Blackboard Systems modelled in soctA

Carla M.C. Spruit, Luuk P.J. Groenewegen and Ida G. Sprinkhuizen-Kuyper

Department of Computer Science
Leiden University
{I'uuk, kuyper} @ . | ei denuni v. nl

Abstract

The goal of this paper is two-fold. First of all, a general Blackboard System is specified in terms of
the object-oriented process specification formalism SOCCA. That means, a description of the
blackboard architecture is given in terms of its components, their behaviours, their relations and their
cooperations. Such a description is far more detailed than the usual blackboard descriptions,
included those describing a blackboard as a pattern. Second, the possibility is investigated to model
evolving processes by means of communicating Blackboard Systems. In the field of Software
Process Modelling, the ability to model evolution is of great interest as it can support the structured
development and simulation of processes.

Blackboard Systems were originally developed in the field of artificial intelligence as a method to
organise problem-solving programs. The problem-solving is dynamically controlled by automated
experts that communicate with each other through a global database, called ‘the Blackboard'.

The evolution of the problem-solving is visualised by the recording of the successive modifications
on the Blackboard.

By replacing the automated experts by humans, Blackboard Systems naturally represent evolution
of human collaboration processes.

In view of the above goals, the paper is structured as follows. First, a Blackboard System that is fit
to represent human collaboration processes is designed by using SOCCA, a process modelling
language that models automated and human parts of a system in exactly the same way. As no
automated parts are included in the proposed Blackboard System, the SOCCA model will be a model
of a completely non-automated process.

Like processes, this Blackboard System has to be able to create, influence and terminate other
Blackboard Systems. They must be able to operate concurrently and communicate with each other.
Second, the representation of evolving processes by means of Blackboard Systems is illustrated by
applying the Blackboard System model to a ‘real-life’ example. This example describes a
‘groupware like’, non-automated human collaboration process: the collaboratively writing of a

book.

In addition, the actual collaborations as specified by the SOCCA model, are illustrated by means of
quite a few event trace diagrams.

T-Technical Report 97-10, Dept. of Computer Science, Leiden University. Available as
ftp://ftp.wi.leidenuniv.nl/pub/CS/TechnicalReports/1997/tr97-10.ps.gz

Contents

Abstract 1

Contents 3

Section I: Basic concepts 5

1.1 Introduction 5

1.2 Contents 6

1.3 Blackboard Systems 6

1.4 SOCCA 7

15 The example 8

1.5.1 Introduction to the example 8

1.5.2 A verbal description of the example 8

Section II: Specification of the Blackboard System 11
2.1 The basic concept of a single human collaboration Blackboard Systdm

2.1.1 A Blackboard System Process Model 11

2.2 Problems 11

2.3 Child Blackboards 14

2.4 Proposals 15

2.5 Behaviour of the KSs 15

2.6 Behaviour of the CKS 16

2.6.1 General behaviour of the CKS 16

2.6.2 The CKS and human roles 16

2.6.3 Multiple CKSs in a BB-system 17

2.6.4 The CKS and communication between BB-systems 17

2.7 Information on the BB 18

2.8 Communication between the BB-systems 18

Section Ill: The SOCCA model 19

3.1 SOCCA 19

3.2 Class diagrams 19

3.3 The export diagram 21

3.3.1 The communication between the objects of one Blackboard

System 22

3.3.2 Communication between a parent-Blackboard System and a

child-Blackboard System 22

3.3.3 All other communication between Blackboard Systems 24

3.4 STD’s External behaviour 24

3.5 STD’s Internal behaviour 25

3.5.1 STD’s Internal behaviour Blackboard Syst&B (sy$ 25

3.5.1.1 Operatioint_create_BB_sys 25

3.5.1.2 Operatiomt-modify BB_sys 26

3.5.1.3 Operatioimt_finish_BB_sys 27

3.5.1.4 Operatioimt_get_info 27

3.5.2 STD'’s Internal behaviour Knowledge Sour¢g)(28

3.5.2.1 Operatiomt-activate_KS 28

3.5.2.2 Operatiomt-activate_proposal 29

3.5.2.3 Operatiomt_deactivate KS 30

3.5.3 STD’s Internal behaviour Control Knowledge Soufey 30

3.5.3.1 Operatiomt-activate_ CKS 30

3.5.3.2 Operatiomt-deactivate_ CKS 31
3.5.4 STD'’s Internal behaviour BlackboaiB) 31
3.5.4.1 Operatiomt-select_problem 31
3.5.4.2 Operatiomt-modify_BB 32
3.5.4.3 Operatiomt-put_on_BB 32
3.5.5 STD'’s Internal behaviour Control Blackboa@Bg) 32
3.5.5.1 Operatiomt-select_proposal 32
3.5.5.2 Operatiomt-put_on_CBB 32
3.5.5.3 Operatiomt-update HistoryList 32
3.5.5.4 Operatiomt-delete_nonrelevant_proposals 33
3.6 Subprocesses and traps 33
3.6.1 Subprocesses with respect to Blackboard Sy&8ms{3$ 33
3.6.2 Subprocesses with respect to Knowledge Soki$e (39
3.6.3 Subprocesses with respect to Control Knowledge SADikSg (45
3.6.4 Subprocesses with respect to BlackboBR]) (47
3.6.5 Subprocesses with respect to Control BlackbdzBdB) 49
Section 1V: Application of the given example 53
4.1 Introduction 53
4.2 Event traces 53
4.3 The export operations and their parameters 53
4.4 The division of the example into BB-systems, child-BB-systems,
problems and subproblems 54
4.5 Representation of the example in 9 steps 55
4.5.1 Step 1: The creation of the root-BB-syst&mcess Creation 55
45.2 Step 2: Creation and activation of the first child-BB-system
Promoter Meeting 57
45.3 Step 3: BB-systefromoter Meetingnakes decisions about
the second book 59
454 Step 4: The creation of more than one child-BB-system to
solve a single problem 62
455 Step 5: BB-systefromoter Meetingeceives the results
of the child-BB- systems 62
45.6 Step 6: Processing the results of the child-BB-systems and
the termination of the child- BB-systems 67
45.7 Step 7: A discussion on the BBGiiapter 9 Groumand
Promoter Meetingproposes its own termination 70
4.5.8 Step 8: BB-syste@hapter 9changes its own ‘initial’ problem71
459 Step 9: PareBook 2formulates a second problem for
BB-systemChapter 9 74
Section V: Conclusions and further research 77
References 78

Appendix A: Identification of BB-systems and problems of the
given example 79

Section |: Basic concepts

1.1 Introduction

Blackboard System were originally developed in the field of artificial intelligence as a method to
organise problem-solving programs. The problem solving is dynamically controlled by automated
experts that communicate with each other through a global database, called ‘the blackboard’ [3].
As the automated experts are in control, one of the tasks of the automated experts is to organise the
problem solving on or rather via the blackboard. They do this by replacing a problem formulation
that is on the blackboard, either by reformulating the problem as one or more (sub)problems and how
these are related, or by presenting the solution to the problem, or by a combination of these two, for
one part solving it and for the other part formulating the remaining subproblem(s) to be solved. In
this way the blackboard keeps track of the various subsequent stages of the solving of the original
problem. In other words, the experts have the task to indicate the evolution of the problem solving
activity, just as it happens. In so doing they enforce an opportunistic evolution on the blackboard,
for any problem that is given to them.

This evolution can be visualised by the recording of the successive modifications on the blackboard.

In the field of Software Process Modelling, the Blackboard System concept is of special interest as
Blackboard Systems naturally provide a way to model the evolution of processes. The ability to
model evolution is of great interest as it can support the structured development of processes.

By replacing the automated experts by humans, Blackboard Systems can also model evolving
processes of human collaboration.

Not surprisingly, Blackboard Systems are already recognized in the field of CSCW (Computer
Supported Cooperative Work) as a method to model and support human collaboration environments
[2].

In this paper, a Blackboard System is defined that is appropriate to model human collaboration
processes.

As processes can influence and create other processes, the Blackboard System must have the
capability to start up, influence and terminate other Blackboard Systems. They must be able to
process concurrently and communicate with each other.

The Blackboard System model is specified by using SOCCA, a Software Process Modelling
Language, that is currently still under development at the University of Leiden [1, 4].

SOCCA is a suitable language to model this human collaboration Blackboard System, as no
distinction is made between the modelling of automated and human parts. This way, the interaction
between human- and automated parts or even the interaction between human parts of a system, can
be modelled more explicitely than ususal.

As no automated parts are included in the proposed Blackboard System, the SOCCA model will be
a model of a completely non-automated process.

However, as the model provides a detailed description of the behaviour of all parts of a Blackboard
System and the communication between the Systems, it can also serve as the basic design of similar
automated Blackboard Systems.

A SOCCA model can become very complicated when too many details are to be modelled. For this
reason, some choices have to be made. As a result, this SOCCA model will emphasise the
organisation of the problem solving more than the problem solving itself. However, as the experts
are personified by humans, it is better to avoid too many details concerning the way problems are to
be solved.

In order to visualize the evolving of and communication between human collaboration processes,
the Blackboard System model is applied to a ‘real life’ example.
In this example, describing the process of the collaborative writing of a book, several different

‘groupware-like’ subprocesses can be identified, like the progress of a meeting, and decision making
during a meeting, the cooperative working on a chapter of the book, a discussion concerning the
contents of the chapter, the contracting of an activity out to other groups and the evaluation of its
results and finally, individual processes.

This paper is based on the master’s thesis of the first author [9], which she completed in cooperation
with and under guidance of the other authors.

1.2 Contents

This paper is structured as follows:

Section lintroduces the main concepts that are used in this paper like Blackboard Systems, SOCCA
and the given exampl8ection Il presents the design of a Blackboard System that is fit to represent
the evolving of human collaboration procesS&extion Il presents the SOCCA model of this
Blackboard SystenSection 1V illustrates the evolution on the Blackboard Systems by the
application of the SOCCA maodel to the given example. The evolution on the Blackboard Systems
is represented by means of event traces and process niqapedadix A presents the translation of

the verbal description of the example into problems and Blackboard Systems.

1.3 Blackboard Systems

The Blackboard System concept was developed by Al researchers as a method to handle
organisational aspects of problem solving programs [3].
The idea behind the Blackboard System is first mentioned in 1962 by Al researcher Allen Newell:

‘Metaphorically we can think of a set of workers, all looking at the same blackboard: each
is able to read everything that is on it, and to judge when he has something worthwile to add
to it. This conception is just that of Selfridge’s Pandemonium (Selfridge, 1995): a set of
deamons, each independently looking at the total situation and shrieking in proportion to
what they see that fits their natures....[7]

Later, between 1971 and 1976, the concept was developed further during the Hearsay-1l speach
understanding project [5], leading to the first Blackboard System, commonly knowrtHesatisay-

Il Speech-Understanding System

A Blackboard System consists of 3 parts:

Knowledge Sources Independently operating software modules that have special knowledge
about the problems to be solved

The Blackboard A global database that contains all information concerning the problems
and through which the Knowledge Sources communicate with each other.

The control System The system that determines the order in which the Knowledge Sources
make changes to the Blackboard.

The advantages of this concept lie in the ability to:

model different points of view on the problem solving into separate modules that can behave
independently of each other.

change the knowledge involved in the problem solving by refinement of the Knowledge Sources
or by the addition of new Knowledge Sources.

specify different problem-solving techniques into different Knowledge Sources

- dynamically control the problem solving on the Blackboard as the Knowledge Sources are self-
activating and only controlled by the Control System.

The Blackboard concept is very general and only outlines organisational principles. There is no
information provided about the way working Blackboard Systems are to be developed.

Therefore, the design of a Blackboard System depends highly on the purpose of the Blackboard
System.

The Blackboard System concept has proven to be a very strong and general concept that was and
still is succesfully applied to a large variety of problems.

Although originally designed as a method to organise problem-solving programs, the Blackboard
System concept is currently also used in other ways.

By replacing the automated experts by humans, Blackboard Systems can serve very well as an
organisational model of human collaboration.

As a result, the Blackboard approach is also recognized in the field of CSCW as a suitable way to
dynamically control and support the processes within human collaboration environments. See also

[2].
1.4 SOCCA

This section will only introduce SOCCA (Specification Of Coordinated and Cooperative Activities)
briefly, as the complete description can be found in [1] and [4].

Until now, no formalism exists that is suitable to model all aspects of software processes. For this
reason, SOCCA proposes a combination of 3 different formalisms to model processes:

1) The use of EER (Extended Entity Relation) diagrams to specify the data perspective. All
classes and the relations between the classes that describe the static structure of the process
are specified by means of EER diagrams.

In addition to the EER diagrams, the so-called export diagrams are used. Export diagrams
specify for every object the imported export operations of itself or other objects.

2) The use of STD’s (State Transition Diagrams) to specify the first part of the behaviour
perspective.
The external and internal behaviour of the objects are defined by means of STD’s. The
external behaviour of an object defines the behaviour that is visible from outside, or, the
allowed sequences of operation calls to the object.
The internal behaviour of an operation represents the functionality of the operation. It
defines the possible sequences of calls to itself or other objects. By defining the internal
behaviour of every export operation of an object, the complete internal behaviour, or the
‘hidden behaviour’ of an object is defined.

3) Finally, the second part of the behaviour perspective is defined by the use of Paradigm.
Paradigm (PARallelism, its Analysis, Design and Implementation by a General Method) [6]
is a formalism that is based on STD'’s, enabling the specification of coordinated parallel
processes.

By using Paradigm on top of the STD'’s of the external and the internal behaviour, the
coordination between the internal behaviour of an object and the communication between
the objects is specified.

To model this coordination, subprocesses and traps within the STD’s of the internal
behaviour of the objects have to be identified. A subprocess denotes temporary behaviour
restrictions of the complete behaviour of an operation, a trap is part of the subprocess that
regulates the switching between the subprocesses.

The subprocesses and traps of an object are ‘managed’ by an STD called the manager
process. Every object has its own manager process in which possible combinations of
subprocesses define the states of the object and the possible combinations of traps define the
state transitions between the objects.

1.5 The example

This paper presents a SOCCA model of a Blackboard System. This Blackboard System is used to
visualise evolution of processes on the basis of a given example, describing the collaborative writing
of a book. In section 1V, the actual application of the Blackboard System on the example is outlined.
This subsection presents the example.

1.5.1 Introduction to the example

The example, the verbal description of the example is presented in the next subsection, originates
from the second book of the PROMOTER community [8].

PROMOTER is an European project, financed by ESPRIT, in which a number of universities
participate to exchange ideas on Software Process Modelling.

The example is part of chapter 7 of the book, titled ‘Where will Software Process Models lead us'.

It describes the actual history of the collaborative writing of chapter 7 and is used to illustrate the
correspondence between Organizational Process Models and Software Process Models. In order to
do so, the example is modelled in both modelling techniges.

As the choice of the example itself was not made without discussion, the objections against — and
the refutations against these objections — are also part of the chapter.

Some of the advantages mentioned also apply to the use of the example in this paper, for instance:

- there is much evolution

- there is a meta proces

- the example is from another process world, far away from software processes
- the example describes no automated processes

The fact that the example is already analysed and modelled in the book, adds an important advantage
to the use of the example in this paper. Furthermore the example relates types of human
collaboration that are so familiar to everybody that they do not need any further explanation.

1.5.2 A verbal description of the example

On 19940209 — date descriptions like this give the year, month and day in this order; so this date
refers to the 9 of February, 1994 — it was being proposed in a PROMOTER meeting in Villard de
Lans, France, that the PROMOTER community should start working on a second book, this second
book should contain a problem-oriented presentation of the software process modelling field. After
some preliminary discussions about the book structure, it was decided to prepare some proposals
concerning this structure for the following day. Furthermore it was decided that the author of this
second PROMOTER book should be PROMOTER, that Jean-Claude should be the general editor,
that Alfonso should be the general co-editor, and that Ali should give technical support to these
editors. In addition, for every chapter to be part of the book there should be one editor, at least two
authors, and two reviewers. Editors and authors were to be appointed the following day, after the
decision about the (chapter) structure would have been taken.

On 19940210 there were two proposals for a possible structure. After some discussion it was decided
to have a structure of the book consisting of 9 chapters. As for this example only chapter 9 — which
is the present chapter 7 — is relevant, the details of the other chapters will be omitted. Chapter 9
should have the title Software Process Perspectives — an earlier version of the title actually was
Related Domains. The main topic to be addresses in chapter 9 should be the question, where will
software processes lead us. During a subsequent discussion, this time in groups in order to make it
easier to form a team for each chapter consisting of an editor and at least two authors, Vicenzo and
Luuk have formed such a small group. First they had the idea to have a preference for chapter 8,
called User Interaction and Social aspects. But it was decided to prefer chapter 9, and it was
moreover decided that Luuk should be the editor of that chapter, and that Jacques and Vicenzo

should be the authors. As Jacques had already left Villard de Lance, it was necessary to ask him
afterwards, and also to inform him about any further ideas for and possible global decisions about
the chapter-to-be.

Before the discussion in small groups really started, it was also decided that each chapter team
should spend some part of the evening or the night to discuss a possible set-up of their chapter, and
to put the result of that discussion on 1 or 2 sheets, to be presented by each editor in the PROMOTER
meeting of the following morning, in order to discuss the various set-ups. Moreover it was decided
that there should be three writing and review rounds for each chapter in parallel, followed by the
writing of an introduction and finishing the coherence between the parts of the book. The three
rounds for writing and reviewing were also meant for enabling the various writing groups to
establish a sufficient level of coherence and cross-referencing between the chapters.

During the evening discussion Vicenzo and Luuk started on the idea of having a well-chosen
example as an illustrative answer to the main question of the chapter, where will software processes
lead us. The very mentioning of this example triggered a whole stream of objections against it, but
also the refutations of the objections. So they decided to let these objections and refutations be a
substantial part of the chapter, as they certainly would be clarifying for others too. Moreover, this
discussion actually led them to the formulation of a theorem, the current Theorem 7.5. As at that time
they had no idea of how to prove this theorem, they did not think it probable to find a proof of it
before the final version of the chapter had to be produced. So they decided, instead of proving the
theorem, to give a rather thorough illustration of the theorem by presenting and discussing the
example in a sufficiently instructive manner. In their opinion the collaborative writing of this chapter
could very well serve as such. So formally, their theorem would have the status of a conjecture.
Another point in this part of the discussion was, that by carefully considering the refutations of the
objections, one might be able to find new arguments that could illustrate the theorem. In this way
the part of the process where the process was being described, would lead to a better result, so it
would lead to a better process than before.

On 19940211 in the full PROMOTER meeting the results of this evening discussion were reported
by Luuk as chapter editor. There was an agreement on this first set-up.

Upon returning to Leiden, The Netherlands, Luuk informed Jacques in Nancy, France, about all this,
and asked him whether he would like to participate. Which he liked, viewing the topic of the chapter
as not an easy but an interesting challenge. His reaction too was conveyed by email, not only to
Luuk, but also to Vicenzo in Pisa, Italy.

Then Luuk as the responsible editor was faced with two problems, one, how to organise the writing
in more detail, especially which time period(s) should be reserved for it and who should do what,
and two, how to be as illustrative as possible in representing the example, such that after the
representation the theorem would look like just a straightforward abstraction step further.

Concerning the first problem, from the beginning it was the idea that Luuk should also be involved
in the writing. This was actually based on an earlier writing and editing experience. Moreover, Luuk
had a few sabbatical months to spend. Why not use two of these, at least partly, to get the job done.
So it was arranged that in September Luuk should visit Vicenzo in Pisa, and in November Jacques
in Nancy.

In trying to find an acceptable solution for the second problem, it became gradually more clear that
such a maximally illustrative representation of this particular cooperative writing example should
also work for other examples from a certain larger class. So the question was, what is a suitable class,
and how to represent it. This actually led to the ideas expressed in Lemma 7.4 and Lemma 7.5
respectively, and thus to the idea how to prove the theorem.

Upon arriving in Pisa on 19940901 Luuk discussed this new idea of proving the theorem with
Vicenzo, and they agreed upon it. The set-up of the chapter was changed accordingly, so from then
on, 19940905 to be precise, the chapter was supposed to consist of more or less ten sections, the first
five presenting the theory, and the last five presenting the example. It remained a somewhat open

question whether the role of the example should indeed be so large as to cover the second half of the
chapter. But they decided to start like this, and to judge from the result.

As Vicenzo was too heavily involved in local duties, Luuk did the writing of the first five sections
while being in Pisa until 19940928, and by using Framemaker.

In the meantime Jacques was being informed about the changed set-up of the chapter. Also the
general co-editor was informed. At the end of his stay in Pisa, Luuk mailed the Framemaker file both
to Vicenzo and Jacques.

This finishes the relevant part of the verbal, informal description of the example.

10

Section II: Specification of the Blackboard System

Based on the general Blackboard System concept, a new Blackboard System is presented, that is fit
to serve as an organisational model for human collaboration. This section will introduce this human
collaboration Blackboard System and its features. The SOCCA model of the Blackboard System is
presented in section lll.

2.1 The basic concept of a single human collaboration Blackboard
System

A Blackboard SysterfBB-system) contains @&lackboard(BB), aControl BlackboardCBB),
Knowledge Sourcg&Ss) and aControl Knowledge Sourd€KS).

The purpose of a Blackboard System is to sphablems
The problems to be solved are put on the Blackboard, which can be viewed as the global database
of a Blackboard System.

The Knowledge Sources continuously check the BB to see if there are any unsolved problems.
In order to help solving the problems, a KS can apply his knowledge by proposing actions on an
unsolved problem. The KS has to formulate the proposed actiopsap@salwhich is to be put on

the Control Blackboard.

The Control Knowledge Source continuously checks the proposals on the CBB.

The CKS decides which proposals are to be executed and in what order.

When a proposal is to be executed, the CKS will activate the KS that created the proposal. The KS
will then execute the proposed action on the BB.

All modifications on the BB will be registerd by the CKS in Hiistory on the CBB.

The KSs have special knowledge about the problems. The CKS has special knowledge about the
problem solving activity.

2.1.1 A Blackboard System Process Model

In order to visualise the human colaboration Blackboard System, a special Blackboard System
Process Model is designed. Figure 2.1 presents a Blackboard System Process Model of a single
Blackboard System.

The KSs are represented by the small circles at the side of the BB. The CKS is placed at the bottom
of the BB.

The unsolved problems on the BB are lined up in the top-section of the BB, the CBB is represented
by a box in the bottom section of the BB.

The CBB contains the History and the proposals.

This model is used to register the state of the BB-system at a certain point of time. To show the
evolving of processes, Process Models have to be drawn at fixed points of time.

The presented model is very simple, as it must be fit to represent a complex constellation of
communicating BB-systems.

In section IV, this model is used to represent the evolving of processes as described in the given
example.

2.2 Problems

All information on the BB is stored in the form mfoblems
Every problem has to be defined bprablem descriptiorand has to be in one of three states:

11

BB-sys

BB
| Problem 1 |

| Problem 2 |

A

| Problem n | N /@
Proposals A
........ N

. [
History |
\

|

*Problem 1: unsolved
*Problem 2: unsolved

A
*Problem n: unsolved
........ -/

ICBB

®

Figure 2.1. Blackboard System Process Model of a single Blackboard System

unsolved, solved or unsolvable. Problems in a solved state contain a ‘solution’ and problems in an
unsolvable state have to contain a ‘failure’, describing the reason why the problem is unsolvable.

A KS can apply his knowledge to an unsolved problem on the BB in the formaodiéication of
the BB The KS can choose from 3 possible modifications of the BB:

1) By putting a new subproblem on the BB

If the KS detects a ‘partial’ problem of the original problem, the KS can modify the BB by

* The addition of a new ‘unsolved’ subproblem on the BB. This way, the KS can influence
the search direction of the KSs in their problem solving activity.
The division of an unsolved complex problem into several unsolved subproblems also
simplifies the solving of the original problem.

* The addition of a new ‘solved’ subproblem on the BB when the KS is also able to
formulate its ‘solution’.

* The addition of a new ‘unsolvable’ subproblem when the KS has detected a ‘partial’
problem that is unsolvable and is able to specify its ‘failure’.

The creation of subproblems can be viewed as the top-down approach of the problem
solving.

2) By changing the state of a problem on the BB

When the solutions of the subproblems together have solved the original problem, all useful
solutions of the subproblems will be attached to the original problem and the state of the
original problem will be changed from ‘unsolved’ to ‘solved’.

If one of the vital subproblems of a problem is ‘unsolvable’, the state of the original
‘unsolved’ problem will be changed from ‘unsolved’ to ‘unsolvable’.

The observation that the solved subproblems have ‘solved’ the original problem can be
viewed as the bottom-up approach of the problem-solving activity. The same applies to the
observation that an ‘unsolvable’ subproblem has made the original problem ‘unsolvable’.

12

3) By the deletion of a problem on the BB

In the course of problem solving, some problems may have become superfluous or
irrelevant. To avoid that KSs continue searching in these no longer relevant directions, these
problems will be deleted.

If all ‘initial’ problems on the BB are ‘solved’ we can say that the BB-system is ‘solved’. On the
other hand, if there are no ‘unsolved’ initial problems left on the BB, and at least one initial problem
is unsolvable, we will say that the BB-system is ‘unsolvable’.

For example, imagine a BB-system that has to solve a simple mathematical problem.

The KSs attached to the BB-system only have the knowledge to solve ‘parts’ of the problem, for
instance a few KSs can only add up numbers, some can only multiply numbers and some can only
divide numbers. All KSs are able to divide compound mathematical statements into ‘partial’
statements.

First, the problem is divided into subproblems until the KSs can solve the subproblems.
Figure 2.2 illustrates this top-down problem-solving by the KSs by representing the complete tree
of subproblems.

Note that subproblem 2.2 contains a false solution. This has to be recognised by the ‘division’ KSs
and they will see to it that this subproblem is deleted.

A problem can have more than one solution. During botom-up problem-solving, KSs may have to
choose between of the different solutions of a subproblem.

Problem

Problem description:
solve : (1+4)3+2/(3-3)

State: unsolved

Subproblem 1 Subproblem 2

Problem description:
solve: (1+4)3

Problem description:
solve : 2/(3-3)

State: unsolved State: unsolved

Subproblem 1.1

Subproblem 1.2

solve : (1 + 4)

Problem description:

Problem description:
solve :5*3

Subproblem 2.1

Subproblem 2.2

Subproblem 2.3

solve : (3-3)

Problem description:

Problem description:

solve : 2/0

Problem description:
solve : 2/0

State: solved

State: solved

Solution 1.1:
1+4=5

Solution 1.2:
5*3=15

State: solved

State: solved

State: unsolvable

Solution 2.1:
3-3=0

Solution 2.2:
20=4

Failure 2.3:
2/0 is unsolvable
as division by 0 illegal

Figure 2.2. Example: Top-down problem solving

13

Problem Problem
Problem description: Problem description:
solve: (1+4)3+2/(3-3) solve: (1+4)3+2/(3-3)
State: unsolved State: unsolvable
Solution 1:
(1+4)3=15
Failure 2:
2/(3 - 3) is unsolvable

as division by 0 illegal

Failure:
(1+4)3+2/(3-3)
is unsolvable
as division by 0 illegal
Subproblem 1 Subproblem 2
Problem description: Problem description:
solve: (1+4)3 solve : 2/(3 - 3)
State: solved State: unsolvable
Solution 1.1: Solution 2.1:
(1+4)=5 3-3=0
Solution 1.2: Failure 2.3:
5*3=15 2/0 is unsolvable
Solution 1: as division by 0 illegal
(1+4)3=15 Failure 2:
2/(3 - 3) is unsolvable
as division by 0 is illegal

Figure 2.3. Example: Bottom-up problem solving

Figure 2.3 represents two steps of the bottom-up problem solving. The final step shows the result of
the problem, containing all ‘solutions’ and ‘failures’ found during problem solving.

Note that as soon as an essential ‘unsolvable’ subproblem is detected, its original problem can also
be declared ‘unsolvable’ before the other subproblems are solved.

2.3 Child Blackboards

A subproblem may need other KSs and CKS than those connected to current Blackboard System.
Or, they may be the same Knowledge Sources, but their roles are different.

If the creation of a subproblem affects the KSs and CKS involved, child-Blackboard Systems can be
created.

For example:

A team of engineers is working on a large software project. They will be divided into smaller teams
that work on specified subprojects.

Sometimes, specialists that are no member of the original team, are needed for special jobs. And
some engineers may have roles in different teams.

This organisation structure can be modelled by giving each team a Blackboard System of its own.

A new child-BB-system is always caused by the creation of a new subproblem by the parent-BB-
system. This subproblem will be the ‘initial’ problem of the child-BB-system.
Like the KSs and CKS, an ‘initial’ problem will be viewed as a part of the Blackboard System.

As child-BB-systems can also create their own child BB-systems, the solving of a problem may
cause the creation of a tree of BB-systems. The root or very first BB-system will be called the root-
BB-system. This is the only BB-system in the tree that has no parent-BB-system.

The parent of the root-BB-system will be referred to as ‘outside’.

During problem solving, the parent (or ‘outside’) can modify the child-BB-system (or root-BB-
system) by changing its KSs or CKS or its ‘initial’ problems.

14

KSs can also modify their own BB-system. However, if a child-BB-system modifies the problem
description of its own ‘initial’ problem, or changes its KSs or CKS, this will also affect the problem
solving of the parent-BB-system. As the parent expects an answer to the ‘initial’ problem by the
chosen KSs and CKS, the child is only allowed to modify its own BB-system if the parent-BB-
system approves with the changes to the BB-system.

This also applies to the root-BB-system: changes to the root-BB-system by its own KSs have to be
authorised by ‘outside’

A modification of an ‘initial’ problem or a change to the KSs and CKS involved is called a
modification of the BB-system

2.4 Proposals

Before a KS can execute any action that concerns the BB or the BB-system, the KS will have to
propose this action on the CBB first.
In order to do this, the KS will create a proposal.

A KS can create a proposal for:

1) A modification of the BB (as described in subsection 2.2)

2) The creation of a child-BB-system

3) A madification of a child-BB-system (as described in subsection 2.4)
4) The termination of a child-BB-system

5) A madification of its own BB-system (as described in subsection 2.4)
6) The termination of its own BB-system

If the proposal is of type 1, 2, 3 or 4, and the proposal is accepted by the CKS, the KS that created
the proposal, is activated by the CKS to execute the proposed actions.

The proposals of type 5 or 6 can only be activated by the parent. If the CKS of the same BB-system
selects this proposal, the CKS will transfer the proposal to the CBB of the parent-BB-system.

If the BB-system is declared ‘solved’ or ‘unsolvable’, the CKS will cregtmposal for the final
resultand put the proposal on the CBB of the parent-Blackboard System.

If the parent is ‘outside’ the results have to be related to ‘outside’.

A CKS will accept any proposal of a result of a child-BB-system and put the result on its own BB
as the result contains the answer of the child to an unsolved problem on the BB.

When a child-BB-system is no longer needed, KSs can propose the termination of the child. Usually,
this will be done after the child has delivered its final result. But, even if the child still has unsolved
problems, the child can be terminated, for instance, when the parent has ‘solved’ its own ‘initial’
problems before the child has come to a result.

Obviously, KSs of a child-BB-system can only terminate their own BB-system when this is
authorised by the parent as the termination of a child also affects the problem solving of the parent.

Note that KSs of a parent BB-system cannot propose maodifications of the BB of a child-BB-system.
They can only influence a child by proposing modifications of the child-BB-system.

2.5 Behaviour of the KSs

In a Blackboard System with automated Knowledge Sources, the design of the different KSs is most
essential to the functioning of the BB-systems. Automated KSs may store their knowledge in rule
bases and make use of inference techniques to apply their knowledge.

Each KS involved must have his own unigue knowledge and problem-solving techniques to give
every KS a different view on the unsolved problems.

15

The proposed concept of a Blackboard System is especially designed to model human collaboration.
As we can assume that humans already have their own unique knowledge and techniques, we do not
have to specify this knowledge of the KSs any further.

Therole of the KS defines what special knowledge is required.

Persons can play more than one role at the same time. For instance, it is possible for a person to be
a parent, tennis player and programmer at the same time. The person will have to switch between
these roles according to the circumstances. We will assume that persons control this switching
between different roles themselves.

In a Blackboard System, a person can have more than one role. Every different role will be modelled
as a separate KS.

A person can also belong to more than one Blackboard System. A KS, however, can only belong to
one BB-system.

When a person is involved in different Blackboard Systems with the same role, the person will be
modelled as separate KSs: one for every system.

2.6 Behaviour of the CKS

2.6.1 General behaviour of the CKS

Like the KSs, the part of the CKS is also played by a person. All properties of the KSs as described
before, also concern the CKS. In the context of the Blackboard System, more information is needed
about the behaviour of a CKS. In a Blackboard System, the KSs play the ‘creative’ part and the CKS
the ‘controlling’ part of the problem-solving activity.

The complete control of the BB-system is an interaction between the KSs and the CKS. The task of
the CKS is to check whether the proposals are created by competent KSs and whether the proposed
actions are legal and feasible.

The way the problem-solving takes place, depends highly on the role of the CKS. If the CKS has the
role of a chairman of an assembly, he will have to behave according to the democratic rules that
belong to an assembly, in other cases, when the CKS has a more hierarchic role, he can lead the
problem-solving activity in a more authoritarian way. A CKS can also influence the amount of
alternative solutions on the BB. He can lead a BB-system in a very permissive way, but he can also
lead in a more restrictive way.

2.6.2 The CKS and human roles

So far, this seems to be a ‘natural’ way to model human roles into the KSs or CKSs. However, this
modelling needs some refinement.

This refinement is needed because of the very strict distinction between the possibilities of a KS and
those of a CKS.

A KS can modify the BB, but as the CKS selects the proposals, the KS can only communicate with
other KSs through the CKS. On the other hand, the CKS has only indirect influence on the progress
of the BB by the selection and activation of proposals.

The fact that KSs are restricted by the controlling of the CKS does only affect the problem-solving
in a positive way. The CKS will see to it that the information on the BB is filtered from superfluous
and incorrect information.

On the other side, the limitations of the CKS can be too restrictive to model managing human roles.
For instance, a chairman does not only play a ‘controlling’ role, he can also play a ‘leading’ role in
an assembly. He should be able to influence the direction of the search of the KSs in more ways than
just by selecting proposals.

In this case, the role of chairman has to be split into two roles: a role of ‘controlling chairman’
executed by the CKS, and a role of ‘leading chairman’, executed by a KS (figure 2.4). As humans
roles are hardly ever definite roles, it is also possible to split up the roles of a chairman even further.

16

BB-sys Assembly BB-sys Assembly

BB BB
| Problem | Problem |
As member
‘@ ‘:‘4@ As member
Proposals 1 Proposals 1

History EN History A
*Problem : unsolved v As member *Problem : unsolved - As member
e As
CBB leading
cBs N ¢ chairman

\

» N 4

. As
As chairman controlling
chairman

Figure 2.4. Process Model of a Blackboard System representing an assembly. In the left Process Model, the
plays the role of chairman. In the right Process Model, the role of chairman is split into a role ‘controlling’
chairman played by the CKS and a role ‘leading’ chairman, played by a KS.

(\ 17

This need for distinction between separate roles within a human role is not so important when human
roles are applied to KSs. A KS may play more distinct roles at the same time as long as the KS
controls the switching between the different roles himself.

Note that the more restrictive a human role becomes, the more human behaviour resembles
automated behaviour or the easier the human role is to be automated. As the CKS only plays a
controlling role, the part of the CKS is probably the easiest part to be automated. By splitting up the
human roles of the KSs likewise, the KSs too are easier to be automated.

2.6.3 Multiple CKSs in a BB-system

The proposed Blackboard System model does not exclude the use of multiple CKSs. More than one
CKS can be activated by the same BB-system.

Like the KSs, the CKSs operate completely parallel, but, there is no mechanism provided to control
the parallel behaviour of the CKSs. The parallel behaviour of the KSs is, in a way, controlled by the
CKS.

The use of multiple CKSs probably works best when the roles of the CKSs are not overlapping.
For instance, a Blackboard System representing a project in which several persons are involved
could have a CKS that controls the financial aspects of the proposals and another CKS controlling
all other aspects of the proposals.

In this paper, only BB-systems with one CKS are discussed.

2.6.4 The CKS and communication between BB-systems

The CKS also plays a major role in the communication between the BB-systems.

Of all participants in a BB-system, the CKS has the best overview concerning the state of the
problem-solving activity on the BB. As the role of a CKS is to control and to monitor the problem
solving on the BB, the CKS is the most-fit Knowledge Source to control the communication between
the BB-systems.

When the BB-system has solved the ‘initial’ problems, the CKS will put the result on the CBB of
the parent-BB-system. Or, when a KS proposes an ‘illegal’ action, like the modification of the
problem description of an ‘initial’ problem, the CKS will put this proposal on the CBB of the parent-
BB-system.

The CKS also takes care of the input received from the child-BB-systems.

17

2.7 Information on the BB

Until now, there is only one possible structure to handle the information on the BBobiem.
Obviously, this information type cannot be sufficient in a normal working Blackboard System.

There are two objections against the addition of information types and in connection with these
types, the definition of the possible modifications of these information types on the BB.

First, the proposed Blackboard System must be able to serve any possible problem solving activity.
Different problem-solving activities may require different sorts of information types to store the
intermediate and final results.

Secondly, as the roles of the KSs involved in the BB-systems are played by persons, the exact
knowledge of the KSs is indefinite. In connection with this property, too many details concerning
the definition of information types and possible modifications of the BB by the KSs will only confine
the problem-solving activity.

The KSs may invent and create their own necessary information types to store their (intermediate)
results.

A possible approach for working Blackboard Systems may be the definition of a limited number of
‘standard’ Blackboard types as most Blackboards used in human collaboration environments will
probably resemble one of these ‘prototypes’.

In addition to the standard information types, additional information types may be defined by the

KSs involved in the BB-system.

2.8 Communication between the BB-systems

Until now, two methods of communication between BB-systems have already been discussed: the
transportation of results of a child to the CBB of the parent-BB-system, the possibility to modify the
child-BB-system or the request from a child to modify its own BB-system.

In addition to these methods, a BB-system is able to ask for information of all other BB-systems. A
BB-system may ask for information without permission from any of its descendants: its child-, grand
child-, grand grand child-systems etc. When a child-BB-system wants information of a parent, the
child will receive the requested information if it is permitted to ask for information.

The proposed ways of communication between the BB-systems seems rather limited. For instance
message passing and information from the ‘outside world’ are not explicitly modelled while they are
essential to human collaboration environments.

They may not be explicitly modelled, but this information can be communicated between the BB-
systems in the form of modifications of the problem description of the ‘initial’ problems of the
Blackboard System. Information from the ‘outside world’ or messages can be passed to the
Blackboard Systems by the modification of the root-BB-system by ‘outside’. The root will pass the
information to its children by the modification of these child-BB-systems and so on.

As the child-BB-systems can ask permission of their parent to modify its own BB-system, the parent
is notified of the changed circumstances of the child. When the parent thinks that the proposed
change also concerns its own BB-system, it can even asks its own parent to modify its own BB-
system. This way, messages that concern the complete tree of BB-systems can be passed from one
of the leaf-BB-systems to the root-BB-system and from the root back to all other BB-systems of the
tree of existing BB-systems.

Note that information of the ‘outside’ world is already gathered by the CKS and KSs as they can ask
for information from the ‘outside’ world freely and at any moment in time.

The passing of information between BB-systems by modifying a BB-system may seem a rather
‘strong’ way to relate information to another Blackboard System. But as only information is passed
that is vital to the problem solving of the Blackboard System, this is a correct way to deal with
message passing and information from ‘outside’.

18

Section lll: The SOCCA-model

3.1 SOCCA

This section presents the SOCCA-model of the Blackboard System, described in section II.

In subsections 3.2 and 3.3, the data-perspective of the Blackboard System is described. Subsection
3.2 presents the EER-diagrams and subsection 3.3 presents the export-diagrams. Export-diagrams
specify for every object the imported export operations of other objects or the imported export
operations of itself.

In subsections 3.4, 3.5 and 3.6, the behaviour-perspective is described.

Subsection 3.4 presents the STD’s of the external behaviour of the objects. The external behaviour
of an object defines the allowed calling sequences of operation calls to the object.

Subsection 3.5 presents the STD’s of the internal behaviour of the objects. The internal behaviour
defines the possible sequences of calls to itself or other objects.

In subsection 3.6, Paradigm is applied to the STD’s of the internal and external behaviour of the
objects. Paradigm regulates the coordination between the internal and the external behaviour of an
object and the communication between the objects.

3.2 Class diagrams

Before a model can be made, the classes involved in the SOCCA-model have to be identified. In
figure 3.1 the classeBB_sys, Control System, BB, KS, GBBICKSare drawn in a class diagram.

All relations between these classes are ‘part-of’ relations. A ‘part-of’ relation is indicated by a small
empty diamond at the side of the class that consists of the specified parts.

The classe€ontrol System, BBndKSare parts of the clagB_sysThe classe€BBandCKSare

parts of the clas€ontrol System

The ‘1+ at the side oKSat the relation betwedB_sysandKSdenotes that at least one object of
classkSis related to one object of claBB_sysAll relations without the ‘1+’ denote that exactly

one object of the class is involved in the part-of relation. For instance, to an olBcisysexactly

one object of clasBBis related.

The class diagram of figure 3.1 indicates that more than one CKS can be attached to a BB-system.
This situation can occur, however, in this SOCCA model only BB-systems with one CKS will be
discussed.

The class diagram of figure 3.1 shows no ‘is-a’ relations. In the SOCCA-model of a Blackboard
System, no significant is-a relations are identified.

Blackboard System (BB_sys)

O

| |2+

Control System ’ Blackboard (BB)‘ Knowledge Source (KS)

1+

Control Control

Blackboard (CBB) Knowledge
Source (CKS)

Figure 3.1. Class diagram: classes and part-of relations

19

In figure 3.2, the general relationships between the classes are given.

A general relationship is indicated by a single line labelled with the name of the relation.

A black dot at the end of a line indicates a multiplicity of zero or more. If no dot is drawn at the end
of a line, the multiplicity is exactly one.

The relations drawn in figure 3.2 indicate that a KS can modify only one Blackboard and that a
Blackboard can be modified by zero or more KSs.

In the model of figure 3.2, a distinction is made between a BB-system and a child-BB-system. The
classes KS and BB are part of BB-sys.

A KS can create or finish zero or more child Blackboard Systems but a child Blackboard System
can only be created or finished by one KS belonging to the parent-BB-system.

A KS can modify zero or more child Blackboard Systems and a child Blackboard System can be
modified by zero or more KSs belonging to the parent-BB-system.

A KS can modify his own BB-system and the BB-system can be modified by zero or more KSs
belonging to the same BB-system.

Finally a KS can finish his own BB-system but a BB-system can only be finished by exactly one of
the KSs belonging to the same BB-system.

Figure 3.3 shows the attributes and export operations of every class. The attributes are given in the
middle section, the operations in the lower section.

The class Control System is not included in figure 3.3 because it plays no role in the communication
between the classes.

The attributdnitial_Problemsof the clas8B_syscontains the initial problems of the BB-system.
The export operatioBB_sys.create_ BB_syggeates and activates a new instance of the class
BB_sys

BB_sys.finish_BB_symishes, deactivates and deletes an instanB8egys

The operatioomodify_BB_sysan be called to modifgB_sys.

The operatiolBB_sys.get_infoan be used by other BB-systems to get information about the state
of the called BB-system.

The attributeBB_sys.Permissiokeeps the information concerning the BB-systems that are
permitted to call the operatidB_sys.get_info

The classeKS andCKShave an attributRole The role gives important information about the
knowledge and behaviour of the KS or CKS.

modifies

KS BB
modifies
BB-sys

finishes

creates

: child-BB-sys
modifies
finishes

Figure 3.2. Class diagram: classes and general relationships

20

Blackboard system
(BB_sys)

Knowledge Source (CKS)

Control Knowledge Source (CKS)

Role Role
BB_sys_lId Proposal
Initial_Problems activate CKS
Permission activate_KS deactivate_ CKS
deactivate_KS —
create_BB_sys activate_proposal
modify BB_sys
finish_BB_sys
get_info
Blackboard (BB) Control Blackboard (CBB)
Problems Proposals
HistoryList
select_problem
modify_BB select_proposal
put_on_BB delete_nonrelevant_proposals
- put_on_CBB

update_HistoryList

Figure 3.3. Classdiagram: Classes with their attributes and operations

A KS or CKS can only have one role.

The attributeKS.Proposatontains the proposal a KS is currently creating.

The operationkS.activate_ KandKS.deactivate_ K&gulate the activation and deactivation of the
KS. A KS is activated at the start of a BB-system and deactivated when a BB-system is finished.
These operations can also be called in connection with a modification of the BB-system.

The operation€KS.activate_ CK&ndCKS.deactivate_ CK&e used in the same way.

The operatiorKS.activate_proposas called by a CKS that has chosen a proposal to be executed

The attributdBB.Problemsstores all problems on the BB. If a KS wants to select a problem, he will
call the operatio®B.select_problenThe KS can calBB.modify BBo propose or execute
modifications on a problem on the BB.

The operatioBB.put_on_BBs called by a CKS to put a final result of a child-BB-system on the
BB, or by aBB-systo put a new or modified problem on the BB.

The attributeCBB.HistoryListof the class CBB stores the history of the BB-system. All actions on
the BB are kept itBB.HistoryListhy the CKS. The CKS updates this HistoryList by calling the
operationCBB.update_HistoryList

The attributeCBB.Proposalstores all proposals on the CBB.

The operatiorCBB.put_on_CBRan be called by a KS or CKS to put a proposal on the CBB of a
BB-system.

The CKS can cleanup the CBB by calling the operd@Brdelete_nonrelevant_proposals

By callingCBB.select_proposalhe CKS can select a proposal on the CBB.

3.3 The Export diagram

The export diagram (figure 3.4) shows the uses-relations between the classes. A uses-relation
specifies the export operations a class can use from another class. For instance, uses relation ‘uses 3’
indicates thaBB_syscan call the operatiorSKS.activate_ CK&ndCKS.deactivate_ CK& class

CKS.

The short arrows that show no particular ‘caller’, indicate that there is also another way to call the
specified export operations. These operations can be called from ‘outside’. This means that there is
also communication possible between a Blackboard System and ‘outside’.

This kind of communication will only take place in exceptional cases, like the creation or

termination of the very first or root-Blackboard System.

21

uses 1
create_BB_sys

modify_BB_sys

finish_BB_sys

get_info
uses 10 uses 11)
put_on_BB BB SyS update_HistoryList

uses 9
activate_KS
deactivate_KS

uses 3
activate_ CKS
deactivate_ CKS

uses 12 uses 2

activate_ create_BB_sys
proposal modify_BB_sys
finish_BB_sys
get_info
~ uses 4

activate_proposal

uses 6
select_proposal

uses 8 put_on_CBB
select_problem uses 5 update_HistoryList
modify_BB put_on_BB delete

nonrelevant_
proposals

uses 7
put_on_CBB

\ Y
> BB CBB [

Figure 3.4. Export diagram

3.3.1 The communication between the objects of one Blackboard System

The export diagram of figure 3.4, shows all possible uses-relations between the classes and between
the classes and ‘outside’.

Some operations, however, are only used within one Blackboard System.

Figure 3.5 presents all communication possible within one BB-system.

In figure 3.5, we can see that there are two operations that cannot be called within one BB-system.
The export operatiorBB_sys.create_BB_sgadBB_sys.get_infoan only be called by the parent-
BB-system.

3.3.2 Communication between a parent-Blackboard System and a child-
Blackboard System.

The communication between a parent-BB-system and a child-BB-system (figure 3.6) is a special
case of communication between two Blackboard Systems.

Nearly all communication between Blackboard Systems occurs between parent- and child-systems.
The only exception on this strict parent-child communication is the opeBRiosys.get_infdrhis

operation can get information from other Blackboard Systems.

Note the similarity between the communication between a BB-system and ‘outside’ (figure 3.4) and
the communication between a parent-BB-system and a child-BB-system (figure 3.6). ‘Outside’ can
use the export operatioB8_sys.modify BB _sys, BB_sys.create BB _sys, BB_sys.finish ,BB_sys
BB_sys.get_infand the operatiodS.activate_proposal parent-BB-system can use exactly the
same operations of a child-BB-system.

22

23

uses 10 uses 11))
put_on_BB update_HistoryList
BB-sys
uses 9
: uses 3
ggg\é%:/eeﬁg SKS activate_CKS
- deactivate_CKS
uses 2
modify_BB_sys
finish_BB_sys
- uses 4
N activate_proposal
uses 6
select_proposal
uses 8 update_HistoryList
select_problem uses 5 delete_
modify_BB put_on_BB nonrelevant_
proposals
uses 7
v put_on_CBB v

BB

CBB [

Figure 3.5. Export diagram: Communication between the objects of one BB_sys

Parent_BB_sys
BB-sys
KS CcKs
uses 2 uses 4
get_info activate_
create_BB_sys proposal
modify_BB_sys
finish_BB_sys
BB CBB
uses 6
put_on_CBB
KS CKs
BB CBB
Child_BB_sys

Figure 3.6. Communication between parent- and child-Blackboard Systems

The operatiofCBB.put_on_CBHBs called by a child-BB-system to communicate the final result of
the child-BB-system to the parent-BB-system. There is ho export-operation to relate the final result
of the root-BB-system to ‘outside’. This will be handled by an internal operation.

3.3.3 All other communication between Blackboard Systems

In principle, it is not necessary to have this parent-child restriction for communication between BB-
systems.

But, this will raise another problem: if KSs can modify the dBBssy=f every other BB-system,

this can complicate the problem-solving activity of the systems.

To structure this complexity, some hierarchy between the BB-systems had to be defined.

3.4 STD's External behaviour

In this subsection, the STD’s of the ‘external’ or visible behaviour of every class is given.
The external behaviour of a class is defined by the allowed calling sequences of its export
operations and the possible states of the object.

In figure 3.7, the external behaviour®B_syds presented.

BB_syshas two states: ‘BB_sys non existing’ and ‘BB_sys existing’. V\B®nsyss in the state
‘BB_sys non existing’ only operatiareate_BB_sysan be called. The calling of this operation
causes the state transition to the state ‘BB_sys existing’. From the state ‘BB_sys existing’, the
operationsnodify_BB_sys, get_inmdfinish_BB_sy%an be called. By the calling of
finish_BB_sys, BB_sysill transit back to the state ‘BB_sys non existing’.

The calling of the operatiomsodify_BB_syandget_infodo not cause a state transition.

KSandCKSshow a similar behaviour in respectively figure 3.8 and 3.9.
The classes BB and CBB only have one state called ‘neutral’. From this state, all export operations
can be called. See figure 3.10 and 3.11.

modify_BB_sys

create_

BB_sys activate_
— KS
BB_sys
non BB_sys
finieh proposal
inis -
W deactivate_
BB_sys KS
get_info
Figure 3.7. External behaviour BB_sys Figure 3.8. External behaviour KS

activate_
CKS

deactivate_
CKS

Figure 3.9. External behaviour CKS

24

modify_BB delete
nonrelevant

proposals
select select_
problem proposal
put_on_CBB
update >
put_on_BB HistoryList
Figure 3.10. External behaviour BB Figure 3.11. External behaviour CBB

3.5 STD’s Internal behaviour

In this subsection, the internal behaviour of all objects is described. The internal behaviour of an
object is determined by the separate internal behaviours of its export operations.

In subsection 3.5.1, the STD’s of the internal behaviour of the export operatidBs ®fsare

presented. The subsections 3.5.2 to 3.5.5 present the internal behaviour of reseti@$, BB
andCBB.

Within the STD's, representing the internal behaviour of the objects, two operation-types can be
identified: exported operations and internal operations.

The exported operations are preceded by the word ‘call’. All other operations are internal operations.
An internal operation, preceded by the prefix ‘act’, is used to regulate communication between the
external and internal behaviour of the object (subsection 3.6).

All other internal operations are highly internal operations within the internal behaviour of an object.

3.5.1 STD'’s Internal behaviour Blackboard SystemBB-sys)
3.5.1.1 Operationint-create BB_sys

The operatiorreate_ BB_syegulates the creation and activation of a new Blackboard System. The
internal behaviouint-create_ BB_sysf this operatiortreate_ BB_syis given in figure 3.12.

After activation ofcreate_ BB_syghe operation will proceed with the internal operation
create_and_init BB_sys

create_and_init BB sygeates and initialises new instance8Bf sysand associatel8B andCBB.
The operatiortreate_and_init BB_sya&ill also initialise the new BB-system with the initial
problems and KSs and CKS with their roles.

next_KS

VS

create i
Qfeate act create BB_sys) _create_and_init creation)__call CKS, écé'g' call KS.
BB_sys started BB_sys ready activate_ CKS started / activate_KS

finish_
creation

call BB.put_on_BB

, _call CBB.update (initial_problems)

~ HistoryList(new BB_sys)

Figure 3.12. STD internal behaviauat-create_BB_sys

25

By calling CKS.activate_ CK&ndKS.activate_K$or every chosen CKS and KSs, the new
Blackboard System is activated.

By calling BB.put_on_BBthe initial problems will be put on the BB.
The HistoryList of the new Blackboard System will be updated for the first time by calling
CBB.update_HistoryList

The operatiorcreate BB_syis called by a KS from the internal behaviour of operation
KS.activate proposdbee subsection 3.5.2.2) of a parent-BB-system or the califate_ BB_sys
is made from ‘outside’.

3.5.1.2 Operationint-modify BB_sys

The operatiomodify BB_syss called by a KS that is asked to activate a proposed change to a BB-

system. The internal behaviaant-modify BB_syss given in figure 3.13.

In principle, only a parent can create, modify or finish a BB-system. If a KS proposes a modification

or the finishing of the BB-system within the same BB-system, this proposal has to be activated by
the parent. The CKS has to control the correct handling of this kind of proposals.

By callingmodify _BB_syschanges can be made to the KSs, CKS or the initial problems. As there
is no good reason to change a BB or CBB, these parts of the BB-system cannot be changed.

After activation, the operation continues with the chosen modification, which is specified by the
parameter of the operation.

If a change to the KSs is asked, the internal operatimtify KSds executed. Depending on the
proposed changes, a KS can be deactivated or activated more than once. For instance, if a KS has

T
activate_ CKS(CKS, role)

p call CKS.
CKS de-
modify_CKS deactivate_CKS acti\,atgd
(CKS, role)

call KS.
activate_KS

attr. KS) call KS. action
odified) deactivate KS(KS, role) \ ready
KS de-
activated

modify_KSs

finish_modify_

BB_sys call CBB.

update_HistoryList

Figure 3.13. STD internal behaviaut-modify_BB_sys

26

to be given an other role, the KS with the old role has to be deactivated first by calling
deactivate_KS(old_roleBy executinghext_actionthe BB-system can continue with the activation
of the KS with his new role by callirectivate KS(new_role)

When the KS has finished the modifications of the BB-system, the HistoryList of the modified BB-
system is updated by callif@BB.update_HistoryList

The call formodify_BB_sysan be made by a KS from the internal behaviour of operation
KS.activate_proposdkee subsection 3.5.2.2 below) from within the parent-BB-system or from
within the same BB-system.

The call formodify_BB_sysan also be made from ‘outside’.

3.5.1.3 Operationint-finish_BB_sys

The operatioriinish_BB_sygfigure 3.14) regulates the deactivation and deletion of a Blackboard

System.
act_finish_ — call CKS. < call KS.
finish_ | BB_SYS deactivate CKS w}
BB started started
next_KS

delete_BB_sys

Figure 3.14. STD internal behaviount-finish_BB_sys

The operatioriinish_BB_sysvill usually be called after the child-Blackboard System has declared
its initial problems solved or unsolvable and notified its parent.

If the proposal for the finishing &B_syds made by a KS of the BB-system, the proposal will have
to be activated by the CKS of the parent-BB-system.

The operatioriinish_BB_sysan be called by a KS from the internal behaviour of operation
KS.activate_proposdkee subsection 3.5.2.2 below) from within the parent-BB-system or from
within the same BB-system.

The call forfinish_BB_sysan also be made from ‘outside’.

When the root-BB-system has declared its initial problem ‘solved’ or ‘unsolvable’, ‘outside’ is
notified. ‘Outside’ can terminate the BB-system by calfingsh_BB_sysThis will deactivate and
delete the last or root-BB-system.

3.5.1.4 Operationint-get_info

This is a very simple operation. This operation will be called by a KS of another BB-system that
wants information about the current state of the BB-system. The operation will only return the
information when the BB-system to which the KS is connected has permission to ask for
information. The permission is controlled B3-sysby checking the attribut8B_sys.Permission

A BB-system is permitted to receive information from any of its descendants: its child-, grand
child-, grand grand child- systems etc. When a child-BB-system wants information of a parent, the
child will only receive the requested information when it has the right permission.

get_infodelivers the information without any further calls. So, we can omit the STD-representation
of int-get_info.

The operatiomet_infocan be called from the internal behaviouK&.activate K®r by ‘outside’.

27

3.5.2 STD’s Internal behaviour Knowledge SourceKYS)

3.5.2.1 Operationint-activate KS

There can only be ongoing activity in a Blackboard System after the KSs and CKS have been
activated. The internal behaviouraigtivate_KSs given in figure 3.15.

wait

proposal_failed

proposal
created

call CBB. >
put_on_CBB

proposal
(proposal)

problem
call BB. selection
select_problem eady

finish_activation selection_failed

next_selection

Figure 3.15. STD internal behaviont-activate_KS

The KSs will be activated after the creation of the Blackboard System.

From that moment on, the KSs will continuously check the blackboard (BB), by calling
BB.select_problenif there are problems to be solved.

If the KS cannot find a ‘fit' problem, the KS will execute the internal operatdection_failecind
check the BB later.

If the KS has found a problem, the operatdi® select problerwill make a copy of the chosen
problem. By making a copy of the problem, the problem itself will remain available and unchanged
on the BB for other KSs during proposal-creation and proposal-selection.

The KS will create a proposal for the copied problem by executing the internal operation
create_proposal

In the proposal, actions on the copied problem can be defined.

If the proposal fails, the internal operatimmposal_faileds executed.

If the proposal is created successfully, the KS will put the proposal on the CBB of his own BB-
system by callingcBB.put_on_CBB

Although not represented in the STD, the call for the oper8irsys.get_infes also made from
int-KS.activate_KS. BB_sys.get_iofn be called from all statesiof-activate_ KS®xcept the state
‘no activate KS'. As the calling @B_sys.get_infdoes not cause any state-transition, the
representation of this calling is left out.

To regulate the continuous checking of the BB by KSs, the KS can make use of the opgiaition
Usually, the STD of an operation only specifies all possible sequences of events that determine the
behaviour of the operation. There is no information given about the time an operation will remain
in a specific state.

In this special case, we want to be more explicit about the time a KS will remain in the state ‘KS
activated’ before he continues with calling the operaBBrselect_problem.

In a BB-system, many KSs can be involved. They all continuously check the BB by calling
BB.select_problemAs this continuously checking of the BB may affect the ongoing activity on the
BB, we may want the KS to ‘wait’ before he checks the BB again, especially when a KS has just
executed the internal operatiselection_failed

After the execution of the wait-function, the KS can decide to ‘wait’ even longer.

A KS will remain active until termination of the BB-sys or until the KS is deactivated in connection
with a modification of the BB-system.

28

The call foractivate_ KSwill be made from the internal behaviour®BB_sys.create_ BB_sys
(subsection 3.5.1.1) @B_sys.modify_BB_sysubsection 3.5.1.2)

3.5.2.2 Operationint-activate proposal

The operatioractivate_proposailks called by the CKS when the CKS has selected a proposal. By
calling this operation, the KS that created the chosen proposal will activate the proposed actions on
the original problem. The proposed actions are specified by the use of a parameter of the operation.
The internal behaviour @ctivate _proposais given in figure 3.16.

A proposal can contain one or more of the following actions:

(1) a change of the state of the problem, for instance, the change of state ‘unsolved’ to ‘solved'.
(2) the deletion of the problem on the BB.

(3) the addition of a subproblem of the problem on the BB

(4) the creation of a new child-BB-system to solve a subproblem of the problem

(5) a modification of a BB-system

(6) the termination of a child-BB-system

The actions (1), (2) and (3) are executed by caliBgnodify BB

the action (4) is executed by calliB§_sys.create_BB_sys

the action (5) is executed by calliBg_sys.modify_BB_sys,

and the action (6) is executed by callBB_sys.finish_BB_sys

Before a proposal is activated, the CKS will have to check the HistoryList to make sure that the
proposed actions of a chosen proposal do not conflict with proposals that are already activated.
As it is very unlikely that a proposed action fails, no special precautions are taken to handle failed

activate_
proposal_succesful

create

BB_sys
asked
call BB_sys
create_BB_sys finish
BB_sys
asked
no prop) act activate act fin?sar:I BBE—SSySS
activ. proposal proposal —EE_SY action
activ. ready

next_action

activate_
proposal_failed

Figure 3.16. STD internal behaviaut-activate_proposal

29

actions.

If the activation of a proposed action fails, the failure will be registered by the CKS in the
HistoryList on the CBB.

The call foractivate_proposalill be made from the internal behaviour@KS.activate_ CK&ee
subsection 3.5.3.1 below) belonging to the parent-BB-system or the same BB-system.

KS.activate_proposalan also be called from ‘outside’ in case the BB-system concerned is the root-
BB-system.

3.5.2.3 Operationint-deactivate KS

This is a very simple operation, called BB _sys
This operation is called when the BB-system is finished or when the KS is deactivated as a result
of a modification of the BB-system.

As no calls for other export operations are made from the internal behaviéBrdefactivate_KS
we will omit a STD for the internal behaviouriof-deactivate KS

The call fordeactivate_KS$vill be made from the internal behaviourBB_sys.finish_ BB _sys
(subsection 3.5.1.3) ®@B_sys.modify BB_sysubsection 3.5.1.2)

3.5.3 STD’s Internal behaviour Control Knowledge Source@KS)
3.5.3.1 Operationint-activate CKS

Like the KSs, the CKS is activated after the creation of the BB-system. The internal behaviour of
activate_CKSs given in figure 3.17.

After activation, the CKS will try to select a proposal on the CBB by calling operation
CBB.select_proposalf the selection fails, the CKS will go back to the previous state by executing
the internal operatiogelection_failedand try again later.

If the selection is successful, the CKS will have to decide what to do next:

parent
asked
selection_ call CBB. A

failed put_on_CBB

call CBB.delete_|
nonrelevant_
proposals

g
~output_
outside

CKs

non- act_activate
active CKS
finish_

activation activate_

proposal
prop

call CBB.

output update_HistoryList

outside prepare_
______ prop. proposal_for_
ready result_
call CBB. BB_sys

put_on_CBB
(proposal)

Figure 3.17. STD internal behavioat-activate_ CKS

30

(1) If the selected proposal is a proposal for the result (solution or failure) of a child-BB-system,
created by the CKS of a child-BB-system, the CKS will call the operBibput_on_BRBo
put the received result on the BB.

(2) Ifthe selected proposal is a proposal for the modification or the termination of the current BB-
system, this proposal can only be activated by the parent of the BB-system.
In this case, the CKS will callBB.put_on_CBBf the parent-BB-system to put the proposal
on the CBB of the parent-BB-system.
If there is no parent-BB-system, the BB-system in question is the root-BB-system the result
has to be related to ‘outside’. In this case, instead of the ope@BBrput_on_CBBthe
internal operatioutput_outsidevill be called.

(3) Inallother cases, the proposal will be activated by calidgctivate_proposalf the KS that
created the proposal.

The CKS will continue with the call fa&EBB.update_HistoryLisin which all actions are kept. By
doing this, the CKS can keep track with the state of his own Blackboard System. For instance, if all
initial problems are solved, the CKS will know that his own BB-system is ‘solved'.

When the CKS receives no ‘fit' proposals, the CKS can decide, after a certain period of time, that
the initial problem(s) is (are) unsolvable. The CKS will then execute the internal operation
no_solution

If the BB-system has arrived in a solved or unsolvable state, the CKS will prepare a proposal for the
result of the BB. This proposal, will be put on the CBB of the parent-BB-system.

Again, if there is no parent-BB-system, the result has to be related to ‘outside’. In this case, instead
of the operatiorfCBB.put_on_CBBthe internal operatiooutput_outsidavill be called.

A CKS will remain active until termination of the BB-system or until the CKS is deactivated in
connection with a modification of the BB-system.

The CKS can clean up the CBB by deleting nonrelevant proposals from the CBB by calling the
operationCBB.delete_nonrelevant_proposals

The call foractivate CKSwill be made from the internal behaviourBB_sys.create BB_sysee
subsection 3.5.1.1) @B_sys.modify_BB_sysee subsection 3.5.1.2).

3.5.3.2 Operationint-deactivate CKS

deactivate_ CK$ a very simple operation, called B_sys
This operation is called when the BB-system is finished or when the CKS is deactivated as a result
of a maodification of the BB-system.

As no calls for other export operations are made from the internal behaviour of
CKS.deactivate_ CKSve will omit the STD of the internal behaviourinf-deactivate_ CKS

The call fordeactivate CK®ill be made from the internal behaviourBB_sys.finish_BB_sysee
subsection 3.5.1.3) @B_sys.modify BB_sysee subsection 3.5.1.2)

3.5.4 STD'’s Internal behaviour Blackboard 8B)

3.5.4.1 Operationint-select_problem

The operatiorselect_problenis called by a KS in order to select a problem.
In fact, a KS has to check the BB before the KS can select a problem. This checking of the BB is not
explicitly modelled, in order to simplify the model.

As no calls for other export operations are made from the internal behavi®Brselect problem
we will omit a STD for the internal behaviour BB.select_problem

31

The call forBB.select_problens made from within the internal behaviourks.activate_ K$see
subsection 3.5.2.1) that belongs to the same BB.system.

3.5.4.2 Operationint-modify BB

The operatioomodify _BBis called by a KS that is asked to execute a proposed action on the BB.
By calling the operatiomodify BB one of the following actions can be executed on the BB:

(1) achange of the state of a problem, for instance, the change of state ‘unsolved’ to ‘solved'.
(2) the deletion of a problem on the BB.
(3) the addition of a subproblem on the BB

As no calls for other export operations are made from the internal behavigBimabdify BBwe
will omit a STD for the internal behaviour BB.modify_BB.

The call forBB.modify_BBs made from within the internal behavioulks.activate _proposétee
subsection 3.5.2.2), that belongs to the same BB-system.

3.5.4.3 Operationint-put_on_BB

This is a simple operation. It puts a problem on the BB.
As no calls are made from the internal behaviounput_on_BBwe will leave out the STD of
this operation.

The call for this operation will be made from within the internal behavio@K@.activate_ CKS,
BB_sys.create_ BB spsBB_sys.modify BB_s¥sat belongs to the same BB-system.

3.5.5 STD'’s Internal behaviour Control Blackboard CBB)

All operations of clas€BBare very simple operations. As no calls for other export operations are
made from the internal behaviour of the operatiorSBB, we will omit the STD’s of the internal
behaviour of the operations GBB.

3.5.5.1 Operationint-select_proposal

The operatiorselect_proposak made by a CKS that wants to select a proposal.
Like the operatioBB.select_problenthe checking of thEBB by theCKSbefore the selection is
made, is not included in this model.

The call forselect_proposak made from within the internal behaviour of operation
CKS.activate_ CK$see subsection 3.5.3.1) that belongs to the same BB-system.

3.5.5.2 Operationint-put_on_CBB

The call forput_on_CBBs made from within the internal behaviour of operai@activate KS
(see subsection 3.5.2.1) of the same BB-system or from within the internal operation of
CKS.activate_ CK$ee subsection 3.5.3.1) of the parent-BB-system or the same BB-system.

3.5.5.3 Operationint-update HistoryList

The call forupdate_HistoryLists made from within the internal behaviour of operation
BB_sys.create BB_sfaee subsection 3.5.1.BB_sys.modify BB_sysee subsection 3.5.1.2) or
from within the operatio€KS.activate_ CK&ee subsection 3.5.3.1). Both calls will be made from
within the samd8B_sys

32

3.5.5.4 Operationint-delete_nonrelevant_proposals

The call fordelete_nonrelevant_proposassmade from within the internal behaviour of operation
CKS.activate_ CK&ee subsection 3.5.3.1) of the sdBie sys

3.6 Subprocesses and traps

The STD’s of the external and internal behaviour only describe the sequential behaviour of the
objects. To regulate the interaction between the internal and external behaviours of the objects and
the communication between the objects, Paradigm is used.

The STD of the external behaviour of an object serves as the manager process of all internal
behaviours of this object as well as manager process of all internal behaviours from other objects
that call some operation provided by this manager in its external behaviour.

The internal behaviours are called the ‘employees’ of the manager process.

The manager process prescribes all permitted state transitions of the employees, however, as the
states of these combined behaviours determine the state of the manager process, we can also say that
the ‘manager’ is managed by its ‘employees’.

To coordinate the parallel behaviour of the employees, subprocesses and traps are used.

3.6.1 Subprocesses with respect to Blackboard SysteBE_sys)

In this subsection, we first present the subprocesses and traps with respect to the activation of the
export operations dB_sysNext, the subprocesses and traps with respect to the calling of the
export operations @B_sysare presented. In figure 3.23 on page 38, the manager proB&ssyk

is presented in terms of these subprocesse and traps.

Subprocesses and traps in connection with the activation of the operationsBB_sys

The subprocesses S1and S 2, and traps T 1 and T 2 of the of&Batsys.create_BB_systh
respect tB_sysare presented in figure 3.18.

next_KS

no create . activ. i
o tmate |_act create BB sys | create and init y (creation) call CK cks)-callKs. KS
create BB_sys Started /' BB_sys ready /' activate_CKS stated/ activate_KS

finish_

) call BB.put_on_BB
creation

Hist) ¢ |call CBB update (initial_problems)
T2 Pl HistoryList(new BB_sys)

S1
S2

Figure 3.18. S 1 and S 2: subprocesséstd3B_sys.create_BB_systh respect t&8B_sys

If the operatiorcreate_ BB_syis called and its internal behaviour is in subprocess S 1 and also in
trap T 1,BB_syscan transit from subprocess S 1to S 2.

BB_syswill then go through all states oft-BB_sys.create BB_systil T 2 is entered.

When T 2 is entered@®B_syscan now transit back to subprocess S 1 where the operation can be
finished.

Note that T 2 coincides with the last state before the opemBorys.create BB_sigsfinished. In

this state, the neBB_syss already created and activated.

If T 2 had been chosen as large as possible, conflicts between the behaB®irsystould arise.

For instance: iBB_sys.finish_BB_sys called immediately after the calling of

BB _sys.create_ BB sBB syscould callKS.deactivate K8eforeKS.activate K$s called.

Figures 3.19 and 3.20 represent the subprocesses and traps of respectively the internal behaviours of
the operationBB_sys.modify BB _sysmdBB_sys.finish_ BB_sys

33

o act_finish_ m call CKS. call KS. .

h no inish_ i deactiv. 0 eactiv
finish_ finish_ BB_sys >(BB deactivate_C KS; s deactivate_KS e

BB BB W started > started

T5

finish_finish_BB delete_BB_sys

next_KS
BB_sys BB_sys ¢
T6

S6

S5

Figure 3.20. S 5 and S 6: subprocesseéstd3B_sys.finish_BB_sysith respect td8B_sys

The traps are chosen the same way as the traps of the opBBitigys.create BB syE 4
coincides with the last state before termination of the internal behaviour of the operation.
This way the activation and deactivation of the KSs and CKS are co-ordinated in a correct way.

T3

finish_modify_
BB_sys

S3
HList
updated,
activate_ CKS(CKS, role)

. action

ifi ready
call CKS. CKS de-
deactivate_CKS activated
(CKS, role)

. call
modify_ attr. 1P BB.put on BB In.Pr
itial_problems > modified | (initial_problems) on BB

call KS.
action
ready

modify . ;
BB_sys SCBI r:osd'
nonact, Sy

modify_KSs activate_KS

call KS.
deactivate_ KS(KS, role)

KS de-
activated

HList
updated

Figure 3.19. S 3 and S 4: subprocesseésté8B_sys.modify_BB_systh respect tdB_sys

ne call CBB.
update_HistoryList

sS4
T4

34

The trap T 6 also makes sure that the manager procBss sfscannot arrive in state ‘BB_sys not
existing’ beforeBB_sysds actually deactivated and deleted.

Figure 3.21 represents the subprocesses and traps of the ogatéBiBnsys.get_infoThis time,

trap T 8 is chosen as large as possible. This way the manager prd8Bssydcan go back to the

state ‘BB_sys existing’ as soon as the internal behavioBBoys.get_infis started.

Other operations can be started when the manager process has arrived back in the state ‘BB_sys.

no
get
info

Lo
eX|st|ng
no t nfo
act_get get read info
get acl get y L
info starteq/ ATTDUTES received

T7
get_info finished T8

S7 S8

Figure 3.21. S 7 and S 8: subprocesseéstéBB_sys.get_infwith respect tBB_sys

The subprocesses and traps with respect to the activation and finishing of the internal behaviours of
the export operations are in this SOCCA-model always chosen in one of the two presented ways:
The trap of the subprocess representing the activated behaviour is chosen:

(A1) aslarge as possible when the internal behaviour of the operation does not interfere in anillegal
way with other operations or

(A2) the last state before the finishing of the internal behaviour if the operation has to be finished
before other operations can be called.

And the trap of the subprocess representing the terminating of the behaviour contains the nonactive
state of the behaviour.

Subprocesses and traps in connection with the calling of the operationsBB_sys

The subprocesses and traps of the internal behaviour of ‘caller’ opd{&iactivate proposaif
KS within a parent-BB-system are given in figure 3.22.

From the internal behaviour &fS.activate_proposdtom within the parent-BB-system, the
operation8BB_sys.create_ BB_syBB_sys.modify_BB_sgsdBB_sys.finish_BB_sysn be called.
BB_sys.modify_BB_sgsidBB_sys.finish_BB_sysn also be called from within the same BB-
system.

In figure 3.22 the subprocesses and traps concerning the calls from within the parent-BB-system are
presented.

BB_syswill arrive in trap T 9 when the call f@B_sys.create_BB_sismade by the parent. When
BB_sys.create_BB_sisin T 1, the transit can be made from S9to S 11.

WhenBB_syds a root-BB-systenBB_sys.create_BB_sisscalled from ‘outside’. In this caset-
KS.activate_proposdias to transit from S 9 to S 10 as no calls can be ma&Bf@ysrom a
parent-BB-system. As a transition from one subprocess to another can only be made when the
subprocess has entered a trap, an additional trap is needed. This trap, T 9a, is used to force the
transition from S 9to S 10 before subprocess S 9 has reached T 9. Note, that subprocess S 9 contains
a nested trap.

In S 11, the call foBB_sys.create BB _sgses not need a trap, BB _syss already created. Only
calls for the creation of other instanceB& syscan be made.

In S 11, calls can be made BB_sys.modify BB _sgsndBB_sys.finish_BB_sys
WhenBB_sys.finish_BB_sys called,nt-KS.activate_proposalill arrive in T 11. When

35

T9a

T10(T 14)

activate_
proposal_succesful

T9

create
BB_sys
asked

call BB_sys,
create_BB_sys

finish
BB_sys

no prop

. call BB_sys.
act actvate finish_BB_sys

action

activate_
proposal_failed

activate_
proposal_succesful

create
BB_sys
asked

call BB_sys
create_BB_sys

call BB_sys.
finish_BB_sys

no prop | act activate
activ. proposal

action
ready

activate_
proposal_failed

S9

Tila (T15a)

activate_
proposal_succesful

call BB_sys.

proposal finish_BB_sys

activate_
proposal_failed

S 11 (S 14)

S10(S 13)

T 13 (T 17)

activate_
proposal_succesful

create
BB_sys
asked

call BB_sys,
create_BB_sys

call BB_sys.
finish_BB_sys

no prop | act activate
activ. action
ready

modify_
BB
asked

next_action

activate_
proposal_failed

S 12 (S 15)

Figure 3.22. S 9, S 10, S 11 and S 12: subprocessgeski.activate_proposaltithin the parent BB-system

with respect tBB_sysThe subprocesses and trapsntfKS.activate_proposatithin the same BB-system

with respect tBB_sysare very similar. S 13, S 14, and S 15 with traps T 14, T 15, T 15a, T 16 and T 17 are

exactly the same as respectively S 10, S 11, and S 12 with traps T 10, T 11, T 11a, T 12, and T 13. As a BE
system cannot create itself, the subprocess that corresponds with S 9 is S 13.

int-BB_sys.finish_BB_sysin T 5, the transition can be made from S 11 to S 10, where only other

instances oBB_syscan be called. When BB_sysisin T 10 and T 6, the transition can be made back
to S 9 and S 5, whe@B_syss no longer existing.

As the operationBB_sys.modify BB sgsidBB_sys.finish_BB_sysn also be called by a KS
from within the same BB-system, 3 subprocesses are added that resemble the subprocesses

presented in figure 3.22 very much.

S 13 with trap T 14 will be exactly the same as S 10 and T 10: no calls can be made in connection

36

with BB_sysf BB_sysis not existing.

S 14 with traps T 15, T 15a and T 16 will be exactly the sameas S11and T 11, T 1laand T 12:
whenBB_sysds existing, calls can be made for the operat®Rssys.modify BB_sysd
BB_sys.finish_ BB_sys

The traps T 11a and T 15a are needed to regulate the calliBB feys.finish_BB_sys/ two

different BB-systems. WheBB_sys.finish_BB_sys called by the parerS.activate proposaf

a KS of the child will also have to transit from S 14 to S 13 before reaching a trap as the child cannot
make any calls for BB_syghat is no longer existing. In this case T 15a will be used to transit from
S 14t0 S 13.

WhenBB_sys.finish_BB_sys called by a child, T 11ais used to force S 11 to transit to S 10.

S 15 with trap T 17 is exactly the sameas S 12 and T 13.

As a BB-system cannot create itself, the subprocess corresponding with S 9 will be S 13.

The subprocesses S 9-S 12 all concern the behaviour 8fSwiethe parent-BB-system and S 13-

S 15 concern the behaviour of di8 of the same BB-system.

In fact, several KSs can be involved in the parent BB-system. The BB-system itself can also have
several KSs attached to it. As all KSs involved behave in parallel, all KSs should have their own
subprocesses in the manager proce&Bofys

To simplify the manager processBB_systhe subprocesses that are to be multiplied in case of
more than one KS, are indicated by the symbol *’ in the manager process.

The operatioBB_sys.get_inf@s called from within the internal behaviourk$.activate KSAs
long asKSis activated, th&Sis free to call this operation at any point in time. For this reason, it is
not necessary to include any subprocesses and traps with respect to the dalingystget_info

The manager process of figure 3.23 shows that the manager process of a root-BB-system behaves
differently from the manager process of a child BB-system.

The cause of this difference is that all operatiorBBfsyscan be called from within the internal
behaviours of KSs of a parent-BB-system. As a root BB-system has no parent-BB-system, the
operationBB_sys.create BB_sp$ the root-BB-system has to be called from ‘outside’.
BB_sys.modify BB _sys, BB_sys.get amfdBB_sys.finish_BB_sysn also be called by ‘outside’

as these operations can be called by a parent.

The fact thaBB_syscan be a root- or a child-BB-system, combined with the fact that
BB_sys.modify BB sysidBB_sys.finish_BB_sysn be called from within a parent-system or
from within the same system, complicates the manager procBs&s efsvery much.

Note that for every state transition of the external behavioBBokystwo transitions are needed

in the manager processBB_sys This difference is caused by the switching between the
subprocesses.

37

(create_ (modify_\

BB_sys BB 5v5
(roon called by
called by outside
outside
S1
S4
S5
S7
S 10*
*
\ S 14*)
T4 modify_
BB_sys
B s ' called by
modify_ own
BB_sys BB_sys
T3, T16*
< “1s1
T4, T17* S4
S5
S7
S 10*
T7 S 15*
get_info u
et_info
T8 gBstysf
called
create_ \ S 13*)
BB_sys (create_

T1, BB_sys

T9* (child)
called
S2
S3
S5
S7
S 11* T2
\ S 14*)
(finish_ "\ ~\
BB_sys BB_sys
(child) (child)
called existing
by parent finish_ BB, sv5 called by
B ls1 [1aTie |8,
St |egIsTin $3 12 -
* <«
S6 Tisa S7 T4 1170 |37
S7 S 11* st
S 10* S 14* 37
S 1_3* S 11*
finish_ T7 S 15+
(finish_ | BB-SYS get_info \. J
BB_sys T8 —
(child) * * get_info_
called by TS5 T15%T1la BB sys
own called
BB_sys
S1
S1 S3
S3 S5
S6 S8
S7 S 11*
S 10* *
S 13* S 14

Figure 3.23. BB_sys, manager of 6 employees
*: only the subprocesses of one KS per BB-system are drawn in the manager process

3.6.2 Subprocesses with respect to Knowledge Sourées]

The manager processi§8is presented in figure 3.31 on page 44.

Every KS object represents one role. So, for each role there is a separate manager process.

Subprocesses and traps in connection with the activation of the operationsK:
In figure 3.24 the subprocesses and trapetefS.activate KSvith respect t&KS are given.

A KS remains active until deactivation, so, the operdiBractivate K&annot terminate before

the operatiorKS.deactivate_ K called.

KS
activated

proposal_failed

problem
selection
eady

proposal
created

finish_activation selection_failed

T1

next_selection

S1

wait

proposal_failed

proposal

call BB.
select_problem

proposal
created

call CBB. >
put_on_CBB
(proposal)

KS
activated

problem
selection
eady

selection_failed

) act
activate_KS

T2

next_selection

S2

Figure 3.24. S 1 and S 2: subprocessestedctivate_KSwith respect tKS

As soon a¥S.activate_K$s activated, the internal behaviour of this operation will remain in trap
T 2 untilKS.deactivate_K$ called. Whemleactivate K$s called, the transit from S 2to S 1 can

be made.

Note that subprocess S 1 does not admit any new proposal selection or creation, the behaviour of

KS.activate_K$an only terminate in S 1.

The subprocesses and traps (figure 3.28)tdfS.activate_proposalre chosen as large as possible

as the calls foBB_sys.create_BB_sys, BB_sys.finish_BB_sys, BB_sys.modify_ B sys
BB.modify_BB_syare already controlled by respectiv@B_sysandBB.

39

activate_
proposal_succesful

create

create
BB_sys

T4

T3

create BB_sys_ flnlsh

BB sys

asked
call BB_sys.
finish_BB_sys
call BB modlfy

call BB_sys.
finish_BB_sys

ggti?fop no prop | act activate, 3
activ. proposal

action
ready

modify_BB asked

S4

activate_
proposal_failed

Figure 3.25. S 3 and S 4: subprocesseéstefS.activate_proposatith respect t&KS

The subprocesses and trapsntfKS.deactivate Kfigure 3.26) are chosen so that the operation
has to be terminated before a new operation can be handled by the manager pkgess of

Subprocesses and traps in connection with the calling of the operationskK®

The subprocesses and traps with respect to the callid§.attivate_K@re given in figures 3.27

and 3.30. The trap T 8 contains the complete STBBfsys.create_ BB_sgs the KS can be

activated only once in connection with the same BB_sys. T 17 is chosen as large as possible so that
the manager process K& can admit another call this operation again as soon as possible.

Note that S 7 has an extra state ‘activ. KS started’, as other KSs may be activated before KS is to
be activated.

The subprocesses and traps with respect to the callikfg.déactivate _K&re given in figures 3.28
and 3.30. The trap T 10 contains the complete STBBofsys.finish_BB_syss aKS can only be
deactivated once in connection with the finishingBf sys

In figure 3.29 the subprocesses and traps with respect to the callSgaativate_proposaire

given.

S 11 and S 12 present the subprocessiesg-@KS.activate_ CK& connection with the calling of
KS.activate_proposdly the CKS oBB_sys

As activate_proposatan be also called by the CKS of a parent-BB-system, extra subprocesses are
needed to handle these calls.

The subprocesses and traps that handle the calls of the CKS of the parent-BB-system, S 13, S 14,
T 13 and T 14, will be exactly the same asresp. S11,S 12, T 11 and T 12.

no deactiv. .
deactiv. Ks disconnect deacuv act deactivate deawv d|sconnect
KS started/ KS st arted >

T6

finish_deactivation

S5 - S6

Figure 3.26. S 5 and S 6: subprocesseéstéfS.deactivate_K&ith respect t&kS

40

create_and_init

no
create

create
BB_sys
started

no

create
HList
updated

S8

call KS.
activate_KS

ativate_CKS

creation
ready

creation

ready
problems]
on BB

Figure 3.27. S 7 and S 8: subprocesséstéBB_sys.create_ BB_systh respect tdS

act_finish_
BB_sys

call CKS.
deactivate_CKS

next_KS

call KS.

deactiv. i
ors deactivate_KS

BB_sys
deleted

S 10

T 10

Figure 3.28. S 9 and S 10: subprocesséast@B_sys.finish_BB_sygith respect t&S

41

The manager process of KS (see figure 3.31) shows that the behaviour of KS is also affected by the
type of the BB-system (root or child) the KS belongs t&K@sctivate _proposadan also be called

parent
asked

-
“output_
outside

call CBB.delete_ selection call CBB.
nonrelevant_proposals failed Fut_on_(fBB
proposa

7

result
child on
BB

[activatiol
asked

all CBB.
update_HistoryList

CKs)
non- act_activate

active CKS

proposal
selection,

put_on_BB
(problem)

call KS.
_ activate_
solution proposal

T11

finish_
activation

call CBB.put_on_CBB
(proposal)

\ output_
\outside

prepare_

proposal_for_
result_
BB_sys
S 11 (S 13)
T 12 (T 14)
parent
asked
call CBB.delete_ selection call CBB.
nonrelevant_proposals failed put_on_CBB £ 4

7
~ ~output_
> outside

activation
asked

call CBB.
update_HistoryList

(proposal

e

7
CKS
: proposaly call BB.
s S selecion] —pUT_on BB

(problem)

finish_
activation

call CBB.put_on_CBB

(proposal) o GUpNGE

\outside

B S rr———

prepare_
proposal_for_
result_
BB_sys

S 12 (S 14)

Figure 3.29. S 11 and S 12: subprocessa#-@KS.activate_ CK# connection with the calling of
KS.activate_proposdly the CKS oBB_sysS 13, S 14 and T 13 and T 14 are subprocesses and
traps ofint-CKS.activate_ CK8# connection with the calling &€S.activate_proposdly the
parent-CKS. They are exactly the same as respectively S11,S12and T 11 and T 12.

by ‘outside’.

The manager process also shows that KS can only transit from S 2 to S 1 when the call for

KS.deactivate K& made.

42

43

all CKS.

attr. CKS) activate_ CKS(CKS, role)(action
odified

ready
dify CKS call CKS.
modify_ deactivate_CKS
(CKS, role)
call
ity_ attr. IP BB.put on BB In.Pr
initial_problems modified | (initial_problems) on BB

call KS.
modify_KSs activate_KS
(KS, role

@ T15
attr. ks | call KS.

odified / deactivate_KS(KS, role

S de-
finish_modify > et T16
BB_sys action
HList
updated

call CBB.
update_HistoryList

S15

T17

attr. CKS
modified

attr. IP
modified

attr. KS action
odified ready

HList
updated

S 16

Figure 3.30. S 15 and S 16: subprocessa#-&B_sys.modify_BB_systh respect t&KS

44

KS

nonactive

activate_KS
T1,

activate_KS,

T1
T1

T10,T6

T17,
T6

o)

activate_KS
called by
BB_sys.
create_BB_sys

activate_KS
called by
BB_sys.
modify_BB_sys

S2
S3

deactivate_KS
called by
BB_sys.
finish_BB_sys

deactivate_KS
called by
BB_sys.
modify_BB_sys

T8

deactivate_
KS

deactivate_
KS

T2,
T 16,
T5

activate_
proposal

T4

activate_
proposal

T3, T11

activate_

propasal
called by
outside

activate_
propasal
called by
own CKS

A

T4,T12

activate_

Figure 3.31KS manager of 8 employees

S2
S4
S5
S7
S9
S12
S13
S15

activate_
propasal
calle by
parent CKS

3.6.3 Subprocesses with respect to Control Knowledge SourceK(S)

The manager process GKSis very similar to the manager proces¥6&f

If we leave out the operatid€S.activate_proposalnd its subprocesses in the manager process of
KS the remaining manager process is exactly the same as the manager proB&sg bé only

thing left to do is to change ‘KS’ into ‘CKS’. The manager process of CKS is given in figure 3.33.
The subprocesses S 3, S 4,S 11, S 12, S 13 and X%4aotivate_proposalre excluded from the
manager process of CKS.

Like the KS, the CKS remains active until deactivation.

Only the subprocesses ©KS.activate CK®iill be presented, as all other behaviour€&Sare
handled exactly the same way as the behavioufSof

The subprocesses and trapsndfactivate_ CKSare presented in figure 3.32.

Subprocess S 1 forces the operaki@activate K$o terminate as soon as possible, but also gives
the CKS the opportunity to settle the already started actions. For instance, if the BB-system has
finally come to a solution of the initial problems, the CKS can still bring the proposal for the result
to the CBB of the parent-BB-system.

The subprocesses and trapsndfCKS.deactivate CK& 5, S 6, T 5, T 6) andt-modify_BB_sys
(S 15, S 16) are similar to the subprocesses presented in figures 3.26 andK&30 of

parent

call CBB.

lection
selection_ put_on_CBB

failed

-
~output_
outside

T1

CKs
non-

active _/

finish_
activation

A

I
I
!

no_ activate_
proposal

call CBB.put_on_CBB!

(proposal) \ output

\outside

call CBB.

prop. update_HistoryList
ready <€ prepare_

proposal_for_

result_

BB_sys

S1
T2
call CBB.delete. i call CBB.

— selection_ put_on_CBB

nonrelevant_proposals fajled (proposal

act call CBB. prop

7
~ ~output_
- outside
\ output_

activation!
asked
\outside

(proposal) call CBB.
update_HistoryList

selection
ctive / activate_| select_proposal eady
CKSs

proposal_for_
result_
BB_sys

S2

Figure 3.32. S 1 and S 2: subprocessestadctivate_ CKSwith respect tcCKS

45

The subprocesses and trapsntdfcreate BB _sy6S 7, S 8, T 7, T 8) aridt-finish_BB_sys

(59,510, T9, T 10) are also very similar to the subprocesses presented in figures 3.27 and 3.28,
only the traps have to be modified to handle the call€kK#8.activate_ CK&nd

CKS.deactivate_CKS

Below follows the manager processGKSin figure 3.33.

activate_CKS
called by
BB_sys.
create_BB_sys

S2
S5
S8
S9
S15

N

activate_CKS

T1,
activate_CKS

called by T8
BB_sys.
modify_BB_sys

S2

activate_CKS

nuunnmonm
= o~

~ T17)

CKs
active

CKs
nonactive

S1 S92

called by deactivate_CKS

BB .
5 T10,T6 finiglﬁszB_sys T2

\) S1 TS

nnnom

5
7 deactivate_CKS
9
1

—
(]
nuunnn
P oO~NO

EYEENE-)

nnnm
[N @)

\ / deactivate_CKS
T17, T2,T15 T5
T6

deactivate_CKS
called by
BB_sys.
modify_BB_sys

1
6
7
9
1

nnnnom

6
N

Figure 3.33CKS manager of 5 employees

46

3.6.4 Subprocesses with respect to Blackboar8B)

In figure 3.34 the manager proces®B&fis presented.

In subsection 3.6.1, the two ways of choosing traps in connection with the activation of an export
operation are already explained.

The way subprocesses and traps are drawn with respect to the calling of an operation are also chosen
in a standard way:

(C1) If the called operation can be called again later in connection with the same instance of the
class, the subprocesses and traps are drawn as S 11 andKSHa giresented in figure 3.29:
a subprocess with a trap containing the state immediately following the call for the operation
and
a subprocess with a trap that contains the complete STD of the operation except for the state
from which the subprocess starts.

(C2) If the called operation cannot be called again later in connection with the same instance of the
class, the subprocesses and traps are draw as S 9 and BBLGydas presented in figure
3.22:
a subprocess with a trap containing the state immediately following the call for the operation
and
a subprocess with a trap that contains the complete STD.

As the traps oBBandCBBare always chosen in this standard way, the STD’s of subprocesses and
traps in connection with the activation and the callinBB&andCBB are omitted.
For every operation @B, the subprocesses and traps will only be described.

Subprocesses and traps in connection with the activation of the operations®B

BB.select_problem subprocesses S1and S 2 withtrapsT1and T 2.
T 2 contains the final state before the finishingnofBB.select_probleras
callerint-CKS.activate_ CK8an only continue when the result of
BB.select_problerns known.

BB.modify BB subprocesses S 3and S 4 withtraps T3 and T 4.
T 4 contains the final state before the finishin@@Bfmodify BB
BB.modify_BBs called byKS.activate_proposalhat can transit to another
subprocess before the operation is completely terminated (figure 3.25).
As callerint-CKS.activate_ CK8as to be able to put the result on the CBB of
the parent when the BB-system is declared solved or unsolvable, the operation
BB.modify_BBhas to be ready before the operat@BB.put_on_CBHBfrom
the state ‘prop. ready’) can be called.

BB.put_on_BB subprocesses S5and S 6 withtraps T5and T 6.
T 6 is chosen as large as possible.

Subprocesses and traps in connection with the calling of the operationsRB

BB.select_problem subprocesses S 7 and S 8 with traps T 7 and T 8.
BB.select_problerns called byKS.activate_KS
T 8 is chosen as described in (C1B&sselect_probleman be called again
in KS.activate_ K$h connection with the same BB.

BB.modify BB subprocesses S 9 and S 10 with traps T 9 and T 10.
BB.modify_BBs called byKS.activate_proposal
T 10 is chosen as described in (C1B&modify_BBan be called again in
KS.activate proposah connection with the same BB.

BB.put_on_BB subprocesses S 11 and S 12 with traps T 11 and T 12.
BB.put_on_BBs called byBB_sys.create BB_sys
T 12 is chosen as described in (C2B&sput_on_BRan only be called once
in connection with the creation of the BB-system.

47

BB.put_on_BB

BB.put_on_BB

subprocesses S 13 and S 14 with traps T 13 and T 14.
BB.put_on_BBs called byBB_sys.modify BB_sys

T 14 is chosen as described in (C1B&sput_on_BRan be called again in
connection with the modification of the BB-system.

subprocesses S 15 and S 16 with traps T 15 and T 16.
BB.put_on_BBs called byCKS.activate_ CKS

T 12 is chosen as described in (C1BBsput_on_BRan only be called again
in CKS.activate_CKS

(select.)
;?éi?;_m modify_
called chud
2 g select_problem modify_BB S1
S5 Ti, T3, S4
S g+ neutral T 9* S5
S 9* S7*
s | 2% S1 S 10*
T 8* S3 T4, [s11
S13 S5 T 10* S 13
kS . S7* S 15
S 9*
S11 put_on_BB
S13
S 15
\) pultr(énEBB \
called by
pultl_cénb_BB glét_on_ A E&gj
v BB_sys
ot T5 | |Ts,
Cks - T3 [t1a T8\]s1
Y S 3
S1 /put_on_BB\ S6
23 Sk 57
S6 moaifz; S o*
ST7* BB_sys S12
S9 S13
Sii o1 s15
S13 g 2 \
S 16 .

*

nnnnuom
PR O~
AR

N

Figure 3.34BB, manager of 8 employees

* . only the subprocesses of one KS per BB-system are drawn in the manager process

48

3.6.5 Subprocesses with respect to Control Blackboar€BB)

The manager process GBB (see figure 3.37 on page 52) is similar to the manager procBss of

Subprocesses and traps in connection with the activation of the operations@BB

CBB.select_proposaubprocesses S land S2 andtraps T1land T 2.
T 2 contains the final state before the finishingnt{CBB.select_proposals
int-KS.activate_K$an only continue when the resulGBB.select_proposal
is known.

CBB.delete_nonrelevant_proposatsbprocesses S3and S4 andtraps T 3and T 4.
T 4 contains the final state before the finishing of
int-CBB.delete_nonrelevant_propostdgrevent thaint-CKS.activate_ CKS
can select a proposal that is going to be deleted by
CBB.delete_nonrelevant_proposals.

CBB.update_HistoryLissubprocesses S5and S6 andtraps T5and T 6.
T 6 is chosen as large as possible.

CBB.put_on_CBB subprocesses S 7and S8 andtrapsT7and T 8.
T 8 is chosen as large as possible.

Subprocesses and traps in connection with the calling of the operations@BB

CBB.update_HistoryLissubprocesses S9 and S 10 and traps T 9 and T 10.
CBB.update_HistoryLigt called byBB_sys.create_ BB_sys
T 10 is chosen as described in (C2C&B.update_HistoryLigtan only be
called once in connection with the creation of a BB-system.

CBB.update_HistoryLissubprocesses S 11 and S 12 and traps T 11 and T 12.
CBB.update_HistoryLidgt called byBB_sys.modify BB_sys
T 12 is chosen as described in (C1T&B.update_HistoryListan be called
more than once in connection with the modification of a BB-system.

CBB.put_on_CBB subprocesses S 13 and S 14 and traps T 13 and T 14.
CBB.put_on_CBHs called byKS.activate_KS
T 14 is chosen as described in (C1LC&B.put_on_CBRan be called more
than once by the KS in connection with the same CBB.

All other calls for operations @BB are made from the internal behavioulGiS.activate_ CKS
Note that S 15 allows the calling of 3 different services and that S 17 allows the calling of 2 different
services.

Figure 3.35 presents the subprocesses S 15 and S 16 with respect to the calling of
CBB.select_proposal, CBB.delete_nonrelevant_propesalSBB.update_HistoryLidty the CKS
of the same BB-system.

Figure 3.36 presents the subprocesses S 17 and S 18 with respect to the c2Bidgof_on_CBB
by the CKS of the parent-BB-system.

We conclude this section with figure page 52 shov@Bdg as manager of 9 employees.

49

del.
asked
parent
A asked
call CBB.delete_|
nonrelevant_
proposals

act_activate CKS call CBB. fed

active select_proposal

no_
finish_ olution
activation
next_
prop
call CBB.
output_ update_HistoryList
outside

prop. \&«K— — — — — — prop. HList

sent ut] &——\ ready updated

&/ callces.

put_on_CBB
(proposal) T17
S 15
del.
asked i
call CBB.
parent
put_on_CBB (b2, °4
5 (proposal)
selection)

failed

-
~ ~output_
- outside

CKS
non-
active

-

’call BB.
put_on_BB >
(problem)

act_activate,

proposa
selection
eady

proposal
fixed

finish_
activation

next_
prop

activate_
proposal

T 18
output_

_ _outside prepare_

proposal_for
result_
BB_sys

prop.
sent to
parent

call CBB.
put_on_CBB
(proposal)

S 16

Figure 3.35. S 15 and S 16: subprocessieg-aictivate_ CKSvith respect to the calling @BB.select_proposal,

CBB.delete_nonrelevant_proposalsdCBB.update_HistoryList
by the CKS of the same BB-system

51

parent
asked

call CBB.delete_| selection call CBB.

nonrelevant_ failed put_on_CBB td

proposals

T19

act_activate

call CBB.
select_proposal

put_on_BB
(problem)

finish_

activation

activate_
proposal

no_
solution

output_
outside

T 20

call CBB.
put_on_CBB
(proposal)

S 17

CKs
non-
active

parent
asked

call CBB.delete_| selection_

nonrelevant_ failed

proposals

proposal
fixed

call CBB.
update_HistoryList

act_activate

call CBB.
select_proposal

proposal
selection,
eady

call BB.
put_on_BB
(problem)

finish_
activation

activate_

no proposal

solution

rop

prepare_
parent

proposal
fixed

call CBB.
update_HistoryList

T21

S 18

Figure 3.36. S 17 and S 18: subprocesatedictivate_ CKSwith respect to the calling of

CBB.put_on_CBBby the CKS of the parent-BB-system

52

/” put_on_ N\
CBB

called by select_ nonrelevant |
CKS. proposal proposals
activate_CKS called called
S1 S2 S1
S3 S3 sS4
S5 S5 S5
S8 S7 S7
S9 S9 S9
S11 S11 S11
S13 2 ig S13
S15 cos S 16
\s18 & "™ _S17) feveevan S 17
proposals
A
select_ \
proposal
T8, T1, T2,
T 16 T 18
Y —
(EUBlEOFI_ \ v\ ﬁ?gztgtm
called by (éeglleéi gy
gg;\s/éte ckg neutral cregtg;
_ . . BB_sys
put_on_CBB s1 update_HistoryList
s1 | _T7,T19 23 T5T9 | s1
> <€ S6
S8 T8 T21 o T6,T 10 s7
S9 s11 S 10
o13 S13 s11
ois S 15 S 13
\S 17 / S 15

\ S18)

called by
KS.
activate_KS

S1
S3
S5

nuunununnm
RPRR R O®

f

Nohs P

T5,
T17

update_
V HistoryList

Kupdate_ \

HistoryList
called by
CKS.
activate_
CKS

update_HistoryList

Figure 3.37CBB, manager of 9 employees

delete_

\ S17)

update_
HistoryList
called by
BB_sys.
modify_
BB_sys

nunuunununnmwm
RPREPRONO

:

~NOTWwWN

Section IV: Application of the given example

4.1 Introduction

In this section the SOCCA model is applied to the given example, as described in subsection 1.5.
Two different representation types will be used to illustrate the way the BB-systems process the
details of the given example.

The actual calling of the export operations is worked out in event traces. In addition to these event
traces, process models will represent the state of the BB-systems at fixed points of time.

The complete event trace is divided into 9 steps. Every step is concluded with the creation of a new
process model. This process model, representing a BB-systems as presented in subsection 2.1.1, is
shown for every step.

4.2 Eventtraces

Event traces are a well known common ‘tool’ for case-oriented analysis or specification of
communication triggering. We will use this method to illustrate how the SOCCA-model for a
Blackboard System can handle the writing of a book, as described in the given example.
The details of the given example will be translated into the parameters of the operations.

To simplify the event trace, it is not possible to show parallel communication between objects. Only
one ‘possible’ sequence of events will be shown.

For the sake of ‘readability’ of the event trace, most proposals for an action are followed
immediately by their activation. This is not a very probable sequence in a working Blackboard
System. But, if the actual sequence of proposal-creation and -activation of different proposals does
not influence the problem-solving activity, we will maintain this order of events.

For the same reason, all proposals will be selected and activated by the CKS. A proposal that is
rejected does not show any action, it will only be deleted.

4.3 The export operations and their parameters

The parameters of the operations are given in figure 4.1.
The given parameters do not represent the actual implementation details. Some parameters are only
shown for the sake of readability.

The parametevk/not_okis a boolean parameter of the operatiGB8.select_proposand
BB.select_problenihe returned value indicates whether the selection was successful or not.
The parameteraller of the operations dBB_sysandKS denote the ‘calling BB-system’ or
‘outside’.

The operatiol8B.put_on_BRan be called bBB_sysor byCKS A CKS will use this operation to
put a result of a child-BB-system on the EBEB_syswill use this operation to put new initial
problems on the BB. For this reason, the third parame®Bgfut_on_BRwill be eitherresultor
Initial_Problems

The details in the event trace, representing the parameter actions of the export operation
BB.modify_BBg¢annot be traced back in the STD’s of the SOCCA-model. As all modifications on
the BB are executed by internal operations of the internal behaviBarmiodify_BBthe STD’s do
not specify these operations any further.

53

BB_sys
create_BB_sys (new-BB_sys, caller, Initial_Problems, KSs + Roles, CKS + Role)

modify_BB_sys (called-BB_sys, caller, modifications)
finish_BB_sys (called-BB_sys, caller)
get_info (called-BB_sys, caller)

KS

activate_KS (BB_sys, KS + Role)

activate_proposal (called-BB_sys, caller, Proposal, KS)
deactivate_KS (BB_sys, KS + Role)

CKS
activate_CKS (BB_sys, CKS + Role)
deactivate_CKS (BB_sys, CKS + Role)

BB

select_problem (BB_sys, ok/not_ok, Problem)
modify_BB (BB_sys, Problem, actions, Proposal)
put_on_BB (BB_sys, Problem, Initial_Problems/result)

CBB

select_proposal (BB_sys, ok/not_ok, Proposal)
put_on_CBB (called-BB_sys, caller-BB_sys, Proposal)
update_HistoryList (BB_sys, Problem, registration_History)
delete_nonrelevant_proposals (BB_sys, Proposals)

Figure 4.1. Export operations and their parameters (in the context of the event trace)

4.4 The division of the example into BB-systems, child-BB-systems,
problems and subproblems

The KSs communicate through the BB with other KSs by putting new subproblems on the BB.
The schema’s of appendix A show the translation of the informal description of the given example
into problems and subproblems, BB-systems and child-BB-systems.

Every step will introduce new problems and/or new BB-systems. The schema’s of appendix A can
help to keep track with all these problems and BB-systems.

The division into problems and subproblems must be viewed as only one possible interpretation of
the given example. In connection with the example, innumerable other acceptable interpretations are
possible.

The SOCCA model emphasises the communication between the BB-systems more than the
problem-solving on the BB. For this reason, the selection of the subproblems concentrates on the
identification of the separate BB-systems that model the processes of the given example. The
number of subproblems is kept low to avoid too many details.

Unfortunately, this low number of subproblems complicates a ‘realistic’ representation of the details

of the given example. However, on the basis of the process models and event traces presented in this
section, it is not difficult to imagine a more realistic processing of the details of the example.

54

4.5 Representation of the example in 9 steps

4.5.1 Step 1. The creation of the root-BB-systefrocess Creation

In this section we will present the start-up of the activities of the given example.

To start up the process of the collaborative writing of a book, we will first create a root-Blackboard
System that can create and activate metaprocess-like activities.

The root-BB-system will represent Jean-Claude, viewed from the perspective of the PROMOTER
Community. Jean Claude is the coordinator of the PROMOTER community and we are especially

interested in the role that he plays in the start-up and registration of the processes that are described
in the example.

Figure 4.2 shows the process model of this root-BB-system, n@redss CreationThe model

shows the two KSs and their roles: Jean Claude (JC) as ‘Process creator’ and JC as ‘Process Model
creator’.

JC is also the CKS of the BB-system, as he performs the role of ‘co-ordinator’.

As discussed in subsection 2.5, a person can have more than one role at the same time.

BB-sys Process Creation

BB

| P1: create new Process |

| P2: create new Process Model | KSs

’ As Process
Proposals N creator

History As
*PO: create new Process (P1), | Process
unsolved A

*PO: create new Process Model (P2,) mggtec!r
unsolved

*P2: create Process Model step 1 (P3),
solved

CBB

17

\
@ As cobrdinator

CKS

Figure 4.2. Process model step 1

There are two problems on the B8eate new Procesandcreate new Process Moddlhe first
problem,create new Processan create and start-up any possible new process.

The solving of this problem can be viewed as a meta-activity: the problem can start-up new
processes forever and remain unsolved as long as the KS Jean Claude as Process creator likes.
The same applies to the problemreate new Process Moddlhis problem can register the evolving

of the processes taking place in the example by creating a process model for every significant step.
The KS, Jean Claude as Process Model creator, will create a new process model after every step by
creating and solving a new subproblem naredte Process Model Step x.

The process model shows in tHistoryListon the CBB what action has taken place on the BB

before the process model was created.

In the HistoryList we can also trace back the parent-problem of every problem. The parent-problem
of the initial problems is PO, representing the parent-BB-system with the problem that caused the

55

new BB_systems. The problerreate Process Model Stejisla sub problem of P2reate Process

Model.

The HistoryList also shows that at the moment the process model is created, the two initial problems
are unsolved and the problem Bfzate Process Model Stepid solved.

To avoid too many details in the process model, only the unsolved problems will be shown on the
BB of the process model. In addition to this, only the results (solutions or failures) of the child-
BB_systems will be shown on the BB of the process model.

The details of all other solved or unsolvable problems can be found in the HistoryList of the CBB.

There are no proposals on the CBB. The process model was drawn when all proposals were activated
and updated in the HistoryList.

Usually, there may be many proposals on the CBB. We will only show the proposals that will be
activated later. As we want the event trace to show the activation immediately after the proposal of
a new subproblem, there will hardly be any proposal on the CBB in our process models. Again, this
not very likely to happen in a working Blackboard System.

Figure 4.3 presents the event trace of step 1.

Section (1) of the event trace shows the creation and activation of the very first Blackboard System,
Process Creation

The parameter ‘outside’ that denotes the caller of the opexatarte BB _syshows that the BB-

outside BB_sys KS \ CKS BB CBB J
I -
o o @ ﬁ "]
| Pw B (. S 3d
12, Sle 8 g 27 g B JE o ¢ 3 o 8T
E‘ @ ’%:l £ lo %’w S8 g .SQ B 83 %) Eg- oo ES %Ecé-’
£ 2 28 E9 82 B¢ 3E So 35 3% 3k 23 33 3L 25 BE zBE
ud S : S S S .
B
So
58
E-] °_ create_BB, sys(Process Creatlon ‘outside’, create new_| Process create_new_| Process Model KSs: JC as Process creator JC as Process Model creator
.E% 5 > . CKS:JCas coordl nator)
gg'ﬁ 1 act|vate CKS(Process Creation, JCasCoordmator) . .
T .
(1) EEG : act|vate KS(Process Creation, JC as Process _creator) .
2 . .
E [g - activate_KS (Process_Creation, JC as Process Model_creator) :
Y] . . . g :
,E;,gg. . put_nn_BB (Process_Creatlon, create_new_Process, create_new_Process_Model) o .
- update_HistoryList (Process_Creation, ‘outside’, ‘PO: create new Process, unsolved, PO: create new Process Model, unsolved') -
— > .
. select_Problem (Process_Creation, ok,Create_new_Process_l\Bdel)
3 L L ‘ >
o i i N N . g
<} . put_on_CBB (Process_Creation, Process_Creation, propl) .
= . . : - - >
2 % select_proposal (Process_Creation, ok, propl) .
S . - . ;
‘§ DE_ - :
(2) T activate _proposal (Process Creation Process_ Creation propl JC as Process, Model‘creator) .
© > .
Eg modlfy BB (Process_ Creatron create_new_Process_Model, create model |_stepl, solved propl)
" > :
§% update HistoryList (Process_¢ Creatlon create new_Process_| Model '
8 E P2: create Process Model stepl (AB) solved) .
aa . . . : : >
: : : : deleteﬁnonreIevantfproposals(Ffroces\streanon, propl) '
Creation Process Model step 1

: : : : : N
o : : : . A
I

All foperation infthis square are related td the creation of a new Process Modet.
These operations are texactly the same for each new Process Model '

Figure 4.3. Event trace step 1

56

system to be created is the very first or root-BB-system.

We can see that every KS and CKS involved is to be activated separately. The calls for all activate-
operations are made from the internal behaviour of the operatate_ BB _sydAs the dotted

vertical lines indicate the operations of the classes, we can trace back for every call from which
internal behaviour the call is made.

As soon as the problems are put on the BB, they can be selected by the KSs by calling
BB.select_problem

All remaining operations in the event trace of step 1 show the proposal for and activation of the
creation of the new process model of step 1.

All process models that are created in a later stage, will be made by the calling of exactly the same
operations and parameters.

For this reason, only an empty grey square will be shown when the next process model is being
created.

The only change to the parameters of the operations is the name of the subproblem of the operation
create new process mod&he name of this subproblem is in stepréate process model stepii

step 2:create process model stepeic.

The names of these operations can be found in the HistoryList, drawn in the process model.

4.5.2 Step 2: Creation and activation of the first child-BB-systerRromoter
Meeting

This step describes the starting of the Promoter meeting.

As the process model shows (figure 4.4), JC as process creator has proposed and activated a new
process: the Promoter Meeting. The initial problem on the BBrafhoter Meetings go through

agenda The formulation of the initial problem indicates that this problem is solved when the KSs
have made decisions about all topics on the ‘agenda’.

The ‘agenda’ will have to be defined in the problem descriptigjodfirough agendaHowever,

like in usual meetings, a KS can also add a topic to the ‘agenda’.

BB-sys Process Creation BB-sys Promoter Meeting
BB activate > BB
| P1: create new Process | ____________ | P1: go through agenda | KSs
| P2: create new Process Model | KSs @ As member
X As process S
Proposals N creator Proposals 1
1
l-Iistory As History A
PO: create new process (P1), Vv Process *P0: go through agenda (P1),) As member
unsolved : Model unsolved ¥
*PO: create new Process Model (P2,) creator
unsolved
*P2: create Process Model step 1 (P3),
solved . F A
*P1: new BB-sys: Promoter Meeting, < info As leading
go through agenda (P4), CBB A2 chairman
unsolved
*P2: create Process Model step 2 (P5), L4 \
solved \\
As controlling
chairman
CBB CKS
17
it
@ As codrdinator
CKS

Figure 4.4. Process model step 2

57

The KSs ofPromoter Meetingre the members of the Promoter community and JC as the leading
chairman. Jean Claude is the CKS as he performs the role of controlling chairman.

We need this refinement of the role of chairman as Jean Claude may also have to influence the
meeting in a more ‘active’ way (see also subsection 2.6).

The dotted arrow frorProcess Creatioto Promoter Meetinghows that the BB-systeRromoter
Meetingis activated by the parent-BB-syst&rocess Creation

The arrow labelled ‘info’ indicates that the KS, JC as Process Model creator, asked for info about
the new BB-sys in order to make the process model of step 2.

Figure 4.5 shows the event trace of step 2.

Section (3) of the event trace of step 2 shows the selection of a problem on the BB and the call for
put_on_CBBo put the proposal on the CBB. The proposal concerns the creation of a new BB-
system, named ‘Promoter Meeting'.

In section (4), this proposal is accepted by the CKS. The KS that created the proposal is then asked
to activate the proposal.

The new BB-system is activated and the HistoryList of both Blackboard Systems is updated.

This step ends with the creation of the process model of step 2.

Before JC can make the next model, he receives the most recent information about the new BB-
system by using the operati@B_sys.get_info

The creation of the new process model is described in section (5)

outside BB_sys KS | CKS | BB CBB J
e c
2 o'2 PR - T 5 2
) I @ o E | 1 | I 12
o £ m"% § g§ £ gw %w KI% g S' GI§- gu:u %é 328
@ b T fg T2 89 gx 8% $2 €m zm 28 51 B8 $5P
%u Er:n Em ot E;g @a oX aO o o Em am ud al® SI vcad
:%— ! ! !
b >
8 2 select_Problem (Process_Creation, ok, create_new_Proces)
gﬁ L L :
(3) QE_ put_on_CBB (Process_Creation, Process_Creation, propz) ’

select _proposal (Process_ Creatlon ok prop2)
'

- actrvate _proposal (Process Creatron Process_Creation,’ prop2 JC as Process creator)

E create BB sys (Promoter Meetmg Process Creation, go_through_: agenda KSs: m1 as member,.... 3...m26 as member JC as leading charrman,f
E. > . CKS JCas controlllng charrman)i
2] ' .
g' actrvate_KS (: Promoter_Meeung, m1 as member)
i S > ! ! E

(4) ,:“ dctivate_KS (:Promoter_Meeting, JC as leading chairman) . . .
8 R S > : :
o activate_CKS (Promoter_Meeting, JC as controlling chairman) ' ' :
8 ol ————— ——— > :
£3 put_on_BB (Promoter Meeting, create. new_process, go_through_agenda) . . .
23 . . N N >
E: update_HistoryList (Promoter_Meeting, create_new_process, ‘PO: gb through agenda (P1)') -
5) L h .
=5 ' : . >
EE update HlstoryLlst(Process Creatlon create new_process, created new BB _sys, Promoter Meetmg)
oo .

delete nonrelevant proposals(Pr‘ooessTCreatlon prop2) - '

3
2 : >
k) a ; select Problem(Process Creatron ok,create_new_Proces model)
o
58
E ne_ get_i mfo(Proces Creauon Promoter_Meeting)
B
®©
5)es
()E'ﬁ
T‘g.ﬁ E Creation Process Model step 2
3
gel
oo

Figure 4.5. Event trace step 2

58

4.5.3 Step 3: BB-systerPromoter Meeting makes decisions about the second
book

In step 3, the first decisions are made by the KSs of Promoter Meeting concerning the questions
raised during the meeting of 19940209 as described in the given example. the process model of step
3 is given in figure 4.6.

The History on the CBB d?romoter Meetinghows all decisions made by the KS®admoter

Meeting

The first new problemmake decisions about Bogk& probably a topic on the ‘agenda’ and put on

the BB by JC as leading chairman.

The first question raised by this new problem is whether the members of the Promoter community
want to make this new Book. In the History on the CBB we can see that a subproblermakmed
Book27is created by a KS with an immediate answer ‘yes’. As this new subproblem has the state
‘solved’, we can say that the KS that created this subproblem ‘posits’ that a new book must be
created.

BB-sys Process Creation BB-sys Promoter Meeting

BB BB

I P1: create new Process I I P1: go through agenda | KSs

| P2: create new Process Model | KSs | P2: make decisions about Book2 | o As member
: \i

' As Process | P7: make Bookstructure I -
Proposals N creator 1

_______________ Proposals

History | @ As “&@ A b
; Process | | -) S member
| ¥ Model History A

creator *P0: go through agenda (P1),
*P2: create Process Model step 2 (P5), unsolved
solved 19940209
19940209 *P1: make decisions about Book2 (P2),
*P2: create Process Model step 3 (P6), info unsolved
solved *P2: make Book2? (P3)
yes, solved
cBB *P2: decide roles Book2 (P4),
JC is general editor,
=4 Ali gives general support,
, | 1 editor, >=2authors and
_F 2 reviewers per chapter,
@ As cobrdinator decide chapter editors and
authors next day,

A

solved

CKS *P2: make Bookplan (P5),
Book2 is problemoriented,
solved

“P2: decide tools (P6),

use framemaker and email, a
solved @ As leading

*P2: make Bookstructure (P7) N chairman
unsolved

CBB

7
»
@ As controlling
chairman

CKS

Figure 4.6. Process model step 3

The decision to make a second book, in these steps referred to as Book2, is the first democratic
decision made by the KSs of Promoter Meeting.

The SOCCA-model does not regulate this democratic decision making. The knowledge of the KSs
and CKS has to define their behaviour in a democratic situation.

The KS Jean Claude as leading chairman has to find out whether a majority of the KSs agrees with

59

a decision and the KSs have to make sure that their opinion concerning a decision on the BB is
known by JC as leading and controlling chairman. The CKS has to control this democratic decision
making.

There are several ways to enforce democratic decision making on the BB.

To simplify the actions on the BB, we will assume that KSs only react to a decision on the BB if they
do not agree completely with the decision and that the KS in the role of leading chairman gives the
KSs time to react on a decision.

The given example only relates ‘vague’ details about the way decisions were made at the Promoter
Meeting. As we are mainly interested in the ‘complete’ process of the collaborative creating of a
book, we will not pay too much attention to the way KSs respond to new subproblems on the BB.

If we want to present a more ‘realistic’ way of decision making at the Promoter Meeting, we would
need many more steps to model the example.

The problenmake decisions about Boo&&uses many new subproblems litecide roles Book2,

make bookplamndmake Bookstructure

At the time the process model of step 3 was created, all new subproblems are solvedhakeept
decisions about Book#hdmake Bookstructure

In the given example, date descriptions are used to indicate at what point of time events took place.
It is a very natural activity of the CBB to register the actual date of the actions on the BB.

As the given example only relates dates occasionally, only the dates mentioned will be processed in
the History of the process models.

A modification of the BB can be represented by the following sequence of events:
select_problem();
put_on_CBB();
select_proposal();
activate_proposal();
modify_BB ();
update_HistoryList();
delete_nonrelevant_proposals();

As we confine ourselves to one sequence of events to simplify the event trace of the example, we
only have to define the parameters of the listed operations that reflect the modification on the BB.
The given order of events is already illustrated in the event trace of step 1 (figure 4.3). The event
trace of step 3 is given in figure 4.7. Note that there is one small difference with the events of the
event trace of step 1: the updates in the sections (6) and (11) show the addition of an ‘unsolved’
subproblem to the BB instead of a ‘solved’ subproblem. However, the state of the added subproblem
does not affect the sequence of events.

In the event trace of step 3 (figure 4.7), all actions proposed and activated by the KSs are
modifications of the BB.

As the interaction between the objects is already worked out in section (2) of the event trace of
step 1, we will only specify the parameters of the oper@BB.update_HistoryList

The parameters @@BB.update_HistoryListhow all details of the proposed and activated
modifications on the BB.

We will leave out all other operations of the event trace of step 3.

By doing this, some information will be lost, such as the actual KSs that proposed and activated the
modifications of the BB. As the given example does not tell us who took the decisions in the
Promoter Meeting of 19940209, we will just assume that the ‘unsolved’ subproblems are added by
JC the leading chairman and the ‘solved’ subproblems by different members.

60

outside

BB_sys KS CKS BB CBB N
| | - <
) o 7})
{ 5 ® (. B : §m
g e £ of o | 5 S ¢ B d g3 ,28
%::' %"’l EI%I oo £ g8 g: £0 Q 38, o, 83 Ja %:% %%%
o8 ER 23 BE s¢ 82 8¢ 85 88 8z £8 28 3a 206 ST 328
© ' —>
update H|storyL|st(Promoter Meetmg go through_s agenda .
. . ‘Pl make decisions about Book2 (P2) unsolved)
(7) : 1 .

update H|storyL|st(Promoter Meetmg make decisions about Book2
. P2: make Book2? (P3), yes solved)
® >
' update H|storyL|st(Promoter Meetmg make _decisions about Book2
. ‘P2: decide roles Book2 (P4),
JC is general editor, Ali gives general support
1 editor, >= 2 authors and.2 reviewers per chapter,

decide chapter editors and authors next day,
solved)

©)

update HlstoryIJst(Promoter Meetlng make _decisions . about Book2
. ‘P2:make Bookplan (P5),
Book2 is problemonented solved)
(10 S 5
update HlstoryLlst(Promoter Meetlng, make _decisions about Book2
' P2: decide tools (P6),
use framemaker and ema|l solved)

(11) .
. } ; 3
update HlstoryLlst(Promoter Meetlng, make decrsmns about Book2
: ' ‘P2: make Bookstructure (P7)
unsolved)

>

: select Problem(Process Creat|on create new_Proces model)

——————
get info (Process_ Creat|on Promoter ~Meeting)

(12)2 |Z| Creation Process Model step 3

Figure 4.7. Event trace step 3

61

4.5.4 Step 4: The creation of more than one child-BB-system to solve a single
problem

The problenmake Bookstructureemains unsolved in step 3. In step 4, the members are asked to
prepare a book structure for the following day.

In the BB-sys Promoter Meeting, the new probfeepare Bookstructuris created as a subproblem

of make Bookstructure

All members are asked to prepare a book structure separately. This implicates that every member
needs a separate BB-system as every member, as creator and controller of this activity, has to be the
only KS and the CKS involved in the solving of this new problem.

The process model (figure 4.8) shows the new BB-systems. The new BB-systems are activated by
the BB-systenPromoter Meetingand they all have the unsolved ‘initial’ problgmepare
Bookstructureon the BB.

Section (13) of the event trace of step 4 (figure 4.9) presents the creation of all new BB-systems and
the activation of all KSs and CKSs involved. In section (14)HilseoryListof Promoter Meeting

is updated.

Section (15) of the event trace shows how JC as process model creator from the BB-system
Process Creatiomasks information from the BB-systef@somoter Meeting, Memberl.. and

Member 2ebefore he creates the process model of step 4.

4.5.5 Step 5: BB-system Promoter Meeting receives the results of the child-
BB-systems

The process model of step 5 (figure 4.10) shows that member 1 has found a solution to the problem
prepare Bookstructuré he BB-system of member 26 indicates that member 26 has declared the
initial problem unsolvable. The reason is that the KS, member 26 ‘needed more time’ to come to a
solution.

There may also be members that still have the proplemare Bookstructuré an unsolved state.

The given example says that there are two proposals for a possible structure, so, on all BB-systems
of the members together, there must be two solutions.

The CKS of every member puts the result of its BB-system as a proposal on the CBB of the BB-
systemPromoter MeetingThe CKS ofPromoter Meetingputs the result of every child-BB-system

on the BB.

The event trace of step 5 is presented in figure 4.11.

In the event trace, the activities on the child-BB-systel@asmberlare recorded in sections (16) and
(17) and the activities dflember 26n section (19). In sections (18) and (20), the CKS of the parent-
BB-systemPromoter Meetingeceives the input fromlemberlandMember 26

Note that the KS dflember Ineeds two sections, section (16) and section (17), to come to a result.
In section (16), he creates a new ‘solved’ subprobtemcept Bookstructuré.ater, he will come

to the conclusion that this subproblem has also solved the ‘initial’ proptepare Bookstructure

In section (17), the state pfepare Bookstructuras changed from ‘unsolved’ to ‘solved’.

Member 26only needs one section, section (19), to come to a resMember 26executes two
actions by only making one call f8B_sys.modify_BB_sy&irst, he will add an ‘unsolvable’
subproblem to the BByjo Bookstructurgand later he also changes the state of ‘initial’ problem
prepare Bookstructurfom ‘unsolved’ to ‘unsolvable’. As a modification of the BB can consist of
more actions, this modification by the KS of Member 26 is permitted.

As Member 1 to Member 26 are intended to solve the same problem in parallel, the sequence of
events as represented in figure 4.11 is not a very ‘probable’ sequence of events.

62

BB-sys Member 1

BB

| P1: prepare Bookstructure

| KSs

As member

Proposals

History

19940209

*“P0: prepare Bookstructure (P1)
unsolved

CBB

creator

Ty

BB-sys Member 26
BB

P1: prepare Bookstructure | KSs

As member

Proposals creator
History "
19940209 A

*PO: prepare Bookstructure (P1)

unsolved
CBB

>
«‘
Y,

As member . L __o__ _ | As member
codrdinator 1 coordinator
info
CKS Il CKS
info activate : : activate
BB-sys Process Creation ;| BB-sys Promoter Meeting
Y L
BB BB
| P1: create new process | | P1: go through agenda |
| P2: create new Process Model | KSs [P2: make decisions about Book? |
= : / As process | P7: make Bookstructure |
roposals ~- creator
--------------- Proposals
History | A I |
| N Ellrc?c(i: ;SS History
19940209 creator *PO0: go through agenda (P1),
*P2: create Process Model step 3 (P6), unsolved
solved 19940209
*P2: create Process Model step 4 (P7), |
solved <« - |
info *P2: make Bookstructure (P7)
CBB unsolved
*P7: new BB_sys: Member 1

i

@ As codrdinator

CKS

prepare Bookstructure (P8),
ready next day,
unsolved,

|
new BB_sys: Member 26
prepare Bookstructure (P8),
ready next day,
unsolved

CBB

KSs

As leading
chairman

<@

As controlling
chairman

CKS
Figure 4.8. Process model step 4

@ As member
~
A

) As member
YJ

63

outside BB_sys

X
(0]

CKS BB CBB

proposal

create
BB_sys
. modify_
BB_sys
finish_
" 'BB_sys
. get_
info
- activate
KS
_ activate,
deactivate
KS
activate
CKS
deactivate
CKS
Problem
. modify_
BB
put_on
BB
select
" Proposa
put_on_
CBB
update__
HistoryList
delete_
nonrelevant,
proposéls

-3

(Promoter_Meeting, ok, make_Bookstructure

. VV select

select_| proble

Y

put_on_CBB (Promoter Meeting, Promoter_Meeting, prop3)

A

select_proposal (Promoter_Meeting, ok prop3)

'@

- actrvate »_proposal (Promoter_Meeting, Promoter Meetrng prop3 m? as member)

A

create BB sys(Memberl Promotor Meetmg, prepare_Bookstructure, KS: m1 as member creator CKS: ml as member ~_coordinator)
‘

activate KS‘(Memberl, ml as member . creator)

Y

actlvate CKS (Memberl, ml as member_coordinator)

Y.

put on BB(Memberl make Bookstructure prepare_Bookstructure)

Y

(13) update HlstoryLrst(Memberl make Bookstructure PO: prepare Bookstructure (P1), unsolved)

create BB_sys(act Member26 Promoter _Meeting, prepare_Bookstructure, KS: m26 as member creator CKS: m26 as: member_coordinator)

A

act|vate KS(Member26 m26 as member ~_creator)
>

actlvate CKS (Member26, m26 as member ~_coordinator)

creation and activation a proposal for 26 new

child-BB_systems for
preparation Bookstructure

A
>

put on BB(Member26 prepare Bookstructure)

Y

update HlstoryLrst(Member26 make ‘Bookstructure, ’ PO: prepare_Bookstructure (Pl),, unsolved)

>
update HistoryList (Promoter_Meeting, make_| Bookstructure -

(14) ‘P5: new BB_sys: Memberl prepare_ Bookstructure (Pﬁ) unsolved,

Promotor

Meeting

update HList

|
P5: new BB_sys: Member26, prepare_lBookstructure (F?6), unsolved’)

select probIem(Prooess Creation, ok, create_new_Process Model)
get mfo(Process Creatron Promoter_Meeting)

get_info (Process_Creat|on, Memberl)

(1) get_info (Process_Creatiort, Member26)

and create PM

get info from all
descendant
step 4

BB-systems

|< | Creation Process Model step 4

Figure 4.9. Event trace step 4

64

BB-sys Member1
BB-sys Member 26
BB
| Final Result BB
| Final Result I
Proposals]|t
Proposals
History
19940209 KSs ;_"T';";"""' KSs
*PO: prepallredBookstructure (P1), As member 19',3920)/209 As member
unsolve creator og creator
*P1: concept_Bookstructure (P2), po: ﬂl’:}s%al\l;icl?ookstructure (PY),
e - @ *P1: no Bookstructure (P2), !
*PL: prepare Bookstructure (P1), | [N g‘i?%rrgggfe“gnoeéé?ﬂ‘t’fge ~
solved (P1), unsolvable
CBB CBB
1 I
As.mgmber result As member
codrdinator i Member 26 codrdinator
info
CKS
result Member 1
BB-sys Process Creation BB-sys Promoter Meeting
YY
BB BB
| P1: create new Process | | P1: go through agenda | KSs
| P2: create new Process Model | KSs | P2: make decisions about Book2 | . @ As member
- I @ As Process | P7: make Bookstructure | A§
roposals creator
I~ | R1: result Member1l | :
History N H EN
I~ /l;\rsocess RZG6: result Member 26 _l , As member
| Model X
19940209 creator
*P2: create Process Model step 3 (P6), Proposals
solved
*P2: create Process Model step 4 (P7),} |
solved < oy History
19940210 into *PO: go through agenda (P1),
*P2: create Process Model step 5 (P8), unsolved
solved 19940209 |
CBB |
*P7: new BB_sys: Member 1

CKS

As codrdinator

prepare Bookstructure (P8),
ready next day,
unsoIV(led,
new BB_sys: Member 26
prepare Bookstructure (P8),
ready next day,
unsolved
19940210
*P7: Memberl:
prepare Bookstructure (P8)
result Member 1 (R1)
solved
|
*P7: Member 26:
prepare Bookstructure (P8)
result Member 26 (R26)
unsolvable

CBB

As leading
chairman

<)
2

4

2
s @

As controlling
chairman

Figure 4.10. Process model step 5

65

outside BB_sys KS CKs BB CcBB |
|

-ﬁ‘ \E 2 < 3 o I
L i é { Pl frml
2 Em FAS a §2 . o 8 RE 28 &
— > . ' .
select problem (Mem berl ok prepare_ Bookslructure) :
. >
puit_on‘_CBB(Memberl,Memherl, prop6) S
. ' ! ! . -
- KS member1 : o : select _proposal (Memberl ok prop6) -
16 - proposes and : < :
(16) - activates a concept . . actlvate _proposal (Memherl Memberl, prop6 ml as member creator)
- for a bookstructure L > Lo
' ' ' © modify_BB (Memberl, prepare_| Bookstructure concept Bookstruclure ..iey SOlVEd., prop6)
L >
update_HistoryList (Memberl prepare_ Bookstructure]
. . . L i | Pl concept Bookslructure ..., solved’)
‘K8 membaﬂ - :
- proposes ahd : > b
. activates the . select_problem (Memberl, ok, prepare_Booksttucture) .
. change of state of o . . 1 . Lo
“initial problem | . Lo . I ' I I . . I .
| prepars_ Bookstrud o ; - ; >
17 jumfmm update HlstoryLrsl(Memberl prepare_ Bookstructure
(17) . state ‘unsolved’ to — Pl prepare Bookstructure solved)
}siate solved . [. o . oo
. . . — . Lo) : . Ny . . Lo
The.CKS of Member 1 : : : | put_on_CBB (Promloter;hﬁeting, Memberl, prop_result_m1)
putstheresultonthe o .) NG : ST
CBB of Promoter Meeting o . select_proposal (Promotor_Meeting, ok, prop_result_m1)
(18) Tha‘CKS of PM puls the . - . . : . : : co
resdilt on the BBpf PM L o . put_on_BB (Promoter_Meeting, prepare_Bookstructure, result_m1)
. 1
B N — - > :
: ! ! ' select_problem (Member26, ok, prepare_Bookstructure): '
. K8 member26 } — >
. pruposesand . Iput;on;CBB(Member26,1Member26, prop7) . . .
- activates a change o o >
. of state OTPrd’Iem select_proposal (Membet26, ok, prop7) !
(19) - prepare . , e S E— ,
' Bookstructure fmm ' activate_proposal (! Memher26 Memher26 prop7 mZG as member creator) ;
‘unsolved’'to . h >
" ‘unsolvable’ . . “modify_BB (Member26 prepare Bookstructure prepare Bookstructure unsolvahle prop7)
. B . ‘ '
. update_HistoryList (MemberZB, prepare_BbokstructUre, .
' ' ' L ' ' ¢ ‘P1:prepare Bookstructure, unsolvable’)
ThefCKS of Membet 26 : o - - : - : : o
puts the result on the. pultfonfCBB (Prom‘oter;M?e‘ting, Membe‘rZG, p‘rop;resultfmze)
(20)CBB of Promoter Meeting [. >
The CKS of PM puts the o . selem ._proposal (Promoter . Meeting, ok prop result m26)
result on the BB of PM : : : : : g

— put on_BB (Promotor: Meetrng prepare Bookstructure, result_m26)

(21)

D Creation Process Model step 5

Figure 4.11. Event trace step 5

creation of PM

66

4.5.6 Step 6: Processing the results of child-BB-systems and the termination
the child-BB-systems

In step 6, a decision has to be made about the book structures, prepared by the members. Finally, the
chapter structures have to be made. First, the chapter groups are formed. Later, every group starts
working on the chapter structure of the chosen chapter.

The process model of step 6 is presented by figure 4.12 and the event trace of step 6 is presented in
figure 4.13.

On the BB ofPromoter Meetingre the results of the BB-systeMember 1 - Member 2@\ KS

proposes and activates the decision that the reduiwiber 1R1, is the best result and with a small
modification, this book structure is accepted as the final book structure.

The original problenmake Bookstructuris declared ‘solved’.

As make Bookstructuris solved, all the results of the other BB-systems can be deleted.

Finally, the BB-systemblember 1 - Member 2&re to be terminated. In section (25) of the event

trace, the finishing dlember lis worked out.

The event trace of step 6 only represents parts of the complete event trace as most actions are already
worked out in the previous event traces.

The part of the termination ddember lis worked out, as this is the only action of a BB-system that

is not worked out before.

The sections (22), (23), (24), (26) and (27) all concern modifications of the BB. The section (28)
represents the creation of a new BB-system. Section (4) of the event trace of step 2 already shows
the creation of a new BB-system.

The second part of the event trace concerns the new subproblesChapterstructurén order to

work in small groups on the problem, a new subprolitam groupsof problemmake

Chapterstructurés created.

Whenform groupsis solved, a new BB-system, nant@dapter 9 Groups created, so that the

members Luuk, Vicenzo and Jacques can work separately on the chapter structure of chapter 9.
During the formation of groups, it was already decided that Luuk should be the editor and Vicenzo
and Jacques should be the authors of chapter 9. As Jacques already left the meeting, Jacques is hot
included as KS in th€hapter 9 Group

Note that the BB-syste@hapter 9 Groughas two initial problems on the BBrepare structure
chapter 9andprepare 1 or 2 sheets

67

BB-sys Process Creation

BB

| P1: create new Process |

BB-sys Promotor Meeting

BB

P1: go through agenda |

| P2: create new Process Model | KSs
As Process
Proposals I~ creator
History A As
|) Process
| A Model
19940210 creator
*P2: create Process Model step 5 (P8),
solved
*P2: create Process Model step 6 (P9) info
solved €
CBB
| ——
@ As codrdinator
CKS
BB-sys Chapter 9 Group info
BB

| P1: prepare structure chapter 9 |

| P2: prepare 1 or 2 sheets |

Proposals

History
19940210

unsolved
*PO: prepare 1 or 2 sheets (P2),
unsolved

CBB

*PO: prepare structure chapter 9 (P1),

KSs
A
Y@ As author

4 As writing

A ¢ editor

€ — — — - - - = =
activate

As contolling
editor

CKS

68

| P2: make decisions about Book2 I

| P10: make Chapterstructure |

Proposals

History

19940209

*PO0: go through agenda (P1),
unsolved

|

19940210

*P7: Memberl:
prepare Bookstructure (P8)
result Member 1 (R1)
solved|

Member 26:
prepare Bookstructure (P8)
result Member 26 (R26)
unsolvable

decide Bookstructure (P9),

*P7:

*P7:

solved,
P7: make Bookstructure (P7),
solved

R2: deleted

R26: dleleted

BB_sys Member 1 terminated,,

|

BB_sys Member 26 terminated

make Chapterstructure (P10)
unsolved

*P10: form groups (P11)

*P7:

*P7:
*P7:

*P2:

group 9: Luuk as editor,
Jaques and Vicenzo as authors
solved

new BB_sys: Chapter 9 group,
prep. structure chapter 9 (P11),
prepare 1 or 2 sheets (P12),

ready next day,
unsolved

*P10:

CBB

R 1 best result, modification R1,

41

cxs (@

As controlling
chairman

Figure 4.12. Process model step 6

KSs

@ As member

A
As membe
~

As leading
chairman

<@
2

outside BB_sys KS CKS BB CcBB |

| | a
e Ll g ' oF § ' E § ol e 3 Bé‘ ,g'ﬁ
&4 E‘E’ 2a % E_ §] gl 2 7 tigom °'6§
iz Bg 27 g2 o 4b LE §2 88 i §£ B 3 g6k
‘ @2 — — >

' update HistoryList (Promoter Meetrng make_| Bookstructure
. ‘P7: decide Bookstructure (P9), .
R 1isbest result modrfrcatron R 1,

. . solved | '
23 X P7: make Bookstructure (P7 solvecL)

. update HistoryList (Promoter_Meeting, make Bookstructurel

. ‘R2 deleted 9 .

(24 I Lo . .
‘ "
. update HistoryList (Promoter_Meeting, make, Bookstructure .
' ‘R26 deleted 9 '

" the fermination of the BB-systems Membert T

e "
> . .
I select probIem(Promoter I\'/Ieetihg, ok, make Books'tructL'Jre) I . .
B T
1 put on CBB(Promoter Meetlng, Promoter Meetlng prop8) -
. >
- select proposal(Promoter Meetlng ok, prop8)
. < . . . actrvate _proposaI(Promoter Meeting, Promoter meetrng prop8, M? as member)
' frmsh BB sys(Memberl Promoter Meeting) ' ' '
(29): @ deactlvate_KS (Member;l, m;l as member_creator)
.
E ! deactivate_CKS (Member 1, m1 as member_coordﬁator)
S terminate all other member-BB-systems
B! ! . >
. . update HrstoryLrst(Promoter Meetrng make_| Bookstructure
. . ‘P7 Member 1term|nated
Member 26 terminated') -

(26)

update HistoryList (Promoter_Meeting, make_| decrsrons about Book2,
‘P2: make Chapterstructure(PlO)
unsolved”)
. . >
. update HistoryList (Promoter_Meeting, make ChapterstrUcture
' ' ‘PlO form _groups (Pll) ' '

@7)

group 9: Luuk as editor,
Jaques and Vicenzo as authors,

28 >
. update HistoryList (Promoter_Meeting, make Chapterstructure
. ‘P10: new, BB_sys: Chapter 9.group
prepare structure chapter9,
prepare 1 or 2 sheets chapter 9,
ready next day,
Unsolved')

' (29)

|Z| Creation Process Model step 6

Figure 4.13. Event trace step 6

69

4.5.7 Step 7: A discussion orChapter 9 Group and Promoter Meeting proposes
its own termination

BB-sys Process Creation BB-sys Promotor Meeting

BB BB

| P1: create new process | Final Solution | KSs

| P2: create new Process Model | KSs ;
Proposals As member
’ @ As process p I~

*P10: terminate Chapter 9 Group

Proposals N creator *P0O: terminate Promotor Meeting 1
[1
History EN As Hlstory A
| Process *PO: As member
[N~ PO: go through agenda (P1), I~
19940210 MOdf' unsolved
creator
*P2: create Process Model step 5 (P8), 19940209
solved 199402|10
*P2: create Process Model step 6 (P9), - info |
199483%3(1 - *P10: new BB_sys: Chapter 9 group
*P2: create Process Model step 7 (P10)) prep. structure chapter 9 (P11),
solved result Promotor Meeting prepare 1 or 2 sheets (P12),
to be presented by editor
next day,

result Chapter 9 Group (R27)
solved

*P10: decide chapter structures (P13)
accept results Chapter 9 Group

BB-sys Chapter 9 Group

<€
cBB unsolved
19940211
4 = *P10: Chapter 9 Group:
F) prepare structure chapter 9 (P11
> ’ result Chapter 9 Group (R26)
solved
CKS @ As codrdinator prepare 1 or 2 sheets (P12)
info

BB solved
[Final solution | P10 : make chapterstructure As leading
(P10), solved chairman
result Chapter 9 Group *P2: make decisions about Book2 (P2)
Proposals solved A
*P1: go through agenda (P1)

[R— solved ~

History

19940210

CPO: prepare structure chapter 9 (P1), CBB

unsolved
*PO0: prepare 1 or 2 sheets (P2),

unsolved T()
*P1:determine strategy Chapter 9 (P 3) . ’
unsolved i
*P3: decide using example (P 4) CKS @ ?ﬁa?:)rggr?”mg
arguments
solved
*P4: formulate objections (P5)
arguments
solved
*P4: formulate refutation objections(P6)
arguments
solved
*P4: decide integration objections (P7)
arguments
solved
*P4: decide using example (P4)
solved
*P3: choose example (P8)
collaborative writing of chapter 9,

solved A
*P3:: formulate theorem(P9) I~
As

KSs

arguments
solved
“P3: determintne strategy (P3) Author
solved
*P1: prepare chapter 9 (P1)

solved - <
*P2: concept sheets (P10)
concept, N

solved -
P2: prepare 1 or 2 sheets P5) As writing
solved editor

CBB

4
N 4
CKS @ As controlling editor

Figure 4.14. Process model step 7

70

The given example relates the discussion of the group that prepares a chapter structure of chapter 9.
The next day, the results of this discussion are related to the members of Promoter. The Promoter
meeting agrees with the chapter structure of chapter 9.

By finishing the decision of the chapter structures, the Promoter meeting has made all necessary
decisions to start up the second book. When all topics on the agenda are finished, the Promoter
meeting is to be terminated.

All details of the given example of step 7 concern features of the SOCCA model that are already
worked out in former steps.
The event trace of step 7 is therefore omitted.

The process model of step 7 (figure 4.14), shows all details processed during step 7.

At the moment the process model is drawn, 2 proposals are on the GB&hufter Meeting

The first, is a proposal for the termination of Chapter 9 Group and the second is a proposal for the
termination of Promoter Meeting. In step 8, these proposals are activated.

4.5.8 Step 8: BB-systenChapter 9 changes its own ‘initial’ problem

This step concerns all remaining details of the given example: the writing of chapter 9 of the second
book. The process model of this step is given in figure 4.15 and the event trace in figure 4.16.

Step 8 starts with the actual terminatiorCbiapter 9 GroumndPromoter MeetingBoth proposals

for termination were created by KSsRifomoter MeetingAlthough both proposals concern the
termination of a BB-system, they are handled differently. The termination of Chapter 9 Group is
activated and executed Pyomoter MeetingThis action is handled in exactly the same way as the
termination oMember las described in section (25) of the event trace of step 6.

The termination oPromoter Meetindnowever, has to be activated by the paferdcess Creation

In section (30) of the event trace of step 8 (figure 4.16), the terminatferowioter Meetings

worked out.

Based on the results Bfomoter Meetingknowledge Source JC as ‘Process creatoProtess
Creationcreates a new process: the actual making of the second book. JC will create a new BB-
system, calle@ook 2that is responsible for the writing of the second book. The members of the
Promoter community will be involved in this new BB-system as members.

All decisions made by the membersRybmoter Meetingvith respect to the writing of the second
book will now be part of the problem description of the ‘initial’ problerBobk 2 namedmake

Book?2

The first subproblem ahake BookZs write round 1

Book 2will then create a new separate BB-syst@hapter Sthat is responsible for the writing of
chapter 9Chapter s initial problem iswrite chapter 9

Nearly all details described in the given example concerning the writing of chapter 9, can be
modelled as modifications of the BB Ghapter 9 These modifications can be traced back in the
History of Chapter 9in the process model of step 8, figure 4.15.

The only exception is described in the last paragraph of the example: the changed set-up of chapter 9.

In terms of the SOCCA model, the changing of the set-up of chapter 9 is the changing of the problem
description of the initial problem @&hapter 9

As a modification of an initial problem is a modification of the BB-system involved, this
modification can only be activated by the parent of the BB-system.

In section (31) of the event trace of step 8, this particular modification of the BB-9yktgter 9

is worked out.

The event trace of section (31) starts when one of the KShayter 9has already created and

posted a proposal for the modification of the initial problem. The CKShapter 9Luuk as
controlling editor, selects this proposal and puts the proposal on the CBB of the parent-BB-system,

71

BB-sys Process Creation

BB

| P1: create new Process |

| P2: create new Process Model |

Proposals

History

I
19940211

|

*P1: Promoter Meeting:
go through agenda (P4)
result Promoter Meeting (R1)
solved

*P1: new BB-sys: Book 2,
make Book2 (P11),
unsolved

19940901

*P2: create Process Model step 8 (P12)
solved

CBB

As Process
creator

O 5
A Process
AS Model

creator

info

BB-sys Book 2

A

activate

info

A

1
lk y

As codrdinator

CKS

72

B

B

P1: make Book2

P2: write round 1

KSs

@ As member
~

Proposals

History

19940211

*P0: make Book2 (P1),
unsolved

*P1: write round 1 (P2),
unsolved

*P2: new BB_sys: Chapter 9
write chapter 9 (P3),
unsolved,

19940901

*P3: Chapter 9:

Change setup chapter 9 (P4)

..., solved

CBB

A
As member
~
A As general
~ co-editor
A As technical
~x support

A As leading
~ general editor

7

’ As controlling
CKS @ general editor

BB-sys Chapter 9

(_______

activate

BB

P1: write chapter 9

P4: work on contents chapter 9

Proposals

History

19940209

*PO: write chapter 9 (P1),
unsolved

*P1:i nform Jaques (P2)
solved

*P1: organise writing (P3)

solved

unsolved

lemma 7.4 and 7.5
solved

19940901
*P4: sent to parent:

CBB

use sabattical months

*P4: how to prove theorem (P5)

*P1: work on contents chapter 9 (P4)

proposal change setup of chapter
*P4: change setup of chapter (P6)

As
Author

LW

As writing
editor

CKS

Figure 4.15. Process model step 8

As controlling editor

Book 2

The CKS ofBook 2 Jean Claude as controlling editor, selects this proposal and activates the
proposed modification d€hapter 9

The selection and activation of the proposal triggers 3 calzB&.update_HistoryListhe first call
registers the transportation of the proposal to the CBB of the parent. By the remaining calls, the
change ofChapter 9is registered bZhapter 9andBook 2 This way the Members of Book 2 are
also informed of the changes of the set up of chapter 9.

outside BB_sys KS CKS BB CBB

create
BE_
_ modify_
BB_sys
ish_
_sys
t_
fo
KS
activate

deactivate
KS
mvam
_ deactivate_
" CKS
select_
Problem
puton_
_ select_
Proposal
ut_on_
CBB
i
st
delete
nonralevant
propasals

. pu

E

select_proposal (Promoter_Meeting, ok, prop9)

put_on_CBB (Process_Creation, Promoter_Meeting, prop9)

L select_proposal (Proce$s Créatior) ok, prop9)

dctivate_proposal (Prdmoter Meetlng Process_! Creauoh pr0p9 JC as Ieadlng chairman)

.‘ .
finish_BB sys(Promo’rer Meetlng Promotor Meetmg)

(30): deactlvate KS (Promoter Meetmg M1 as member)

- I —3» .
deactivate_KS (Promoter _Meeting, M26 as member) -

deactivate_KS (Promoter_Meeting, JC as leading chairman).
»~

deactivate_CKS (Promoter_Meting, JC as chairman)
update HistoryList (Process Creatlon create_| new process .

. ‘P1: Pronjoter Meeting: go through agenda,(P4)
result Promoter Meeting (R1), solved’) :

Meeting, proposed by a KS of Promotor Meeting

" the activation of a proposal for the temination of Promotor

|
| R
| other actions -
| ST
|

3
&
e : " - - -
. Fé . select_proposal (Chapter9, ok, prop10)
D8 — o L3
B put_on_CBB (Book2, Chapter9, prop10) ' -
= >
: é rl . select ._proposal (Book2,.0k, proplO) .
X g ' . acuvate proposaI(Chapterg Book2, prop10, Luukas w,rmng edltor)
. - | <l
. E ‘j moﬁlfy BB sys(ChapterQ Chapter9 modified_initial problem prop10)
ey § ' >
. 2o ! put_on_BB (Chapter9, wtite_chaptet9, modified_initial_problem) !
. a?®)
L =2 L
. Bg update HlstoryLlst(ChapterQ work_on_contents ohapterg
' S'E ‘P4: sent to parent:
' E'ﬁ proposal change setup chapter)
. '1; . A -
. “’% . update HistoryList (Chapter9 work on_contents chapterQ A
' g a ' ‘P4: change setup of chapter (P6), .
. solved) .
— .)) . ' ' ! update HistoryList (Book2, wtite_chapter9, !

‘P3: Chapter9 change setup of. chapter(P4),

solved)

Figure 4.16. Event trace step 8

73

Chapter 9

BB-sys Process Creation

BB

BB-sys Book 2

4.5.9 Step 9: ParenBook 2 formulates a second problem for BB-system

This final step is not explicitly described in the given example. It is worked out to demonstrate an
interesting feature of the Blackboard model that is not yet described in one of the previous steps.

BB

KSs

[P1: create new process |

KS | P1: make Book2 |
| S

| P2: create new Process Model

I P6: write round 2 I

Proposals

|
19940901
*P2: create Process Model step 8 (P12)
solved
*P2: create Process Model step 9 (P13)

As process
creator

As
Process
Model
creator

info

@ As member
A§

Proposals

History

|
19940901
*P3: Chapter 9:
Change setup chapter 9 (P4)

2N
i As member
N

As general
co-editor

A
=0
FA
=0,

A

solved
solved

: Chapter 9:
write chapter 9 (P3)
result Chapter 9 (R9)
solved

write round 1 (P2)
solved

: review round 1 (P5)

As technical

88 support

A

’

@5 As coordinator

CKS

P2

P

[y

solved
write round 2 (P6)
unsolved
: Chapter 9
rewrite chapter 9 (P7)
unsolved

*P1:

P

<]

As leading
general editor

®

CBB

A

4

CKS @5

Chapter 9

result

Chapter 9

|
As controlling l
general editor I

activate
I new problem

|
; Y

| P7: rewrite chapter 9 first time |

info

BB-sys

Proposals

History

| P
| ()
19940901 x

*P4: sent to parent: As
proposal change setup of chapter Author
*P4: change setup of chapter (P6)
solved :@
*P4: write chapter sections (P7),
solved As
19940928 writing
*P4: work on contents chapter 9 (P4), editor
solved
*P1: write chapter 9 (P1),
solved
*PO: rewrite chapter 9 first time (P7)
unsolved

CBB

9

@ As controlling editor

CKS
Figure 4.17. Process model step 9

74

Chapter 9has now solved the initial problenrite chapter 9and put the result on the CBB of the
parent,Book 2

The result is accepted and put on the BBadk 2 Based on the result Ghapter 9the subproblem
write round lis now solvedBook 2now starts up the review of chapter 9 by creating a new
subproblem, name®view round 1As the given example relates no details of the review of chapter
9, this subproblem aghake Book2s not worked out any further.

Whenreview round 1is solved, a new subproblemwfite Book2 namedwrite round 2is started.
write round 2has a new subproblerawrite chapter 9 first timgvhich is to be the new ‘initial’
problem ofChapter 9

In this way, the result d@hapter 9is modified byBook 2andChapter 9in turn. The process model
and the event trace of this step are given in figures 4.17 and 4.18. In (32) of the event trace of step 9,
Book 2puts the new ‘initial’ problem on the BB &hapter 9

P

outside BB_sys KS | CKS | BB CBB o
- [

| = B e - 3 So
g Sle @ £ 29 , 2 J5 S8 8 2 o B

g %wl g2 S0 28 g 20 E:Q 23 % 8 88 Elg i‘::ﬁ %Eﬁ

gg ER -Eg 3 @xX Ejg. K4 E% 30 3a Eg 3 TE a0 ST g]:g

.. get
info

Y

- select_problem (Book2, ok, write_round2)

Yo

- put_on_CBB (Book2, Bookz, pjropll})

select_proposal (Book2, ok, propll)

-
<

activate_proposal (Book2 Book2 propll, JC as Ieadlng edltor)

'«

(32) < !
modlfy BB_sys (Chapter9 Book2 rewrite_chapter9_first_f tlme rerbeas)

.y
>

put on BB (Chapter9, wrlte round2 rewrite_chapter9_first tlme)

update H|storyL|st(Chapter9 wnte round2, ‘P0: rewrite chaptergflrst time (P7),
unsolved) .

. update_HistoryList (Book2, write_round2, ‘P6: Chapter 9 ! -
: ! rewrite chapter 9 first tlme (P7)
L . : : : : unsolved)

_. The parent BB-system Book 2 puts a new problem
on the BB of child-BB-system Chapfer 9

Figure 4.18. Event trace step 9

75

76

Section V: Conclusions and further research

Summarising, it can be concluded that non-automated Blackboard Systems can be modelled
successfully in SOCCA.

By applying the Blackboard System to a ‘real-life’ example, it was demonstrated that the proposed
Blackboard System is fit to model even complex human collaboration processes. The simple process
models, that were created at fixed points in time, clearly visualise the evolution on the Blackboards
by means of changes to the problems on the Blackboards and by means of changes to the Blackboard
Systems involved. In the course of the complete process of the collaborative writing of the book,
several different Blackboard Systems were generated of which some were terminated later.

In the event traces, the communication between the objects in their problem-solving activity is
outlined. This way, the actual realisation of evolution is visualised.

Naturally, this evolution can also be visualised in other ways, depending on the type of information
that is to be illustrated.

In the course of the design of the Blackboard-System, some interesting features of human behaviour
were detected.

The notion of human roles is very important when humans are involved in processes. The refinement
of human roles can sometimes clarify the human behaviour that is associated with the human role.
If the relevant, distinct roles of a human can be identified, even human behaviour can be simulated
by means of a Blackboard System. The control of the Blackboard System will be represented by the
human part that personifies the Control Knowledge Source. The coordination between the human
roles is the responsibility of the Control Knowledge Source.

If human behaviour in relation to (evolving) human collaboration processes is to be modelled, this
human behaviour or the coordination of the different human roles has to be modelled more
explicitly.

Also the use of multiple control of a Blackboard System needs to be studied further.

As the design of the Blackboard System emphasises its reproductiveness and the communication
between the systems, the evolution on the Blackboard itself remains relatively underexposed.
Especially when Blackboard Systems are used to investigate special cases of human collaboration
processes, this evolution may need more refinement.

77

References

[1]

[2]

[3]
[4]

[5]

[6]

[7]

[8]
[9]

78

T. de Bunje, G. Engels, L.P.J. Groenewegen, A. Matsinger, and M. Rijnbeek, “Indus-
trial Maintenance Modelled in SOCCA: an experience reportPrateedings of the
Fourth International Conference on the Software Process (ICSP4) — Improvement
and Practice pp 13-26, IEEE Computer Society Press, Los Alamitos, California,
1996.

D. D. Corkill, A Blackboard Based Collaboration Environment for Human Problem-
Solving National Science Foundation Phase | Final Report, Blackboard Technology
Group, Amherst, MA, 1996.

R. Engelmore and T. MorgaBJackboard System#ddison Wesley Publishing
Company, 1988

G. Engels and L. GroenewegersOCCA: Specifications of Coordinated and Coop-
erative Activities”. In A. Finkelstein, J. Kramer, and B. Nuseibeh (eds.), Software
Process Modelling and Technology, pp 71-102, Research Studies Press LTD.,
Taunton, 1994.

Also available as Technical Report 94-10, Department of Computer Science, Leiden
University, 1994.

L. D. Erman, F. Hayes-Roth, V.R. Lesser and D.R. Reddy, “The Hearsay-Il speech-
understanding system: integrating knowledge to resolve uncerta@w,

Computing Surveys2(2), pp 213-53, 1980.

Reprinted in chapter 3 of [3].

L.P.J. Groenewegearallel Phenomena-14, Technical reports, 86—-20, 87-01,
87-05, 87-11, 87-18, 87-21, 87-29, 87-32, 88-15, 88-17, 88-18, 90-18, 91-19,
Department of Computer Science, University of Leiden, 1986-1991.

A. Newell, Some problems of the basic organization in problem-solving programs.
In: M.C. Yovits, G.T. Jacobi, and G.D. Goldstein (ed3rpceedings of the Second
Conference on Self-Organizing Systepps393—-423, Spartan Books, 1962.
Promoter,Software Process: Principles, Methodology, Technglbb\CS, Springer,

to be published.

C.M.C. Spruit,Blackboard Systems in SOCCA: Process Evolution visualised by
reproductive, communicating Blackboard SysteMester’s thesis, Internal Report
97-19, Department of Computer Science, Leiden University, 1997.

Appendix A: Identification of BB-systems and problems of the
given example

In this appendix, the BB-systems and their child-BB-systems and the problems and their
subproblems of the given example are outlined.

Figure A.1 represents all BB-systems involved in the given example. The BB-$}sieess
Creationis the root-BB-system. The BB-systePr®omoter MeetingandBook 2are child-BB-
systems oProcess CreationThe BB-systemdemberl,...., Member 2éhdChapter 9 grouare
child-BB-systems oPromoter MeetingFinally, Chapter 9is child-BB-system oBook 2.

Process Creation

Promotor Meeting Book 2

Member 1 Member 2 Member 26 Chapter 9 group Chapter 9

Figure A.1. All BB-systems of the example

Every Blackboard system has its own tree of subproblems. The name of a Blackboard System is
printed at the top of the tree. The root of the tree of subproblems is the ‘initial’ problem. If a BB-
system has more than one ‘initial’ problem, every ‘initial’ problem has its own tree of subproblems.
If a subproblem causes a child-Blackboard System, the name of the child-BB-system is written
below the subproblem.

In figure A.2, the two initial problems of the root-BB-system and their subprocesses are presented.
The initial problem create new Process creates two new subproblems or processes named ‘go
through agenda’ and ‘make Book2'.

‘go through agenda’ causes the new BB-sydteamoter Meetingnd the subproblem ‘make

Book?2' causes the child-BB-systeéBook 2

Figure A.2 also presents the subproblemBroimoter MeetinggndMember 1,, Member 26
Finally figure A.3 presents the subproblem&bfapter 9 groupBook 2andChapter 9

79

Process Creation

create new Process

make Book2

go through agenda

Promotor Meeting Book 2

Process Creation

create new Process Model

create Process Model create Process Model create Process Model | create Process Model
step 9

step 1 step 2 step 3

Promotor Meeting

go through agenda

make decisions about Book2

make Book2? make decide decide make make
book roles Book2 tools book chapter
plan structure structure
|
[I [1
decide prepare form prepare prepare decide
book book groups structure 1 or 2 sheets chapter
structure structure chapter 9 chapter 9 structures
Member1 Chapter 9 Chapter 9
Member2 group group
|
Member26
Member 1 Member 2 Member 26
prepare book structure prepare book structure prepare book structure

concept book structure

Figure A.2. Subproblems of the BB-systelRtscess Creation, Promoter Meetingd
Memberl,, Member 26

80

Chapter 9 group

prepare structure chapter 9

Chapter 9 group

prepare 1 or 2 sheets

determine strategy chapter 9 concept
o P sheets
|
[| |
decide choose formulate
using example example theorem
decide
formulate formulate ; .
objection refutation integration
objection objections
in chapter
Book 2
make Book2
write review write review write review finish write
round 1 round 1 round 2 round 2 round 3 round 3 coherence introduction
write rewrite rewrite
chapter 9 chapter 9 chapter 9
first time second
Chapter 9 time
Chapter 9
Chapter 9
Chapter 9 Chapter 9 Chapter 9
write chapter 9 rewrite chapter 9 rewrite chapter 9
first time second time
inform organize work on
Jaques writing contents
chapter 9
how to
prove change set up write chapter
theorem chapter sections

Figure A.3. Subproblems BB-syste@bapter 9 groupBook 2andChapter 9

81

