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Abstract

Gain graphs are graphs in which each edge has a gain (a label from a group so

that reversing the direction of an edge inverses the gain). In this paper we take a

generalized view of gain graphs in which the label of an edge is related to the label

of the reverse edge by an involution, i.e., an anti-automorphism of order at most

two. Switching classes are equivalence classes of gain graphs under the switching

operation.

The membership problem is important to the theory of switching classes. The

problem is to decide for two given gain graphs, on the same underlying graph and

having gains from the same group, whether or not they belong to the same switching

class. We give e�cient and often optimal algorithms.

If a certain gain graph in the switching class has only abelian labels, then we

can reduce the membership problem to an elegant problem on involutions.

Finally we show that the word problem can be reduced to the general member-

ship problem, thereby establishing undecidability of the latter for some groups.

1 Introduction

Gain graphs are graphs in which each edge has a gain (a label from a group so that

reversing the direction of an edge inverses the gain), see Zaslavsky in [12]. In this paper

we take a generalized view of gain graphs in which the label of an edge is related to the

label of the reverse edge by an involution, i.e. an anti-automorphism of order at most

two as in Hage and Harju [5].

In the special case when the group equals Z

2

, gain graphs are known as signed graphs

the study of which was originated by Harary [6]. For results on signed graphs, we refer

to papers by Zaslavsky, [11] and [10].

The present work is mainly motivated by the study of dynamic labeled 2-structures

of Ehrenfeucht and Rozenberg [3].

We assume that the reader is familiar with the basic notions of graph theory and

group theory. We give now a number of basic notions in order to establish the notation

and unambiguous terminology for this paper.
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Let � be a group. A function � : �! � is called an involution, if it is an anti-

automorphism of order at most two, that is, for all x; y 2 �, �(xy) = �(y)�(x) and

�

2

(x) = x. We write (�; �) for a group � with a given involution �.

Let V be a �nite set, and denote by E

2

(V ) = f(x; y) j x; y 2 V; x 6= yg the set of

all nonre
exive ordered pairs of V . For a pair e = (x; y) 2 E

2

(V ), we denote by e

�1

its

reverse pair (y; x).

We consider graphs G = (V;E) where the set of edges E � E

2

(V ) satis�es the

condition: if e 2 E then also e

�1

2 E. Such graphs can be considered as undirected

graphs where the edges have been given a two-way orientation. We use E(G) and V (G)

to denote E and V respectively.

LetG = (V;E) be a graph and (�; �) a group with involution. A mapping g : E ! (�; �)

into the group � is called a (�; �)-gain graph (on G) (or a graph with skew gains), if it

satis�es the condition

g(e

�1

) = �(g(e)) (1)

for all e 2 E. The class of (�; �)-gain graphs on G will be denoted by L

G

(�; �) or simply

by L

G

. The set of gains of g is

A(g) = fg(e) j e 2 E(G)g � � :

We adopt in a natural way some of the terminology of graph theory for graphs with

skew gains.

For each function � : V ! �, called a selector, we associate with g a new

(�; �)-gain graph g

�

on G = (V;E) by letting for each (x; y) 2 E,

g

�

(x; y) = �(x) � g(x; y) � �(�(y)) :

We use S(V ,�), or simply S, to denote �

V

, the set of selectors from V into �.

The relation g � h, which holds if there exists a selector � such that h = g

�

, is an

equivalence relation on the (�; �)-gain graphs, and we denote by

[g] = fg

�

j � : V ! �g

the equivalence class of g determined by this relation; it is called the switching class

generated by g (see Seidel [9]).

Further de�nitions and basic results on (�; �)-gain graphs are given in the prelimi-

naries. We shall now give a short account of the results of later sections.

This paper considers the membership problem for switching classes of gain graphs,

i.e., given two gain graphs g; h 2 L

G

(�; �), decide whether h 2 [g]. This problem is very

well motivated from the point of view of dynamic labeled 2-structures (see [3]). The

original motivation behind them was the formalization of a speci�c kind of networks.

From the point of view of the networks the question whether or not a network can end

up in a speci�c con�guration is certainly a central question.

We start with a general treatment of the problem that reduces its complexity. Based

on this we construct an e�cient algorithm of time complexity O(kjV (G)j

2

) for �nite

groups of order k.

Then, we look at various optimizations that can be made for particular kinds of

groups, involutions and underlying graphs. In this way we get more e�cient algorithms
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for abelian groups when the involution is the group inverse or the underlying graph is

bipartite. Also, if the switching class contains a certain gain graph with only abelian

labels, then we reduce the membership problem to an elegant problem on involutions.

This reduction takes O(jE(G)j) time.

Finally, we prove that in general there are groups that yield an undecidable mem-

bership problem already for very simple underlying graphs. In particular, these groups

have an undecidable word problem.

2 Preliminaries

Let Z, R and R

+

be the sets of integers, reals and positive reals, respectively. For a

�nite set X, jXj denotes its cardinality. The identity function on X is denoted id

X

or

simply id.

For a group � we denote its identity element by 1

�

. The centralizer of A � �

C(A) = fx 2 � j ax = xa for all a 2 Ag contains all elements of � that commute with

each element of A. Note that C(A) is a subgroup of �. The center of �, denoted Z(�),

equals C(�).

In this paper � always denotes a group, � an involution of � and G = (V;E) a graph.

We note �rst that g

�

satis�es the reversibility condition (1), by the following lemma.

Lemma 2.1

For each g 2 L

G

(�; �) and selector � : V ! �, also g

�

2 L

G

(�; �).

Proof:

Indeed,

g

�

(u; v) = �(u)g(u; v)�(�(v)) = �(u)�(g(v; u))�(�(v)) = �(u)�(�(v)g(v; u))

= �(�(v)g(v; u)�(�(u))) = �(g

�

(v; u)) ;

which shows the claim. 2

The set S(V ,�) of selectors can be made into a group in a natural way by de�ning

for all selectors � and � ,

(��)(u) = �(u)�(u)

for all u 2 V , but note that g

��

= (g

�

)

�

. Hence, S(V ,�) is a group that acts on the

(�; �)-gain graphs, that is, S(V ,�) can be thought of as a permutation group on L

G

(�; �).

It follows then, that each switching class [g] is generated by each of its elements:

Lemma 2.2

For all � and g, [g

�

] = [g]. 2

In the group S(V ,�) the trivial selector �

1

, for which �

1

(u) = 1

�

for all u 2 V , is

the group identity of S(V ,�); and the inverse of a selector �, denoted �

�1

, is found by

inverting the selected values in the vertices, that is, �

�1

(u) = �(u)

�1

.

For g; g

0

2 L

G

, g

�1

2 L

G

is such that g

�1

(u; v) = g(u; v)

�1

for all (u; v) 2 E(G),

and gg

0

is de�ned edgewise by

(gg

0

)(u; v) = g(u; v)g

0

(u; v) for all (u; v) 2 E(G) :
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Note that gg

0

does not necessarily satisfy (1).

A rooted tree is a tree T with an indicated vertex u = root(T ), so that for each vertex

v, there exists a unique path from u to v in T . For simplicity we will refer to rooted

trees as trees. We say that a vertex v 2 V (T ) is odd (even) if the distance (the number

of edges on the shortest path) between root(T ) and v is odd (even) in T . If two vertices

are both even or both odd, they have the same parity. We use odd(T ) and even(T ) to

refer to the sets of odd and even vertices of T respectively.

For graphs G = (V;E) and G

0

= (V;E

0

) we denote with G�G

0

the graph (V;E�E

0

)

that contains all edges of G that are not in G

0

. This de�nition generalizes in the obvious

way to gain graphs.

Let g 2 L

G

and let t 2 L

T

where T is a spanning tree of G. De�ne the selector �

g;t

recursively,

�

g;t

(u) =

(

1

�

if u = root(T )

�(t(v; u)�

g;t

(v)

�1

g(v; u)

�1

) otherwise, where v is the father of u in T

Additionally, de�ne g

t

= g

�

g;t

.

By an easy induction on the distance of a vertex from the root of the tree, the

following can be proved (see, for instance, Zaslavsky [11]).

Lemma 2.3

Let g 2 L

G

and let t 2 L

T

where T is a spanning tree of G. For all e 2 E(T ), g

t

(e) = t(e).

2

If t is only labeled by 1

�

we write g

T

instead of g

t

and call g

T

the T -canonical

(�; �)-gain graph of g. We sometimes say that T is 1

�

-labeled in g

T

.

3 General theory

Let g; h 2 L

G

(�; �). If G consists of connected components G

i

, for 1 � i � c (inducing

in this way components g

i

and h

i

of g and h respectively), we can reduce the problem

g 2 [h] to the connected case: g 2 [h] if and only if g

i

2 [h

i

] for 1 � i � c. Therefore we

may concentrate on connected graphs G.

Now, let G = (V;E) be connected and let T be a spanning tree of G. By Lemma 2.3

there exists a T -canonical (�; �)-gain graph g

T

2 [g].

For a tree T , a selector � is alternating in T , if for every edge (u; v) in the tree,

�(u) = �(�(v))

�1

. We denote with �

T;a

a selector that is alternating in T and selects a

in root(T ). The selector �

T;a

is clearly well de�ned and unique. The central property

of alternating selectors is that applying one to a T -canonical (�; �)-gain graph yields a

T -canonical (�; �)-gain graph.

For u 2 V , a selector � with �(u) = 1

�

is a u-selector. For a given u 2 V , the

u-selectors form a subgroup of the group of selectors and, hence, they partition the

switching classes into subclasses. We use hgi

u

= fg

�

j � is a u-selectorg to denote the

u-subclass generated by g. Note that �

g;t

is a root(T )-selector.

The u-subclass generated by g contains exactly one (�; �)-gain graph with T 1

�

-

labeled, which is g

T

. This follows from the fact that the only selector that is both

alternating and a u-selector is the trivial selector.
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A property of a u-subclass is that it contains as many elements as there are u-

selectors, i.e., each u-selector maps to a di�erent (�; �)-gain graph.

Lemma 3.1

For each g 2 L

G

and vertex u of G, jhgi

u

j = jf� j � is a u-selectorgj.

Proof:

Let � and � be di�erent u-selectors. Because they di�er on at least one vertex, say z,

and they correspond on the value selected in u, there must be an edge (v; w) on the

path between u and z such that they select the same value in v and di�erent value on

w. Consequently g

�

(v; w) 6= g

�

(v; w). 2

Corollary 3.2

If � is of order k and G has n vertices, then jhgi

u

j = k

n�1

for u 2 V (G). 2

A simple induction on the distance of a vertex to root(T ) proves the following lemma.

Lemma 3.3

If g

�

T

= g

T

for a selector �, then � is alternating in T . 2

Summarizing, we have found that every switching class on a connected graph consists

of a number of u-subclasses that all have the same size. We also know that each such

subclass is generated by a T -canonical (�; �)-gain graph. The only remaining question

is to decide which u-subclasses constitute a switching class or, equivalently, which T -

canonical (�; �)-gain graphs belong to the same switching class.

In the following we will try to formulate an answer to the following question: given

two di�erent T -canonical (�; �)-gain graphs, is there a selector that maps the one into

the other? This question is simpler than the original, because we need not consider

u-selectors. In fact, we need only consider alternating selectors.

We introduce some de�nitions based on de�nitions from Hage and Harju [5]. We

denote by

EO

T

(g) = fa 2 � j g(u; v) = a; (u; v) 2 E(G); u 2 even(T ); v 2 odd(T ); (u; v) =2 E(T )g

the labels of the edges of g that are not in T and that start in an even and end in an

odd vertex with respect to root(T ). In a similar way we de�ne

EE

T

(g) = fa 2 � j g(u; v) = a; (u; v) 2 E(G); u; v 2 even(T )g and

OO

T

(g) = fa 2 � j g(u; v) = a; (u; v) 2 E(G); u; v 2 odd(T )g :

Further, let

C

�

T

(g) = C(EO

T

(g

T

)) \OO

�

T

(g

T

) \ EE

�

T

(g

T

)

where

OO

�

T

(g) = fx 2 � j �(x)a = ax

�1

for all a 2 OO

T

(g)g; and

EE

�

T

(g) = fx 2 � j a�(x) = x

�1

a for all a 2 EE

T

(g)g :

Note that OO

�

T

(g) and EE

�

T

(g) are subgroups of �. Hence, C

�

T

(g) is also a subgroup

of �. Note also that if the involution is the group inverse, then the de�nitions of all
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three sets that determine C

�

T

(g) coincide and C

�

T

(g) can be de�ned as C(A(g

T

� T )).

This is also true if G is bipartite, because then EE

T

(g) and OO

T

(g) are empty, hence

OO

�

T

(g) = EE

�

T

(g) = �. We return to this in Section 5.

The following lemma generalizes Lemma 3.2 from Hage and Harju [5].

Lemma 3.4

Let g 2 L

G

and let T be a spanning tree of G. Then g

T

= g

�

T

if and only if � is

alternating in T and �(root(T )) 2 C

�

T

(g).

Proof:

Assume that g

T

= g

�

T

. By Lemma 3.3, � is alternating.

Let (v; w) be an edge of g

T

� T and let a = g

T

(v; w). We must consider three cases:

both v and w are odd, both are even, or one is even and the other is odd (all with

respect to r = root(T )). We will consider here only the case that both vertices are even.

The other cases are treated similarly.

Because g

T

(v; w) = g

�

T

(v; w), a = �(v)a�(�(w)). This together with the fact that �

is alternating and the positions of v and w relative to the root, yields a = �(r)a�(�(r)).

Hence, �(r)

�1

a = a�(�(r)) or equivalently, �(r) 2 EE

�

T

(g

T

). The claim now follows.

The converse is proved similarly. 2

The following result characterizes the subclasses that constitute a switching class,

straightforwardly generalizing Theorem 3.6 from Hage and Harju [5]. Recall that a

transversal of a subgroup is such that it contains one element of each of its cosets.

Theorem 3.5

Let T be a spanning tree of G and g 2 L

G

such that T is 1

�

-labeled in g. Also, let T be

a transversal of C

�

T

(g). Then [g] =

S

a2T

hg

�

T;a

i

root(T )

. Moreover, all g

�

T;a

are di�erent.

Proof:

We apply Lemma 3.4 to conclude that g

�

T;a

= g

�

T;b

if and only if b

�1

a 2 C

�

T

(g), using

the fact that C

�

T

(g) is a subgroup of �. Then g

�

T;a

(a 2 T ) are di�erent, because T is

a transversal of C

�

T

(g).

For h = g

�

, let b = �(u). Now, � = (��

T;b

�1

)�

T;b

, where ��

T;b

�1

(u) = 1

�

. Hence,

h 2 hg

�

T;b

i

root(T )

. The claim follows, because for b there exists an a 2 T such that

g

�

T;a

= g

�

T;b

by the �rst part of the proof. 2

For the membership problem, the following corollary can be useful.

Corollary 3.6

Let g; h 2 L

G

and let T be a spanning tree of G. Also, let T be a transversal of C

�

T

(g).

Then g 2 [h] if and only if h

T

= g

�

T;a

T

for some a 2 T . 2

Sumarizing, we get the situation as depicted below
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G

g 2 k

n

selectors

2g

T

with spanning tree T

[h]?

=

[h

T

]?

h

T

?g

�

T;a

T

k alternating selectors

k=C

�

T

(g

T

) alternating selectors

4 An algorithm for �nite groups

In this section we develop an algorithm for �nite groups (and, if necessary, it can be

modi�ed to work for in�nite groups as long as the transversal T (see Theorem 3.5) is

�nite). We only give the algorithm for connected graphs; for unconnected graphs it

should be applied to each component.

Algorithm 4.1

SameSwitchingClass? (g,h)

(* Here, g and h are elements of L

G

(�; �). *)

begin

T = a spanning tree of G;

Compute g

T

and h

T

;

for all a 2 � do

if h

T

= g

�

T;a

T

then return true;

od;

return false;

end;

Please note that we do not use the theory to the fullest, in the sense that the

transversal T of Theorem 3.5 is not used. The reason is that constructing this transversal

in a straightforward way takes as much time as the entire loop, so it is better to just

apply selectors �

T;a

for all values a 2 � and not just a 2 T .

Recall that the cyclomatic number of a graph is e� n+ c, where e, n and c are the

number of edges, vertices and components of the graph respectively.

Theorem 4.2

Let � be a �nite group of order k and G a graph on n vertices. Then the membership

problem for (�; �)-gain graphs on G is in O(k max(�; n)), where � is the cyclomatic

number of G.

Proof:

We determine the complexity of the algorithm by counting the number of edge compar-

isons. We apply at most k selectors and must change and compare at most � edges every

single time. If � > n we get a complexity of O(k�), but if � < n, then constructing the

selectors �

T;a

dominates and we get a time complexity of O(kn). So, depending on their

respective sizes we express the complexity in either the number vertices, or the number

of edges outside the chosen spanning tree. 2
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In the introduction we mentioned the problem of determining whether a particular

con�guration can occur in a network. We now address this problem, which is in fact

equivalent to determining whether a gain graph can be embedded into some gain graph

in a switching class.

In the embedding problem we are given two (�; �)-gain graphs g and h on, possibly

di�erent, graphs G and H. The question is whether there exists a j 2 [g] such that h can

be embedded in j, that is, whether there exists an injective function � : V (H)! V (G)

such that

h(u; v) = j(�(u); �(v))

for all edges (u; v) 2 E(h).

Once we have �xed an injection � from h into g, we can restrict g to g

0

by removing

edges that are not in h

0

, where h

0

is the image of h under �. (Note that if h

0

contains

an edge that is not present in g

0

, then we know that � does not embed h in g.) With

the algorithm described in this section we can answer the question whether h

0

2 [g

0

]. If

the answer is a�rmative, then we have our embedding �; if the answer is negative, then

we should try the next embedding. Note that although the membership check can be

e�cient, there may be many possible injections. In fact, the embedding problem is a

hard one, even if restricted to Z

2

(see Ehrenfeucht, Hage, Harju and Rozenberg [2]).

5 Improvements in the abelian case

In this section we �rst look at (�; �)-gain graphs with labels from the center of �. The

involution is �rst still arbitrary, but later on we also give a further optimization when

the involution is the group inverse. The theory in this section di�ers from the treatment

in the previous section, because here we shall construct the selector that maps g

T

into

h

T

if it exists, instead of trying a number of di�erent selectors. We could have chosen to

just improve the algorithm of the previous section for abelian groups, but the treatment

here results in a more widely applicable algorithm, which we shall demonstrate by means

of an example.

5.1 Improvements when g

T

has abelian labels

We call g abelian if A(g) � Z(�). It is called inversive, if the involution is the group

inverse. Note that the latter property does not depend on A(g), but is a statement

about the context of g.

Let G be a graph, let T be a spanning tree of G and let g; h 2 L

G

.

To improve on our algorithm for checking that h 2 [g], we need to know that at least

one of g

T

and h

T

is abelian. We can assume, without loss of generality, that this is the

case for g

T

.

Let � be a selector. De�ne G

�

2 L

G

such that

G

�

(u; v) = �(u)�(�(v)); for all (u; v) 2 E(G) :

It is easy to prove that if j 2 L

G

is abelian, jG

�

= j

�

. This means that applying a

selector is equivalent to applying the group operator edgewise.

Now, assume that h

T

2 [g

T

] and let � be the corresponding alternating selector.
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Let (v; w) 2 E(G). If v and w are of di�erent parity, thenG

�

(v; w) = �(v)�(�(�(v)

�1

)) =

1

�

. If v; w 2 even(T ) then h

T

(v; w) = g

�

T

(v; w) = �(v)�(�(v))g

T

(v; w), or equivalently,

G

�

(v; w) = a, where a can be written as b�(b) for some b 2 �. It can then be deduced

that the label between vertices from odd(T ) should be a

�1

.

Summarizing, for labels of the edges of G

�

= g

T

�1

h

T

we have the following situation

for some a 2 �.

parity odd even

odd a

�1

1

�

even 1

�

a

The decomposable set of (�; �) is the set dec

(�;�)

= fa 2 � j a = b�(b) for some b 2 �g.

For example, dec

(Z;id)

is the set of even numbers, dec

(R;id)

where the operation is

addition equals R, and dec

(R

+

;id)

where the operation is multiplication equals R

+

.

Since G

�

can contain a; a

�1

; �(a) and �(a

�1

) for some a 2 � we show next that if

one of these is in dec

(�;�)

, then they all are. Consequently, it does not matter which of

these is chosen to be a.

Lemma 5.1

For a group �, dec

(�;�)

is closed under taking inverses. Moreover, �(a) = a for all

a 2 dec

(�;�)

and if � is abelian, then dec

(�;�)

is a subgroup of �. 2

The above reasoning can also be applied in the reverse direction, which yields the

following result.

Theorem 5.2

For g such that g

T

is abelian, h 2 [g] if and only if the edges between vertices of di�erent

parity in g

T

�1

h

T

are labeled by 1

�

and there exists a b 2 � such that the edges between

two even vertices (with respect to T ) are labeled by b�(b) and the edges between two

odd vertices (again, with respect to T ) are labeled by (b�(b))

�1

. 2

Theorem 5.3

For g; h 2 L

G

with g

T

abelian, h 2 [g] reduces in time O(jE(G)j) to the characteristic

function of dec

(�;�)

. 2

Example 5.4

If � = Z, the involution � is the identity, and the underlying graph G is not bipartite,

then C

�

T

(g) equals f1

�

g, where g is any element of L

G

. Consequently, the transversal T

as de�ned in Section 3 equals � and thus is in�nite; hence, the switching class consists

of in�nitely many subclasses. On the other hand, the switching class is not equal to

L

G

(Z; �). This means that an algorithm like that in Section 4, even if it uses the

information about the transversal, is not able to solve the membership problem in �nite

time. On the other hand, the theory developed in this section can be applied, since we

know that dec

(Z;id)

contains exactly the even numbers.
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5.2 Switching classes consisting of one subclass

In the following we will investigate in which cases a switching class consists of only

one u-subclass. The advantage is that in these cases we need not apply any selectors,

because h 2 [g] if and only if g

T

= h

T

.

By the fact that dec

(�;

�1

)

= f1

�

g, the following holds.

Lemma 5.5

Let g 2 L

G

. If g

T

is abelian and g is inversive then hgi

root(T )

= [g]. 2

The same conclusion can be drawn if the underlying graph is bipartite.

Lemma 5.6

Let g 2 L

G

. If g

T

is abelian and G is bipartite then hgi

root(T )

= [g].

Proof:

Theorem 5.2 of Hage and Harju [5] states that j[g]j = k

n

=jC(A(g

T

))j, where k is the

order of � and n = jE(G)j. The result now follows from Corollary 3.2. 2

Theorem 5.7

Let g 2 L

G

. If g

T

is abelian, and G is bipartite or g is inversive, then hgi

root(T )

= [g].2

Lemma 5.8

Let g 2 L

G

. If g

T

is abelian and hgi

root(T )

= [g] then G is bipartite or g is inversive.

Proof:

Assume that G is not bipartite; we prove that g is inversive.

Let (v; w) be an edge in g

T

between two vertices of the same parity. Because g

T

is

the only (�; �)-gain graph in [g] in which T is 1

�

-labeled, it holds for every alternating

selector � that g

T

(v; w) = g

�

T

(v; w) = �(v)g

T

(v; w)�(�(w)) = �(v)�(�(v))g

T

(v; w) and

this holds if and only if �(v)

�1

= �(�(v)). 2

Lemma 5.9

Let g 2 L

G

. If hgi

root(T )

= [g] then h is abelian where h equals g

T

, but with all edges

between vertices of the same parity deleted.

Proof:

Let (v; w) 2 E(h), with h de�ned as above. Because for all alternating selectors �,

h(v; w) = h

�

(v; w) = �(v)h(v; w)�(�(�(v)

�1

)) = �(v)h(v; w)�(v)

�1

, it follows that

h(v; w) commutes with each element of �. Hence, h is abelian. 2

Lemma 5.10

Let g 2 L

G

. If hgi

root(T )

= [g], and g is inversive or G is bipartite then g

T

is abelian.

Proof:

If G is bipartite then we apply Lemma 5.9 to �nd that g

T

is abelian.

Let g be inversive and not bipartite. First of all, if g is not abelian, this is because

of an edge between vertices of the same parity, by Lemma 5.9. So let (v; w) be an edge

between vertices of the same parity. Then, because hgi

root(T )

= [g], for an alternating

selector �, g

T

(v; w) = g

�

T

(v; w) = �(v)g

T

(v; w)�(�(v)) = �(v)g

T

(v; w)�(v)

�1

. For this

to hold, g

T

(v; w) must commute with each �(v). Hence g

T

is abelian. 2

10



Corollary 5.11

Let g 2 L

G

. If hgi

root(T )

= [g], and g is inversive or G is bipartite, then for all h 2 [g]

and spanning trees T

0

of G, h

T

0

is abelian.

Proof:

Let h 2 [g]. First of all, the bipartiteness of G and the inversiveness of g is independent

of the labels of g. Because hgi

root(T )

= [g] = [h], it holds for all spanning trees T

0

of G

that hhi

root(T

0

)

= [h]. The result now follows from Lemma 5.10. 2

In the above we have considered three predicates: g is inversive or bipartite (P1),

hgi

root(T )

= [g] (P2) and g

T

is abelian (P3). Through manipulation of the previous

lemma's we get the following result.

Corollary 5.12

Each pair of predicates P

i

; P

j

is equivalent under the condition that the remaining

predicate, P

`

, holds, where fi; j; `g = f1; 2; 3g. 2

Example 5.13

If � = Z

3

, � = id and G is complete on three vertices, then for any g 2 L

G

(�; �), g

T

is

abelian, but it is possible that hgi

root(T )

6= [g].

For the same G, but with group S

3

and involution the group inverse, it is also possible

that hgi

root(T )

6= [g].

6 Undecidability for arbitrary groups

The following theory about groups, presentations and the word problem comes from

Rotman [8].

In the previous sections we omitted the task of specifying the group and the involu-

tion. We assumed it was given and that we could compute with it. Usually a group is

speci�ed by means of a presentation

� = hx

1

; x

2

; : : : j w

1

; w

2

; : : :i ;

where the x

i

are the generators and the w

j

, being words over 
 = fx

1

; x

1

�1

; x

2

; x

2

�1

; : : :g,

are the relations. The idea is that by the relations we de�ne a number of sequences of

generators that equal the identity of the group (but in general not all of them). We

shall use � to denote the, in general non-injective, mapping of the strings over 
 into

(an element of) the group.

Every presentation determines a group, but a group can have a number of presenta-

tions. Because a presentation of a group should in fact be a parameter to the membership

problem, we assume the number of generators and relations to be �nite.

The word problem for presentations of groups is the following: given a word w over 
,

does it de�ne the identity of the group? Novikov and Boone have independently proven

that there are �nitely presented groups that have no presentation for which the word

problem is decidable. In fact, if the word problem is undecidable for a presentation of a

group, it is undecidable for all presentations of that group.

With this background we shall continue now by proving that the word problem

can be reduced to the membership problem, showing that in general the membership

problem for groups speci�ed by means of a presentation is undecidable.
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Let w be the word for which we would like to know whether it de�nes the group

identity 1

�

. Let g

w

be the following (�; �)-gain graph on V = fu; v; zg

z

�(w)

1

�

u

v

1

�

and let T consist of the edges (u; v) and (u; z).

If we can decide whether g

w

2 [d], where d is the complete, 1

�

-labeled (�; �)-gain graph

on V , we can solve the word problem for 
, because

�(s)�(w)�(s)

�1

= 1

�

reduces to �(w) = 1

�

. Note that by selecting the same value �(s) (speci�ed by means of

a word s over 
) in all vertices we guarantee that the selector is alternating (remember

that the involution is the group inverse).

Theorem 6.1

There exist pairs of groups and involutions for which the membership problem is unde-

cidable. 2

7 Conclusions and future work

A part of our future work will be to determine the general nature of dec

(�;�)

and will

address questions relating to its existence and the possibilities of its e�ective construc-

tion.

Although we know now that the general problem is undecidable, it is clear that by

certain restrictions we might �nd classes of groups and involutions that always have a

decidable membership problem. To give but an example, if we restrict ourselves to the

involution being the identity function (and thus restricting ourselves to abelian groups),

we �nd that the problem seems to be easier. We might therefore look at other types of

involutions for which good results can be obtained.

Another problem to investigate is the in
uence the choice of tree has on the results

obtained here. More speci�cally, the question is whether we can easily �nd T such that

g

T

is abelian (if such a T exists).
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