
The power of H systems :

does representation matter?

Hendrik Jan Hoogeboom

Nik�e van Vugt

Dept. of Computer Science, Leiden University

P.O. Box 9512, 2300 RA Leiden, The Netherlands

e-mail : f hoogeboom, nvvugt g @ wi.leidenuniv.nl

Abstract

Splicing rules of the form (u; v; w; x) are usually represented as strings of

the form u#v$w#x. The e�ect of splicing with rules from several families of

languages has been determined in the literature.

We investigate whether the results about splicing systems obtained in this

way are indeed properties of the splicing system and not of the speci�c string

representation of the rules. We study in detail single and iterated splicing

systems, by considering the alternative string representation u#w$v#x, and

indeed obtain the same classi�cations as for the standard representation. We

briey discuss some related representations.

1 Introduction

Analogous to the splicing of two molecules with the help of restriction enzymes to

produce one or two other molecules, two strings x = x

1

u

1

v

1

y

1

and y = x

2

u

2

v

2

y

2

can be spliced according to a splicing rule r = (u

1

; v

1

; u

2

; v

2

) to give another string

z = x

1

u

1

v

2

y

2

:

x

1

u

1

v

1

y

1

x

2

u

2

v

2

y

2

In the literature on splicing sytems, r is usually represented by the string

u

1

#v

1

$u

2

#v

2

, and so a set of splicing rules is a language. A classi�cation of the

generating power of splicing systems with rules de�ned by the six families of the

Chomsky hierarchy is given in [HPP97].

Although this string representation of splicing rules is very natural, other rep-

resentations are possible. The question arises whether these results are properties

of the splicing systems or of the speci�c representation of splicing rules that is

chosen. For example, would we get di�erent results if we �rst write the left con-

texts of the rule and then the right contexts, choosing u

1

#u

2

$v

1

#v

2

instead of

u

1

#v

1

$u

2

#v

2

as the string representation of (u

1

; v

1

; u

2

; v

2

) ? We will answer

this question in detail for single and iterated splicing systems, and show that the

1

families of splicing languages we consider are not inuenced by this change in

representation. We briey discuss some other, related, string representations.

A preliminary version of these results was presented at the workshop on Mole-

cular Computing, August 1997 in Mangalia, Romania. We have since included

new results, most notably those from Section 5.2.

2 Preliminaries

We use classical notions from formal language theory, see, e.g, [HU79]. For notions

related to splicing theory, the reader may consult the survey [HPP97]. We give

some de�nitions here, mainly to �x our notation.

2.1 Formal language theory

For two sets A and B, A � B denotes the proper inclusion of A in B, and A � B

denotes the inclusion of A in B (where A and B may be equal).

We denote the empty word by �.

The quotient of two languages L

1

and L

2

, denoted L

1

=L

2

, is de�ned as the set

fx j there exists y in L

2

such that xy is in L

1

g.

A generalized sequential machine (gsm) is a 6-tuple A = (Q;V

1

; V

2

; �; q

0

; F),

where Q is the �nite set of states, V

1

is the input alphabet, V

2

is the output

alphabet, q

0

2 Q is the initial state, F � Q is the set of �nal states, and � is a

mapping from Q � V

1

into �nite subsets of Q � V

�

2

, the transition relation. By

omitting all reference to the output alphabet V

2

, we obtain a �nite automaton.

We use FIN, REG, LIN, CF, CS and RE to denote the families of �nite, regular,

linear (context-free), context-free, context-sensitive and recursively enumerable

languages, respectively. These families form the Chomsky hierarchy.

2.2 Splicing theory

We give, in an adapted form, some de�nitions concerning splicing rules and H sys-

tems from [HPP97].

De�nition 1 A splicing rule (over an alphabet V) is an element of (V

�

)

4

. For

such a rule r = (u

1

; v

1

; u

2

; v

2

) and strings x; y; z 2 V

�

we write

(x; y) `

r

z i� x = x

1

u

1

v

1

y

1

; y = x

2

u

2

v

2

y

2

; and

z = x

1

u

1

v

2

y

2

; for some x

1

; y

1

; x

2

; y

2

2 V

�

:

The string z is said to be obtained by splicing the strings x and y using the rule

r. 2

De�nition 2 An H system (or splicing system) is a triple h = (V;L;R) where V

is an alphabet, L � V

�

is the initial language and R � (V

�

)

4

is a set of splicing

rules, the splicing relation.

For a given H system h = (V;L;R) we de�ne

�(h) = fz 2 V

�

j (x; y) `

r

z for some x; y 2 L and r 2 Rg

to be the (single splicing) language generated by h. 2

2

In [HPP97], splicing rules are represented as strings rather than 4-tuples :

a splicing rule r = (u

1

; v

1

; u

2

; v

2

) is given as the string (r) = u

1

#v

1

$u

2

#v

2

(# and $ are special symbols not in V), i.e., is a mapping from (V

�

)

4

to

V

�

#V

�

$V

�

#V

�

, that gives a string representation of each splicing rule. We extend

in the natural way to a mapping from splicing relations to languages. The name

of this mapping is suggested by a more graphical notation for the splicing rule r,

that is used in [PRS96a] :

u

1

v

1

u

2

v

2

and by the way the diagram is then read to get the u

1

#v

1

$u

2

#v

2

notation.

Since a splicing relation R is now represented by the language (R), we can

consider the e�ect of splicing with rules from a certain family of languages : for

instance, what is the result of splicing linear languages with linear splicing rules?

Example 3 Let L = (L

1

� d) [(d � L

2

), where L

1

= fa

n

b

n

j n � 1g 2 LIN and

L

2

= fb

n

c

n

j n � 1g 2 LIN. Let h = (fa; b; c; dg; L;R) be a splicing system with

splicing relation R = f(a; b

i

d; d; b

i

c) j i � 1g. Then (R) = fa#b

i

d$d#b

i

c j i �

1g 2 LIN. The language generated by h is

�(h) = fa

n

b

n

c

n

j n � 1g 62 LIN:

2

Given two families of languages, F

1

and F

2

, a family S(F

1

;F

2

) of single splicing

languages (obtained by splicing F

1

languages with F

2

rules) is de�ned in the

obvious way :

S(F

1

;F

2

) = f�(h) j h = (V;L;R) with L 2 F

1

and (R) 2 F

2

g:

The families S(F

1

;F

2

) are investigated in [P�au96a] and [PRS96b], for F

1

and F

2

in the Chomsky hierarchy : FIN;REG; LIN;CF;CS;RE. An overview of these results

is presented in [HPP97], upon which we base our discussions. When S(F

1

;F

2

)

was not found to be equal to one of these six families, the greatest lower bound F

3

and the smallest upper bound F

4

among them are given : F

3

� S(F

1

;F

2

) � F

4

.

These results are collected in Table 1 from [HPP97], which we repeat here. F

1

is listed from top to bottom, F

2

from left to right. As an example, the optimal

classi�cation of splicing LIN languages with REG rules is LIN � S(LIN;REG) � CF.

FIN REG LIN CF CS RE

FIN FIN FIN FIN FIN FIN FIN

REG REG REG REG; LIN REG;CF REG;RE REG;RE

LIN LIN;CF LIN;CF

CF CF CF

CS RE

RE

Table 1: The position of S(F

1

;F

2

) in the Chomsky hierarchy

3

3 The problem

Splicing with `matching' splicing sites may be modelled by the set of rules R =

f(a

n

; b

m

; a

n

; b

m

) j m;n � 1g. This set is not `context-free', as a consequence of

the speci�c representation that we use.

Let us now consider an alternative representation : �rst writing the left con-

texts, and then the right contexts of the splicing sites. Formally we use the

mapping : (V

�

)

4

! V

�

#V

�

$V

�

#V

�

, with (u

1

; v

1

; u

2

; v

2

) = u

1

#u

2

$v

1

#v

2

.

Then, for the `matching' rules above, (R) = fa

n

#a

n

$b

m

#b

m

j m;n � 1g is a

context-free language!

Consequently the question arises whether the results stated in Table 1 are

properties of the splicing systems or of the speci�c representation of splicing rules

that was chosen. In particular, would Table 1 look di�erent if we chose instead

of as our string representation?

To �nd the answer to this question, we slightly extend the notation for the

families of single splicing languages. Let � : (V

�

)

4

! W

�

be a given string

representation of splicing rules over the alphabet V , for some alphabet W . Then

de�ne

S

�

(F

1

;F

2

) = f�(h) j h = (V;L;R); with L 2 F

1

and �(R) 2 F

2

g:

Hence, by de�nition, S(F

1

;F

2

) = S (F

1

;F

2

) for the standard string representation

.

We will also directly consider the family of splicing relations de�ned by the

family of languages F under the representation �,

R

�

(F) = fR � (V

�

)

4

j �(R) 2 Fg:

In the next section we investigate whether the splicing relations de�ned by the

language families from the Chomsky hierarchy are changed when we move from the

-representation to the -representation. In other words, we determine whether

or not R (F

2

) = R (F

2

). It is clear from the example above that for F

2

= CF

this is not the case. Obviously R (F

2

) = R (F

2

) implies S (F

1

;F

2

) = S (F

1

;F

2

)

for all F

1

.

In Section 5 we consider the remaining cases (for which R (F

2

) 6= R (F

2

))

and we prove that even for those families we have S (F

1

;F

2

) = S (F

1

;F

2

).

In Section 6 we investigate the e�ect of using the -representation instead of

the -representation for iterated splicing systems, while in Section 7 we discuss

related string representations.

4 Families of splicing relations

In this section we compare the families of splicing relations de�ned by the two

string representations of the splicing rules.

Observe that and de�ne a one-to-one correspondence between a splicing

rule (u; v; w; x) and the string representations u#v$w#x and u#w$v#x of this

splicing rule, respectively. Hence, when considering the -representation, one has

(R) = L i� R =

�1

(L) and L � V

�

#V

�

$V

�

#V

�

. Consequently we may write

R (F) = f

�1

(L) j L � V

�

#V

�

$V

�

#V

�

and L 2 Fg.

4

Proving that R (F) � R (F) amounts to verifying that

�1

(L) 2 F for

every L 2 F with L � V

�

#V

�

$V

�

#V

�

. Note that this is a closure property of

the family F ; closure under the operation

�1

that maps a string u#v$w#x

to the string u#w$v#x.

The converse inclusionR (F) � R (F) then follows immediately, as

�1

=

�1

; the operation is its own inverse.

4.1 FIN, REG, CS and RE splicing rules

In this subsection, we prove that R (F) = R (F), for F 2 fFIN;REG;CS;REg.

For the �nite languages, it should be clear that the two representations are

equivalent : if R is a �nite splicing relation, then both (R) and (R) are �nite

languages.

For the regular, context-sensitive and recursively enumerable languages, we

use the following lemma.

Lemma 4 REG;CS and RE are closed under

�1

.

Proof. The mapping

�1

can be realized by a 2-way deterministic generalized

sequential machine (a �nite state device with a 2-way input tape and a 1-way

output tape, see [AU70]) : on input u#v$w#x it outputs u#, skips v, outputs

w$, returns on the input to the �rst #, outputs v#, skips w and �nally outputs

x. Since

�1

is its own inverse, it can also be realized by an inverse 2dgsm

mapping.

The result now follows from the closure of REG, CS and RE under inverse

2dgsm mappings, see [AU70, Theorem 2].

Note that the closure of REG under inverse 2dgsm mappings follows quite easily

from the fact that 2-way �nite state automata accept only regular languages, cf.

[HU79, Theorem 2.5]. 2

Consequently we have equality for the two classes of splicing relations for the

families under consideration, and thus for H systems with FIN;REG;CS or RE

splicing rules, representation does not matter.

Corollary 5 R (F) = R (F) for F = REG;CS;RE.

Theorem 6 S (F

1

;F

2

) = S (F

1

;F

2

) for F

2

= FIN;REG;CS;RE.

4.2 LIN splicing rules

In Section 3 we have already seen that R (CF) 6= R (CF). In this subsection we

additionally show the same inequality for LIN.

Consider the splicing relation R = f(a

p

; c

q

; b

r

; d

s

) j p; q; r; s � 1 and p+q = r+

sg. Then the -representation of R is a linear language, but the -representation

is not. To prove the latter, we use Lemma 2 from [Gre79], which we repeat here.

Lemma 7 Let L � a

+

b

+

c

+

d

+

be a language such that

1. a

n

b

n

c

k

d

k

2 L for all n; k � 1,

2. if a

n

b

n

c

k

d

`

is in L, then k � `, and

5

3. there are integers t

1

; t

2

� 1 such that, if a

n

b

m

c

k

d

`

is in L and n > m, then

(n�m)t

1

� (k + `)t

2

.

Then L is not linear context-free.

Lemma 8 L = fa

p

b

r

c

q

d

s

j p; q; r; s � 1 and p+ q = r + sg 62 LIN.

Proof. Lemma 7 is applicable, because obviously L � a

+

b

+

c

+

d

+

, conditions (1)

and (2) hold, and moreover, taking t

1

= t

2

= 1, we can see that (3) also holds.

Consequently, L is not linear context-free. 2

Since LIN is closed under homomorphisms (see [HU79]), from Lemma 8 it

follows that fa

p

#b

r

$c

q

#d

s

j p; q; r; s � 1 and p+q = r+sg 62 LIN and consequently

R (LIN) 6= R (LIN).

Theorem 9 R (F) 6= R (F) for F = LIN;CF.

In a way, for these splicing relations, representation does matter!

5 Families of single splicing languages

From Section 4.1 we know that R (F

2

) = R (F

2

) for F

2

2 fFIN;REG;CS;REg,

and thus that S (F

1

;F

2

) = S (F

1

;F

2

) for these families F

2

and each of the six

families F

1

considered here.

For F

2

2 fLIN;CFg, however, we have demonstrated that R (F

2

) 6= R (F

2

),

and consequently, we still have to investigate the situation for these two possibil-

ities for F

2

.

Because of the nature of the classi�cations given in the LIN and CF columns

of Table 1, we consider the splicing of non-REG languages apart from the splicing

of REG-languages.

For the remainder of this section, let F

2

2 fLIN;CFg.

5.1 Splicing non-REG languages with LIN or CF splicing rules

We show that S (F

1

;F

2

) = S (F

1

;F

2

), for F

1

6= REG, by demonstrating that the

results used in [HPP97] to �ll the corresponding part of Table 1 also hold when

the -representation is used. These results are the following :

1. S (FIN;F

2

) � FIN (obvious),

2. F

1

� S (F

1

;F

2

) [HPP97, Lemma 3.2],

3. L

1

=L

2

2 S (F

2

;F

2

) for each L

1

; L

2

2 F

2

[HPP97, Lemma 3.7].

The proof of (1) is independent of the splicing rules, therefore S (FIN;F

2

) � FIN

holds. In the proof of (2), only one splicing rule is used, (�; c; c; �), for which the

-representation is equal to the -representation. For the splicing relation used

to prove (3), which is R = f(�;wc; c; �) j w 2 L

2

g, where L

2

2 F

2

; L

2

� V

�

and

c 62 V , it should be clear that both (R) = #L

2

c$c# and (R) = #c$L

2

c#

belong to F

2

.

6

By (1) and (2) we have FIN � S (FIN;F

2

) � FIN. As each RE-language is the

quotient of two linear languages, from (3) the inclusion RE � S (LIN; LIN)

� S (LIN;CF) follows.

Hence this part of the table does not change, and since exact classi�cations

are found, we have the following result.

Theorem 10 S (F

1

;F

2

) = S (F

1

;F

2

) for F

1

6= REG, F

2

= LIN;CF.

5.2 Splicing REG languages with LIN or CF splicing rules

We now show that S (REG;F

2

) = S (REG;F

2

) also holds, by giving a direct proof.

We start by providing a normal form for splicing systems with regular initial

language (and rules from a family that is closed under gsm mappings). According

to this normal form, every splicing rule is of the form (u; p; q; x), where u and x

are strings, while p and q are symbols.

This normal form is suggested by the fact that, when a splicing rule (u

1

; v

1

; u

2

; v

2

)

is applied, the strings v

1

and u

2

do not appear in the result. We only need the

fact that the initial strings have these substrings next to the cutting points, which

appears to be a �nite state property. However, the interchange of these two strings

causes the fact that R (LIN) 6= R (LIN) and R (CF) 6= R (CF), as explained in

Section 4.2. If we are able to restrict v

1

and u

2

to symbols rather than strings, we

do not have this problem.

Let L be a regular language, that is accepted by a �nite automaton A =

(Q;V

1

; �; q

0

; F) with Q \ V

1

= ?, which is `reduced', i.e., every state in Q occurs

on a path from the initial state to a �nal state.

Let p 2 Q and u 2 V

�

1

. We use p

u

! to denote the fact that p has an outgoing

path with label u in the state transition diagram of A, i.e., �(p; u) 6= ?. Similarly,

we write

u

!p if p has an incoming path with label u, i.e., p 2 �(q; u) for some

q 2 Q. We introduce two copies, Q

0

and Q

00

, of the set Q.

Consider the splicing rule (u

1

; v

1

; u

2

; v

2

). We replace v

1

and u

2

with sym-

bols that convey essentially the same information, by changing (u

1

; v

1

; u

2

; v

2

) into

(u

1

; p

0

1

; p

00

2

; v

2

) where p

0

1

2 Q

0

and p

00

2

2 Q

00

such that p

1

v

1

! and

u

2

!p

2

. That is, v

1

is

replaced by a state in A from which we can read v

1

, and u

2

is replaced by a state

in A where we can arrive after reading u

2

.

Having adapted the splicing rules, we change the initial language to �t the

new rules. Let L

!p

be the language accepted by A

!p

= (Q;V

1

; �; q

0

; fpg), and

similarly let L

p!

be the language accepted byA

p!

= (Q;V

1

; �; p; F). Now consider

the language

L

0

=

[

p2Q

((L

!p

� p

0

) [(p

00

� L

p!

))

over the extended alphabet Q

0

[Q

00

[V

1

. Since both L

!p

and L

p!

are regular,

L

0

is a regular language.

Lemma 11 Splicing L 2 REG with splicing relation R yields the same language

as splicing L

0

2 REG with the adapted set of splicing rules R

0

= f(u

1

; p

0

1

; p

00

2

; v

2

) j

(u

1

; v

1

; u

2

; v

2

) 2 R and p

0

1

2 Q

0

; p

00

2

2 Q

00

such that p

1

v

1

! and

u

2

!p

2

g.

7

Proof. From the construction above, it is clear that x = x

1

u

1

v

1

y

1

and y =

x

2

u

2

v

2

y

2

are in L if and only if x

0

= x

1

u

1

�p

0

1

2 L

!p

1

�p

0

1

and y

0

= p

00

2

�v

2

y

2

2 p

00

2

�L

p

2

!

,

for some p

1

such that p

1

v

1

! and p

2

such that

u

2

!p

2

. Moreover, r = (u

1

; v

1

; u

2

; v

2

) 2 R

if and only if r

0

= (u

1

; p

0

1

; p

00

2

; v

2

) 2 R

0

.

Consequently, (x; y) `

r

x

1

u

1

v

2

y

2

if and only if (x

0

; y

0

) `

r

0

x

1

u

1

v

2

y

2

. 2

Let F be a family of languages that is closed under gsm mappings. Con-

sider the -representation of a splicing rule, u

1

#v

1

$u

2

#v

2

. The translation of

u

1

#v

1

$u

2

#v

2

into u

1

#p

0

1

$p

00

2

#v

2

with p

0

1

2 Q

0

and p

00

2

2 Q

00

such that p

1

v

1

! and

u

2

!p

2

can be realized by a gsm mapping, that simulates the transition diagram

of A. Hence there exists an e�ective construction that transforms an H system

of (REG;F)-type into an equivalent H system of (REG;F)-type that is in normal

form.

Furthermore, the translation of the -representation of a rule in normal form

into the -representation (i.e., u

1

#p

0

1

$p

00

2

#v

2

7! u

1

#p

00

2

$p

0

1

#v

2

) can also be real-

ized by a gsm mapping. Consequently, for a splicing relation R in normal form,

(R) 2 F if and only if (R) 2 F .

Hence, we have the following result, which is applicable for F = LIN;CF.

Theorem 12 S (REG;F) = S (REG;F) whenever F is closed under gsm map-

pings.

Summarizing the results from Sections 4 and 5, we have the equality S (F

1

;F

2

)

= S (F

1

;F

2

) for all F

1

;F

2

in the Chomsky hierarchy.

6 Iterated splicing systems

We discuss one other type of splicing system that is treated in [HPP97] : iterated

splicing. We start by repeating some de�nitions, again in a slightly adapted form.

De�nition 13 The iterated splicing language �

�

(h) generated by an H system

h = (V;L;R) is de�ned by

�

0

(h) = L;

�

i+1

(h) = �

i

(h) [�(�

i

(h)); i � 0; and

�

�

(h) =

[

i�0

�

i

(h):

2

Let � be a given string representation of splicing rules over the alphabet V . Similar

to the uniterated case, families of iterated splicing languages are de�ned :

H

�

(F

1

;F

2

) = f�

�

(h) j h = (V;L;R) with L 2 F

1

and �(R) 2 F

2

g

for F

1

;F

2

2 fFIN;REG; LIN;CF;CS;REg. A �rst notable result was obtained in

[Hea87], namely that iterated splicing of REG languages by FIN rules does not lead

outside REG : H (REG;FIN) = REG. These families were further investigated for

� = in [CH91], [Pix96], [P�au96a], [Pix95] and [P�au96b], and the results are

8

FIN REG LIN CF CS RE

FIN FIN;REG FIN;RE FIN;RE FIN;RE FIN;RE FIN;RE

REG REG REG;RE REG;RE REG;RE REG;RE REG;RE

LIN LIN;CF LIN;RE LIN;RE LIN;RE LIN;RE LIN;RE

CF CF CF;RE CF;RE CF;RE CF;RE CF;RE

CS CS;RE CS;RE CS;RE CS;RE CS;RE CS;RE

RE RE RE RE RE RE RE

Table 2: The position of H (F

1

;F

2

) in the Chomsky hierarchy

listed in Table 2 from [HPP97], which we repeat here. Again, F

1

is listed from

top to bottom and F

2

from left to right.

The question is whether this table will change when the -representation

rather than the -representation is used. Since we know from Section 4 that

R (F) = R (F) for F 2 fFIN;REG;CS;REg, while R (LIN) 6= R (LIN) and

R (CF) 6= R (CF), we only have to check whether the results used in [HPP97]

to �ll the LIN and CF columns of Table 2 also hold when the -representation is

used. Those results are the following :

1. F

1

� H (F

1

;F

2

) [HPP97, Lemma 3.12],

2. F

1

� H (F

1

;F

2

) for F

1

2 fREG; LIN;CF;CSg

[HPP97, Lemma 3.13],

3. H (FIN;FIN) contains in�nite languages [HPP97, discussion in proof of

Theorem 3.3],

4. For all L � V

�

; L 2 F

1

and c; d 62 V we have L

0

= (dc)

�

L(dc)

�

[c(dc)

�

L(dc)

�

d 62

H (F

1

;F

2

) [HPP97, Lemma 3.16],

5. H (F

1

;F

2

) 6� CS for F

2

6= FIN [HPP97, Lemma 3.15].

In the proofs of (1) and (3) the -representation of the splicing relation is in FIN,

for (4) it is arbitrary, and for (5) it is in REG. These families are closed under

�1

, hence the same results are obtained when we use the -representation.

In the proof of (2) from a splicing relation R a new splicing relation R

0

=

f(u

1

; cv

1

; u

2

c; v

2

) j (u

1

; v

1

; u

2

; v

2

) 2 Rg is constructed. Then (R

0

) can be ob-

tained from (R) by changing the two symbols # into #c and c#, respectively;

(R

0

) can be obtained from (R) by changing the $ into c$c. The families in

the Chomsky hierarchy are closed under these operations.

For F

1

6= RE, by (1), (2), (3) we have F

1

� H (F

1

;F

2

), while from (4) and (5)

it follows that the smallest upper bound for H (F

1

;F

2

) is RE. By (1) immediately

RE � H (RE;F

2

).

Consequently, Table 2 does not change when we use the -representation

instead of the -representation. Note, however, that we have not proved that

H (F

1

;F

2

) = H (F

1

;F

2

), for F

2

= LIN;CF, except for the obvious case in which

F

1

= RE where upper and lower bound coincide with RE.

9

7 Other representations

We have considered one alternative string representation for splicing relations. Our

representation separates left and right contexts rather than the two initial strings.

However, there are 24 possible representations in the `#$#'-style, corresponding

to the permutations of the four components of the splicing rules. We do not claim

that all these permutations have a natural interpretation. In the sequel we discuss

the remaining possibilities in a rather informal way.

7.1 Splicing with FIN;REG;CS or RE rules

For (single or iterated) splicing with FIN;REG;CS or RE splicing rules, it does not

matter which of the `#$#'-representations is used : results as those of Section 4.1

hold for each of these representations. In other words, if � is one of these repre-

sentations, then R (F

2

) = R

�

(F

2

) and consequently S (F

1

;F

2

) = S

�

(F

1

;F

2

) and

H (F

1

;F

2

) = H

�

(F

1

;F

2

), for F

2

= LIN;REG;CS;RE.

7.2 Splicing with LIN or CF rules

Single splicing non-REG languages with LIN or CF splicing rules yields the same

classi�cation in each one of the `#$#'-representations, because the results used

in [HPP97] to �ll the corresponding part of Table 1 are easily seen to hold for all

string representations � in this style, cf. Section 5.1. Since in these classi�cations

upper and lower bound coincide, this implies that S (F

1

;F

2

) = S

�

(F

1

;F

2

), for

F

1

6= REG and F

2

= LIN;CF.

In the case of single splicing REG languages with CF splicing rules, we use the

normal form of Section 5.2 for the rules, that makes it possible to change the -

representation u#p$q#x of a splicing rule into the -representation u#q$p#x by

applying a gsm mapping (recall that this is possible only because p and q are sym-

bols). Obviously, there exist gsm mappings that map u#p$q#x into each of the

12 representations in which u precedes x. To see that the other 12 possibilities can

also be obtained by operations preserving context-freeness, note that CF is closed

under the operation cycle, that can move x in front of u [HU79, Exercise 6.4 c].

Again, this shows that S (REG;CF) = S

�

(REG;CF).

For single splicing REG languages with LIN rules, however, we give an example

that shows that the `#$#'-representations of a rule (u; v; w; x) in which x precedes

u are not equivalent to the -representation.

Example 14 Consider a splicing sytem h = (fa; b; c; dg; L;R) with L = c�fa; bg

�

�

d and R = f(cb

j

; d; c; a

n

b

i

d) j i; j; n � 1 and i + j = ng. Then the `reverse'

representation of R (i.e., the representation that maps (u; v; w; x) into x#w$v#u)

is R

r

= fa

n

b

i

d#c$d#cb

j

j i; j; n � 1 and i + j = ng, which is a linear language.

The single splicing language generated by h, �(h) = fcb

j

a

n

b

i

d j i; j; n � 1 and

i + j = ng, is not in LIN (by the pumping lemma for linear languages [HU79,

Exercise 6.11]). Since S (REG; LIN) � LIN, clearly this `reverse' representation is

not equivalent to the -representation. 2

Of course, all representations � in which u precedes x are equivalent to the -

representation, by using the same arguments as in the CF case. So for those

representations we have S (REG; LIN) = S

�

(REG; LIN).

10

Again, for iterated splicing, it is easy to see that the results used in [HPP97]

to �ll the LIN and CF columns of Table 2 hold for every `#$#'-representation, by

observations as in Section 6. Hence this part of the table does not change either.

Summarizing the results of this �nal section, we see that for iterated splicing

the classi�cations in Table 2 do not change when we use one of the representations

in the `#$#'-style, but we do not yet know whether or not all families of iterated

splicing languages stay the same.

For single splicing systems, however, we have seen that all `#$#'-represen-

tations are equivalent, except for the twelve LIN cases mentioned above.

Acknowledgements

We wish to thank Gh. P�aun for inviting us to the workshop in Mangalia, G. Rozen-

berg for his support, and Jurriaan Hage for his comments on a previous version

of this paper.

References

[AU70] Alfred V. Aho and Je�rey D. Ullman. A characterization of two-way

deterministic classes of languages. Journal of Computer and System

Sciences, 4(6):523{538, 1970.

[CH91] Karel Culik II and Tero Harju. Splicing semigroups of dominoes and

DNA. Discrete Applied Mathematics, 31:261{277, 1991.

[Gre79] Sheila A. Greibach. Linearity is polynomially decidable for realtime

pushdown store automata. Information and Control, 42(1):27{37, 1979.

[Hea87] Thomas Head. Formal language theory and DNA : an analysis of the

generative capacity of speci�c recombinant behaviors. Bulletin of Math-

ematical Biology, 49(6):737{759, 1987.

[HPP97] Thomas Head, Gheorghe P�aun, and Dennis Pixton. Language theory

and molecular genetics : Generative mechanisms suggested by DNA re-

combination. In Grzegorz Rozenberg and Arto Salomaa, editors, Hand-

book of Formal Languages, volume 2. Springer-Verlag, 1997.

[HU79] John E. Hopcroft and Je�rey D. Ullman. Introduction to automata

theory, languages, and computation. Addison-Wesley, 1979.

[P�au96a] Gheorghe P�aun. On the splicing operation. Discrete Applied Mathe-

matics, 70:57{79, 1996.

[P�au96b] Gheorghe P�aun. Regular extended H systems are computationally uni-

versal. Journal of Automata, Languages and Combinatorics, 1(1):27{36,

1996.

[Pix95] Dennis Pixton. Linear and circular splicing systems. In Proceedings of

the 1st International Symposium on Intelligence in Neural and Biolog-

ical Systems, pages 38{45. IEEE, 1995.

11

[Pix96] Dennis Pixton. Regularity of splicing languages. Discrete Applied Math-

ematics, 69:101{124, 1996.

[PRS96a] Gheorghe P�aun, Grzegorz Rozenberg, and Arto Salomaa. Computing

by splicing. Theoretical Computer Science, 168:321{336, 1996.

[PRS96b] Gheorghe P�aun, Grzegorz Rozenberg, and Arto Salomaa. Restricted

use of the splicing operation. International Journal of Computer Math-

ematics, 60:17{32, 1996.

12

