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Abstract

Mathematical vector notation provides a convenient shorthand for describing scienti�c

PDE-based models. By using several notational conventions, an expert model developer

can exploit the expressive power of vector notation to formulate a PDE problem in a

mathematically concise way. In this paper, we present a high-level language for describ-

ing PDEs in vector notation and an interpreter for symbolically transforming the vector

equations into sets of scalar equations with respect to any selected coordinate system. The

presented high-level language interpreter provides a basic set of primitive list operations

and implements a recursive, implicit mapping algorithm for symbolically mapping scalar,

vector, or multi-dimensional operators on vectors, matrices, and multi-dimensional objects

in general. Together they form a powerful means for de�ning PDE vector operators and

matrix/vector operations for the adoption of full vector notation in PDE speci�cations.

1 Introduction

This paper focuses on the parsing and interpretation of expressions in so-called mathematical

vector notation. We present a high-level language for describing Partial Di�erential Equations

(PDEs) in vector notation and describe the implementation of an interpreter for the language.

The language elements are based on mathematical concepts. Mathematical vector notation

provides a convenient shorthand for writing mathematical models consisting of PDEs. A high-

level computer language for the speci�cation of PDEs in vector notation requires a special

form of semantics in which functions and operators are implicitly mapped on the elements of

vectors and matrices. The presented high-level language and interpreter implement this form

of semantics which allows for a more natural notation for specifying PDEs. The interpreter

of the presented high-level language is currently being used as a preprocessor in the Ctadel

code generation system for the interpretation and translation of mathematical vector notation.

Ctadel is a symbolic transformation system for generating e�cient architecture-dependent

codes for PDE problems [7, 8, 9].
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The aim of this paper is not to provide a new parsing technique nor to describe a sophis-

ticated user-interface for mathematical expressions for Symbolic and Algebraic Computing

systems (SACs). Many e�orts have been made to develop knowledge-based techniques for

parsing expressions in mathematical notation. One of the main problems is that mathe-

matical notation is an inherently ambiguous form of notation due to the frequent omission

of parenthesis and the overloading of symbols with di�erent interpretations. Furthermore,

mathematical constructs like matrices have a two-dimensional layout that cannot be parsed

by parsers that require a linearized form. See [12] for an extensive overview with a bibliogra-

phy containing about 150 references on this subject.

Despite the e�orts, a general parsing technique does not exist for interpreting mathemati-

cal notation and modern existing commercial and experimental SACs adopt their own custom

computer language for mathematical expressions. Older SACs only employ a `linear' text ed-

itor. One of the disadvantages of these type of editors is that two-dimensional mathematical

expressions have to be collapsed in an unnatural way into one dimension and possibly spread

over several lines of text. More advanced SACs include a front-end mathematics editor for

editing mathematical expressions and a back-end visualization tool to output the results in

a graphically acceptable mathematical form. These SAC interfaces often integrate a special-

purpose template-based mathematics editor. Template-based editors require the programmer

to �ll in boxes containing mathematical expressions by selecting operators from lists or menus.

Editing of expressions is performed using a pointer to pick up, move, and drop subexpressions.

Example systems of this kind are Theorist [3] and CAS/PI [11] that allow both line editing

and template-based editing of mathematical expressions.

For applications based on PDEs, an important requirement for symbolic expression parsing

is that the parser and interpreter should accept expressions that closely resemble well-known

mathematical constructs. One of the reasons is that expert PDE model developers are hes-

itated to learn about special computer language constructs that they should use in place of

the in general more concise mathematical notation. As a typical example of a PDE problem

posed in vector notation, consider the equation for time-independent 
ows

(V � r)V = �

1

�

rp+ �r

2

V (1)

which is speci�ed in our high-level language as

1

(V .* nabla) * V = - 1/rho * nabla * p + nu * nabla^2 * V

For the interpretation and translation to scalar form of the speci�cation of Eq. (1), any selected

coordinate system, e.g. Cartesian, polar, or cylindrical, etc., can be taken into account. By

using a polar (r; �) coordinate system and V = (u; v )

T

, Eq. (1) is transformed and presented
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The L
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X output is obtained by using the L
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E

X package of the Ctadel system

2

.

1

When possible we prefer to use asymmetric symbols for denoting non-commuting operators, an example

of which is the in�x dot-product operator `.*'. This can be easily changed by the user when desired.

2

In this way, all the examples were compiled into L

A

T

E

X for this paper.
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The implementation of vector algebra and PDE operators in our language requires just a

few declarations while other vector algebra packages of existing SACs would require extensive

programming e�orts to obtain similar operators with comparable functionality. This is due

to the fact the interpreter implements a recursive, implicit mapping algorithm for implicitly

mapping scalar and multi-dimensional operators on multi-dimensional objects such as vectors

and matrices. As an example application, a Jacobian matrix of a vector with respect to a

coordinate system is obtained in a natural way by taking the gradient of the vector. This

requires �rst mapping the gradient operator on the vector elements and then expanding the

gradient operator de�nition. Both are performed implicitly by the interpreter. This order of

mapping and expanding is a form of execution control for symbolic evaluation. In contrast,

in existing SACs PDE operators are always immediately expanded and the operator de�n-

itions contain alternatives using if-then-else constructs for checking combinations of scalar,

vector, and matrix arguments. This makes the implementation hard to read and hard to

adapt. Existing SACs are general-purpose systems for algebraic and symbolic computations

and the provided language constructs are not always suitable for the speci�cation of PDEs,

especially when using vector notation. The possibility exists that unexpected results are ob-

tained in the evaluation of an operator when no alternative exists for some combination of

scalar/vector/matrix arguments.

Because vector notation is a very concise form of notation, notational mistakes can be

easily made just by small and subtle changes in syntax. To avoid such notational mistakes,

we want to impose the following constraints on the language and interpreter:

� the declarations of the language constructs should be completely transparent to a user

so he/she can understand and easily change the de�nitions of the operators;

� to this end, the language should be self-contained, that is, it should be possible to de�ne

PDE operators and matrix/vector operations in the language itself;

� this should avoid occurrences of `surprise experiences' by a user for obtaining unexpected

results when using PDE and matrix/vector operators;

� furthermore, the language should be extensible and the interpreter open-ended;

� hence, any ad-hoc and �xed implementation of the language constructs should be avoided.

Using the design concepts above, two separate packages have been written in the high-level

language that implement PDE operators and matrix/vector operations:

� the `vecalg' package provides PDE operators and special programming constructs for

adopting full vector notation for the speci�cation of PDEs (Section 4, Appendix A),

and

� the `linalg' package provides basic operations on matrices and vectors (Section 5,

Appendix B).

For the matrix/vector syntax and language constructs these packages provide, we made an at-

tempt to incorporate the `most convenient' language constructs among four of the best-known

commercial SACs. The implementation of the PDE operators, vector notation constructs, and

matrix/vector operators make extensively use of the interpreter's implicit mapping algorithm.
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The remainder of this paper is organized as follows. In Section 2, we explain the design

motivations for the syntax and semantics of the high-level language and interpreter and we

compare the most basic language syntax between four existing SACs. Section 3 discusses the

implementation of the language interpreter and illustrates the implementation with several

PDE examples. Section 4 introduces the `vecalg' package written in the high-level language

that provides language constructs for vector notation and Section 5 introduces the `linalg'

package for basic matrix/vector operations. In Section 6, we describe declarations for pre�x,

post�x, in�x operators, symbolic constants, and special descriptions for alternative L

A

T

E

X

output. Finally, Section 7 presents advanced features of the interpreter including imperative

programming constructs.

2 Language Design

In this section we explain the design motivations for the syntax and semantics of the high-level

language.

2.1 Language Syntax

We have made an attempt to combine the `best' features among the language constructs

present in the SACs maple [5], mathematica [18], reduce [6], and matlab [15]. The

maple, mathematica, and reduce systems are general-purpose symbolic and algebraic

computing systems (SACs) while matlab is a matrix-based system for scienti�c and engi-

neering calculations. Each of these systems adopts a kind of mathematics-oriented language

with a di�erent syntax for representing matrices and vectors.

2.1.1 Comparing maple, mathematica, reduce, and matlab Language Syntax

Figure 1 depicts example matrix and vector operations within each of the four SACs inves-

tigated. The �gure illustrates matrix assignments, matrix/vector arithmetic, mapping of a

scalar function on vector and matrix elements, and an attempt to map a `divergence' operator

denoted as `div' on the rows of a matrix. We will brie
y discuss the di�erences between the

language syntax of the four SACs.

maple. Matrices and vectors are represented in maple by two and one-dimensional arrays

respectively, where the array contents are nested lists. A list is written using `[' and `]'

brackets. For a vector, the list of the array contains the elements of the vector. For a

matrix, the outermost list constains the rows of the matrix; the row elements are stored in

the innermost lists. Each line of input is terminated by a `;' or by a `:'. In the latter case

the output is suppressed.

Matrix and vector expressions are evaluated using the matrix evaluation function `evalm'.

In the matrix expressions supplied to `evalm', scalar functions are implicitly mapped on the

elements of matrices and vectors. Without `evalm' a dyadic `map' function can be used to

explicitly map scalar functions onto matrices and vectors. The matrix and vector opera-

tions shown in Figure 1 are de�ned in the `linalg' package of maple. With this package,

`transpose(A)' transposes a matrix `A' and `multiply(A, B)' multiplies two matrices or

vectors together which can also be written with the `evalm' function as `A &* B'. Arguments

to the in�x `&*'-operator that are neither matrices nor vectors will be considered as symbolic
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maple mathematica

> alias(Id = &*()):

> S := array([[1, 2], [3, 4]]):

> T := array([[1, 1], [2, -1]]):

> evalm(S^2 + 2 * T);

h

9 12

19 20

i

> evalm(sin(S) &* T);

h

sin( 1 ) + 2 sin( 2 ) sin( 1 )� sin( 2 )

sin( 3 ) + 2 sin( 4 ) sin( 3 )� sin( 4 )

i

> evalm((S - Id) &* array([a,b]) &* U);

[ 2 b 3 a+ 3 b ]&�U

> evalm(S^0);

1

> evalm(transpose(array([1, 2])) &* array([3, 4]));

11

> evalm(S + array([1, 2]));

Error, (in linalg[add]) matrix dimensions incompatible

> map(diverge, [[a(x), b(y)], [c(x), d(y)]], [x, y]);

h�

@

@x

a(x)

�

+

�

@

@y

b(y)

�

;

�

@

@x

c(x)

�

+

�

@

@y

d(y)

�i

In[1]:= S := {{1, 2}, {3, 4}}

In[2]:= T := {{1, 1}, {2, -1}}

In[3]:= MatrixPower[S, 2] + 2 T

Out[3]= {{9, 12}, {19, 20}}

In[4]:= Sin[S] . T

Out[4]= {{Sin[1] + 2 Sin[2], Sin[1] - Sin[2]},

> {Sin[3] + 2 Sin[4], Sin[3] - Sin[4]}}

In[5]:= (S - IdentityMatrix[2]) . {a, b} . U

Out[5]= {2 b, 3 a + 3 b} . U

In[6]:= MatrixPower[S, 0]

Out[6]= {{1, 0}, {0, 1}}

In[7]:= Transpose[{1, 2}] . {3, 4}

Out[7]= 11

In[8]:= S + {1, 2}

Out[8]= {{2, 3}, {5, 6}}

In[9]:= Map[Div, {{a, b}, {c, d}}]

Out[9]= {Div[{a, b}], Div[{c, d}]}

reduce matlab

1: Id2 := mat((1, 0), (0, 1))$

2: S := mat((1, 2), (3, 4))$

3: T := mat((1, 1), (2, -1))$

4: S^2 + 2 T;

[9 12]

[ ]

[19 20]

5: sin(S) * T;

*****

[1 2]

[ ]

[3 4]

invalid as scalar

6: map(sin, S) * T;

[2*sin(2) + sin(1) - sin(2) + sin(1)]

[ ]

[2*sin(4) + sin(3) - sin(4) + sin(3)]

7: (S - Id2) * mat((a), (b)) * U;

***** u invalid as scalar

8: S^0;

[1 0]

[ ]

[0 1]

9: tp(mat((1), (2))) * mat((3), (4));

[11]

10: S + mat((1), (2));

***** Matrix mismatch

11: map(div, mat((a, b), (c, d)));

[div(a) div(b)]

[ ]

[div(c) div(d)]

>> S = [1 2; 3 4];

>> T = [1 1; 2 -1];

>> S^2 + 2 .* T

ans =

9 12

19 20

>> sin(S) * T

ans =

2.6601 -0.0678

-1.3725 0.8979

>> (S - eye(2)) * [a; b] * U

??? Undefined function or variable a.

>> (S - eye(2)) * ['a'; 'b'] * 'U'

ans =

8330

41480

>> S^0

ans =

1 0

0 1

>> [1; 2]' * [3; 4]

ans =

11

>> S + [1; 2]

??? Error using ==> +

Matrix dimensions must agree.

>> div(['a' 'b'; 'c' 'd'])

ans =

'diff(a, x) + diff(b, y)'

'diff(c, x) + diff(d, y)'

Figure 1: Matrix and Vector Operations in maple, mathematica, reduce, and matlab.
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matrices and the `&*'-operation will not be evaluated. A special symbol `&*()' denotes the

identity matrix for which the alias `Id' was introduced in the example. The `linalg' package

of maple further de�nes gradient. divergence, Laplacian, and curl operators. In the example,

the explicit mapping of the `diverge' operator on the rows of a matrix is shown.

On evaluating the matrix expressions in `evalm', simpli�cations are performed before

passing the arguments to `evalm', and these simpli�cations may not be valid for matrices!

For example, `S^0' returns `1' and not the identity matrix `&*()'. Appropriate error messages

are given when the matrices and vectors are incompatible with respect to matrix/vector

operations.

mathematica. Like in the maple system, matrices and vectors are represented by double

lists in mathematica. However, in mathematica a list is written using the `{' and `}'

brackets and the use of a matrix creation function such as `array' as inmaple is not necessary.

Scalar functions are implicitly mapped on the elements of a matrix or vector. Using the `Map'

function, a function can be explicitly mapped on the rows of a matrix. Scalar multiplication

is performed by the in�x `*'-operator which is optional in case a constant numeric operand is

used. Matrix product and dot product operations are denoted both by the in�x `.'-operator.

The `.'-operator is not de�ned for scalars. The functions `Transpose' and `MatrixPower' can

be used for transposing a matrix and for obtaining the power of a matrix, respectively.

Note that the addition of a matrix to a vector is allowed and results in the addition of

each element of the vector to the elements of the `corresponding' row of the matrix!

reduce. In reduce, matrices are created using a k-ary `mat'-operator with the k rows of the

matrix as operands. Each row-operand is a comma-separated list of row elements. A vector

is just a matrix with singleton rows. Since reduce is implemented in Rlisp, an imperative

version of lisp for reduce, lists are formed using the `(' and `)' brackets. Each line of input

is terminated by a `;' or by a `$'. In the latter case the output is suppressed.

The element-wise application of a scalar function on matrix/vector elements can only be

performed explicitly using the `map'-operator. Like in mathematica, scalar multiplication is

denoted by the in�x `*'-operator which is optional in case a constant numeric operand is used.

Besides scalar multiplication, the `*'-operator is overloaded to perform matrix multiplication

as well. A matrix transpose is performed using the monadic `tp'-function.

Computing the inner product between two vectors using a matrix transpose and matrix-

vector product erroneously results in a singleton matrix! Appropriate error messages are

given when the matrices and vectors are incompatible for a matrix/vector operation.

The fide [14] package for reduce provides PDE-based operators for �nite di�erence

methods (not shown in Figure 1). With this package vectors can be written using `[' and

`]'-brackets like in maple.

Also, a vector algebra and calculus package avector [10] for reduce exists that provides

vector algebra and a more convenient syntax and declaration style for vectors.

matlab. Although matlab is not a symbolic algebra system in the true sense, we include this

system in the comparison because of its natural syntax for matrix expressions. Furthermore,

matlab incorporates a link to the maple system for symbolic manipulation such as symbolic

di�erentiation. The symbolic expressions are supplied as matlab strings.

In matlab, like in reduce, scalar and matrix/vector operations are not strictly sepa-

rated. The `*'-operator denotes both scalar multiplication and matrix product. Element-wise
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operations on matrices and vectors (and therefore scalar operations as well) are denoted by

pre�xing the in�x operator with a dot, for example `.*' denotes element-wise multiplication.

In the example, strings are used to represent symbolic expressions. However, the eval-

uation of matrix product with symbolic matrix entries results in garbage since the strings

are interpreted as numeric ascii values! For the `div'-operator we have shown an example

evaluation using symbolic di�erentiation which was obtained by using the maple interface

of matlab after some string manipulations implemented in a `div.m' �le. Finally, a line of

input can be terminated with a `;' to suppress output.

2.1.2 Notational Trade-o�s Made for the Adopted Language Syntax

The selection of syntactical constructs for the high-level language presented in this paper

has been made by avoiding some notational pitfalls. One of the pitfalls to be avoided is

overloading the `*'-operator for performing both scalar and matrix/vector products. The

most important reasons for not overloading the meaning of the `*'-operator are that

� the algebraic properties of the scalar product and matrix-matrix or matrix-vector prod-

ucts are di�erent. In the former case the product operation is commutative while in

the latter case it is not. A similar fact holds for the dot product operator which is

neither associative nor commutative. Making this distinction is essential for using the

interpreter as a preprocessor for the Ctadel code generating system or any computer

algebra system in general. Since the `*'-operator is associative and commutative, the

operands of the `*'-operator may be interchanged during symbolic simpli�cation;

� for PDEs in vector notation, a dot product operator and a scalar product operator

denote recognizably distinct operations, e.g. the divergence of a vector V is generally

denoted as r �V while the gradient of V is denoted as rV. Without this distinction,

the meaning of the PDEs is obscure and the formulation is error prone;

� the L

A

T

E

X output of the `*'-operator is always the same while di�erent L

A

T

E

X output

formats are desirable for scalar, matrix-vector, and dot product operations. The type of

operation performed cannot always be inferred from the context since the operands are

often symbolic and untyped. Therefore the resulting L

A

T

E

X output may be incorrectly

interpreted by a user.

The issue on whether operator overloading should be used in SACs in general is also discussed

in [12]. Furthermore, all four SACs investigated adopt di�erent constructs for representing

vectors and matrices. In our high-level language, we have decided that vectors are written

using `[' and `]' enclosing a comma-separated list comprising the elements of the vector. For

example, the vector

8

>

:

1

2

9

>

;

is written as

[ 1,

2 ]

Vectors can also be written `horizontally' as a syntactical shorthand e.g. `[ 1, 2 ]' by omit-

ting the line-breaks after commas. However, the meaning is the same and the L

A

T

E

X typeset-

ting of the vector is still vertically oriented.

In accordance with the maple and mathematica systems, we consider a matrix as a

vector of vectors where the innermost vectors of the matrix comprise the rows of the matrix.

So, for example
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[ [ a11, a12, a13 ],

[ a21, a22, a23 ] ]

represents a 2�3 matrix with symbolic elements a

ij

, i = 1; 2, j = 1; 2; 3. A true mathematical

horizontal vector is written as a matrix of one row. For example

[ [ 1, 2, 3 ] ]

represents the vector ( 1 2 3 ).

2.1.3 On the Mathematical Notation using L

A

T

E

X

It should be mentioned that although the system adopts L

A

T

E

X as a means for mathematical

output of the results, it will be cumbersome to use L

A

T

E

X for mathematical input as well. Al-

though the L

A

T

E

X language [13] and more speci�cally A

M

S-L

A

T

E

X [1] can be used for de�ning

a uniform style for writing mathematical expressions, it is not generally possible to unam-

biguously interpret L

A

T

E

X input for its mathematical contents. Too often, the same L

A

T

E

X

constructs are used representing di�erent types of mathematical expressions. For example,

two consecutively written symbols like fx may either denote the product of f and x, or the

application of a unary function f on x when f is a known function, or may even denote just

one symbol comprised by the characters f and x. Furthermore, many L

A

T

E

X variants for the

same expression can be given depending on the personal 
avor, backgrounds, and habits of a

user. To avoid di�erent interpretations, we must be very pedantic in the way the L

A

T

E

X input

is given thereby making the speci�cation of PDEs a very tedious task for a user to perform.

2.2 Language Semantics

The order in which scalar and vector operators are expanded and the mapping of the operators

on the elements of vectors and matrices is of fundamental importance to obtain correct scalar

results for PDEs speci�ed in vector notation. For some typical compositions of scalar and

vector PDE-operators such as in r�r( u; v )

T

, vector operators have to be implicitly mapped,

for example the divergence r� on the rows of a Jacobian matrix constructed from r(u; v )

T

,

in order to have consistent results. To illustrate this, we will make use of a small example.

This example clearly motivates the rationale behind the semantics of the proposed language

for describing PDE-based problems.

For the example assume that a dyadic function `diff' represents partial di�erentiation

and suppose that a user

3

has de�ned a gradient operator r with respect to a Cartesian (x; y)

coordinate system with the de�nition

grad(a) := [ diff(a, x),

diff(a, y) ].

The `grad' operator takes a scalar expression and returns its gradient vector with respect to

(x; y). Now consider the application of the `grad' operator on a vector instead of a scalar.

By mathematical de�nition, the result should be the Jacobian matrix of the elements of the

vector with respect to (x; y)

r

8

>

>

:

u

v

9

>

>

;

=

8

>

>

>

:

@u

@x

@u

@y

@v

@x

@v

@y

9

>

>

>

;

The application of the `grad' operator on vector `[u, v]' is speci�ed as

3

With `users' we also mean those who implement packages for providing PDE operators.

8



grad([ u,

v ])

Since the gradient operator only takes a scalar expression as an argument, the language

semantics dictate that the gradient operator should be mapped on the elements of the vector

before the de�nition of the gradient operator can be expanded. That is, the gradient operator

is implicitly mapped on the vector elements which results in the intermediate form

[ grad(u),

grad(v) ]

Thereafter, the gradient operator is applied on the scalar vector elements which results in a

double list representing the Jacobian matrix:

[ [ diff(u, x), diff(u, y) ],

[ diff(v, x), diff(v, y) ] ]

Recall that we have adopted the same conventions as in the maple andmathematica systems

for representing matrices as double lists where the innermost lists of the matrix comprise the

rows of the matrix.

Now let us elaborate on the example with some more advanced operations. Assume that

the user introduces a divergence operator operating on arbitrary two-dimensional vectors.

The divergence with respect to a two-dimensional (x; y) Cartesian coordinate system can be

de�ned as

4

div([ a, b ]) := diff(a, x) + diff(b, y).

An example vector de�nition is:

C := [ c_1, c_2 ].

With these de�nitions, a two-dimensional di�usion problem for two chemical compounds c

1

and c

2

is speci�ed as

diff(C, t) = div(nu * grad(C))

where `nu' is assumed to be a scalar (the di�usion constant). According to the language

semantics, operators can only be applied to arguments that are exactly conforming to the

de�nition of the operator, i.e. accepting only scalars (e.g. gradient) or accepting only vectors

(e.g. divergence). The left-hand side of the PDE evaluates directly by implicit mapping of

the `diff' function into `[diff(c 1, t), diff(c 2, t)]' while the right-hand side of the

PDE evaluates via a combination of operator de�nition expansions and implicit mappings to

div(nu * grad(C))

expand C

) div(nu * grad([c 1, c 2]))

map grad

) div(nu * [grad(c 1), grad(c 2)])

expand grad

) div(nu * [ [diff(c 1, x), diff(c 2, y)],

[diff(c 1, x), diff(c 2, y)] ])

map �

) div([ [nu * diff(c 1, x), nu * diff(c 1, y)],

[nu * diff(c 2, x), nu * diff(c 2, y)] ])

map div

) [ div([nu * diff(c 1, x), nu * diff(c 1, y)]),

div([nu * diff(c 2, x), nu * diff(c 2, y)]) ]

expand div

) [ diff(nu * diff(c 1, x), x) + diff(nu * diff(c 1, y), y),

diff(nu * diff(c 2, x), x) + diff(nu * diff(c 2, y), y) ]

4

For sake of notational convenience we will further write vectors horizontally.
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These transformations correspond to the algebraic translation

r � (�

8

>

>

>

:

@c

1

@x

@c

1

@y

@c

2

@x

@c

2

@y

9

>

>

>

;

)

mapping

)

8

>

>

:

r � ( �

@c

1

@x

; �

@c

1

@y

)

T

r � ( �

@c

2

@x

; �

@c

2

@y

)

T

9

>

>

;

expand r�

)

8

>

>

>

>

>

>

:

@(�

@c

1

@x

)

@x

+

@(�

@c

1

@y

)

@y

@(�

@c

2

@x

)

@x

+

@(�

@c

2

@y

)

@y

9

>

>

>

>

>

>

;

Hence, the mapping and expansion of operator de�nitions is performed deterministically based

on the type of operator de�nitions given, i.e. whether the operators accept expressions of type

scalar, vector, or matrix.

A similar algebraic translation for the divergence operator has been implemented in an

ad-hoc way in the fide \FInite di�erence method for partial Di�erential Equation solving"

system [14], a reduce package.

3 The Interpreter

The interpreter is written in SWI-Prolog [17], a public-domain Prolog implementation com-

patible to standard Edinburgh Prolog [4, 16]. In the next sections, we will discuss the im-

plementation of the interpreter. Examples of PDE problems are included to illustrate the

presented techniques.

In Figure 2 we have depicted an example dialogue with the interpreter for the same sample

matrix and vector operations as were depicted in Figure 1 for the four SACs. In the example,

input to the interpreter is denoted by a prompt `>' followed by de�nitions, assignments,

and expressions to be evaluated which are possibly spread over multiple lines of input and

terminated by a `.'.

In the example, the `div'-operator is a prede�ned operator for symbolically computing

the divergence of a vector. To this end, the `coordinate system("Polar")' command is

needed for obtaining a (r; �) polar coordinate system. The application of the `div'-operator

on a matrix results in the application of the operator on each separate row of the matrix after

which the de�nition of the divergence operator is expanded.

3.1 Lexical Analysis

For lexical analysis and parsing of expressions for the interpreter, the Prolog operator prece-

dence grammar is used. The precedence and associativity of operators is also used for ob-

taining the correctly parenthesized L

A

T

E

X output using the L

A

T

E

X package of Ctadel. On

the one hand, the advantage of using operator precedence grammars is that the precedence

and associativity of new operators can be de�ned by a user and all built-in operators can be

rede�ned when desired, thus allowing for maximal syntactical freedom. This is a reason why

many SACs adopt operator precedence grammars. On the other hand, however, operator

precedence grammars are restrictive and such grammars cannot accept syntactical constructs

that more general LR-parsers are able to accept.

The grammar productions for expressions are:

10



> S := [[1, 2], [3, 4]].

> T := [[1, 1], [2, -1]].

> S^2 + 2 * T.

8

:

9 12

19 20

9

;

> sin(S) &* T.

8

:

2:66006583845926 �0:0678264420177852

�1:37248498255599 0:897922503367795

9

;

> (S - ident(2)) &* [a, b] &* U.

ERROR: matrix product with scalar

signaled on evaluating

(S - ident(2)) &* [a, b] &* U

> (S - ident(2)) &* [a, b].

8

:

2 b

3 a + 3 b

9

;

> S^0.

8

:

1 0

0 1

9

;

> [1, 2]` &* [3, 4].

11

> S + [1, 2].

ERROR: matrix + vector

signaled on evaluating

S + [1, 2]

> coordinate_system("Polar").

> div([[a, b], [c, d]]).

8

>

>

:

1

r

�

@(a r)

@r

+

@b

@�

�

1

r

�

@(c r)

@r

+

@d

@�

�

9

>

>

;

Figure 2: Matrix and Vector Operations.
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expr ::= constant

identi�er

tuple

list

operator

`(' expr `)'

deferred-op

protected-expr

`interpret(' stmt-block `)'

`if' `(' expr `)' `then' `(' expr `)' `else' `(' expr `)'

expr `where' ( identi�er j arg-list ) `=' expr

tuple ::= expr

`(' expr `,' tuple `)'

operator ::= identi�er`('expr [`,' expr]

�

`)'

identi�er expr

expr identi�er

expr identi�er expr

identi�er ::= `a'. . . `z' [alphanum]

�

`A'. . . `Z' [alphanum]

�

special [special]

�

`,' j `;' j `|'

wildcard ::= ` ' [alphanum]

�

alphanum ::= `a'. . . `z' j `A'. . . `Z' j `0'. . . `9' j ` '

special ::= `!' j `#' j `$' j `&' j `*' j `+' j `-' j `.' j `/' j `:'

`<' j `=' j `>' j `?' j `@' j `\' j `^' j ``' j `~'

The last three productions of operator require identi�er to be a pre�x, post�x, or in�x oper-

ator, respectively. The `where' construct can be used to introduce a value for an identi�er in

the local scope of an expression. For operators, the left bracket is actually part of the operator

identi�er, so it is not allowed to put any spaces between the name and the left bracket.

Expressions comprising deferred-op, protected-expr, and stmt-block will be discussed in

Section 7.

3.2 Lists

Lists provide the primary data structure for the representation of matrices and vectors. Lists

are formed using `[' and `]' to surround a comma-separated list of expressions. More formally,

the syntax of a list is

list ::= `[]'

`[' expr [`,' expr]

�

[ `|' list ] `]'

where `[]' denotes the empty list. The list construct `[expr

1

, expr

2

, : : :, expr

n

| list]'

denotes a list with expr

1

; : : : ; expr

n

the �rst n elements (n � 1) of the list and list denotes a

list containing the remaining elements.

3.3 Symbolic Evaluation

For the symbolic evaluation of algebraic expressions, the interpreter invokes the gpas General-

Purpose Algebraic Simpli�er of the Ctadel code generation system [7]. Table 1 shows the

prede�ned arithmetic operators and functions that are symbolically evaluated.

In the table, the precedence of operators are shown. Operator precedences are between

12



prec. operator description

200 expr ^ expr power

200 expr ** expr alias for ^ power

400 expr // expr string concatenation

400 expr * expr multiplication

400 expr / expr division

400 expr div expr integer division

400 expr mod expr integer modulus

400 expr rem expr remainder of integer division

450 + expr unary plus

450 - expr unary minus

500 expr + expr addition

500 expr - expr subtraction

590 expr max expr maximum value

590 expr min expr minimum value

700 expr < expr less than (numeric, logical, string)

700 expr <= expr less or equal than (numeric, logical, string)

700 expr <> expr not equal to (numeric, logical, string)

700 expr == expr equal to (numeric, logical, string)

700 expr > expr greater than (numeric, logical, string)

700 expr >= expr greater or equal than (numeric, logical, string)

910 expr and expr logical conjunction

912 expr imp expr logical implication

914 expr or expr logical disjunction

916 expr eqv expr logical equivalence

916 expr xor expr logical exclusive-or

900 not expr logical negation

function description

abs(expr) absolute value and complex modulus

acos(expr) arccosine in radians

acosh(expr) hyperbolic arccosine in radians

asin(expr) arcsin in radians

asinh(expr) hyperbolic arcsine in radians

atan(expr) arctangent in radians

atan(expr

1

, expr

2

) arctangent of expr

1

=expr

2

atanh(expr) hyperbolic arctangent in radians

complex(expr) expr as complex number

complex(expr

1

, expr

2

) complex number expr

1

+ i expr

2

conj(expr) complex conjugate

cos(expr) cosine in radians

cosh(expr) hyperbolic cosine in radians

ceil(expr) ceiling

exp(expr) exponent

fac(expr) faculty

floor(expr) 
oor

frac(expr) fractional part

gcd(expr, expr) greatest common divisor

im(expr) imaginary part of complex expr

lcm(expr, expr) least common multiple

ln(expr) natural logarithm, alias for log

log(expr) natural logarithm

log10(expr) base 10 logarithm

re(expr) real part of complex expr

real(expr) real number

round(expr) round to nearest integer

sign(expr) sign

sin(expr) sine in radians

sinh(expr) hyperbolic sine in radians

sqrt(expr) square root

tan(expr) tangent in radians

tanh(expr) hyperbolic tangent in radians

trunc(expr) truncation to integer

Table 1: Prede�ned Operators and Functions.
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1 (high precedence) and 1200 (low precedence) as de�ned by standard Prolog conventions

5

.

Operators can also be written using functional syntax, for example, `max(a,a+1)' and `not(a

and b)'.

3.4 Some Remarks on Using Pre�x, Post�x, and In�x Operators

Some parsing problems may occur for speci�c combinations of pre�x, post�x, and in�x oper-

ators. The padding with spaces and the use of brackets may be necessary to separate pre�x,

post�x, and in�x operators

6

or using brackets to avoid ambiguity. These problems are typical

for SACs adopting operator precedence grammars, see e.g. [12].

Three types of parsing problems can be encountered that are to be avoided by padding

with spaces or by using brackets. With respect to mathematical expressions, an unfortunate

situation exists in the use of unary minus and plus with all other in�x operators, like in `2*-3',

`x<-y', or `x^-1'. In all of these cases we have to use spaces, i.e. write `2* -3',`x< -y', and

`x^ -1' instead or use brackets like in `x^(-1)'. On the other hand, this forces a user to be

more precise in formulation: the Ctadel simpli�er internally uses an in�x `<-' operator for

its term-rewrite system, hence it would not be wise to type in�x `<' and pre�x `-' next to each

other in a mathematical expression as the expression will be accepted by the parser, however

with a totally di�erent meaning.

Parsing problems may be encountered when

1. using an in�x operator � that is immediately followed by a pre�x operator 	: in

expr �	expr the � and 	 should be separated;

2. likewise, using an in�x operator � that is immediately preceded by a post�x operator

	: in expr 	�expr the 	 and � should be separated;

3. using an in�x operator �, a pre�x operator f and a symbol of the same name f : the

problem is that f � expr may either denote (f)� expr or f(�(expr)) depending on the

precedence of f . In this case spaces and/or brackets should be used.

3.5 The Built-in Basic Set of List Operators

Table 2 shows the built-in list operators that are implemented in the interpreter. Their

arguments may be scalar algebraic expressions or lists representing vectors and matrices.

The precedence of the in�x `:' operator is 100 which means that brackets should be used

for both arguments when they consists of a pre�x, post�x, or in�x operator. Other examples

are:

� `10-2*(0 to 4))' generates `[10, 8, 6, 4, 2]';

� `[1, 2, 3, 4]:3' gives `3';

� `[[a,b],[c,d]]:2' gives `[c,d]', the second row of the matrix;

� `[[a,b],[c,d]]:(2,1)' gives `c' (second row, �rst column);

5

For more details on syntactical conventions for the operator precedence grammar used in Prolog systems,

the reader is referred to a textbook, e.g. [4, 16].

6

Exceptions to this rule are the in�x `,', `;', and `|' operators due to the Prolog implementation.
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(n

1

to n

2

) generate a list containing integers n

1

up to and including n

2

append(list

1

, list

2

) concatenate lists

apply(deferred-op) apply deferred op, see Section 7.4

apply(deferred-op, tuple) apply deferred op on arguments in tuple, see Section 7.4

apply(tuple, deferred-op) apply deferred op on arguments in tuple, see Section 7.4

drop(n, list) drop �rst n elements from list

eval(expr) evaluate a fg-protected expression, see Section 7.5

fill(n, expr) generate a list containing n duplicates of expr

flatten(expr) 
atten all nested lists to one list

foldl(identi�er, list) left-reduce list with binary operator identi�er

foldr(identi�er, list) right-reduce list with binary operator identi�er

length(list) length of list

map(expr) explicit mapping of expr's outer operator on list-arguments

nops(expr) count number of operands of expr's outer operator

op(n, expr) n = 0: return name of expr's outer operator as a string

n > 0: return n

th

argument of expr's outer operator

reduce(identi�er, list) left/right reduce list with left/right associative binary operator identi�er

reverse(list) reverse list

subscript(identi�er

1

, identi�er

2

) create identi�er composed of identi�er

1

subscripted with identi�er

2

take(n, list) take �rst n elements from list

list:n list indexing: return n

th

element of list

list:tuple list indexing: return element of list indexed by tuple

list

1

:list

2

subset of list

1

as indexed by list

2

Table 2: Built-in Operations.

� `map([[a,b],[c,d]]:1)' gives `[a,c]', the �rst column of the matrix;

� `A:(2 to 4)' gives rows 2 to 4 of a matrix `A';

� `V:reverse(2 to 4)' gives elements 2 to 4 of a vector in reverse order;

� `A:reverse(2 to 4)' gives rows 2 to 4 of a matrix `A' in reverse order;

� `op(0, f(a,b,c))' gives string `"f"';

� `op(2, f(a,b,c))' gives `b';

� `map(drop(2, A))' drops the �rst two columns of a matrix `A';

� `reduce(+, fill(10, 1))' simply gives `10' (sum of ten one's);

� `subscript([u, v], t)' gives `[u t, v t]' since `subscript' is mapped on `[u, v]'.

Note that the `:' index operator can be composed from left to right, hence `[[a,b],[c,d]]:2:1'

yields `c' (second row, �rst column).

3.6 The Interpreter's Implicit Mapping Mechanism

The most basic form of vector notation denotes the implicit mapping of a scalar function or

operator on the elements of vectors as a shorthand. More speci�cally, we want to exploit the

following notational conventions for the application of scalar functions and operators:

� a scalar function applied to a vector is identical to the application of the function to

each of the elements of the vector. That is, a monadic scalar function f is implicitly

mapped onto the elements of the vector:
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f(

8

>

>

>

>

>

>

>

:

�

1

.

.

.

�

n

9

>

>

>

>

>

>

>

;

)

map

)

8

>

>

>

>

>

>

>

>

:

f(�

1

)

.

.

.

f(�

n

)

9

>

>

>

>

>

>

>

>

;

where �

i

, i = 1; : : : ; n, n � 1, are scalar algebraic expressions;

� if one of the arguments of a function is scalar and the other vector, the scalar argument

is replicated along the vector upon mapping the function on the elements of the vector:

g(

8

>

>

>

>

>

>

>

:

�

1

.

.

.

�

n

9

>

>

>

>

>

>

>

;

; �)

map

)

8

>

>

>

>

>

>

>

>

:

g(�

1

; �)

.

.

.

g(�

n

; �)

9

>

>

>

>

>

>

>

>

;

for any dyadic scalar function g, and where �

i

, i = 1; : : : ; n, n � 1, and � are scalar

algebraic expressions;

� if two of the arguments to a scalar function are vectors, the function is mapped onto

the elements of both vectors in parallel:

h(

8

>

>

>

>

>

>

>

:

�

1

.

.

.

�

n

9

>

>

>

>

>

>

>

;

;

8

>

>

>

>

>

>

>

:

�

1

.

.

.

�

n

9

>

>

>

>

>

>

>

;

)

map

)

8

>

>

>

>

>

>

>

>

:

h(�

1

; �

1

)

.

.

.

h(�

n

; �

n

)

9

>

>

>

>

>

>

>

>

;

for any dyadic scalar function h, and where �

i

and �

i

, i = 1; : : : ; n, n � 1, are scalar

algebraic expressions. This mapping is valid if the vectors are of the same length.

Otherwise, a conformability violation is detected and an error message is given.

By de�nition, mapping scalar functions on `empty' vectors (n = 0 in the above) is pro-

hibited and is signaled as an error. Furthermore, this implicit mapping applies to any

k-ary scalar function by using the same conventions as listed above. Thus, for example,

f(0;� sin(( 1; 2; 3 )

T

); ( 4; 5; 6 )

T

) maps to ( f(0;� sin(1); 4); f(0;� sin(2); 5); f(0;� sin(3); 6) )

T

by application of multiple mappings.

Since matrices are represented as vectors of vectors, the mapping of scalar functions on

matrices is performed by mapping the function on the outer vector �rst and then recursively

on the innermost vectors until only scalar arguments remain. In principle, all functions and

operators are treated as scalar except for functions and operators that are de�ned with formal

matrix/vector arguments.

3.7 Example 1

This example PDE problem illustrates a simple application of the implicit mapping algorithm.

Consider the time-dependent Euler equation for an inviscid, compressible 
ow in a two-

dimensional geometry, which can be written in conservation law form (
ux form) in an (x; y)

Cartesian coordinate system as

@

@t

8

>

>

>

>

>

>

>

>

>

>

:

�

� u

� v

�E

9

>

>

>

>

>

>

>

>

>

>

;

+

@

@x

8

>

>

>

>

>

>

>

>

>

>

:

� u

�u

2

� u v

u(�E + p)

9

>

>

>

>

>

>

>

>

>

>

;

+

@

@y

8

>

>

>

>

>

>

>

>

>

>

:

� v

� u v

� v

2

v(�E + p)

9

>

>

>

>

>

>

>

>

>

>

;

= 0 (3)

where � is the mass density, p the pressure, E the total energy, and (u; v) are the (x; y)

components of the 
ow velocity, respectively. The above system of equations is closed via the
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equation of state

p = �(
 � 1)(E �

1

2

(u

2

+ v

2

)) (4)

where 
 is the ratio of speci�c heats of the medium. Eq. (3) can be speci�ed as

diff(rho * [ 1, u, v, E ], t)

+ diff([ rho * u, rho * u ^ 2, rho * u * v, u * (rho * E + p) ], x)

+ diff([ rho * v, rho * u * v, rho * v ^ 2, v * (rho * E + p) ], y) = 0.

The evaluation of the example equation proceeds by implicit mapping resulting in a vector of

four scalar equations:

[ diff(rho, t) + diff(rho * u, x) + diff(rho * v, y) = 0,

diff(rho * u, t) + diff(rho * u ^ 2, x) + diff(rho * u * v, y) = 0,

diff(rho * v, t) + diff(rho * u * v, x) + diff(rho * v ^ 2, y) = 0,

diff(rho * E, t) + diff(u * (rho * E + p), x) + diff(v * (rho * E + p), y) = 0 ]

Note that the `diff' operator is scalar and therefore mapped onto the elements of the vectors.

The result represents the scalar form of Eq. (3).

3.8 De�nitions

Operators that act on scalars, vectors, or matrices can be de�ned by using the appropriate list

syntax for the formal arguments of the operator. More speci�cally, the syntax of a de�nition

is

def ::= head `:=' body

head ::= identi�er

identi�er `:' integer

identi�er `:' `(' expr `)'

identi�er`('arg [`,' arg]

�

`)'

identi�er arg

arg identi�er

arg identi�er arg

head-list

head-list ::= `[' head [`,' head]

�

`]'

body ::= expr

expr `when' expr

`procedure(' [`local' identi�er [`,' identi�er]

�

`;'] stmt-block `)'

arg ::= identi�er

constant

wildcard

arg-list

arg-list ::= `[]'

`[' arg [`,' arg]

�

[`|' arg] `]'

where the last three productions for head require identi�er to be a pre�x, post�x, or in�x

operator, respectively.

The left-hand side of an assignment can be a matrix or vector indexed using the in�x `:'

operator upon which the indexed element will be changed only.

Expressions assigned to (indexed) identi�ers are always evaluated �rst before being as-

signed to an identi�er, while the body of an operator is only evaluated after the operator

de�nition has been expanded.

The `when' keyword can be used for conditionally expanding operator de�nitions. Only

when the condition given by the right argument of `when' evaluates to `true', the expression

given by the left argument of `when' is returned. For example,
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f(u) := u when u>0.

Here, `f(1)' gives `1' while `f(0)' and `f("hello")' remain unexpanded.

A `procedure' keyword identi�es the declaration as a procedure instead of a function.

Procedures are explained in Section 7.1.

3.9 Example 1 (Revisited)

This example illustrates the use of vector de�nitions and vector operators. Reconsider the

time-dependent Euler equation Eq. (3). By introducing three vector �elds

w =

8

>

>

>

>

>

>

>

>

>

>

:

�

� u

� v

�E

9

>

>

>

>

>

>

>

>

>

>

;

; f =

8

>

>

>

>

>

>

>

>

>

>

:

� u

�u

2

� u v

u (�E + p)

9

>

>

>

>

>

>

>

>

>

>

;

; g =

8

>

>

>

>

>

>

>

>

>

>

:

� v

� u v

� v

2

v (�E + p)

9

>

>

>

>

>

>

>

>

>

>

;

Eq. (3) can be rewritten as

@w

@t

+

@f

@x

+

@g

@y

= 0: (5)

The three vectors are de�ned by

w := rho * [ 1, u, v, E ].

f := [ rho * u, rho * u ^ 2, rho * u * v, u * (rho * E + p) ].

g := [ rho * v, rho * u * v, rho * v ^ 2, v * (rho * E + p) ].

Note that `w' evaluates to the vector `[rho, rho * u, rho * v, rho * E]' by implicit map-

ping of the scalar product operator `*'. With these vector de�nitions, Eq. (5) can be speci�ed

as

diff(w, t) + diff(f, x) + diff(g, y) = 0

Alternatively, we can specify Eq. (5) with `f' and `g' vector operators acting on vector `w':

f([ w1, w2, w3, w4 ]) := [ w2, w2^2 / w1, w2 * w3 / w1, w2 / w1 * (w4 + p) ].

g([ w1, w2, w3, w4 ]) := [ w3, w2 * w3 / w1, w3^2 / w1, w3 / w1 * (w4 + p) ].

Then, for

diff(w, t) + diff(f(w), x) + diff(g(w), y) = 0

the same result is obtained.

3.10 Example 2

This example illustrates the de�nition and use of a divergence operator for a PDE problem.

Consider the two-dimensional advection of an entity  in an incompressible medium, i.e.

r �V = 0 for V = (u; v )

T

which is the velocity vector �eld of the 
uid 
ow at each point in

space. This PDE problem is generally written in 
ux form as

@ 

@t

= r � ( V) (6)

As usual, r = (

@

@x

;

@

@y

)

T

assuming a Cartesian (x; y) coordinate system.

First, we introduce a vector-operator `div' representing the divergence (r�) operation, i.e.

we write Eq. (6) as

@ 

@t

= div( V). The de�nition of the divergence operator within a (x; y)

Cartesian coordinate system is
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div([ a, b ]) := diff(a, x) + diff(b, y).

Note that the divergence operator `div' takes a two-dimensional vector and returns a scalar

expression. Now, Eq. (6) is given by

V := [ u, v ].

diff(psi, t) = div(psi * V).

By implicit mapping of `psi * V' and expansion of `div' this results in

diff(psi, t) = diff(psi * u, x) + diff(psi * v, y)

In L

A

T

E

X typesetting this is

@ 

@t

=

@( u)

@x

+

@( v)

@y

3.11 The Implicit Mapping Mechanism for Vector and Matrix Operators

The implicit mapping mechanism handles vector-operators like the divergence operator used

in Example 2 in a similar way as scalar operators. The di�erence, however, is that the

arguments of an operator are checked for conformability between the formal arguments, given

by the de�nition of the operator, and the actual arguments supplied. The formal and actual

arguments are conformable if they are of the same type, i.e. scalar, vector, or matrix. The

conformability check ensures that an operator that takes a vector as an argument, e.g. a

divergence operator, will only be applied to a vector. Otherwise, if the argument is a matrix,

the operator is implicitly mapped onto the rows of the matrix �rst, and then applied. If

the argument is scalar, the operator is not applied and the expression with the operator is

returned as is.

Using the implicit mapping mechanism, the translation of a vector equation or expression

to a set of scalar equations or expressions proceeds in a combination of expanding vector and

matrix objects, mapping of operators on vectors and matrices if necessary, and expansion

of operator de�nitions. More speci�cally, for the implicit mapping mechanism with vector-

operators we use the following notational conventions:

� for a monadic operator f that takes a vector as a formal argument while supplied with

a matrix as an actual argument, f is applied to each row of the matrix:

f(

8

>

>

>

>

>

>

>

:

�

11

� � � �

1m

.

.

.

.

.

.

.

.

.

�

n1

� � � �

nm

9

>

>

>

>

>

>

>

;

)

map

)

8

>

>

>

>

>

>

>

>

:

f((�

11

; � � � ; �

1m

)

T

)

.

.

.

f((�

n1

; � � � ; �

nm

)

T

)

9

>

>

>

>

>

>

>

>

;

where �

ij

, i = 1; : : : ; n, n � 1, j = 1; : : : ;m, are scalar algebraic expressions;

� for a dyadic operator g that takes a vector of length m as the �rst formal argument and

a scalar as the second formal argument while the actual arguments constitute a matrix

and a vector, respectively, g is applied simultaneously to each row of the matrix and to

each of the elements of the vector. This requires that the number of rows n of the given

matrix is the same as the length of the vector supplied:

g(

8

>

>

>

>

>

>

>

:

�

11

� � � �

1m

.

.

.

.

.

.

.

.

.

�

n1

� � � �

nm

9

>

>

>

>

>

>

>

;

;

8

>

>

>

>

>

>

>

:

�

1

.

.

.

�

n

9

>

>

>

>

>

>

>

;

)

map

)

8

>

>

>

>

>

>

>

>

:

g((�

11

; � � � ; �

1m

)

T

; �

1

)

.

.

.

g((�

n1

; � � � ; �

nm

)

T

; �

n

)

9

>

>

>

>

>

>

>

>

;

where �

ij

and �

i

, i = 1; : : : ; n, n � 1, j = 1; : : : ;m, are scalar algebraic expressions;
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� for a dyadic operator h that takes two vectors of length ` and m respectively as formal

arguments while the actual arguments are two matrices, the operator h is applied to

each row of both of the matrices in parallel. This requires that both matrices have the

same number of rows n:

h(

8

>

>

>

>

>

>

>

:

�

11

� � � �

1`

.

.

.

.

.

.

.

.

.

�

n1

� � � �

n`

9

>

>

>

>

>

>

>

;

;

8

>

>

>

>

>

>

>

:

�

11

� � � �

1m

.

.

.

.

.

.

.

.

.

�

n1

� � � �

nm

9

>

>

>

>

>

>

>

;

)

map

)

8

>

>

>

>

>

>

>

>

:

h((�

11

; � � � ; �

1`

)

T

; (�

11

; � � � ; �

1m

)

T

)

.

.

.

h((�

n1

; � � � ; �

n`

)

T

; (�

n1

; � � � ; �

nm

)

T

)

9

>

>

>

>

>

>

>

>

;

where �

ij

and �

ik

, i = 1; : : : ; n, n � 1, j = 1; : : : ; `, k = 1; : : : ;m, are scalar algebraic

expressions;

Note that the notational conventions for vector-operators de�ned above are basically identical

to the notational conventions for scalar operators as can be seen by promoting the scalars to

vectors and the vectors to matrices and comparing the resulting de�nitions.

3.12 The Mapping Algorithm

The mapping algorithm proceeds through the following steps:

1. evaluate the actual arguments supplied to the operator;

2. check conformability between the actual arguments (i.e. scalar, vector, or matrix and

their rank) with the formal arguments for each alternative de�nition of the operator;

3. if the arguments are conformable, apply the de�nition, take the resulting expression,

and goto 1.

4. else, if all arguments are scalar, stop;

5. else, map the operator on the actual list-arguments;

6. goto 2.

An operator may have several alternative de�nitions. Only one de�nition is selected depending

on the structural correspondence between the formal and actual arguments which is ensured by

an argument conformability check. For example, in this way one, two, and three-dimensional

divergence operators can be de�ned sharing the same operator name `div':

div(a) := diff(a, x). % 1D scalar divergence

div([ a, b ]) := diff(a, x) + diff(b, y). % 2D divergence

div([ a, b, c ]) := diff(a, x) + diff(b, y) + diff(c, z). % 3D divergence

Note that the algorithm adopts strict evaluation as opposed to the lazy evaluation imple-

mented in most functional languages. That is, the arguments are evaluated before an operator

is expanded, e.g.

div(nu * [u, v])

step 1 gives

div([nu * u, nu * v])

step 2 �nds the second de�nition of `div' for two-dimensional divergence and step 3 results

in

diff(nu * u, x) + diff(nu * v, y)

The result is scalar and symbolic evaluation stops here.
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3.13 Example 3

The following example illustrates the implicit mapping of a divergence operator on the rows

of a Jacobian matrix constructed in the process of translating the example problem into scalar

form. Consider a two-dimensional di�usion problem with two chemical compounds c

1

and c

2

in a medium with viscosity constant � (possibly space dependent). The two parabolic PDEs

describing the problem are respectively

@c

1

@t

= r � (�rc

1

) + r

1

(c

1

; c

2

) (7)

@c

2

@t

= r � (�rc

2

) + r

2

(c

1

; c

2

) (8)

where the r

i

, i = 1; 2, are so-called reaction terms. We can write Eqs. (7) and (8) as a single

vector equation

@C

@t

= r � (�rC) +R (9)

where C = ( c

1

; c

2

)

T

and R = ( r

1

(c

1

; c

2

); r

2

(c

1

; c

2

) )

T

. Again, the speci�cation of the two-

dimensional gradient and divergence operators is

grad(u) := [ diff(u, x), diff(u, y) ].

div([ u, v ]) := diff(u, x) + diff(v, y).

C := [ c_1, c_2 ].

R := [ r_1(c_1, c_2), r_2(c_1, c_2) ].

with the two vectors `C' and `R'. The PDE in Eq. (9) can be speci�ed as

diff(C, t) = div(nu * grad(C)) + R

This is translated into the form

[ diff(c_1, t),

diff(c_2, t) ]

= [ diff(nu * diff(c_1, x), x) + diff(nu * diff(c_1, y), y) + r_1(c_1, c_2),

diff(nu * diff(c_2, x), x) + diff(nu * diff(c_2, y), y) + r_2(c_1, c_2) ]

The output in L

A

T

E

X is

8

>

>

:

@c

1

@t

@c

2

@t

9

>

>

;

=

8

>

>

>

>

>

>

:

@

�

�

@c

1

@x

�

@x

+

@

�

�

@c

1

@y

�

@y

+ r

1

(c

1

; c

2

)

@

�

�

@c

2

@x

�

@x

+

@

�

�

@c

2

@y

�

@y

+ r

2

(c

1

; c

2

)

9

>

>

>

>

>

>

;

4 Using the vecalg Vector Algebra Package

In the previously presented examples, we have tacitly assumed that the user is familiar with

de�ning his own gradient and divergence operators. Since these operators are used quite

often in the speci�cation of PDEs, we provide PDE operators in the `vecalg' package. The

`vecalg' package de�nes the pre�x operators

grad gradient r

div divergence r�

curl curl r�

lapl Laplacian � or r

2
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The package implements the operators independent of a coordinate system. The actual co-

ordinate system for the PDE operators can be rede�ned by the user without reloading the

package. To this end, two special vectors are used for specifying a coordinate system: the

`coordinates' and `coefficients' vectors that respectively comprise the vector of spatial

coordinates and metric coe�cients (i.e. scale factors) of the coordinate system. Both vectors

should be of the same rank. When the user assigns new values to these vectors, either ex-

plicitly or implicitly using the `coordinate system' command, he can use any of the PDE

operators listed above with the rede�ned coordinate system. For example, the PDE operators

are cast into a two-dimensional Cartesian (x; y) coordinate system by

coordinates := [x, y].

coefficients := [1, 1].

or by including the `coordinate system("2D Cartesian")' command which executes these

de�nitions. The coordinate system can be changed into another system or sub-coordinate

system. For example, the PDE operators are cast into a polar (r; �) coordinate system by

coordinates := [r, theta].

coefficients := [1, r].

or by including the `coordinate system("Polar")' command which executes these de�ni-

tions.

The `vecalg' package also demonstrates the usefulness of the implicit mapping mechanism

implemented in the interpreter. For example, the de�nition of the pre�x `grad' operator is:

grad X := diff(X, coordinates) / coefficients.

Since the partial derivative operator `diff' and division `/' are assumed to be scalar, the `diff'

operator is implicitly mapped on the elements of the `coordinates' and `coefficients'

vectors. Thereby obtaining the gradient vector of the scalar argument. The de�nition of the

one, two-, and three-dimensional divergence operators are:

div X := diff(X, coordinates:1) / coefficients:1.

div [X1, X2] := ( diff(coefficients:2 * X1, coordinates:1)

+ diff(coefficients:1 * X2, coordinates:2)

) / (coefficients:1 * coefficients:2).

div [X1, X2, X3] := ( diff(coefficients:2 * coefficients:3 * X1, coordinates:1)

+ diff(coefficients:3 * coefficients:1 * X2, coordinates:2)

+ diff(coefficients:1 * coefficients:2 * X3, coordinates:3)

) / (coefficients:1 * coefficients:2 * coefficients:3).

where `coordinates:1' yields the �rst element of vector `coordinates', etc. With the above

de�nitions, the de�nition of the Laplacian is simply:

lapl X := div grad X.

The complete source of the `vecalg' package is given in Appendix A.

4.1 Using Vector Notation

Besides the provisions for changing the coordinate system for PDE operators, the `vecalg'

package also provides a form of vector notation for specifying PDEs. For the vector notation,

the symbol `nabla' can be used as a symbolic constant denoting the symbol r in combination

with vectors, scalars, and the operators
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+ sum

* product

.* dot product

#* cross product

^2 square

The following basic notational conventions are supported:

nabla * expr = grad expr

nabla .* expr = div expr

nabla #* expr = curl expr

nabla^2 * expr = lapl expr

nabla .* nabla = nabla^2

Note that it is still essential to use the scalar-product operator `*' in combination with the

`nabla' symbol.

Using combinations of the `nabla', `+', `*', `.*', and `#*' symbols, PDEs can be speci�ed

in vector notation, e.g. `([u, v] + nu * nabla) .* [p, q]' which gives `nu * (diff(p,

x) + diff(q, y)) + p * u + q * v' using a Cartesian (x; y) coordinate system.

4.2 Example 4

Consider

@�

@t

= (r � (dr))� in a (x; y; z) Cartesian coordinate system. The PDE can be

speci�ed as

include vecalg.

coordinates := [x, y, z].

coefficients := [1, 1, 1].

PDE := diff(phi, t) = (nabla .* (d * nabla)) * phi.

In the example, an identi�er `PDE' is used to store the PDE. Expressions assigned to identi�ers

are always evaluated �rst, hence, the coordinate system must be de�ned before the assignment

to `PDE'. Now, `PDE' evaluates to

diff(phi, t) =

diff(d * diff(phi, x), x) + diff(d * diff(phi, y), y) + diff(d * diff(phi, z), z)

4.3 Example 5

In this example we illustrate how so-called `equation functions' can be used for storing equa-

tions permanently so they can be reused with di�erent coordinate systems. When equations

are stored with functions, the equations are not evaluated until the function is expanded in

contrast to assignments to identi�ers. In this way we are able to specify the equations before

a coordinate system is de�ned. When an appropriate coordinate system is de�ned, the func-

tions can be expanded and the resulting PDEs in vector notation are cast into the coordinate

system and translated into scalar form.

The 
ow of a 
uid through space is described by two fundamental equations of hydrody-

namics, the continuity equation and the Navier Stokes equation:

@�

@t

+r � �V = 0 (10)

@V

@t

= �(V � r)V �

1

�

rp+ �r

2

V (11)
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where � is the mass density of the 
uid, � the kinematic viscosity, and V is the velocity of

the 
uid at each point in space. In general, the pressure p is given in terms of the density and

temperature through an equation of state. Furthermore, we assume that the temperature

is constant throughout the 
uid and thereby omit the need for an equation embodying the

conservation of energy.

In this example, we will consider incompressible, time-independent 
ows for which the

time derivatives in Eqs. (10) and (11) are set to zero and the density � is constant. The

equations are rewritten into

r �V = 0 (12)

(V � r)V = �

1

�

rp+ �r

2

V (13)

First, we specify Eqs. (12) and (13) using `equation' functions as

include vecalg.

equation("Continuity") := nabla .* V = 0.

equation("Navier Stokes") := (V .* nabla) * V = - 1/rho * nabla * p + nu * nabla^2 * V.

Then, we de�ne a two-dimensional Cartesian coordinate system and a vector `V':

coordinates := [x, y].

coefficients := [1, 1].

V := [u, v].

Using these de�nitions, the evaluation of `equation("Continuity")' results in the L

A

T

E

X

output

@u

@x

+

@v

@y

= 0

and `equation("Navier Stokes")' results in the L

A

T

E

X output
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>
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@v
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>
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>

;
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>

>
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@
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�
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�

@
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2
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2
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�

1

�
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9

>

>

>

>

>

;

In a similar way the equations can be cast into a polar coordinate system by rede�ning the

`coordinates' and `coefficients' vectors:

coordinates := [r, theta].

coefficients := [1, r].

now `equation("Continuity")' results in

1

r

�

@(r u)

@r

+

@v

@�

�

= 0

and `equation("Navier Stokes")' yields

8

>

>
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u

@u

@r

+

v

r

@u

@�

u

@v

@r

+

v

r

@v

@�

9

>

>

;
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>

>
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�

r

�

@

(

r

@u

@r

)

@r

+

@

(

1

r

@u

@�

)

@�

�

�

1

�

@p

@r

�

r

�

@

(

r

@v

@r

)

@r

+

@

(

1

r
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r �
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>

>
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;
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5 Using the linalg Linear Algebra Package

The `linalg' package provides basic vector and matrix operations. Since all the operators

can be rede�ned, in principle maple, mathematica, reduce, or matlab compatibility can

be obtained by rewriting the necessary matrix and vector de�nitions. The matrix and vector

operators are

expr + expr scalar and element-wise addition

expr - expr scalar and element-wise subtraction or negation

expr * expr scalar and element-wise product

expr / expr scalar and element-wise division

expr ^ expr scalar and matrix power, with `expr ^T' matrix transpose

expr .* expr dot product

expr #* expr cross product

expr &* expr matrix-vector and matrix-matrix product

expr ` matrix transpose (note: backquote!)

expr \ expr matrix-vector solve (like matlab left division)

expr ++ expr matrix and vector concatenation

expr // expr matrix and vector stacking, and scalar string concatenation

Identity and zero matrices are generated by

ident(rank) identity matrix

zero(rank) zero square matrix

zero(rowrank, colrank) zero matrix

6 Declarations

In this section we describe the declarative language constructs for introducing pre�x, post-

�x, and in�x operator syntax, for de�ning symbolic constants and inert operators, and for

providing L

A

T

E

X descriptions for functions and operators for obtaining special forms of L

A

T

E

X

output. More formally, the productions for decl are:

decl ::= syntax-decl

inert-decl

latex-decl

Declaration and statement-blocks comprise the two main parts of the interpreter's input:

input ::= decl `.'

stmt-block `.'

Each of which is terminated by a `.'. Statement blocks consist of de�nitions, expressions to

be evaluated, and statements which are further discussed in Section 7.1.

6.1 Pre�x, Post�x, and In�x Operator Declarations

In the `vecalg' package the PDE operators `grad', `div', `curl', and `lapl' are declared as

pre�x operators and the `#*' and `.*' as in�x operators. The declaration of a pre�x, post�x,

or in�x operator has the form
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syntax-decl ::= `prefix' identi�er [ `has precedence(' prec `)' ]

`postfix' identi�er [ `has precedence(' prec `)' ]

`infix' identi�er [ `is associative(' assoc `)' ] [ `has precedence(' prec `)' ]

prec ::= `none'

integer

identi�er

assoc ::= `left'

`right'

`none'

identi�er

where prec is either an integer denoting the Prolog operator precedence between 1 and 1200

(see also Table 1), `none' in which case pre�x, post�x, or in�x syntax will be disabled, or the

identi�er of an already de�ned pre�x, post�x, or in�x operator whose precedence should be

used. If the operator is not already declared pre�x, post�x, or in�x, the default precedence

for pre�x and post�x operators is 100 and for in�x operators 450 (between the precedences

of `+' and `*'). For assoc, `left' or `right' denote left/right-associativity, `none' denotes

non-associativity (default). An identi�er for assoc denotes an already declared in�x operator

whose associativity should be used. For example,

prefix grad has precedence(+).

infix .* is associative(none) has precedence(450).

declares pre�x syntax for `grad' with the same precedence as unary plus and in�x syntax

for the non-associative dot-product operator `.*' with precedence 450 (both are the default

associativity and precedence for in�x operators).

6.2 De�ning Symbolic Constants and Inert Operators

Constants are integers, 
oating point numbers, strings, and explicitly declared named con-

stants. Named constants can be parameterized in which case we will refer to these constants

as `inert operators'. The productions for constant are

constant ::= `true'

`false'

`infinity'

`nil'

`undefined'

number

string

identi�er

identi�er`('arg [`,' arg]

�

`)'

identi�er arg

arg identi�er

arg identi�er arg

where the last three productions require the inert operator identi�er to be a pre�x, post�x,

or in�x operator. A number is a signed integer or signed 
oating point number with 15

digits precision. A string is a sequence of characters enclosed within double quotes (`"').

Constants `nil' and `undefined' represent a so-called null (>) value and an unde�ned value

(?), respectively.

Inert operators serve as place-holders for expressions and are not subject to implicit map-

ping. Furthermore, it is prohibited to de�ne a body for an explicitly declared constant or

inert operator.

The declaration of symbolic constants and inert operators is of the form
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inert-decl ::= identi�er `is inert'

identi�er `arity' integer `is inert'

identi�er`(' arg [ `,' arg ]

�

`)' `is inert'

The �rst production declares a constant, the second and third productions both declare inert

operators where `arity integer' denotes the number of arguments of the operator and in the

last production arg are dummy arguments.

6.2.1 Using Symbolic Constants and Inert Operators

Constants and inert operators can be used as formal arguments in an operator de�nition. In

the following example, `x' and `y' are named constants (coordinates) and a special `domain'

data structure is introduced using two inert in�x operators `=' and `..':

x is inert.

y is inert.

infix = has precedence(964) is inert.

infix .. has precedence(600) is inert.

Note that for convenience, several declarations for the same function/operator can be com-

bined into one declaration. Hence `infix = has precedence(964) is inert.' is legal.

The inert de�nitions are useful for de�ning alternative implementations for functions and

operators that depend on the type of data structures given as actual arguments. To this end,

the formal arguments for an operator de�nition may contain constants and inert operators.

For example, to implement di�erent methods of integration in di�erent directions, we can

de�ne

int(U, x = A .. B) := sum(U, i = floor(n*A) .. ceil(n*B)).

int(U, y = A .. B) := sum(U, j = floor(m*A)+1 .. ceil(m*B)).

where we assume that `n' and `m' are the number of grid points in the x and y directions,

respectively. In the example the `int' de�nitions yield di�erent summations for di�erent `x'

and `y' coordinates. So

int(int(u * v, x = 1 .. 10), y = 0 .. 1)

yields

sum(sum(u * v, i = floor(n) .. ceil(10 * n)), j = 1 .. ceil(m))

Note that the in�x `=' is inert which also implies that the operator is not subject to implicit

mapping. Hence, for example the equation `[u, v] = [1, 2]' is not further evaluated.

Introducing new named constants should be done with great care as the formal arguments

of the operator de�nitions that follow may be a�ected. For example, after the above de�nitions

are given, any `x' or `y' used as an identi�er for a formal argument will be taken literally! To

avoid such problems, we suggest that by convention all identi�ers for the formal arguments

should start with an upper case letter.

6.2.2 The Search-Order of De�nitions

Recall from Section that the implicit mapping algorithm selects a de�nition of an operator

for operator expansion depending on the structural correspondence between the actual and

formal arguments. Understanding the selection method is especially crucial for the adoption
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of multiple de�nitions with inert operators as arguments. The idea is that more speci�c

de�nitions should always be applied before more general ones. To this end, the selection of

a de�nition, when multiple de�nitions for an operator are given, proceeds by searching the

de�nitions in lexicographical order. The lexicographical order applies to each argument of the

de�nition's head from left to right: numeric constants �rst in numerical order, then symbolic

constants in alphabetical order, then inert operators in alphabetical order, and last, any pure

formal arguments. For inert operators with the same name and arity, the lexicographical

order is applied recursively on their arguments from left to right. In this way, more speci�c

de�nitions of an operator are found �rst before more general ones. For example, the following

de�nitions may be given in any order:

1: f(N, M) := N - M.

2: f(N, 0) := N.

3: f(0, M) := -M.

4: f(N, x = L .. U) := (U - L + 1) * N.

5: f(N, X = Y) := f(N, Y).

6: f(0, X = Y) := 0.

7: f(N, x = 0 .. U) := (U + 1) * N.

For expansion of function `f', the search order of the de�nitions above is 6, 3, 2, 7, 4, 5, and

1. So, `f(0, 0)' expands de�nition 3 (where 2 could also be applied, but whose place in the

order comes after de�nition 3), `f(0, x = 1 .. 3)' expands de�nition 4, `f(1, y = 0 ..

3)' expands de�nition 6.

Expansion of an operator can be masked with a `when' construct, for example:

g(0, M) := undefined when M > 0.

g(N, M) := N + M.

In which case a de�nition for expansion is searched by taking the lexicographical search order

into account. However, when the condition of a `when' construct does not evaluate to `true',

the de�nition is skipped and another applicable de�nition for expansion is searched for. For

the example above, application `g(0, 1)' results in `undefined' while `g(0, 0)' results in `0'.

Note that the condition for a `when' construct should evaluate to `true' before the de�nition

can be expanded. This means that `g(0, a)' evaluates to `a' because the condition `a > 0'

cannot be evaluated unless `a' has a numeric value.

6.3 L

A

T

E

X Descriptions

In principle, the L

A

T

E

X package of Ctadel adopts mathematical style for most symbols hav-

ing a mathematical meaning such as `alpha', `nabla', and `forall'. In general, by using

underscores the L

A

T

E

X output of identi�ers appears with all underscore extensions printed

as subscripts. So, T 0 gives T

0

, flow liquid 1 gives 
ow

liquid

1

, and test beta gives test

�

.

Identi�ers may contain of Greek upper and lower case letters which are are output as Greek

symbols. In addition to Greek symbols, other special symbols can be used:
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Identi�er Math symbol

aleph @

hbar �h

imath {

jmath |

l `

Re <

Im =

varepsilon "

vartheta #

varpi $

varrho %

varsigma &

varphi '

So, for example l alpha gives `

�

and hbar0 gives �h0 but hbarbara gives hbarbara .

Annotated identi�ers are identi�ers with (several) identi�er extensions added using un-

derscores. Below is a table of annotations:

Annotation Math symbol Example

angle

6

rot angle rot

6

bot ? low bot low

?

dprime

00

u dprime u

00

flat [ d flat d

[

infty 1 T infty T

1

minus � f minus f

�

natural \ d natural d

\

plus + f plus f

+

prime

0

u prime u

0

sharp ] d sharp d

]

star � xi star �

�

top > hi top hi

>

Annotations can be composed, for example d star infty gives d

�

1

and rot prime angle

gives rot

0

6

.

Like annotations, math accents are given as identi�er extensions, possibly combined with

annotiations. Below is a table of accents:

Accent Example

acute a acute �a

bar a bar �a

breve a breve �a

check a check �a

ddot a ddot �a

dot a dot _a

grave a grave �a

hat a hat â

tilde a tilde ~a

vec a vec ~a

So, for example a hat star infty gives â

�

1

and u prime vec gives

~

u

0

which is di�erent from

u vec prime ~u

0

.

The default L

A

T

E

X output of identi�ers can be overruled by explicit L

A

T

E

X descriptions.

There are three distinguished ways in which a special L

A

T

E

X description can be given for an

object to override the `standard' L

A

T

E

X output:

1. the most simple form is to associate a L

A

T

E

X string with the name of an object using

one of the forms:
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latex-decl ::= identi�er `has latex name(' string `)'

identi�er `arity' integer `has latex name(' string `)'

identi�er`(' arg [ `,' arg ]

�

`)' `has latex name(' string `)'

where `arity integer' denotes the operator's arity and arg are dummy arguments. Ex-

amples are:

true has latex_name("\sc t").

grad(_) has latex_name("\nabla").

div arity 1 has latex_name("\nabla\cdot").

infix .* has latex_name("\cdot").

infix .. is associative(none) has precedence(600) has latex_name("\,.\,.\,").

Note that the `has latex name' can be combined with other declarations.

2. a description for typesetting the operator and its arguments has the form:

latex-decl ::= head `latex' [`precedence(' prec `);'] latex-body

latex-body ::= string

expr

expr `,' latex-body

The description is similar to an operator de�nition although the body represents the

L

A

T

E

X output. The precedence of the L

A

T

E

X description controls the placement of brack-

ets, which depends on the precedence of the other operators used in an expression. In

this case, the use of `none' prohibits the placement of brackets. The `precedence' key-

word is optional. For pre�x, post�x, and in�x operators the default precedence is the

precedence of the operator. For functions, the default precedence is 1200, which means

that brackets will always be placed around the function. Strings in the latex-body are

taken literally as L

A

T

E

X commands. Examples are:

X #* Y latex X, "\times", Y.

abs(X) latex precedence(none); "\left|", X, "\right|".

int(E, X = A .. B) latex precedence(none); "\int_", A, "^", B, E, "\,d", X.

sum(E, I = A .. B) latex precedence(501); "\sum_{", I, "=", A, "}^", B, E.

in which the last two declarations also make use of the domain data structure described

in the previous section.

3. the most advanced form allows so-called L

A

T

E

X environments for functions and operators

to be created to enable two-dimensional mathematical typesetting with L

A

T

E

X. The

general form of the declaration is:

latex-decl ::= head `latex' latex-body `;' latex-environment-list `;' latex-body

The �rst and second latex-body consists of the begin and end-commands of the L

A

T

E

X

environment. The latex-environment-list comprises a list of local L

A

T

E

X de�nitions, each

consisting of head `:=' `[' latex-body `]' where latex-body is a L

A

T

E

X description only valid

local to the environment. Strings in latex-body are taken as L

A

T

E

X commands, which

can be changed by using `$STRING(string)' to print a string. The local de�nitions are

recursively expanded which can be prohibited by using `$ESCAPE('expr)' to escape from

the local de�nitions in the environment.

The local de�nitions construct the environment, which is best illustrated using two

examples:
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(_ ; _) latex "\begin{array}{l}";

[ (S1 ; S2) := [S1, "\\", S2]

];

"\end{array}".

This description can be used to obtain a L

A

T

E

X typesetting for the vertical alignment of

statements separated by the in�x `;' operator

7

.

The following example shows how a L

A

T

E

X environment for conditional expressions is

created:

infix \\ is associative(right) has precedence(962).

infix if is associative(right) has precedence(960).

postfix otherwise.

_ \\ _ latex "\left\{\begin{array}{ll}";

[ X \\ Y := [X, "\\", Y]

, X if C := [$ESCAPE(X), "&{\bf if~}", $ESCAPE(C)]

, X otherwise := [$ESCAPE(X), "&{\bf otherwise}"]

];

"\end{array}\right.".

The in�x `\\' operator constructs a case statement together with in�x `if' and post�x

`otherwise' operators. The arguments of the local `if' and `otherwise' de�nitions

should escape the environment or an illegal L

A

T

E

X layout will be obtained for nested

conditional expressions. For example

u = a/b if b > 0 and c \\

a if b == 0 \\

-a otherwise

is output in L

A

T

E

X as:

u =

8

>

<

>

:

a

b

if b > 0 ^ c

a if b == 0

�a otherwise

An example of a nested conditional expressions is:

u = ( a if b > 0 \\

b otherwise ) if c \\

1/a otherwise

which is output in L

A

T

E

X as:

u =

8

>

<

>

:

(

a if b > 0

b otherwise

if c

1

a

otherwise

7 Special Programming Constructs

In this section we present some more advanced programming constructs. These constructs

extend the interpreter to a full programming language with imperative language features.

7

Brackets should be used in `(S1 ; S2) :=' because the precedence of `;' is higher than `:='.

31



7.1 Procedures and Statement Blocks

The interpreter accepts sequences of statements, called a statement blocks. Basically, a state-

ment block is a sequence of statements and expressions separated by a `;', where the value of

the block is the last evaluated expression.

stmt-block ::= stmt

stmt `;' stmt-block

stmt ::= `foreach' identi�er `in' expr `do' stmt

`clear' identi�er

`clear' identi�er `arity' integer

`clear' identi�er`(' arg [ `,' arg ]

�

`)'

`remove' identi�er

`remove' identi�er `arity' integer

`remove' identi�er`(' arg [ `,' arg ]

�

`)'

`restart'

`return(' expr `)'

`(' stmt-block `)'

def

expr

The `clear' keyword clears the de�nition for an identi�er or function while `remove' com-

pletely removes the de�nition and obliterates all declarations given for an identi�er or function.

The `foreach' construct iterates a statement by assigning each element of a list (hence expr

should evaluate to a list) to a local iteration variable not visible outside the construct. The

`return' keyword can only be used within a procedure to return a value. `return(nil)' can

be used to exit a procedure without returning a result value and `return(undefined)' can

be used to exit a procedure with an unde�ned value.

A procedure executes a statement block instead of returning an expression like a `normal'

function or operator. Procedures are declared using a `procedure' keyword as a body of the

operator de�nition. An optional value can be returned using a `return' keyword. An example

procedure `fib' computes Fibonacci numbers:

fib(N) :=

procedure(

local a, b;

[a, b] := 1;

foreach i in 2 to N - 1 do

[a, b] := [b, a + b];

return(b)

).

Note that the expression `2 to N - 1' generates a list of integers from `2' up to and including

`N - 1'. Procedure `fib' is scalar, hence `fib' is implicitly mapped on a vector: `fib(1 to

5)' gives vector `[1, 1, 2, 3, 5, 8, 13, 21, 34, 55]'.

7.2 Recursive Functions

The syntactical construct for lists `[expr | list]' allows for de�ning list-recursive functions

and operators. For example, with this construct the dot product operator is de�ned in the

`linalg' package as

[X] .* [Y] := X * Y.

[X | Xs] .* [Y | Ys] := X * Y + (Xs .* Ys).
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Here, the `singular' formal arguments `X' and `Y' denote scalar elements and the `plural' formal

arguments `Xs' and `Ys' denote the remaining part of the vectors.

Since the implicit mapping algorithm ensures that the elements of the vector arguments

are scalar on application of the dot product, these de�nitions only apply to vectors. If matrices

are supplied, implicit mapping is performed �rst:

[ [a11, a12],

[a21, a22] ] .* [ [b11, b12],

[b21, b22] ]

evaluates to

[ a11 * b11 + a12 * b12,

a21 * b21 + a22 * b22 ]

Note that when scalar arguments are supplied, the dot product operator is not applied at all

as is the case for `1 .* 2'.

7.3 Some E�ciency Considerations for Recursive Functions

For writing recursive functions, the e�ciency optimizations that are applicable to functional

languages in general should be employed. Consider for example the computation of Fibonacci

numbers by

fib(0) := 0.

fib(1) := 1.

fib(N) := fib(N-2) + fib(N-1).

This de�nition, however, is very ine�cient and takes a number of steps to compute `fib(N)'

roughly proportional to the value of `fib(N)', see e.g. [2] from which this example has been

adopted. A more e�cient implementation that takes only `N' steps to compute `fib(N)' is

fib(N) := A where [A, _] = twofib(N).

twofib(0) := [0, 1].

twofib(N) := [B, A + B] where [A, B] = twofib(N-1).

Furthermore, it is advised to use the built-in list primitives when possible. For example

fac(N) := reduce(*, 1 to N).

is an e�cient implementation for computing faculty numbers.

7.4 Deferred-Operator Expansion

An operator can be protected from expansion by using the pre�x `\' operator. This construct

is very useful when expansion of an operator should be deferred to a later stage when operators

are passed through several symbolic operations. More formally, an expression of the form

deferred-op ::= `\' operator

is called a `deferred operation'. The `apply' construct applies deferred operations:

� apply(deferred-op): apply deferred operation. Examples are:
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> apply(\sqrt(2)).

1.41421356237310

> a := 10; b := a + apply(\a) where a = 2.

12

� apply(deferred-op, tuple): apply deferred operation with extra last arguments in tuple.

Examples are:

> apply(\ ^(2), x).

2 ^ x

> plus := \(+); apply(plus, (x, 2)).

x + 2

> plus := (+); apply(\plus, (x, 2)).

plus(x, 2)

> plus := (+); apply(plus, (x, 2)).

apply(+, (x, 2))

Note the di�erence between the last three applications. In the last application, `apply(+,

(x, 2))' cannot be evaluated.

� apply(tuple, deferred-op): apply deferred operation with extra �rst arguments in tuple.

Examples are:

> gradient := \diff([ x, y ]); apply(u, gradient).

[diff(u, x), diff(u, y)]

> apply(1 to 4, [ \ +(2), \ -(2), \ *(2), \ /(2) ]).

[3, 0, 6, 2]

Here too, `\ +(2)' protects `+(2)' from being evaluated to `2'.

where the last example shows that `apply' is mapped �rst on both lists in parallel, i.e.

`apply(1, \ +(2))' = 3, `apply(2, \ -(2))' = 0, etc.

7.5 Protecting Expressions from Evaluation

An expression can be protected from evaluation by enclosing it in `f' and `g' brackets. This

may be necessary for expressions that have to be passed onto operators literally. For example,

passing an expression to be interpreted as an assignment:

a := 1;

b := interpret(s) where s = (a := 2).

would result in garbage:

ERROR [eval]:

1 is constant and cannot be assigned

ERROR [eval]:

Error interpreting 1 := 2

s where s = (1 := 2)

This problem can be remedied by expression protection for `a := 2':

b := interpret(s) where s = {a := 2}.

results in the assigment of 2 to `a' as well as to `b'. A protected expression can be forced to

be evaluated using the `eval' function.
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7.6 Simple IO Functions

The built-in IO functions are:

format(string) write SWI-Prolog formatted string to terminal

format(string, list) write list of expressions using SWI-Prolog string format

input(string) return expression entered by user after prompt string

sprint(expr) convert symbolic expr to string

7.7 Error Handling

Error messages can be incorporated in operator de�nitions for catching conditions for which

language constructs are illegal. The `error' function generates an error message and aborts

further evaluation. For example, it is undesirable to apply the dot product on scalar arguments

the following de�nitions are included in the `linalg' package:

_ .* _ := error("dot product of scalars").

[_ | _] .* _ := error("dot product of vector with scalar").

_ .* [_ | _] := error("dot product of scalar with vector").

where the `_' denote wildcard formal arguments. For example, `1 .* 2'. results in an error

message:

ERROR [eval]:

dot product of scalars

signaled on evaluating

1 .* 2
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Appendix

A The vecalg Package Source

% vecalg.s

%

% Purpose: Vector algebra package and PDE vector notation

% Copyright: R.A. van Engelen, Leiden University, 1997

include linalg. % import dot- and cross-product operators

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

% Define grad, div, curl, and lapl

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

prefix grad has latex_name("\nabla").

prefix div has latex_name("\nabla\cdot").

prefix curl has latex_name("\nabla\times").

prefix lapl has latex_name("\nabla^2").

% Note: Vectors `coordinates' and `coefficients' define a coordinate system.

% Scalar operator `diff(X, Y)' represents differentiation of X wrt. Y.

% In def. of `grad X' vectors `coordinates' and `coefficients' are mapped.
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grad X := diff(X, coordinates) / coefficients.

div X := diff(X, coordinates:1) / coefficients:1.

div [X1, X2] := ( diff(coefficients:2 * X1, coordinates:1)

+ diff(coefficients:1 * X2, coordinates:2)

) / (coefficients:1 * coefficients:2).

div [X1, X2, X3] := ( diff(coefficients:2 * coefficients:3 * X1, coordinates:1)

+ diff(coefficients:3 * coefficients:1 * X2, coordinates:2)

+ diff(coefficients:1 * coefficients:2 * X3, coordinates:3)

) / (coefficients:1 * coefficients:2 * coefficients:3).

curl _ := error("Illegal use of curl"). % Scalar argument???

curl [X1, X2, X3] := [ ( diff(coefficients:3 * X3, coordinates:2)

- diff(coefficients:2 * X2, coordinates:3)

) / (coefficients:2 * coefficients:3)

, ( diff(coefficients:1 * X1, coordinates:3)

- diff(coefficients:3 * X3, coordinates:1)

) / (coefficients:3 * coefficients:1)

, ( diff(coefficients:2 * X2, coordinates:1)

- diff(coefficients:1 * X1, coordinates:2)

) / (coefficients:1 * coefficients:2)

].

lapl X := div grad X.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

% Vector notation

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Note: `nabla' represents the gradient symbol. It is used to formulate a PDE

% in full vector notation with dyadic operators +, *, .*, #*, and ^.

nabla is inert.

nabla_square is inert.

nabla_plus(Vector) is inert.

nabla_times(Factor) is inert.

nabla_times_plus(Factor, Vector) is inert.

nabla_square_plus(Term) is inert.

nabla_square_times(Factor) is inert.

nabla_square_times_plus(Factor, Term) is inert.

nabla_dot(Vector) is inert.

nabla_cross(Vector) is inert.

nabla_times_dot(Factor) is inert.

nabla_times_cross(Factor) is inert.

% Extend definition of addition

nabla + [X | Xs] := nabla_plus([X | Xs]).

nabla_square + X := nabla_square_plus(X).

nabla_plus([Y | Ys]) + [X | Xs] := nabla_plus([X | Xs] + [Y | Ys]).

nabla_plus([Y | Ys]) + X := nabla_plus(X + [Y | Ys]).

nabla_plus(Y) + [X | Xs] := nabla_plus([X | Xs] + Y).

nabla_plus(Y) + X := nabla_plus(X + Y).

nabla_square_plus(Y) + X := nabla_square_plus(X + Y).

nabla_times(Y) + [X | Xs] := nabla_times_plus(Y, [X | Xs]).

nabla_times(Y) + X := nabla_times_plus(Y, X).

nabla_square_times(Y) + X := nabla_square_times_plus(Y, X).

nabla_times_plus(Y, [X | Xs]) + [Z | Zs] := nabla_times_plus(Y, [X | Xs] + [Z | Zs]).

nabla_times_plus(Y, [X | Xs]) + Z := nabla_times_plus(Y, [X | Xs] + Z).

nabla_times_plus(Y, X) + [Z | Zs] := nabla_times_plus(Y, X + [Z | Zs]).

nabla_times_plus(Y, X) + Z := nabla_times_plus(Y, X + Z).

nabla_square_times_plus(Y, X) + Z := nabla_square_times_plus(Y, X + Z).

[X | Xs] + nabla := nabla_plus([X | Xs]).

X + nabla_square := nabla_square_plus(X).

[X | Xs] + nabla_plus([Y | Ys]) := nabla_plus([X | Xs] + [Y | Ys]).

X + nabla_plus([Y | Ys]) := nabla_plus(X + [Y | Ys]).

[X | Xs] + nabla_plus(Y) := nabla_plus([X | Xs] + Y).

X + nabla_plus(Y) := nabla_plus(X + Y).

X + nabla_square_plus(Y) := nabla_square_plus(X + Y).

[X | Xs] + nabla_times(Y) := nabla_times_plus(Y, [X | Xs]).

X + nabla_times(Y) := nabla_times_plus(Y, X).

X + nabla_square_times(Y) := nabla_square_times_plus(Y, X).

[Z | Zs] + nabla_times_plus(Y, [X | Xs]) := nabla_times_plus(Y, [X | Xs] + [Z | Zs]).

Z + nabla_times_plus(Y, [X | Xs]) := nabla_times_plus(Y, [X | Xs] + Z).

[Z | Zs] + nabla_times_plus(Y, X) := nabla_times_plus(Y, X + [Z | Zs]).

Z + nabla_times_plus(Y, X) := nabla_times_plus(Y, X + Z).

Z + nabla_square_times_plus(Y, X) := nabla_times_plus(Y, X + Z).

% Extend definition of product
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nabla * X := grad X.

nabla_square * X := lapl X.

nabla_plus([X | Xs]) * [Y | Ys] := [X | Xs] * [Y | Ys] + grad [Y | Ys].

nabla_plus([X | Xs]) * Y := [X | Xs] * Y + grad Y.

nabla_plus(X) * Y := X * Y + grad Y.

nabla_times(X) * Y := X * grad Y.

nabla_times_plus(Y, [X | Xs]) * Z := [X | Xs] * Z + Y * grad Z.

nabla_times_plus(Y, X) * Z := X * Z + Y * grad Z.

nabla_square_plus(X) * Y := X * Y + lapl Y.

nabla_square_times(X) * Y := X * lapl Y.

nabla_square_times_plus(Y, X) * Z := X * Z + Y * lapl Z.

nabla_dot([X | Xs]) * Y := [Y | Xs] .* grad Y.

nabla_cross([X | Xs]) * Y := [Y | Xs] #* grad Y.

nabla_times_dot(X) * Y := div(X * grad Y).

nabla_times_cross(X) * Y := div(X * grad Y).

X * nabla := nabla_times(X).

X * nabla_square := nabla_square_times(X).

X * nabla_times(Y) := nabla_times(X * Y).

X * nabla_square_times(Y) := nabla_square_times(X * Y).

% Extend definition of power

nabla ^ 2 := nabla_square.

% Extend definition of dot product

nabla .* nabla := nabla_square.

nabla .* nabla_times(X) := nabla_times_dot(X).

nabla .* [X | Xs] := div [X | Xs].

nabla_plus([X | Xs]) .* [Y | Ys] := [X | Xs] .* [Y | Ys] + div [Y | Ys].

nabla_plus(X) .* Y := X * Y + div Y.

nabla_times(X) .* [Y | Ys] := X * div [Y | Ys].

nabla_times(X) .* Y := X * div Y.

nabla_times_plus(Y, [X | Xs]) .* [Z | Zs] := [X | Xs] .* [Z | Zs] + Y * div [Z | Zs].

nabla_times_plus(Y, X) .* Z := X * Z + Y * div Z.

[X | Xs] .* nabla := nabla_dot([X | Xs]).

% Extend definition of cross product

nabla #* nabla_times(X) := nabla_times_cross(X).

nabla #* [X | Xs] := curl [X | Xs].

nabla_plus([X | Xs]) #* [Y | Ys] := [X | Xs] #* [Y | Ys] + curl [Y | Ys].

nabla_times(X) #* [Y | Ys] := X * curl [Y | Ys].

[X | Xs] #* nabla := nabla_cross([X | Xs]).

% (Part of) Library of commonly used coordinate systems

coordinate_system("1D Cartesian") :=

procedure(

coordinates := [x];

coefficients := [1];

return(nil)

).

coordinate_system("2D Cartesian") :=

procedure(

coordinates := [x, y];

coefficients := [1, 1];

return(nil)

).

coordinate_system("3D Cartesian") :=

procedure(

coordinates := [x, y, z];

coefficients := [1, 1, 1];

return(nil)

).

coordinate_system("Polar") :=

procedure(

coordinates := [r, theta];

coefficients := [1, r];

return(nil)

).

coordinate_system(X) := error("Unknown coordinate system " // sprint(X)).

B The linalg Package Source

% linalg.s

%

% Purpose: Matrix/vector operations script

% Copyright: R.A. van Engelen, Leiden University, 1997
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

% Matrix/vector concatenation (put matrix and vector above each other)

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

infix // is associative(left).

[X | VecX] // [Y | VecY] := append([X | VecX], [Y | VecY]).

[ [X | RowX] ] // [ [Y | RowY]

| MatY ] := [ [X | RowX]

, [Y | RowY]

| MatY ].

[ [X | RowX]

| MatX ] // [ [Y | RowY]

| MatY ] := [ [X | RowX]

| MatX //

[ [Y | RowY]

| MatY ] ].

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

% Matrix/vector concatenation (put matrix and vector besides each other)

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

infix ++ is associative(left).

[X] ++ [Y] := [ [X, Y] ].

[X | ColX] ++ [Y | ColY] := [ [X, Y] | ColX ++ ColY ].

[X] ++ [ [Y | RowY] ] := [ [X, Y | RowY] ].

[X | ColX] ++ [ [Y | RowY]

| MatY ] := [ [X, Y | RowY]

| ColX ++ MatY ].

[ [X | RowX] ] ++ [ [Y | RowY] ] := [ [X | RowX] // [Y | RowY] ].

[ [X | RowX]

| MatX ] ++ [ [Y | RowY]

| MatY ] := [ [X | RowX] // [Y | RowY]

| MatX ++ MatY ].

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

% Create zero matrix

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

zero(Rank) := zero(Rank, Rank).

zero(RowRank, ColRank) := fill(RowRank, fill(ColRank, 0)).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

% Create identity matrix

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

ident(1) := [[1]].

ident(N) :=

if (N <= 0)

then (error("Cannot create identity matrix of rank " // sprint(N)))

else ([[1 | fill(N - 1, 0)] | zero(N - 1, 1) ++ ident(N - 1)]).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

% Matrix transpose

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

postfix ` has latex_name("^T").

[ [X | Row] ]` := [X | Row].

[ [X | Row]

| Mat ]` := [X | Row] ++ Mat` .

[X]` := [ [X] ].

[X | Vec]` := [ [X | Vec] ].

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

% Matrix-matrix and vector-vector addition

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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[[_ | _] | _] + [_ | _] := error("matrix + vector").

[_ | _] + [[_ | _] | _] := error("vector + matrix").

[[_ | _] | _] - [_ | _] := error("matrix - vector").

[_ | _] - [[_ | _] | _] := error("vector - matrix").

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

% Dot/inner product

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

infix .* has latex_name("\cdot").

[X] .* [Y] := X * Y.

[X | Xs] .* [Y | Ys] := X * Y + Xs .* Ys.

_ .* _ := error("dot product of scalars").

[_ | _] .* _ := error("dot product of vector with scalar").

_ .* [_ | _] := error("dot product of scalar with vector").

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

% Cross/outer product

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

infix #* has latex_name("\times").

[X] #* [Y] := [X * Y].

[X1, X2] #* [Y1, Y2] := [X1 * Y2 - X2 * Y1, X2 * Y1 - X1 * Y2].

[X1, X2, X3] #* [Y1, Y2, Y3] := [X2 * Y3 - X3 * Y2, X3 * Y1 - X1 * Y3, X1 * Y2 - X2 * Y1].

_ #* _ := error("cross product of scalars").

[_ | _] #* _ := error("cross product of vector with scalar").

_ #* [_ | _] := error("cross product of scalar with vector").

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

% Matrix-matrix and matrix-vector product

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

infix &* is associative(left) has latex_name("\,").

[X | Col] &* [Y] := [X | Col] * Y.

[X | Col] &* [[Y | Row]] := matmult_([X | Col], [Y | Row]).

[[X | Row]] &* [Y | Col] := [X | Row] .* [Y | Col].

[[X | Row1] | Rows1] &* [Y | Row2] := matmult_([[X | Row1] | Rows1], [[Y | Row2]]).

[[X | Row1] | Rows1] &* [[Y | Row2] | Rows2] := matmult_([[X | Row1] | Rows1], [[Y | Row2] | Rows2]`).

[_ | _] &* _ := error("matrix product with scalar").

[[_ | _] | _] &* _ := error("matrix product with scalar").

_ &* [_ | _] := error("matrix product with scalar").

_ &* [[_ | _] | _] := error("matrix product with scalar").

% matmult_: matrix product with transpose of matrix

matmult_([[X | Row] | Rows], [[Y | Col]]) :=

[[X | Row] .* [Y | Col] | matmult_(Rows, [[Y | Col]])].

matmult_([[X | Row] | Rows], [[Y | Col] | Cols]) :=

[dotprodrows_([X | Row], [[Y | Col] | Cols]) | matmult_(Rows, [[Y | Col] | Cols]) ].

matmult_([], [[_ | _] | _]) := [].

matmult_([[X] | Rows], [Y | Col]) := [X * [Y | Col] | matmult_(Rows, [Y | Col])].

matmult_([X | Rows], [Y | Col]) := [X * [Y | Col] | matmult_(Rows, [Y | Col])].

matmult_([], [_ | _]) := [].

matmult_(_, _) := error("incompatible matrix dimensions").

dotprodrows_([_ | _ ], []) := [].

dotprodrows_([X | Row1], [[Y | Row2] | Rows2])

:= [[X | Row1] .* [Y | Row2] | dotprodrows_([X | Row1], Rows2)].

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

% Gaussian elimination

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

gauss arity 1 is intrinsic(module = gauss). % Prolog predicate gauss/2

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%
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% Matrix power

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

[[X | Row] | Mat] ^ -1 :=

map(drop(Rank, gauss([[X | Row] | Mat] ++ ident(Rank))))

where Rank = length([[X | Row] | Mat]).

[[X | Row] | Mat] ^ 0 := ident(length([X | Row])).

[[X | Row] | Mat] ^ 1 := [[X | Row] | Mat].

[[X | Row] | Mat] ^ 2 := [[X | Row] | Mat] &* [[X | Row] | Mat].

[[X | Row] | Mat] ^ N := if (op(0, N) == "T")

then ([[X | Row] | Mat]`)

else (if (N mod 2 == 0)

then (([[X | Row] | Mat] ^ (N div 2)) ^ 2)

else ([[X | Row] | Mat] &* [[X | Row] | Mat] ^ (N-1))).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

% Solve (MATLAB left division)

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

[[X | Row] | Mat] \ [Y | Vec] := [[X | Row] | Mat] ^ -1 &* [Y | Vec].
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