
OPTIMAL DAG PARTITIONING FOR PARTIALLY INVERTING

TRIANGULAR SYSTEMS

ARNO C. N. VAN DUIN

�

Abstract. An approach for solving sparse triangular systems of equations on highly parallel computers

employs a partitioned representation of the inverse of the triangular matrix so that the solution can

be obtained by a series of matrix-vector multiplications. This approach requires a number of global

communication steps that is proportional to the number of factors in the partitioning. The problem of

�nding the minimal number of factors subject to the requirement that these factors do not need more

storage space than the original triangular factor has been studied by several authors. We formulate a

new related graph problem and give an algorithm to solve this problem. We prove that the partitioning

resulting from this algorithm requires less factors than existing partitioning algorithms.

Key words. graph, parallel computation, triangular system, sparse matrix, matrix inverse

1. Introduction. In this paper a graph partitioning algorithm is considered which

arises in the solution of sparse triangular systems of equations on highly parallel computers

using the partitioned inverse approach. The advantage of this approach over the conven-

tional substitution algorithm is that there is much more parallelism to be exploited in the

arising matrix-vector multiplications. The number of these matrix-vector multiplications

must be kept to a minimum in order to reduce the amount of global communication steps

necessary after each matrix-vector multiplication.

The problem that needs to be solved is:

Problem 1 Given a lower triangular matrix L �nd matrices S

k

such that:

1. L =

Q

K

k=1

S

k

2. the sparsity pattern of S

k

is equal to the sparsity pattern of S

�1

k

,

3. the sparsity pattern of S

k

and S

i

(i 6= k) do not overlap outside the diagonal,

4. the sparsity pattern of

P

K

k=1

S

k

is equal to the sparsity pattern of L, and

5. K is minimum for all factorizations that satisfy the �rst four properties.

The matrices S

k

can be stored e�ciently in the memory space required for L. In addition,

the calculation of the solution vector x to the system Lx = b can be done in K steps

of parallel matrix-vector multiplications. The number of expensive global communication

steps is proportional to the number of factors K in the factorization of L. Therefore,

K can be used to predict the time needed for the triangular solution on highly parallel

machines. For sake of simplicity we assume L to have a unit diagonal.

In stead of solving problem 1 we formulate a related graph problem, but �rst we

introduce some terminology used in graph theory.

Associate with the matrix L a graph G = (V;E) with vertices V = f1; : : : ; ng cor-

responding to the columns of L and edges E = f(j; i)jl

ij

6= 0g corresponding to the

�

Department of Computer Science, Leiden University, P.O. Box 9512, 2300 RA Leiden, The Nether-

lands, arno@cs.leidenuniv.nl

1

2 Optimal Edge Partitioning

nonzeros of L. The edge e

ij

is directed from the lower numbered vertex i to the higher

numbered vertex j. A vertex i is called a predecessor of another vertex j in G if there

exists a directed path from i to j in G. If i is a predecessor of j then is j a successor

of i. An ordering of G is any bijection from V to the set f1; 2; : : : ; ng. An ordering is

called an ascending topological ordering if every node has a lower number than all its

successors. The transitive closure of a graph G = (V;E) is a graph

~

G = (V;

~

E) with

~

E = f(i; j)jthere is a path in G from i to jg. If a graph G is equal to its own transitive

closure, G is called transitively closed. The graph associated with L

�1

is equal to the

transitive closure of the graph associated with L [8]. The induced subgraph of a subset of

vertices

~

V is the graph

~

G = (V;

~

E) with

~

E = f(i; j)j(i; j) 2 E ^ i 2

~

V g.

Others [1, 2, 3, 5, 11] have considered the following node partitioning problem, which

is closely related to problem 1:

Problem 2 Given a DAG G, �nd an ordered partition R

1

� R

2

� � � � � R

r

of its vertices

such that

1. for every v 2 V , if v 2 R

i

then all predecessors of v belong to R

1

; : : : ; R

i

,

2. the subgraph induced by each R

i

is transitively closed, and

3. r is minimum over all partitions that satisfy the �rst two properties.

A more e�cient algorithm exists for the special case where the graph associated with

L+ L

T

is chordal [9], as is the case when L is a Cholesky factor of a symmetric positive

de�nite matrix. Let S

k

be the matrix with the v

th

column equal to that of L for all nodes

v in R

k

, and let all other columns m be �lled with the corresponding unit vector e

m

. The

�rst four demands of problem 1 are met, so we have a factorization of L in r terms. The

number of factors, r, is an upper bound of K: K � r.

We try to �nd a better bound and better partitioning by considering the following edge

partitioning problem:

Problem 3 Given a DAG G = (V;E) �nd an ordered partition W

1

� W

2

� � � � � W

t

of

its edges such that

1. for every e

ij

2 E, if e

ij

2 W

s

then all edges e

ki

2 E belong to W

1

; : : : ;W

s

.

2. the subgraph (V;W

s

) is transitively closed.

3. t is minimum over all partitions that satisfy the �rst two properties.

The next theorem states that the solution to problem 3 results in a partitioning with

less factors than the solution to problem 2.

Theorem 1 r � t

Proof Let W

i

be all edges leaving from the nodes in R

i

than condition 1 and 2 of

problem 3 are ful�lled, so t � r. 2

Let S

k

be the identity matrix with the entry at position (j; i) equal to that of L for all

edges e

ij

in W

k

. The �rst four demands of problem 1 are met, so we have a factorization

of L in t terms. The number of factors, t, is an upper bound of K: K � t � r.

Arno C. N. van Duin 3

It should be noted that problem 1 cannot be fully characterized as a graph problem

when the values of the entries are not taken into account. E.g. consider the following

triangular matrix and its inverse:

0

B

B

@

1

2 1

1 2 1

3 2 1

1

C

C

A

inv

 !

0

B

B

@

1

�2 1

3 �2 1

1 �2 1

1

C

C

A

The solution to problem 1 for this matrix is K = 1 although the corresponding graph is

not transitively closed

1

.

In this paper we introduce an algorithm for solving the edge partitioning problem. The

algorithm is discussed in section 2. In section 3 the problem of balancing the factors is

briey discussed. In section 4 several experiments are presented. Some concluding remarks

are given in section 5.

2. Optimal Edge-Partition Algorithm. This section describes an algorithm that

solves problem 3. It is a greedy algorithm that tries to add to the current factor all edges

that start in a node of which all incoming edges are assigned to this or earlier factors. The

outgoing edges of such a node are considered for addition to the current factor. When

there are no more such nodes we start with a new factor consisting of all edges that were

considered for the previous factor but could not be added to that factor. This makes new

nodes and new edges available for addition. This process continues until there are no more

edges left.

The edge e

ij

can be added to the current factor W

k

if:

Condition 1 All edges e

~|i

2 E have been assigned to W

1

; : : : ;W

k

.

Condition 2 The graph (V;W

k

[fe

ij

g) is transitively closed.

Condition 3 There is no path from i to j in the remaining subgraph.

Note that if an edge could not be added toW

k

because either or both of the conditions

2 and 3 were not ful�lled, the edge is (unconditionally) added to W

k+1

. With only those

edges, (V;W

k+1

) is transitively closed: there are no edges in W

k+1

to any of the sources

of those edges, there are only paths of length one in W

k+1

, so for all paths from i to j in

(V;W

k+1

) there is an edge e

ij

, ergo it is transitively closed. Because of condition 2 W

k+1

remains transitively closed.

1

the element (4; 1) of the inverse is not a structural nonzero but a numerical nonzero, only structural

nonzeros are considered in the relation between the inverse and the transitive closure in [8].

4 Optimal Edge Partitioning

Algorithm RPOPT

forall v 2 V do

count(v) indegree(v)

enddo

F fe

vw

2 Ejv;w 2 V , count(v) = 0g

k 1

while F 6= ; do

W

k

 ;

H ;

forall e

vw

2 F do

W

k

 W

k

[fe

vw

g

count(w) count(w)� 1

if count(w) = 0 then H H [fwg; endif

enddo

F ;

while H 6= ; do

G ;

take next v from H; H Hnfvg

forall e

vw

2 E do

if 8e

uv

2 W

k

9e

uw

2W

k

then G G [fe

vw

g

else F F [fe

vw

g endif

enddo

forall e

vw

2 G do

if 8e

vu

2 F @e

uw

2 E then

W

k

 W

k

[fe

vw

g

count(w) count(w)� 1

if count(w) = 0 then H H [fwg; endif

else F F [fe

vw

g endif

enddo

endwhile

k k + 1

endwhile

Condition 3 is necessary because otherwise it might happen that e

ij

is in W

k

and e

ik

is in W

k+1

, so e

kj

cannot be added to W

k+1

(violation of condition 2). A suboptimal

number of factors would be the result. In algorithm RPOPT the checks for this condition

are optimized by checking not on any path but just on the existence of an edge e

kj

2 E.

If there is no such edge the subgraph induced by the path is not transitively closed, and

condition 2 precludes the suboptimal situation.

The condition that prohibited an edge to be added to the previous factor can be used

to distinguish three types of edges: (1)W

(p)

k

is the subset of edges that could not be added

to W

k�1

because of condition 1, i.e. those edges e

ij

2 W

k

for which there is an edge

Arno C. N. van Duin 5

e

~|i

2 W

k

, (2) W

(f)

k

is the subset of edges that could not be added to W

k�1

because of

condition 2, i.e. edges e

ij

2W

k

nW

(p)

k

for which (V;W

k�1

[fe

ij

g) is not transitively closed,

(3) W

(d)

k

is the subset of edges that could not be added to W

k�1

because of condition 3,

i.e. edges e

ij

2W

k

n(W

(f)

k

[W

(p)

k

): for each of these edges there is an edge e

i~|

2W

(f)

k

and

an edge e

~|j

2 E.

We have the following relations:

W

k

=W

(p)

k

[W

(f)

k

[W

(d)

k

(1)

W

(p)

k

\W

(f)

k

=W

(p)

k

\W

(d)

k

=W

(f)

k

\W

(d)

k

= ;(2)

W

k

6= ;(3)

Before we can proof that the number

~

K of factors in the partitioning generated by

algorithm RPOPT is optimal, i.e.

~

K = t, we �rst proof some lemmas.

Lemma 1 W

(f)

k

6= ; for all k

Proof Suppose W

(f)

k

= ; for some k. With (1) we have:

W

(f)

k

= ;)W

(d)

k

= ;

W

(f)

k

=W

(d)

k

= ;)W

(p)

k

= ;

)

)W

k

= ;

This contradicts (3). 2

Lemma 2 For all edges e

ij

2 W

(p)

k

there is an edge e

~{~|

2 W

(f)

k

such that there is a path

from ~{ to i in (V;W

k

).

Proof Since the graph (V;W

k

) is acyclic, there is an edge e

~{~|

2W

k

nW

(p)

k

such that there

is a path from ~{ to i in (V;W

k

). If that edge is in W

(f)

k

the lemma is true. If it is not in

W

(f)

k

then because of (1) and (2), the edge is in W

(d)

k

. Because of condition 3 there is an

edge e

~{|̂

2 W

(f)

k

such that there is a path from ~{ via |̂ to i. Because of condition 1 the

edges of this path are all in W

k

, and again the lemma is true. 2

Lemma 3 For every edge e

ij

2 W

(f)

k

(k � 2) there is an edge e

~{~|

2 W

(f)

k�1

such that there

is a path from ~{ to i in (V;W

k�1

) and the subgraph induced by the nodes on this path is

not transitively closed.

Proof Since (V;W

k�1

[fe

ij

g) is not transitively closed there must be at least one edge

e

{̂|̂

2W

k�1

such that there is a path from {̂ to i in (V;W

k�1

) but not an edge e

{̂i

. Because

of relations (1) and (2) there are three possibilities:

1. If e

{̂|̂

2W

(f)

k�1

the path exists.

6 Optimal Edge Partitioning

2. If e

{̂|̂

2W

(d)

k�1

then because of condition 3 there is an edge e

{̂~|

2W

(f)

k�1

such that there

is a path from {̂ via ~| to i. Because of condition 1 and the fact that i does not have

any predecessors in (V;W

k

) (e

ij

2W

(f)

k

), the edges of this path are all in W

k�1

, and

thus the path exists.

3. If e

{̂|̂

2W

(p)

k�1

then because of lemma 2 the path exists.

There is no edge e

{̂i

so the subgraph induced by the nodes on the path is not transitively

closed. 2

Theorem 2 The number of factors

~

K in the edge-partition produced by algorithm RPOPT

is optimal.

Proof Due to 3 we have that there exists a path in (V;E) e

i

1

j

1

; e

i

2

j

2

; : : : ; e

i

m

j

m

with exactly one edge from each W

(f)

k

. All these edges must be in di�erent (because the

subpaths are not transitively closed), consecutive (because of condition 1) factors, so the

minimal number of factors t is equal to

~

K. 2

3. Balancing The Factors. The number of nonzeros in each matrix S

k

formed

according to the partitioning found by RPOPT can di�er greatly among the factors. In

order resolve this imbalance some of the edges of a factor can be delayed to the next factor

if they leave both factors invertible in place. Identifying all edges that (possibly only in

combination with other edges) can be moved to the next factor and �nding the optimally

balanced partitioning is a hard problem. We show how hard this problem is by considering

the sub-problem of �nding the optimally balanced partitioning after the edges that can

be delayed have been identi�ed. Suppose a simple (fast) scheme is used to �nd out how

many edges can be delayed in each factor and to what factor they can be delayed:

1. determine for the last factor for which nodes it has incoming but no outgoing edges.

All edges in previous factors that point to these nodes can be added to this or any

of the intermediate factors.

2. determine the same set of nodes for the next to last factor. All nodes in previous

factors that point to these nodes or to nodes to which the last factor has incoming

nodes can be added to this or any of the intermediate factors.

3. proceed likewise for all factors.

Theorem 3 The problem of �nding optimally balanced factors is NP-complete.

Proof Consider the following NP-complete problem [7, pp 239-240]: Given a task set

T with tasks t of length l(t) = 1, deadlines d(t), and precedence relations t �

~

t, deter-

mine whether or not there is an m-processor schedule � for T that obeys the precedence

constraints and meets all the deadlines.

Use the following correspondence:

- edge e

ij

$ task t of length one l(t) = 1

- edge set E $ task set T

Arno C. N. van Duin 7

matrix n nnz matrix n nnz

bcspwr01 39 85 sherman4 1104 3786

bcspwr02 49 108 gre 1107 1107 5664

bcspwr03 118 297 pores 2 1224 9613

steam1 240 3762 mahindas 1258 7682

bcspwr04 274 943 bcspwr06 1454 3377

bcspwr05 443 1033 qcgstab1 1600 7840

pores 3 532 3474 bcspwr07 1612 3718

steam2 600 13760 bcspwr09 1723 4117

bp 800 822 4534 orsreg 1 2205 14133

orsirr 2 886 5970 sherman5 3312 20793

sherman1 1000 3750 saylr4 3564 22316

poisson 1024 4992 tfqmr1 3969 19593

orsirr 1 1030 6858 vdvorst3 4096 20224

sherman2 1080 23094 sherman3 5005 20033

ga�1104 1104 16056 bcspwr10 5300 13571

Table 1: The matrices used in the experiments.

- latest factor k to which e

ij

can be delayed $ deadline d(t) = k + 1

- the earliest factor for edge e

~{~|

is after the latest factor k to which e

ij

can be delayed

$ precedence relation t �

~

t

Then we have a 1-1 correspondence between the NP-complete problem and answering the

question whether or not it is possible to �nd a partitioning with at most m edges in each

factor:

Suppose we have an m-processor schedule. The task with the latest deadline has

deadline

~

K+1, so all processors must have completed their tasks in

~

K steps. Let the task

set T

1

consists of the tasks that are completed in step 1. Similarly de�ne T

2

; : : : ; T

~

K

. Let

W

k

be the edge subset that contains all edges that correspond to tasks in T

k

. Then we

have an edge partitioning where each W

k

has at most m edges.

Conversely, suppose we have an edge-partitioning W

1

; : : : ;W

~

K

where each W

k

has at

most m edges. With each W

k

we associate a task subset T

k

. Each task t 2 T

k

must be

completed in time step k. Let the tasks of each subset T

k

be numbered: t

(1)

k

; t

(2)

k

; : : : , and

let � be the schedule where tasks t

(i)

1

; t

(i)

2

; : : : are assigned to processor i. Since there are

at most m tasks in each T

k

, � is an m-processor schedule for T . 2

4. Experimental Results. In this section algorithm RPOPT is tested on a set of

incomplete factors of matrices from the Harwell-Boeing collection [4]. The matrices used

in the experiments are listed in table 1. Matrix poisson stems from a standard �nite dif-

ference discretization of the Poisson-problem on a unit square, matrix tfqmr1 corresponds

to problem 1 in [6], and matrix vdvorst3 corresponds to problem 3 in [13].

Algorithm RPOPT is used to partition the factors and compared to three other parti-

tioning algorithms:

8 Optimal Edge Partitioning

Figure 1: pores 1, reordered with `minimum degree', incomplete factorization with one

level of �ll, L-matrix, factored using level scheduling: 15 factors, RP2: 12 factors, RPO2:

10 factors, RPOPT: 9 factors

1. Level scheduling (see e.g. [12] or [10, pp 346{350]) all nodes are given a level that is

equal to the longest path from a root to that node. All nodes of the same level can

be eliminated concurrently. A characteristic of level scheduling is that the diagonal

blocks are diagonal matrices.

2. Node partitioning, a solution to problem 2. The factors are vertical strips in the

matrix. We use algorithm RP2 from [2].

3. �-partitioning, an edge partitioning with usually less factors than in the optimal

node partitioning generated by RP2. The factors have the shape of the Greek capital

letter. We use algorithm RPO2 from [14].

To illustrate the di�erent partitioning algorithms the lower triangular factor of an

Arno C. N. van Duin 9

0 1 2 3 4
0

1

2

3

4

5

6

7

8

9

10

fill level

re
la

tiv
e

nu
m

be
r

of
 fa

ct
or

s

level scheduling

0 1 2 3 4
0

1

2

3

4

5

6

7

8

9

10

fill level

re
la

tiv
e

nu
m

be
r

of
 fa

ct
or

s

RP2

0 1 2 3 4
0

1

2

3

4

5

6

7

8

9

10

fill level

re
la

tiv
e

nu
m

be
r

of
 fa

ct
or

s

RPO2

level scheduling RP2 RPO2
0

5

10

15

20

25

30

35

re
la

tiv
e

nu
m

be
r

of
 fa

ct
or

s

complete factorization

Figure 2: The number of factors compared to the number of factors in the RPOPT parti-

tioning and their averages (the solid lines) for a set of matrices incompletely factored with

di�erent levels of �ll.

incompletely factored matrix pores 1 is partitioned and the results are displayed in �gure

1. The factors resulting from algorithm RPOPT also have the shape of a �, but with

possibly extra edges in the next � that also belong to this factor. In the �gure these edges

are colored gray.

In �gure 2 the ratio between the number of factors resulting from the other partitioning

algorithms and that of RPOPT is presented for the matrices from our test set for several

di�erent levels of �ll as well as for complete factorization. We see that the number of factors

(and thus the number of global communication steps on a massively parallel computer) for

level scheduling steadily grows from 1.5 times the number of RPOPT factors on average

for zero �ll factorizations to 11 times on average for complete factorizations. Compared

to RP2 the gain is not as impressive but still more than a factor 2 in quite some cases.

RPO2 does quite a �ne a job with partitionings that only di�er small percentages from

RPOPT.

In �gure 3 the time needed for RPOPT to partition a triangular matrix is compared to

10 Optimal Edge Partitioning

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

5

10

15

20

25

30

35

time needed for RPO2 / time needed for RPOPT

pe
rc

en
ta

ge
 o

f t
he

 m
at

ric
es

Figure 3: The time needed by RPOPT compared to the time needed by RPO2.

the time needed by algorithm RPO2 for the same matrix. All test matrices were factored

using six di�erent levels of �ll (no �ll, �ll level one to four, and a complete factorization).

Both the lower and upper triangular matrix were partitioned, resulting in a total test suite

of 360 triangular matrices. The timings were done on an HP9000/720 workstation. Since

the algorithms are of equal complexity no huge di�erences in timings are to be expected.

Because RPOPT has to look in two directions (checking condition 2 and 3) RPOPT will

probably take at least twice as much time as RPO2. These expectations are con�rmed by

our experiments. On average RPO2 takes 40% of the amount of time needed by RPOPT.

5. Conclusions. In this paper we have presented an algorithm for solving the edge

partitioning problem stated as problem 3 in section 1. This problem is closely related to

the minimal number of factors problem (problem 1). We have shown that the partition-

ings resulting from this new algorithm have less (or equal) number of factors as existing

partitionings. A number of experiments with the triangular factors from (in)complete fac-

torizations gave an idea about the order of the improvement. These experiments showed

that a partitioning with the lowest number of factors can be obtained by using algorithm

RPOPT in a time proportional to the time needed by the (less optimal) algorithms RP2

and RPO2.

REFERENCES

[1] F.L. Alvarado, A. Pothen, and R. Schreiber. Highly parallel sparse triangular solution. In A. George,

J.R. Gilbert, and J.W.H. Liu, editors, Graph Theory and Sparse Matrix Computation, The IMA

Volumes in Mathematics and its Applications 56, pages 141{157. Springer-Verlag, 1993.

[2] F.L. Alvarado and R. Schreiber. Optimal parallel solution of sparse triangular systems. SIAM J. Sci.

Comput., 14(2):446{460, March 1993.

Arno C. N. van Duin 11

[3] F.L. Alvarado, D.C. Yu, and R. Betancourt. Partitioned sparse A

�1

methods. IEEE Trans. Power

Systems, 5(2):452{459, May 1990.

[4] I.S. Du�, R.G. Grimes, and J.C. Lewis. Sparse matrix test problems. ACM Trans. Math. Software,

15:1{14, 1989.

[5] M.K. Enns, W.F. Tinney, and F.L. Alvarado. Sparse matrix inverse factors. IEEE Trans. Power

Systems, 5(2):466{473, May 1990.

[6] R.W. Freund. A transpose-free quasi-minimal residual algorithm for non-hermitian linear systems.

Technical Report 91.18, RIACS, NASA Ames Research Center, 1991.

[7] M.R. Garey and D.S. Johnson. Computers and Intractability, a Guide to the Theory of NP-

Completeness. W. H. Freeman and Company, San Francisco, 1979.

[8] J.R. Gilbert. Predicting structure in sparse matrix computations. SIAM J. Matrix Anal. Appl.,

15(1):62{79, Jan. 1994.

[9] B.W. Peyton, A. Pothen, and X. Yuan. Partitioning a chordal graph into transitive subgraphs for

parallel sparse triangular solution. Linear Algebra Appl., 192:329{353, 1993.

[10] Y. Saad. Iterative Methods for Sparse Linear Systems. PWS Publishing Company, Boston, 1995.

[11] A. Sunderland. Parallel solution strategies for triangular systems arising from oil reservoir simulations.

In B. Hertzberger and G. Gerazzi, editors, Proceedings of HPCN Europe 1995, LNCS 919, pages

148{155, 1995.

[12] H.A. van der Vorst. Large tridiagonal and block tridiagonal linear systems on vector and parallel

computers. Parallel Comput., 5:45{54, 1987.

[13] H.A. van der Vorst. Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution

of nonsymmetric linear systems. SIAM J. Sci. Statist. Comput., 13(2):631{644, March 1992.

[14] A.C.N. van Duin. Sparse triangular system partitioning. in preparation, 1997.

12 Optimal Edge Partitioning

A. Source Code. This appendix contains a FORTRAN implementation of RPOPT.

subroutine rpopt (n, nnz, ka, phgh, la, kat, E, count, a,

+ blokaant)

c

c ==

c

c Programmer Arno van Duin

c Version 1.0 Date 09-06-1997

c

c **

c

c KEYWORDS

c

c sparse

c triangular matrix

c reordering

c decomposition

c edge-partitioning

c

c **

c

c INPUT / OUTPUT PARAMETERS

c

implicit none

integer blokaant, n, nnz

integer ka(nnz+1), phgh(n), kat(nnz+1)

integer E(n), count(n), la(n)

double precision a(nnz+1)

c

c a io the (reordered) values of the nonzeros of the matrix

c blokaant o number of factors

c count - workarray to keep track which rows are eligible

c E o contains the original row numbers E(3)=4 means that

c the original row 4 is now the third row

c n i the dimension of the matrix

c nnz i the number of nonzeros in the matrix

c ka i the MSC specification of the sparsity pattern

c la o pointer per column to first edge of the next factor

c kat i the MSR specification of the sparsity pattern

c phgh o contains for each factor a pointer to its first column

c

c **

c

c LOCAL PARAMETERS

c

integer itemp(n), kabloc(nnz+1), roots(n), icheck(n), newroots(n)

integer i, j, jj, iswap, rootaant, newaant, P, fillers, istr,

+ iend, thiscol, thisrij, thisroot, thisedge, totdeze

double precision dswap

logical delay, dezedoen

c

c delay if true, current edge causes fill

c dezedoen false if this edge has been checked already

c dswap help real for swapping edges

c fillers help variable for keeping track of the fill causing edges

c i loop counter

Arno C. N. van Duin 13

c icheck work array to keep track if this edge has been checked already

c iend pointer to first not added edge of this column

c istr pointer to last not added edge of this column

c iswap help integer for swapping edges

c itemp work array for scattering

c j loop counter

c jj loop counter

c kabloc contains for every edge to which factor it belongs

c newaant number of columns that have become eligible

c newroots the numbers of the columns that have become eligible

c P current column count

c rootaant number of columns that can be added to the next factor

c roots the numbers of the columns that can be added to the next factor

c thiscol a column of this factor

c thisedge current edge of current column

c thisrij the row index of this edge

c thisroot current column

c totdeze pointer to last scattered edge

c

c **

c

c CALLED SUBROUTINES

c

c None.

c

c ==

c

c --- initializations

c

blokaant = 0

rootaant = 0

newaant = 0

P = 0

do i = 1, nnz

kabloc(i) = 0

enddo

phgh(1) = 1

do j = 1, n

itemp(j) = 0

icheck(j) = 0

count(j) = kat(j+1)-kat(j)

la(j) = ka(j+1)

if (count(j) .eq. 0) then

la(j) = ka(j)

rootaant = rootaant + 1

roots(rootaant) = j

P = P + 1

E(P) = j

endif

enddo

c

c --- determine reordering

c

do while (rootaant .gt. 0)

blokaant = blokaant + 1

14 Optimal Edge Partitioning

c

c --- add all roots to this factor

c

do i = 1, rootaant

thisroot = roots(i)

c

c --- add all remaining edges to this factor

c

do j = la(thisroot), ka(thisroot+1)-1

thisedge = ka(j)

kabloc(j) = blokaant

count(thisedge) = count(thisedge) - 1

if (count(thisedge) .eq. 0) then

c

c --- register new roots

c

newaant = newaant+1

newroots(newaant) = thisedge

endif

enddo

enddo

rootaant = 0

c

c --- do for all new roots

c

do while (newaant .gt. 0)

thisroot = newroots(newaant)

newaant = newaant - 1

P = P + 1

E(P) = thisroot

do i = kat(thisroot), kat(thisroot+1)-1

icheck(kat(i)) = 1

enddo

c

c --- check fill for all edges starting in this root

c by checking all columns with edges to this root

c

do i = kat(thisroot), kat(thisroot+1)-1

c

c --- scatter the edges in the column that belong to this factor

c

if (icheck(kat(i)) .eq. 1) then

thiscol = kat(i)

istr = 1

iend = 0

if (la(thiscol) .lt. ka(thiscol+1) .and.

+ kabloc(la(thiscol)) .eq. blokaant) then

istr = la(thiscol)

iend = ka(thiscol+1)-1

else if (kabloc(ka(thiscol)) .eq. blokaant) then

istr = ka(thiscol)

iend = la(thiscol)-1

endif

Arno C. N. van Duin 15

dezedoen = .true.

totdeze = iend

do j = istr, iend

itemp(ka(j)) = 1

if (icheck(ka(j)) .eq. 1) then

dezedoen = .false.

totdeze = j

goto 10

endif

enddo

10 continue

c

c --- if edge in this col to this root belongs to this factor

c

if (itemp(thisroot) .eq. 1 .and. dezedoen) then

c

c --- for all edges that uptil now did not cause any fill

c

jj = ka(thisroot)

do j = ka(thisroot), la(thisroot)-1

if (jj .ge. la(thisroot)) goto 20

c

c --- if there is not an edge in this col on the same row

c then it will cause fill, swap it to the fill-part

c

if (itemp(ka(jj)) .eq. 0) then

la(thisroot) = la(thisroot)-1

if (jj .ne. la(thisroot)) then

iswap = ka(la(thisroot))

dswap = a(la(thisroot))

ka(la(thisroot)) = ka(jj)

a(la(thisroot)) = a(jj)

ka(jj) = iswap

a(jj) = dswap

else

jj = jj + 1

endif

else

jj = jj + 1

endif

enddo

20 continue

endif

c

c --- reset scatter array

c

do j = istr, totdeze

itemp(ka(j)) = 0

enddo

endif

enddo

c

c --- reset array

16 Optimal Edge Partitioning

c

do i = kat(thisroot), kat(thisroot+1)-1

icheck(kat(i)) = 0

enddo

c

c --- check delay if there are fill causing edges

c

if (la(thisroot) .lt. ka(thisroot+1)) then

fillers = la(thisroot)

c

c --- for all not fill causing edges, check if there is an edge

c on this row from a root that is pointed to by any of the

c fill causing edges, if so: swap to delay part

c

jj = ka(thisroot)

do i = ka(thisroot), la(thisroot)-1

if (jj .ge. la(thisroot)) goto 40

delay = .false.

thisrij = ka(jj)

do j = kat(thisrij), kat(thisrij+1)-1

if (kat(j) .gt. thisroot) then

itemp(kat(j)) = 1

endif

enddo

do j = fillers, ka(thisroot+1)-1

if (itemp(ka(j)) .eq. 1) then

delay = .true.

goto 30

endif

enddo

30 continue

do j = kat(thisrij), kat(thisrij+1)-1

itemp(kat(j)) = 0

enddo

if (delay) then

la(thisroot) = la(thisroot)-1

if (jj .ne. la(thisroot)) then

iswap = ka(la(thisroot))

dswap = a(la(thisroot))

ka(la(thisroot)) = ka(jj)

a(la(thisroot)) = a(jj)

ka(jj) = iswap

a(jj) = dswap

else

jj = jj + 1

endif

else

jj = jj + 1

endif

enddo

40 continue

endif

c

c --- add okay edges to factor and update counts

c

Arno C. N. van Duin 17

do j = ka(thisroot), la(thisroot)-1

thisedge = ka(j)

kabloc(j) = blokaant

count(thisedge) = count(thisedge) - 1

if (count(thisedge) .eq. 0) then

newaant = newaant + 1

newroots(newaant) = thisedge

endif

enddo

if (la(thisroot) .lt. ka(thisroot+1)) then

rootaant = rootaant + 1

roots(rootaant) = thisroot

endif

enddo

phgh(blokaant+1) = P+1

enddo

end

