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Abstract

For a graph G = (V;E) and a subset � � V , the switching of G by � is de�ned

as the graph G

�

= (V;E

0

), which is obtained from G by removing all edges between

� and its complement � and adding as edges all nonedges between � and �. The

switching class [G] determined by G consists of all switchings G

�

for subsets � � V .

In this paper we compare the complexity of a number of problems for graphs

with the complexity of these problems for switching classes. It turns out that every

imaginable situation can occur.

We show that every switching class, except the class of all complete bipartite

graphs, contains a pancyclic graph. This implies that deciding whether a switching

class contains a hamiltonian graph can be done in polynomial time although this

problem is NP-complete for graphs.

Properties that are NP-complete both for graphs and for switching classes are

obtained by generalizing a result of Yannakakis on hereditary properties. We also

prove that the embedding problem and the 3-colourability problem for switching

classes are NP-complete.

A graph is equally divided if it consists of two connected components with the

same number of vertices. Deciding this property can be done in linear time for

graphs, while deciding whether a switching class contains an equally divided graph

is NP-complete.
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1 Introduction

For a �nite undirected graph G = (V;E) and a subset � � V , the switching of G by �

is de�ned as the graph G

�

= (V;E

0

), which is obtained from G by removing all edges

between � and its complement � and adding as edges all nonedges between � and �.

The switching class [G] determined by G consists of all switchings G

�

for subsets � � V .

A switching class is an equivalence class of graphs under vertex switching, see the

survey papers by Seidel [14] and Seidel and Taylor [15]. Generalizations of this approach

can be found in Gross and Tucker [9], Ehrenfeucht and Rozenberg [5], and Zaslavsky [18].

A property P of graphs can be transformed into an existential property of switching

classes as follows: P

9

(G) if and only there is a graph H 2 [G] such that P(H).

First we consider hamiltonicity and pancyclicity of graphs. We prove that hamilton

9

and pancyclic

9

are in P. On the other hand, deciding whether a graph is hamiltonian is

NP-complete. In our results on hamiltonicity we follow the main lines of J. Kratochv

�

il,

J. Ne�set�ril, and O. Z�yka [13] as communicated to us by J. Kratochv

�

il [12]. We also give

a short list of problems that are NP-complete for graphs, but easy for switching classes.

The second part of the paper is devoted to a number of problems that are hard

for switching classes. We generalize to switching classes a result of Yannakakis [16]

on graphs, which is then used to prove that the independence problem is NP-complete

for switching classes. This problem can be polynomially reduced to the embedding

problem (given two graphs G and H, does there exist a graph in [G] in which H can

be embedded). Hence, the latter problem is also NP-complete for switching classes. It

also turns out that deciding whether a switching class contains a 3-colourable graph is

NP-complete.

A graph is said to be equally divided if it consists of exactly two connected com-

ponents with the same number of vertices. This problem is linear for graphs, but

equally-divided

9

turns out to be NP-complete for switching classes.

2 Preliminaries

For a (�nite) set V , let jV j be the cardinality of V . We shall often identify a subset

A � V with its characteristic function A : V ! Z

2

, where Z

2

= f0; 1g is the cyclic group

of order two. We use the convention that for x 2 V , A(x) = 1 if and only if x 2 A. For

A � V , we denote the complement of A with respect to V by A.

The restriction of a function f : V ! W to a subset A � V is denoted by f j

A

.

We now turn to notation and terminology for graphs and switching classes.

The set E(V ) = fxy j x; y 2 V; x 6= yg denotes the set of all unordered pairs of

distinct elements of V . The graphs of this paper will be �nite, undirected and simple,

i.e., they contain no loops or multiple edges. For a graph G = (V;E) we often write

xy 2 G instead of xy 2 E. We use E(G) and V (G) to denote the set of edges E and

the set of vertices V , respectively, and jV j and jEj are called the order, respectively, size

of G. Analogously to sets, a graph G = (V;E) will be identi�ed with the characteristic

function G : E(V )! Z

2

of its set of edges so that G(xy) = 1 for xy 2 E, and G(xy) = 0

for xy =2 E. Later we shall use both notations, G = (V;E) and G : E(V )! Z

2

, for

graphs.
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A switching of a graph G by a selector � : V ! Z

2

is the graph G

�

such that for all

xy 2 E(V ),

G

�

(xy) = �(x) +G(xy) + �(y) :

Clearly, this de�nition of switching is equivalent to the one given at the beginning of the

introduction. We reserve lower case � and � for selectors (subsets) used in switching.

The set [G] = fG

�

j � � V g is called the switching class of G. The graph G is called

a generator of its switching class [G].

For a graph G = (V;E) and X � V , let Gj

X

denote the subgraph of G induced by

X. Hence, Gj

X

: E(X)! Z

2

.

The complement of G is G = (V;E) with E = fxy j xy =2 Eg. For a set G of graphs,

we let G = fG j G 2 Gg.

Two vertices x; y 2 V are adjacent (in G) if xy 2 E. The degree of a vertex x 2 V ,

denoted by d

G

(x), is the number of vertices adjacent to x. The graph G is called even

(odd) if all vertices are of even (odd) degree. A vertex of degree zero is called isolated.

A set U � V is a clique if every vertex in U is adjacent to every other vertex in U .

A sequence of vertices � = (v

1

; : : : ; v

k

) is a path in G if v

i

is adjacent to v

i+1

for i = 1; : : : ; k � 1 and all vertices are distinct. If � = (v

1

; : : : ; v

k

) is a path then

(v

1

; : : : ; v

k

; v

1

) is a cycle if k � 2.

The complete connection of two vertex-disjoint graphs G

1

= (V

1

; E

1

) and G

2

=

(V

2

; E

2

) is G = G

1

� G

2

such that V (G) = V (G

1

) [ V (G

2

) and E(G) = E(G

1

) [

E(G

2

) [ fxy j x 2 V (G

1

); y 2 V (G

2

)g.

Let K

V

= (V; ;) and K

V

= (V;E(V )) be the discrete graph and the complete graph

on V respectively, and let K

A;A

denote the complete bipartite graph with the partition

fA;Ag. If the sets of vertices themselves are irrelevant, we write K

n

and K

k;m

where

n = jV j, k = jAj and m = jAj. For graphs G and H we de�ne G+H by (G+H)(e) =

G(e) + H(e) for e 2 E(V ). Clearly, the graphs form an abelian group under this

operation; we use � to denote this group.

The following lemma is immediate, see also Ellingham [6].

Lemma 2.1

i. [K

V

] consists of the complete bipartite graphs on V , and it is a subgroup of �.

ii. For all � � V and graphs G on V , G

�

= G

�

.

iii. For all �; � � V , (G

�

)

�

= G

�+�

. 2

In particular, (G

�

)

�

= G, and [G] = [G

�

] for all �.

Lemma 2.2

For a graph G = (V;E), [G] = [G]. Furthermore, if jV j � 3 then [G] \ [G] = ;.

Proof:

We show �rst that for a graph G = (V;E) and � � V : G

�

= G

�

. Indeed, let x; y 2 V .

Then G

�

(xy) = 1 � (�(x) + G(xy) + �(y)) = �(x) + (1 � G(xy)) + �(y) = G

�

(xy),

because (1� a) + (1� b) = a+ b for a; b 2 Z

2

.

The additional claim clearly holds. 2
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3 General problem setting

In this section we �rst introduce some notions for transforming properties of graphs into

properties of switching classes. By way of introduction, we review some known results

in this area.

Recall from the introduction that for a property P of graphs the existential lifting of

P, denoted P

9

, is de�ned by:

P

9

(G) if and only if there exists an H 2 [G] such that P(H) :

We write P(G) if P(G) does not hold.

Clearly, if P is in NP, then so is P

9

, because one can guess a selector �, and then

check whether P(G

�

) holds in nondeterministic polynomial time.

Lemma 3.1

If deciding a property P of graphs is in NP, then deciding P

9

is also in NP. 2

Recall that a graph is eulerian if there exists a cycle that traverses each edge exactly

once. It was proved by Seidel [14] that if the number of vertices of a graph G is odd, then

the switching class [G] contains a unique graph with eulerian connected components,

that is,

Theorem 3.2

If G is a graph of odd order, then [G] contains a unique even graph G

�

. 2

For graphs of even order, a switching class [G] can contain noneulerian graphs.

However, we have

Theorem 3.3

Let G be a graph of even order. Then either [G] has no even and no odd graphs, or

exactly half of its graphs are even while the other half are odd.

Proof:

Let G be a graph. De�ne u �

G

v, if d

G

(u) � d

G

(v) (mod 2), that is, if the degrees of u

and v have the same parity. This relation is an equivalence relation on V (G).

Assume then that the order n of G is even. If we consider singleton selectors � only

(hence switching with respect to one vertex only), then it is easy to see that �

G

and

�

G

�

coincide for all selectors �. In other words, if G has even order, then the relation

�

G

is an invariant of the switching class [G].

This means that if [G] contains an even graph, then all graphs in [G] are either even

or odd. Further, if G is even, and � : V (G)! Z

2

is a singleton selector, then for each

v 2 V (G), d

G

(v) and d

G

�

(v) have di�erent parity. From this the theorem follows. 2

From the above theorems it follows that euler

9

can be decided in time quadratic in

the order of the graph. A general uniqueness result such as Theorem 3.2 is not possible

without restrictions on the vertex set. Indeed, if P is any graph property, which is

preserved under isomorphisms, then there exists a switching class that either has no

graphs with property P or it has at least two graphs with property P. This statement

follows from a result on automorphisms of switching classes, see Cameron [3]: there exist
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switching classes for which the group of automorphisms is strictly larger than the group

of automorphisms of its graphs.

In [10] it was shown that the property tree

9

satis�es the uniqueness property up to

isomorphism:

Theorem 3.4 ([10])

All trees in a switching class are isomorphic. 2

Clearly, not all switching classes contain trees. For example, if G contains a complete

graph of �ve vertices as a subgraph then [G] has no trees (in fact, no triangle-free graphs).

Below we show that each switching class, apart from the ones that are generated by

the discrete graphs, contains a pancyclic graph.

4 Pancyclic and hamiltonian switching classes

In this section G = (V;E) is a graph of order n. Recall that a path (cycle) is a hamilton

path (cycle) of G if it contains all vertices in V . A graph with such a cycle is called

hamiltonian. Also, G is called pancyclic, if it has a cycle of length i for each i = 3; : : : ; n.

In particular, each pancyclic graph is hamiltonian.

We show that hamilton

9

can be characterized in such a way that the property can

be checked in polynomial time. This can be constrasted with the fact that the hamil-

tonian problem is NP-complete for graphs. We prove, following the main lines of [13]

as communicated to us in [12], that a switching class has a hamiltonian graph if and

only if the class is di�erent from a switching class of all complete bipartite graphs of

odd order. We actually prove a stronger result, which states that all switching classes

di�erent from [K

V

] contain a pancyclic graph. This result is in accordance with Bondy's

metaconjecture in [1] which declares that almost all nontrivial general graph properties

that imply hamiltonicity imply also pancyclicity. In our result there is only one (trivial)

exception: the switching classes of the complete bipartite graphs of even orders contain

hamiltonian graphs but do not contain any pancyclic graphs.

Seidel [14] proved that the parity of edges in triangles of a graph determines its

switching class:

Theorem 4.1

The following conditions are equivalent for graphs G and H on a common vertex set V .

i. [G] = [H].

ii. The subgraphs induced by the subsets T � V of size three have the same parity

of edges in G and H.

iii. All cycles (of K

V

) have the same parity of edges in G and H. 2

The closure of a graph G is de�ned inductively as the graph G

k

obtained from a

sequence of graphs G = G

0

; G

1

; : : : ; G

k

, where G

i+1

= G

i

+ u

i

v

i

, d

G

i

(u

i

) + d

G

i

(v

i

) � n

with u

i

v

i

=2 E(G

i

), and d

G

k

(u) + d

G

k

(v) < n for all uv =2 E(G

k

), see [2].

The �rst case of the following lemma is due to Bondy [1], and the second to Bondy

and Chv�atal, see [2].
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Lemma 4.2

i. If G is hamiltonian and jE(G)j � n

2

=4, where n = jV j, then G is pancyclic or

K

n=2;n=2

.

ii. A graph G is hamiltonian if and only if G+ uv is hamiltonian, whenever d

G

(u) +

d

G

(v) � n for uv =2 E(G). Moreover, G is hamiltonian if and only if the closure of

G is hamiltonian. 2

Theorem 4.3

For each graph G = (V;E) of order n � 3, [G] contains a pancyclic graph if and only if

[G] 6= [K

V

].

Proof:

Let G = (V;E) be a maximum size graph in its switching class, i.e. G has the maximum

number of edges. From this we �nd that for all A � V , there are at least

jAj(n� jAj)

2

(1)

edges leaving A, for, otherwise, switching with respect to A would yield a graph of

greater size.

If n is even, then G is hamiltonian, because by (1), d

G

(v) � n=2 for all v 2 V . In

this case, the graph has at least n

2

=4 edges and so by Lemma 4.2.i we have that G is

either pancyclic or K

n=2;n=2

.

Suppose that n is odd. De�ne A

G

= fv j d

G

(v) = (n � 1)=2g. If A

G

= ;, then as

above we conclude that G is pancyclic. Assume then that A

G

6= ;.

Claim 1: A

G

is independent.

Indeed, let B � A

G

be a clique of G. For each v 2 B, there are exactly

(n� 1)=2 � (jBj � 1) edges that leave B, and hence by (1)

jBj(

n� 1

2

� (jBj � 1)) � jBj

n� jBj

2

which is possible if and only if jBj = 1.

Claim 2: Every switching class contains a maximum graph G such that

jA

G

j � (n� 1)=2 or G = K

(n�1)=2;(n+1)=2

.

Indeed, since for v 2 A

G

, d

G

(v) = (n�1)=2, it follows that jA

G

j � (n+1)=2.

If jA

G

j = (n + 1)=2, let v 2 A

G

, and switch with respect to v. We get a

maximum graph G

�

with jA

G

�

j � 1, since d

G

�

(v) = (n � 1)=2. By above,

we know that jA

G

�

j � (n+ 1)=2.

We show that if jA

G

�

j = (n + 1)=2, then G = K

(n+1)=2;(n�1)=2

. If Gj

A

G

contains an edge, then so does G

�

j

A

G

�

, because A

G

\A

G

�

= fvg and jA

G

�

j =

jA

G

j = (n � 1)=2 and so A

G

�

= fvg [ A

G

, but, by Claim 1, the latter is

independent. So A

G

is independent in G and hence G = K

(n�1)=2;(n+1)=2

.

Assume then that G is a maximum graph in its switching class such that jA

G

j �

(n� 1)=2, and thus that G is not complete bipartite. We prove that G is hamiltonian.

Because jA

G

j > (n� 1)=2, for each v 2 A

G

there exists a u 2 A

G

such that vu =2 E(G),

and

d

G

(v) + d

G

(u) � (n� 1)=2 + (n+ 1)=2 = n:

6



Now d

G+uv

(v) equals (n+ 1)=2 and by Lemma 4.2.ii, G is hamiltonian since its closure

is the complete K

n

.

Knowing that G is hamiltonian, we can prove that it is, in fact, pancyclic:

2jE(G)j =

X

d

G

(v) � jA

G

j

n� 1

2

+ (n� jA

G

j)

n+ 1

2

=

(n+ 1)n

2

� jA

G

j

�

(n+ 1)n

2

�

n� 1

2

=

n

2

+ 1

2

and thus jE(G)j � (n

2

+ 1)=4.

By Lemma 4.2.i we conclude that G is pancyclic. 2

Note that Claim 2 in the above proof is necessary. The crown graph, K

2;3

+e, where

the added edge is between the two vertices in the �rst part of the partition is an example

of a graph that has maximum size among the graphs in its switching class, but which is

not hamiltonian.

Corollary 4.4

A switching class [G] contains a hamiltonian graph if and only if G is not a complete

bipartite graph of odd order. 2

Corollary 4.5

Let G be a graph with n = jV (G)j. Then either G is a complete bipartite graph or for

each i = 3; : : : ; n, there is a cycle C

i

(of K

V (G)

) on which the parity of edges of G is the

same as the parity of i.

Proof:

Clearly, we may suppose that the order n of G is at least three. Suppose that G is not

complete bipartite, and thus that G =2 [K]. By Theorem 4.3, there exists a pancyclic

graph H 2 [G], and thus H has a subgraph C

i

for each 3 � i � n. By Theorem 4.1, the

parity of edges of G and H on C

i

is the same, which proves the claim. 2

When the above corollary is applied to the complement graph of G we obtain

Corollary 4.6

Let G be a noncomplete graph that is not a disjoint union of two cliques. Then for each

i = 3; : : : ; jV (G)j, there is a cycle C

i

(of K

V (G)

) such that G has an even number of

edges in C

i

. 2

5 Easy problems for switching classes

Let G be a graph on V of order n. There are 2

n�1

graphs in [G], and so checking whether

there exists a graph H 2 [G] satisfying a given property P requires exponentially much

time, if each graph is required to be checked separately. However, e.g., although the

hamiltonian problem for graphs is NP-complete, see [8], hamiltonian

9

can be done in

time O(n

2

) by Corollary 4.4, since one needs only to check that a given graph is not

complete bipartite of odd order.

We state �rst a uniqueness result for switching classes, see, e.g., Zaslavsky [17].

Recall that a star of a graph G is a vertex of degree jV (G)j � 1.

7



Lemma 5.1

Let G be a graph. For each acyclic graph T on V (G) there exists a unique graph H 2 [G]

having T as its spanning subgraph. In particular

i. For each subset A � V (G)�fvg there exists a uniqueH 2 [G] such that A consists

of the neighbours of v in H

ii. There exists a unique H 2 [G] such that v is isolated in H.

iii. There exists a unique H 2 [G] such that v is a star of H. 2

By Lemma 5.1 some problems that are NP-complete for graphs become easy or even

trivial for switching classes. As an example we have

Example 5.2

Every switching class [G] contains a graph that has a

(a) a hamilton path,

(b) a spanning tree with maximum degree � k,

(c) a spanning tree with at least k leaves (for 2 � k � n� 1),

(d) a subgraph that is (noninduced) complete bipartite of order k (for 2 � k � n).

The existence problems (a) { (d) for graphs are all NP-complete, see [8], but easy for

switching classes. 2

We say that a family G of graphs has bounded minimum degree k, if each G 2 G has

a vertex v of degree � k.

For a nonnegative integer k < n, jV j = n, and v 2 V , there are

�

n�1

k

�

k-subsets of

V � fvg, and therefore we have

Lemma 5.3

Let v 2 V . There are exactly

�

n�1

k

�

graphs H 2 [G] such that d

H

(v) = k. In particular,

there are at most n

k

graphs H 2 [G] with d

H

(v) � k. 2

Because for a �xed k, the bound on the number of graphs is polynomial in n, we

obtain the following theorem.

Theorem 5.4

Let P be a property of graphs that has bounded minimum degree k and such that

deciding P is in P. Then deciding P

9

is in P. 2

An analogous result can be proved for graphs that always have a vertex of degree at

least n� k, and we get polynomial algorithms for \sparse" and \dense" graphs.

Corollary 5.5

Let P be a property of graphs such that P has bounded minimum degree k and such

that deciding P (or equivalently P) is in P. Then deciding P

9

is in P. 2

8



Example 5.6

(1) It is well known that planarity of a graph can be checked in time linear in the number

of vertices (see, e.g., Even [7]). Because planar graphs have bounded minimum degree

5 one can decide in polynomial time whether a switching class contains a planar graph.

(2) By doing a breadth-�rst search on a graph we can determine in linear time whether

a graph is acyclic. Every acyclic graph has a vertex of degree at most 1, and so we can

apply Theorem 5.4.

(3) Along the same lines we can conclude from Theorem 5.4 that for a �xed number

k there is a polynomial algorithm that veri�es whether a switching class contains a k-

regular graph. However, as is stated in [13], it is an NP-complete problem to determine

whether a switching class contains a k-regular graph for some k. 2

6 NP-completeness in switching classes

Let P be a property of graphs that is preserved under isomorphisms.

We say that P is

(i) nontrivial, if there exists a graph G such that P(G) and there are arbitrarily large

graphs G such that P(G);

(ii) switch-nontrivial, if P is nontrivial and there exists a switching class [G] such that

P(H) for all H 2 [G];

(iii) hereditary, if P(Gj

A

) for all A � V (G) whenever P(G).

Example 6.1

The following are examples of nontrivial hereditary properties of graphs that are also

switch-nontrivial: G is discrete, G is complete, G is bipartite, G is complete bipartite,

G is acyclic, G is planar, G has chromatic number �(G) � k where k is a �xed integer,

G is chordal, and G is a comparability graph. 2

Yannakakis proved in [16] (see also [8]) the following general completeness result.

Theorem 6.2

Let P be a nontrivial hereditary property of graphs. Then the problem for instances

(G; k) with k � jV (G)j whether G has an induced subgraph Gj

A

such that jAj � k

and P(Gj

A

), is NP-hard. Moreover, if P is in NP, then the corresponding problem is

NP-complete. 2

We shall transform this result to a corresponding result for switching classes. For

this let P be a switch-nontrivial hereditary property.

The property P is nontrivial, because it is switch-nontrivial, and P

9

is hereditary,

since

(Gj

A

)

�

= G

�

j

A

(2)

for all A � V (G) and � : V (G)! Z

2

.

9



Theorem 6.3

Let P be a switch-nontrivial hereditary property. Then the following problem for in-

stances (G; k) with k � jV (G)j, is NP-hard: does the switching class [G] contain a graph

H that has an induced subgraph Hj

A

with jAj � k and P(Hj

A

)? If P 2 NP then the

corresponding problem is NP-complete.

Proof:

Since P

9

is a nontrivial hereditary property, we have by Theorem 6.2 that the problem

for instances (G; k) whether G contains an induced subgraph of order at least k satis-

fying P

9

, is NP-hard. This problem is equivalent to the problem stated in the theorem,

since by (2), for all subsets A � V (G), P

9

(Gj

A

) if and only if there exists a selector �

such that P((Gj

A

)

�

). Equation (2) completes the proof.

If P is in NP then, by Lemma 3.1, the problem is NP-complete. 2

6.1 Embedding problems for switching classes

We consider now the embedding problem for switching classes. Recall that a graph H

can be embedded into a graph G, denoted H ,! G, if H is isomorphic to a subgraphM

of G, that is, there exists an injective function � : V (H)! V (G) such that

M(�(u)�(v)) = H(uv)

for all u 6= v. Note that we do not require that M should be an induced subgraph of G.

We write H ,! [G], if H ,! G

�

for some selector �. The embedding problem for graphs

is known to be NP-complete, see [8], and below we show that it remains NP-complete

for switching classes.

For a subset A � V (G) and a selector � : V (G) ! Z

2

we have by (2) that [Gj

A

] =

[G]j

A

, where

[G]j

A

= fG

�

j

A

j � : V (G)! Z

2

g

is called the subclass of G induced by A.

Hence the switching class [G] contains a graph H which has an independent subset

A if and only if the induced subgraph Gj

A

generates the switching class [K

A

] of the

complete bipartite graphs on A.

An instance of the independence problem consists of a graph G and an integer k �

jV (G)j, and we ask whether there exists a graph H 2 [G] containing an independent

set A with k or more vertices. This problem is NP-complete for graphs (that is, the

problem whether a graph G contains an independent subset of size � k, see [8]) and, by

Theorem 6.3, it stays NP-complete for switching classes.

Theorem 6.4

The independence problem is NP-complete for switching classes. In particular, the

problem whether a switching class [G] has a subclass [K

m

] with m � k, is NP-complete.

2

Since for all graphs [G] = [G], Theorem 6.4 yields the following corollary.

Corollary 6.5

For an instance (G; k), where G is a graph and k an integer such that k � jV (G)j, the

problem whether [G] contains a graph with clique size � k, is NP-complete. 2

10



Also, if a complete graph K embeds into a graph G, then K is isomorphic with an

induced subgraph of G. From this simple observation we obtain

Corollary 6.6

The embedding problem,H ,! [G], for switching classes is NP-complete for the instances

(H;G) of graphs. 2

Since we can instantiate H with the complete graph on D and then use it to solve

the clique problem of Corollary 6.5 using the same value for k, we can conclude the

following.

Corollary 6.7

For an instance (G;H; k) for graphs G and H on the same domain D of size n and k

an integer with 3 � k � n� 1, the problem whether there is a set X � D with jXj � k

such that Hj

X

2 [Gj

X

] is NP-complete. 2

The following lemma, see e.g. [11], is needed for showing that the embedding problem

is equivalent to the problem of embedding a switching class into another switching class.

Lemma 6.8

Let � : H ! G be an isomorphism. Then � is an isomorphism between H

��

and G

�

for

all selectors �. In particular, � maps [H] bijectively onto [G]. In particular, if � : H ! G

is an embedding, then

[�(H)] = f�(H

�

) j � : V (H)! Z

2

g:

Proof:

Indeed, for all distinct u; v 2 V (H), and selectors � : V (G)! Z

2

,

G

�

(�(u)�(v)) = ��(u) +G(�(u)�(v)) + ��(v)

= ��(u) +H(uv) + ��(v) = H

��

(uv)

as required. 2

We write [H] ,! [G], if all graphs in the switching class [H] can be embedded into

graphs of [G]. By Lemma 6.8, the condition [H] ,! [G] is equivalent to the condition

H ,! [G], and thus we have

Corollary 6.9

For instances (H;G) of graphs the switching class embedding problem [H] ,! [G] is

NP-complete. 2

Note, however, that the problem to decide whether a given graph H is a subgraph

of a graph in [G] is easy. For this one needs only to apply Lemma 5.1.
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6.2 3-colourability for switching classes

We consider in this section the problem of 3-colourability. For a given graph G = (V;E)

a function � : V ! C for some set C is a proper colouring of G if for all uv 2 E,

�(u) 6= �(v). The chromatic number of G is the minimum cardinality over the ranges

of possible colourings of G and it is denoted by �(G).

The graph 3-colourability problem (for a graph G, is �(G) � 3?) is NP-complete

(see, e.g., [8]). In this section we prove that the 3-colourability problem for graphs can

be reduced to the corresponding problem for switching classes, hereby proving that the

latter is also NP-complete.

Theorem 6.10

The problem whether a switching class [G] contains a graph H with chromatic number

3, is NP-complete.

Proof:

Let G = (V;E) be any graph, and let G

9

= G + 3C

3

be the graph which is a disjoint

union of G and three disjoint triangles. Let A be the set of the nine vertices of the added

triangles.

We claim that �(G) � 3 if and only if [G

9

] contains a graph H such that �(H) = 3.

Since the tranformation G 7! G

9

is in polynomial time, the claim follows.

It is clear that if �(G) � 3 then �(G

9

) = 3.

Suppose then that there exists a selector � such that �(G

�

9

) = 3, and let � : V [A!

f1; 2; 3g be a proper 3-colouring of G

�

9

.

If � is constant (either 0 or 1) on V , then G is a subgraph of G

�

9

, and, in this case,

�(G) � 3.

Assume that � is not a constant on V . Since G

�

9

does not contain K

4

as a subgraph,

it follows that � is not a constant selector on any of the added triangles. Further, each of

these triangles contains equally many selections of 1 (and of 0, of course), since otherwise

the subgraph G

�

9

j

A

would contain K

4

as its subgraph.

We may assume that each of the added triangles contains exactly one vertex v with

�(v) = 1 (otherwise consider the complement of �). Let these three vertices constitute

the subset A

1

� A.

In the 3-colouring � the vertices of A

1

obtain the same colour, say �(v) = 1 for all

v 2 A

1

; and in each of the added triangles the other two vertices obtain di�erent colours,

2 and 3, since they are adjacent to each other and to a vertex of A

1

in G

�

9

.

Each v 2 V with �(v) = 1 is connected to all u 2 A�A

1

; consequently, �(v) = 1 for

these vertices. Therefore the set B

1

= �

�1

(1)\V is an independent subset of G

�

9

. Since

� is constant on B

1

, B

1

is independent also in G. The vertices in V � B

1

(for which

�(v) = 0) are all adjacent to the vertices in A

1

in G

�

9

, and therefore these vertices are

coloured by 2 or 3. The subsets B

2

= �

�1

(2)\V and B

3

= �

�1

(3)\V are independent

in G

�

9

. Again, since � is constant on both B

2

and B

3

, these are independent subsets of

G. This shows that �(G) � 3.

7 NP switching problems that are easy for graphs

A graph G is said to be equally divided if it consists of two connected components of

order jV (G)j=2.
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Determining whether a graph is equally divided can easily be done in time linear in

the number of vertices of the graph. However, we show that for switching classes this

problem is NP-complete (already for rather simple graphs).

Theorem 7.1

It is an NP-complete problem to determine whether for a graph G its switching class

contains an equally divided graph.

Proof:

By Lemma 3.1 the problem is in NP for switching classes. We now reduce the partition

problem (see [8]) to the equal division problem for switching classes. The partition

problem asks for a �nite set A and its valuation s : A! Z

+

(positive integers) whether

there exists a subset A

0

� A such that

P

a2A

0

s(a) =

P

a2A�A

0

s(a).

It is clear that the partition problem remains NP-complete if we require that a

solution A

0

must satisfy the condition: 1 < jA

0

j < jAj � 1.

Let (A; s) be any instance of the partition problem. For each a 2 A, let G

a

= K

s(a)

be a discrete graph on s(a) vertices, say on V

a

= fa

1

; : : : ; a

s(a)

g.

De�ne a graph G = G(A; s) =

L

a2A

G

a

, the complete connection of the graphs G

a

.

If the instance (A; s) has a solution A

0

� A with 1 < jA

0

j < jAj � 1, then the graph

G

�

is equally divided where the selector � : V (G)! Z

2

is de�ned by

�(a

i

) =

�

1 if a 2 A

0

0 if a =2 A

0

for all a 2 A and i = 1; : : : ; s(a).

On the other hand, suppose that G

�

is equally divided for a selector �. We show

that for all a 2 A, we have �(a

i

) = �(a

j

) for all a

i

; a

j

2 V

a

. From this it then follows

that A

0

= fv j �(v) = 1g is a solution for the instance (A; s), and this will prove the

claim.

Indeed, assume there exists an a 2 A and a

i

; a

j

2 V

a

such that �(a

i

) 6= �(a

j

). The

subgraph G

�

a

of G

�

induced by V

a

is a complete bipartite graph, because it is a switch

of the discrete graph G

a

. By assumption �(a

i

) 6= �(a

j

), G

�

a

is not discrete, and thus it

is connected. Finally, each b

i

2 V

b

with b 6= a is connected in G

�

to either a

i

or a

j

(the

one with same value as b

i

). Therefore G

�

is connected, and this contradicts its being

equally divided. 2

8 Related problems

Consider an abelian group (�;+), and interpret 0 as `de�nitely an edge', and other

elements a 2 � as stating certain doubts about being an edge. (Or, if you wish, let a 2 �

measure the nonreliability of an edge.) Then the `de�nite graph' P

G

of G consisting of

the edges e with G(e) = 0 can be asked the same questions as before: does there exist a

hamiltonian de�nite graph (eulerian graph, tree) in the switching class [G]? If so, is it

unique? These questions might be interesting already for Z

3

.
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