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Abstract. The parallel solution of a sparse triangular system can be a serious bottleneck in parallel

computation. An improvement on the parallel e�ciency can be achieved by partially inverting the triangu-

lar system. To this end, the triangular matrix is represented by the product of a (small) number of sparse

factors. These sparse factors are constructed in such a way that their inverses have the same sparsity

pattern. A new method for �nding these factors is presented. This method factors the triangular system

with a smaller number of factors than optimal column methods do.
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1. Introduction. Finding the solution vector x of a triangular system

Lx = b

where L is a triangular N � N matrix and b an N -dimensional vector, is a problem

that arises in many application areas. For instance, when a system of equations is solved

using Gaussian elimination or an iterative method with an incomplete factorization type

of preconditioner. In many applications, such as �nite element applications, solution of

initial value problems by implicit methods, and Newton-like methods for the solution of

non-linear equations, the system needs to be solved for multiple right-hand sides. In

order to be able to solve complete systems e�ciently on a parallel computer, not only the

factorization needs to be done in parallel but also the triangular solves.

Instead of the problem of solving x from Lx = b we consider the equivalent problem

of calculating x from x = L

�1

b because the matrix-vector multiplication in the latter has

more potential for parallelism.

Without loss of generality only lower triangular matrices with a unit diagonal are

considered. Each of these systems L can be written as:
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denotes the entry of matrix L at position (i; j).
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The inverses of the terms in equation (2) are easy to construct:
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, since (i > j). And thus:
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Although matrix-matrix products are not commutative in general, a lot of the V

i;j

's

are.

When a group of V -matrices is taken together a new product form of L

�1

is obtained.

Let the number of factors in this product be M and let W

m

be one of these factors, then

(4) is rewritten to:
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Alvarado et al. [1, 2, 3] discuss the situation where all V matrices with nonzero o�-

diagonal entries in one column are part of the same W matrix. In this paper we extend

their notion of partitions. We introduce a new type of partition, the �-partition in section

3. Some de�nitions used to describe this partition are presented in section 2.

2. De�nitions. We associate with a lower triangular matrix L a directed acyclic graph

G(L) with vertices V = f1; 2; : : : ; ng and edges E(L) = f(i; j)kL

ji

6= 0g. If (i; j) 2 E then

i is called a predecessor of j and j is a successor of i. An ordering of the vertices is

called an ascending topological order if all nodes are numbered before their successors.

The transitive closure of a graph G = (V;E) is the graph G

0

= (V;E

0

) where E

0

= f(i; j)k

there is a path from i to j in Gg. The graph G(L

�1

) is equal to the transitive closure of

G(L) [6].

Definition 1 The induced subgraph (isg(

~

V )) of a set of nodes

~

V � V from G is a graph

~

G = (

~

V ;

~

E), where

~

E = f(i; j)k(i; j) 2 E ^ i 2

~

V ^ j 2

~

V g.

Definition 2 A partition in factors like Equation 5 is called an edge partition of G.

Definition 3 An edge partition where all edges leaving from the same node are in the

same factor is called a column partition.

Definition 4 An edge partition where all edges ending in the same node are in the same

factor is called a row partition.
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Figure 1: Best no-�ll partitions for a graph: (a) column partition without reordering, �ve

factors are required, (b) level scheduling, �ve levels, (c) column partition with reordering,

four factors are required, (d) �-partition with reordering, three factors are required.

Definition 5 A matrix A is invertible in place if its inverse has the same sparsity pattern

as A.

Definition 6 If all factors of an edge partition are invertible in place, it is called a no-�ll

edge partition.

Definition 7 A no-�ll edge partition with the smallest possible number of factors is called

a best no-�ll edge partition.

Definition 8 An edge partition is called non-overlapping if for all i; j 2 V there is only

one factor with a path from i to j.

Definition 9 A node is said to belong to a factor if that factor is the last factor with

an edge ending in this node, or (if there is no such factor) the �rst factor with an edge

leaving from this node.

Definition 10 The diagonal block of a factor is that part of the matrix that is represented

by the induced subgraph of the nodes that belong to this factor.

Definition 11 An o�-diagonal edge is an edge that is not part of the induced subgraph

of any of the diagonal blocks.

Definition 12 In an o�-diagonal block there is no edge starting in a node if there is also

an edge ending in that node.

Definition 13 A zero node of a factor in an edge partition is a root in the induced

subgraph of the nodes of this factor.

In �gure 1 some partitions for a small graph are shown.
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Figure 2: The �-partition of a lower triangular matrix

3. �-partition. In this paper we are concerned with non-overlapping no-�ll parti-

tions. The column partitions used by Alvarado et al. [3] give rise to a block decomposi-

tion. In this block decomposition each diagonal block combined with the corresponding

o�-diagonal block must be invertible in place. Instead of taking the diagonal blocks and

the o�-diagonal blocks together, a di�erent partition strategy is to leave them apart. In

that case there are no constraints on the o�-diagonal blocks, but the diagonal blocks must

still be invertible in place. Note that the number of factors in this partition is not nec-

essarily twice as much as the column partition: the no-�ll constraint only applies to the

diagonal blocks. These blocks will be larger (in general) than with column partitions.

The partition we propose is to combine each diagonal block not with the corresponding

o�-diagonal block but with the o�-diagonal block that corresponds to the previous diagonal

block.

Definition 14 A �-partition is a non-overlapping no-�ll edge partition, where nodes are

assigned to a factor together with the edges of the induced subgraph as well as all o�-

diagonal edges from the nodes of the previous factor.

The factors in this �-partition consist of a diagonal block and the o�-diagonal block

that is below the previous diagonal block. Hence, it has the form of a �. This is graphically

shown in �gure 2. The no-�ll constraint applies to the striped areas in the �gure. The

edges in this area are also the edges that possibly change in value when the factor is

inverted.

A �-partition can be speci�ed by the nodes in the diagonal blocks. We use the follow-

ing notation to specify a particular �-partition: P = ffv

1

1

; v

1

2

; : : : g; : : : ; fv

k

1

; v

k

2

; : : : gg.

When the nodes are not in their original order it is a reordered �-partition, e.g. ff1,2,4,5g,

f3,6g, f7,8gg is the reordered �-partition of the graph in Figure 1. Note that the same

notation can be used to specify row-partitions, column-partitions, and level scheduling.

In section 4 an algorithm that �nds a best no-�ll �-partition is presented, and an

algorithm for �nding a best no-�ll reordered �-partition is given in section 5.

4. Best no-�ll �-partition. Algorithm PO1 is an adaptation of the row-wise version

of algorithm P1 proposed by Alvarado et al. [3]. It is a greedy algorithm, that tries to

add the next row to the current block if this will leave it invertible in place, i.e. it leaves

the corresponding graph transitively closed. Since the current block (without the next
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row) is transitively closed only paths to the node associated with the next row need to be

checked. This is equal to checking the following condition:

Condition 1 In the current block there is no predecessor of the next node that has a

predecessor that (a) is in the current or the previous block and (b) is not a predecessor of

the next node.

or in matrix terms:

Condition 2 For all rows in the current block for which the row under consideration has

a nonzero in the corresponding column, the set of column indices of the nonzeros that are

on these rows and have a column index that corresponds to a row of either this block or

the previous block must be a subset of the set of column indices of the nonzeros of the

row under consideration.

Since all rows are considered before their successors are, none of the successors of this

row can already be in the current block, so only �ll in this row needs to be checked.

Algorithm PO1

i 1; k  1

while i � n do

r  i

while all predecessors 2 S

k�1

[ S

k

of every predecessor 2 S

k

of r

are predecessors of r do

r r + 1

od

S

k

 fi; : : : ; rg

k  k + 1; i r + 1

od

The di�erence with the condition in algorithm P1 is the part (a) of 1. This extra check

does not add to the complexity of the algorithm, making algorithms P1 and PO1 of equal

complexity. A small optimization is possible in checking on condition 2 by using the fact

that if v

i

and v

j

are predecessors of the current node and v

i

is a predecessor of v

j

and v

j

does not cause �ll, then v

i

will not either, otherwise v

i

would have caused �ll to v

j

as well.

The following theorem is needed to prove the optimality of the reordering produced by

PO1.

Theorem 1 In the �-partition generated by PO1, all nodes are in the earliest possible

block.

Proof This clearly is true for the �rst block. Suppose this is true for all blocks up to k.

For the �rst node in block k there is a path P through block k � 1 to a node j of block

k � 2 such that isg(P ) is not transitively closed. Since node j and the other nodes on the
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Figure 3: A best no-�ll column partition generated by P1 (15 factors) and a best no-�ll

�-partition generated by algorithm PO1 (11 factors) of the incomplete Cholesky factor

with one level of �ll of minimum degree reordered BCSPWR01

path are in the earliest possible block the �rst node of block k must be in a block > k� 1.

So, the �rst node in block k is in the earliest possible block. Since all other nodes of block

k must be in a block not earlier than where the �rst node is in (no reordering), they too

are in the earliest possible block. Therefore all nodes of block k are in the earliest possible

block. 2

This leads to the following theorem:

Theorem 2 Algorithm PO1 �nds a best no-�ll �-partition.

Proof Suppose PO1 �nds a �-partition with k blocks. Since each node in the k

th

block

must be in block � k (Theorem 1), k is the minimal number of blocks. 2

In �gure 3 the result of algorithm P1 from [2] and that of algorithm PO1 on the

incomplete Cholesky factor with one level of �ll of the minimum degree reordered matrix

BCSPWR01 from the Harwell-Boeing collection [4] are presented. The number of levels

(for level scheduling) for this matrix is 11, just like the number of factors in the PO1. But

level scheduling does reorder the matrix, so we proceed with trying to �nd a best reordered

�-partition.

5. Best reordered �-partition. In this section an algorithm similar to Alvarado and

Schreiber's algorithm RP2 is presented. An ascending topological ordering of an acyclic

digraph G is constructed, such that the reordered graph has a best no-�ll �-partition with

the smallest possible number of factors. This also is a greedy algorithm, but in stead

of considering only the next row (like in algorithm PO1), all rows with no unnumbered

predecessors (denoted by the set E) can be added to the current block if condition 1 is

ful�lled.
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Algorithm RPO2

forall v 2 V do

count(v)  indegree(v)

od

E  fv 2 V j count(v) = 0g

i 0; k  1

while i < n do

S

k

 ;

H  ;

while E 6= ; do

take next v from E; E  Enfvg

if all predecessors 2 S

k�1

[ S

k

of every predecessor 2 S

k

of v

are predecessors of v then

i i+ 1;�(v) i;

S

k

 S

k

[ fvg

for every successor w of v do

count(w)  count(w)� 1

if count(w) = 0 then E  E [ fwg; �

od

else

H  H [ fvg

�

od

k  k + 1

E  H

od

The proof of the optimality of algorithm RPO2 goes along the same lines as for algo-

rithm PO1.

Theorem 3 In the reordered �-partition generated by RPO2, all nodes are in the earliest

possible block.

Proof This clearly is true for the �rst block. Suppose this is true for all blocks up to k.

For each zero node in block k there is a path P through block k � 1 to a zero node j of

block k � 2 such that isg(P ) is not transitively closed (otherwise condition 1 would have

been ful�lled). Since node j and the other nodes on the path are in the earliest possible

block each zero node of block k must be in a block > k � 1. So, each zero node in block

k is in the earliest possible block. Since all other nodes are successors of (at least one of)

these nodes, they too must be in a block � k (ascending topological ordering). Therefore

all nodes of block k are in the earliest possible block. 2

Theorem 4 Algorithm RPO2 �nds a best no-�ll reordered �-partition.
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Figure 4: A best no-�ll reordered row partition generated by RP2 (9 factors) and a best

no-�ll reordered �-partition generated by algorithm RPO2 (7 factors) of the incomplete

Cholesky factor with one level of �ll of minimum degree reordered BCSPWR01

Proof Suppose RPO2 �nds a �-partition with k blocks. Since each node in the k

th

block

must be in block � k (Theorem 3), k is the minimal number of blocks. 2

In �gure 4 the result of algorithm RP2 from [2] and that of algorithm RPO2 on the

incomplete Cholesky factor with one level of �ll of the minimum degree reordered matrix

BCSPWR01 from the Harwell-Boeing collection [4] are presented.

Lemma 1 Level scheduling is a no-�ll reordered �-partition.

Proof For all nodes in each diagonal block, condition 1 is ful�lled. 2

For the RP2 algorithm a row wise version (RP2R) can be formulated by changing

if all predecessors 2 S

k�1

[ S

k

of every predecessor 2 S

k

of v

are predecessors of v then

to

if all predecessors of every predecessor 2 S

k

of v

are predecessors of v then

This di�erence between RPO2 and RP2R in the condition for adding a row to a block

causes that in RP2R the complete row can cause �ll, but in RPO2 only part of the row

needs to be considered. This observation leads to the following theorem:

Theorem 5 Every no-�ll row-partition is also a �-partition.

Proof For all nodes in each diagonal block, condition 1 is ful�lled. 2

As a consequence:

Theorem 6 RPO2 generates a partition with a less or equal number of factors than

RP2R.
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Figure 5: E�ect of �ll on the number of factors for matrix BCSPWR10

Proof Since RPO2 generates an optimal �-partition, the number of factors in the �-

partition generated by RP2R must be equal or larger. 2

Likewise an algorithm RPO2C, a column version of RPO2, can be constructed. The

number of factors in the partition generated by RPO2C is always less or equal to the

number of factors in the partition generated by RP2.

Note that there is no direct relation between the number of factors in the partition

generated by RPO2 and RP2, but as will be shown in the next section RPO2 usually

generates better partitionings then RP2.

6. Experimental Results. In this section the performance of the algorithms pre-

sented in the previous section is tested on a set of matrices from the Harwell-Boeing

collection [4].

In Figure 5 for matrix BCSPWR10 the in
uence of the amount of �ll that is allowed in

the factorization, on the number of factors generated by RP2 and RPO2, and the number

of levels as used by level scheduling is shown. Of course, the number of levels is a strictly

non-decreasing function of the �ll-level. This is not necessarily so for the number of factors

in the partitioning generated by RP2 and RPO2. More �ll can mean that condition 1 for

RPO2 or the corresponding condition for RP2 is ful�lled more often, making the factors

larger and the number of factors less, which is the case for this particular matrix. From

Figure 5 and Table 1 we see that the turning point for the number of factors in the �-

partitioning lies beyond �ll level 4. So large gains like the factor 20 obtained in [2] are not

to be expected for triangular matrices arising from incomplete factorizations.

In Table 1 the results of the partitioning algorithms for some matrices from the Harwell-

Boeing set are given. Some of the matrices are reordered with H0 [5] prior to the incomplete

factorization in order to get a zero free diagonal. The column headed `�ll' gives the number

of �ll levels that are allowed in the factorization, `nnz' denotes the number of nonzeros

in the L and U , `lvlsL' and `lvlsU' denote the number of levels in L and U , the columns

headed by `P1', `PO1', `RP2', and `RPO2' give the number of factors in the partitioning

using the speci�ed algorithms. For all the matrices RPO2 gives the partitioning with the

least number of factors. The gain over level-scheduling ranges from no gain for some zero
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Figure 6: The time needed to solve partitioned triangular systems on a CM-5 as a function

of the number of factors.

�ll incomplete factors to a factor six for matrix GAFF1104 with four levels of �ll.

The solution process has been tested on a CM-5, using the built-in sparse matrix-

vector multiplication provided by the CMSSL library package. Triangular matrices were

generated randomly and RPO2 was used to partition the matrices. The size varied from

100 to 3200 with 199 to 54532 nonzeros. The timings for the di�erent matrices as a

function of the number of factors in the �-partitioning are presented in Figure 6 . These

timings show that the time required to solve a triangular system using a �-partitioning is

roughly proportional to the number of factors. Thus the number of factors seems to be a

good measure for the quality of the partitioning.

7. Conclusions. A new type of partitioning for lower-triangular matrices has been

introduced and an algorithm to generate such a partitioning has been presented. The

optimality of this algorithm is proven.

A number of experiments are presented. These experiments show that the gain over

level scheduling with respect to the number of factors is best for higher levels of �ll.

Experiments on the Connection Machines show the solution time to be proportional to

the number of factors. Using the new partitioning method results in a smaller (or worst

case equal) number of factors than the standard column partitionings, so that this method

is highly valuable for applications such as iterative solvers with triangular preconditioners,

structural analysis, or power systems applications.
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A. Source Code. This appendix contains a FORTRAN implementation of the algo-

rithms.

A.1. Algorithm PO1.

subroutine po1 ( n, nnz, ka, phgh, itemp, ibloc )

c

c ======================================================================

c

c Programmer Arno van Duin

c Version 1.0 Date 09-04-1997

c

c **********************************************************************

c

c KEYWORDS

c

c sparse

c triangular matrix

c decomposition

c

c **********************************************************************

c

c INPUT / OUTPUT PARAMETERS

c

implicit none

integer n, nnz

integer ka(nnz+1), phgh(-1:n-2), itemp(n), ibloc(n)

c

c ibloc o contains for each row to which factor it belongs

c itemp - work array used for scattering rows

c n i the dimension of the matrix

c nnz i the number of nonzeros in the matrix

c ka i the MSR specification of the sparsity pattern

c phgh o contains for each factor a pointer to its first row

c

c **********************************************************************

c

c LOCAL PARAMETERS

c

integer i, k, r

logical check

c

c check if true, current row does not cause fill

c i loop counter

c k number of factors

c r current row

c

c **********************************************************************

c

c CALLED SUBROUTINES

c

logical nofill

c

c NOFILL Function that determines whether the specified row will

c cause fill if added to the current factor

c

c ======================================================================

c
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c --- initializations

c

do i = 1, n

itemp(i) = 0

ibloc(i) = 0

enddo

phgh(-1) = 0

phgh(0) = 0

ibloc(1) = 1

i = 2

k = 1

c

c --- while not all rows added

c

do while ( i .le. n )

ibloc(i) = k

r = i+1

check = .true.

c

c --- while this row can be added

c

do while ( r .le. n .and. check )

c

c --- take next row and check if its addition will not

c cause any fill

c

check = nofill ( n, nnz, r, ka, itemp, ibloc, k )

ibloc(r) = k

r = r + 1

enddo

if ( .not. check ) r = r-1

phgh(k) = r-1

k = k + 1

i = r

enddo

end

function nofill ( n, nnz, r, ka, itemp, ibloc, this )

logical nofill

c

c ======================================================================

c

c Programmer Arno van Duin

c Version 1.0 Date 09-04-1997

c

c **********************************************************************

c

c KEYWORDS

c

c sparse

c triangular matrix

c reordering

c decomposition

c

c **********************************************************************

c
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c INPUT / OUTPUT PARAMETERS

c

implicit none

integer n, nnz, r, this

integer ka(nnz+1), itemp(n), ibloc(n)

c

c ibloc i contains for each row to which factor it belongs

c itemp - work array used for scattering rows

c n i the dimension of the matrix

c nnz i the number of nonzeros in the matrix

c ka i the MSR specification of the sparsity pattern

c r i current row

c this i current factor

c

c **********************************************************************

c

c LOCAL PARAMETERS

c

integer i, j, k, l

c

c i loop counter

c j loop counter

c k loop counter

c l loop counter

c

c **********************************************************************

c

c CALLED SUBROUTINES

c

c None.

c

c ======================================================================

c

c --- scatter current row in workspace

c

itemp(r) = 1

do j = ka(r), ka(r+1)-1

itemp(ka(j)) = 1

enddo

nflop = nflop + ka(r+1)-ka(r)

c

c --- check if any of the other rows in this factor would cause fill

c only if there is an edge from this row to the other row it

c needs to be considered

c

nofill = .true.

do i = ka(r), ka(r+1)-1

j = ka(i)

if ( ibloc(j) .ge. this .and. itemp(j) .eq. 1 ) then

c

c --- check that row

c

do k = ka(j), ka(j+1)-1

nflop = nflop + 1

l = ka(k)

if ( ibloc(l) .ge. this-1 ) then

if ( itemp(l) .eq. 0 ) then
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c

c --- if fill then goto exit

c

nofill = .false.

go to 10

else

c

c --- small optimization entries need to be considered

c only once (otherwise a previous row would not

c have been added)

c

itemp(l) = 2

endif

endif

enddo

endif

enddo

10 continue

c

c --- reset workspace

c

itemp(r) = 0

do j = ka(r), ka(r+1)-1

itemp(ka(j)) = 0

enddo

end

A.2. Algorithm RPO2.

subroutine rpo2 ( n, nnz, ka, phgh, itemp, bloc, kat, E, count,

+ blokaant )

c

c ======================================================================

c

c Programmer Arno van Duin

c Version 1.0 Date 15-04-1997

c

c **********************************************************************

c

c KEYWORDS

c

c sparse

c triangular matrix

c reordering

c decomposition

c

c **********************************************************************

c

c INPUT / OUTPUT PARAMETERS

c

implicit none

integer blokaant, n, nnz

integer ka(nnz+1), phgh(n), itemp(n), kat(nnz+1),

+ E(n), count(n), bloc(n)

c

c bloc o contains for each row to which factor it belongs

c blokaant o number of factors

c count - workarray to keep track which rows are eligible
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c E o contains the original row numbers E(3)=4 means that

c the original row 4 is now the third row

c itemp - work array used for scattering rows

c n i the dimension of the matrix

c nnz i the number of nonzeros in the matrix

c ka i the MSR specification of the sparsity pattern

c kat i the MSR specification of the transposed sparsity pattern

c phgh o contains for each factor a pointer to its first row

c

c **********************************************************************

c

c LOCAL PARAMETERS

c

integer i, j, k, l, rootaant, newaant, P, thisroot, thisedge

integer newroots(n), roots(n)

logical delay

c

c delay if true, current row causes fill

c i loop counter

c j loop counter

c k loop counter

c l loop counter

c newaant number of rows that have become eligible

c newroots the numbers of the rows that have become eligible

c P current row count

c rootaant number of rows that can be added to the next factor

c roots the numbers of the rows that can be added to the next factor

c thisedge current edge of current row

c thisroot current row

c

c **********************************************************************

c

c CALLED SUBROUTINES

c

c None.

c

c ======================================================================

c

c --- initializations

c

blokaant = 0

rootaant = 0

newaant = 0

P = 0

phgh(1) = 1

do j = 1, n

itemp(j) = 0

bloc(j) = 0

count(j) = ka(j+1)-ka(j)

if ( count(j) .eq. 0 ) then

rootaant = rootaant + 1

roots(rootaant) = j

endif

enddo

c

c --- determine reordering
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c

do while ( rootaant .gt. 0 )

blokaant = blokaant + 1

c

c --- add all roots to this factor

c

do i = 1, rootaant

thisroot = roots(i)

bloc(thisroot) = blokaant

P = P + 1

E(P) = thisroot

c

c --- add all edges to this factor

c

do j = kat(thisroot), kat(thisroot+1)-1

thisedge = kat(j)

count(thisedge) = count(thisedge) - 1

if ( count(thisedge) .eq. 0 ) then

c

c --- register new roots

c

newaant = newaant+1

newroots(newaant) = thisedge

endif

enddo

enddo

rootaant = 0

c

c --- do for all new roots

c

do while ( newaant .gt. 0 )

thisroot = newroots(newaant)

newaant = newaant - 1

delay = .false.

c

c --- check fill

c

do j = ka(thisroot), ka(thisroot+1)-1

itemp(ka(j)) = 1

enddo

do i = ka(thisroot), ka(thisroot+1)-1

j = ka(i)

if ( bloc(j) .ge. blokaant .and. itemp(j) .eq. 1 ) then

do k = ka(j), ka(j+1)-1

l = ka(k)

if ( bloc(l) .ge. blokaant-1 ) then

if ( itemp(l) .eq. 0 ) then

delay = .true.

go to 10

else

itemp(l) = 2

endif

endif

enddo

endif



Arno C. N. van Duin 19

enddo

10 continue

do j = ka(thisroot), ka(thisroot+1)-1

itemp(ka(j)) = 0

enddo

c

c --- add okay edges to factor and update counts

c

if ( delay ) then

rootaant = rootaant + 1

roots(rootaant) = thisroot

else

P = P + 1

E(P) = thisroot

bloc(thisroot) = blokaant

do j = kat(thisroot), kat(thisroot+1)-1

thisedge = kat(j)

count(thisedge) = count(thisedge) - 1

if ( count(thisedge) .eq. 0 ) then

newaant = newaant + 1

newroots(newaant) = thisedge

endif

enddo

endif

enddo

phgh(blokaant+1) = P+1

enddo

end


