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Abstract. Formulas from monadic second order (mso) logic with one

and two free variables can be used to de�ne the nodes and edges (re-

spectively) of a graph, in terms of a given graph. Such mso de�nable

graph transductions play a role in the theory of graph grammars. Here

we investigate the special case of trees. The main result is that the mso

de�nable tree transductions are exactly those tree transductions that can

be computed by attributed tree transducers with look-ahead, which are

a speci�c type of two-stage attribute grammar: in the �rst (look-ahead)

stage all attributes have �nitely many values, in the second stage all at-

tributes are trees, and the second stage satis�es the single use restriction

(i.e., each attribute is used at most once). Moreover, if we allow the mso

transductions to produce trees with shared subtrees (i.e., term graphs,

that have to be unfolded), then the single use restriction can be dropped.

1 Introduction

Formulas of monadic second order (mso) logic can be used to express properties

of labeled graphs, and, in particular, trees and strings. Thus, monadic second or-

der logic is a convenient language for the speci�cation of sets of graphs, relations

between graphs, relations between the nodes of graphs, etcetera. Several results

are known that provide formal models for the implementation of such speci�ca-

tions (see, e.g., [Tho, Eng5]). The classical one, proved in [B�uc, Elg], is that a set

of strings can be speci�ed in monadic second order logic (by a closed formula) if

and only if it can be recognized by a �nite-state automaton. This was general-

ized in [Don, ThaWri] to sets of node-labeled ordered trees, with an appropriate

generalization of the �nite-state automaton to the bottom-up �nite-state tree

automaton. The trees considered are the usual representations of terms over a

�nite set of operators. In [Cou1] one direction of the result was generalized to
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graphs: every set of graphs that can be speci�ed in monadic second order logic

is recognizable in the algebraic sense (see [MezWri]), for a speci�c algebra of

graphs. This was used to show that the class of context-free graph languages,

generated by context-free graph grammars, is closed under intersection with mso

de�nable sets of graphs.

Inspired by the ideas of [Cou1], a characterization of the context-free graph

languages in terms of monadic second order logic was presented in [Oos, Eng4,

EngOos], based on the following natural logical way to specify graph transduc-

tions, i.e., functions from graphs to graphs. The idea is that the output graph is

speci�ed by formulas that are interpreted on the input graph (see [ArnLagSee]

for the history of the concept of interpreting one logical structure in another).

More precisely, for a given input graph g

1

, the nodes of the output graph g

2

are

a subset of the nodes of g

1

, which is speci�ed by a unary mso formula, i.e., a

formula with one free variable ranging over the nodes of g

1

; the edges of g

2

are

speci�ed by a binary mso formula, i.e., a formula with two free variables ranging

over the nodes of g

1

. In fact, to de�ne the labels of the nodes and edges of g

2

,

these formulas are indexed by node and edge labels, respectively. It was shown

in [Oos, Eng4, EngOos] that a set of graphs is context-free i� it is the image of

an mso de�nable set of trees under an mso de�nable graph transduction. Since

it is easy to see that the mso de�nable graph transductions are closed under

composition, this characterization implies that the context-free graph languages

are closed under mso de�nable graph transductions (comparable to the closure

of the context-free string languages under �nite state transductions).

3

In [Cou3] the mso de�nable graph transductions were generalized, in a nat-

ural way, such that the above characterization of the context-free graph lan-

guages still holds. As a result, the context-free graph languages are even closed

under this larger class of functions on graphs. The main idea of the generaliza-

tion is to allow the output graph to contain a �xed number k of copies of each

node of the input graph. Accordingly, the mso formulas specifying the graph

transduction are additionally indexed by numbers from 1 to k. This is the type

of mso de�nable function on graphs that we consider in this paper. The mso

de�nable functions in [EngOos, Cou3] are partial, and in [Cou3] also mso de-

�nable relations are considered. Here, we investigate total functions only. For a

survey on mso de�nable graph transductions, see [Cou4].

The results discussed above show how to specify the context-free graph lan-

guages by mso de�nable graph transductions, but, the other way around, they

do not answer the question of how to implement mso speci�cations of graph

transductions, which is the topic of this paper. Since there do not seem to be

3

It should be noted here that there are (at least) two natural classes of context-

free graph languages, those generated by (hyper)edge replacement (HR, see, e.g.,

[DreHabKre]) and those generated by node replacement (NR, see, e.g., [EngRoz]).

They are related to mso logic with and without variables ranging over edges, re-

spectively. The original result of [Cou1] was proved for HR (and, later, for NR in

[CouEngRoz]). The characterization of [Oos, Eng4, EngOos] was proved for NR (and,

later, for HR in [CouEng]). For a survey of the relationships between context-free

graph grammars and monadic second order logic, see [Cou2, Cou5, Eng6].
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suitable formal models for the implementation of functions on graphs, we con-

sider in this paper the special case of trees: both input and output graph are

trees. This choice is also motivated by the fact that tree transductions form a

well-known and well-investigated model of syntax-directed semantics. A partial

answer to the question of how to implement the mso de�nable tree transduc-

tions was given in [BloEng], where it was shown how to implement unary and

binary mso formulas for trees: unary formulas can be implemented by attribute

grammars of which all attributes have �nitely many values (proved indepen-

dently in [NevBus]), and binary formulas can be implemented by a particular

type of �nite-state tree-walking automaton. Since the speci�cation of a graph

transduction consists of a collection of unary and binary formulas, we can use

these characterizations to obtain a model for the implementation of mso speci-

�cations of tree transductions. The main idea is that the tree-walking automata

can be turned into an attribute grammar. Thus, we obtain a characterization

of the mso de�nable tree transductions in terms of attribute grammars, one of

the best known formal models for de�ning syntax-directed semantics. Of course,

attribute grammars are still a speci�cation language, but they are much closer

to implementation than mso logic, and their implementation has been studied

extensively (see, e.g., [DerJouLor, Eng3, K�uhVog2]).

To be precise, we prove that a tree transduction is mso de�nable i� it can be

computed by an \attributed tree transducer with look-ahead" (att

R

for short).

This is a transducer which consists of two attribute grammars, each computing

a tree transduction, the composition of which is the tree transduction computed

by the transducer. The two attribute grammars work in di�erent ways. The �rst

attribute grammar is a so-called relabeling attribute grammar (introduced in

[BloEng]) which just preprocesses the input tree by relabeling its nodes: all at-

tributes have �nitely many values and one of the attributes holds the new label

of each node. This is the look-ahead part of the att

R

; the R stands for `rela-

beling' or for `regular look-ahead', where `regular' is used to refer to �nite-state

devices (in this case an attribute grammar of which all attributes have �nitely

many values). The second attribute grammar is an attributed tree transducer

(introduced in [F�ul], see also [EngFil]) which performs the actual computation:

the values of all attributes are trees, with substitution as the only operation on

trees, and the output tree is the value of a designated attribute at the root of

the input tree. Moreover, the second attribute grammar satis�es the so-called

single use restriction (investigated in [Gan, GanGie, Gie]), which means that

each attribute is used at most once. An att

R

can also be viewed as one attribute

grammar of which the attributes can be evaluated in two phases: in the �rst

phase only attributes with �nitely many values are evaluated, called \ags" in

[Eng2, Blo], and in the second phase the value of each attribute is a tree which

is de�ned by a conditional rule, depending on the values of the ags. Intuitively,

this is a more understandable model. Technically, due to the presence of condi-

tional rules in such two-phase attribute grammars, it is more convenient to work

with compositions of attribute grammars as above.

Since trees are terms and terms can be evaluated in a semantic domain, at-
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tributed tree transducers are a schematic model of attribute grammars: every

attribute grammar can be viewed as an attributed tree transducer followed by

an evaluation of terms (cf. [Eng2]). The attributed tree transducers seem to

have certain undesirable properties, see, e.g., [F�ulVag]. Based on the results of

this paper, we think that the attributed tree transducer with look-ahead is a

more attractive and robust formal model of attribute grammars. By the result

of [F�ulVag] it is more powerful than the attributed tree transducer. This can

be compared with the addition of regular look-ahead to top-down tree trans-

ducers (see [Eng1, G�ecSte]), which are, in fact, attributed tree transducers with

synthesized attributes only.

When implementing tree transductions (as in term rewriting systems) it is

natural, and e�cient, to allow trees with shared subtrees: so-called term graphs

(see, e.g., [SlePleEek, CorMon]). Thus, we also investigate mso de�nable graph

transductions of which the input graph is a tree, but the output graph is a

term graph. Such a graph transduction de�nes a tree transduction, obtained by

unfolding the output graph into the tree it represents. We prove that a tree

transduction can be de�ned by such an mso de�nable term graph transduction

i� it can be computed by an attributed tree transducer with look-ahead, without

the single use restriction. In fact, one of the reasons that attribute grammars

are a popular tool for the implementation of syntax-directed semantics is the

fact that attributes can be used several times, but are computed only once. Note

that the single use restriction naturally correspond to the requirement that the

term graph has no sharing, i.e., is a tree.

The structure of this paper is as follows. Section 2 contains the basic ter-

minology on graphs, term graphs, trees, mso logic, and attribute grammars. In

Section 3 we recall the de�nition of mso de�nable graph transduction, and de-

�ne the two classes of mso de�nable tree transductions that we investigate, with

and without sharing of subtrees. The notion of an mso relabeling is introduced,

which is an mso de�nable tree transduction that just relabels the nodes of the

input tree. In Section 4 we de�ne the attributed tree transducer with look-ahead,

by recalling the de�nitions of a relabeling attribute grammar and an attributed

tree transducer. This section also contains some basic properties of attributed

tree transducers, which are used in Section 5 to show that every attributed tree

transduction is mso de�nable (without sharing of subtrees if the single use re-

striction is satis�ed). In Section 6 we recall the characterization of unary and

binary formulas on trees, proved in [BloEng], and we show that relabeling at-

tribute grammars and mso relabelings have the same power. With the result of

the previous section, this shows half of our main results: every tree transduction

computed by an attributed tree transducer with look-ahead can be speci�ed in

mso logic. The other half is proved in Section 7: every mso de�nable tree trans-

duction can be computed by an att

R

. After the proof, a detailed example is given

of this implementation. The attributed tree transducer constructed in the proof

is only guaranteed to be noncircular when restricted to the output trees of the

relabeling attribute grammar. It is shown in Section 8 that it can be turned into

a noncircular attributed tree transducer. Finally, the main results are stated and
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discussed in Section 9.

Most of the results of this paper were proved as part of [Blo], the Master's

Thesis of the �rst author.

2 Preliminaries

In this section we recall some well-known concepts concerning graphs and trees,

monadic second order logic on graphs, and attribute grammars.

N = f0; 1; 2; : : :g, and for m;n 2 N, [m;n] = fi j m � i � ng. For a set

S, P(S) is its powerset and #S its cardinality. For binary relations R

1

and R

2

,

their composition is R

1

� R

2

= f(x; z) j 9y : (x; y) 2 R

1

and (y; z) 2 R

2

g; note

that the order of R

1

and R

2

is nonstandard. For sets of relations R

1

and R

2

,

R

1

� R

2

= fR

1

� R

2

j R

1

2 R

1

; R

2

2 R

2

g. The transitive reexive closure of a

binary relation R is denoted R

�

. A binary relation R is said to be functional if

it is a partial function, i.e., if (x; y); (x; z) 2 R implies y = z.

2.1 Graphs, term graphs, and trees

We view trees and term graphs as �nite, directed graphs with labeled nodes and

edges, in the usual way. Let � and � be alphabets (of node labels and edge

labels, respectively). A graph over (�;� ) is a triple (V;E; lab), with V a �nite

set of nodes, E � V � � � V the set of labeled edges, and lab : V ! � the

node-labeling function. For a given graph g, its nodes, edges, and node-labeling

function are denoted V

g

, E

g

, and lab

g

, respectively. The set of all graphs over

(�;� ) is denoted G

�;�

.

Let g = (V;E; lab) be a graph. An edge (u; ; v) is an edge with label  from

u to v, it is an outgoing edge of u, and an incoming edge of v. We also say that

u is a parent of v and that v is a child of u. Instead of (u; ; v) 2 E we also write

u



! v. For nodes u; v 2 V , a (directed, possibly empty) path from u to v is an

alternating sequence u

0

e

1

u

1

e

2

u

2

� � � e

n

u

n

of nodes u

i

and edges e

i

, with n � 0

(the length of the path), u

0

= u, u

n

= v, and e

i

is an edge from u

i�1

to u

i

. We

also say that u is an ancestor of v and that v is a descendant of u. The path

is also written u

0



1

�! u

1



2

�! u

2

� � �



n

�! u

n

, if e

i

= (u

i�1

; 

i

; u

i

). It is a cycle

if n � 1 and u

0

= u

n

. A graph is noncircular if it has no cycles, and circular

otherwise.

The trees we consider are the usual graphical representations of terms, which

form the free algebra over a set of operators. An operator alphabet � is an

alphabet � together with a rank function rk : � ! N. For all k 2 N, �

k

= f� 2

� j rk(�) = kg is the set of operators of rank k, i.e., with k arguments. The rank

interval of the operator alphabet � is rki(�) = [1;m] where m is the maximal

rank of the elements of �.

The nodes of a tree or term graph over� are labeled by operators. To indicate

the order of the arguments of an operator, we label the edges by natural numbers.

Since a term graph may contain \garbage", the root of the tree it represents has
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to be marked. Here it is technically convenient to add the mark # to the label

of the root. This is only necessary if the term graph itself has no unique root.

Let � be an operator alphabet. By �

#

we denote the ranked alphabet � [

(� � f#g) in which, for every � 2 �, both � and (�;#) have the same rank as

� in �. A term graph over � is a graph t over (�

#

; rki(�)) such that

(1) t is noncircular,

(2) for every node u of t, if lab

t

(u) = � or lab

t

(u) = (�;#), with � 2 �

k

,

then all outgoing edges of u have labels in [1; k], and, for every i 2 [1; k], u has

exactly one outgoing edge with label i, and

(3) either there is a unique node with label in � � f#g, or there is no node

with label in � � f#g and there is a (unique) node which is an ancestor of all

nodes.

The unique node mentioned in condition (3) is called the root of t, denoted

root(t). Thus, either root(t) is the unique node that is marked with #, or no

node is marked with # and root(t) is the unique node that is an ancestor of all

nodes of t.

A node without outgoing edges is called a leaf of t. For nodes u and v of t, if

(u; i; v) 2 E

t

, then v is called the i-th child of u, denoted by u � i. For technical

convenience, we also de�ne u � 0 = u. All nodes of t that are not descendants

of root(t) are referred to as garbage. Note that, by condition (3), there is no

garbage if the root is not marked by #.

A forest is a term graph such that no node has more than one incoming

edge. A tree is a forest such that all nodes have their labels in �. The set of all

trees over � is denoted T

�

. A function from T

�

to T

�

(where � is an operator

alphabet too) is called a tree transduction or a term transduction. As usual, trees

will also be denoted by the corresponding terms over �. Thus, for � 2 �

k

and

t

1

; : : : ; t

k

2 T

�

, the term �(t

1

; : : : ; t

k

) denotes the tree t with lab

t

(root(t)) = �

and root(t) � i = root(t

i

) for every i 2 [1; k].

Term graphs can be unfolded into trees. For a term graph t over �, the

unfolding of t, denoted unfold(t), is the tree over � de�ned by unfold(t) =

unf

t

(root(t)), where, for u 2 V

t

, unf

t

(u) = �(unf

t

(u � 1); : : : ; unf

t

(u � k)) with

lab

t

(u) = � or lab

t

(u) = (�;#), � 2 �

k

.

A term graph over � is clean if all its node labels are in � (and hence all its

nodes are descendants of the root). Garbage can be removed from term graphs

as follows. For a term graph t over �, the cleaning of t, denoted clean(t), is the

subgraph of t induced by the descendants of root(t), in which # is removed from

the label of root(t), if present. Obviously, clean(t) is a term graph over � of

which all nodes have their labels in �. Moreover, root(clean(t)) = root(t) and

unfold(clean(t)) = unfold(t).

We also need terms with variables. These variables are treated as constants.

Let � be an operator alphabet and � a �nite set (of variables), disjoint with

�. Let �(�) be the operator alphabet with �(�)

0

= �

0

[ � and �(�)

k

= �

k

for k � 1. Then T

�

(�) = T

�(�)

is the set of trees over � with variables in

�. A tree t 2 T

�

(�) is linear if every variable appears at most once in t. If

� = f�

1

; : : : ; �

k

g and t

i

2 T

�

(�) for i 2 [0; k], then t

0

[�

1

7! t

1

; : : : ; �

k

7! t

k

]
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denotes the result of (simultaneously) substituting t

i

for �

i

in t

0

, i 2 [1; k].

2.2 Monadic second order logic

Monadic second order logic can be used to describe properties of graphs (see,

e.g., [Cou2, Cou5, Eng4, Eng6, EngOos]), and hence in particular to describe

properties of trees and term graphs. For alphabets � and � , we use the language

MSOL(�;� ) of monadic second order (mso) formulas over (�;� ). Formulas

over (�;� ) describe properties of graphs over (�;� ). This logical language has

node variables x; y; : : : , and node-set variables X;Y; : : : . For a given graph g

over (�;� ), node variables range over the elements of V

g

, and node-set variables

range over the subsets of V

g

.

There are three types of atomic formulas in MSOL(�;� ): lab

�

(x), for every

� 2 �, denoting that x has label �; edg



(x; y), for every  2 � , denoting that

there is an edge labeled  from x to y; and x 2 X , denoting that x is an element

of X . The formulas are built from the atomic formulas using the connectives :,

^, _, !, and $, as usual. Both node variables and node-set variables can be

quanti�ed with 9 and 8. We will use edg(x; y) to abbreviate the disjunction of

all edg



(x; y),  2 � ; it denotes that there is an edge from x to y. We will use

x = y for 8X(x 2 X $ y 2 X), denoting that x equals y. Finally, we will use

the formula path(x; y) which expresses the existence of a directed path from x

to y:

path(x; y) = 8X((closed(X) ^ x 2 X)! y 2 X)

where closed(X) = 8x; y((edg(x; y) ^ x 2 X)! y 2 X).

For every k 2 N, the set of mso formulas over (�;� ) with k free node vari-

ables and no free node-set variables is denoted MSOL

k

(�;� ). For k = 1; 2, the

elements of MSOL

k

(�;� ) are also called unary and binary formulas, respectively.

Since we are predominantly interested in trees and term graphs, over an

operator alphabet �, an mso formula over (�

#

; rki(�)) will simply be called an

mso formula over �. Also, MSOL(�

#

; rki(�)) will be abbreviated to MSOL(�),

and similarly for MSOL

k

(�). Note that, in MSOL(�), edg

i

(x; y) means that y

is the i-th child of x, and edg(x; y) means that x is a parent of y. We will

additionally use root(x) for a formula that expresses that x is the root of a term

graph, e.g., the formula lab

#

(x) _ 8y(: lab

#

(y) ^ path(x; y)), where lab

#

(x) is

the disjunction of all lab

(�;#)

(x), for � 2 �. Moreover, we will use leaf(x) for

:9y(edg(x; y)), which denotes that x is a leaf. In case we consider trees only,

the component � � f#g can of course be dropped, and, e.g., root(x) can be

simpli�ed to 8y(path(x; y)).

For a closed formula � 2 MSOL

0

(�;� ) and a graph g 2 G

�;�

, we write g j= �

if g satis�es �. Given a graph g, a valuation � is a function that assigns to each

node variable an element of V

g

, and to each node-set variable a subset of V

g

. We

write (g; �) j= �, if � holds in g, where the free variables of � are assigned values

according to the valuation �. If a formula � has free variables, say, x;X; y and

no others, we also write �(x;X; y). Moreover, we write (g; u; U; v) j= �(x;X; y)

for (g; �) j= �(x;X; y), where �(x) = u, �(X) = U , and �(y) = v. As a very
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simple example, (g; u; v) j= path(x; y) means that there is a path from u to v in

g, and g j= 8x; y(path(x; y)) means that g is strongly connected.

2.3 Attribute Grammars

In this subsection we recall some terminology concerning attribute grammars

(see, e.g., [Knu, DerJouLor, Eng3, K�uhVog2]). In order to allow the attribute

grammar to work on arbitrary trees over an operator alphabet, rather than on

derivation trees of an underlying context-free grammar, we consider a slight

variation of the attribute grammar that was introduced in [F�ul]. The semantic

rules of the attribute grammar are grouped by operator rather than by grammar

production, and there are special semantic rules for the inherited attributes of

the root. All operators have the same attributes.

Let � be an operator alphabet. An attribute grammar over � is a six-tuple

G = (�;S; I; 
;W;R; �

m

) where

{ � is the input alphabet.

{ S is a �nite set, the set of synthesized attributes.

{ I , disjoint with S, is a �nite set, the set of inherited attributes.

{ 
 is a �nite set of sets, the semantic domains of the attributes.

{ W : (S [ I)! 
 is the domain assignment.

{ R describes the semantic rules; it is a function associating a set of rules with

every � 2 � [ frootg:

� For � 2 �, R(�) is the set of internal rules for �; R(�) contains one rule

h�

0

; i

0

i = f(h�

1

; i

1

i; : : : ; h�

k

; i

k

i)

for every pair h�

0

; i

0

i, where either �

0

is a synthesized attribute and

i

0

= 0, or �

0

is an inherited attribute and i

0

2 [1; rk(�)]. Furthermore,

k � 0, �

1

; : : : ; �

k

2 S [ I , i

1

; : : : ; i

k

2 [0; rk(�)], f is a function from

W (�

1

)� � � � �W (�

k

) to W (�

0

), and the h�

j

; i

j

i are all distinct.

� R(root) is the set of root rules; R(root) contains one rule

h�

0

; 0i = f(h�

1

; 0i; : : : ; h�

k

; 0i)

for every �

0

2 I , where k � 0, �

1

; : : : ; �

k

2 S [ I , f is a function from

W (�

1

)� � � � �W (�

k

) to W (�

0

), and the h�

j

; i

j

i are all distinct.

{ �

m

2 S is the meaning attribute.

Usually, for a semantic rule h�

0

; i

0

i = f(h�

1

; i

1

i; : : : ; h�

k

; i

k

i) the function f is

given as f = �x

1

; : : : ; x

k

:e for some expression e with variables in fx

1

; : : : ; x

k

g.

We will then informally denote the rule by h�

0

; i

0

i = e

0

where e

0

is obtained

from e by substituting h�

j

; i

j

i for x

j

, for all j 2 [1; k].

If I = ;, i.e., G has synthesized attributes only, then G is said to be Only

Synthesized (os). Note that an os attribute grammar has no root rules.

If all sets in 
 are �nite, then G is said to be �nite-valued; this means that

each attribute has �nitely many values.
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Let t be a tree over �. The set of attributes of t is A(t) = (S [ I) � V

t

.

The set R(t) of semantic instructions of t is de�ned as follows. Recall that,

for u 2 V

t

, u � 0 = u. For every node u 2 V

t

, if lab

t

(u) = �, and h�

0

; i

0

i =

f(h�

1

; i

1

i; : : : ; h�

k

; i

k

i) is a rule in R(�), then

h�

0

; u � i

0

i = f(h�

1

; u � i

1

i; : : : ; h�

k

; u � i

k

i)

is an internal instruction of t. Analogously, if h�

0

; 0i = f(h�

1

; 0i; : : : ; h�

k

; 0i) is

a root rule, then

h�

0

; root(t)i = f(h�

1

; root(t)i; : : : ; h�

k

; root(t)i)

is a root instruction of t. The set of all internal instructions and root instructions

of t is R(t). Note that for every h�; ui 2 A(t) there is exactly one semantic

instruction with left-hand side h�; ui in R(t).

With the help of R(t), the dependencies between the attributes of t can be

represented in the usual way by a graph. The dependency graph of a tree t over

� is the unlabeled directed graph D(t) = (V;E), where V = A(t) and E consists

of all edges (h�; ui; h�

0

; u

0

i) such that there is a semantic instruction h�

0

; u

0

i =

f(h�

1

; u

1

i; : : : ; h�

k

; u

k

i) 2 R(t) with h�; ui = h�

i

; u

i

i for some i 2 [1; k]. An

attribute grammar G is noncircular on a tree t 2 T

�

if D(t) is noncircular, and

G is noncircular if it is noncircular on every tree t 2 T

�

. An attribute grammar

G is single use restricted (sur) on a tree t 2 T

�

if no node of D(t) has more than

one outgoing edge, and G is sur if it is sur on every tree t 2 T

�

. The single use

restriction was investigated in [Gan, GanGie, Gie]; it received its name in [Gie].

We now de�ne how to give the correct values to the attributes of the tree

t. Let dec be a function from A(t) to [
, such that dec(h�; ui) 2 W (�) for

every h�; ui 2 A(t). The function dec is a decoration of t if all instructions are

satis�ed, i.e., for every instruction h�

0

; u

0

i = f(h�

1

; u

1

i; : : : ; h�

k

; u

k

i) 2 R(t),

dec(h�

0

; u

0

i) = f(dec(h�

1

; u

1

i); : : : ; dec(h�

k

; u

k

i)). It is well known that if D(t)

is noncircular, then t has a unique decoration; this decoration will be denoted

by dec

G;t

.

We will not use the meaning attribute �

m

here. It will be used in later

sections, in di�erent ways, to de�ne the translation realized by an attribute

grammar.

Finally, we de�ne the dependency graphs of symbols (and the root), which

are similar to the dependency graphs of productions in the usual type of at-

tribute grammar [Knu]. They are the atomic graphs from which all dependency

graphs D(t) of trees t 2 T

�

are built. For � 2 �

k

, the dependency graph of

� is the unlabeled directed graph D(�) = (V;E) where V = A � [0; k] and

E consists of all edges (h�

j

; i

j

i; h�

0

; i

0

i) such that there is a rule h�

0

; i

0

i =

f(h�

1

; i

1

i; : : : ; h�

r

; i

r

i) 2 R(�), with j 2 [1; r]. The dependency graph of the

root is the unlabeled directed graph D(root) = (V;E) where V = A � f0g

and E consists of all edges (h�

j

; 0i; h�

0

; 0i) such that there is a rule h�

0

; 0i =

f(h�

1

; 0i; : : : ; h�

r

; 0i) 2 R(root), with j 2 [1; r].
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3 MSO de�nable graph transductions

The main concept in this paper is that of an mso de�nable function f on graphs,

introduced in [Oos, Eng4, EngOos], and independently in [Cou3] (for a recent

survey see [Cou4]). The idea is that, for a given input graph g

1

, the nodes, edges,

and labels of the output graph g

2

= f(g

1

) are described in terms of mso formulas

on g

1

. For the simplest type of mso de�nable function (see [EngOos]), the nodes

of g

2

are a subset of the nodes of g

1

. In fact, for each node label � of g

2

there is a

unary formula  

�

(x) expressing that node x of g

1

will be a node of g

2

with label

� (provided no other such formula is true for x). The edges of g

2

are speci�ed

by a binary formula �



(x; y), for every edge label  of g

2

, expressing that there

will be a -labeled edge from x to y in g

2

. Although this type of mso de�nable

function is su�cient for many purposes, its power is restricted by the fact that

the size of the output graph cannot be larger than the size of the input graph.

Thus, in [Cou3] the above idea was extended by allowing the output graph to

contain (a �xed number k of) copies of each node of the input graph. Now, for

each i 2 [1; k] there is a formula  

�;i

(x) expressing that the i-th copy of node x

of g

1

will be a node of g

2

with label �, and, similarly, for i; j 2 [1; k] there are

formulas �

;i;j

(x; y) for the edges of g

2

. It will be convenient to use arbitrary

names for the copies, rather than numbers.

We will only consider total functions f (see [Cou4] for the extension to partial

functions and to relations). Since our aim is to compare the de�ning power of

monadic second order logic with the power of certain types of tree transducers,

we will view an mso speci�cation of f as a \graph transducer"; this is then a

total deterministic transducer. We now de�ne the syntax and semantics of such

mso graph transducers.

An mso graph transducer from (�

1

; �

1

) to (�

2

; �

2

) is a triple T = (C; 	;X)

where

{ C is a �nite set of copy names,

{ 	 = f 

�;c

(x)g

�2�

2

;c2C

, with  

�;c

(x) 2 MSOL

1

(�

1

; �

1

),

is the family of node formulas, and

{ X = f�

;c;c

0

(x; y)g

2�

2

;c;c

0

2C

, with �

;c;c

0

(x; y) 2 MSOL

2

(�

1

; �

1

),

is the family of edge formulas.

The copy number of T is #C.

The graph transduction T

gr

: G

�

1

;�

1

! G

�

2

;�

2

de�ned by T is de�ned as

follows. For every graph g

1

over (�

1

; �

1

), T

gr

(g

1

) is the graph g

2

over (�

2

; �

2

)

with

{ V

g

2

= f(c; u) j c 2 C; u 2 V

g

1

; and there is exactly one � 2 �

2

such that

(g

1

; u) j=  

�;c

(x)g,

{ E

g

2

= f((c; u); ; (c

0

; u

0

)) j (c; u); (c

0

; u

0

) 2 V

g

2

;  2 �

2

; and

(g

1

; u; u

0

) j= �

;c;c

0

(x; y)g,

{ lab

g

2

= f((c; u); �) j (c; u) 2 V

g

2

; � 2 �

2

; and (g

1

; u) j=  

�;c

(x)g.
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The set of all graph transductions de�ned by mso graph transducers will be

denoted mso-gt. They are the mso de�nable graph transductions.

If the copy number of an mso graph transducer is 1, i.e., the copy set C is

a singleton fcg, we will drop the subscripts c from the node and edge formulas,

i.e., we write  

�

(x) and �



(x; y) instead of  

�;c

(x) and �

;c;c

(x; y), respectively.

Note that a copy (c; u) of a node u of g

1

may not be a node of g

2

= T

gr

(g

1

)

for two reasons: either there is no � such that (g

1

; u) j=  

�;c

(x), or there is more

than one such �. However, it is easy to see that we may always assume, for �xed

c 2 C, the formulas  

�;c

(x) to be mutually exclusive, in which case only the �rst

reason remains and

{ V

g

2

= f(c; u) 2 C � V

g

1

j 9� 2 �

2

: (g

1

; u) j=  

�;c

(x)g, and

{ lab

g

2

= f((c; u); �) 2 (C � V

g

1

)��

2

j (g

1

; u) j=  

�;c

(x)g.

In fact, the formula  

�;c

(x) can be replaced by its conjunction with all : 

�

0

;c

(x),

for �

0

2 �

2

� f�g.

Similarly, it can always be assumed that an edge formula �

;c;c

0

(x; y) only

holds for nodes u; u

0

2 V

g

1

if (c; u); (c

0

; u

0

) are nodes of the output graph g

2

, i.e.,

that (g

1

; u; u

0

) j= �

;c;c

0

(x; y) implies (c; u); (c

0

; u

0

) 2 V

g

2

. In that case

{ E

g

2

= f((c; u); ; (c

0

; u

0

)) j (c; u); (c

0

; u

0

) 2 C � V

g

1

;  2 �

2

;

(g

1

; u; u

0

) j= �

;c;c

0

(x; y)g.

Assuming the node formulas to be mutually exclusive (for �xed c), this is

achieved by changing the formula �

;c;c

0

(x; y) into its conjunction with the dis-

junction of all formulas  

�;c

(x) ^  

�

0

;c

0

(y), for �; �

0

2 �

2

.

These two assumptions will be made whenever convenient, without mention-

ing. They allow us, e.g., to check fewer conditions in the simulation of mso graph

transducers by attribute grammars (in Section 7).

Terms and trees We now introduce the speci�c mso graph transducers that

we are interested in. They have trees as input, and they also produce trees as

output, either by directly de�ning the output tree or by de�ning a term graph

of which the unfolding is the output tree.

Let � and � be operator alphabets. An mso term graph transducer from �

to � is an mso graph transducer T from (�; rki(�)) to (�

#

; rki(�)) such that

T

gr

(t) is a term graph over � for every t 2 T

�

. It de�nes the tree transduction

T : T

�

! T

�

with T (t) = unfold(T

gr

(t)) for every t 2 T

�

.

An mso tree transducer from � to � is an mso term graph transducer T

from � to � such that T

gr

(t) 2 T

�

for every t 2 T

�

. Note that T (t) = T

gr

(t) for

every t 2 T

�

, because unfolding has no e�ect on trees.

The set of all tree transductions de�ned by mso term graph transducers is

denoted mso-tgt, and the set of all tree transductions de�ned by mso tree

transducers is denoted mso-tt. To distinguish between mso-tt and mso-tgt,

the transductions in mso-tt will be called mso de�nable tree transductions, and

those in mso-tgt will be called mso de�nable term transductions. Note that,
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by de�nition, mso-tt � mso-tgt. Properness of this inclusion will be shown in

Example 1(5, binary); thus, in general, the unfolding of term graphs is not mso

de�nable.

Special cases Two special cases of interest are the following. First, an mso

graph transducer is said to be \direction preserving" if edges of the output graph

correspond to (directed) paths in the input graph. If, in particular, the input

graph is a tree, then all edges in the output graph lead from (a copy of) a node

of the input tree to (a copy of) one of its descendants. Formally, an mso graph

transducer T from (�

1

; �

1

) to (�

2

; �

2

) is direction preserving if, for every graph

g

1

2 G

�

1

;�

1

, if ((c; u); ; (c

0

; u

0

)) is an edge of T

gr

(g

1

) then there is a directed

path from u to u

0

in g

1

. We will indicate the direction preserving property by

a subscript `dir'. Thus, mso-tgt

dir

denotes the class of all term transductions

de�ned by direction preserving mso term graph transducers. We will show that

these transducers are related to Only Synthesized attribute grammars.

Second, anmso tree transducer is said to be a \relabeling" if it just relabels all

nodes of the input tree. Formally, an mso tree transducer T = (C; 	;X) from �

to� is an mso relabeling if (1) the copy number of T is 1, (2) �

i

(x; y) = edg

i

(x; y)

for every i 2 rki(�), and (3) for every t 2 T

�

and u 2 V

t

there is a unique � 2 �

such that (t; u) j=  

�

(x). The class of all tree transductions de�ned by mso

relabelings will be denoted mso-rel. Note that mso-rel � mso-tt

dir

.

An inclusion diagram of the classes of tree transductions de�ned above is

given in Fig. 1. Its correctness will follow from Example 1 below, in particular

Example 1(3, stars), Example 1(5, binary), and Example 1(6, yield).

mso-tgt

mso-rel

mso-tgt

dir

mso-tt

mso-tt

dir

Fig. 1. An inclusion diagram of classes of tree transductions
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We observe here that, restricting attention to input trees over�, all the above

properties of mso graph transducers T are decidable: whether or not T is an mso

term graph transducer, is an mso tree transducer, is direction preserving, or is

an mso relabeling. This is because for each of these properties a closed formula

� 2 MSOL(�) can be found such that T has the property i� t j= � for every tree

t 2 T

�

. Decidability now follows from the classical fact that ft 2 T

�

j t j= :�g is

a regular tree language ([Don, ThaWri]), and the well-known fact that emptiness

of regular tree languages is decidable (see, e.g., [G�ecSte]). As an example, for the

direction preserving property the formula is � = 8x; y(�

0

(x; y)), where �

0

(x; y) is

the conjunction of all formulas �

i;c;c

0

(x; y)! path(x; y), for every edge formula

�

i;c;c

0

(x; y).

Examples We now give some examples of mso de�nable graph transductions.

Example 1. (1, clean) The cleaning of term graphs (see Section 2.1) is mso de-

�nable, i.e., for every operator alphabet � there is an mso graph transducer

T from (�

#

; rki(�)) to (�; rki(�)) such that for every term graph t over �,

T

gr

(t) = clean(t). The copy number of T is 1. For every � 2 � it has node

formula

 

�

(x) = (lab

�

(x) _ lab

(�;#)

(x)) ^ 8y(root(y)! path(y; x));

and for every i 2 rki(�) it has edge formula �

i

(x; y) = edg

i

(x; y). Through the

node formulas, only those nodes of the input term graph t are copied to the

output graph that are descendants of root(t). The labels of those nodes stay the

same, except that root(t) is unmarked (if it was marked by #), and the edges

between them are just copied to the output graph. This shows that the output

graph is clean(t).

(2, relab) If �

1

(x); : : : ; �

n

(x) is a sequence of formulas in MSOL

1

(�), then

there is an mso relabeling T from � to � � ftrue; falseg

n

such that, for every

t 2 T

�

and u 2 V

t

, lab

T (t)

(u) = (�; b

1

; : : : ; b

n

) where � = lab

t

(u) and, for every

i 2 [1; n], b

i

= true i� (t; u) j= �

i

(x). In fact, for �

0

= (�; b

1

; : : : ; b

n

), the node

formula  

�

0

(x) of T is the conjunction of the formula lab

�

(x) with all formulas

�

i

(x) for which b

i

= true and all formulas :�

i

(x) for which b

i

= false.

(3, stars) We give an mso tree transducer T from � to�, where � = �

0

[�

2

,

with �

0

= fag, and �

2

= f�g, and � = �

0

[�

1

[�

2

, with �

0

= �

0

, �

2

= �

2

,

and �

1

= f�g. Note that rki(�) = rki(�) = f1; 2g. The transducer transforms

a tree by inserting a node with label � on each of its edges. See Fig. 2 for an

example. The transducer T = (C; 	;X) is de�ned as follows.

{ The copy set C is fo; ng, where o stands for `old', and n for `new'. A node

(o; u) of T (t) is an old copy of the node u of t (with the same label). A node

(n; u) is a new copy of the node u; it has label �, and it has node (o; u) as

its child. Two copies are made of every node except the root.
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a a

1

1

2

2

1

1

1

�

�

�

1 2

1

a

�

�

a

2

a

� �

a

�1

Fig. 2. Example of a tree t and its transduction T (t)

{ 	 consists of the node formulas

 

�;o

(x) = lab

�

(x) for all � 2 �,

 

�;o

(x) = false;

 

�;n

(x) = false; for all � 2 �, and

 

�;n

(x) = : root(x):

{ X consists of the edge formulas

�

i;o;o

(x; y) = false for i 2 f1; 2g,

�

i;n;n

(x; y) = false for i 2 f1; 2g,

�

i;o;n

(x; y) = edg

i

(x; y) for i 2 f1; 2g,

�

1;n;o

(x; y) = (x = y); and

�

2;n;o

(x; y) = false :

Note that T is a direction preservingmso tree transducer. Thus, T is inmso-tt

dir

,

but not in mso-rel because for an mso relabeling the output tree has the same

size as the input tree.

(4, path) The next example is adapted from [F�ulVag]. It is a direction pre-

serving mso tree transducer T from � to �, where the input alphabet � is

f�; �; ag, with rk

�

(�) = 2, and rk

�

(�) = rk

�

(a) = 0, and the output alpha-

bet � is f1; 2; �; ag, with rk

�

(1) = rk

�

(2) = 1, and rk

�

(�) = rk

�

(a) = 0. If

the input tree t contains exactly one leaf labeled �, the transducer transforms

it into a tree over �, which codes the path leading from the root of t to the

leaf labeled � in the obvious way. Otherwise, the output is a. For example,

T (�(�(a; �(a; �)); a)) = 1(2(2(�))), and T (�(�; �(a; �))) = T (�(a; �(a; a))) = a.

The copy number of T is 1. The node and edge formulas of T are

 

1

(x) = us ^ 9y; z(edg

1

(x; y) ^ path(y; z) ^ lab

�

(z));

 

2

(x) = us ^ 9y; z(edg

2

(x; y) ^ path(y; z) ^ lab

�

(z));

 

�

(x) = us ^ lab

�

(x);

 

a

(x) = :us ^ root(x);

�

1

(x; y) = edg(x; y);
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where `us' is the closed formula 9z(lab

�

(z) ^ 8y(lab

�

(y) ! y = z)), expressing

that the input tree has a unique star.

(5, binary) Consider the mso term graph transducer T from � to �, where

� = � = f�; ag, with rk

�

(�) = 1, rk

�

(�) = 2, and rk

�

(a) = rk

�

(a) = 0.

The transducer transforms a linear input tree into a full binary output tree,

of the same height. To do this, it turns the input tree into a term graph by

changing every edge (with label 1) into two edges (with labels 1 and 2). This

term graph is then unfolded into a full binary tree. The copy number of T is 1,

it has node formulas  

�

(x) = lab

�

(x) and  

a

(x) = lab

a

(x), and edge formulas

�

1

(x; y) = edg

1

(x; y) and �

2

(x; y) = edg

1

(x; y). Note that, again, T is direction

preserving. Thus, T is in mso-tgt

dir

, but not in mso-tt; in fact, it should be

obvious that, for every T 2 mso-tt and every input tree t, the size of T (t) is

linear in the size of t, where the constant is the copy number of T .

(6, yield) Finally, we consider an example of an mso tree transducer that is

not direction preserving. Let the input alphabet be � = �

0

[�

2

, for some�

0

and

�

2

. The output alphabet is � = �

0

[�

1

, with �

1

= �

0

and �

0

= f�̂ j � 2 �

0

g.

We present an mso tree transducer T such that for any tree t 2 T

�

, T (t) is

equal to the yield of t as a monadic tree (a string can be seen as a monadic tree,

with its �rst symbol as root, the second symbol as child of the �rst, etcetera, up

to the last symbol, which is the leaf of the tree). We have to beware, because all

labels in the monadic tree that constitutes the yield have rank 1, except for the

last one, which has rank 0. We will therefore use elements of �

1

for all of the

labels, except the last one, for which we will use a corresponding label from �

0

.

To do this we need the following mso formula over �, which, for a node x of a

(binary) tree, checks that it is on the path from the root to the rightmost leaf:

rm(x) = 8y(root(y)! path

2

(y; x))

where the formula path

2

(x; y) expresses that there is a path from x to y of which

the edges are all labeled 2 (obtained by changing edg(x; y) into edg

2

(x; y) in the

formula path(x; y), see Section 2.2).

Let T = (fcg; f 

�

g

�2�

0

[ f 

�̂

g

�2�

0

; f�

1

g) be the mso tree transducer from

� to �, with

 

�

(x) = lab

�

(x) ^ : rm(x)

 

�̂

(x) = lab

�

(x) ^ rm(x)

�

1

(x; y) = leaf(x) ^ �(x; y) ^ leaf(y)

where

�(x; y) = 9z (9z

l

(edg

1

(z; z

l

) ^ path

2

(z

l

; x)) ^ 9z

r

(edg

2

(z; z

r

) ^ path

1

(z

r

; y))) :

For leaves x and y, the formula �(x; y) checks that y directly follows x in the

left-to-right order of leaves. Note that in this formula, z is the least common

ancestor of x and y, and z

l

and z

r

are its two children. The formula path

1

(x; y)

is analogous to path

2

(x; y), as explained above.
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Note that we could as well have taken �

1

(x; y) = �(x; y), because, by de�n-

ition, an edge in the output graph is only drawn if both nodes it is incident to

exist, so this need not be checked explicitly. However, as observed before, such

a check can always be added to �

1

(x; y), and that is what we have done here.

Note also that T is in mso-tt, but not in mso-tgt

dir

; in fact, it is not di�cult

to see that, for every T 2 mso-tgt

dir

and every input tree t, the height of T (t)

is linear in the height of t, where the constant is the copy number of T (cf. the

similar statement on size in the previous example).

Composition We end this section by stating a well-known and basic prop-

erty of mso de�nable graph transductions, and its consequences for the speci�c

transductions considered in this paper. It is proved, e.g., in Proposition 3.2(2)

of [Cou3].

Proposition1. mso-gt is closed under composition.

An immediate consequence of this proposition is that mso-tt is closed un-

der composition, and that mso-tt �mso-tgt � mso-tgt. To see that also

mso-gt

dir

, mso-tt

dir

, and mso-rel are closed under composition, it su�ces

to know the following about the proof of Proposition 1. If T

0

and T

00

are mso

graph transducers with copy sets C

0

and C

00

, then their composition is realized

by an mso graph transducer T with copy set C

00

�C

0

. Moreover, for every input

graph g

1

, the output graphs T

gr

(g

1

) and T

00

gr

(T

0

gr

(g

1

)) are isomorphic, with node

((c

00

; c

0

); u) corresponding to node (c

00

; (c

0

; u)).

Proposition2. mso-gt

dir

, mso-tt, mso-tt

dir

, and mso-rel are closed un-

der composition; mso-tt �mso-tgt � mso-tgt and mso-tt

dir

�mso-tgt

dir

�

mso-tgt

dir

.

It will follow from our results that mso-tgt

dir

is also closed under compo-

sition (see Section 9), thus strengthening the last inclusion in Proposition 2. It

is straightforward to show that mso-tgt is not closed under composition, by a

size argument similar to the one in Example 1(5, binary).

4 Attributed tree transducers

We will show that mso de�nable term transductions can be computed by at-

tribute grammars, and that mso de�nable tree transductions can be computed

by sur attribute grammars. To obtain precise characterizations, we consider

two types of tree transducers that are based on attribute grammars: the rela-

beling attribute grammar (see [BloEng]) and the attributed tree transducer (see

[F�ul, EngFil, FHVV, K�uhVog1]). We prove that mso term graph transducers

have the same power as two-stage attribute grammars, of which the �rst stage

is a relabeling attribute grammar, and the second stage is an attributed tree

transducer. For mso tree transducers the second phase is sur. Such two-stage
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attribute grammars will be called attributed tree transducers with look-ahead

(att

R

).

A relabeling attribute grammar is a quite restricted type of tree transducer:

it only changes the labels of the nodes of the input tree. All its attributes have

�nitely many values, and, for each node of a given input tree, the new label of the

node is the value of its meaning attribute. Since it is �nite-valued, a relabeling

attribute grammar can be viewed as a �nite-state tree automaton that relabels

the nodes of the tree. It is the look-ahead stage of an att

R

.

An attributed tree transducer is a much more powerful device. It is an at-

tribute grammar in which all attribute values are trees and the semantic rules

are limited to involve substitution only. For a given input tree, the output tree

is the value of the meaning attribute at the root. It is the computation stage of

an att

R

.

In this section we �rst de�ne relabeling attribute grammars, attributed tree

transducers, and attributed tree transducers with look-ahead. Then we discuss

a normal form for attributed tree transducers, and we de�ne the notion of a

semantic graph for attributed tree transducers in this normal form.

4.1 Formal de�nitions

Let � and � be operator alphabets. A relabeling attribute grammar from � to

� is a �nite-valued noncircular attribute grammar G = (�;S; I; 
;W;R; �

m

)

with W (�

m

) = �, such that for every t 2 T

�

and u 2 V

t

, dec

G;t

(h�

m

; ui)

has the same rank as lab

t

(u). The tree transduction computed by G is the to-

tal function r(G) = f(t; t

0

) 2 T

�

� T

�

j V

t

0

= V

t

; E

t

0

= E

t

; and lab

t

0

(u) =

dec

G;t

(h�

m

; ui) for all u 2 V

t

g; r(G) is called an attributed relabeling. The set of

all attributed relabelings is denoted att-rel. In Section 6.1 we will show that

att-rel equals the class mso-rel of mso relabelings.

Let �;� be operator alphabets (the input and output alphabet, respec-

tively). An attributed tree transducer (att, for short) from � to � is an attribute

grammar G = (�;S; I; 
;W;R; �

m

) with the following two properties:

{ 
 = fT

�

g, and

{ every semantic rule is of the form

h�

0

; i

0

i = f(h�

1

; i

1

i; : : : ; h�

k

; i

k

i);

where for all t

1

; : : : ; t

k

2 T

�

,

f(t

1

; : : : ; t

k

) = r[�

1

7! t

1

; : : : ; �

k

7! t

k

]

for some linear r 2 T

�

(f�

1

; : : : ; �

k

g).

For the notation and terminology used for r see the end of Section 2.1.

Note that we did not require G to be noncircular. Although we are only

interested in noncircular attributed tree transducers, we need circular ones as a

technical tool (see Sections 7 and 8). A circular attributed tree transducer only

translates input trees with a noncircular dependency graph.

17



The tree transduction computed by attributed tree transducer G is the partial

function G from T

�

to T

�

such that for every tree t 2 T

�

with noncircular

dependency graph D(t), G(t) = dec

G;t

(h�

m

; root(t)i).

The class of all tree transductions that can be computed by noncircular

attributed tree transducers is denoted att. Note that att contains total func-

tions only. The class of tree transductions computed by noncircular attributed

tree transducers that satisfy the single use restriction (sur), is denoted att

sur

.

The corresponding classes of tree transductions computed by os attributed tree

transducers are denoted att

os

and att

os;sur

, respectively.

From here on, we will identify the right-hand side f(h�

1

; i

1

i; : : : ; h�

k

; i

k

i) of

a semantic rule as above, with the tree r[�

1

7! h�

1

; i

1

i; : : : ; �

k

7! h�

k

; i

k

i]. Note

that, since the h�

j

; i

j

i are all distinct (see Section 2.3), this is a linear term in

T

�

((I [ S)� N). As an example, with � 2 �

2

and c 2 �

0

, the semantic rule

h�; 0i = f(h�; 1i; h�; 2i), with f(t

1

; t

2

) = �(t

1

; �(c; t

2

))

is identi�ed with

h�; 0i = �(h�; 1i; �(c; h�; 2i)):

Note that f(t

1

; t

2

) = r[�

1

7! t

1

; �

2

7! t

2

] for r = �(�

1

; �(c; �

2

))). As a second

example, the semantic rule h�; 0i = f(h�; 1i) with f(t) = t = �

1

[�

1

7! t], is

identi�ed with h�; 0i = h�; 1i.

In exactly the same way, for an input tree t, the right-hand sides of semantic

instructions in R(t) will be identi�ed with trees in T

�

(A(t)). Thus, for a decora-

tion dec of t and an instruction h�; ui = r, dec(h�; ui) is the result of substituting

dec(h�; vi) for every h�; vi in r.

Linearity of the terms used in the semantic rules is a convenient technical

detail which is intuitively required for sur att's. For att's that are not sur it

is an inessential restriction, because it can always be achieved by duplicating

attributes. To see this, we give an example of a rule that is not linear, and

transform it to two linear rules. With � 2 �

2

, a typical nonlinear rule would be

h�; 0i = �(h�; 1i; h�; 1i). We can make it linear by adding an attribute �

0

with

rule h�

0

; 0i = h�; 1i, and changing the rule for � into h�; 0i = �(h�

0

; 0i; h�; 1i).

Note that this transformation does not preserve the sur because h�; 1i is used

twice.

An attributed tree transducer with look-ahead (att

R

, for short) from � to �

is a pair G = (G

1

; G

2

) where G

1

is a relabeling attribute grammar from � to 
,

and G

2

is an attributed tree transducer from 
 to �, for some operator alphabet


. The tree transduction computed by G is r(G

1

)�G

2

. The att

R

G is noncircular,

os, or sur, if G

2

is (with no restrictions on G

1

except that it is noncircular).

Obviously, the class of all tree transductions that can be computed by noncircular

attributed tree transducers with look-ahead is att-rel �att. Restricting the

att

R

's to be sur, or os, or both, they compute the classes att-rel �att

sur

,

att-rel �att

os

, and att-rel �att

os;sur

, respectively.

We now give some examples, numbered (3){(6), corresponding to the mso

term graph transducers of Example 1(3){(6). All examples are noncircular.
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Example 2. (3, stars) The tree transduction T of Example 1(3, stars) is com-

puted by an att G with one synthesized attribute �, which is also the mean-

ing attribute, and semantic rules R(a) = fh�; 0i = ag and R(�) = fh�; 0i =

�(�(h�; 1i); �(h�; 2i))g. Note that G is os and sur, and so T 2 att

os;sur

.

(4, path) The tree transduction T of Example 1(4, path) cannot be com-

puted by an attributed tree transducer, as proved in [F�ulVag]. We now show

that it can be computed by an attributed tree transducer with look-ahead, i.e.,

that it is the composition of an attributed relabeling r(G

1

) and an attributed

tree transduction G

2

. The relabeling attribute grammar G

1

has a synthesized

attribute `ns' that counts the number of descendants that are labeled by �, with

W (ns) = f0; 1;manyg, where `many' means `more than one'. It has meaning

attribute � that adds to the label of each node the values of the ns-attribute of

its children, with W (�) = fa; �g [ f(�; i; j) j i; j 2 W (ns)g. The semantic rules

of G

1

are

R(�) = f hns; 0i = hns; 1i+ hns; 2i; h�; 0i = (�; hns; 1i; hns; 2i) g;

where addition is de�ned in the obvious way (1 + 1 = many, and many plus

anything equals many),

R(a) = f hns; 0i = 0; h�; 0i = a g; and

R(�) = f hns; 0i = 1; h�; 0i = � g:

The att G

2

has one synthesized attribute �, with semantic rules

R(a) = f h�; 0i = a g;

R(�) = f h�; 0i = � g;

and, for i; j 2 W (ns),

R(�; i; j) =

8

>

<

>

:

f h�; 0i = 1(h�; 1i) g if i = 1 and j = 0,

f h�; 0i = 2(h�; 2i) g if i = 0 and j = 1,

f h�; 0i = a g otherwise.

It should be clear that T = r(G

1

) � G

2

, and so T 2 att-rel �att

os;sur

.

(5, binary) The term transduction T of Example 1(5, binary) is computed

by an att G with two synthesized attributes � and �

0

(where � is the meaning

attribute), and semantic rules R(a) = fh�; 0i = a; h�

0

; 0i = ag and R(�) =

fh�; 0i = �(h�; 1i; h�

0

; 1i); h�

0

; 0i = �(h�; 1i; h�

0

; 1i)g. Thus, T 2 att

os

. Note

that T cannot be computed by a sur attributed tree transducer with look-ahead,

because for a transduction in att-rel �att

sur

the size of the output tree is linear

in the size of the input tree, where the constant is the number of attributes of

the att times the maximal size of the right-hand sides of its semantic rules. Note

also that if semantic rules with nonlinear right-hand sides were allowed, G could

do without �

0

, and have rules h�; 0i = a for a, and h�; 0i = �(h�; 1i; h�; 1i) for

�.
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(6, yield) Finally, we show that the tree transduction T of Example 1(6,

yield) is in att-rel �att

sur

, i.e., can be computed by a sur att

R

(G

1

; G

2

).

The obvious idea is to construct an att G

2

with a synthesized attribute `up'

and an inherited attribute `down', that makes a depth-�rst right-to-left walk

through the input tree, adding one symbol to the output tree at each leaf. The

only problem is that it has to treat the rightmost leaf di�erently from the other

leaves. Thus, the relabeling attribute grammar G

1

will mark the rightmost leaf.

The output alphabet of G

1

is � [ �

0

. It has an inherited attribute `rm' with

W (rm) = ftrue; falseg, root rule hrm; 0i = true, and, for � 2 �

2

, internal rules

hrm; 1i = false and hrm; 2i = hrm; 0i. It has meaning attribute � with internal

rule h�; 0i = � for � 2 �

2

, and the following internal rule for � 2 �

0

:

h�; 0i =

(

�̂ if hrm; 0i = true,

� otherwise.

Now the semantic rules of G

2

are: for � 2 �

2

,

R(�) = f hdown; 2i = hdown; 0i; hdown; 1i = hup; 2i; hup; 0i = hup; 1i g;

for � 2 �

0

, R(�̂) = fhup; 0i = �̂g and R(�) = fhup; 0i = �(hdown; 0i)g; and

R(root) contains a \dummy" rule hdown; 0i = ?, where ? is any element of �

0

.

It should be clear that T = r(G

1

) � G

2

. Thus, T 2 att-rel �att

sur

. Note

that T cannot be computed by an os attributed tree transducer with look-

ahead, because for a transduction in att-rel �att

os

the height of the output

tree is linear in the height of the input tree, where the constant is the number

of attributes of the att times the maximal height of the right-hand sides of its

semantic rules. ut

4.2 Operator form

To simplify proofs we will consider attributed tree transducers for which every

right-hand side of a semantic rule contains exactly one output symbol. Here we

show that this is, in a certain sense, a normal form for attributed tree transducers.

An attributed tree transducer G from � to � is in operator form if every

semantic rule of G is of the form h�

0

; i

0

i = �(h�

1

; i

1

i; : : : ; h�

k

; i

k

i) for some

� 2 �

k

. Thus, for a tree t 2 T

�

, the semantic instructions in R(t) are of the

form h�

0

; u

0

i = �(h�

1

; u

1

i; : : : ; h�

k

; u

k

i), and a decoration dec of t should satisfy

dec(h�

0

; u

0

i) = �(dec(h�

1

; u

1

i); : : : ; dec(h�

k

; u

k

i)), accordingly.

We �rst show that for every att there is an equivalent one for which every

right-hand side of a semantic rule contains at most one output symbol.

Lemma3. For every att G there is an att G

1

such that G

1

= G and every

semantic rule of G

1

is either of the form h�

0

; i

0

i = �(h�

1

; i

1

i; : : : ; h�

k

; i

k

i), for

some � 2 �

k

, or of the form h�

0

; i

0

i = h�

1

; i

1

i. If G is sur or os, then so is

G

1

.
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Proof. The straightforward idea is to introduce new attributes for the subtrees

of the right-hand side of a semantic rule. As an example, the semantic rule

h�; 0i = �(h�; 1i; �(c; h�; 2i)) can be changed into the semantic rules h�; 0i =

�(h�; 1i; h�

0

; 0i), h�

0

; 0i = �(h�

00

; 0i; h�; 2i), and h�

00

; 0i = c, where �

0

and �

00

are

new synthesized attributes.

Formally we transform G into G

1

by iterating the following procedure. Let

h�; ii = r be a semantic rule such that r = �(r

1

; : : : ; r

j

; : : : ; r

k

) and r

j

is not an

attribute occurrence, i.e., r

j

=2 (S [ I) � N. Replace this semantic rule by the

two semantic rules h�; ii = �(r

1

; : : : ; r

j�1

; h�

0

; 0i; r

j+1

; : : : ; r

k

) and h�

0

; 0i = r

j

,

where �

0

is a new, synthesized, attribute. Moreover, since the new attribute is

not used in the R(�)'s to which h�; ii = r does not belong, it is de�ned there by

a \dummy" rule h�

0

; 0i = ?, where ? is any element of �

0

.

It should be clear that one such replacement does not change G and preserves

the sur and os properties. Iteration of these replacements leads to an att of the

required form. ut

A semantic rule of the form h�

0

; i

0

i = h�

1

; i

1

i is called a copy rule. To put an

att G from � to � into operator form, we just replace such a copy rule by the

rule h�

0

; i

0

i = id(h�

1

; i

1

i), where `id' is a new output symbol of rank 1, the

identity operator. The new att outputs trees over � [ fidg from which then all

occurrences of id have to be removed to obtain the output tree of G.

For an operator alphabet � and a symbol `id' of rank 1, not in �, let �

id

denote the operator alphabet �[ fidg. For a tree t over �

id

, the pruning of t is

the tree prune(t) over� which is obtained from t by pruning all occurrences of id.

In other words, prune(id(t)) = prune(t), and, for � 2 �

k

, prune(�(t

1

; : : : ; t

k

)) =

�(prune(t

1

); : : : ; prune(t

k

)).

The e�ect of the identity operator, in general, is stated in the following

lemma. In the statement of the lemma we apply the function `prune' to right-

hand sides r of semantic rules of an att from� to�

id

. This is well de�ned because

r is (identi�ed with) a tree over the operator alphabet �[ fidg [ ((I [ S)� N).

Lemma4. Let G be an att from � to �

id

, and let G

prune

be the att from �

to � which is obtained from G by changing every semantic rule h�; ii = r into

h�; ii = prune(r). Then G

prune

= G � prune. Moreover, G is os i� G

prune

is os,

and, for t 2 T

�

, G is sur on t i� G

prune

is sur on t.

Proof. Obviously, a tree t 2 T

�

has the same dependency graph D(t) in both G

and G

prune

. Hence, G

prune

is sur on t i� G is sur on t, and G

prune

is noncircular

on t i� G is noncircular on t. For such a noncircular t, it is straightforward to

show that the mapping dec

G;t

� prune is a decoration of t for G

prune

. Thus, since

t has a unique decoration, dec

G

prune

;t

= dec

G;t

� prune, and so G

prune

= G�prune.

ut

We now show in which sense operator form is a normal form for attributed tree

transducers.

Lemma5. For every att G from � to � there is an att G

0

in operator form

from � to �

id

such that G = G

0

� prune. If G is sur or os, then so is G

0

.
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Proof. Let G

1

be the att obtained from G by Lemma 3, and change G

1

into G

0

by replacing every copy rule h�

0

; i

0

i = h�

1

; i

1

i by h�

0

; i

0

i = id(h�

1

; i

1

i). Then

G

0

prune

= G

1

, and so, by Lemma 4, G = G

1

= G

0

prune

= G

0

� prune. ut

The operator form is used in Section 5 to facilitate the proof that every

attributed tree transduction is an mso de�nable term transduction. In fact, for

an att in operator form the output tree is the unfolding of a term graph which is

closely related to the dependency graph of the input tree, and which is therefore

mso de�nable in a straightforward way. This term graph is de�ned in the next

subsection.

4.3 Semantic graphs

If G is an att in operator form, and t is an input tree with noncircular dependency

graph D(t), then the nodes and edges of D(t) can be labeled in a straightforward

way such that, after reversing the direction of all its edges, it turns into a term

graph of which the unfolding is the output tree G(t). This term graph will be

called the \semantic graph" of t. In fact, an attribute of D(t) is labeled with the

single operator � 2 � used in the semantic instruction that de�nes the attribute,

and an edge of D(t) is labeled according to the order of the attributes in the

instruction that de�nes the dependency. Moreover, the mark # is added to the

label of h�

m

; root(t)i. We now turn to the formal de�nition.

Let G be an att from � to � in operator form. The semantic graph S

G

(t) of a

tree t 2 T

�

is the graph S

G

(t) = (V;E; lab) over (�

#

; rki(�)), where V = A(t),

and E and lab are determined as follows. If h�

0

; u

0

i = �(h�

1

; u

1

i; : : : ; h�

k

; u

k

i)

is a semantic instruction in R(t), then (h�

0

; u

0

i; j; h�

j

; u

j

i) is in E for every

j 2 [1; k], lab(h�

0

; u

0

i) = � if h�

0

; u

0

i 6= h�

m

; root(t)i, and lab(h�

0

; u

0

i) = (�;#)

if h�

0

; u

0

i = h�

m

; root(t)i.

It should be clear that S

G

(t) satis�es all requirements of a term graph over

�, except that it may be circular. Hence, for every t 2 T

�

, S

G

(t) is a term

graph over � if and only if S

G

(t) is noncircular if and only if D(t) is noncircular.

Moreover, if S

G

(t) is a term graph, then root(S

G

(t)) = h�

m

; root(t)i. Also, S

G

(t)

is a forest if and only if G is sur on t.

We now show that the output tree is the unfolding of the semantic graph of

the input tree.

Lemma6. Let G be an att from � to � in operator form, and let t 2 T

�

be an

input tree with noncircular D(t). Then G(t) = unfold(S

G

(t)). If, moreover, G is

sur on t, then G(t) = clean(S

G

(t)).

Proof. Let S = S

G

(t). Since D(t) is noncircular, S is a term graph over �.

De�ne the mapping dec : A(t)! T

�

such that dec(h�; ui) = unf

S

(h�; ui). Since

t has a unique decoration dec

G;t

, it su�ces to show that dec is a decoration of

t. When this is established, it follows that dec

G;t

= dec, and hence that G(t) =

dec

G;t

(h�

m

; root(t)i) = unf

S

(h�

m

; root(t)i) = unf

S

(root(S)) = unfold(S).

A mapping is a decoration of t if all semantic instructions in R(t) are obeyed.

If R(t) contains a semantic instruction h�

0

; u

0

i = �(h�

1

; u

1

i; : : : ; h�

k

; u

k

i), then

22



lab

S

(h�

0

; u

0

i) = � (or (�;#)) and (h�

0

; u

0

i; j; h�

j

; u

j

i) 2 E

S

for all j 2 [1; k],

and hence unf

S

(h�

0

; u

0

i) = �(unf

S

(h�

1

; u

1

i); : : : ; unf

S

(h�

k

; u

k

i)), i.e., dec obeys

this semantic instruction.

If G is sur on t, then S

G

(t) is a forest. Clearly, unfold(�) = clean(�) for any

forest � . ut

Example 3. To illustrate Lemma 6, we give a simple example of a (sur) at-

tributed tree transducer G in operator form. Given a tree t, it reproduces the

monadic tree that constitutes the path from the root of t to its leftmost leaf, cf.

Example 2(4, path). The input alphabet of G is � = �

2

[ �

0

, with �

2

= f�g

and �

0

= fa; bg, and the output alphabet is � = �

1

[ �

0

, with �

1

= f�g

and �

0

= fa; bg. There is only one, synthesized, attribute �. The rules are sim-

ple: the single rule in R(�) is h�; 0i = �(h�; 1i), R(a) contains the single rule

h�; 0i = a, and R(b) the single rule h�; 0i = b. For the tree t = �(�(a; a); �(b; a)),

�

� �

�

�

a a

b

a

�

�

� � �

Fig. 3. Dependency graph

the dependency graph D(t) is given in Fig. 3, the semantic graph S

G

(t) in

Fig. 4, and the output tree G(t) = �(�(a)) in Fig. 5. Note that since G is sur,

unfold(S

G

(t)) = clean(S

G

(t)). ut

5 From att to mso

In this section we will prove that every noncircular attributed tree transducer

can be simulated by an mso term graph transducer, i.e., that att � mso-tgt.

By Lemma 5 it su�ces to show this for att's in operator form, provided we also

show that mso-tgt �fpruneg � mso-tgt.

Recall that for an mso term graph transducer T and an input tree t, T (t) =

unfold(T

gr

(t)); thus, the output tree is obtained by unfolding the term graph

T

gr

(t), which is the output graph of the mso graph transducer T .
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a

� �

�

a a

b

a

�

1 1

1

�

a b

(�;#)

a

Fig. 4. Semantic graph

a

1

1

�

�

Fig. 5. Output tree

Lemma7. For every noncircular attributed tree transducer G in operator form

there is an mso term graph transducer T such that T = G. Moreover, if G is sur,

then T is an mso tree transducer, and if G is os, then T is direction preserving.

Proof. Let G = (�;S; I; 
;W;R; �

m

) be a noncircular att in operator form with


 = fT

�

g. We will abbreviate S [ I by A.

By Lemma 6, G(t) = unfold(S

G

(t)) for every t 2 T

�

. Thus, it su�ces to

de�ne an mso graph transducer T such that, for every t 2 T

�

, T

gr

(t) = S

G

(t),

the semantic graph of t. To simplify the description of this T , we introduce

semantic graphs S(�), for � 2 �, and S(root). These graphs are (partially)

labeled versions of the usual dependency graphs D(�) and D(root), as de�ned

in Section 2.3, with the edges reversed. They are the atomic graphs from which

all semantic graphs S

G

(t) are built, just as the dependency graphs D(t) are built

from the D(�) and D(root).

For x 2 � [ frootg, the semantic graph of x is the graph S(x) = (V;E; lab)

over (�; rki(�)) where V = A� [0; rk(�)] if x = � 2 � and V = A� f0g if x =
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root, andE and lab are determined as follows. If h�

0

; i

0

i = �(h�

1

; i

1

i; : : : ; h�

k

; i

k

i)

is a rule in R(x), then (h�

0

; i

0

i; j; h�

j

; i

j

i) is in E for every j 2 [1; k], and

lab(h�

0

; i

0

i) = �. Note that lab is a partial function.

The mso graph transducer de�ning the semantic graphs of the input trees of

G is

T = (A; f 

�;�

g

�2�

#

;�2A

; f�

j;�;�

0

g

j2rki(�);�;�

0

2A

);

where the copy set, edge formulas, and node formulas are de�ned as follows (in

that order).

{ The set of copy names is A = S[I , the set of attributes of G. For each node u

of an input tree t, T makes a copy (�; u) for every attribute �, corresponding

to node h�; ui of S

G

(t). Thus, all these copies are nodes of the output graph

S

G

(t).

{ The edge formulas check for a dependency between attributes. In particular,

the edge formula �

j;�;�

0

(x; y) checks the semantic rules to see if there is a

semantic instruction that de�nes h�; xi in terms of h�

0

; yi. In what follows

edg

0

(x; y) stands for x = y.

For all j 2 rki(�) and �; �

0

2 A, the edge formula �

j;�;�

0

(x; y) is de�ned

to be the disjunction of all formulas 9z(lab

�

(z) ^ edg

i

(z; x) ^ edg

i

0

(z; y)),

for all � 2 � and i; i

0

2 [0; rk(�)] such that (h�; ii; j; h�

0

; i

0

i) is an edge of

S(�), and the formula root(x) ^ x = y in case (h�; 0i; j; h�

0

; 0i) is an edge of

S(root).

{ The node formulas determine the operators in � by which the attributes are

de�ned, and they determine the root of the semantic graph S

G

(t). Again,

edg

0

(x; y) stands for x = y.

Let � 2 � and � 2 A. We �rst consider the case that � 6= �

m

. Then the

node formula  

(�;#);�

(x) is de�ned to be false, and the node formula  

�;�

(x)

is de�ned to be the disjunction of all formulas 9z(lab

�

(z) ^ edg

i

(z; x)), for

all � 2 � and i 2 [0; rk(�)] such that h�; ii has label � in S(�), and the

formula root(x) in case h�; 0i has label � in S(root).

To de�ne the node formulas for �

m

, let  

0

�;�

m

(x) be the disjunction of all

formulas 9z(lab

�

(z) ^ edg

i

(z; x)), for all �; i such that h�

m

; ii has label � in

S(�). Then  

(�;#);�

m

(x) = root(x) ^  

0

�;�

m

(x), and  

�;�

m

(x) = : root(x) ^

 

0

�;�

m

(x).

It should be obvious that the above formulas closely correspond to the de�nition

of S

G

(t) in Section 4.3. More exactly, for � 2 � and � 6= �

m

, (t; u) j=  

�;�

(x) i�

there is a semantic instruction of the form h�; ui = �(: : : ) 2 R(t), and similarly

for the other node formulas. Also, (t; u; v) j= �

j;�;�

0

(x; y) i� there is a semantic

instruction in R(t) of the form h�; ui = �(: : : ; h�

0

; vi; : : : ) where h�

0

; vi is the

j-th argument of �. This implies that T

gr

(t) = S

G

(t) for every t 2 T

�

.

If G is os and (h�; ui; j; h�; vi) is an edge of S

G

(t), then v is a descendant of

u (in fact, either v = u or v is a child of u). Hence T is direction preserving in

that case.

Now assume that G is sur. Then, for every tree t 2 T

�

, S

G

(t) is a forest.

Thus, T need not be a tree transducer. However, in this case G(t) = clean(S

G

(t))
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for every t 2 T

�

, by Lemma 6. Since `clean' is de�nable by a direction preserving

mso graph transducer, as shown in Example 1(1, clean), we can replace T by the

mso tree transducer T

0

such that T

0

= T

0

gr

= T

gr

� clean which can be found by

Proposition 1 (mso-gt is closed under composition). Then G(t) = T

0

(t) for every

t 2 T

�

. If, moreover, G is os, then T

0

is direction preserving by Proposition 2

(mso-gt

dir

is closed under composition). ut

It now remains to be shown that for every term graph transducer T from� to�

id

there is a term graph transducer T

0

from � to � such that T

0

(t) = prune(T (t))

for every t 2 T

�

. Recall from Section 4.2 that the mapping `prune' removes all

occurrences of `id' from a tree. Thus, by Proposition 1, it su�ces to construct

an mso graph transducer which de�nes a mapping that extends `prune' to term

graphs, in such a way that unfold(prune(�)) = prune(unfold(�)) for every term

graph � .

We �rst de�ne the extension of `prune' to term graphs. It is convenient to

de�ne it for clean term graphs only. Let t be a clean term graph over �

id

. Then

the (clean) term graph prune(t) over � is de�ned as follows. For a node u of t,

let the \forward node" of u, denoted fw(u), be the �rst descendant of u that does

not have label id. Formally, if lab

t

(u) 2 � then fw(u) = u, and if lab

t

(u) = id

then fw(u) = fw(u � 1). Now we de�ne V

prune(t)

= ffw(u) j u 2 V

t

g = fu 2

V

t

j lab

t

(u) 2 �g, E

prune(t)

= f(u; i; fw(v)) j u 2 V

prune(t)

; (u; i; v) 2 E

t

g, and

lab

prune(t)

(u) = lab

t

(u) for every u 2 V

prune(t)

. Obviously this de�nes the old

prune(t) for trees over �

id

.

It should be clear that root(prune(t)) = fw(root(t)) for every clean term

graph t; this is because, in t, every node u with lab

t

(u) 2 � is a descendant of

fw(root(t)). It should also be clear that unfold(prune(t)) = prune(unfold(t)). In

fact, it is straightforward to show from the de�nitions that unf

prune(t)

(fw(u)) =

prune(unf

t

(u)) for every u 2 V

t

, by induction on u. The result then follows by

taking u = root(t) and using the fact that fw(root(t)) = root(prune(t)).

The next lemma shows that the mapping `prune' is an mso de�nable graph

transduction.

Lemma8. Let � be an operator alphabet. There is a direction preserving mso

graph transducer T such that T

gr

(t) = prune(t) for every clean term graph t over

�

id

.

Proof. It is not di�cult to �nd a formula �(x; y) in MSOL

2

(�

id

) such that, for

every term graph t and nodes u; v 2 V

t

, (t; u; v) j= �(x; y) i� v is the forward

node of u, i.e., fw(u) = v. In fact, �(x; y) = �

0

(x; y) ^ : lab

id

(y), where �

0

(x; y)

is obtained from the formula for path(x; y) in Section 2.2, by changing edg(x; y)

into lab

id

(x) ^ edg

1

(x; y).

The required mso graph transducer T has copy number 1, node formulas

 

�

(x) = lab

�

(x) for every � 2 �, and edge formulas �

i

(x; y) = 9z(edg

i

(x; z) ^

�(z; y)) for every i 2 rki(�). ut

We now prove the simulation of attributed tree transducers by mso term graph

transducers.
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Theorem9. For every noncircular attributed tree transducer G there is an mso

term graph transducer T such that T = G. Moreover, if G is sur, then T is an

mso tree transducer, and if G is os, then T is direction preserving.

Proof. Let G be a noncircular att from � to �. By Lemma 5 there is a noncircu-

lar att G

0

in operator form from � to �

id

such that G = G

0

�prune. Moreover, if

G is sur or os, then so is G

0

. By Lemma 7 there is an mso term graph transducer

T

0

such that T

0

= G

0

. Moreover, if G

0

is sur, then T

0

is an mso tree transducer,

and if G

0

is os, then T

0

is direction preserving.

We may assume that, for every t 2 T

�

, T

0

gr

(t) is clean. In fact, if this is not

the case, then, since unfold(clean(�)) = unfold(�) for every term graph � , we

can replace T

0

by an mso graph transducer that de�nes T

0

gr

� clean which can

be found by Propositions 1 and 2, and the fact that cleaning is de�nable by a

direction preserving mso graph transducer, as shown in Example 1(1, clean).

Let T be the mso term graph transducer with T

gr

= T

0

gr

�prune which can be

found by Proposition 1 and Lemma 8. Since unfold(prune(�)) = prune(unfold(�))

for every clean term graph � (cf. the discussion before Lemma 8), we obtain, for

t 2 T

�

, that

T (t) = unfold(T

gr

(t)) = unfold(prune(T

0

gr

(t))) = prune(unfold(T

0

gr

(t))) =

prune(T

0

(t)) = prune(G

0

(t)) = G(t).

Note that if T

0

is an mso tree transducer then so is T (because prune transforms

trees into trees), and if T

0

is direction preserving then so is T (by Proposition 2

and Lemma 8). ut

6 Characterizing unary and binary mso formulas

To show that mso de�nable term transductions can be computed by attribute

grammars, we will use the characterizations proved in [BloEng] of mso formulas

 (x) 2 MSOL

1

(�) and �(x; y) 2 MSOL

2

(�), for trees in T

�

. These charac-

terizations are recalled in this section. The characterization of unary formulas

is already in terms of attribute grammars, and we use this characterization to

show that the class mso-rel of mso relabelings (de�ned in Section 3 as a \spe-

cial case") is equal to the class att-rel of attributed relabelings (de�ned in

Section 4.1). The characterization of binary formulas is in terms of tree-walking

automata that employ unary formulas as tests.

6.1 Unary mso formulas

Let  (x) be a formula in MSOL

1

(�). It is proved in Theorem 18 of [BloEng]

(and independently in [NevBus]) that there exists a �nite-valued noncircular

attribute grammar G = (�;S; I; 
;W;R; �

m

) with W (�

m

) = ftrue; falseg such

that

for every t 2 T

�

and u 2 V

t

, dec

G;t

(h�

m

; ui) = true i� (t; u) j=  (x).
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This also holds the other way around: for every such attribute grammar there

is a formula  (x) 2 MSOL

1

(�) satisfying the above condition. We now use this

characterization to show that the class mso-rel of mso relabelings is equal to

the class att-rel of attributed relabelings. This implies that the look-ahead

stage of an att

R

can as well be realized by an mso relabeling.

Theorem10. mso-rel = att-rel.

Proof. We �rst show mso-rel � att-rel. Let T be an mso relabeling from �

to �. By the above mentioned characterization of unary formulas, there exists

for every node formula  

�

(x) of T a �nite-valued noncircular attribute grammar

G

�

over � such that dec

G

�

;t

(h�

m;�

; ui) = true i� (t; u) j=  

�

(x), where �

m;�

is

the meaning attribute of G

�

. Let G be the relabeling attribute grammar obtained

by taking the union of all G

�

, in the obvious way, and adding a new meaning

attribute �

m

with W (�

m

) = � and the semantic rule

h�

m

; 0i = the unique � 2 � such that h�

m;�

; 0i = true

in every R(�). It should be clear that r(G) = T . In fact, for every t 2 T

�

, u 2 V

t

,

and � 2 �, lab

r(G)(t)

(u) = � i� dec

G;t

(h�

m

; ui) = � i� dec

G

�

;t

(h�

m;�

; ui) = true

i� (t; u) j=  

�

(x) i� lab

T (t)

(u) = �. This also shows that G is indeed a relabeling

attribute grammar, because dec

G;t

(h�

m

; ui) has the same rank as lab

T (t)

(u),

which has the same rank as lab

t

(u).

Next we show att-rel � mso-rel. Let G be a relabeling attribute grammar

from � to �. We now claim (as in the �rst part of the proof of Theorem 19 of

[BloEng]) that for every � 2 � there is a formula  

�

(x) in MSOL

1

(�) such

that, for every t 2 T

�

and u 2 V

t

, (t; u) j=  

�

(x) i� lab

r(G)(t)

(u) = �. In

fact, let G

�

be the attribute grammar that is obtained from G by adding a new

meaning attribute �

m;�

withW (�

m;�

) = ftrue; falseg which has, for every � 2 �,

the internal rule h�

m;�

; 0i = (h�

m

; 0i = �). By the characterization of unary

formulas mentioned above, there is a formula  

�

(x) such that (t; u) j=  

�

(x)

i� dec

G

�

;t

(h�

m;�

; ui) = true i� dec

G;t

(h�

m

; ui) = � i� lab

r(G)(t)

(u) = �. This

proves the claim. Clearly, the formulas  

�

(x), � 2 �, uniquely determine an

mso relabeling T such that lab

T (t)

(u) = lab

r(G)(t)

(u), i.e., T = r(G). ut

6.2 Binary mso formulas

It is shown in [BloEng] that a formula �(x; y) 2 MSOL

2

(�) can be computed

by a tree-walking automaton. A tree-walking automaton (see, e.g., [AhoUll,

EngRozSlu, KamSlu]) is a �nite-state automaton that walks on a tree from

node to node, following the edges of the tree (downwards or upwards). Here,

and in [BloEng], we allow the tree-walking automaton to test any mso de�nable

property of the current node, using formulas from MSOL

1

(�). Let A be a tree-

walking automaton corresponding to �(x; y). Then, for every tree t 2 T

�

and

nodes u; v 2 V

t

, (t; u; v) j= �(x; y) if and only if A can walk from u to v in t,

starting in an initial state and ending in a �nal state.
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We recall the formal de�nition of the tree-walking automata of [BloEng]. The

instructions used by tree-walking automata are called directives (as in [KlaSch]).

Let � be an operator alphabet. The (in�nite) set of directives over � is

D

�

= f#

i

j i 2 rki(�)g [ f"

i

j i 2 rki(�)g [MSOL

1

(�):

A directive is an instruction of how to move from one node to another: #

i

means

\move along an edge labeled i", i.e., \move to the i-th child of the current node

(provided it has one)"; "

i

means \move against an edge labeled i", i.e., \move

to the parent of the current node (provided it has one, and it is the i-th child of

its parent)"; and  (x) means \check that  holds for the current node (and do

not move)". Formally, we de�ne for each t 2 T

�

and each directive d 2 D

�

the

node relation R

t

(d) � V

t

� V

t

, as follows:

R

t

(#

i

) = f(u; v) j (u; i; v) 2 E

t

g;

R

t

("

i

) = f(u; v) j (v; i; u) 2 E

t

g; and

R

t

( (x)) = f(u; u) j (t; u) j=  (x)g:

Syntactically, a tree-walking automaton is just an ordinary �nite automaton (on

strings) with a �nite subset of D

�

as input alphabet. However, the symbols of

D

�

are interpreted as instructions on the input tree as explained above.

Let � be an operator alphabet. A tree-walking automaton (with mso tests)

over � is a quintuple A = (Q;�; �; I; F ), where

{ Q is a �nite set of states,

{ � is the instruction set, a �nite subset of D

�

,

{ � � Q���Q is the transition relation,

the elements of which are called transitions,

{ I � Q is the set of initial states, and

{ F � Q is the set of �nal states.

For a tree-walking automaton A = (Q;�; �; I; F ) and a tree t, an element (q; u)

of Q�V

t

is a con�guration of the automaton. Intuitively, it denotes that A is in

state q at node u. One step of A on t is de�ned by the binary relation �

A;t

on

the set of con�gurations, as follows. For every q; q

0

2 Q and u; u

0

2 V

t

,

(q; u)�

A;t

(q

0

; u

0

) i� 9d 2 � : (q; d; q

0

) 2 � and (u; u

0

) 2 R

t

(d):

To indicate the directive that is executed by A in this step, we also write

(q; u)

d

�

A;t

(q

0

; u

0

).

For each tree t 2 T

�

, A computes the node relation R

t

(A) = f(u; v) 2

V

t

� V

t

j (q; u) �

�

A;t

(q

0

; v) for some q 2 I and q

0

2 Fg. Thus, A computes all

pairs of nodes (u; v) such that A can walk from u to v in t, starting in an initial

state and ending in a �nal state.

Example 4. Let � = �

0

[�

2

, and consider the edge formula �

1

(x; y) of the mso

tree transducer of Example 1(6, yield). For nodes x and y of a tree t 2 T

�

, it

checks that x is a leaf and y is the next leaf after x, in the left-to-right order of the
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leaves of t. The following tree-walking automaton A = (Q;�; �; I; F ) computes

R

t

(A) = f(u; v) j (t; u; v) j= �

1

(x; y)g, for every t 2 T

�

, i.e., it walks from one

leaf to the next. The transition graph of A is depicted in Fig. 6, in the way usual

for �nite automata. Thus, A has states Q = fi; ii; iii; iv;vg, initial state I = fig,

leaf(x)

#

2

"

1

"

2

#

1

V

leaf(x)

I II III IV

Fig. 6. The tree-walking automaton for �

1

(x; y)

and �nal state F = fvg. The instruction set is � = f#

1

; #

2

; "

1

; "

2

; leaf(x)g,

and the transition relation consists of the transitions (i; leaf(x); ii), (ii; "

2

; ii),

(ii; "

1

; iii), (iii; #

2

; iv), (iv; #

1

; iv), and (iv; leaf(x);v).

On a given tree, the automaton A �rst checks that it is at a leaf. If so, it

walks to the next leaf along the shortest undirected path: it walks upwards over

2-labeled edges as far as possible (in state ii), moves to the other child of its

parent (through state iii), and walks downwards along 1-labeled edges as far as

possible (in state iv). ut

The characterization of binary mso formulas by tree-walking automata is stated

next; it is Theorem 13 of [BloEng]. For a formula �(x; y) in MSOL

2

(�) and a

tree t 2 T

�

, we denote by R

t

(�) the node relation f(u; v) 2 V

t

� V

t

j (t; u; v) j=

�(x; y)g. The characterization says that binary mso formulas and tree-walking

automata compute the same node relations. We also need a special case of

this. We will say that a formula �(x; y) in MSOL

2

(�) is direction preserving

if (t; u; v) j= �(x; y) implies that v is a descendant of u, for every t 2 T

�

and

u; v 2 V

t

. Moreover, we will say that a tree-walking automaton is descending if

it does not have directives "

i

in its instruction set.

Proposition11. For every formula �(x; y) 2 MSOL

2

(�) there is a tree-walking

automaton A over � such that, for all t 2 T

�

, R

t

(A) = R

t

(�). The other way

around, for every tree-walking automaton A over � there is a formula �(x; y) 2

MSOL

2

(�) such that, for all t 2 T

�

, R

t

(�) = R

t

(A). The same two statements

hold for direction preserving formulas and descending automata.

The special case of this characterization was not explicitly stated in [BloEng].

From automata to formulas it is obvious because a descending automaton always

walks from a node to one of its descendants. From formulas to automata, it was

shown in the proof of Theorem 13 of [BloEng] that, in general, the automaton

can always compute (t; u; v) j= �(x; y) by walking from u to v along the shortest

undirected path in t. Thus, if � is direction preserving, the automaton walks

downwards only.
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Determinism The formulas �

i

(x; y) used in an mso term graph (or tree) trans-

ducer are all functional, i.e., the node relation R

t

(�

i

) is functional for every input

tree t. This follows, of course, from the fact that every node u of a term graph

has a unique i-th child u � i. It is shown in [BloEng] that such relations can be

computed by deterministic tree-walking automata. This will be essential in the

proof of the simulation of mso term graph transducers by attribute grammars,

in the next section.

A tree-walking automaton A = (Q;�; �; I; F ) over � is deterministic if the

following three conditions hold: (1) I is a singleton, (2) if (q; d; q

0

) 2 �, then

q =2 F , and (3) for every tree t 2 T

�

and every con�guration (q; u), there is at

most one con�guration (q

0

; u

0

) such that (q; u)�

A;t

(q

0

; u

0

).

Note that the automaton of Example 4 is deterministic. In [BloEng] a stronger

de�nition of determinism is given (which is not satis�ed by the automaton of

Example 4). The above de�nition su�ces for our present purposes.

A tree-walking automaton A is functional if the node relation R

t

(A) is func-

tional for every input tree t. Obviously, every deterministic tree-walking automa-

ton is functional. The next result is Theorem 14 of [BloEng].

Proposition 12. For every functional tree-walking automaton A over � there

is a deterministic tree-walking automaton A

0

over � with R

t

(A

0

) = R

t

(A) for

every t 2 T

�

. Moreover, if A is descending then so is A

0

.

As for Proposition 11, the second statement was not explicitly stated in Theo-

rem 14 of [BloEng], but is obvious from its proof.

7 From mso to att

In this section we prove the more di�cult part of our main result, viz. that every

mso term graph transducer can be simulated by an attributed tree transducer

with look-ahead. The constructed att

R

is, however, not necessarily noncircular

(though it is, of course, noncircular on every output tree of its relabeling attribute

grammar). Moreover, for an mso tree transducer, the att

R

is not necessarily sur

though it is sur on every output tree of its relabeling attribute grammar. These

problems are taken care of in the next section.

One of the essential di�erences between attributed tree transducers and mso

term graph transducers is that the former operate locally, i.e., attributes of

a node can only be computed in terms of attributes of its neighbors (viz. its

children, its parent, or itself), whereas the latter operate \globally", i.e., edges

of the output graph can be established between (copies of) nodes of the input

tree that are not necessarily neighbors, but may be far apart. On the other

hand, attributed tree transducers have copy rules by which they can transport

attribute values through the tree.

Thus, to facilitate the simulation of mso term graph transducers by at-

tributed tree transducers, we �rst prove that every mso term graph transducer

can, in a certain sense, be simulated by one that is \local", i.e., establishes edges

between (copies of) neighbors only. Moreover, we want to forbid term graphs
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with multiple edges; this is related to the requirement in att's that the right-

hand side of a semantic rule should be linear. Finally, we require that the root

of the output term graph is a copy of the root of the input tree.

An mso term graph transducer T = (C; 	;X) from � to � is local if the

following three conditions hold:

{ For every edge formula �

j;c;c

0

(x; y), every t 2 T

�

, and every u; v 2 V

t

, if

(t; u; v) j= �

j;c;c

0

(x; y) then v = u or v is a child of u or v is the parent of u.

{ For every t 2 T

�

, T

gr

(t) has no multiple edges, i.e., no edges ((c; u); j; (c

0

; v))

and ((c; u); i; (c

0

; v)) with j 6= i.

{ There exists c

m

2 C such that for every t 2 T

�

, root(T

gr

(t)) = (c

m

; root(t)).

To alleviate the locality restriction, we will allow a local mso term graph trans-

ducer to use the identity operator `id'. This corresponds to the use of copy rules

in attributed tree transducers, cf. Section 4.2 where the identity operator was

used to put att's into operator form. The formulation of the next lemma is similar

to that of Lemma 5.

Lemma13. For every mso term graph transducer T from � to � there is a

local mso term graph transducer T

0

from � to �

id

such that T = T

0

� prune. If

T is an mso tree transducer then so is T

0

, and if T is direction preserving then

so is T

0

.

Proof. Let T = (C; 	;X) be an mso term graph transducer from � to �. We

may assume, by Propositions 1 and 2 and Example 1(1, clean), that T produces

clean term graphs only, i.e., T

gr

(t) is clean for every t 2 T

�

.

We �rst discuss the intuitive ideas behind the construction of T

0

. Let t 2 T

�

,

� = T

gr

(t), and �

0

= T

0

gr

(t). The (clean) term graph �

0

will have the same

nodes (c; u) 2 C � V

t

as � , but it will have additional id-labeled nodes, in such

a way that prune(�

0

) = � (see Section 5 for the de�nition of `prune'). Then

T (t) = unfold(�) = unfold(prune(�

0

)) = prune(unfold(�

0

)) = prune(T

0

(t)), as

required. The new, id-labeled, nodes of �

0

and the edges of �

0

are constructed as

follows. Consider an edge (c; u)

j

! (c

0

; v) in � . The di�cult point for T

0

is that

the nodes u and v may be far apart in t. Thus, in �

0

the edge will be divided

into small pieces, by introducing id-labeled nodes that are copies of nodes of t

on an undirected path from u to v, see Fig. 7. In particular, the edge is replaced

by a path in �

0

of the form

(c; u)

j

! (c

1

; u

1

)

1

! � � �

1

! (c

n

; u

n

)

1

! (c

0

; v)

where (c

1

; u

1

); : : : ; (c

n

; u

n

) are id-labeled nodes, n � 1, c

1

; : : : ; c

n

are new copy

names, and u

1

; : : : ; u

n

are the nodes on an undirected path in t from u to v. More

precisely, u

1

= u, u

n

= v, and u

i+1

= u

i

or u

i+1

is a child of u

i

or u

i+1

is the

parent of u

i

, for every i 2 [1; n�1]. If we view (c; u) and (c

0

; v) as having \value"

unf

�

(c; u) and unf

�

(c

0

; v), respectively, then the value of (c

0

; v) is transported

backwards along the above path, from v to u, in order to be used in the value of

(c; u). The problem for T

0

is that, to transport this value through the tree, it has
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2

1 2

1

(c; u) (c; u)

(c

m

; root(t))

(c

0

; v) (c

0

; v)

1 3

12 2

Fig. 7. To the left: � = T

gr

(t), to the right: �

0

= T

0

gr

(t), where dashed lines symbolize

paths in �

0

corresponding to edges of � , plus the root path

to know the proper route from u to v. Now, since (c; u)

j

! (c

0

; v) in � , the edge

formula �

j;c;c

0

(x; y) of T is satis�ed by (t; u; v). Hence, by the characterization

of binary mso formulas in Proposition 11, there is a tree-walking automaton

A = A

j;c;c

0

that knows how to walk from u to v. The formula �

j;c;c

0

(x; y) is

functional, because every node of � has a unique j-th child, and so we may

assume that the automaton is deterministic (see Proposition 12). Hence A has

a unique walk (q; u) �

�

A;t

(q

0

; v), starting at u in its initial state q and ending

at v in one of its �nal states q

0

. If, in detail, the walk is

(q

1

; u

1

)�

A;t

(q

2

; u

2

)�

A;t

� � ��

A;t

(q

n

; u

n

) (1)

with (q

1

; u

1

) = (q; u) and (q

n

; u

n

) = (q

0

; v), then the nodes u

1

; : : : ; u

n

are the

ones that will be used in the above path in �

0

. As the new copy names c

1

; : : : ; c

n

we will use ((j; c; c

0

); q

1

); : : : ; ((j; c; c

0

); q

n

) which uniquely identify the states

q

1

; : : : ; q

n

of the automaton A = A

j;c;c

0

. Thus, the above path of �

0

now has

the following form, where e = (j; c; c

0

), q

e

= q

1

= q is the initial state of A,

(q

i

; u

i

)�

A;t

(q

i+1

; u

i+1

) for every i 2 [1; n� 1], and q

n

is a �nal state of A:

(c; u)

j

! ((e; q

e

); u)

1

! ((e; q

2

); u

2

)

1

! � � �

� � �

1

! ((e; q

n�1

); u

n�1

)

1

! ((e; q

n

); v)

1

! (c

0

; v): (2)

It should be clear that in this way the �rst locality requirement for T

0

is satis�ed.

The second is also satis�ed because if j 6= i then e = (j; c; c

0

) di�ers from

e

0

= (i; c; c

00

), and hence ((e; q

e

); u) 6= ((e

0

; q

e

0

); u). Finally, to satisfy the third

locality requirement, viz. that root(�

0

) = (c

m

; root(t)), we introduce a new copy

name c

m

and we add to �

0

the \root path"

(c

m

; u

1

)

1

! � � �

1

! (c

m

; u

n

)

1

! (c; u) (3)
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where u

1

= root(t), u

n

= u, (c; u) = root(�), (c

m

; u

1

); : : : ; (c

m

; u

n

) are id-labeled

nodes, with n � 1, and u

1

; : : : ; u

n

are the nodes on the path in t from root(t)

to u, see Fig. 7. In this way, the \value" unf

�

(c; u) = unfold(�) is transported

from u to root(t).

We now turn to the formal de�nitions. In what follows we will denote ele-

ments (j; c; c

0

) of rki(�) � C � C by e. We will also denote rki(�) � C � C by

E. Thus, T has an edge formula �

e

(x; y) for every e 2 E. For every e 2 E, let

A

e

= (Q

e

; �

e

; �

e

; fq

e

g; F

e

) be a deterministic tree-walking automaton such that

for all t 2 T

�

and u; v 2 V

t

, (u; v) 2 R

t

(A) i� (t; u; v) j= �

e

(x; y), according to

Propositions 11 and 12 (recall that �

e

(x; y) is functional). We will write �

e;t

instead of �

A

e

;t

.

We will need an mso formula root

c

(x), with c 2 C, such that, for t 2 T

�

and u 2 V

t

, (t; u) j= root

c

(x) i� (c; u) is the root of � = T

gr

(t). Since we have

assumed that � is clean, it should be clear that the root of � is the unique node

without incoming edges, and so we can take root

c

(x) to be the conjunction of

all formulas :9y(�

j;c

0

;c

(y; x)), for j 2 rki(�) and c

0

2 C.

The local mso term graph transducer T

0

= (C

0

; 	

0

; X

0

) from � to �

id

is now

de�ned. The set of copy names of T

0

is C

0

= C [ f(e; q) j e 2 E; q 2 Q

e

g[ fc

m

g.

The node formulas of T

0

are de�ned as follows. All node formulas that are not

mentioned, are de�ned to be false. We also give some informal comments, related

to the informal explanations above.

{ For all � 2 � and c 2 C,  

0

�;c

(x) =  

�;c

(x).

This means that all nodes of � are also nodes of �

0

, with the same labels.

{ For all e 2 E and q 2 Q

e

,  

0

id;(e;q)

(x) is de�ned in such a way that, for

all t 2 T

�

and w 2 V

t

, (t; w) j=  

0

id;(e;q)

(x) i� there are nodes u; v 2 V

t

such that (q

e

; u)�

�

e;t

(q; w)�

�

e;t

(q

0

; v) for some q

0

2 F

e

. By Proposition 11

such a formula exists. In fact, applying Proposition 11 to the tree-walking

automaton (Q

e

; �

e

; �

e

; fq

1

g; fq

2

g), which is A

e

with start state q

1

and �nal

state q

2

, we obtain, for any two states q

1

; q

2

of A

e

, a formula �

q

1

;q

2

(x; y)

which expresses that (q

1

; x)�

�

e

(q

2

; y). Then

 

0

id;(e;q)

(x) = 9y; z(�

q

e

;q

(y; x) ^ �

q;F

e

(x; z));

where �

q;F

e

(x; z) is the disjunction of all �

q;q

0

(x; z), for q

0

2 F

e

.

Through this node formula, we only add an id-labeled node ((e; q); w) to

�

0

when it is needed on a path (2) of �

0

that replaces an edge of � , as

discussed above, i.e., when the con�guration (q; w) is on the walk (1) of A

e

that determines that path.

{  

0

id;c

m

(x) is the disjunction of all formulas 9y(path(x; y)^root

c

(y)), for c 2 C.

Thus, an id-labeled node (c

m

; w) is only added to �

0

when it is needed on

the root path (3).

The edge formulas of T

0

are now de�ned as follows. Again, edge formulas that

are not mentioned, are de�ned to be false.
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{ For every e = (j; c; c

0

) 2 E, �

0

j;c;(e;q

e

)

(x; y) = (x = y).

This edge formula establishes the �rst edge of a path (2) of �

0

that replaces

an edge of � .

{ For every e = (j; c; c

0

) 2 E and q 2 F

e

, �

0

1;(e;q);c

0

(x; y) = (x = y).

This edge formula establishes the last edge of a path (2) of �

0

.

{ For every e 2 E and q; q

0

2 Q

e

,

�

0

1;(e;q);(e;q

0

)

(x; y) = �

d

1

(x; y) _ � � � _ �

d

n

(x; y)

where fd

1

; : : : ; d

n

g = fd 2 �

e

j (q; d; q

0

) 2 �

e

g and, for d 2 D

�

, the formula

�

d

(x; y) is de�ned as follows:

� if d = #

i

then �

d

(x; y) = edg

i

(x; y),

� if d = "

i

then �

d

(x; y) = edg

i

(y; x), and

� if d = �(x) then �

d

(x; y) = (�(x) ^ x = y).

These edge formulas establish all other edges of a path (2) of �

0

. Each such

edge corresponds to one step of the automaton A

e

in the walk (1). Note that,

for every t 2 T

�

, R

t

(�

d

) = R

t

(d).

{ �

0

1;c

m

;c

m

(x; y) = edg(x; y), and for every c 2 C,

�

0

1;c

m

;c

(x; y) = (root

c

(x) ^ x = y).

The second formula establishes the last edge on the root path (3) of �

0

, and

the �rst formula establishes all other edges on that path.

This ends the de�nition of T

0

.

We will now show the correctness of T

0

. To this aim, let again t 2 T

�

,

� = T

gr

(t), and �

0

= T

0

gr

(t). We have to prove that T

0

is local, that �

0

is a clean

term graph such that prune(�

0

) = � , that �

0

is a tree if � is one, and that T

0

is

direction preserving if T is.

We �rst make four easy observations. First, it is immediate from the def-

initions that the �rst two requirements for locality hold for T

0

. Second, if T

is direction preserving, then every edge formula �

e

(x; y) of T is direction pre-

serving, and so, by Propositions 11 and 12, A

e

is descending. This means that

A

e

has no transitions (q; "

i

; q

0

), which implies that all edge formulas of T

0

are

direction preserving, i.e., that T

0

is direction preserving. Third, it is straightfor-

ward to see from the de�nition of �

A;t

that, for every t 2 T

�

and u; u

0

2 V

t

,

(t; u; u

0

) j= �

0

1;(e;q);(e;q

0

)

(x; y) i� (q; u) �

e;t

(q

0

; u

0

). Fourth, since all automata

A

e

are deterministic, it is easy to see from the de�nitions (and the previous

observation) that each id-labeled node of �

0

has at most one outgoing edge, with

label 1.

To prove the remaining facts, we show that �

0

has the special form that was

suggested in the intuitive introduction of this proof, see Fig. 7. By the de�nition

of  

0

�;c

(x), the nodes of �

0

of the form (c; u) are exactly the nodes of � , with the

same labels. All other nodes of �

0

have label id. To describe the id-labeled nodes

and the edges of �

0

, we associate with each edge (c; u)

j

! (c

0

; v) of � a particular

path in �

0

as follows. Let e = (j; c; c

0

) and consider the walk (1) of the tree-

walking automaton A = A

e

from u

1

= u to u

n

= v, with q

1

= q

e

and q

n

2 F

e

.

Such a walk exists because (t; u; v) j= �

e

(x; y), and it is unique because A

e

is
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deterministic. Then we associate with (c; u)

j

! (c

0

; v) the path (2) of �

0

. It is easy

to check from the de�nition of T

0

that this path indeed exists in �

0

. In fact, each

id-labeled node ((e; q

i

); u

i

) exists because the walk (q

e

; u) �

�

A;t

(q

i

; u

i

) �

�

A;t

(q

n

; v) implies that (t; u

i

) j=  

0

id;(e;q

i

)

(x). The edges of the path are clearly

established by the edge formulas of T

0

; in particular, (q

i

; u

i

) �

A;t

(q

i+1

; u

i+1

)

implies (t; u

i

; u

i+1

) j= �

0

1;(e;q

i

);(e;q

i+1

)

(x; y). Having associated a path of �

0

with

every edge of � , we de�ne one additional path of �

0

, the \root path". It is the

path (3), where u

1

= root(t), u

n

= u, (c; u) = root(�), and u

1

; : : : ; u

n

are the

nodes on the path in t from root(t) to u. It is easy to check from the de�nition

of T

0

that this root path exists in �

0

.

Having de�ned these special paths, we now claim that every id-labeled node

and every edge of �

0

is on one of these paths. Consider an id-labeled node

((e; q); w) with e = (j; c; c

0

). Since (t; w) j=  

0

id;(e;q)

(x), there are nodes u; v 2

V

t

such that (q

e

; u) �

�

e;t

(q; w) �

�

e;t

(q

0

; v) for some q

0

2 F

e

. Consequently

(t; u; v) j= �

e

(x; y) and so � has an edge (c; u)

j

! (c

0

; v). This means that

(q

e

; u) �

�

e;t

(q; w) �

�

e;t

(q

0

; v) is in fact the unique walk (1) of A

e

from u to

v, and hence the node ((e; q); w) is on the path (2) associated with this edge of

� . A similar (but easier) argument shows that all id-labeled nodes of the form

(c

m

; w) are on the root path (3). Thus, every id-labeled node of �

0

is on one

of the special paths. Since, as observed above, an id-labeled node has at most

one outgoing edge, all these edges are also on the special paths. The remaining

edges of �

0

are of the form (c; u)

j

! ((e; q

e

); u) with e = (j; c; c

0

); obviously, the

node ((e; q

e

); u) has at most one such incoming edge, and hence this edge is also

on a special path (2). This shows that also every edge of �

0

is on one of the

special paths. Having shown that �

0

is of the above special form, we now prove

the remaining facts.

Since every node (c; u) has the same number of outgoing edges in �

0

as in

� , with the same labels, �

0

satis�es the second requirement for being a term

graph. Moreover, the special paths of �

0

do not contain cycles, because the A

e

are deterministic and hence the walks (1) do not contain repetitions. A cycle of

�

0

would consist of consecutive special paths, and thus would give a cycle in � .

Hence �

0

is noncircular. Finally, since � is clean, �

0

has root (c

m

; root(t)), which

shows that �

0

is a clean term graph, and that the third locality requirement

holds. It should now be clear, from the special form of �

0

and the de�nition of

`prune', that prune(�

0

) = � .

It remains to be shown that �

0

is a tree if � is one. It obviously su�ces,

in view of the special form of �

0

, to prove that the special paths have no id-

labeled nodes in common. Suppose that the special paths associated with two

distinct edges (c

1

; u

1

)

j

! (c

0

1

; v

1

) and (c

2

; u

2

)

j

0

! (c

0

2

; v

2

) of � have an id-labeled

node in common. Since id-labeled nodes have exactly one outgoing edge, these

paths have to end at the same node (c

0

1

; v

1

) = (c

0

2

; v

2

). But then (c

0

1

; v

1

) has two

incoming edges in � , contradicting the fact that � is a tree. ut

We now prove that every mso term graph transducer can be simulated by

a, possibly circular, attributed tree transducer with look-ahead. More precisely,
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we show the following theorem.

Theorem14. For every mso term graph transducer T from � to � there exist

an attributed relabeling r and an attributed tree transducer G such that, for every

tree t 2 T

�

, G is noncircular on r(t) and G(r(t)) = T (t). Moreover, if T is an

mso tree transducer, then G is sur on r(t) for every t 2 T

�

, and if T is direction

preserving, then G is os.

Proof. Let T = (C; 	;X) be an mso term graph transducer from � to �. We

may assume, by Lemmas 13 and 4, that T is local. Let c

m

be the copy name

that satis�es the third locality requirement.

Based on the characterization of unary mso formulas, Theorem 10 shows

that it su�ces to de�ne an mso relabeling r instead of an attributed relabeling.

The mso relabeling r will be used to compute the truth values of the node and

edge formulas of T . Since T is local, the truth values of the edge formulas can

indeed be stored in the labels of the nodes. Thus, r will be of the type discussed

in Example 1(2, relab), from � to �

0

= � � ftrue; falseg

n

, where each symbol

�

0

= (�; b

1

; : : : ; b

n

) stores truth values for the unary formulas �

1

(x); : : : ; �

n

(x)

that we wish to consider. To avoid having to order these formulas, we will write

[�

i

(x)]

�

0

for b

i

.

The formulas that determine r are all the node formulas  

�;c

(x) 2 	 , and all

the formulas �

j;c;c

0

(x �i; x �i

0

) with �

j;c;c

0

(x; y) 2 X , and i; i

0

2 f0g[rki(�)[f"g.

What we mean by the latter formulas is the following. For i 2 rki(�), x�i denotes

the i-th child of x, x�0 denotes x itself, and x� " denotes the parent of x. Formally,

�

j;c;c

0

(x � i; x � i

0

) is the formula 9y; z(edg

i

(x; y) ^ edg

i

0

(x; z) ^ �

j;c;c

0

(y; z)), with

edg

0

(x; y) = (x = y) and edg

"

(x; y) = edg(y; x).

The att G = (�

0

; S; I; 
;W;R; �

m

), with 
 = fT

�

g, is de�ned as follows.

For each copy name c of T , G has a synthesized attribute �

c

and an inherited

attribute �

c

. The meaning attribute �

m

of G is �

c

m

.

For t 2 T

�

and u 2 V

t

, the attribute h�

c

; ui of r(t) will have the value

unf

�

(c; u) where � = T

gr

(t). Since T is local, the �rst two locality requirements

imply that

unf

�

(c; u) = �(unf

�

(c

1

; u

1

); : : : ; unf

�

(c

k

; u

k

))

where each u

i

is either u itself or one of its children or its parent, and the nodes

(c

1

; u

1

); : : : ; (c

k

; u

k

) of � are all distinct. Thus, the (synthesized) attribute h�

c

; ui

depends on the �-attributes of itself, its children, and its parent. If T is direction

preserving, then there is no dependency on the attributes of the parent, and the

inherited attributes �

c

are not needed, i.e., G is os. Otherwise, the inherited

attribute �

c

is used to transport the attribute �

c

of a node down to its children,

by a copy rule, cf. Fig. 8.

We now de�ne the semantic rules of G. All root rules of G are \dummy"

rules, i.e., rules h�

c

; 0i = ?, where ? is any element of �

0

. For �

0

2 �

0

, the

semantic rules in R(�

0

) are de�ned as follows.
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�

c

0

u

�

c

u � i

j

�

c

Fig. 8. Edge of the output graph (dashed line) and attribute dependencies (solid lines),

for an edge from child to parent

{ If [ 

�;c

(x)]

�

0

= true and [�

j;c;c

j

(x � 0; x � i

j

)]

�

0

= true for all j 2 [1; k]

(where k 2 rki(�), � 2 �

k

, c; c

1

; : : : ; c

k

2 C, i

1

; : : : ; i

k

2 [0; rk(�

0

)] [ f"g,

and (c

1

; i

1

); : : : ; (c

k

; i

k

) are all distinct),

then R(�

0

) contains the rule h�

c

; 0i = �(h

c

1

;m

1

i; : : : ; h

c

k

;m

k

i)

where h

c

j

;m

j

i = h�

c

j

; i

j

i if i

j

2 [0; rk(�

0

)] and h

c

j

;m

j

i = h�

c

j

; 0i if i

j

= ".

{ If [�

j;c

0

;c

(x � i; x �0)]

�

0

= true (where i 2 [1; rk(�

0

)], j 2 rki(�), and c

0

; c 2 C),

then R(�

0

) contains the copy rule h�

c

; ii = h�

c

; 0i.

Attributes h�

c

; 0i or h�

c

; ii for which no semantic rule is de�ned above, are

de�ned by dummy rules h�

c

; 0i = ? or h�

c

; ii = ?, respectively. Attributes for

which more than one semantic rule is de�ned above, are also de�ned by dummy

rules (this can only happen when �

0

does not occur in any tree r(t)). Note that in

the �rst item above, h

c

1

;m

1

i; : : : ; h

c

k

;m

k

i are all distinct, i.e., the right-hand

side of the semantic rule is linear, as required.

This ends the de�nition of G. To show the correctness of G, let t 2 T

�

and

� = T

gr

(t). The de�nition of the attributed relabeling r implies the following

facts. For a node u of r(t) with label �

0

, [ 

�;c

(x)]

�

0

= true i� (t; u) j=  

�;c

(x) i�

(c; u) is a node of � with label �. Also, [�

j;c;c

0

(x�i; x�i

0

)]

�

0

= true i� (t; u�i; u�i

0

) j=

�

j;c;c

0

(x � i; x � i

0

) i� (c; u � i)

j

! (c

0

; u � i

0

) is an edge of � , where u� " denotes the

parent of u. We will refer to these facts as \the correctness of r".

Suppose thatG is noncircular on r(t). De�ne the mapping dec : A(r(t)) ! T

�

as follows. For c 2 C and u 2 V

t

,

{ dec(h�

c

; ui) = unf

�

(c; u) if (c; u) 2 V

�

, and ? otherwise, and

{ dec(h�

c

; ui) = unf

�

(c; v) where v is the parent of u, if ((c

0

; u); j; (c; v)) 2 E

�

for some c

0

2 C and j 2 rki(�), and ? otherwise.

The correctness of r implies that dec is a decoration of r(t), and consequently

dec = dec

G;r(t)

, and so, using the third locality requirement, we obtain that

G(r(t)) = dec(h�

m

; root(r(t))i) = unf

�

(c

m

; root(t)) =

unf

�

(root(�)) = unfold(�) = T (t):
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To prove that G is noncircular on r(t), and that G is sur on r(t) if � is a

tree, we consider the semantic graph S

G

0

(r(t)), where G

0

is the att in operator

form which is obtained from G by changing every copy rule h�

c

; ii = h�

c

; 0i into

h�

c

; ii = id(h�

c

; 0i), cf. Lemma 5 and its proof. It now su�ces to show that

S

G

0

(r(t)) is noncircular, and that S

G

0

(r(t)) is a forest if � is a tree. To prove

these facts, we consider the edges of S

G

0

(r(t)). By the de�nition of G and the

correctness of r, the edges of S

G

0

(r(t)) are of one of the following three forms

��: h�

c

; ui

j

! h�

c

0

; u � ii with i 2 N and (c; u)

j

! (c

0

; u � i) in � ,

��: h�

c

; ui

j

! h�

c

0

; ui with (c; u)

j

! (c

0

; u� ") in � , or

��: h�

c

0

; ui

1

! h�

c

0

; u� "i,

where, again, u� " denotes the parent of u. Moreover, if edge (��) is in S

G

0

(r(t))

then so is edge (��) for some c 2 C.

This shows that a cycle in S

G

0

(r(t)) is changed into a cycle in � by changing

every edge h�

c

; ui

j

! h�

c

0

; u

0

i into (c; u)

j

! (c

0

; u

0

), and every two consecutive

edges h�

c

; ui

j

! h�

c

0

; ui

1

! h�

c

0

; u� "i into (c; u)

j

! (c

0

; u� "). Since � is noncircu-

lar, so is S

G

0

(r(t)), which means that G is noncircular on r(t).

It also shows that if a node h�

c

; ui of S

G

0

(r(t)) has two incoming (��)-edges,

then (c; u) has two incoming edges in � . Similarly, if a node h�

c

0

; ui of S

G

0

(r(t))

has two incoming edges (which are necessarily (��)-edges), then (c

0

; u� ") has

two incoming edges in � from two nodes (c

1

; u) and (c

2

; u). If h�

c

0

; vi has two

incoming (��)-edges, then (c

0

; v) has two incoming edges from nodes (c

1

; u

1

)

and (c

2

; u

2

), for two children u

1

; u

2

of v. Finally, if h�

c

; ui has an incoming

(��)-edge and an incoming (��)-edge, then (c; u) has two incoming edges from

nodes (c

1

; u

1

) and (c

2

; u

2

), where u

2

is a child of u and u

1

is not. Altogether

this shows that if S

G

0

(r(t)) has a node with two incoming edges, then so has � .

Thus, if � is a tree, then S

G

0

(r(t)) is a forest, which means that G is sur on r(t).

This proves the theorem. We �nally note that � can in fact be obtained

from S

G

0

(r(t)) by �rst removing all (isolated) nodes h�

c

; ui of S

G

0

(r(t)) with

(c; u) =2 V

�

, and then applying `prune' (and removing the root mark # if � has

none). ut

An Example In the remainder of this section we give an example of the imple-

mentation of an mso term graph transduction by an attributed tree transducer

with look-ahead, as described in Lemma 13 and Theorem 14.

Consider the mso tree transducer T = (fcg; 	;X) of Example 1(6, yield)

which transforms a binary tree into its yield, viewed as a monadic tree. Recall

that T is from � = �

0

[�

2

to � = �

0

[�

1

, with �

1

= �

0

and �

0

= f�̂ j � 2

�

0

g. Recall also that T has the following node and edge formulas:

 

�;c

(x) = lab

�

(x) ^ : rm(x) for � 2 �

0

,

 

�̂;c

(x) = lab

�

(x) ^ rm(x) for � 2 �

0

,

�

1;c;c

(x; y) = leaf(x) ^ �(x; y) ^ leaf(y);
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where the formula �(x; y) checks that y directly follows x in the left-to-right

order of leaves, and the formula rm(x) expresses that x is a node on the path

from the root to the rightmost leaf. We will also need the formula lm(x) =

8y(root(y)! path

1

(y; x)) which expresses that x is a node on the path from the

root to the leftmost leaf.

In the following, let e = (1; c; c). Clearly, this is the only element of E =

rki(�) � C � C. Let A

e

= A = (Q;�; �; I; F ) be the deterministic tree-walking

automaton of Example 4 which is equivalent with �

e

(x; y), see Fig. 6.

The local mso tree transducer T

0

constructed in the proof of Lemma 13 has

copy names C

0

= fc; i; ii; iii; iv;v; c

m

g, where we have identi�ed the copy name

(e; q) with q for every q 2 Q, because there is only one automaton. We now give

the node formulas of T

0

, or rather, node formulas that are equivalent to the ones

that are actually constructed. First, the node formulas of T

0

include those of T ,

with a prime. Second, after analyzing the precise behavior of A, it can be seen

that T

0

has the following node formulas  

0

id;q

(x) for q 2 Q:

 

0

id;i

(x) = leaf(x) ^ : rm(x);

 

0

id;ii

(x) = : rm(x);

 

0

id;iii

(x) = : leaf(x);

 

0

id;iv

(x) = : lm(x); and

 

0

id;v

(x) = leaf(x) ^ : lm(x):

Third, since the root of the output tree is the leftmost leaf,  

0

id;c

m

(x) = lm(x).

Next, we give the edge formulas of T

0

. First, since q

e

= i, it has the edge formula

�

0

1;c;i

(x; y) = (x = y). Second, since F = fvg, �

0

1;v;c

(x; y) = (x = y). Third, the

transitions of A result in the following six edge formulas:

�

0

1;i;ii

(x; y) = (leaf(x) ^ x = y);

�

0

1;ii;ii

(x; y) = edg

2

(y; x);

�

0

1;ii;iii

(x; y) = edg

1

(y; x);

�

0

1;iii;iv

(x; y) = edg

2

(x; y);

�

0

1;iv;iv

(x; y) = edg

1

(x; y); and

�

0

1;iv;v

(x; y) = (leaf(x) ^ x = y):

Fourth, �

0

1;c

m

;c

m

(x; y) = edg(x; y) and, since the root of the output tree is the

leftmost leaf, �

0

1;c

m

;c

(x; y) = (leaf(x) ^ lm(x) ^ x = y).

In what follows, it is assumed that each of the above edge formulas �

0

1;c

1

;c

2

(x; y)

of T

0

is restricted in such a way that (t; u; v) j= �

0

1;c

1

;c

2

(x; y) implies that (c

1

; u)

and (c

2

; v) are nodes of the output tree T

0

(t), as discussed in Section 3 and, in

fact, as assumed in the proof of Theorem 14.

We now turn to the attributed relabeling r and attributed tree transducer

G, constructed in the proof of Theorem 14 for the local mso tree transducer T

0

.

As explained in that proof, r computes the truth values of the node and edge

formulas of T

0

. In this example, since the truth values of the formulas leaf(x)
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and lab

�

(x), for � 2 �

0

, are obvious from the �-label of the node x, and since

most of the formulas �

j;c;c

0

(x � i; x � i

0

) are trivial for similar reasons, it su�ces

that r computes the truth values of the formulas rm(x), lm(x), 9y(edg

1

(y; x)),

and 9y(edg

2

(y; x)). Thus, the symbols of the output alphabet �

0

of r are of the

form �

0

= (�; b

1

; b

2

; b

3

; b

4

), with � 2 � and b

i

2 ftrue; falseg.

The att G has synthesized attributes �

c

; �

i

; : : : ; �

v

; �

c

m

, with �

m

= �

c

m

, and

it has inherited attributes �

ii

and �

iii

. In fact, since, for i � 1 and c

1

; c

2

2 C

0

,

[�

j;c

1

;c

2

(x � i; x � 0)]

�

0

can only be true for c

1

= ii and c

2

2 fii; iiig, the other

inherited attributes of G will be de�ned by dummy rules only, and hence are

superuous.

For �

0

2 �

0

2

, if [rm(x)]

�

0

= false, then R(�

0

) contains the semantic rules

h�

ii

; 2i = h�

ii

; 0i and h�

iii

; 1i = h�

iii

; 0i, and all other �-rules are dummy rules.

II I

III

IV

V III V

II

III

V

III

IV IV

IV

II

III

Fig. 9. All walks of the automaton on tree t

The synthesized attributes have the following semantic rules. We do not

mention the dummy rules, i.e., we de�ne the attribute �

c

only for leaves, and

an attribute �

c

0

with c

0

6= c only for nodes x for which  

0

id;c

0

(x) holds.

{ For �

0

= (�; b

1

; b

2

; b

3

; b

4

) 2 �

0

0

, R(�

0

) contains the rule h�

c

; 0i = �(h�

i

; 0i) if

[rm(x)]

�

0

= false, and the rule h�

c

; 0i = �̂ otherwise.

{ For �

0

2 �

0

0

with [rm(x)]

�

0

= false, R(�

0

) contains h�

i

; 0i = h�

ii

; 0i.

{ For every �

0

2 �

0

with [rm(x)]

�

0

= false, R(�

0

) contains h�

ii

; 0i = h�

ii

; 0i if

[9y(edg

2

(y; x))]

�

0

= true, and h�

ii

; 0i = h�

iii

; 0i if [9y(edg

1

(y; x))]

�

0

= true.

{ For �

0

2 �

0

2

, R(�

0

) contains h�

iii

; 0i = h�

iv

; 2i.
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{ For every �

0

2 �

0

with [lm(x)]

�

0

= false, R(�

0

) contains h�

iv

; 0i = h�

iv

; 1i

if �

0

2 �

0

2

, and h�

iv

; 0i = h�

v

; 0i otherwise.

{ For �

0

2 �

0

0

with [lm(x)]

�

0

= false, R(�

0

) contains h�

v

; 0i = h�

c

; 0i.

{ For every �

0

2 �

0

with [lm(x)]

�

0

= true, R(�

0

) contains h�

m

; 0i = h�

m

; 1i if

�

0

2 �

0

2

, and h�

m

; 0i = h�

c

; 0i otherwise.

This ends the description of r and G. To conclude the example, we consider how

G acts on tree t = $($(a; $(b; a)); a), where a; b 2 �

0

and $ 2 �

2

, with output

T (t) = a(b(a(â))). Figure 9 shows all walks of the automaton on t. Figure 10

gives the dependency graph D(r(t)). It shows the inherited attributes to the

IIIIcrt IVII III V II IIIIcrt IVII III

V II IIIIcrt IVII III

V II IIIIcrt IVII III V II IIIIcrt IV

a

II III

V II IIIIcIV

V II IIIIcIVrt

V II

II III rt

II III

$

$

$a

b a

a

Fig. 10. The dependency graph of r(t)

left of each node, and the synthesized attributes to the right. The label of each

node is the one in t. The attribute names have been abbreviated. Attribute �

m

is denoted m, �

c

is denoted c, and the attributes �

q

and �

q

are both denoted q,

for all q 2 Q. Note that the direction of the edges in D(r(t)), i.e., the direction

in which the attributes are evaluated, is opposite to the direction in which the

automaton walks on t (cf. the �rst part of the proof of Lemma 13).

We can easily infer the values of the attributes. Let the leaves of t be num-

bered u

1

through u

4

, from left to right. The values of the �

c

are dec

G;t

(h�

c

; u

4

i) =

â, dec

G;t

(h�

c

; u

3

i) = a(â), dec

G;t

(h�

c

; u

2

i) = b(a(â)), and dec

G;t

(h�

c

; u

1

i) =

a(b(a(â))), and the other occurrences of �

c

have value ?. The rules for all the
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other attributes merely copy values, so, in particular, dec

G;t

(h�

m

; root(t)i) =

a(b(a(â))).

It should be clear that r and G are very similar to r(G

1

) and G

2

of Exam-

ple 2(6, yield). Roughly speaking, the attribute `down' of that example corre-

sponds to the attributes �

i

, �

ii

, �

iii

, �

ii

, and �

iii

, and the attribute `up' to the

attributes �

c

, �

iv

, �

v

, and �

m

.

8 Noncircularity and single use

We have shown in Theorem 14 that every mso term graph transducer can be

simulated by a, possibly circular, att

R

. We might be quite satis�ed with this,

but it is even more satisfactory to have a noncircular att

R

, and, thus, to be able

to state that mso-tgt � att-rel �att. That this is possible will be proved in

this section. Thus, we will show the following theorem. Note that without the

last statement, the theorem says the following: for every att

R

that computes a

total function there is an equivalent noncircular att

R

.

Theorem15. Let r be an attributed relabeling and G be an att which is noncir-

cular on r(t) for every input tree t of r. Then there exist an attributed relabeling

r

0

and a noncircular att G

0

such that r

0

� G

0

= r � G. Moreover, if G is sur on

r(t) for every input tree t of r, then G

0

is sur, and if G is os, then so is G

0

.

To prove this, it su�ces to prove the following lemma. Note that the �rst sentence

of this lemma says the following: for every att G there is a noncircular att

R

(G

1

; G

2

) such that G � r(G

1

) � G

2

.

Lemma16.

1. For every att G there exist an attributed relabeling r

0

and a noncircular att

G

0

such that G

0

(r

0

(t)) = G(t) for every input tree t on which G is noncircular.

Moreover, for every input tree t, if G is sur on t, then G

0

is sur on r

0

(t).

2. For every noncircular att G

0

there exist an attributed relabeling r

1

and a

noncircular sur att G

00

such that G

00

(r

1

(t)) = G

0

(t) for every input tree t on

which G

0

is sur. Moreover, if G

0

is os, then so is G

00

.

In fact, assuming this lemma, the �rst part of Theorem 15 can be proved as

follows. Take r

0

= r � r

0

. By Proposition 2 and Theorem 10, att-rel is closed

under composition, and hence r

0

is an attributed relabeling. Then, for every

input tree t of r, G

0

(r

0

(t)) = G

0

(r

0

(r(t))) = G(r(t)) because G is noncircular on

r(t). To prove the second part of Theorem 15 (with r

00

and G

00

instead of r

0

and

G

0

, respectively), take r

00

= r

0

� r

1

. Again, r

00

is an attributed relabeling. Let

t be an input tree of r. Since G is sur on r(t), G

0

is sur on r

0

(r(t)) = r

0

(t).

Hence G

00

(r

1

(r

0

(t))) = G

0

(r

0

(t)), and so G

00

(r

00

(t)) = G(r(t)). Note that for the

os-part we only need the second statement of Lemma 16, because every os att

is noncircular.

In the remainder of this section we prove Lemma 16. The lemma holds for

arbitrary attribute grammars, in such a way that G

0

has the same semantic
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domains and uses the same functions f in its semantic rules (and similarly for

G

00

). The reader who is not interested in technical subtleties should skip the

remainder of this section.

We start with the �rst part of Lemma 16. Let G = (�;S; I; 
;W;R; �

m

) be

an arbitrary att, with 
 = fT

�

g. We will abbreviate S [ I by A. Note that if

the dependency graph D(root) of the root is circular, then G is circular on every

input tree, and Lemma 16 holds trivially. Hence, we may assume that D(root)

is noncircular.

The relabeling r

0

will add is-graphs, well known from the circularity test

for attribute grammars, to the labels of the nodes of an input tree t. This will

allow G

0

to see whether or not G is circular on t. Let us �rst recall these well-

known ideas from [Knu], in our notation. An is-graph is a subset of I � S. For

� 2 �

k

and is-graphs q

1

; : : : ; q

k

, D(�)[q

1

; : : : ; q

k

] is the unlabeled directed graph

obtained from the dependency graph D(�) of � by adding all edges (h�; ii; h�; ii)

with (�; �) 2 q

i

, for i 2 [1; k]. Furthermore, �

0

(D(�)[q

1

; : : : ; q

k

]) is the is-

graph consisting of all (�; �) such that there is a path from h�; 0i to h�; 0i

in D(�)[q

1

; : : : ; q

k

]. For an is-graph q, D(root)[q] is the unlabeled directed graph

obtained from D(root) by adding all edges (h�; 0i; h�; 0i) with (�; �) 2 q. For

t 2 T

�

and u 2 V

t

, the is-graph of u, denoted is(u), is de�ned recursively to be

the is-graph is(u) = �

0

(D(�)[is(u � 1); : : : ; is(u � k)]), where lab

t

(u) = � 2 �

k

.

The circularity test for a single tree t 2 T

�

is now as follows: D(t) is circu-

lar i� either D(root)[is(root(t))] is circular or there exists u 2 V

t

such that

D(�)[is(u � 1); : : : ; is(u � k)] is circular, where lab

t

(u) = � 2 �

k

.

We now de�ne the attributed relabeling r

0

. Let Q = P(I � S) be the set of

all is-graphs, and let � = froot; nonrootg. The output alphabet �

0

of r

0

(which

will also be the input alphabet of G

0

) consists of all symbols

(�; �; (q

0

; q

1

; : : : ; q

k

))

of rank k, with k � 0, � 2 �

k

, � 2 �, q

i

2 Q for all i 2 [0; k], and q

0

=

�

0

(D(�)[q

1

; : : : ; q

k

]). Note that q

0

is superuous; it is added to simplify the de-

scription of the semantic rules of G

0

. The attributed relabeling r

0

relabels a node

u of a tree t 2 T

�

that has label � 2 �

k

, with the label (�; �; (q

0

; q

1

; : : : ; q

k

)) 2

�

0

, where q

i

= is(u �i) for all i 2 [0; k], and � = root i� u = root(t). It is straight-

forward to de�ne a relabeling attribute grammar G

0

such that r(G

0

) = r

0

. It has

a synthesized attribute `is' withW (is) = Q to compute is(u) for every node u, an

inherited attribute `r' with W (r) = � to indicate the root, and a (synthesized)

meaning attribute `lab' with W (lab) = �

0

to compute the new label of every

node. It has one root rule: hr; 0i = root. For every � 2 �

k

it has the internal

rules

his; 0i = �

0

(D(�)[his; 1i; : : : ; his; ki])

hr; ii = nonroot for all i 2 [1; k]

hlab; 0i = (�; hr; 0i; (his; 0i; his; 1i; : : : ; his; ki)):

From these rules it should be clear that r(G

0

) = r

0

.
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We now turn to the de�nition of the att G

0

from �

0

to �. For G

0

we will use

the same notation as forG, with primes. The attributes of G

0

are S

0

= S[(S�Q)

and I

0

= I [ (I �Q), with �

0

m

= �

m

. We denote S

0

[ I

0

by A

0

.

The idea in the construction of G

0

is the following. Let t

0

be a tree over �

0

,

and let t be the tree over � that is obtained from t

0

by changing every label

(�; �; (q

0

; q

1

; : : : ; q

k

)) into �. Let us �rst consider the case that t

0

= r

0

(t). Then

the attribute h�; ui of t in G is simulated in G

0

by the attribute h(�; q); ui of

t

0

if is(u) = q and u is not the root, and by the attribute h�; ui if u is the

root. The remaining attributes of t

0

are superuous and get a dummy value.

This will guarantee that G

0

(r

0

(t)) = G(t) if D(t) is noncircular. If D(t) is cir-

cular, then all cycles of D(t) will be broken in D

0

(t

0

) because we will de�ne

D

0

(�; �; (q

0

; q

1

; : : : ; q

k

)) to have no edges whenever D(�)[q

1

; : : : ; q

k

] is circular

(and when D(root)[q

0

] is circular, if � = root). Now consider the case that

t

0

6= r

0

(t). Then a possible cycle in D(t) will be broken in D

0

(t

0

) either for the

same reason as above, or because the q

i

in the labels of t

0

do not \�t". Roughly

speaking, the semantic rules for a symbol (�; �; (q

0

; q

1

; : : : ; q

k

)) in G

0

will be the

same as the semantic rules for � in G, except that every h�; ii is replaced by

h(�; q

i

); ii. Now, if a node u of t

0

has label (�; �; (q

0

; q

1

; : : : ; q

k

)), and its i-th child

has a label of the form (�;�; (p

0

; : : : )) that does not \�t", i.e., with p

0

6= q

i

,

then a path in D(t) through h�; u � ii will be broken in D

0

(t

0

) because h�; u � ii is

split into h(�; p

0

); u � ii and h(�; q

i

); u � ii between which there is no connection,

see Fig. 11. It remains to specify the semantic rules of G

0

. For h�

0

; ii 2 A

0

� N,

(�; q

r

)

lab

t

0

(u) = (�; �; (: : : ; q

r

; : : : ))

lab

t

0

(u � r) = (�

0

; �

0

; (p

r

0

; : : : ))

(�; p

r

0

)

Fig. 11. Non�tting labels of a parent and child

a dummy rule for h�

0

; ii is a semantic rule h�

0

; ii = ?, where ? is an arbitrary

element of �

0

. Note that dummy rules do not produces edges in dependency

graphs.

The root rules of G

0

are the root rules of G, together with dummy rules for

the attributes in I �Q.

The internal rules of G

0

for a symbol �

0

= (�; �; (q

0

; q

1

; : : : ; q

k

)) 2 �

0

are

de�ned as follows, distinguishing between the two possible values of �.

Case 1: � = nonroot. If D(�)[q

1

; : : : ; q

k

] is circular, then all internal rules for

�

0

are dummy rules. Otherwise,R

0

(�

0

) consists of all rules of R(�), in which every

h�; ii is replaced by h(�; q

i

); ii, and dummy rules for the remaining attributes.
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Case 2: � = root. If D(�)[q

1

; : : : ; q

k

] is circular or D(root)[q

0

] is circular, then

all internal rules for �

0

are dummy rules. Otherwise, R

0

(�

0

) consists of all rules

of R(�), in which every h�; ii with i 6= 0 is replaced by h(�; q

i

); ii, and dummy

rules for the remaining attributes.

This ends the construction of G

0

. Clearly, if G is sur on t 2 T

�

, then G

0

is

sur on r

0

(t). In fact, G

0

is then sur on any tree t

0

2 T

�

0

that is obtained from

t by changing each label � into some (�; �; (q

0

; q

1

; : : : ; q

k

)).

We will now �rst show that r

0

and G

0

compute the same tree transduction

as G, for noncircular input, and then we will show that G

0

is noncircular.

Let t 2 T

�

and t

0

= r

0

(t), and assume that both D(t) and D

0

(t

0

) are noncir-

cular. We have to prove that G

0

(t

0

) = G(t). For that purpose we de�ne a valuation

val : A

0

(t

0

) ! T

�

of the attributes of t

0

as follows. Let u be a node of t

0

with

label (�; �; (q

0

; q

1

; : : : ; q

k

)). If � = nonroot, then val(h(�; q

0

); ui) = dec

G;t

(h�; ui)

for every � 2 A, and val(h�

0

; ui) = ? for all remaining attributes �

0

2 A

0

. If

� = root, then val(h�; ui) = dec

G;t

(h�; ui) for every � 2 A, and val(h�

0

; ui) = ?

for every �

0

2 A�Q.

We claim that val is a decoration of t

0

(for G

0

). In fact, for every node

u of t

0

with label (�; �; (q

0

; q

1

; : : : ; q

k

)), it follows from the de�nition of r

0

that

q

i

= is(u �i) for all i 2 [0; k], and that � = root i� u is the root. Since D(t) is non-

circular, this implies that D(�)[q

1

; : : : ; q

k

] is noncircular, and that D(root)[q

0

]

is noncircular if u is the root. It now follows from the de�nition of the semantic

rules of G

0

(and the fact that dec

G;t

is a decoration of t) that val is a decoration

of t

0

. Hence, since D

0

(t

0

) is noncircular by assumption, val = dec

G

0

;t

0

and so

G

0

(t

0

) = dec

G

0

;t

0

(h�

0

m

; root(t

0

)i) = val(h�

m

; root(t)i) = dec

G;t

(h�

m

; root(t)i) =

G(t).

Finally we show that G

0

is noncircular, i.e., that D

0

(t

0

) is noncircular for

every tree t

0

2 T

�

0

. We claim that the following four statements hold for every

node u of t

0

, with label �

0

= (�; �; (q

0

; q

1

; : : : ; q

k

)).

1. If � = nonroot and (�

0

; �

0

) 2 is

0

(u), then there exist �; � 2 A such that

�

0

= (�; q

0

), �

0

= (�; q

0

), and (�; �) 2 q

0

.

2. If � = root and (�

0

; �

0

) 2 is

0

(u), then �

0

; �

0

2 A and (�

0

; �

0

) 2 q

0

.

3. If D

0

(�

0

)[is

0

(u � 1); : : : ; is

0

(u � k)] is circular, then D(�)[q

1

; : : : ; q

k

] is circular.

4. If D

0

(root)[is

0

(u)] is circular, then � = root and D(root)[q

0

] is circular.

From Statements (3) and (4) the noncircularity of D

0

(t

0

) can be proved as

follows. Assume that D

0

(t

0

) is circular. Then either there is a node u such

that D

0

(�

0

)[is

0

(u � 1); : : : ; is

0

(u � k)] is circular, or D

0

(root)[is

0

(u)] is circular for

u = root(t). In the �rst case, Statement (3) implies that D(�)[q

1

; : : : ; q

k

] is cir-

cular, and so, by the de�nition of the semantic rules of G

0

, D

0

(�

0

) has no edges,

contradicting the circularity of D

0

(�

0

)[is

0

(u � 1); : : : ; is

0

(u � k)]. In the second case,

Statement (4) implies that � = root and D(root)[q

0

] is circular, and so also in

this case, by the de�nition of the semantic rules of G

0

, D

0

(�

0

) has no edges. This

implies that is

0

(u) has no edges, and so, since G

0

and G have the same root rules,

D(root) = D

0

(root) = D

0

(root)[is

0

(u)] is circular. We have assumed, however,

that D(root) is noncircular.
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It remains to show the above four statements. First Statements (1) and (2)

are proved simultaneously, by induction on u, and then Statements (3) and (4)

are proved. In these proofs the following lemma is useful. Let � : A

0

! A be

de�ned by �((�; q)) = �(�) = � for � 2 A and q 2 Q.

Lemma17. Let u be a node of t

0

2 T

�

0

with label �

0

= (�; �; (q

0

; q

1

; : : : ; q

k

)),

and assume that Statements (1) and (2) hold for u � 1; : : : ; u � k. If

h�

0

0

; i

0

ie

1

h�

0

1

; i

1

ie

2

h�

0

2

; i

2

i � � � e

n

h�

0

n

; i

n

i

is a path in D

0

(�

0

)[is

0

(u � 1); : : : ; is

0

(u � k)], with e

j

= (h�

0

j�1

; i

j�1

i; h�

0

j

; i

j

i), and

e

1

is an edge of D

0

(�

0

), then

h�(�

0

0

); i

0

i�(e

1

)h�(�

0

1

); i

1

i�(e

2

)h�(�

0

2

); i

2

i � � ��(e

n

)h�(�

0

n

); i

n

i

is a path in D(�)[q

1

; : : : ; q

k

], with �(e

j

) = (h�(�

0

j�1

); i

j�1

i; h�(�

0

j

); i

j

i).

Proof. Let the label of u � r be (�

r

; �

r

; (p

r

0

; p

r

1

; : : : ; p

r

k

r

)), for r 2 [1; k]. Now the

essence of the whole construction of G

0

is that if the given path uses an edge

from is

0

(u �r), r 2 [1; k], then p

r

0

= q

r

, see Fig. 11. The formal proof is as follows.

It is an immediate consequence of the de�nition of the semantic rules of G

0

that if e

j

is an edge in D

0

(�

0

), then �(e

j

) is an edge in D(�) and hence in

D(�)[q

1

; : : : ; q

k

]. Now consider an edge e

j+1

= (h�

0

j

; ri; h�

0

j+1

; ri) from is

0

(u � r);

or more precisely, (�

0

j

; �

0

j+1

) 2 is

0

(u � r) with i

j

= i

j+1

= r 2 [1; k]. Since e

1

is

an edge of D

0

(�

0

), j � 1. Since, clearly, the edge e

j

= (h�

0

j�1

; i

j�1

i; h�

0

j

; ri) is in

D

0

(�

0

), it follows from the de�nition of the semantic rules of G

0

that �

0

j

= (�; q

r

)

for some inherited attribute � 2 A. Hence, by Statements (1) and (2) for u � r,

�

r

= nonroot, q

r

= p

r

0

, �

0

j+1

= (�; p

r

0

) for some � 2 A, and (�; �) 2 p

r

0

. So

(�; �) 2 q

r

. Since �(�

0

j

) = � and �(�

0

j+1

) = �, this implies that �(e

j+1

) =

(h�(�

0

j

); ri; h�(�

0

j+1

); ri) is in D(�)[q

1

; : : : ; q

k

]. This proves the lemma. ut

The proof of Statements (1) and (2) is now straightforward. Assume by induction

that the statements hold for u � 1; : : : ; u � k. Recall that is

0

(u) is equal to the

graph �

0

(D

0

(�

0

)[is

0

(u � 1); : : : ; is

0

(u � k)]). Consider a path from h�

0

; 0i to h�

0

; 0i

in the graph D

0

(�

0

)[is

0

(u � 1); : : : ; is

0

(u � k)]. Such a path must start and end with

an edge in D

0

(�

0

). Hence, by the de�nition of the semantic rules of G

0

, there

exist �; � 2 A such that either � = nonroot, �

0

= (�; q

0

), and �

0

= (�; q

0

),

or � = root, �

0

= �, and �

0

= �. According to the above lemma, there is a

path from h�(�

0

); 0i = h�; 0i to h�(�

0

); 0i = h�; 0i in D(�)[q

1

; : : : ; q

k

], and so

(�; �) 2 �

0

(D(�)[q

1

; : : : ; q

k

]) = q

0

.

Now the proof of Statement (3) is straightforward. Consider a cycle in the

graph D

0

(�

0

)[is

0

(u � 1); : : : ; is

0

(u � k)]. It must contain an edge from D

0

(�

0

), which

we can take as the �rst edge. Since we know that Statements (1) and (2) hold

for all nodes, the above lemma gives us a cycle in D(�)[q

1

; : : : ; q

k

].

Finally we prove Statement (4). It follows from the circularity of the graph

D

0

(root)[is

0

(u)], the noncircularity of D

0

(root), and the fact that the root rules

of G

0

involve attributes from A only, that is

0

(u) must have an edge that involves

attributes from A. By Statements (1) and (2) this implies that � = root and
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is

0

(u) � q

0

. Hence, since D

0

(root) = D(root), all edges of D

0

(root)[is

0

(u)] are

also edges of D(root)[q

0

], and so D(root)[q

0

] is circular.

This shows that G

0

is noncircular, and ends the proof of the �rst part of

Lemma 16.

We now turn to the proof of the second part of that lemma, but for simplic-

ity we use G and G

0

instead of G

0

and G

00

, respectively. Since the idea of the

construction is similar to that of the �rst part of the lemma, we will not give a

detailed correctness proof.

Let G = (�;S; I; 
;W;R; �

m

) be an arbitrary noncircular att from � to �.

We will turn semantic rules into dummy rules whenever an attribute is used

more than once. To see whether an attribute of a node u is used more than

once, we do not only need the dependency graph D(�) of the label � of u, but

also the dependency graph of the label of the parent of u (or the dependency

graph of the root, if u is the root). To provide this information is the job of

the relabeling r

1

. Let � be the set of all pairs (�; i) such that either � 2 � and

i 2 [1; rk(�)], or � = root and i = 0. The attributed relabeling r

1

has output

alphabet �

0

= � � �, and r

1

relabels a node u of a tree t 2 T

�

that has label

�, with the label (�; �; i) such that (1) if u = v � j then � = lab

t

(v) and i = j,

and (2) if u = root(t) then � = root and i = 0. This can easily be realized by a

relabeling attribute grammar that has inherited attributes `par' and `num' with

root rules hpar; 0i = root and hnum; 0i = 0, and internal rules hpar; ii = � and

hnum; ii = i, i 2 [1; rk(�)], in R(�).

The att G

0

, from �

0

to �, has attributes S

0

= S � � and I

0

= I � �, with

�

0

m

= (�

m

; root; 0).

The root rules of G

0

are the root rules of G in which every h�; 0i is replaced by

h(�; root; 0); 0i, together with dummy rules for the remaining attributes. In fact,

we assume that D(root) does not contain a node with more than one outgoing

edge (otherwise G is not sur on any input tree and Lemma 16(2) is trivial). The

internal rules of G

0

for the symbol (�; �; i) are de�ned as follows. If D(�) has

a node with more than one outgoing edge, or a node h�; 0i with one outgoing

edge such that h�; ii has at least one outgoing edge in D(�), then all internal

rules of (�; �; i) are dummy rules. Otherwise, R

0

(�; �; i) consists of all rules of

R(�), in which every h�; 0i is replaced by h(�; �; i); 0i and every h�; ji, j 6= 0, by

h(�; �; j); ji, and dummy rules for the remaining attributes.

The idea in the construction of G

0

is the following. Let t

0

be a tree over �

0

,

and let t be the tree over � that is obtained from t

0

by changing every label

(�; �; i) into �. Let us �rst consider the case that t

0

= r

1

(t). Then the attribute

h�; ui of t in G is simulated in G

0

by the attribute h(�; �; i); ui of t

0

, where (�; �; i)

is the label of u in r

1

(t). This guarantees that G

0

(r

1

(t)) = G(t) if G is sur on t.

If G is not sur on t, then all \bad" nodes of D(t) (i.e., nodes with more than

one outgoing edge) are not bad any more in D

0

(t

0

) because we de�ned D

0

(�; �; i)

to have no edges whenever D(�), combined with the parent dependency graph

D(�), has bad nodes. Now consider the case that t

0

6= r

1

(t). Then a bad node of

D(t) is removed from D

0

(t

0

) either for the same reason as above, or because the

labels of t

0

do not \�t". In fact, if a node u of t has label �, and its i-th child

48



has a label (�; �

0

; i

0

) in r

1

(t) that does not \�t", i.e., with (�

0

; i

0

) 6= (�; i), then

a bad node h�; u � ii of D(t) is not bad in D

0

(t

0

) because it is split into the two

nodes h(�; �; i); u � ii and h(�; �

0

; i

0

); u � ii. Note �nally that G

0

is still noncircular:

a cycle in D

0

(t

0

) would produce a cycle in D(t) when replacing every h(�; �; i); ui

by h�; ui.

This ends the proof of the second part of Lemma 16, and thus also ends the

proof of Theorem 15.

9 Main results

In this �nal section we combine all previously proved results, and derive our

main results: the equivalence of mso term graph transducers and attributed tree

transducers with look-ahead, and the equivalence of mso tree transducers and

attributed tree transducers with look-ahead that satisfy the single use restriction.

Theorem18. mso-tgt = att-rel �att, mso-tt = att-rel �att

sur

,

mso-tgt

dir

= att-rel �att

os

, and mso-tt

dir

= att-rel �att

os;sur

.

Proof. The �-inclusions are an immediate consequence of Theorems 14 and 15.

Without att-rel, the �-inclusions are stated in Theorem 9. Then, the class

att-rel can be added because of the equality att-rel = mso-rel (Theo-

rem 10) and the composition results of Proposition 2 (recalling that mso-rel �

mso-tt

dir

). ut

Together with Theorem 10 this characterizes all classes of tree transductions

from Fig. 1 in terms of attribute grammars. In the remainder of the section we

discuss a number of issues related to these results.

Look-ahead As observed in the introduction, an attributed tree transducer

with look-ahead can also be viewed as one attribute grammar of which the

attributes can be evaluated in two phases (see [Blo]). Such an attribute grammar

is like an att, except that it also has \ags", i.e., attributes with �nitely many

values. The semantic rules for ags use ags only, and therefore the ags can

be evaluated in a �rst phase. The \tree attributes", i.e., the attributes � with

W (�) = T

�

, have conditional semantic rules in which the ags can be tested,

i.e., a semantic rule in R(�) is of the form

h�; ii =

8

>

>

<

>

>

:

r

1

if c

1

.

.

.

.

.

.

r

n

if c

n

(4)

where c

1

; : : : ; c

n

are mutually exclusive, exhaustive tests on the ags, and r

j

2

T

�

((I [ S)� [0; rk(�)]) for every j 2 [1; n]. The root rules are of a similar form.

As an example, the tree transduction of Example 2(4, path) can be computed by

such an attribute grammar, with a ag `ns' which is de�ned as in Example 2(4,
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path), and a tree attribute � which has the same semantic rules in R(a) and

R(�) as in Example 2(4, path) and the following conditional semantic rule in

R(�):

h�; 0i =

8

>

<

>

:

1(h�; 1i) if hns; 1i = 1 and hns; 2i = 0,

2(h�; 2i) if hns; 1i = 0 and hns; 2i = 1,

a otherwise.

The reason that we have not chosen for this model is that it leads to more

complicated de�nitions of noncircularity (cf. [Boy]) and the single use restriction.

The usual notion of dependency graph takes a worst case view on dependencies

in the sense that for a conditional semantic rule (4), it would assume h�; ii to

depend on all attributes occurring in r

1

; : : : ; r

n

, whereas, for a particular input

tree, h�; ii depends of course on the attributes of one r

j

only.

Another, equivalent, way of viewing an att

R

, based on Theorem 10, is as

an att which has conditional rules as above, in which the conditions c

1

; : : : ; c

n

are unary mso formulas  

1

(x); : : : ;  

n

(x), where x refers to the node under

consideration (usually referred to by the number 0). The tree transduction of

Example 2(4, path) can be computed by such an attribute grammar, with one

attribute � which, again, has the same semantic rules R(a) and R(�) as in

Example 2(4, path), but now has the following conditional rule in R(�):

h�; 0i =

8

>

<

>

:

1(h�; 1i) if 8y((edg

1

(x; y)! �

1

(y)) ^ (edg

2

(x; y)! �

0

(y))),

2(h�; 2i) if 8y((edg

1

(x; y)! �

0

(y)) ^ (edg

2

(x; y)! �

1

(y))),

a if :�

1

(x),

where �

1

(x) is a formula expressing that x has exactly one descendant with label

�, and �

0

(x) expresses that x has no descendant with label �. This seems to be

an attractive formal model, which was in fact used in the proof of Theorem 14,

in disguise.

It is natural to extend the att

R

by allowing semantic conditions on the ags,

which are speci�ed for each operator (and the root) in addition to the semantic

rules. Such an extended att

R

G computes a partial function: it accepts only those

input trees t for which dec

G;t

satis�es the semantic conditions. Using the charac-

terization of unary mso formulas proved in [BloEng, NevBus] (see Section 6.1) it

is straightforward to show (see [Blo]) that the domains of these functions are ex-

actly the mso de�nable tree languages. Thus, the att

R

with semantic conditions

computes precisely the partial mso term transductions (of which the domain is

speci�ed by a closed mso formula, see [EngOos, Cou3]), and similarly for the

sur and os restrictions.

Time complexity It is known from [CouMos] that mso de�nable graph trans-

ductions can be computed in polynomial time. As an immediate consequence of

Theorem 18 we obtain that the mso de�nable tree transductions can be com-

puted in linear time, in the size of the input tree. In fact, it is well known that
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attribute grammars can be evaluated in linear time, provided each semantic

rule can be evaluated in constant time. This condition is obviously satis�ed for

�nite-valued attribute grammars (and hence for attributed relabelings), and for

sur attributed tree transducers. If one is willing to accept a term graph as the

representation of the output tree, then it also holds for arbitrary att's. The next

corollary also follows from the results in Section 7 of [BloEng], where it is shown

that both unary formulas and functional binary formulas can be evaluated on

trees in linear time.

Corollary 19. mso de�nable tree transductions can be computed in linear time.

Using a term graph to represent the output tree, mso de�nable term transductions

can be computed in linear time.

Context-free graph grammars Let regt denote the class of regular tree

languages (see, e.g., [G�ecSte]). According to the classical result of [Don, ThaWri],

this is also the class of mso de�nable tree languages. Let us now consider the

class mso-tgt(regt) of images of the mso de�nable tree languages under mso

de�nable term transductions. As observed in the Introduction, it is shown in

[Oos, Eng4, EngOos] that mso-gt(regt), the class of images of mso de�nable

tree languages under mso de�nable graph transductions, is equal to the class

of context-free graph languages. Thus mso-tgt(regt) = unfold(cf-tgl), the

class of all term languages unfold(L) where L is a set of term graphs that can

be generated by a context-free graph grammar. This class was investigated in

[EngHey], where it was shown that it equals the class att(regt) of images

of the regular tree languages under attributed tree transductions. Since it is

straighforward to prove that regt is closed under attributed relabelings, this

result is now an immediate consequence of Theorem 18.

We have, however, skipped some details. First, as also observed in a foot-

note in the Introduction, there are two di�erent types of context-free graph

languages: HR (hyperedge replacement) and NR (node replacement). The re-

sult of [Oos, Eng4, EngOos] is for NR, but the result of [EngHey] is for HR.

However, there is another type of mso de�nable graph transductions, closely re-

lated to the one de�ned here, in which the incidence relation between nodes and

edges has to be de�ned by a binary formula, see [Cou4]. It is shown in [CouEng]

that mso-gt

0

(regt) is the class of HR context-free graph languages, where the

prime indicates this other type of mso de�nable graph transductions. Now it is

easy to see that for term graphs there is no di�erence between the two types

of mso de�nable graph transductions, i.e., Theorem 18 holds for both types:

mso-tgt

0

= mso-tgt and similarly for the other three classes. Consequently,

the class unfold(cf-tgl) is the same for HR and NR. Second, the notion of term

graph is de�ned in a slightly di�erent way in [EngHey], and called \jungle". This

does not make a di�erence, because jungles can be transformed into term graphs,

and vice versa, by mso de�nable graph transductions (of both types). Third, the

attributed tree transducers de�ned in [EngHey] are not of the type de�ned here

(as introduced in [F�ul]), but are ordinary attribute grammars of which all at-

tributes have trees as values (as considered, e.g., in [EngFil]). The domain of

51



such an attributed tree transducer is the set of all derivation trees of the un-

derlying context-free grammar, and the result of [EngHey] concerns the class of

all ranges of such attributed tree transducers. It is however straightforward to

prove, using the close relationship between regular tree languages and derivation

tree languages of context-free grammars (see, e.g., [G�ecSte]), that this class of

ranges equals att(regt).

Consider now the class mso-tt(regt) of images of the mso de�nable tree

languages under mso de�nable tree transductions. This is the class of tree lan-

guages that can be generated by context-free graph grammars. Thus, by The-

orem 18, it is equal to the class att

sur

(regt) of images of the regular tree

languages under sur attributed tree transductions. This result is in fact also

clear from the proof of [EngHey].

Corollary 20. att

sur

(regt) is the class of tree languages that can be generated

by (HR or NR) context-free graph grammars.

Tree transducers In tree language theory several types of tree transducers are

studied, apart from the attributed tree transducer (see, e.g., [G�ecSte]). In what

follows we consider total deterministic transducers only. We consider three types

of such transducers.

First the top-down tree transducer, which is well known to be equivalent

with the os attributed tree transducer (see [CouFra, F�ul]). To ensure closure

under composition, the top-down tree transducer was extended with regular

look-ahead in [Eng1]. Let T

R

denote the class of all tree transductions that

are computed by top-down tree transducers with regular look-ahead. It is not

di�cult to understand, and is proved in [EngMan], that preprocessing the input

tree with an attributed relabeling has the same e�ect as regular look-ahead.

This implies that att-rel �att

os

= T

R

. Thus, by Theorem 18, mso-tgt

dir

=

T

R

, i.e., the direction preserving mso de�nable term transductions are exactly

the top-down tree transductions with regular look-ahead. Since T

R

is closed

under composition (see [Eng1]), this implies that mso-tgt

dir

is closed under

composition (see Proposition 2 and the discussion following it).

Second the bottom-up tree transducer, which is incomparable with the top-

down tree transducer. The result of [F�ulVag] shows that not every bottom-up

tree transducer can be simulated by an att. However, since every bottom-up tree

transducer can be simulated by a top-down tree transducer with regular look-

ahead, the class of bottom-up tree transductions is included in mso-tgt

dir

.

Third the macro tree transducer, introduced in [CouFra, EngVog], which ex-

tends the top-down tree transducer with parameters (and thus can be viewed as

a model of denotational semantics). Every attributed tree transduction can be

computed by a macro tree transducer and thus, since every macro tree trans-

ducer with regular look-ahead can be simulated by one without, the same is true

for attributed tree transductions with look-ahead. Hence, by Theorem 18, every

mso de�nable term transduction can be implemented by a macro tree trans-

ducer. Using results from [Eng2, EngVog], it can now be shown that the class of

macro tree transductions is mso-tgt

dir

�mso-tgt. A precise characterization
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of the mso de�nable tree transductions (mso-tt) as a subclass of the macro tree

transductions is presented in [EngMan].

Closure under composition When looking for a model for the implemen-

tation of the tree transductions in mso-tt or mso-tt

dir

, a good guideline is

that these classes are closed under composition, by Proposition 2. Thus, in

[EngMan], the class mso-tt

dir

is shown to be equal to a subclass of T

R

which

is well known to be closed under composition. When searching for our main

result mso-tt = att-rel �att

sur

, we were also guided by closure under com-

position. The main reason for the introduction of the single use restriction in

[Gan, GanGie, Gie] was that the sur attribute coupled grammars are closed

under composition. An attribute coupled grammar is an attribute grammar in

which a distinction is made between syntactic attributes (which have trees as

values) and semantic attributes (which have arbitrary values). The single use

restriction is imposed on the syntactic attributes only (which is why it is ac-

tually called the syntactic single use requirement in [Gie]). Taking syntactic

attributes only, the result of [Gan, GanGie, Gie] shows that att

sur

is closed

under composition. Adding \ags", i.e., attributes with �nitely many values, as

semantic attributes, it shows that the class att-rel �att

sur

of sur attributed

tree transductions with look-ahead is closed under composition. It is observed in

[Gie] that the same construction proves that the composition of a sur attribute

coupled grammar with an arbitrary attribute coupled grammar can again be

realized by an attribute coupled grammar. This corresponds to the fact that

mso-tt �mso-tgt � mso-tgt, as stated in Proposition 2.
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