xy or Xp[X2], the conclusion is
immediate. Moreover, we suppose Nx — (P U {lx}) # 0. Clearly, the
e-tree-decomposition ¥ = X|(Nx — (P U {lx})) belongs to LN T; N Tg41
and verifies X = X[Y[X3]]. Then, to conclude it suffices to prove: Y € TF€..

Let d the unique arc of X incident with lx. Suppose there is a con-
nected subhypergraph J of val(Y)\d that contains every source of Y. Then,
(ey, (Gy [ ey)UJ) is connected. By Fact 12, val(Xy) and val(X,\\R) are
connected, then (Gx,\ex,)UJ and (Gx,\ex,)\\RUJ = ((Gx,\ex,)UJ)\\R
are connected (by construction, Vy N R = (}). By Fact 12, (Gx,\ex,) UJ
is an internally connected subhypergraph of val(X 1d)\d that contains R.
Contradiction. Then, every connected subhypergraph of val(Y)\d does not
contain every source of Y. Then, d is 1-critical in val(Y"). By Fact 52, every
arc d of Y is 1-critical in val(Y 1d). Thus, Y € T¢..

Appendix b

This appendix is devoted to the proof of Theorem 61. In this section, we use
the three notions of connectivity and the three notions of criticalities defined
for e-tree-decompositions. The decomposition of the critical case is made in
four steps related respectively to the 2-critical case, 2-edge-connected and
1-critical case, 1-critical case and critical case. The three first steps are the
objects of respectively Lemmas 80, 82 and 83. The fourth step is “made” in
the proof of Theorem 61.

Lemma 80 For each k, Ty, N Ty is equivalent with a subset of Li44 N Tk.

Proof.

In this proof, k denotes a fixed integer, {2 denotes a fixed e-tree-
decomposition of 75, N Tg, (R, M) denotes a fixed circular-decomposition
of © and A the union Ax U {d € R}. We suppose that for every leaf
t of Q, the hypergraph gq(t)\eq contains at least two edges of A. Tq
denotes the set of all e-tree-decompositions X C 2 such that each of its
leaves t verifies: card(A N ng(t)\ex) > 2. As a consequence of the equal-
ity Go\A = Urea L and of Fact 56, every X T Q admits a circular-
decomposition of the form (R, M Mwval(X)). As a consequence of Defi-
nition 53, a such sequence R is unique. We denote it by A M X. The
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operation of substitution [ ] is extended to sequences as follow: for all

nonempty and elementary sequences u = (uq,...,u;) and v = (v1,...,Uy)
such that v; = v; for some i € [2,l], we denote by wu[v] the sequence
(Upy e ey Ujm 1, V2, e e vy Uy Uit 15 - - - s Ug). We have:

(1) ANY[Z])) =(AnY)AnZ] forall Y C Q, Z C Q with Y[Z] defined.
Let X C Q of the form Y[Z] for some Y, Z C Q. Let (do,...,dp—1) =
ANY, (eg,...,ep—1) = ANZ and (co,...,c—1) = (ANY)[ANZ]. Let
1 be the unique integer such that d; = eg. The intersections Go N Gy,
Go NGz, GoN(Gy UGkg) are defined, then M Mval(X) is defined.
Let (Ho,...,Hp—1) = MnNval(Y) and (Ky,...,K,_1) = MNval(Z).
By definition, Gy [ d; = Gz [ ey is not disjoint with Ky, K, _1,
H; 1, H; and is disjoint with every hypergraph of the form Hj
with j € [0, — 1[U]i,n — 1] or of the form K; with j €]0,p — 1[.
From Gy NGz = Gy [ d; = Gz | eg, it follows that M M Gy
is the concatenation of (Hy,...,H; o,H; 1 U Ky), (Ki,...,K, 2)
and (K,—1 U H;,H;41,...,H,—1). Thus, val(X) admits as circular-
decomposition ((co,...,¢—1), MMNval(X)). Every leaf ¢ of X is a leaf
of Z or a leaf of Z distinct with the node u of Z such that ez € Eg, (4
and, then, admits an edge of {cy,...,¢—1} that belongs to gx (t)\ex.
Then, X admits as circular-decomposition (AMY')[AMNZ], MMval(X)).

We denote by:
e B the union J;cn,{(d;?) [ d € AN Eqy}.
e C the product B x {0,1}.

e node (resp. arc) the mapping that associates to every b € BUC the
unique node of X (resp. edge or arc of A) contained in b.

¢  the mapping that associates with every

— ¢ € B x {1} the hypergraph Gojnode(c) | arc(c).

—c € B x {0} the first hypergraph of the sequence M N
val(Q|node(c)) not disjoint with Gopede(c) | arc(c) (the existence
of such hypergraph is the consequence of the fact that every ver-
tex of Q belongs to some hypergraph of M and the fact that
every edge of some 2-edge-connected hypergraph is incident with
at least one vertex).

e < the transitive closure of the union |, AqUN, ==z, where for every
d € Aq (resp. t € Nq) the term <, (resp. <;) designs respectively:

53



— the partial order {((d,u,0),(d,v,1)),((d,v,0),(d,u,1))}, with
{u,v} = vertp,(d).

— the total order on C N node™'(t) defined with the sequence
((dl,t, 1), (dg,t,O), cey (dl,t, 1), (dl,t,O)) with (dl, R ,dl) =AnN
(€2[2).

For every subset L C C, ¢(L) denotes |, ¢(c). We have:

(2)

< is a total order.

Direct consequence of Point (1), we prove by a simple recurrence on
the number of nodes that for every X € {Q} U{Qld | d € Ag}, the
restriction of < on C Nnode *(Nx) is a total order.

Then, we denote by o the permutation over C that associates with every
¢ € C the element min,(C) if ¢ = max<(C) and min.{d € C | ¢ < d},
otherwise. For all distinct a,b € C, we denote by |a, b] the set {a < ¢ < b} if
a < b and C—]b, a], otherwise. We denote by ¥ the mapping that associates
with every ¢ € C the intersection ¢(c) N¢(o(c)). We have:

(3)

(Gai¢ [ d)\d is the disjoint union of the nonempty hypergraphs
»(d,t,0) and p(d,t,1), for every (d,t) € B.

Let (d,t) € B. Direct consequence of the fact that (A M (Qt), M M
val(Q|t), S) is a circular-decomposition of Q|t and d € A.

©(a) = p(o(a)), for every a € C of the form (d,t,0) for some ¢ € Ng
and some d € Aq.

Let a = (d,t,0) € C for some d € Ax. Let u be the extremity of d
in Tx distinct with ¢ and b the element (d,u,0) € C. By definition,
o(a) = (d,u,1) and o(b) = (d,t,1). Let us prove p(a) = P(c(a))
and @(b) = p(o(b)). Without pert of generality, we can suppose ¢ the
parent of u in €.

By Point (1), Q|{t, u} admits as circular-decomposition the couple (A
QAN Qu], M M val(Q|{t,u})). Tt follows that ¢(a) (resp. p(c?(a)))
is disjoint with ¢(b) (resp. ¢(02(a))). Then, B(a) (resp. B(c(a))) is
disjoint with B(b) (resp. ®(c(b))). By Point (3), B(a) and B(c(b)) are
disjoint, p(b) and P(o(a)) are disjoint and verifies: p(a) Up(a(b)) =
?(b) Up(o(a)). Tt follows: ®(a) = B(c(a)) and B(b) = B(o(D)).

For every X C (2, we denote by:

e |X| the integer min{card(Vy)) | c€CN node™'(Nx)}.
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first(X) the element min_{b € CNnode™' (Nx) | card(Vy, ©) = 1X]}.
last(X) the element max . {b € CNnode ' (Nx) | card(V,)) = | X}

P(X) the minimal subtree of Tq that contains rx, node(first(X))
and node(last(X)).

princ(X) the e-tree-decomposition generated by Q and by the minimal
subtree of Tq that contains rx and Nx N node({first(X) < b <
last(X)}).

Resid(X) the set of all e-tree-decompositions generated by X and
some subtree of T x\Nprine(x)-

For every X C €2, we have:

(5)

IX| < |Z| for every Z € Resid(X).
Every ¢ € C with node(c) € Nx — Nppine(x)) verifies: | X]|
card (V). That suffices to conclude.

For every X C €2, we denote by:

e Cx the set (CNnode '(Nx)) — (Ax x Ny x {1}).

e ox the permutation that associates with every ¢ € Cx the element

o'(c) with i = min{1 < j | 0’(c) € Cx}.

For every X C 2, we have:

(6)

Ey) NEyp —Q) for all distinct a,b € Cx.
Let a # b be two elements of Cx. Let ¢ = node(a) and u = node(b)
If t = u, by definition of a circular-decomposition, E,,) N Ey@4) is

empty. Otherwise, we have: ¢(a) C gx(t), ¢(b) C gx(u)) and Eg, ;)N

gx(t) = ¢(Cx Nnode™"(t)), for every node ¢ of X.

If X is of the form Q¢ for some node t of 2, we have Gx = gx(t) and
Cx = CNnode™ (t). (AN X, MMval(X)) is a circular-decomposition
of val(X), {d € AN X is equal to {d | (d,t,i) € C,i € {0,1}}. Then,
Gx is equal to (Gx [ A) U(Gx\A)) and, then, to p({(d,t,0) | d €
ANEx})Ue({(d,t,1)|de ANEx}).

Suppose there n > 1 such that every X C Q with card(Ny) < n
verifies the property above described. Let X C  with card(Nx) =
n + 1, d be an arc of X and ¢ be a node of X. The cases t € Ny
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(8)

(9)

(10)

and t € Nxy are symmetrical, and, then, we treat the second one.
Suppose t € Nxy. Let a = (d,rxy, 1). The set Cx Nnode *(t) is
equal to (Cxy N node™'(t))\a. As a consequence of Point (3) and
by recurrence’s hypothesis, ¢(Cx Nnode ' (t)) contains gx(t)\d and,
then contains gx ()\d. The unique b € Cxy; N node™ ' (t) such that d
belongs to ¢(b) is a, it follows ©(Cx Nnode () = gx(t).

©(]b,al N Cx) N ¢(la,b] N Cx) = @(a) UB(b), for all distinct a,b €
node™' (Nx).

The proof in the case where X is atomic is a direct consequence of
the fact that (AN X, M Nval(X)) is a circular-decomposition of X.
The extension to general case is made by recurrence by using similar
arguments than in the proof of Point (7).

card(V,)) + | X| <k + 1, for every c € Cx if X € To.

Suppose X € Tq. Let ¢ € Cx and t = node(c). As a consequence
of card(Vxy ) < k+ 1 and [X| < card(Vy) for every b € CN
m_l(Nx), to conclude it suffices to prove there is some b € C such
that node(b) = t and B(b) N ¢(c) = 0. c is of the form (d,t,4) for
some d € A and some i € {0,1}. The inclusion X |t C Q implies that
Ex|; N A contains an edge e # d. Three cases appear:

— 3 =0.
¢(c) and @(t, e, 0) are two disjoint subhypergraphs of G x|;. Then,
¢(c) and P(t,e,0) are two disjoint subhypergraphs of G x ;.

—4=1and ¢ is a leaf of X.
X |t contains an edge f € A\{d,e}. Clearly, ¢(t,d, 1) is disjoint
with $(t,e, 1) (and $(¢, f,0)) or with B(¢, f,1) (and B(¢, e, 0)).

— ¢ =1 and ¢ is not a leaf of X.
Let f € Ax incident with ¢ and one of its child. By definition,
(f,t,1) € Cx. Then, d # e and, ¢(d,t, 1) is disjoint with @(f,,0)
or with @(f,¢,1).

1<|X| < [(k+1)/3],if X € To.

By Point (3), every ¢ € C verifies 1 < card(Vg(.)). Then, 1 < |X|. Let
t be a leaf of X and d € A be an edge of gx(¢)\ex. The membership
d € Ex implies (¢,d,1),(t,d,0) € Cx. By Point (3), V(. 4,1y contains
the two disjoints sets Vg, 41) and Vg 40). That implies 2 - | X| <
card(V , q,1)). Point (9) implies card(V,(; 4,1)) < k+1—|X|. Then,
31X <k+1.
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(11) princ(X) admits an equivalent e-tree-decomposition in Lo N Ty, if
X € 7Tq.
In order to simplify, we consider some W € Tgq, we denote by
X the e-tree-decomposition princ(W) and establish that X is
equivalent with some e-tree-decomposition Lo N Ti.  Firstly, let
us prove the equality princ(X) = X. The reason for which we
require for X to be of the form princ(W) with W € Tq and, not
to verify the simpler condition: X = princ(X) is the fact that
princ(WW) does not belong necessarily to T even if W € Tq. Clearly,
C N node™'(Nx) C C N node” (Ny). Thus, [W| < |X|. The
element first(W) and last(W) belong to C N node * (Ny). Tt follows
IW| > |X]|. Then, | X]|, first(X), last(X) and P(X) are respectively
equal to |W|, first(W), last(W) and P(W). By construction, we
have: rx = ry and Nx D Ny N node({first(W) < b < last(W)}).
Then, princ(X) = X = princ(W).

If Tx = P(X), X belongs to Ly: the conclusion is immediate.
Moreover, we suppose P(X) # T y. The proof consists to define two
e-hypergraphs H and K such that val(X) = H[K] and to construct
two e-tree-decompositions V' and Z such that Ty = P(X), V € T,
H=val(V), Z € LNT; and K = val(Z).

Let Up = CxN|last(X), first(X)] and Down =
CxNfirst(X),last(X)]. Let f be an element that does not be-
long to €2. Let K be the e-hypergraph defined by ex = f and where
G is obtained from ¢(Down)) by adding the new edge f having
for set of extremities p(Up) N ¢(Down). The element (ex,rx,1)
is the minimal element of (Cx, <) and, then, belongs to Up. By
definition, ¢((ex,rx,1)) = Gx | ex. That permits to denote by
H the e-hypergraph (ex,(Up) U (Gk | ex)). By construction and
by Points (6) and (7), it comes Gy N Gg = Gy | ex = Gi | ek,
Gy = (GH U GK)\eK and Eg N Ex = {eK}. Then, H[K]
is defined and is equal to val(X). By Point (8), it comes
(Gr N Ggk)\ex = p(first(X)) Up(last(X)).

Denote by Z the sequence (e, @Q,h) where @ is the path naturally
induced by ({first(IW)} U Down, <) and where h associates to every
node ¢ € Ng the hypergraph:
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— Gk | ek if ¢ = first(W).
— p(a) Up(last(X)) if ¢ # first(X).

Without difficulty, we prove that Z is an e-tree-decomposition. Z
is, by construction, linear and, obviously, denotes K. The equality
[W| = | X| = card(Vg(1ast(x))) and Point (9) implies Z € 7. Then,
Z denotes K and belongs to £ N 7.

Let U be the sequence (ex,P(X),g) where g associates with every
node ¢ of P(X) the hypergraph gx(¢t) N (Gr\ex). (Gx | ex) C
Gp\ex C Gy implies U € Ti. In the rest of the proof, f denotes
node(first(X) and 1 denotes node(last(X).

Let b € Up. Let us prove that node(b) belongs to P(X). Let
t be the node node(b) and @ the maximal subtree of Ty
that contains ¢ but not its eventual parent in X. Suppose
t ¢ Np(x). By construction, f (resp. 1) do not belong to Q
and we have: b €]last(X), first(X)]. Then, every a € C such that
node(a) € Ng belongs to ]last(X), first(X)] and dot not belong to
Jfirst(X),last(X)]. The tree Tx\Ng is a proper subtree of Ty
that contains rx and Ny N node({first(W) < b =< last(W)}) (we
have: first(W) = first(X) and last(I¥) = last(X)). Contradic-
tion. Then, every node of node(Up) belongs to P(X). It follows
o(Up) Cgx(P(X)) and H\ex = val(U).

The tree P(X) is strictly contained in Tx, then there is an arc dy €
A x\Ap(x) incident with some node ¢y of P(X). Let R (resp. S) be the
path in Tq from f (resp. 1) to ty. Let V' be the sequence (ex,P(X),h)
where h associates with every node ¢ of P(X) the hypergraph:

— () U (G [ ex), if £ = to.
- gu(t)U cp(ﬁrst( )), if ¢ belongs to R and t # tg.
— g (t) Up(last(X)), if ¢ belongs to S and ¢ # tg.
— gu(t), otherwise.

The hypergraph p(first(X)) (resp. p(last(X))) is contained in gy (f
(resp. g (node(last(X))), to belongs to R and to S. Wihtout difficulty,
we prove that V is an e-tree-decomposition. Clearly, V' denotes H.

To conclude, it suffices to prove V € 7T and, then, to prove that
every node t of V verifies card(Vg,, (;)) < k+ 1. Let t € Ny. If ¢
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does not belong to R U S, the membership U € T; and the equality
gy (t) = gy (¢) suffice to conclude. If t € RUS and if f = 1, the unique
node of RU S is ty = £ =1, the inclusions (first(X)) C gy (f) and
p(last(X)) C guy(l) imply gy (tp)\ex = gu(to) and, then, permit to
conclude. Moreover, we suppose f # 1 and £ € Ngyg. Different cases
appear:

- thWithfyéto.
The obvious inclusion o(first(X)) C gp(t) implies gy (t) =
gy (t). That suffices to conclude.

— ¢ =1 with 1 # t,.
Symmetrical to precedent case.

—teNgr— {to,f, 1}
Let d and e be the two arcs of RU S incident with ¢ with e on the
subpath of S from ¢ to 1. The set |(d,¢,1), (e, t,0)] N Cx is con-
tained in Down and verifies ¢(](d, t, 1), (e, t,0)])Ngx (t)Ne(Up) =
0. Then, p(e,t,0) is disjoint with gr7(t). |X| = card(Vast(x))
and | X| < card (Vg 0)) implies card(gy (t)) < k + 1.

—t&eNg— {to,f, l}
Symmetrical with the proof of precedent case.

- t:to Witht():f.
f # t implies there is an unique arc e in R U S incident with f.
The inequality first(X) < (d,t,1) < (e, t,0) < last(X) implies
that (e, t,0) is disjoint with g/ (f). | X| = card (Vg (ast(x)) and
| X < card (Vg i0)) implies card(gv (t)) < k + 1.

- t:to andt():l.
Symmetrical with the proof of precedent case.

—t=1 and to € {f, 1}
Let e (resp. f) be the unique arc of R (resp. S) incident with
t. The inequalities first(X) < (e,t,1) < (d,¢,0) < (d,t,1) <
(f,t,0) < last(X) imply ¢(d,t,0), ¢(f,t,0) and gy (¢) disjoint.
That permits to conclude.

(12) © admits an equivalent e-tree-decomposition in L. (541)/3) N T-
The inclusion Resid(X) C Tq and Points (5), (10) and (11) permit
to prove, by a simple recurrence, that {2 admits an equivalent e-tree-
decomposition in £, N T with [ =2 [(k+1)/3].

(13) 7%, is equivalent with some subset of L1 o.(k41)/3] N Tg-
Let X € 7. If X is atomic, the conclusion is immediate. Moreover,
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we suppose X not atomic. Let D be the set of all arcs d of X such
that X | d € L. Then, D contains every arc of X that is incident
with a leaf of X. Let Y be the e-tree-decomposition generated by X
and by the maximal subtree of Tx\D. Every leaf of Y is adjacent in
Ty with at least two nodes. Then, Y can be supposed equal to (.
Point (12) and the fact that every e-tree-decomposition generated by
X and some maximal subtree of the forest T x\Ny is linear suffice to
conclude. O

Fact 81 Let H be an 2-edge-connected e-hypergraph of type some k and
D be the set of all 1-critical edges of H. If D is nonempty, it contains
a set C of cardinality at most 2 - (k — 2) such that for every connected
component L of H\C, there is a circular-decomposition (R,S) of H such
that D NE = R\eH.

Is

Proof.

For every e-hypergraph H, we denote by || H|| the cardinality of Vg UEg, Ex
the set of 1-critical edges of H, Dy the set of circular-decomposition of H and
Vpr the set that contains every non-empty hypergraph G such that for every
circular-decomposition (R, S) of H there is a hypergraph of the sequence S
that contains G. For every e-hypergraph H, every subhypergraph G C H
and every vertex s € Vi, we denote by G ¢ (H, s) the e-hypergraph obtained
from H\Eq by identifying all vertices of H with s. A good-separator of
an e-hypergraph H is a subset C' C Ex\ep such that for every connected
component L of H\C there is a circular-decomposition (R, S) of H such that
E;, NExy = {d € R}. The proof of the next fact is simple and is omitted.

(1) For every 2-edge-connected e-hypergraph H, for every hypergraph G €
Vi and for every vertex s € Vi, the e-hypergraph K = H ¢ (G, s) is
such that:

— K is 2-edge-connected.

- &g =¢&k.
— every circular-decomposition of H is a circular-decomposition of
K.

— every circular-decomposition of K is a circular-decomposition of
H.

— every good-separator of K is a good-separator of H.
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A sequence R, subsequence of some sequence R, is denoted by R C
R'. A circular-decomposition (R,S) of H is mazimal if every circular-
decomposition (R',S") with R C R’ verifies: R = R'. Before the induction
proof, a little fact.

(2) for every maximal circular-decomposition (R,S) of some 2-edge-

connected e-hypergraph H, every hypergraph G € S that contains no
source of H belongs to V.
Let (R,S) be a maximal circular-decomposition of some 2-edge-
connected e-hypergraph H. Denote by (dy,...,d;—1) the sequence R
and by (Go,...,G;_1) the sequence S. If [ = 2, every hypergraph
of S contains at least one source of H. The conclusion is trivial.
Moreover, we suppose [ > 3. Let L be a hypergraph of the form
G; with i € [l —2]. From the 2-edge-connectivity of Gy, every
connected-component of L is not disjoint with Gy [ d; and not
disjoint with Gy [ d;y1. It follows L U (GH I dl) and LU (GH I di+1)
connected.

Suppose there is a 1-critical edge d of H in L. Denote by L,
(resp. L) the union of the connected-components of L\d not dis-
joint with Gg | d; (resp. Gpg | dit1). The 2-edge-connectivity
of Gy, implies L1 # 0, Ly # § and L\d = L; U Ly. If there
is a connected component L' of L\d not disjoint with Gy [ d;
and not disjoint with Gpg | d;y1, there is a connected com-
ponent of H\d that contains L' and then that contains every
source of H. Contradiction. Then, L; N Ly = @ and (R',S’) is a
circular-decomposition, where R' = (dy,...,d;,d,d;11,...,d;_1) and
S = (Go, ey Gi1, L1, Lo, Gigqy ..o Gl—l)- In contradiction with the
maximality of (R, S). Then, every edge of L is not 1-critical in H.

Let (R',S") be a circular-decomposition of H. If d; ¢ R’ (resp. d;11 &
R’) the connected hypergraph Gy | d; UL (resp. (Gg | d;) UL) is a
subhypergraph of Gy \{d € R’} and, then, a subhypergraph of some
hypergraph of S’. If {d;,d;+1} C R/, every connected component of L
is a subhypergraph of Ggy\{d € R'}, is not disjoint with Gg [ d; and
not disjoint with G | d; 11 and, then, is a subhypergraph of G; (see
Definition 53). Then, L € Vy.

Suppose there is n such that every 2-edge-connected e-hypergraph H
with &g # 0 and ||H|| < n admits a good-separator of size at most

61



2-(|verty(em)| —2). The property is trivial for n = 0. Suppose 1 < n. Let
H be an 2-edge-connected e-hypergraph with £ # () and ||H|| = n+1. Let
k be the number of sources of H. Different cases appear:

e there is G € Vg with ||G|| > 1.
Denote by K the e-hypergraph H ¢ (G, s) for some vertex s € V.
The e-hypergraph K has at most k sources, verifies the induction
hypothesis (Point (1)), admits a good-separator of size at most 2 (k —
2), that is a good-separator of H.

Moreover, we suppose ||G|| = 1 for every hypergraph G € Vp. Then,
every hypergraph of Vg contains no edge and contains an unique ver-
tex, Vi could be identified with Vi and £ with Ex\eq. Consequence
of the 2-edge-connectivity of H, every edge of Ey has at least 2 ex-
tremities.

e cvery edge d € Ey\ey verifies |verty(d)| = 2.
Suppose there is an elementary circuit of the form (s1,e1,...,emn, 1)
in H\ep, it follows G\{ep,e;} connected, in contradiction with the
1-criticality of e;. Then, G\ey is tree. Denote by r one of its leaf.
Denote by I the set of vertices having at least three incident edges
in G. The fact that every leaf of (G\eg,r) is a source of H, im-
plies: |I| < |verty(em)\r|. Denote by C the set of edges incident
in H with a vertex of I and one of its child in (G\eg,r). It follows:
|C| < 2-|vertg(em)\r|.- Every connected component L of G\C is a
path. Then, L can be identified to some elementary path of the form
(to, dl, NN ,dm, tm-}-l)- The pair (RL, SL) with RL = (eH, dl, NN ,dm)
and Sy, the sequence (Go,G | t1,...,G | tm, Gmy1) with Gy (resp. Gp,)
the connected component of G\{ep,d,...,dy,} that contains # (resp.
tm+1), is a circular decomposition of H that verifies E;, = {d € R |

d 75 eH}.

e there is an edge d € Ep\ey with |verty(d)] > 3 such that a
connected component of H\d contains no edge and an unique vertex.
Denote by Gi,...,G, the connected-components of H\d with
G1 € Vy. Denote by s the unide vertex of Gy, by K' the
hypergraph G\\s, and by K the e-hypergraph (ey, K'). Clearly,
K'\d is connected, s is a source of H incident only with ey and d in H.

Suppose there is f € Ex\ex with K'\f not connected. Let L be
a connected component of K\f that does not contain epm. Every
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connected-component of K\f that does not contain d is a subhy-
pergraph of some connected component of H\f and then contains
ep. Then, L contains d and there is a circular-decomposition (R', S")
of H with R' = (en,d, f) and with S’ of the form (Gi,L\d,L’)
for some hypergraph L’. Denote by (R”,S”) a maximal circular-
decomposition of H that contains (R’,S’). The sequence S” is of
the form (Gy,LY,..., L)) with L} = (G [ d) N (G2 U...U Gp).
By Point (2), L} belongs to Vg and contains one unique vertex.
Contradiction. Then, K'\f is connected for every f € Ey. K is
2-edge-connected (Lemma 7).

Every edge adjacent with d in H and distinct with ey is 1-critical in
K. Thus, K verifies |K| = n, admits a good-separator C' of size at
most 2 - (k — 3). Every connected component of H\({d} U C), except
(1, is a connected-component of K\ ({d} U C). Every 1-critical edge
of H is a 1-critical edge of K. Then, {d} UC is a good-separator of H
of size at most 2 - (k — 2).

e thereis anedge d € Ef\ey with |vert(d)| > 3 such that a connected
component of H\d contains at most one source of H.
Let L be a connected component of H\d that contains at most one
source of H. H is 2-edge-connected, then L contains one unique source
of H, noted s. Let H' be the e-hypergraph H ¢ (L, s). From precedent
point, Ho(L, s) admits a good-separator C' of size at most 2-(k—1) that
contains d. Without difficulty, we verify that C is a good-separator of
H.

e there is an edge d € Eg\ey with |verty(d)| > 3 such that every con-
nected component of H\d contains at least two sources of H.
Denote by Lq,..., Ly, the connected components of H\d and for ev-
ery i € [m] by s; one source of H that belongs to L;, by H; the
e-hypergraph H ¢ (|J ietmi\i Lis s;) and by k; the number of sources of
Hi. Tt comes ¢, ki = k+m and then 14+2-U;¢p,,, (ki —2) < 2-(k—2).
Without difficulty, for every i € [m], the e-hypergraph H; is 2-edge-
connected, verifies ||H;|| < n. By induction hypothesis, for every
i € [m], H; admits a good-separator C; of size at most 2 - (k; — 2).
Then, C; U{d} is a good-separator of H;. The set {d} U;c(,) Ci is a
good-separator of H of cardinality at most 2 - (k — 1). O

Lemma 82 72N TS N Tk € (Lyog2k—1)] N Ti)[Txe N Tel, for each k.
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Proof.

Let X € Tp N Tae N TS Denote by D the set of 1-critical edges of
val(X). If X € 7%, Lemma 80 suffices to conclude. Moreover, we suppose
X & Ty.. By Fact 81, there is a set C C D with card(C) < 2-(k —1)
such that for every connected component L of val(X)\D, there is a
circular-decomposition (R,S) of val(X) such that D N E;r = R\ex. X
is not 2-critical, then there is no circular-decomposition (R, S) of val(X)
such that D C R (see Definition 53). Then, C' # (). Denote by P the
minimal subtree of Tx that contains ry and every node s of X such that
CNEg, (5 # 0. By Corollary 42, we have: X|P € Lyjg2.6—1)]- If P = Tx,
the conclusion is immediate. Moreover, we suppose P # Tx. Note that
D — C' is nonempty, because it contains the nonempty set (D — C) N Eg, ()
for some leaf s of X not in P.

Denote by D the set of all sets B C D — C such that val(X) admits a
circular-decomposition (R, S) with B = R\ex. As a consequence of Defini-
tion 53, every nonempty subset of some set of D belongs to D. Denote by A
the set of all arcs a of X such that D N Byay(xy) € D- Clearly, ApN A = .
Let a be an arc of Ay — Ap. The hypergraph L = gx(T xy,), contains at
least one edge of D, is connected (Lemma 36), does not contain any edge of
{ex}UC, is a subhypergraph of some connected component of val(X)\C'. It
follows DNEy, € D and then, a € A. Then, A x is the disjoint union A pU A.

Let a € A. By Lemma 35: X | a € T, N T2.NTS. By definition,
val(A) admits a circular-decomposition (R, S) with D N Eyai(xp.) = R\ex.
By Fact 56, val(X | a) admits a circular-decomposition (R',S") such that
DN Eqyaixe) = R'\a. Every leaf of X |a is a leaf of X and contains at least
one edge of D N Eqay(x)e)- Then, X |a belongs to 7.

Clearly, there is a nonempty sequence of arcs (a1, ..., a,) € A" such that
X = (X|P)[X lai,...,X | ap]. The inclusions {X|P} C Lyjpg2.6-1) N Tk
and {X la |a € A} C 75, N T suffice to conclude. O

Lemma 83 T, N7y is equivalent with a subset of (T2..NTS.NTk)[L2N Tkl
for each k.

Proof.
Let k£ > 0. First, note that:
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(0) Every X € 7. with Gx not connected belongs to LN 7T_;.
Let X € T, with Gx not connected. By definition, G x\ex is con-
nected. Then, X has no source. By definition, val(X) contains an
edge d such that every connected component of val(X)\d does not
contain every source. Then, val(X)\d has no connected component,
Gx contains no edge and exactly two edges. It comes X € 71 and

X € L (from X € Tq.¢).

In the rest of the proof, we suppose that every X € T7,°, contains at least
one source and, then, is such that Gx is connected. For every X € T, we
denote by C'(X) the set of all ¢ € Ex\ex such that Gx\c is not connected,
by I(X) the connected component of Gx\C(X) that contains ex and by
C(X) the set of all ¢ € C(X) incident with some vertex of I(X). A shred of
some X € T w.r.t some edge ¢ € C(X) is an e-hypergraph K such that:

e Gx\ex is the union of Gx | ¢ with every connected component of
G x \c that do not contain ey.

e the set of sources of K is the set of extremities of ¢ in Gx that belong
to the connected component of G x\c that contain ex.

e ex does not belong to X.
For every shred K of some X € T w.r.t some ¢ € C(X), we denote by:
e #(X,c, K) the unique node ¢ of X such that ¢ € Eg, (¢

e f(X,c, K) the sequence (ex, Ty, g) where g associates with every ¢ €
Nx:
- (gx(t)NGy)U(Gy [ ek), if t =t(X, ¢, K).
with H the context of K in val(X).

e g(X,c,K) the sequence (eg,P,g) where P is the path of Tx from
t(X,c, K) to rx and where g associates with every node ¢ of P:

)
— (gx(t) NGk) U (Gk lek) if t = ¢(X,d, K).
— gx(t) N Gk, otherwise.

Let K be a shred of some X € 7,°, N 7 w.r.t some edge ¢ € C(X). Let H
be the context of K in val(X). We have:
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(1)

For every 1-critical edge b of val(X), val(f(X,c, K)) admits as 1-
critical edge b if b # ¢ and ex if b = c.

Let b a 1-critical edge of val(X) and a the edge equal to b if b # ¢ and
to e, otherwise. Gx and Gx\ex are connected. Then, there are at
least two disjoint connected components of Gx\{ex,b} not disjoint
with Gx [ ex and with Gx [ b. It follows that b belongs to the
connected component of G x\c that contains ex, if b # c¢. The edge a
belongs to f(X,c, K).

Let J be a connected component of H\a. To conclude, it suffices
to prove that J does not contain every source of X. If J does not
contain eg, J is a connected subhypergraph of val(X)\b and, then,
does not contain every source of X. If J contains e, b is distinct with
¢, (J\ex) U (Gg | ¢) is connected, is a connected subhypergraph of
val(X)\b and, then, does not contain every source of X.

g9(X, ¢, K) belongs to LN T; and denotes K.

Let u = t(X,¢,K) and Z = ¢g(X,¢, K). First, we prove Gg\ex C
gx(Tz). Every source of K belongs to gy (u), every internal vertex of
K is incident with at least one edge (Gx is connected) that belongs
necessarily to Ex\ex. Then, to prove Gr\ex C gx(Tyz), it suffices to
prove that every edge of Ex\ex belongs to gx(Tz). Let b € Ex\ex
and ¢ the unique node of X such that gy (¢) contains b. Suppose
that ¢t does not belong to Tz. Let @ the maximal subtree of Tx
that contains ¢ but not its parent. By hypothesis, X belongs to 7,.
Denote by a a l-critical edge of val(X) that belongs to Eg, (). By
hypothesis, X is connected, then there is a path ¢ in gx(Q) from b to
a. By construction, ¢ does not contain ¢. By Point (1), a belongs to
H. Then, g contains necessarily c. Contradiction. Then, ¢ belongs to
T,.

From Ggi\ex C gx(Tz) and the fact that gx(#(X,c, K)) contains

every source of K, Z belongs to T, to Tx, to L (T is a path) and
denotes K.

f(X, ¢, K) belongs to 7,° N Tj, and denotes H.

The inclusion Gy | ex C gx (t(X, ¢, K)) implies f(X, ¢, K) € Ty and
val(f(X,c,K)) = H.

Let d be an arc of X. Let prove that val(f(X,c,K)|d) is con-
nected. By Lemma 36, val(X |d) is connected. If X | d does
not contain #(X, ¢, K), the hypergraph G xy\d does not contain any
edge of K (by Point (2)), does not contain any internal vertex of
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K (because it is connected), and then, is equal to Gx\d N Gy
by definition equal to Gf(x . x)yq¢\d- In this case, Gy(x . rya\d and
val(f(X,c, K)|]d) are connected. If X | d contains (X, ¢, K), ek is
an edge of val(f(X,c, K)|d). Without difficulty, it comes: val(X |
d) = val(f(X,¢c,K) | d)[K]. By Fact 17, val(f(X,¢,K) | d) is con-
nected. By Lemma 36, X € T; ..

To conclude, it suffices to prove f(X,c, K) € T¢,. Let ¢t be a leaf of
f(X,c, K). Trivially, t is a leaf of X. Then, there is a 1-critical edge b
of val(X) that belongs to gx(t). Let a be the edge b if b # ¢ and eg
otherwise. By Point (1), a is a 1-critical edge of val(f(X, ¢, K)) and
belongs to gf(x,c,x)(t). Then, f(X, ¢, K) € TF,.

(4) C(f(X,c K)) C C(X).
Clearly, C(X) — C(f(X,c,K)) contains c¢. Let b be an edge of
C(f(X,c,K)). H\b is not connected, verifies (G\b) = (H\b)[K].
Fact 17 implies G\b not connected. Then, C(f(X,¢, K)) C C(X).

(5) I((X, ¢, K)) 2 I(X) U Gy | ex) if € O(X).

Obvious consequence of the definitions of I(X) and of f(X,¢, K), we
have: I(X) U {ex} C Gyx,k)- I(X) is, by definition, connected
and disjoint with K. Then, I(X) is a connected subhypergraph of
H\C(f(X,c,K)). It comes: I(X) CI(f(X,¢c, K)).

By construction, H\eg is connected. It comes ex ¢ C(f(X,c, K)).
Let z be an extremity of ¢ in G that belongs to I(X). The vertex
x is incident with ex in H and belongs to I(f(X,¢, K)). Then, ex
belongs to I(f(X,c, K)). We have: I(X)U (H [ ex) C I(f(X,¢, K)).

A good-sequence is a sequence Y = (Y1,...,Y,,) for some m > 1 such that:
e YT NT.
e Y, € LNT for every i € [2,m)].

o Yi[Ys,...,Y,,] is defined and verifies I(Y1[Y2,...,Yy]) C I(Y1), if m >
2.

Y is 2-edge-connected if val(Yy) is 2-edge-connected. Its wvalue, denoted
by val(}), is the e-hypergraph val(Yi[Ys,...,Yy]) if m > 2 and val(Y),
otherwise. It comes:

(6) Every X € T,°%.N Tk admits a 2-edge-connected good-sequence of same
value.
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Gx is connected. Thus, by Lemma 10, for every X € 7., val(X) is
2-edge-connected if and only if card(C(X)) = 0.

Suppose there is n > 0 such that every X € 7,5 N T with
card(C(X)) < n admits a 2-edge-connected good-sequence of same
value. Let X € T, N Ty, with card(C(X)) = n+ 1. Clearly, C(X)
contains at least one edge c¢. Let K be a shred of X w.r.t ¢ and let
Z be an isomorphic copy of g(X,¢, K) such that Ty UGy and Ty
are disjoint. As a consequence of Points (2), (3), (4) and (5), we have
card(C(f(X,c, K)))) < n and (f(X,¢,K),Z) is a good-sequence of
value val(X). By induction hypothesis, f(X,c, K) admits a 2-edge-
connected good-sequence (Y7,...,Y,,) of same value. Without pert of
generality, we can suppose that Ty, U... Ty, (resp. Gy, U...Gy,,)
is disjoint with Tz U Gz (resp. Tz). Let Y be the sequence
(Vi,..., Vi, Yins1) with Yy = Z. Trivially, we have ¥; € T¢, 0 T,
val(Y]) 2-edge-connected, Y; € £ N Ty for every i € [2,m + 1]. The
inclusions I(X) U (Gz [ ez) CI(f(X,c,K)) CI(Y7) imply ez € Ey,.
Then, Y1[Ys,...,Y, 1] is defined, and has for value val(X). Then,
every X € 7,5, N T, admits a 2-edge-connected good-sequence of same
value.

For every X € T, we denote by | X| the sum ), n  card(Vg, (), by D(X)
the set of all arcs d € A x such that Gxyy\d is not connected, by D(X) the
set of all arcs d € Ax such that T yjg does not contain any arc of D(X) and
by J(X) the hypergraph Udeﬁ(X) gx(Txy). A shred of some X € T w.r.t
some arc d € A x is an e-hypergraph K such that:

e Gg\ex is a connected component of G xy;\d that do not contain ex.

e the set of sources of K is the set of extremities of d in G xyy that belong
to the connected component of G x4;7\d introduced above.

e ex does not belong to X.

For every shred K of some X € T w.r.t some arc d € D(X), we denote by:

e t(X,d, K) the parent of rxj; in X.

e f(X,d, K) the sequence (ex, Tx,g) where g associates with every ¢t €
Nx:

- gx(t)\VK ift e NXTd-
— gx(t) U (GK fe]() if t = rxy-
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— gx(t) otherwise.

e g(X,d, K) the sequence (ex, P, g) where P is the path of Tx from rx

to t(X, ¢, K) and where g associates with every node ¢ of P:

— (gx(t) N GK) U (Gk lek) if t = t(X,d, K).
— gx(t) N G, otherwise.

Let K be a shred of some X € 7,°, N7} w.r.t some arc d € D(X). Let H be
the context of K in val(X). We have:

(7)

every 1-critical edge of val(X) is 1-critical in val(f(X,d, K)).

Let b be a 1-critical edge of val(X). Gx and Gx\ex are connected,
then Gx\{ex,b} contain two disjoint connected components .J, L that
are not disjoint with Gx | ex and with Gx [ b. Suppose b € Ex.
Then, every path in G x from b to ex contains at least one source of K.
Thus the connected hypergraph J (resp. L) contains at least one source
of K. By hypothesis, G x|s\d is connected and is a subhypergraph of
Gx\{ex,b}. Then, JULU (Gxy\d) is a connected subhypergraph of
Gx\{ex,b}. Contradiction. Then, b belongs to val(f(X,d, K)).

Let M be a connected component of H\b. To conclude, it suffices to
prove that Vj; does not contain every source of H (or every source
of X). If M does not contain ex, M is a connected subhypergraph
of val(X)\b and, then, does not contain every source of X. Clearly,
Gy is connected. If M contains ex, (M U Gpg)\ex is a connected
subhypergraph of val(X)\b and, then, does not contain every source
of X. That suffices to conclude.

g(X,d, K) belongs to LN T and denotes K.

By construction, Gg\ex is a connected component gx (T xy) that
does not contain ex and, by Point (7), that does not contain any 1-
critical edge of val(X). Let b be an edge of Gx\ex and ¢ the node
of X1d such that gx(t) contains b. If we suppose ¢t ¢ Ny(x 4 i), the
maximal subtree () of Tx that contains ¢ but not its parent is such
that gx(Q) is connected (X € Ti.), contains b and some 1-critical
edge of val(X) and is a subhypergraph of gx (T x;). Contradiction.
Then, every edge of Gx\ex belongs to gx(Ty(x,q,x)). Clearly, every
vertex of K\ex is incident with at least one edge. Then, Gg\ex C
gx(Ty(x,a,Kx))-

The above inclusion and Gg | ex C gx(¢(X,d,K)) imply
9(X,d,K) € T, N L and val(g(X,d,K)) = K.
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(9)

(11)

f(X,d, K) belongs to T, N Tk, denotes H and verifies | f(X,d, K)| <
IX].

The inclusion Gy | ex C gx (t(X, ¢, K)) implies f(X, ¢, K) € T} and
val(f(X,c,K)) = H. Clearly, we have: |f(X,d,K)| < |X]|.

The proof of the membership f(X,d, K) € T, is similar with the proof
of Point (3). This similarity is due to the similarities of Points (1)
and (7) and of Points (2) and (8).

val(f(X,d, K)) is 2-edge-connected if val(X) is 2-edge-connected.
By Point (9), val(f(X,d, K)) is connected. By Lemma, 10, to conclude
it suffices to prove that G\c is connected fro every edge ¢ € Ep\ep.
Let b € Ex\en.

If b = ex, Gg\c is the union of distinct connected components of
G xy7\d with the connected hypergraph G x|4\d. All these hypergraphs
are contained in Gx. Gx is connected, then every connected compo-
nent of G xyy\d is not disjoint with G x|4\d. Then, Gg\c is connected.

If b # ek, b is an edge of Gx and verifies (b, Gx) = (b, Gy)[K]. By
Fact 17, the connectivity of (b, G x) implies (b, Gp) connected. Then,
G \b is connected.

J(f(X,d,K)) D J(X)U(Gpy | ek) if d € D(X).

Let Y = f(X,d, K). First, prove D(Y) C D(X). Let ¢ € D(X). By
definition, Gys.\c is the disjoint union of two hypergraphs J and L.
It comes:

— ¢ =d or ¢ belongs to Ty(x 4 K-
Ty4. C Txyy imply Gyse disjoint with Gg. Then, Gy \c is the
disjoint union of J and L U (G N (Gxt\c)). Then, c € D(X).

— ¢ # d and c does not belong to Ty(x,q,x)-
t(X,d,K) is a node of Y t¢c. Thus, G [ ex C Gy\c. Without
pert of generality, we can suppose Gy [ ex C L. J disjoint with
L is disjoint with L U Gg. Then, G xy.\c is the disjoint union of
Jand LU (Gg N (Gxt\c)). Then, c € D(X).

Suppose d € D(X) (and d € D(X)). Clearly, D(Y) C D(X) implies
that the forest ..y Tyye contains U cp(x) Txie- It follows J(Y) 2
J(X)NGp. By construction, Gy | ek is contained in gy (¢(X, d, K))
and, then, in J(Y). By Point (8), every edge of Ex\ex belongs to
gx(Ty(x,4,x)) and, then, does not belong to J(X). Then, J(X) =
J(X)NGg. Thus, J(Y) D J(X)U(Gg | ex).
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A nice-sequence is a sequence ) = (Y7,...,Y,,) for some m > 1 such that:

e Y € 75 NTy and val(Y)) is 2-edge-connected.

e Y, € LNT for every i € [2,m)].

o Yi[Ys,...,Yy] is defined and J(Y7) D J(X).

Y is 2-edge-connected if Y7 is 2-edge-connected. Its value, denoted by val()),
is the e-hypergraph val(Y:[Ys,...,Y,,]) if m > 2 and val(Y), otherwise. It
comes:

(12)

every X € T¢, N T with val(X) 2-edge-connected admits a 2-edge-
connected nice-sequence of same value.

Suppose there is n > 0 such that every X € 7,°. N T} with val(X) 2-
edge-connected and |X|| < n admits a 2-edge-connected nice-sequence
of same value. Let X € 7,°. N T} with val(X) 2-edge-connected and
|X| = n. If X is 2-edge-connected, the conclusion is immediate. More-
over, we suppose X not 2-edge-connected. From Lemma 36, D(X) is
nonempty. Clearly, D(X) is nonempty. Let d € D(X) and Z be
an isomorphic copy of ¢g(X,d, K) such that f(X,d, K)[Z] is defined
and denotes val(X) (see Points (8) and (9)). As a consequence of
Points (8), (9) (10) and (11), the pair (f(X,d, K), Z) is a nice sequence
of value val(X) with |f(X,d,K)| < n. By induction, f(X,d, K)
admits a 2-edge-connected nice-sequence (Y71,...,Y,,) of same value.
Without pert of generality, we can suppose that Tz U Gz (resp. Tyz)
is disjoint with Ty, U ... U Ty, (resp. Gy; U... U Gy, ). Denote
by Y41 the e-tree-decomposition Z. By Point (11) and by induc-
tion, J(X) C J(f(X,c,K)) C J(Y1). By Point (11), ex is an edge of
J(f(X,e, K)) and, then, an edge of Y7. It follows that Y1[Y2, ..., Yy, 41]
is defined and has for value val(X). Trivially, Y7 € 75..NT¢, N T} and
Y; € LNTy for each i € [2,m+1]. Then, X admits a 2-edge-connected
nice-sequence of same value.

T, N T, is equivalent with some subset of (72.. N T, N Ti)[L2 N Tk).
Let X € 7% N Tg. By Point (6), X admits a 2-edge-connected
good-sequence of same value that is of the form (Zi,...,7Z,,) for
some m > 1. By Point (12), Z; admits a 2-edge-connected nice-
sequence of same value that is of the form (Yi,...,Y)) for some
I > 1. If m = 1 or if [ = 1, the conclusion is immediate. More-
over, we suppose 2 < [ and 2 < m. Without pert of gener-
ality, we can suppose that (Yi[Ya,...,Y)])[Z2,..., Zm—1] is defined.
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Then, (Y1[Y2,...,Yi))[Z2,...,Zm—1] denotes val(X) and belongs to
(T2.e N T8 N Ti)[L2 N Ti]- O

Fact 84 Let H € G; . having for type some k > 1. There is a set C of
critical edges of H such that:

e card(C) < 2¢ 1.

o for every d & C critical in H, there are at least two distinct internally
connected component of H\d that contain at least one edge of C.

Proof.

Let H be an internally connected e-hypergraph of type some £ > 1. If
Gy = Gy | {d,eg} for some edge d of H, the conclusion is immediate.
Moreover, we suppose that for every non-source edge d of H, H\d contains
at least one internally connected component. Denote by G the hypergraph
Gy, by S the set of its sources and by D the set of its critical edges. For every
d € D, we denote by Z; the set of internally connected components of H\d,
by Z the union |4 , Zg and by Ty the set {L € (J e Za | card(ELND) = 0}.
Every edge d € D verifies:

(1) LU (G | d) is internally connected in H for every d € D and every
Lel,.
Let d € D be an edge and L € Z; be a hypergraph. H is internally
connected, then (Vi Nverty(em(d)))\S # 0. The hypergraphs L and
G | d are internally connected in H, then L U (G | d) is internally
connected in H.

(2) Z. and Z; are disjoint, for every distinct edges ¢,d € D.
Let ¢ and d two distinct edges of D. Suppose there is a hypergraph
L € Z.NZ,. The hypergraph LU (G | ¢) is distinct from L, internally
connected in H, does not contain d and, then, is contained in some
internally connected component of H\d. Then, L ¢ Z,;. Contradiction.

Consequence of Point (2), for every L € Z, we denote by L the hypergraph
(G I d)UU jez,\ 1, with d defined by L € Z,. For every distinct edges ¢,d € D,
we denote by L. 4 the unique hypergraph of Z. that contains d. We have:

(3) Lae C Le,g, for every distinct edges ¢,d € D.
L, does not contain ¢, is internally connected in H\c¢ (Point (1)) and
contains d. That suffices to conclude.
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For every d € D, we denote by J; the set that contains every hypergraph
L € T, such that for every K € T, we have: (G [ S)NL ¢ (G| S)NK.
We denote by J the union (J;cp) Ja. For every distinct edges ¢,d € D, we
have:

(4) 2 < card(Jy).
Obvious.

(5) Leg€ J.
Let ¢ and d two distinct edges of D. Suppose there is L € Z. with
LeanN(G[S)CLN(G[S). We have: L C Ly, (Point (3)) and, then:
LeanN(G[S)C LgeN(GTS). The inclusion Ly, C L. 4 (Point (3))
implies Ly .N(G | S) C Ly .N(G | S) and, then, Ly N(G [ S) =G | S.
The edge d is not critical in H. Contradiction. Then, L. 4 € J.

6) LN(G1S)ZMN(G|S) forall L e J.NTy, M € JyN .

Let L € J.NZy and M € J3NZy. Suppose LN(G [ S) C MN(G | S).
The inclusion M C Ly, C L. 4 implies LN (G | S) C L.aN (G | S).
Contradiction. Then LN (G [ S) ¢ M N (G | S). Suppose LN (G |

S) = Mn(G [ S). The inclusion LN (G [ S) C L.aN (G [ S)

and the membership L,L.4 € J. implies: LN (G [ S) = M N (G |
S)=TL4.N(G1S)=L.an (G| S). The inclusion L C L, implies
LN(G18)CLyeN(G]S)and, then, Ly.N(G|S)C LgeN(G|S).
The equality Ly, U Ly, = G\eg implies Lq. N (G [ S) = (G | S) and
d not critical in H. Contradiction. Then LN (G [ S) Z M N (G | S).

Denote by C the set {d € D | card(J; —Zp) < 1}. By Point (4), for every
c € C, the set J. contains at least two hypergraphs and, then, at least one
in Zp. The maximal number of subsets Si,...,S, of S such that S; Z S;
for all i # j € [n] is at most 2¢~!. By Point (6), it comes card(C) < 2F~ 1.
To conclude, it suffices to prove that every hypergraph of J — Zy contains
at least one edge of C.

Suppose there is n > 0 such that every hypergraph of J — Z; that
contains at most n edges of D contains at least one edge of C. Prop-
erty trivially true, for n = 0. Let L € J — Iy be a hypergraph with
card(DNEr) = n+ 1. Let d be the unique edge defined by L € Z,.
Let c € DN Ej, be an edge. It comes L = Lg.. If ¢ € C, the conclusion
is immediate. Moreover, we suppose ¢ € C. In consequence, there is
M € J. distinct from L;. that does not belong to Zy. The inclusions
M C Lg. and DN Ey C (DN EL)\c, implies that M verifies the in-
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duction hypothesis and contains at least one edge of C. Then CNE, # 0. O

To conclude this appendix, let us prove Theorem 61 that states that for
every k > 0, T N T, is equivalent with some subset of L5142 N Tk
Proof of Theorem 61.
Let k be an integer. Every e-hypergraph of val(7y N 7;..) contains at most
one vertex. Obviously, Tp N 7T;. is equivalent with some subset of £ N 7.
Moreover, we suppose: k > 1. We have:

(1) every X € TN Ty with X\\R 1-critical for some set R, admits an
equivalent e-tree-decomposition of £,, N T with m =3 -k + 2 k2.
Let R be a set. For every n > 0, we denote by f(n) the integer
(n+1)-(k+[log(2-k—1)]+3) and for every X € T, by | X| the integer
card(R N Vx). We denote by Z the set of all e-tree-decompositions
X € Ti.. N Ty such that X\\R is 1-critical, and for every n > 0, by Z,
theset {X € 7 | |X| < n}. Observe that for every X € Z, every vertex
of RNV is a source of X. Let X € 7 with |X| > k. The e-tree-
decomposition X'\\R contains at most one source, is, by hypothesis,
1-critical and, then, contains no vertex and exactly two edges. Thus,
X is equivalent with some e-tree-decomposition of atom(7;). Then,
to conclude it suffices to prove that Z,_; is equivalent with some sub-
set of Ly(;_1)NTi (without difficulty, it comes: f(k—1) < 3-k+2-k?).

Clearly, Zo C 75 N Tx. As a consequence of Lemmas 80, 82
and 83, Z is equivalent with a subset of L) N 7. Suppose there
is some n > 1 such that Z,,_; is equivalent with a subset of L, _1)N 7.

Let X € Z,,. Obviously, we have: RNV = RNVyx. Let Y be the

gx(rx)
e-tree-decomposition generated by X and by the minimal subtree of
Tx that contains every node ¢ of X such that: RNVg ;) = RNVx.

It follows: wd(Y) = wd(Y\\R) + |Y| and Y\\R C X\\R. Then, Y\\R
is 1-critical (Lemma 57), is internally connected (Lemma 35) and by
Lemmas 80, 82 and 83, admits an equivalent e-tree-decomposition
U € Loy N Tp—jy|- Let W be the e-tree-decomposition (ey, Ty, g)
where ¢ associates with every node s of U the unique hypergraph
Gy [ (RNVyx) C g(s) € Gy such that that g(s)\\R = guv(s).
Clearly, W verifies val(W) = val(Y') and belongs to W € Ly N T
(we have: wd(W) < wd(Y\R) + Y] < k).

74



If Y = X, the conclusion is immediate. Otherwise, X is of the form
Y[Z1,...,Zy] for some Z1,...,Z, € Ty. For every i € [m], Z;\\R is
contained in X \\R, is 1-critical (Lemma 57), verifies |Z;| < |Y| and,
by induction hypothesis, is equivalent with some M; € L1y N Ty.
Without pert of generality, we can suppose W[Mj, ..., My,] defined.
Then, W[My,...,M,] is equivalent with X, belongs to T and to

L) Lsn-1)] = Lfn)-

every e-tree-decomposition X € T, N 7T; . such that for every leaf ¢ of
X, the hypergraph gx () contains at least one critical edge of val(X),
admits an equivalent e-tree-decomposition in Ly 1444942 N T

Let X € T, N 7;. be an e-tree-decomposition such that for every leaf
t of X, gx(t) contains at least one critical edge of val(X). Denote
by R the set of sources of X and by D the set of the critical edges of
val(X). From Fact 84, there is a set C' C D a set of cardinality at
most 2¥ such that for every d € D — C, there are at least two distinct
internally connected component of val(X)\d, each of them containing
at least one edge of C Denote by Y the e-tree-decomposition generated
by X and by the minimal subtree P of Tx that contains rx and
verifies C' C Eg, (py. Then, Y contains at most 2F leaves and, by
Corollary 42, belongs to L% N Tk.

If Y = X, the conclusion is obvious. Moreover, we suppose ¥ # X.
Let Z1,...,Z, be the e-tree-decompositions generated by X and the
subtrees of T x\Ny-.

Let Z = Z; for some i € [m]. Let ¢t be a leaf of Z. By construction
t is a leaf of X, the hypergraph gz(t), equal to gx(¢), contains
one critical edge d of val(X). Denote by H; and Ky two internally
connected component of val(X)\d, each of them containing at least
one edge of C. val(X) is internally connected. Then, Hy (resp. Kg)
contains at least one extremity of d, denoted by z (resp. y) and
one extremity of some edge of C' denoted by z (resp. w) that does
not belong to R. Consequence of Fact 12, H;\\R and K;\\R are
two distinct connected-component of (val(X)\d)\\R and, then, are
disjoint. By construction, every edge of C does not belong to Z.
Then, Hy\\R (resp. K4\\R) contains at least one source of Z. Every
connected-component L of (val(Z)\d)\\R is either contained in
Kj\\R, either contained in Hz\\R or disjoint with Hz\\R U K;\\R.
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In each case, it does not contain every source of (val(Z)\d)\\R.
Thus, d is 1-critical in val(Z)\\R. In consequence, for every node ¢ of
Z, gz(t) contains one 1-critical edge of Z\\R. Thus, Z\\R is 1-critical.

By Point (1), for each i € [m], Z; is equivalent with some U; €
L 1351042 N Tp. Without pert of generality, we can suppose
Y[Uy,...,Upy] defined. Then, Y[Uy,...,U,] is equivalent with X, be-
longs to T and to L£115[L3.p1042] = Liyapiore.

(3) Tk N, is equivalent with some subset of Ly. (1442 N T
Let X € T, NT¢,. If X is atomic, the conclusion is immediate. More-
over, we suppose X not atomic. Let Y be the e-tree-decomposition
generated by X and the maximal subtree of Tx that contains
no leaf of X. Then, X = Y|[Zy,...,Z,] for some atomic e-tree-
decompositions Z1,...,Z, € T;.

Y belongs to T;. N Tp. Every leaf ¢t of Y is not a leaf of X, and
admits at least one child in X that is a leaf of X. For every leaf ¢
of Y, denote by s; a leaf of X incident with ¢ in Tx and by e; the
arc of X incident with ¢ and s;. For every leaf ¢ of Y, the arc e;
belongs to gy (), verifies val(Y)\e; = (ex,gx(Tx\s;)) and is critical
in val(Y') (X is critical). By Point (2), Y admits an equivalent e-tree-
decomposition U € L_y19.(14%)2 N Tx. Without pert of generality, we
can suppose U[Z1,...,Up] defined. Then, U[Z1,...,Uy,] is equivalent
with X, belongs to T and to £y 44042 [L] = Lo.14k)2- O

Appendix c

To encode every nowhere-critical e-tree-decomposition in terms of its value,
we define a new relational structure: the e-discrete-decomposition. Their
set is denoted by Discret. This structure is an intermediate structure be-
tween the e-hypergraph and the e-tree-decomposition. This new structure is
composed by an e-hypergraph and by a multiset of couples of hypergraphs
(H, S) where the hypergraph with no edge S can be viewed as the “source-
edge” of H (we have S C H). More precisely, the e-discrete-decomposition
induced by some X € T, denoted by discr(X), is obtained by considering
for each node ¢ of X the hypergraph gx(¢) and the discrete subhypergraph
sx(t) C gx(t) having for nodes the sources of X|t and by transforming the
tree Tx into the “discrete graph” Nx. Thanks discr, the MSO-parsability

76



of 7.n° N Ranky, is proved in two steps. That is the direct consequence of
the both following results:

(1) {(jval(X)|, |discr(X)|) | X € TN Ranky} is MSO-definable, for each
k.

(2) {(|discr(X)|,|X]) | X € T2} is MSO-definable.

The property (2), expressed by Lemma 88, is the consequence of the
fact that every node of some X € 7.¢ contains a proper information that
permits to define Tx from discr(X). This property does not hold in the
general case (see Example 85).

Example 85 Let L be the set of all X € 7;. that contains no vertex and
exactly two edges. Hence, L contains every linear e-tree-decomposition X
that contains no vertex and uniquely two edges, one contained in its root,
the second in its leaf. The internal nodes of every X € L contain the empty-
graph, are similar and cannot be totally ordered by a MSO-formula. Then,
diser™! is not MSO-definable.

The reason for which, we keep for every node of X a couple of hypergraphs:
its hypergraph and its sources, is the fact that the multiset of the hyper-
graphs denoted by some node of X does not determine X (see Example 86).

Example 86 Let G = (a,{1,2,3,4,5},{a,b,c,d, e, f},v) where v associates
with a, b, ¢, d, e, f respectively the set {1}, {1,2}, {2,4}, {3,5}, {2,5}, {3,5}.
Let T be the tree having three nodes A, B,C with A and C as leaves. Let
X = (a,T,g9) and Y = (a,T,h) where g (resp. h) associates respectively to
A, B (resp. C) and C (resp. B) the hypergraph G | {a,b}, G | {c,d} and
G | {e,f}. X and Y are distinct, belong to 7;%¢ and verify {gx(t) | ¢t €
Nx} ={gv(t) |t € Ny}

The property (1), expressed by Lemma 99, shows how transform
by a MSO-transduction every e-hypergraph G into sets L of the form
{gx(t) | t € Nx} for some X € T.2° N Ranky such that G = val(X). A
simple way to define such sets is to consider sets of (nonempty) connected
and disjoint subgraphs of G. Unfortunately, our main operation on G is not
the disjoint union but the edge-substitution H[K] that union two hyper-
graphs having in the general case a common intersection (Vg NV # ().
To address this difficulty, it suffices to refine the relational structure of an
e-hypergraph by enrich its domain with a set By of tentacles that describe
the incidences between nodes and edges (see Definition 89 and proof of
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Lemma 99). To transform an hypergraph H into an hypergraph-with-
tentacles, it suffices to consider as vertex each vertex and each edge of H and
as edge each tentacle. This transformation is not a MSO-transduction, but
its restriction on every rank-bounded set of hypergraphs is MSO-definable
(see Theorem 90). If some e-hypergraph G is of the form H[K], then the
set A of tentacles of G is the disjoint union of B and C, respectively the
set of tentacles of Gy \ex and of Gx\ex. And if Gy\ex is connected and
if Gi\ex is internally connected, then B and C' are connected.

With the precedent remarks, it follows that every e-tree-decomposition
X can be define in a MSO-way from val(X) if for every ¢t € Nx, val(X|t)
admits for internally connected subhypergraph gx (t) (= Gyaix)\Ax)- To
do this, we use a logical-set that is a sequence of 5 sets of tentacles of val(X).
Unfortunately, this condition on X is stronger than this one required for the
membership of 7.n¢: we require for every ¢ € Nx and every arc d of X the
fact that val(X|t)\d contains an internally connected component containing
every source. Corollary 98 shows how a sequence of 2¥*2 logical-sets can
MSO-define in terms of val(X) the e-discrete-decomposition discr(X) for
every X € T.n¢ N Ranky N Type.

Definition 87 An e-discrete-decomposition is a sequence X denoted by
(ex,Gx,Nx,gx,sx) where (ex,Gx) is an e-hypergraph, denoted by
val(X), Nx the set of nodes of X, gy a mapping that associates with
every t € Ny a subhypergraph of Gx such that Eg, () N Eg, () = 0 for
all u # v € Nx and sx a mapping that associates with every ¢ € Nx a
subhypergraph of gx (¢) with no edge. We denote by Discret their set.

For all X,Y € Discret with val(X) = val(Y) and Ny NNy = 0, we
denote by X UY the e-discrete-decomposition (ex,Gx,Ny UNy,gx U
gy,sx U Sy).

Let X € T. We denote by sx the mapping that associates with every
node t of X the hypergraph Gy, [ ex|;\ex);. We denote by discr(X) the
e-discrete-decomposition (ex,Gx,Nx,gx,sx) and, for every P C Ny, by
discr(X, P) the e-discrete-decomposition (ex, Gx, P, g,s) with g and s the
restriction on P of respectively gx and sx.

Every X € Discret can be represented by a relational structure denoted
by | X| and defined in a similar way than for e-tree-decompositions such that
we have for all X, Y € discr X =Y if and only if | X| = |Y].

Here, we prove the MSO-definability of the converse of the restriction of
discr on T1C.

78



Lemma 88 {(|discr(X)|,|X]) | X € T,%°} is MSO-definable.

Proof.

For every X € T, we denote by <x the partial order on the nodes of X
induced by (Tx,rx). Clearly, to conclude it suffices to prove that there is
a MSO-formula that defines for every X € T.%¢ the partial order <y (or the
relation <x) in terms of discr(X). An element of some hypergraph H is an
element of the domain Vg UEg. Let X € T.n¢. For all nodes s,t € Ny, we
have:

(1) gx(s) contains at least one vertex not in sx(s), if s is not a leaf of X.

Let H = val(X|s). Suppose that every vertex of H is a source. H
is internally connected and, then, contains exactly one edge d distinct
with ey. By hypothesis, s is not a leaf. Then, d is an arc of X, that
is not critical in H (X € T;,%¢). Gpg\{em,d} contains no internally
connected subhypergraph (see Definition 45). Contradiction. Then,
H contains at least one non-source vertex.

(2) gx(s) contains at least one edge if s is a leaf of X distinct with rx.

Let H be val(X|s). Suppose that the unique edge of H is eg. H
is internally connected and, then, contains at least one non source
vertex x. By hypothesis, no edge of H is incident with z, x is isolated
in val(X). sis distinct with rx and, then, admits a parent u. Let y be
a vertex of X|u (Point (1)). y is dictinct with z. Then, val(X) is not
connected. Contradiction. Then, H contains at least one non-source
edge.

(3) s <x t if and only if there is a path of val(X) from some element of
gx (s) to some element of gx(¢) that does not contain any vertex of

Sx(t).

Let s <x t. By Points (1) and (2), there are two elements a, b respec-
tively of gx(s) and gx(¢) that does not belong to sx(s) and sx(¢).
Denote by G the e-hypergraph denoted by the e-tree-decomposition
generated by X and the union of {¢} and the set of all its descendant.
By hypothesis, X is internally connected, then G too. By construc-
tion a and b does not belong to gx(t), and then are the extremities
of some internal-path of G. By definition, this path does not contain
any element of sx (¢).

Let p a path of val(X) from some element of gx(s) to some element
of gx (t) that does not contain any element of sy (¢). Suppose s €x ¢t
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and denote by p the parent of t. Then, the path of Tx from s to ¢
contains p. From Definition 19, it follows that gx(p) contains some
vertex of p. Then, p contains some element of sx(¢). Contradiction.
Then, s <x t. val(X|u). O

Now, let us define formally tentacles:

Definition 89 Let G be a hypergraph. A tentacle of G is a pair of the form
{e,z} where e is an edge of G and x one of its extremity. A tentacle {e,z} is
said incident with e (resp. z). Two tentacles are vertez-adjacent (resp. edge-
adjacent) if they are incident to the same vertex (resp. edge). A set of
tentacles A is connected if it is nonempty and if for all tentacles {d, z}, {e,y}
of A, there is at least one path (o01,...,0n) of G such that {d,z} = {01, 02},
{e,y} = {om—1,0m} and {0;,0,11} € A for every i € [m — 1].

In the general case, the set of tentacles is not MSO-definable. Never-
theless, in the rank bounded case, it is. It is the direct consequence of
Theorem 90 due to Courcelle [7] and the fact that every tentacle {e,z} of
an oriented hypergraph of rank at most k£ can be represented by the pair
(e,i) with i € [k] if z is the 5" extremity of e (An oriented-hypergraph H
is a sequence (Vy, B, vertyr) where verty associates with every edge not
a set but a sequence of vertices. The degree of an edge is the length of this
sequence. The rank of an hypergraph is the maximal degree of all of its
edges).

Theorem 90 For every k > 2, the transduction {(und(H),H) | H € GO}
is MSO-definable where GOy contains every oriented-hypergraph of rank
at most k and where und associates with every oriented-hypergraph its
(unoriented- )hypergraph induced.

Now, present the logical-set that will permit to encode discr(X) from
val(X). Previously, some useful notations.

Notation 91 Let m be an integer. For every sequence L of length m and
for every i € [m], we denote by L; the i’" element of L. Let L and M
two sequences of sets of length m. We denote by L U M the sequence
(Ly UMy, ..., Ly, UM,). L is said contained in M, denoted by L C M, if
Ly C M, for every | € [m]. L and M are disjoint if U, Li N Uiy Li = 0

Definition 92 Let H € G. A logical-set of H is a sequence L of 5 sets of

tentacles of Gy such that Ly N Ly = 0 and L; ULy D L3yULy D Ly. A
logical-set A is internally connected if As is a singleton and if either Ay = ()
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and all tentacles of Ay are edge-adjacent, or if A, is connected and if every
tentacle of A, is edge-adjacent with at least one tentacle of As. An internally
connected component of some logical-set L is a logical-set A C L maximal
w.r.t C to be internally connected.

In the next notation, we show how associate in MSO to logical-set an
e-discrete-decomposition. This definition required the next fact. Its proof
is easy and will be admitted.

Fact 93 Let L be a logical-set of some H € G. For each a € Ls, there is
an internally connected component A of L such that a € As. Two distinct
internally connected components of L are disjoint.

Notation 94 Let L be a logical-set of some H € G. We denote by
discr(H, L) the e-discrete-decomposition |J ;. X where for every a € Ls,
the term X, denotes the e-discrete-decomposition (e, G, {a}, g, s) where:

e g(a) is the minimal subhypergraph of G that contains every vertex
(resp. edge) of H incident with a tentacle of A1 U A3 U Ay (resp. A4).

e s(a) is the minimal subhypergraph of Gy that contains every vertex
of H incident with a tentacle of A;.

with A the unique internally connected component of L such that
{a} = A5.
The next fact shows how to “fuse” logical-sets by preserving the e-

discrete-decompositions they define.

Fact 95 Let H € G. Let M and N two logical-sets such that for every
a € My U Ms and every d € Ny U No, we have:

e a and d are distinct and are not edge-adjacent.
e a and d are not adjacent if a € My and b € N.

M U N s a logical set such that: discr(H,M U N) = diser(H,M) U
discr(H, N).

Proof.

Internal-connected is abbreviated in “i.c”. Let M and N two logical-sets of
some H € G that verifies the conditions described above. Obviously, M U N
is a logical-set. Clearly, to conclude it suffices to prove that every logical-set
L is an i.c component of M U N if and only if L is an i.c component of M
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or of N. The proof comports two parts. A first one, we prove that every i.c
logical-set contained in M U N is contained in M or in N. A second one, we
conclude.

Part 1

Let A C M UN be an i.c logical-set. Let us prove A C M or A C N.
Suppose A not disjoint with M (the other case is symmetrical). Four cases
appear:

(1) As = 0.
All tentacles of A; are edge-adjacent and, then, do not belong to Ny U
Ny and belong to M;. A is contained in M.

(2) As is connected and is not contained in Ms and in Ny.
As is connected and is partitioned {Ay N Ma, Ay N No}. Then, there
are two adjacent tentacles a € My and b € Ny. Contradiction.

(3) As is connected and is contained in M.
Every tentacle of A1 N N7 is edge-adjacent with at least one tentacle
of A5 C M5 and, then does not belong to Ny. Thus, A C M.

(4) Ag is connected and is contained in No.
Symmetrical proof with the precedent one.

Part 2

Let A be an i.c component of M. Let B be an i.c component of M U N
that contains A. From Part 1, B is contained in M and, then, is equal
to A. Then, A is an i.c component of M U N. Let A be an i.c component
of M UN. From Part 1, A is contained in M or in N. Let B be an i.c
component of M or of N that contains A. B is i.c, verifies AC BC MUN
and, then, is equal to A. Then, A is an i.c component of M or of N. O

The next lemma is a consequence of precedent fact and expresses the
conditions that permit for some X € T to define thanks a logical-set a
“partial” e-discrete-decomposition of discr(X).

Lemma 96 Let X € T;,. N Types,. If there are some Y1,...,Y,, € Tic
for some m > 1 and some hypergraphs Hiy,...,Hp, such that X =
(... (1[Y2]) .. )[Ym] and such that for every i € [m)]:

e gx(ry;)\ex C H; C gx(Ty;).

e H; is internally connected in val(Y;).
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then, there is a logical-set L with discr(val(X),L) = discr(X,{ry, | i €

[m]})-

Proof.

Let X € TN Typesyg. Let m > 1, Vi,...,Y,, € T, be m e-tree-
decompositions and Hy, ..., H, be m hypergraphs that verify the conditions
described above. For every i € [m], let A’ the sequence where A, A%, A%, A}
contain respectively:

e every tentacle of H; incident with a source of Y;.

e every tentacle of H; not incident with a source of Y;.

e cvery tentacle of H; incident with a vertex of gx(ry;).

e cvery tentacle of H; incident with an edge of gx(ry;)\ex.

By hypothesis X € T;. N Types,. It follows {Y | Y C X} C 7, . N Type.
Then, for every i € [m], gx(ry;) and H; contain at least one source of Y;.
As a consequence of Definition 9, for every i € [m], every element of Vp,
(resp. Epz,) is incident in H; with some element of Ejy; (resp. V,) and then,
with a tentacle of H;. Thus, for every i € [m], A’ is internally connected
(see Definition 92) and verifies discr(val(X), A') = discr(X,ry;).

From Definition 19 and 9, we prove by recurrence on n that for
every | € [2,m] every tentacle a € A! U AL and every tentacle
b € Uie[l—l],je[Q] A;- are distinct, are not edge-adjacent and are not
vertex adjacent if a € Ab and b € Uie[l—l} Ab. By Fact 95, we have:
discr(val(X), Uie[m} AV = discr(X, {ry,,...,ry, }). O

In order to establish Corollary 98, we sate an important fact that permits
to partition every set D of “not-needed” edges into a partition of “not-
needed” subsets of D.

Fact 97 Let H be an e-hypergraph of type some integer k and let D C
Eg\ey be a nonempty set with no critical edge of H. There is a partition D
of D of cardinality at most 2% such that for every C € D, the e-hypergraph
H\C contains an internally connected component that contains every source

of H.

Proof.
Let k be an integer. This proof comports two parts. A first one, we
treat the case D = Eg\emy. A second one, we treat general case. The
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sentence “internally connected” is abbreviated in “i.c”. For every H € G,
we denote by |H| the cardinality of (Vg \verty(er)) U (Eg\er). Clearly,
every e-hypergraph of the form H[K] verifies: |H[K]| = |H| + |K|. A
good-partition of H is a partition £ of Eg\ey of cardinality at most 2*
such that for every D € &, there is an i.c component of H\D that contains
every source of H.

Part 1

Suppose there is n > 0 such that every H € G of type k, of size |[H| < n
with Ex\ey # 0 and with no critical edges, admits a good-partition of
cardinality at most 2¥. Let H be an e-hypergraph of type k, of size |H| = n
with Ex\ey # (0 and with no critical edge. Denote by R the hypergraph
(H | verty(em))\em. Different cases appear:

e two distinct i.c component of H contain R.
Denote by L and M two distinct i.c component of H that contain R.
The set {Ez,Ex\({exg} UEL)} is a good partition of H.

e one i.c component of H does not contain R.

Let L be an i.c component of H that does not contain R. Denote by K
the e-hypergraph (H\E)\(V—VR). Forevery d € Eg\({ex }UEL),
the i.c component of H\d that contains R is edge-disjoint with L, and
is an i.c component of K’. Then, K has for type k, has a size at most
n — 1, has no critical edge. By induction hypothesis, K admits a good
partition {Ey,..., E,}. Clearly, {EfL UE,..., E,} is a good partition
of H.

e Hisi.c and H\d is not i.c for some d € Ep.

Let d be an edge such that H\d not i.c. Denote by {Hq,..., H,,} the
set of i.c component of H\d. It comes 2 < m. By hypothesis, d is not
a l-critical edge of H, then at least one hypergraph of the form H;
with ¢ € [m] contains R. Without pert of generality, we can suppose:
R CH,. If RC H, for some i € [2,m], then, {Ex,,Eg\({eg}UEm,)}
is a good partition of H. Moreover, we suppose R € H;, for every
i €[2,m].

Denote by @ the hypergraph (H | d) U Ho U ... U Hy,. Denote by
P the e-hypergraph obtained from () by adding a new edge, noted
f, of extremities every vertex of H; N Q and by considering f as its
source-edge. Every element of Vi U (Ex\f) is the initial extremity of
an internal path of P of terminal extremity d. Then, P is i.c. Denote
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by N the e-hypergraph (ey,(H | eg)U Hy U (K [ f)). It comes:
H = N[P] with 0 < |P| and |N| < n. For every ¢ € Eg, H; is an
i.c subhypergraph of H\¢, c¢ is not critical in H. Then, every edge of
Ex\epm is not critical in N (Fact 46). K verifies the induction hypoth-
esis, admits a good-partition £. The set {(E1\f) UEgq,,, Eo, ..., E}
with & ={F4,...,E;} and f € Eq, is a good partition of H.

e H and H\d are i.c for every d € Ey\eq.

If every vertex of H is a source, H contains an unique edge distinct
with ey. Contradiction. Let x € Vg — V. Denote by {ry,...,r;}
the set V and for every i € [k], denote by H; the e-hypergraph
(H\\(VR\ri)). Forevery i € [k] and every d € Efr\ep, the hypergraph
H;\d contains z, is i.c and then is connected. Then, for every i € [k],
H; is 2-edge-connected (Lemma 7). For every i € [k], there are two
edge-disjoint path p;o and p; of H; from z to r; with no internal-
vertex in V. For every 4 € [k] and every j € {0,1}, we denote by
E; ; the set of edges of p!, augmented if (4,5) = (1,0) with the set of
edges that belong to any path of the form p; ; with (7,7) € [k] x [0, 1].
The set {E;; # 0 | i € [k],7 € [0,1]} is a good-partition of H of size
at most 2%.

Part 2

Let H € G of type k, D a nonempty subset of Ex\ey with no critical
edge of H and S the set of sources of H. For every d € D, H\d con-
tains an i.c component that contains S. Denote by K the e-hypergraph
obtained from H by adding, for every edge ¢ € Eg\D a new edge
of extremities whose of c¢. Clearly, for every edge ¢ € Eg\eg, the
e-hypergraph K\c contains an i.c component that contains S. Then, there
is a good-partition & = {E,...,E,} of K (see result of Part 1). The
set D ={E;ND | E;ND # (} is a partition of D such that for every
C € D, the e-hypergraph H\C contains an i.c component that contains S. O

Corollary 98 explains, in a “technical” way, why we can encode ev-
ery e-tree-decomposition X € T2 N Rankjy “inside” its value val(X).
Consequence of this corollary and Lemma 96 , there is a partition
{N1,...,Nyit1} and a sequence of 2¥*! logical-sets that define respectively
diser(X, Ny),ldots, discr(X, Noxt1) and then discr (see proof of Lemma 99).

Corollary 98 Let X € 7,%° N Ranky, for some k > 0. The set Nx admits
a partition {Ny,...,Nn} of cardinality at most 2872 such that for every
i € [m] and every t € N, there is a hypergraph H verifying:
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e gx(t)\ex C H C gx(T).
e H is internally connected in val(X|T).

where T designs the tree of T x\Q that contains t with Q the difference
N;\t augmented with the parent of t in X ift #rx.

Proof.
Let X € T.%° N Ranky, for some k > 0. Let m = 2k+1 A me-partition
(resp. 2m-partition) of some set N is a sequence (Ny,...,N;) of subsets of

N of length m (resp. 2m) such that N = [,y N; and N; N N; = () for all
1 <i < j <I. We denote by ¢ the bijective mapping Nx — {ex} U Ax
that associates with rx the source-edge ex and to every t € Nx\rx the
unique arc of A x incident with ¢ and with its parent. For every ¢ € Nx, we
denote by A; the set of all arcs of Ax\p(¢) incident with ¢.

Clearly, {A; | t € Nx} is a partition of Ax. From Definition 45, for
every t € Ny, A; contains no critical edge of val(X|t). As a consequence
of Fact 97, for every ¢t € Ny, there is a m-partition (A¢1,..., Aym) of
A; such that for every i € [m], the e-hypergraph val(X|t)\A;; contains
an internally connected component that contains every source of X|t. Let
(Ai,...,A;,) the m-partition of Ax where for every i € [m] the term A;
denotes UteNX Ay;. Let f the mapping Nx — [2m] that associates with
every t € Nx:

o lift=rx.
e j(t) if t # rx and if the distance in Tx between ¢ and rx is even.
e m + j(t), otherwise.

where for every t € Nx\rx, j(¢) is the unique integer i such that
(p(t) € A;.

Let (Ni,...,Nom) = (f~'(1),...,f~"(2m)) be the 2m-partition of Ny.
Let i € [2m] and D; the set of all arcs d € Ay such that ¢ '(d) € N;.
For every d € Ax (resp. d = ex), we denote by T; the maximal subtree
of Tx\D; (resp. Tx\D;) that contains ¢~ 1(d). Observing that T. C Ty
for all d € {ex} U Ax and ¢ € A,-1q) N D;, we prove by recurrence on
card(Vr,) that for every d € {ex} U Ax, there is a hypergraph H,; such
that:

o sx(p~'(d)) C Hq C gx(Ty).

e H, is internally connected in val(X|Ty).
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Let £ € N; and H = (gx(t)\ex) U Ueca, He- It comes gx(t)\ex C
H C gx(Tpp) and H = (Gxpp UU,er, (HO\({(t)} U Ay). The inclu-
sion Ay C N; and Lemma 16 imply that H is internally connected in
val(X|T(p(t)). O

The next lemma establishes the MSO-definability of the converse of the
restriction of val on discr(T%¢ N Ranky). Its proof is obtained by extend-
ing the MSO-transduction induced by the precedent corollary to e-tree-
decompositions of type null or non-null.

Lemma 99 For each k, {(|val(X)|,|discr(X)|) | X € T%° N Ranky} is
MSO-definable.

Proof.

For each k¥ > 0, we denote by p; (resp. gqx) the transduction
{(val(X),discr(X)) | X € T, N Ranky} (resp. € T,%° N Ranki NTypey}).
Let k£ be an integer. This proof comports two parts, that concern respec-
tively g and py.

Part 1

An e-hypergraph-with-tentacle H is a e-hypergraph augmented with a set,
denoted by By, and with two mappings f : By = Vg and g : By — Ep
that describe the set of tentacles of H. We denote by GB; the set of all
e-hypergraph-with-tentacles of rank at most & and by f; the mapping that
associates with every H € GBj, its e-hypergraph induced. As a consequence
of Theorem 90, the converse of f; is MSO-definable.

Clearly, the notions of a logical-set and of an internally connected compo-
nent of a logical-set are MSO-definable. Clearly, the mapping that associates
with every H € GB;, and to every sequence of logical-sets (L', ... ,L2k+2)
of H the sequence [;cpor+2) discr(fi(H), L") (without pert of generality,
we can suppose Li disjoint with Lg for every 1 < i < j < 2F+2) induces a
definition scheme (see Definition 66). By Lemma 96 and Corollary 98, every
H € f, *(val(T2¢ N Ranky, N Type)) admits a sequence of length 5 - 2F+2
of subsets of By that defines discr(X). Tt follows that ¢ is MSO-definable.

Part 2

Obviously, every X € T;%° N Ranko is atomic. It follows that pgy is
MSO-definable. Denote by g the transduction that associates with every
e-hypergraph H itself and, if H has no source, every e-hypergraph obtained
from H by adding a new source r incident with ey and a new edge d
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incident with r and with at most one vertex of H. We suppose that the
new edge and the new vertex are labelled by a special symbol $. Clearly,
g is MSO-definable. Denote by h the transduction that associates with
every X € Discret the e-discrete-decomposition obtained from X by
deleting the eventual edge and the eventual vertex of X labelled $. Clearly,
h is MSO-definable. Without difficulty, we prove that p; is contained
in po U (goqroh) and is equal to pg U (g o g o h o 4), where ¢ denotes
the identity transduction having for domain discr,(7;%° N Ranky). By
Lemma 88 and Proposition 69, 7 is MSO-definable. By Proposition 68, pg
is MSO-definable. a

Proof of Theorem 70.
Direct consequence of Lemmas 88 and 99 and Proposition 68. a
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