
Characterization of Properties and Relations

de�ned in Monadic Second Order Logic

on the Nodes of Trees

Roderick Bloem

?

and Joost Engelfriet

??

Department of Computer Science, Leiden University

P.O.Box 9512, 2300 RA Leiden, The Netherlands

e-mail: engelfri@wi.leidenuniv.nl

Abstract. A formula from monadic second order (mso) logic with one

free variable can be used to de�ne a property of the nodes of a tree.

Similarly, an mso formula with two free variables can be used to de�ne a

binary relation between the nodes of a tree. It is proved that a node rela-

tion is mso de�nable i� it can be computed by a �nite-state tree-walking

automaton, provided the automaton can test mso de�nable properties

of the nodes of the tree; if the relation is a function, the automaton is

deterministic. It is also proved that a node property is mso de�nable

i� it can be computed by an attribute grammar of which all attributes

have �nitely many values. mso de�nable node properties are computable

in linear time, mso de�nable node relations in quadratic time, and mso

de�nable node functions in linear time.

1 Introduction

It is shown in [B�uc, Elg] that a set of strings can be de�ned in monadic second

order logic if and only if it can be recognized by a �nite-state automaton. This

result can be viewed as an equivalence between speci�cations (in the speci�cation

language of monadic second order logic) and implementations (on the machine

model of the �nite-state automaton). It was generalized in [Don, ThaWri] to

sets of node-labeled ordered trees, with an appropriate generalization of the

�nite-state automaton to the bottom-up �nite-state tree automaton. The trees

considered are the usual representations of terms over a �nite set � of operators.

In this paper we extend the result of [Don, ThaWri] to the speci�cation and

implementation of binary relations on the nodes of trees, and to the speci�cation

and implementation of properties of the nodes of trees.

A monadic second order (mso) formula with k free object variables de�nes

a k-ary relation on the nodes of each tree over �, and we are interested in

?

The present address of the �rst author is: Department of Computer Science,

University of Colorado at Boulder, P.O.Box 430, Boulder, CO 80303, email:

Roderick.Bloem@colorado.edu

??

The second author was supported by ESPRIT BRWG No.7183 COMPUGRAPH II

and TMR Network GETGRATS

1

the implementation of these relations for k = 2 (binary relations) and k = 1

(properties). First we are looking for a simple machine model that computes

the node relations de�ned by mso formulas with two free variables. Here we

say `computes' rather than `recognizes', because we are mainly interested in

functions on nodes of trees and view relations as a nondeterministic variant of

functions. Thus, for a given tree t and a given node u of t, we wish the machine

to �nd the (or a) node v such that the pair (u; v) is in the relation speci�ed by

the mso formula on t.

Note that there is an easy and well-known answer to the recognition problem:

it is not di�cult to see, using the result of [Don, ThaWri], that there is a �nite-

state tree automaton that, for given t, u, and v, �nds out whether u and v satisfy

the mso formula in t, provided the nodes u and v are indicated by special labels.

Since the �nite-state tree automaton is basically a parallel recognition device, it

does not seem to be useful for the purpose of sequential computation. Instead,

we propose a variation of the tree-walking automaton introduced in [AhoUll]. A

tree-walking automaton A is a �nite-state automaton that walks on the tree from

node to node, following the edges of the tree. It can read the label of the current

node x. It can also test whether x is the root of the tree, and if not, whether it is

the �rst, second, : : : , or last child of its parent node. Depending on the outcome

of these tests, A can decide to move up to the parent of x or down to a speci�c

child of x. The automaton A computes the relation that consists of all pairs (u; v)

such that when A is dropped on node u in its initial state, it makes a walk on the

tree and reaches node v in a �nal state. We will show that this automaton model

is not powerful enough to compute all mso de�nable node relations. Therefore

we strengthen its computation power by allowing it to test any mso de�nable

property of the current node rather than just the ones mentioned above, using

mso formulas with one free variable. Our �rst result is that the nondeterministic

(deterministic) \tree-walking automaton with mso tests" computes exactly the

mso de�nable binary node relations (functions, respectively).

Second we are looking for an implementation model that computes the node

properties de�ned by mso formulas with one free variable. One reason for doing

so is that, through the tree-walking automaton with mso tests, we have reduced

the implementation of mso de�nable node relations to that of mso de�nable

node properties.

Properties are boolean attributes, and attribute grammars are a well-known

formalism for the computation of attributes of nodes of trees, introduced in

[Knu]. Thus, an attribute grammar with a designated boolean attribute com-

putes a node property. An attribute grammar is \�nite-valued" if all its at-

tributes have �nitely many values, or equivalently, all its attributes are boolean.

Our second result is that the �nite-valued attribute grammar computes exactly

the mso de�nable node properties. Note that the �nite-valued restriction of the

attribute grammars corresponds to the �nite-state restriction of the tree au-

tomata; without such a restriction attribute grammars can compute arbitrary

node properties. Note also that properly speaking, attribute grammars are still

a speci�cation language, but they are certainly closer to implementation than

2

mso logic, and their implementation has been studied extensively (see, e.g.,

[DerJouLor, Eng2]). Since the attributes of a tree can be evaluated in linear

time (in the size of the tree), our second result implies that mso de�nable node

properties can be computed in linear time and that mso de�nable binary node

relations can be computed in quadratic time, and, in general, mso de�nable

k-ary node relations in time O(n

k

). Moreover, using additionally an algorithm

from [KlaSch], mso de�nable node functions can be computed in linear time.

There are two reasons for our interest in mso de�nable functions, relations,

and properties of nodes of trees. The �rst concerns graphs that consist of a tree

with additional pointers. Trees can be naturally de�ned as a recursive datatype,

such that each node of the tree is a record with a �eld containing relevant

information, and �elds with pointers to the children of the node. However, in

many applications one needs additional pointer �elds in the record. For example,

to visit the nodes of the tree in pre-order, it is convenient to have a pointer from

each node to the next one, in this order. Clearly, such a new pointer �eld de�nes

a (partial) function on the nodes of the tree. The general idea of de�ning \graph

types", i.e., recursive data types consisting of trees with additional pointer �elds,

is investigated in [KlaSch], where a pointer �eld is de�ned by a tree-walking

automaton, or rather by its corresponding regular expression, called routing

expression. By our results, such a pointer �eld may as well be speci�ed by an

mso formula with two free variables.

The second reason is related to the �rst, but is of a more theoretical nature. In

the theory of context-free graph grammars, i.e., grammars that generate sets of

graphs, a notion of mso de�nable graph transduction has been developed (see,

e.g., [Eng3, EngOos2, Cou2, Cou3]) closely related to the well-known notion

of interpretation of one logical structure in another (see [ArnLagSee] for the

history of this notion). The output graph g

0

of such a transduction is de�ned in

terms of the input graph g by means of mso formulas, to be interpreted in g,

as follows. The nodes of g

0

form a subset of the nodes of g, viz. all nodes of g

that satisfy a given mso formula with one free object variable. The edges of g

0

are de�ned by a given mso formula with two free object variables: this formula

de�nes a binary relation on the nodes of g, which, restricted to the nodes of g

0

,

is taken as the set of edges of g

0

. In the case that the nodes and edges of g

0

are

labeled, there are such mso formulas for each node label and each edge label. It

is shown in [EngOos1, EngOos2] (for one type of context-free graph grammar)

and in [CouEng] (for another type) that a set of graphs can be generated by a

context-free graph grammar if and only if it is the image of an mso de�nable tree

language under an mso de�nable graph transduction. Thus, using our results,

the nodes of these graphs can be computed by a �nite-valued attribute grammar,

and their edges by (nondeterministic) tree-walking automata. As a special case

of mso graph transductions, one may consider the case that both the input and

output graphs are trees: mso tree transductions. Since the edges of the output

tree can be viewed as pointers (to the i-th child, for each i), they correspond to

functions on the nodes of the input tree, as explained above. Thus, they can be

computed by deterministic tree-walking automata. This is used in [Blo, BloEng2]

3

to show that the mso tree transductions can be computed by two-stage attribute

grammars: in the �rst stage the mso tests on the nodes of the input tree are

evaluated, by attributes of type boolean, and in the second stage the output tree

is computed, by attributes of type tree.

After recalling some notions from automata theory and monadic second order

logic in Section 2, we de�ne in Section 3 the mso de�nable k-ary node relations

and discuss some of their elementary properties, including some relationships

to �nite tree automata. In Section 4 tree-walking automata with mso tests are

de�ned, and some of their basic properties proved. Section 5 contains our �rst

result: the equivalence between mso formulas with two free variables and tree-

walking automata with mso tests, including the functional/deterministic case. It

is also shown in Section 5 that the mso tests are really needed. Our second result

is proved in Section 6: the equivalence between mso formulas with one free vari-

able and �nite-valued attribute grammars. Moreover, the �rst and second result

are combined in a straightforward way to give an \mso-free" characterization of

the mso de�nable binary node relations: they are computed by a �nite-valued

attribute grammar followed by an ordinary tree-walking automaton (without

mso tests). Section 7 contains the consequences of these results for the time

complexity of computing mso de�nable k-ary relations.

Readers who are not familiar with attribute grammars, and do not want to be

bothered by them, can read Sections 2 to 5. They can also read Section 7, except

for the case k = 1 in the proof of Theorem 20 which is based on the previous

section and shows that mso de�nable node properties can be computed in linear

time. Readers who are interested in our second result only, can read Sections 2-4

(without Lemmas 4 and 8) and Section 6 (without the third subsection).

The results of this paper were proved as part of [Blo], the Master's Thesis

of the �rst author. A preliminary version of this paper appeared in [BloEng1].

Recently, the second main result was shown independently in [NevBus].

2 Preliminaries

In this section we recall some well-known concepts concerning �nite (tree) au-

tomata and monadic second order logic on trees.

N = f0; 1; 2; : : :g, and for m;n 2 N, [m;n] = fi j m � i � ng. For a set

S, P(S) is its powerset. For binary relations R

1

and R

2

, their composition is

R

1

� R

2

= f(x; z) j 9y : (x; y) 2 R

1

and (y; z) 2 R

2

g; note that the order of

R

1

and R

2

is nonstandard. The transitive reexive closure of a binary relation

R is denoted R

�

. A binary relation R is said to be functional if it is a partial

function, i.e., if (x; y); (x; z) 2 R implies y = z.

Trees

We view trees as �nite, directed graphs with labeled nodes and edges, in the usual

way. Let � and � be alphabets of node labels and edge labels, respectively. A

graph over (�;�) is a triple (V;E; lab), with V a �nite set of nodes, E � V���V

4

the set of labeled edges, and lab : V ! � the node-labeling function. For a given

graph g, its nodes, edges, and node-labeling function are denoted V

g

, E

g

, and

lab

g

, respectively.

The trees we consider are the usual graphical representations of terms, which

form the free algebra over a set of operators. An operator alphabet � is an

alphabet � together with a rank function rk : � ! N. For all k 2 N, �

k

= f� 2

� j rk(�) = kg is the set of operators of rank k, i.e., with k arguments. The rank

interval of the operator alphabet � is rki(�) = [1;m] where m is the maximal

rank of the elements of �.

The nodes of a tree over � are labeled by operators. To indicate the order

of the arguments of an operator, we label the edges by natural numbers. A tree

over � is an acyclic connected graph g over (�; rki(�)) such that (1) no node

of g has more than one incoming edge, and (2) for every node u of g and every

i 2 [1; rk(lab

g

(u))], u has exactly one outgoing edge with label i, and u has

only outgoing edges with labels in [1; rk(lab

g

(u))]. The set of all trees over � is

denoted T

�

. A subset of T

�

is also called a tree language.

The root of a tree t is denoted root(t). Note that the direction of the edges of

t is from root(t) to the leaves of t. For nodes u and v of t, if (u; i; v) 2 E

t

, then

u is called the parent of v, and v is called the i-th child of u, denoted by u � i.

For technical convenience, we also de�ne u � 0 = u. An ancestor of a node u is

either u itself, or an ancestor of its parent. The least common ancestor of nodes

u and v is denoted lca(u; v). If u is an ancestor of v, then v is a descendant of

u. For a node u of t, t

u

denotes the subtree of t with root u: the subgraph of t

induced by the set of all descendants of u.

Finite automata

We consider (nondeterministic) �nite automata on strings and (deterministic

and nondeterministic) �nite tree automata (see, e.g., [HopUll] and [G�ecSte],

respectively).

Let � be an (ordinary) alphabet. A �nite automaton over � is a quintuple

A = (Q;�; �; I; F), where Q is a �nite set of states, � is the input alphabet,

� � Q�� �Q is the transition relation, I � Q is the set of initial states, and

F � Q is the set of �nal states. The elements of � are called transitions. For every

string w 2 �

�

, A induces a state transition relation R

A

(w) � Q�Q, as follows.

For � 2 �, R

A

(�) = f(q; q

0

) j (q; �; q

0

) 2 �g. For the empty string ", R

A

(") is the

identity on Q. For �

1

; : : : ; �

n

2 �, R

A

(�

1

� � ��

n

) = R

A

(�

1

) � � � � � R

A

(�

n

). The

language recognized by A is L(A) = fw 2 �

�

j R

A

(w) \ (I � F) 6= ;g. L(A) is

called a regular language.

The �nite tree automata that we usually consider are the well-known total

deterministic bottom-up �nite-state tree automata. Let � be an operator alpha-

bet. A �nite tree automaton over � is a quadrupleM = (Q;�; �; F), where Q is

a �nite set of states, � is the input alphabet, � = f�

�

g

�2�

where, for � 2 �

k

,

�

�

: Q

k

! Q is the transition function for �, and F � Q is the set of �nal states.

For every tree t 2 T

�

and node u 2 V

t

, the state in which M reaches u, denoted

state

M;t

(u), is de�ned by bottom-up induction as follows: if lab

t

(u) = � 2 �

k

,

5

then state

M;t

(u) = �

�

(state

M;t

(u � 1); : : : ; state

M;t

(u � k)). The language recog-

nized byM is L(M) = ft 2 T

�

j state

M;t

(root(t)) 2 Fg. L(M) is called a regular

tree language.

For a tree t 2 T

�

and a node u 2 V

t

, the set of successful states ofM at u, de-

noted succ

M;t

(u), is de�ned by top-down induction as follows: succ

M;t

(root(t)) =

F , and if lab

t

(u) = � 2 �

k

and 1 � i � k, then succ

M;t

(u � i) is the set of

all states q 2 Q such that �

�

(q

1

; : : : ; q

i�1

; q; q

i+1

; : : : ; q

k

) 2 succ

M;t

(u), where

q

j

= state

M;t

(u � j) for 1 � j � k, j 6= i. Intuitively, q is in succ

M;t

(u) if the

automaton, assuming that it reaches u in state q (rather than in state

M;t

(u)),

will reach the root of t in a �nal state. In the following lemma it is shown that

for every node u of a tree t, t is recognized byM if and only if the state in which

M reaches u is successful at u.

Lemma1. Let M be a �nite tree automaton over �, and let u be a node of a

tree t 2 T

�

. Then t 2 L(M) i� state

M;t

(u) 2 succ

M;t

(u).

Proof. It is straightforward to prove this statement by top-down induction on

u. By de�nition of L(M) it holds for u = root(t). Now let i 2 [1; rk(lab

t

(u))].

From the de�nition of `succ' and `state' it easily follows that state

M;t

(u � i) 2

succ

M;t

(u � i) i� state

M;t

(u) 2 succ

M;t

(u). This implies that the statement holds

for u � i whenever it holds for u. ut

A nondeterministic �nite tree automaton over� is a quadrupleM = (Q;�; �; F),

where Q, �, �, and F are as above, except that, for every � 2 �

k

, �

�

� Q

k

�Q

is a transition relation. As a shortcut, we take the usual subset construction

as de�nition of L(M): the language recognized by M is L(M) = L(P(M))

where P(M) is the (deterministic) �nite tree automaton (Q

0

; �; �

0

; F

0

) with Q

0

=

P(Q), F

0

is the set of all P � Q such that P \ F 6= ;, and, for every � 2

�

k

, �

0

�

(P

1

; : : : ; P

k

) = fq 2 Q j 9q

1

; : : : ; q

k

: ((q

1

; : : : ; q

k

); q) 2 �

�

with q

i

2

P

i

for all i 2 [1; k]g.

Monadic second order logic

Monadic second order logic can be used to describe properties of graphs (see,

e.g., [Cou1, Cou4, Eng3, Eng5, EngOos2]), and hence in particular to describe

properties of trees. For an operator alphabet �, we use the language MSOL(�)

of monadic second order (mso) formulas over �. Formulas in MSOL(�) describe

properties of trees over �. This logical language has node variables x; y; : : : , and

node-set variables X;Y; : : : . For a given tree t over �, node variables range over

the elements of V

t

, and node-set variables range over the subsets of V

t

.

There are three types of atomic formulas in MSOL(�): lab

�

(x), for every

� 2 �, denoting that x has label �; edg

i

(x; y), for every i 2 rki(�), denoting

that there is an edge labeled i from x to y, i.e., that y is the i-th child of x;

and x 2 X , denoting that x is an element of X . The formulas are built from the

atomic formulas using the connectives :, ^, _, !, and $, as usual. Both node

variables and node-set variables can be quanti�ed with 9 and 8. We will use

6

edg(x; y) to abbreviate the disjunction of all edg

i

(x; y), i 2 rki(�); it denotes

that x is the parent of y. Moreover, we will use root(x) for :9y(edg(y; x)), which

denotes that x is the root, and leaf(x) for :9y(edg(x; y)), which denotes that x

is a leaf. Finally, we will use x = y for 8X(x 2 X $ y 2 X), denoting that x

equals y.

For every k 2 N, the set of mso formulas over � with k free node variables

and no free node-set variables is denoted MSOL

k

(�).

For a closed formula � 2 MSOL

0

(�) and a tree t 2 T

�

, we write t j= �

if t satis�es �. Given a tree t, a valuation � is a function that assigns to each

node variable an element of V

t

, and to each node-set variable a subset of V

t

. We

write (t; �) j= �, if � holds in t, where the free variables of � are assigned values

according to the valuation �. If a formula � has free variables, say, x;X; y and

no others, we also write �(x;X; y). Moreover, we write (t; u; U; v) j= �(x;X; y)

for (t; �) j= �(x;X; y), where �(x) = u, �(X) = U , and �(y) = v.

The tree language de�ned by a formula � 2 MSOL

0

(�) is L(�) = ft 2 T

�

j

t j= �g. L(�) is called an mso de�nable tree language.

The following classical result from [Don, ThaWri] shows the equivalence be-

tween monadic second order logic and �nite tree automata, as a means of de�ning

tree languages by speci�cation and computation, respectively. It was �rst shown

for the special case of string languages in [B�uc, Elg]. See Sections 3 and 11 of

[Tho], and [Eng4], for a discussion of such results.

Proposition 2. A tree language is mso de�nable if and only if it is regular.

Since emptiness of regular tree languages is decidable (see, e.g., [G�ecSte]), Propo-

sition 2 implies that mso logic on trees is decidable.

Proposition 3. It is decidable for a formula � 2 MSOL

0

(�) whether or not

L(�) = ;.

3 MSO Node Properties and Relations

The aim of this paper is to investigate ways of de�ning properties of the nodes of

trees, and relations between the nodes of trees. One way of doing this is by mso

formulas with free node variables. In this section we de�ne the mso de�nable

node properties and node relations, and we discuss the well-known technique of

coding the values of the free variables by marking the nodes of the input tree.

Let � be an operator alphabet. A node property over � is a subset of f(t; u) j

t 2 T

�

and u 2 V

t

g. For k 2 N, a k-ary node relation over � is a subset of

f(t; u

1

; : : : ; u

k

) j t 2 T

�

and u

i

2 V

t

for all i 2 [1; k]g. Thus, a node property

associates with each tree t a property of the nodes of t, and a k-ary node relation

associates with each tree t a k-ary relation on the nodes of t. Note that a unary

node relation is the same as a node property, and that a nullary node relation is

the same as a tree language. We will be interested in particular in binary node

relations.

7

Let �(x

1

; : : : ; x

k

) 2 MSOL

k

(�) be an mso formula with k free node variables.

For each tree t 2 T

�

, �(x

1

; : : : ; x

k

) de�nes the relation

R

t

(�) = f(u

1

; : : : ; u

k

) 2 V

k

t

j (t; u

1

; : : : ; u

k

) j= �(x

1

; : : : ; x

k

)g:

In this way, �(x

1

; : : : ; x

k

) de�nes the node relation

R(�) = f(t; u

1

; : : : ; u

k

) j t 2 T

�

; (u

1

; : : : ; u

k

) 2 R

t

(�)g:

R(�) is called an mso de�nable k-ary node relation.

Note that for k = 0, i.e., for a closed formula �, R(�) is the tree language

L(�) as de�ned in Section 2. For k = 1 we also write P (�) for R(�), to stress

that it is a node property.

The set of all mso de�nable node properties is denoted mso-p, and the set

of all mso de�nable binary node relations is denoted mso-r.

We will need the following basic, well-known fact: if a binary node relation is

mso de�nable, then so is its transitive reexive closure (see, e.g., [Cou1]). For a

formula �(x; y) 2 MSOL

2

(�), we de�ne the formula �

�

(x; y) = 8X((closed(X)^

x 2 X)! y 2 X), where closed(X) = 8x; y((x 2 X ^ �(x; y))! y 2 X).

Proposition4. Let � be an operator alphabet. For every tree t 2 T

�

and every

formula �(x; y) 2 MSOL

2

(�), R

t

(�

�

) = R

t

(�)

�

.

In order to compute the node relation of an mso formula �(x

1

; : : : ; x

k

) by a

tree-walking automaton (for k = 2) or by an attribute grammar (for k = 1), we

will �rst use the classical result of Proposition 2 to construct a �nite tree au-

tomaton that recognizes all trees mark(t; u

1

; : : : ; u

k

) such that (t; u

1

; : : : ; u

k

) j=

�(x

1

; : : : ; x

k

). Here mark(t; u

1

; : : : ; u

k

) is the tree t in which the nodes u

1

; : : : ; u

k

are marked by special labels. This is a slight variation of a well-known technique,

which is in fact used in the proof of Proposition 2.

Let � be an operator alphabet, and k � 1. De�ne B

k

= f0; 1g

k

n f0g

k

. Let

�[(��B

k

) be the operator alphabet such that rk(�) = rk

�

(�) for every � 2 �,

and rk(h�; b

1

; : : : ; b

k

i) = rk

�

(�) for all h�; b

1

; : : : ; b

k

i 2 � � B

k

. Note that the

symbol h�; 0; : : : ; 0i is excluded; its role is played by the symbol �. We use this

alphabet to attach k di�erent marks to the labels of the nodes of a tree. Let t be

a tree over �, and let u

1

; : : : ; u

k

2 V

t

. The marked tree mark(t; u

1

; : : : ; u

k

) over

�[(��B

k

) is de�ned as (V

t

; E

t

; lab) where, for every v 2 V

t

, lab(v) = lab

t

(v) if

v 6= u

i

for all i, and lab(v) = hlab

t

(v); (v = u

1

); : : : ; (v = u

k

)i otherwise (where

(v = u

i

) = 1 i� v equals u

i

).

The following lemma shows that it is possible to move arbitrarily between

free variables in the formula and marks in the tree.

Lemma5. Let k � 1 and j 2 [1; k]. For every �(x

1

; : : : ; x

k

) 2 MSOL

k

(�) there

is a formula (x

j+1

; : : : ; x

k

) 2 MSOL

k�j

(�[(��B

j

)) such that, for all t 2 T

�

and u

1

; : : : ; u

k

2 V

t

,

(t; u

1

; : : : ; u

k

) j= �(x

1

; : : : ; x

k

) i�

(mark(t; u

1

; : : : ; u

j

); u

j+1

; : : : ; u

k

) j= (x

j+1

; : : : ; x

k

);

8

and vice versa, i.e., for every formula (x

j+1

; : : : ; x

k

) 2 MSOL

k�j

(�[(��B

j

))

there exists a formula �(x

1

; : : : ; x

k

) 2 MSOL

k

(�) such that the above equivalence

holds for all t 2 T

�

and u

1

; : : : ; u

k

2 V

t

.

Proof. The proof is straightforward. From an mso formula �(x

1

; : : : ; x

k

) we con-

struct (x

j+1

; : : : ; x

k

) as follows:

 (x

j+1

; : : : ; x

k

) =

8x

1

; : : : ; x

j

((marked

1

(x

1

) ^ � � � ^marked

j

(x

j

))! �

0

(x

1

; : : : ; x

k

));

where marked

i

(x) = 9h�; b

1

; : : : ; b

j

i 2 � � B

j

: b

i

= 1 ^ lab

h�;b

1

;:::;b

j

i

(x), and

�

0

(x

1

; : : : ; x

k

) is obtained from �(x

1

; : : : ; x

k

) by replacing all occurrences of all

lab

�

(y) by (lab

�

(y) _ 9(b

1

; : : : ; b

j

) 2 B

j

: lab

h�;b

1

;:::;b

j

i

(y)).

The other way around is similar. Let us assume that the variables x

1

; : : : ; x

j

do not occur in (x

j+1

; : : : ; x

k

). We construct �(x

1

; : : : ; x

k

) from (x

j+1

; : : : ; x

k

)

by replacing all occurrences of all lab

�

(y) by (lab

�

(y) ^ 8i 2 [1; j] : y 6= x

i

), and

all occurrences of all lab

h�;b

1

;:::;b

j

i

(y) by (lab

�

(y)^8i 2 [1; j] : (b

i

= 1! y = x

i

)).

ut

Note that in the above proof we have made use of formulas that strictly speaking

are not yet mso formulas. As an example, the formula marked

i

(x) really is the

disjunction of all lab

h�;b

1

;:::;b

j

i

(x) such that h�; b

1

; : : : ; b

j

i 2 � � B

j

and b

i

= 1.

In the remainder of the paper we will keep using such informal ways of writing

mso formulas.

The next corollary, which is the case j = k of Lemma 5, allows us to apply

Proposition 2 to formulas with free node variables.

Corollary 6. Let k � 1. For every �(x

1

; : : : ; x

k

) 2 MSOL

k

(�) there is a closed

mso formula 2 MSOL

0

(�[(��B

k

)) such that, for all t 2 T

�

and u

1

; : : : ; u

k

2

V

t

,

(t; u

1

; : : : ; u

k

) j= �(x

1

; : : : ; x

k

) i� mark(t; u

1

; : : : ; u

k

) j= ;

and vice versa, i.e., for every formula 2 MSOL

0

(� [(� � B

k

)) there exists

a formula �(x

1

; : : : ; x

k

) 2 MSOL

k

(�) such that the above equivalence holds for

all t 2 T

�

and u

1

; : : : ; u

k

2 V

t

.

Using Corollary 6 and Proposition 2 one can construct, for every mso formula

�(x

1

; : : : ; x

k

) over �, a �nite tree automaton M over � [(� �B

k

) such that

(t; u

1

; : : : ; u

k

) j= �(x

1

; : : : ; x

k

) i� mark(t; u

1

; : : : ; u

k

) 2 L(M):

We will have to compare the behavior of M on mark(t; u

1

; : : : ; u

k

) with its

behavior on t. Note that every tree t over � is also a tree over the alphabet of

M , which is the reason for using � instead of h�; 0; : : : ; 0i. Recall from Section 2

that, for a tree t and a node w of t, state

M;t

(w) is the state in which M reaches

w, and succ

M;t

(w) is the set of successful states at w, i.e., the set of all states q

such that M , assuming that it reaches node w in state q, will reach the root in

a �nal state.

9

Lemma7. Let M be a �nite tree automaton over � [(� � B

k

). Let t 2 T

�

,

u

1

; : : : ; u

k

2 V

t

, and w 2 V

t

.

1. If w is not an ancestor of any u

i

, i 2 [1; k], then

state

M;mark(t;u

1

;:::;u

k

)

(w) = state

M;t

(w).

2. If w is an ancestor of every u

i

, i 2 [1; k], then

succ

M;mark(t;u

1

;:::;u

k

)

(w) = succ

M;t

(w).

Proof. The proof of (1) is by an easy bottom-up induction on w. The proof of

(2) is by an easy top-down induction on w, using statement (1). The details are

left to the reader. ut

Moreover, we will have to express the behavior ofM on t 2 T

�

as mso de�nable

properties of the nodes of t. For this purpose, we now show that, for each q 2 Q,

f(t; w) j state

M;t

(w) = qg and f(t; w) j q 2 succ

M;t

(w)g are mso de�nable node

properties.

Lemma8. Let � be an operator alphabet, and let M = (Q;�

0

; �; F) be a �nite

tree automaton with � � �

0

. For every q 2 Q there are mso formulas state

q

(x)

and succ

q

(x) in MSOL

1

(�) such that for all t 2 T

�

and w 2 V

t

:

(t; w) j= state

q

(x) i� state

M;t

(w) = q, and (t; w) j= succ

q

(x) i� q 2 succ

M;t

(w).

Proof. To obtain the formula state

q

(x) we will construct a �nite tree automa-

ton M

q

over � [(� � B

1

) such that mark(t; w) 2 L(M

q

) i� state

M;t

(w) = q.

Then, by Proposition 2 there is a closed formula such that mark(t; w) j=

i� mark(t; w) 2 L(M

q

), and by Corollary 6 (for k = 1) there is a formula

�(x) such that (t; w) j= �(x) i� mark(t; w) j= ; thus, �(x) is the required

formula state

q

(x). It is not di�cult to construct the tree automaton M

q

. It

simulates M , but if it reaches the marked node, i.e., the node with some la-

bel h�; 1i (recall that B

1

= f1g), it veri�es whether or not M is in state q,

and continues to the root in an accepting or rejecting state, respectively. For-

mally, M

q

= (Q [fa; rg; � [(� � B

1

); �

0

; fag) and �

0

is de�ned as follows. Let

� 2 �

k

and q

1

; : : : ; q

k

2 Q [fa; rg. If q

i

= a (q

i

= r) for at least one i, then

�

0

h�;1i

(q

1

; : : : ; q

k

) = �

0

�

(q

1

; : : : ; q

k

) = a (= r, respectively). Now assume that all

q

i

are in Q. Then �

0

�

(q

1

; : : : ; q

k

) = �

�

(q

1

; : : : ; q

k

) and �

0

h�;1i

(q

1

; : : : ; q

k

) = a if

�

�

(q

1

; : : : ; q

k

) = q and r otherwise.

Similarly, to obtain the formula succ

q

(x) it su�ces to construct a �nite

tree automaton M

0

q

over � [(� � B

1

) such that mark(t; w) 2 L(M

0

q

) i� q 2

succ

M;t

(w). M

0

q

simulates M , but if it reaches the marked node, it switches

to state q. Formally, M

0

q

= (Q;� [(� � B

1

); �

00

; F) and for � 2 �

k

and

q

1

; : : : ; q

k

2 Q, �

00

�

(q

1

; : : : ; q

k

) = �

�

(q

1

; : : : ; q

k

) and �

00

h�;1i

(q

1

; : : : ; q

k

) = q. ut

4 Tree-Walking Automata

A tree-walking automaton (see, e.g., [AhoUll, EngRozSlu, KamSlu]) is a �nite-

state automaton that walks on a tree from node to node, following the edges

10

of the tree (downwards or upwards). The automaton can test the label of the

current node, and it can test the labels of the incident edges. To enhance the

power of this basic model, we will allow the tree-walking automaton to test any

mso de�nable property of the current node, using mso formulas with one free

node variable. For a given tree t, two nodes u and v are in the node relation

computed by the automaton if the automaton can walk from u to v in t, starting

in an initial state and ending in a �nal state. In this section we de�ne the tree-

walking automaton, and we show that its behavior is determined by a regular

\walking" language, consisting of all strings of instructions it can execute.

We start by de�ning the (in�nite) set of instructions of our tree-walking

automata; they will be called directives (as in [KlaSch]). Let � be an operator

alphabet. The set of directives over � is

D

�

= f#

i

j i 2 rki(�)g [f"

i

j i 2 rki(�)g [MSOL

1

(�):

A directive is an instruction of how to move from one node to another: #

i

means

\move along an edge labeled i", i.e., \move to the i-th child of the current node

(provided it has one)"; "

i

means \move against an edge labeled i", i.e., \move

to the parent of the current node (provided it has one, and it is the i-th child of

its parent)"; and (x) means \check that holds for the current node (and do

not move)". Formally, we de�ne for each t 2 T

�

and each directive d 2 D

�

the

node relation R

t

(d) � V

t

� V

t

, as follows:

R

t

(#

i

) = f(u; v) j (u; i; v) 2 E

t

g;

R

t

("

i

) = f(u; v) j (v; i; u) 2 E

t

g; and

R

t

((x)) = f(u; u) j (t; u) j= (x)g:

Syntactically, a tree-walking automaton is just an ordinary �nite automaton (on

strings) with a �nite subset of D

�

as input alphabet. However, the symbols of

D

�

are interpreted as instructions on the input graph as explained above.

Let � be an operator alphabet. A tree-walking automaton (with mso tests)

over � is a �nite automaton A over a �nite subset � of D

�

. We will call it a

basic tree-walking automaton if � contains no other mso formulas than lab

�

(x),

for all � 2 �, root(x), and 9y(edg

i

(y; x)), for all i 2 rki(�).

We note here that the directives "

i

, i 2 rki(�), can be replaced by the single

directive ", with R

t

(") = f(u; v) j (v; i; u) 2 E

t

for some i 2 rki(�)g, for all

t 2 T

�

. They are, however, convenient in examples and proofs.

For a tree-walking automaton A = (Q;�; �; I; F) and a tree t, an element

(q; u) of Q � V

t

is a con�guration of the automaton. It signi�es that A is in

state q at node u. A con�guration (q; u) is initial if q 2 I , and �nal if q 2 F . A

pair of nodes (u; v) is in the relation de�ned by A if A can move from an initial

con�guration (q; u) to a �nal con�guration (q

0

; v). This is now formalized, in the

obvious way. Recall that, for a directive d, the state transition relation R

A

(d) is

de�ned in Section 2, and the node relation R

t

(d) is de�ned above.

Let t 2 T

�

. One step of A = (Q;�; �; I; F) on t is de�ned by the binary

relation �

A;t

on the set of con�gurations, as follows. For every q; q

0

2 Q and

11

u; u

0

2 V

t

,

(q; u)�

A;t

(q

0

; u

0

) i� 9d 2 � : (q; q

0

) 2 R

A

(d) and (u; u

0

) 2 R

t

(d):

To indicate the directive that is executed by A in this step, we also write

(q; u)

d

�

A;t

(q

0

; u

0

). For each tree t 2 T

�

, A computes the relation

R

t

(A) = f(u; v) 2 V

t

� V

t

j (q; u)�

�

A;t

(q

0

; v) for some q 2 I and q

0

2 Fg:

Thus, A computes the node relation

R(A) = f(t; u; v) j t 2 T

�

; (u; v) 2 R

t

(A)g:

R(A) is called a regular node relation. The set of all regular node relations is

denoted reg-r.

Example 1. Let � be the operator alphabet �

0

[�

2

, with �

0

= fwhite; redg and

�

2

= f�g. We consider a tree-walking automaton A over �, i.e., an automaton

that walks on binary trees with white and red leaves. For a tree t over �, the

automaton A connects certain leaves of t, i.e., R

t

(A) consists of pairs (u; v) where

both u and v are leaves of t. If t has exactly one red leaf, say v

red

, then all leaves

have a pointer to that red leaf, i.e., R

t

(A) consists of all (u; v

red

) where u is a

leaf. Otherwise, i.e., if there is no red leaf or if there is more than one, all leaves

are linked in left-to-right circular order, i.e., R

t

(A) consists of all (u; v) such that

v is the next leaf after u, in that order. Note that R

t

(A) is a partial function for

every t 2 T

�

.

Let `orl' be a closed mso formula that is true i� there is exactly one red leaf,

i.e., orl = 9y(lab

red

(y) ^ 8z(lab

red

(z) ! z = y)). We de�ne A = (Q;�; �; I; F)

with Q = fq

in

; r; u; p; d; q

�n

g, I = fq

in

g, F = fq

�n

g, � = f#

1

; #

2

; "

1

; "

2

g [

fleaf(x) ^ orl; leaf(x) ^ :orl; lab

red

(x); root(x); leaf(x)g, and � consists of the

following transitions:

(q

in

; leaf(x) ^ orl; r), (q

in

; leaf(x) ^ :orl; u),

(r; d; r) for all d 2 f#

1

; #

2

; "

1

; "

2

g, (r; lab

red

(x); q

�n

),

(u; "

2

; u), (u; root(x); d), (u; "

1

; p), (p; #

2

; d), and

(d; #

1

; d), (d; leaf(x); q

�n

).

On a given tree, the automaton A �rst checks that it is at a leaf, and tests

whether or not there is exactly one red leaf. If so, it walks nondeterministically

on the tree (in state r) until it happens to �nd that red leaf. If not, it walks

to the \next" leaf along the shortest path: it �rst moves upwards over 2-labeled

edges as far as possible (in state u); then it either is at the root or it moves to

the other child of its parent (visiting its parent in state p); and �nally it moves

downwards along 1-labeled edges as far as possible (in state d). ut

12

The node relation computed by a tree-walking automaton depends only on the

language (of strings of directives) it recognizes. In other words, for tree-walking

automata A

1

and A

2

, if L(A

1

) = L(A

2

) then R(A

1

) = R(A

2

). We prove this

by associating a node relation with every language of strings of directives, in a

natural way (as is well known from program scheme theory, cf. [Eng1]).

Let � be an operator alphabet. A walking language over � is a (string)

language over a �nite subset of D

�

. A walking string, i.e., a string from a walking

language, can be viewed as a sequence of instructions to be executed as a walk

on a tree; the language itself can be viewed as a nondeterministic choice between

such instruction sequences. This is formalized next. Let t 2 T

�

. A walking string

w 2 D

�

�

computes the relation R

t

(w) � V

t

� V

t

, de�ned as follows: R

t

(") is the

identity on V

t

, and, for d

1

; : : : ; d

n

2 D

�

, R

t

(d

1

� � � d

n

) = R

t

(d

1

) � � � � �R

t

(d

n

). A

walking language W � D

�

�

computes the relation R

t

(W) =

S

fR

t

(w) j w 2 Wg.

Now, a walking language W computes the node relation R(W) = f(t; u; v) j t 2

T

�

and (u; v) 2 R

t

(W)g.

Example 2. We de�ne a walking language W that computes the same node re-

lation as the tree-walking automaton A from Example 1. Let � be de�ned as in

Example 1. Then W is the regular language W

1

[W

2

over �, where

W

1

= (leaf(x) ^ orl) � f#

1

; #

2

; "

1

; "

2

g

�

� lab

red

(x); and

W

2

= (leaf(x) ^ :orl)� "

�

2

�f"

1

� #

2

; root(x)g� #

�

1

� leaf(x):

Note that W = L(A). According to the next lemma this implies that R(W) =

R(A), which should also intuitively be clear. ut

We now show that the node relation computed by a tree-walking automaton

depends only on the language it recognizes.

Lemma9. For every tree-walking automaton A, R(A) = R(L(A)).

Proof. Let A = (Q;�; �; I; F). We have to show that R

t

(A) = R

t

(L(A)) for

every tree t. It is straightforward to prove that, for all q; q

0

2 Q, u; u

0

2 V

t

,

and w = d

1

� � � d

n

with d

i

2 �, the following equivalence holds: there is a walk

(q

0

; u

0

)

d

1

�

A;t

(q

1

; u

1

)

d

2

�

A;t

� � �

d

n

�

A;t

(q

n

; u

n

) of A on t with (q

0

; u

0

) = (q; u)

and (q

n

; u

n

) = (q

0

; u

0

) if and only if (q; q

0

) 2 R

A

(w) and (u; u

0

) 2 R

t

(w). This

equivalence implies that R

t

(A) = f(u; u

0

) j 9q 2 I; q

0

2 F;w 2 �

�

: (q; q

0

) 2

R

A

(w) and (u; u

0

) 2 R

t

(w)g = f(u; u

0

) j 9w 2 L(A) : (u; u

0

) 2 R

t

(w)g =

R

t

(L(A)). ut

As a corollary we obtain the fact that a node relation can be computed by a

tree-walking automaton i� it can be computed by a regular walking language

(i.e., a walking language that can be recognized by a �nite automaton).

Corollary 10. reg-r is the set of all R(W) where W is a regular walking lan-

guage.

13

It is not di�cult to see how the well-known language operations of union (W

1

[

W

2

), concatenation (W

1

�W

2

), and Kleene star (W

�

), when applied to walking

languages, correspond to operations on the relations they compute. In fact, union

of languages corresponds to union of relations, concatenation of languages to

composition of relations, and Kleene star of a language to the transitive reexive

closure of a relation. This is expressed in the next lemma (cf. Lemma 2.9 of

[Eng1]).

Lemma11. Let t be a tree over �, and let W;W

1

;W

2

be walking languages over

�. Then R

t

(W

1

[W

2

) = R

t

(W

1

) [R

t

(W

2

), R

t

(W

1

�W

2

) = R

t

(W

1

) � R

t

(W

2

),

and R

t

(W

�

) = R

t

(W)

�

.

Proof. The �rst equality is immediate from the de�nition of R

t

(W). It also

holds for arbitrary unions, i.e., if W

i

is a walking language for every i 2 N, then

R

t

(

S

i2N

W

i

) =

S

i2N

R

t

(W

i

). The second equality is proved as follows:

R

t

(W

1

�W

2

) = R

t

(fw

1

� w

2

j w

1

2 W

1

; w

2

2 W

2

g)

=

[

fR

t

(w

1

� w

2

) j w

1

2W

1

; w

2

2W

2

g

=

[

fR

t

(w

1

) �R

t

(w

2

) j w

1

2 W

1

; w

2

2W

2

g

=

[

fR

t

(w

1

) j w

1

2 W

1

g �

[

fR

t

(w

2

) j w

2

2W

2

g

= R

t

(W

1

) �R

t

(W

2

):

This implies that R

t

(W

i

) = R

t

(W)

i

for every i 2 N, and hence that R

t

(W

�

) =

R

t

(

S

i2N

W

i

) =

S

i2N

R

t

(W

i

) =

S

i2N

R

t

(W)

i

= R

t

(W)

�

. ut

5 Characterizing MSO Node Relations

In this section we show one of our main results: a binary node relation can be

de�ned by an mso formula i� it can be computed by a tree-walking automaton.

Moreover, if the formula de�nes a functional node relation on every tree, then the

automaton is deterministic. We also show that the mso tests of the automaton

are really needed; there is a (functional) binary formula that cannot be computed

by any basic tree-walking automaton.

We �rst prove that the node relation of a tree-walking automaton is mso

de�nable. Corollary 10 allows us to show in a straightforward way, using Kleene's

theorem, that all regular node relations are mso de�nable.

Lemma12. reg-r � mso-r.

Proof. Let � be a �nite subset of D

�

. By Kleene's theorem, the class of regular

(string) languages over � is the smallest class of languages that is closed under

union, concatenation, and Kleene star, and contains the empty language and

every language fdg, with d 2 �. By induction on this characterization we de�ne

for every regular walking language W a formula �

W

(x; y) 2 MSOL

2

(�), such

14

that R(�

W

) = R(W). This proves the inclusion by Corollary 10. We use `false'

to stand for any formula that never holds (such as 9x : :(x = x)). Recall also

the de�nition of the transitive reexive closure �

�

(x; y) of a formula �(x; y) from

Section 3 (just before Proposition 4). Let i 2 rki(�), (x) 2 MSOL

1

(�), and

let W;W

1

;W

2

be walking languages over �. Then we de�ne

�

;

(x; y) = false

�

f#

i

g

(x; y) = edg

i

(x; y)

�

f"

i

g

(x; y) = edg

i

(y; x)

�

f (x)g

(x; y) = (x) ^ (x = y)

�

W

1

[W

2

(x; y) = �

W

1

(x; y) _ �

W

2

(x; y)

�

W

1

�W

2

(x; y) = 9z(�

W

1

(x; z) ^ �

W

2

(z; y))

�

W

�

(x; y) = �

�

W

(x; y)

The correctness of the �rst four cases should be clear. The remaining three

cases follow from Lemma 11, together with the following equations that hold for

every tree t 2 T

�

: R

t

(�

W

1

[W

2

) = R

t

(�

W

1

) [R

t

(�

W

1

), R

t

(�

W

1

�W

2

) = R

t

(�

W

1

) �

R

t

(�

W

2

), and R

t

(�

W

�

) = R

t

(�

W

)

�

, of which the last one follows from Proposi-

tion 4. ut

We note here that Lemma 12 also holds for graphs in general, with the gen-

eralization of all relevant concepts from trees to graphs (in particular that of

a tree-walking automaton to a graph-walking automaton), see Theorem 5 of

[BloEng1]. However, in that case the inclusion is of course proper. For instance,

the relation that holds between two nodes u and v when they are in di�erent

connected components of the graph, is mso de�nable by the formula :(�

�

(x; y))

where �(x; y) = edg(x; y) _ edg(y; x). But a graph-walking automaton cannot

compute this relation, simply because it cannot walk from u to v. However, as

shown in Theorem 6 of [BloEng1], even for connected graphs there are node

relations that can be de�ned by an mso formula, but cannot be computed by a

graph-walking automaton.

We now prove the �rst main result of this paper. The idea of the proof is

similar to the one of Lemma 12 of [EngOos2], which is a key lemma in the proof

of the main result of [EngOos1, EngOos2], viz. the equivalence between context-

free graph grammars and mso transductions of trees. In that lemma, there is

no tree-walking automaton, but an appropriate relabeling of the nodes of the

tree (instead of the mso tests) and a regular language of strings of node labels

(similar to the walking language of the automaton, see Lemma 9).

Theorem13. mso-r = reg-r.

Proof. By Lemma 12 it su�ces to show mso-r � reg-r. Let � be an oper-

ator alphabet and let �(x; y) 2 MSOL

2

(�). By Corollary 6 (for k = 2) and

Proposition 2 (applied to the resulting) there is a �nite tree automaton M

over � [(� � B

2

) such that for every tree t 2 T

�

and nodes u and v of t,

(t; u; v) j= �(x; y) if and only if mark(t; u; v) 2 L(M).

15

LetM = (Q;�[(��B

2

); �; F). We will prove that there exists a tree-walking

automaton A over � with R(A) = R(�), i.e., for every tree t 2 T

�

and nodes u

and v of t, (u; v) 2 R

t

(A) i� mark(t; u; v) 2 L(M). This tree-walking automaton

A behaves in a special way: it walks along paths in the tree t in which no edge

occurs more than once, that is, for every pair of nodes (u; v) 2 R

t

(A) it always

takes the shortest path from u to v. In fact, A simulates the �nite tree automaton

M on the path from u to v, using mso de�nable properties of the nodes on that

path to get information on the behavior of the automaton M on the rest of the

tree. More precisely, A simulates the computation of M on the path from u to

the least common ancestor lca(u; v) of u and v, and then simulates the reverse

computation of M on the path from lca(u; v) to v, nondeterministically.

The behavior ofM on the parts of the tree outside the shortest path from u to

v, can be expressed through the formulas state

q

(x) and succ

q

(x) in MSOL

2

(�),

de�ned in Lemma 8. The formulas state

q

(x) are used to compute the state of

M at all those nodes that are children of nodes on the shortest path, but do not

lie on that path themselves. The formulas succ

q

(x) are used to check whether a

given state q is successful at the node lca(u; v). The reader should realize thatM

works on mark(t; u; v) whereas A walks on t. Thus, the formulas state

q

(x) and

succ

q

(x) were de�ned for t, and not for mark(t; u; v). However, since the parts of

t outside the shortest path from u to v are labeled by symbols from �, Lemma 7

guarantees that A will test the correct information on the behavior of M .

We now de�ne the tree-walking automaton A = (Q

A

; �

A

; �

A

; I

A

; F

A

) over

�. To simplify the description of A we allow its transition relation �

A

to contain

transitions of the form (q; d

1

� � � d

n

; q

0

) with q; q

0

2 Q

A

and d

1

; : : : ; d

n

2 �

A

; such

a transition stands for the n transitions

(q; d

1

; q

1

); (q

1

; d

2

; q

2

); : : : ; (q

n�2

; d

n�1

; q

n�1

); (q

n�1

; d

n

; q

0

)

where q

1

; : : : ; q

n�1

are (unique) new states.

The set of states of A is Q

A

= fq

in

; q

�n

g [fup

q

j q 2 Qg [fdown

q

j q 2 Qg,

with I

A

= fq

in

g and F

A

= fq

�n

g. The states up

q

are used by A when walking

from a node u to lca(u; v) and simulating M , whereas it uses the states down

q

when walking from lca(u; v) to the node v and simulatingM reversely. We de�ne

�

A

to be the set of all directives that occur in �

A

.

It remains to de�ne �

A

. Let k 2 N, � 2 �

k

, and q

1

; : : : ; q

k

; q 2 Q. For each

such choice, �

A

contains the transitions as speci�ed below in points (1-8). Apart

from the formula succ

q

(x), we will use the unary formula

test(x) = lab

�

(x) ^ 8m 2 [1; k] : 8y(edg

m

(x; y)! state

q

m

(y))

which expresses that the current node has label � and q

1

; : : : ; q

k

are the states in

which M reaches its children. Similarly, for i; j 2 [1; k] we will use the formulas

test

i

(x) and test

i;j

(x) which are the same as test(x) except that the quanti�ca-

tion of m is restricted to [1; k] n fig and [1; k] n fi; jg, respectively. Recall that

B

2

= f(1; 0); (0; 1); (1; 1)gwhere (1; 0) indicates u and (0; 1) indicates v (if u 6= v)

and (1; 1) indicates both u and v (if u = v).

16

(1) Start moving up:

if �

h�;1;0i

(q

1

; : : : ; q

k

) = q, then

(q

in

; test(x); up

q

) 2 �

A

:

(2) Move one step up:

if �

�

(q

1

; : : : ; q

k

) = q, then, for all i 2 [1; k],

(up

q

i

; "

i

� test

i

(x); up

q

) 2 �

A

:

(3) Turn around:

if �

�

(q

1

; : : : ; q

k

) = q, then, for all i; j 2 [1; k] with i 6= j,

(up

q

i

; "

i

�(test

i;j

(x) ^ succ

q

(x))� #

j

; down

q

j

) 2 �

A

:

(4) Move one step down:

if �

�

(q

1

; : : : ; q

k

) = q, then, for all i 2 [1; k],

(down

q

; test

i

(x)� #

i

; down

q

i

) 2 �

A

:

(5) Stop moving down:

if �

h�;0;1i

(q

1

; : : : ; q

k

) = q, then

(down

q

; test(x); q

�n

) 2 �

A

:

Transition types (1-5) deal with the case that u and v are independent nodes,

i.e., one is not an ancestor of the other: A walks from u up to some node z, turns

around, and walks from z down to v. The fact that, when turning around, A

moves to a di�erent child of z (in (3): i 6= j) guarantees that z = lca(u; v). In

the next transition types we additionally deal with the cases that v is a proper

descendant of u, that v is a proper ancestor of u, and that v = u, respectively.

(6) Start moving down:

if �

h�;1;0i

(q

1

; : : : ; q

k

) = q, then, for all i 2 [1; k],

(q

in

; (test

i

(x) ^ succ

q

(x))� #

i

; down

q

i

) 2 �

A

:

(7) Stop moving up:

if �

h�;0;1i

(q

1

; : : : ; q

k

) = q, then, for all i 2 [1; k],

(up

q

i

; "

i

�(test

i

(x) ^ succ

q

(x)); q

�n

) 2 �

A

:

(8) Start and stop:

if �

h�;1;1i

(q

1

; : : : ; q

k

) = q, then

(q

in

; test(x) ^ succ

q

(x); q

�n

) 2 �

A

:

This ends the description of the tree-walking automaton A. To show the correct-

ness of A the following three statements can be proved:

17

(Sa) For every t 2 T

�

and all nodes u; v; w of t such that w is not an an-

cestor of v, (q

in

; u) �

�

A;t

(up

q

; w) if and only if w is an ancestor of u and

q = state

M;mark(t;u;v)

(w).

(Sb) For every t 2 T

�

and all nodes u; v; w of t such that w is an ancestor

of v, (q

in

; u) �

�

A;t

(down

q

; w) if and only if w is not an ancestor of u and

q 2 succ

M;mark(t;u;v)

(w).

(Sc) For every t 2 T

�

and all nodes u; v of t, (q

in

; u)�

�

A;t

(q

�n

; v) if and only if

state

M;mark(t;u;v)

(v) 2 succ

M;mark(t;u;v)

(v).

Statements (Sa) and (Sb) can easily be proved by induction on the length of

the given walk, and on the distance between w and u. (Sa) is a consequence

of transition types (1) and (2), and (Sb) follows from (Sa) and transition types

(3), (6), and (4). Statement (Sc) can then be proved from (Sa) and (Sb), and

transition types (5), (7), and (8), by considering the last step of the walk and

the last node on the path from u to v. All the proofs need Lemmas 7 and

8. The details of the proofs are left to the reader. The correctness of A now

follows from (Sc) and Lemma 1: state

M;mark(t;u;v)

(v) 2 succ

M;mark(t;u;v)

(v) i�

mark(t; u; v) 2 L(M). ut

We have proved that every mso speci�cation �(x; y) of a binary relation on the

nodes of a tree can be implemented by a tree-walking automaton A. However, in

general the automaton is nondeterministic, i.e., chooses nondeterministically its

way in the tree. This is of course unavoidable if, for some tree t, R

t

(�) is not a

function: then there are distinct (u; v

1

) and (u; v

2

) in R

t

(�) and, after starting at

node u, A has to walk either to v

1

or to v

2

, nondeterministically. We now show

that every functional mso speci�cation can be implemented on a deterministic

tree-walking automaton.

A node relation R is functional if, for every tree t, the relation f(u; v) j

(t; u; v) 2 Rg is functional, i.e., is a partial function. We also say that an mso

formula, a tree-walking automaton, or a walking language is functional if it de-

�nes or computes a functional node relation. The tree-walking automaton of

Example 1 and the walking language of Example 2 are functional. The walk-

ing languages in [KlaSch], which are described by so-called routing expressions

(similar to those in Example 2), are required to be functional.

A tree-walking automaton A = (Q;�; �; I; F) over � is deterministic if

the following three conditions hold: (1) I is a singleton, (2) if (q; d; q

0

) 2 �,

then q =2 F , and (3) for all distinct transitions (q; d

1

; q

1

); (q; d

2

; q

2

) 2 �, d

1

and d

2

are two mutually exclusive formulas in MSOL

1

(�). Here, two formulas

�

1

(x); �

2

(x) 2 MSOL

1

(�) are mutually exclusive if t j= :9x(�

1

(x) ^ �

2

(x)) for

every t 2 T

�

; note that this holds i� L(9x(�

1

(x)^ �

2

(x))) = ;, and hence is de-

cidable by Proposition 3. Obviously, every deterministic tree-walking automaton

is functional.

Theorem14. For every functional tree-walking automaton A over � there is a

deterministic tree-walking automaton A

0

over � with R(A

0

) = R(A).

18

Proof. Let A = (Q;�; �; I; F). We may assume that I is a singleton. If not, add

all transitions (q

in

; lab

�

(x); q), with � 2 � and q 2 I , to � where q

in

is the new

initial state.

The automaton A

0

simulates A, but whenever A can choose between the

execution of several di�erent transitions,A

0

executes just one of these transitions,

after having tested that its execution can be continued with a successful walk of

A on the tree. To see that this is an mso de�nable node property, let, for every

q 2 Q, sw

q

(x) be the mso formula such that (t; u) j= sw

q

(x) i� A has a successful

walk on t that starts in con�guration (q; u), i.e., (q; u)�

�

A;t

(q

0

; v) for some �nal

con�guration (q

0

; v). Note that sw

q

(x) = 9y(�

q

(x; y)), where �

q

(x; y) is the mso

formula corresponding to the tree-walking automaton A

q

= (Q;�; �; fqg; F)

according to Lemma 12. Now, for a transition (p; d; q) 2 �, let sw

d;q

(x) be the

mso formula de�ned as follows: if d = #

i

then sw

d;q

(x) = 9y(edg

i

(x; y)^sw

q

(y)),

if d = "

i

then sw

d;q

(x) = 9y(edg

i

(y; x)^sw

q

(y)), and if d = (x) then sw

d;q

(x) =

 (x) ^ sw

q

(x). Clearly, the formula sw

d;q

(x) expresses that the execution of

transition (p; d; q) can be continued with a successful walk.

Let (p; d

1

; q

1

); : : : ; (p; d

n

; q

n

) be all transitions in � that start with a state

p =2 F . Corresponding to these, the automaton A

0

has the following transitions,

where p

1

; : : : ; p

n

are new states:

(p; sw

d

1

;q

1

(x); p

1

), (p;: sw

d

1

;q

1

(x) ^ sw

d

2

;q

2

(x); p

2

), : : : ,

(p;: sw

d

1

;q

1

(x) ^ � � � ^ : sw

d

n�1

;q

n�1

(x) ^ sw

d

n

;q

n

(x); p

n

),

and (p

1

; d

1

; q

1

); : : : ; (p

n

; d

n

; q

n

).

The automaton A

0

has no other transitions; it has the same initial state and �nal

states as A. Obviously, A

0

is deterministic and computes the same node relation

as A. ut

Since every deterministic tree-walking automaton is functional, Theorems 13

and 14 together show that the class of node relations that can be computed

by deterministic tree-walking automata is exactly the class of functional mso

de�nable node relations. In a formula: fmso-r = dreg-r, where `f' and `d'

indicate functionality and determinism, respectively.

We end this section by showing that the mso tests of the tree-walking au-

tomaton are necessary: the usual tree-walking automaton from the literature

(see, e.g., [AhoUll, EngRozSlu]) cannot compute all mso de�nable node rela-

tions. Recall from Section 4 that a basic tree-walking automaton over � is one

that uses only the mso tests lab

�

(x), � 2 �, that test the label of node x, and

the mso tests root(x) and 9y(edg

i

(y; x)), i 2 rki(�), that test whether x is the

root or the i-th child of its parent. A regular walking language that only makes

use of these mso tests, is called a routing language in [KlaSch]. Regular tree

languages together with functional routing languages are proposed in [KlaSch]

as a way of de�ning recursive data structures, built with pointers. Recursive

data structures have an intrinsic tree structure, determined by a regular tree

language. The routing languages are used to specify additional pointers in the

tree structure, for instance to produce the data structure of circularly linked lists

19

or root-linked binary trees. If t is an instance of a data structure (i.e., a tree),

a tuple (u; v) in the relation de�ned by the routing language signi�es a pointer

from node u to node v. Since the routing language is functional, the pointer at u

has a unique destination v. It is shown in [KlaSch] that many useful data struc-

tures can be de�ned in this way. We show here that there are data structures

that can be de�ned by functional regular walking languages, but not by routing

languages. Note that by Lemma 9 a node relation can be computed by a routing

language i� it can be computed by a basic tree-walking automaton.

Theorem15. There is a deterministic tree-walking automaton A, such that

there is no basic tree-walking automaton B with R(B) = R(A).

Proof. Let � be the operator alphabet of Example 1, and let A

red

be the tree-

walking automaton of Example 1. Since A

red

is functional, there is a deterministic

tree-walking automatonA that computes the same node relation, by Theorem 14.

This node relation cannot be de�ned by a basic tree-walking automaton. We

prove so by contradiction.

Suppose there is a basic tree-walking automaton B = (Q;�; �; I; F) with

R(B) = R(A

red

). We may assume that I = fq

0

g, cf. the proof of Theorem 14.

Intuitively, when B starts at a leaf u of a tree with white leaves only, it �rst

would have to visit all other leaves in order to be sure that they are all white.

However, in doing so, B cannot remember its starting point u, and therefore

is not able to �nd the leaf that is next to u in the left-to-right circular order.

Formally this is proved as follows.

Let t be any tree over � with #Q + 1 leaves, which are all white. Let t

0

be the tree obtained from t by changing the label of one of the leaves, say, the

�rst leaf, into red. Name the leaves in both trees u

0

through u

#Q

in left-to-right

order. Thus, u

0

is white in t and red in t

0

, and u

1

; : : : ; u

#Q

are white in both

trees. In the following, let succ(k) = (k + 1)mod(#Q+ 1), giving the successor

of a node number in left-to-right circular order. Since t has no red leaves, for

every k 2 [0;#Q], there is a state f

k

2 F , such that (q

0

; u

k

)�

�

B;t

(f

k

; u

succ(k)

).

On the other hand, since t

0

has exactly one red leaf, for all k 2 [0;#Q � 1],

there is no f 2 F such that (q

0

; u

k

) �

�

B;t

0

(f; u

succ(k)

). This implies that for all

k 2 [0;#Q� 1] the walk of B on t from u

k

to u

succ(k)

must visit u

0

. In fact, if

it would not visit u

0

the same walk could also be done on t

0

because B cannot

test the label of a node that it does not visit. Since the walk on t from u

#Q

to

u

0

also visits u

0

, this means that for all k 2 [0;#Q], there is a q

k

2 Q, with

(q

0

; u

k

)�

�

B;t

(q

k

; u

1

)�

�

B;t

(f

k

; u

succ(k)

):

But since there are #Q + 1 possibilities for k, and only #Q states, there have

to be distinct k; k

0

2 [0;#Q] such that q

k

= q

k

0

. This implies

(q

0

; u

k

)�

�

B;t

(q

k

; u

1

) = (q

k

0

; u

1

)�

�

B;t

(f

k

0

; u

succ(k

0

)

)

and thus (u

k

; u

succ(k

0

)

) 2 R

t

(B) with k 6= k

0

, a contradiction. ut

20

This shows that, when de�ning additional pointers in trees, mso speci�cations

are more powerful than routing languages. Moreover, mso logic is of course a

higher level speci�cation language than regular expressions or �nite automata.

With respect to e�ciency, it is shown in [KlaSch] that, in recursive data struc-

tures, the pointers that are de�ned by (functional) routing languages can be

computed in linear time. It will be shown in Section 7 (Theorem 21) that func-

tional mso speci�cations can be evaluated just as e�ciently as functional routing

languages. Altogether, when de�ning additional pointers in trees, one may as well

use mso speci�cations instead of routing languages.

Tree-walking automata can also be used to recognize tree languages: for a

tree-walking automaton A over �, the tree language recognized by A is ft 2 T

�

j

(root(t); root(t)) 2 R

t

(A)g. It is not di�cult to prove, using Proposition 2 and

Theorem 13, that tree-walking automata with mso tests recognize exactly the

regular tree languages. In analogy to the case of node relations (Theorem 15),

we conjecture that there is a regular tree language that cannot be recognized

by a basic tree-walking automaton. A similar result has been proved in The-

orem 5.5 of [KamSlu]. However, the tree-walking automaton in [KamSlu] has

directive " instead of all directives "

i

with i 2 rki(�), and does not have the

tests 9y(edg

i

(y; x)), i 2 rki(�). This means that it cannot test the \child num-

ber" of a node, and hence it cannot even perform a systematic search of the

input tree. Such an automaton seems to be too weak to be interesting. The tree-

walking automata of [AhoUll, EngRozSlu, KamSlu] are also of this type, but

they are used to compute string transductions, and hence the child number of a

node of the input tree can always be added to its label.

6 Characterizing MSO Node Properties

In this section we show our second main result: a node property can be de�ned

by an mso formula i� it can be computed by an attribute grammar of which

all attributes have �nitely many values. We start by recalling some terminology

concerning attribute grammars (see, e.g., [Knu, DerJouLor, Eng2]). Then we de-

�ne the so-called node-selecting attribute grammar, which computes a property

of the nodes of the input tree, and show that these attribute grammars compute

exactly the mso de�nable node properties. Finally, we de�ne the concept of an

attributed relabeling of the nodes of a tree, and characterize the mso de�nable

node relations by basic tree-walking automata that walk on relabeled trees.

Attribute Grammars

In order to allow the attribute grammar to work on arbitrary trees over an op-

erator alphabet, rather than on derivation trees of an underlying context-free

grammar, we consider a slight variation of the attribute grammar that was in-

troduced in [F�ul]. The semantic rules of the attribute grammar are grouped

by operator rather than by grammar production, and there are special seman-

tic rules for the inherited attributes of the root. All operators have the same

attributes.

21

Let � be an operator alphabet. An attribute grammar over � is a six-tuple

G = (�;S; I;
;W;R) where

{ � is the input alphabet.

{ S is a �nite set, the set of synthesized attributes.

{ I , disjoint with S, is a �nite set, the set of inherited attributes.

{
 is a �nite set of sets, the semantic domains of the attributes.

{ W : (S [I)!
 is the domain assignment.

{ R describes the semantic rules; it is a function that associates a set of rules

with every � 2 � [frootg:

� For � 2 �, R(�) is the set of internal rules for �; R(�) contains one rule

h�

0

; i

0

i = f(h�

1

; i

1

i; : : : ; h�

r

; i

r

i)

for every pair h�

0

; i

0

i, where either �

0

is a synthesized attribute and

i

0

= 0, or �

0

is an inherited attribute and i

0

2 [1; rk(�)]. Furthermore,

r � 0, �

1

; : : : ; �

r

2 S [I , i

1

; : : : ; i

r

2 [0; rk(�)], and f is a function from

W (�

1

)� � � � �W (�

r

) to W (�

0

).

� R(root) is the set of root rules; R(root) contains one rule

h�

0

; 0i = f(h�

1

; 0i; : : : ; h�

r

; 0i)

for every �

0

2 I , where r � 0, �

1

; : : : ; �

r

2 S [I , and f is a function

from W (�

1

)� � � � �W (�

r

) to W (�

0

).

Usually, for an (internal or root) rule h�

0

; i

0

i = f(h�

1

; i

1

i; : : : ; h�

r

; i

r

i) the func-

tion f is given as f = �x

1

; : : : ; x

r

:e for some expression e with variables in

fx

1

; : : : ; x

r

g. We will then informally denote the rule by h�

0

; i

0

i = e

0

where e

0

is

obtained from e by substituting h�

j

; i

j

i for x

j

, for all j 2 [1; r].

Noncircularity is de�ned for attribute grammars in the usual way, and can

be tested in the usual way (see [Knu]). All attribute grammars are assumed to

be noncircular.

If all sets in
 are �nite, then G is said to be �nite-valued. This means that

each attribute has �nitely many values. For our characterization of mso de�nable

properties we will consider �nite-valued attribute grammars only.

Let t be a tree over �. The set of attributes of t is A(t) = (S [I)� V

t

. We

now de�ne how to give the correct values to the attributes of the tree. Let dec be

a function from A(t) to [
, such that dec(h�; ui) 2 W (�) for all h�; ui 2 A(t).

Recall from Section 2 that, for u 2 V

t

, u � 0 = u. The function dec is a rootless

decoration of t if all internal rules are satis�ed, i.e., for every node u 2 V

t

and

every rule

h�

0

; i

0

i = f(h�

1

; i

1

i; : : : ; h�

r

; i

r

i)

in R(lab

t

(u)),

dec(h�

0

; u � i

0

i) = f(dec(h�

1

; u � i

1

i); : : : ; dec(h�

r

; u � i

r

i)):

22

The function dec is a decoration of t if it is a rootless decoration of t and,

moreover, all root rules are satis�ed, i.e., for every rule

h�

0

; 0i = f(h�

1

; 0i; : : : ; h�

r

; 0i)

in R(root),

dec(h�

0

; root(t)i) = f(dec(h�

1

; root(t)i); : : : ; dec(h�

r

; root(t)i)):

SinceG is noncircular, every tree t has a unique decoration, which will be denoted

by dec

G;t

. This decoration can be computed bottom-up, in a nondeterministic

way. That is of course not the way it is usually done, but we need it to show that

a �nite tree automaton can simulate an attribute grammar with �nite semantic

domains. The idea is to compute a rootless decoration of every subtree of the

input tree, and check the root rules at the root. The following easy lemma shows

how to make a bottom-up move in the tree. Recall from Section 2 that t

u

denotes

the subtree of t rooted at node u.

Lemma16. Let t be a tree over �, and let u be a node of t. A function dec is

a rootless decoration of t

u

i� the following conditions hold:

{ the restriction of dec to A(t

u�i

) is a rootless decoration of t

u�i

, for every

i 2 [1; rk(lab

t

(u))], and

{ for every rule

h�

0

; i

0

i = f(h�

1

; i

1

i; : : : ; h�

r

; i

r

i)

in R(lab

t

(u)),

dec(h�

0

; u � i

0

i) = f

�

dec(h�

1

; u � i

1

i); : : : ; dec(h�

r

; u � i

r

i)

�

:

The Characterization

The purpose of attribute grammars is to de�ne attributes of the nodes of a tree,

and thus, in particular, properties of these nodes. mso formulas with one free

variable can also be used to de�ne properties of the nodes of a tree. These two

methods turn out to be equivalent when we restrict the attribute grammar to

be �nite-valued, as will be shown in this subsection.

In order to de�ne one particular node property with attribute grammars, we

use an attribute grammar G with a designated boolean attribute �. Given a tree

t, the attribute grammar \selects" all nodes u of t with dec

G;t

(h�; ui) = true.

A node-selecting attribute grammar over � is a pair (G; �) where G is a

�nite-valued attribute grammar over �, and � is a boolean attribute of G, i.e.,

W (�) = ftrue; falseg. The node property computed by (G; �) is

P (G; �) = f(t; u) j t 2 T

�

; u 2 V

t

and dec

G;t

(h�; ui) = trueg:

P (G; �) is called an att-computable node property, and the set of all att-

computable node properties is denoted att-p. We will prove that mso-p =

att-p.

23

Lemma17. att-p � mso-p.

Proof. Let (G; �) be a node-selecting attribute grammar over �, with G =

(�;S; I;
;W;R). To show that the node property P (G; �) is mso de�nable,

it su�ces, by Proposition 2 and Corollary 6 (for k = 1), to construct a nondeter-

ministic �nite tree automaton M = (Q;� [(� �B

1

); �; F) such that, for every

t 2 T

�

and u 2 V

t

, (t; u) 2 P (G; �) i� mark(t; u) 2 L(M). In other words, M

should recognize an input tree mark(t; u) i� dec

G;t

(h�; ui) = true. To do this,

M simulates the attribute grammar G on t, by calculating a rootless decoration

of each subtree of t, in a nondeterministic way. Moving up in the tree, it makes

sure that all internal rules of G are satis�ed. At the marked node of mark(t; u)

it makes sure that the rootless decoration assigns the value true to attribute �.

M accepts mark(t; u) if the �nal rootless decoration satis�es the root rules. To

compute the rootless decorations, it su�ces by Lemma 16 that M keeps in its

�nite control the values of the attributes of the current node according to the

(guessed) rootless decoration of the subtree rooted at that node.

The set of states and the set of �nal states of M are

Q = fd : S [I ! [
 j 8� 2 S [I : d(�) 2W (�)g;

F = fd 2 Q j 8h�

0

; 0i = f(h�

1

; 0i; : : : ; h�

r

; 0i) 2 R(root) :

d(�

0

) = f(d(�

1

); : : : ; d(�

r

))g:

Please note that Q is indeed �nite, because G is �nite-valued. The automatonM

has the following transition relations. For � 2 �

k

, it makes sure that all internal

rules at � are satis�ed:

�

�

= f((d

1

; : : : ; d

k

); d

0

) j 8h�

0

; i

0

i = f(h�

1

; i

1

i; : : : ; h�

r

; i

r

i) 2 R(�) :

d

i

0

(�

0

) = f(d

i

1

(�

1

); : : : ; d

i

r

(�

r

))g;

and, for h�; 1i 2 �

k

�B

1

, it does so too, and at the same time makes sure that

the designated boolean attribute is set:

�

h�;1i

= f((d

1

; : : : ; d

k

); d

0

) 2 �

�

j d

0

(�) = trueg:

This ends the construction of M . To show its correctness, let t

0

be a tree over

� [(� � B

1

), and let t be the tree over � obtained from t

0

by changing every

label h�; 1i into �. It can easily be proved by bottom-up induction on v, using

Lemma 16, that for every node v (of both t

0

and t), d 2 state

P(M);t

0

(v) i�

there is a rootless decoration dec of t

v

such that (1) d(�) = dec(h�; vi) for

every � 2 I [S, and (2) dec(h�; ui) = true for every marked node u 2 V

t

0

v

(i.e., for every descendant u of v with label h�; 1i in t

0

, for some � 2 �). Now,

state

P(M);t

0
(root(t

0

)) \ F 6= ; i� for every marked node u 2 V

t

0

, the unique

decoration dec

G;t

of t by G has dec

G;t

(h�; ui) = true. This shows that, for every

t 2 T

�

and u 2 V

t

, mark(t; u) 2 L(M) i� dec

G;t

(h�; ui) = true i� (t; u) 2

P (G; �). ut

24

Theorem18. mso-p = att-p.

Proof. By Lemma 17 it now remains to show that mso-p � att-p. Let �(x) be

a formula in MSOL

1

(�). By Corollary 6 (for k = 1) and Proposition 2, there is

a �nite tree automaton M = (Q;� [(� �B

1

); �; F) such that, for every t 2 T

�

and u 2 V

t

, (t; u) 2 P (�) i� mark(t; u) 2 L(M).

We will construct a node-selecting attribute grammar G = (�;S; I;
;W;R)

over � with designated attribute �, such that P (G; �) = P (�). In other words,

G should be constructed in such a way that for every t 2 T

�

and u 2 V

t

,

dec

G;t

(h�; ui) = true i� mark(t; u) 2 L(M).

The attribute grammar G has inherited attribute �, with semantic domain

P(Q), and synthesized attributes �, �, and �, with semantic domains Q, Q, and

ftrue; falseg, respectively. Formally we de�ne S = f�; �; �g, I = f�g, and
 =

fQ;P(Q); ftrue; falsegg, andW is de�ned asW (�) =W (�) = Q,W (�) = P(Q),

and W (�) = ftrue; falseg.

Intuitively, for a tree t over T

�

and a node u of t, the value of � at u is

state

M;t

(u) and the value of � at u is succ

M;t

(u), i.e., � and � simulate the

behavior of the tree automatonM on the unmarked parts of mark(t; u). Thus, if

u has label �, then mark(t; u) is recognized byM if �

h�;1i

applied to the �-values

of its children yields a successful value, i.e., a value in �. Attribute � computes

this value, and attribute � of u is true if and only if it is in �.

The set R(�), for � 2 �

k

, consists of the internal rules

h�; 0i = �

�

(h�; 1i; h�; 2i; : : : ; h�; ki)

h�; 0i = �

h�;1i

(h�; 1i; h�; 2i; : : : ; h�; ki)

h�; ii = fq 2 Q j �

�

(h�; 1i; : : : ; q

i

; : : : ; h�; ki) 2 h�; 0ig for 1 � i � k

h�; 0i = (h�; 0i 2 h�; 0i)

where �

�

(h�; 1i; : : : ; q

i

; : : : ; h�; ki) stands for �

�

(e

1

; : : : ; e

k

) with e

j

= h�; ji for

all j 2 [1; k] n fig and e

i

= q.

The set R(root) of root rules consists of one rule:

h�; 0i = F:

This ends the construction of G. Clearly, G is noncircular. In fact, it is a two-

pass attribute grammar (cf. [Boc, Eng2]): in the �rst pass over the input tree all

values of � and � can be computed bottom-up, and in the second pass all values

of � and � can be computed top-down.

To show the correctness of G, let t be a tree over �. In what follows we

write `dec' instead of `dec

G;t

'. Since the rules for � and � mirror the inductive

de�nitions of state

M;t

and succ

M;t

, respectively, it immediately follows that for

every node u of t, dec(h�; ui) = state

M;t

(u) and dec(h�; ui) = succ

M;t

(u). We

now claim that for every node u of t, dec(h�; ui) = state

M;mark(t;u)

(u). In fact,

by the semantic rule for �, dec(h�; ui) = �

h�;1i

(dec(h�; u � 1i); : : : ; dec(h�; u � ki))

25

where � 2 �

k

is the label of u. Since for every i 2 [1; k], dec(h�; u � ii) =

state

M;t

(u � i) = state

M;mark(t;u)

(u � i) by Lemma 7(1), we obtain

dec(h�; ui) = �

h�;1i

(state

M;mark(t;u)

(u � 1); : : : ; state

M;mark(t;u)

(u � k))

= state

M;mark(t;u)

(u)

which proves the claim. Since, for every node u of t, dec(h�; ui) = succ

M;t

(u) =

succ

M;mark(t;u)

(u) by Lemma 7(2), it follows from Lemma 1 that dec(h�; ui) =

(state

M;mark(t;u)

(u) 2 succ

M;mark(t;u)

(u)) = (mark(t; u) 2 L(M)). This shows

the correctness of G. ut

Attributed relabelings

In Section 5 we have characterized the mso de�nable binary node relations to

be those that are computed by tree-walking automata. However, these automata

still make use of mso tests, i.e., they test mso de�nable node properties. The

results of this section now allow us to give an \mso-free" characterization of the

mso de�nable node relations. To this aim we de�ne the notion of an \attributed

relabeling": it is a relabeling of the nodes of a tree by the value of a designated

attribute. Formally this is de�ned as follows.

Let � and � be operator alphabets (the input and output alphabet, re-

spectively). A relabeling attribute grammar from � to � is a pair (G; �) where

G is a �nite-valued attribute grammar over �, and � is an attribute of G

with semantic domain � (i.e., W (�) = �), such that for every t 2 T

�

and

u 2 V

t

, dec

G;t

(h�; ui) has the same rank as lab

t

(u). The relabeling computed

by (G; �) is r(G; �) = f(t; t

0

) 2 T

�

� T

�

j V

t

0

= V

t

; E

t

0

= E

t

; and lab

t

0

(u) =

dec

G;t

(h�; ui) for all u 2 V

t

g. r(G; �) is called an attributed relabeling. Note that

it is a total function T

�

! T

�

. The set of all attributed relabelings is denoted

att-rel.

If h is an attributed relabeling from � to �, and R is a binary node relation

over �, then h

�1

(R) is the binary node relation over � de�ned by h

�1

(R) =

f(t; u; v) j (h(t); u; v) 2 Rg. Thus, h

�1

(R) de�nes the same node relation on a

tree t 2 T

�

as R does on the relabeled tree h(t) 2 T

�

.

By breg-r we denote the set of node relations that are computed by basic

tree-walking automata, and by att-rel

�1

(breg-r) we denote the set of all

node relations h

�1

(R) with h 2 att-rel and R 2 breg-r. Intuitively, a node

relation R

0

in att-rel

�1

(breg-r) is computed in two stages: for a tree t, an

attribute grammar is used to relabel the nodes of t and then a basic tree-walking

automaton is used to walk from u to v on the relabeled tree, for every (t; u; v) 2

R

0

. We now show that att-rel

�1

(breg-r) is exactly the class of mso-de�nable

node relations.

Theorem19. mso-r = att-rel

�1

(breg-r).

Proof. By Theorem 13 it su�ces to show reg-r = att-rel

�1

(breg-r). We

�rst prove att-rel

�1

(breg-r) � reg-r. Let h = r(G; �) be an attributed

relabeling from � to �, and let A be a basic tree-walking automaton over �.

26

We claim that for every � 2 � there is a formula �

�

(x) in MSOL

1

(�) such

that for every t 2 T

�

and u 2 V

t

, (t; u) j= �

�

(x) i� lab

h(t)

(u) = �. In fact,

let (G

0

; �

0

) be the node-selecting attribute grammar that is obtained from G

by adding a synthesized boolean attribute �

0

which has, for every � 2 �, the

internal rule h�

0

; 0i = (h�; 0i = �). Clearly, P (G

0

; �

0

) = f(t; u) j lab

h(t)

(u) = �g

and hence, by Theorem 18, this node property is mso-de�nable, i.e., there is

a formula �

�

(x) that sati�es the above requirement. Now de�ne A

0

to be the

tree-walking automaton (with mso tests) over � that is obtained from A by

changing every transition (q; lab

�

(x); q

0

) into (q; �

�

(x); q

0

). It should be clear

that R(A

0

) = h

�1

(R(A)).

It remains to show that reg-r � att-rel

�1

(breg-r). Let A be a tree-

walking automaton (with mso tests) over �, and let �

1

(x); : : : ; �

n

(x) be the

unary mso formulas that appear in the transitions of A. By Theorem 18 there are

node-selecting attribute grammars (G

i

; �

i

), for i 2 [1; n], such that P (G

i

; �

i

) =

P (�

i

). De�ne the operator alphabet� = ��ftrue; falseg

n

with rk(�; b

1

; : : : ; b

n

) =

rk(�) for all (�; b

1

; : : : ; b

n

) 2 �. We now construct the relabeling attribute

grammar (G; �) by taking the (disjoint) union of all G

i

, in the obvious way,

and adding the synthesized attribute � with semantic domain � which has, for

� 2 �, the internal rule h�; 0i = (�; h�

1

; 0i; : : : ; h�

n

; 0i). We de�ne A

0

to be

the basic tree-walking automaton over � that is obtained from A by changing

every transition (q; �

i

(x); q

0

) into all transitions (q; lab

(�;b

1

;:::;b

n

)

(x); q

0

) for all

� 2 � and all b

1

; : : : ; b

n

2 ftrue; falseg with b

i

= true. It should be clear that

h

�1

(R(A

0

)) = R(A). Note that A

0

does not even need the tests root(x) and

9y(edg

i

(y; x)). Thus, this theorem also holds for the tree-walking automata of

[AhoUll, EngRozSlu, KamSlu], cf. the end of Section 5. ut

By a slight adaptation of the proof, it can be shown that the construction of the

tree-walking automata preserves determinism. Hence, in a formula, fmso-r =

att-rel

�1

(dbreg-r), cf. Theorem 14 and the remark following it.

7 Time Complexity

Let � be an operator alphabet, and let �(x

1

; : : : ; x

k

) 2 MSOL

k

(�) be a �xed

mso formula with k � 0 free node variables. In this section we investigate the

time complexity of computing the node relation R

t

(�), for given t 2 T

�

.

It is well known that it can be checked in linear time, for a tree t and nodes

u

1

; : : : ; u

k

of t, whether or not (u

1

; : : : ; u

k

) 2 R

t

(�). In fact, by Corollary 6

and Proposition 2 there is a (deterministic) �nite tree automaton M such that

(t; u

1

; : : : ; u

k

) j= �(x

1

; : : : ; x

k

) i� mark(t; u

1

; : : : ; u

k

) 2 L(M). Converting t into

mark(t; u

1

; : : : ; u

k

) and running M on mark(t; u

1

; : : : ; u

k

) takes linear time.

Here we wish to consider the complexity of computing R

t

(�), for a given

tree t; in other words, on input t, we want to compute all node sequences that

satisfy the formula �. A naive way of doing this is to use the above linear time

algorithm for all possible node sequences (u

1

; : : : ; u

k

). That takes time O(n

k+1

),

where n is the size of the tree t. But we can do better than that.

27

Theorem20. Let � be an operator alphabet and let �(x

1

; : : : ; x

k

) be a �xed

mso formula in MSOL

k

(�) with k � 1. For t 2 T

�

, R

t

(�) can be computed in

time O(n

k

), where n is the size of t.

Proof. First we consider the problem for formulas with one free node variable,

i.e., k = 1. With the help of Theorem 18 we can transform �(x

1

) to a node-

selecting attribute grammar (G; �), with R(�) = P (�) = P (G; �), or, in other

words, (t; u) j= �(x

1

) i� dec

G;t

(h�; ui) = true. It is well known that attribute

evaluation takes linear time, counting the computation of a semantic rule as

one unit of time (see, e.g., [DerJouLor, Eng2]). Since G is �nite-valued, the

computation of a semantic rule takes constant time, and so it takes linear time

to �nd all u such that dec

G;t

(h�; ui) = true.

Now suppose k > 1. Using Lemma 5 (with j = k � 1), �(x

1

; : : : ; x

k

) can be

transformed into an mso formula (x) over � [(� �B

k�1

) with one free node

variable, such that

(t; u

1

; : : : ; u

k

) j= �(x

1

; : : : ; x

k

) i� (mark(t; u

1

; : : : ; u

k�1

); u

k

) j= (x):

For any u

1

; : : : ; u

k�1

2 V

t

, we can construct mark(t; u

1

; : : : ; u

k�1

) and then

�nd all u

k

such that (mark(t; u

1

; : : : ; u

k�1

); u

k

) j= (x) in O(n) time, by us-

ing an attribute grammar, as shown above. There are O(n

k�1

) possible com-

binations for u

1

; : : : ; u

k�1

, so the time needed to �nd all u

1

; : : : ; u

k

such that

(mark(t; u

1

; : : : ; u

k�1

); u

k

) j= (x) is O(n

k

). ut

For binary formulas � an important special case is that � is functional, i.e.,

speci�es a partial function on the nodes of every tree (see Theorem 14 where

we have shown that such mso formulas are computed by deterministic tree-

walking automata). By Theorem 20, R

t

(�) can be computed in quadratic time.

We now show that it can in fact be computed in linear time. The proof is a

straightforward generalization of the one in [KlaSch] (Appendix A3), where this

result is shown for functional routing languages, i.e., for basic deterministic tree-

walking automata.

Theorem21. Let � be an operator alphabet and let �(x; y) be a �xed functional

mso formula in MSOL

2

(�). For t 2 T

�

, R

t

(�) can be computed in linear time.

Proof. This follows immediately from Theorem 19 and the result of [KlaSch]

mentioned above, using the fact that attribute evaluation takes linear time as in

the proof of Theorem 20. However, for completeness sake, we give a direct proof

that uses Theorem 20 instead of Theorem 19, and is just a slight generalization

of the proof in [KlaSch].

Let t be a tree over �. To be able to compute R

t

(�) in linear time, we

�rst transform �(x; y) into an equivalent deterministic tree-walking automaton

A = (Q;�; �; fq

0

g; F) over �, as was shown in Theorems 13 and 14. Thus, for

every tree t 2 T

�

and nodes u and v of t, (u; v) 2 R

t

(�) i� (u; v) 2 R

t

(A) i�

(q

0

; u)�

�

A;t

(q

f

; v), for some q

f

2 F .

28

The algorithm that computes R

t

(�) is in two stages. In the �rst stage it

computes and stores the sets fu j (t; u) j= (x)g, for every formula (x) 2

MSOL

1

(�) that occurs in �. By Theorem 20 this takes linear time.

The second stage of the algorithm, shown below, is taken over (almost) lit-

erally from [KlaSch]. In the second stage a table T is computed that is indexed

with the con�gurations of the automaton A, walking on t. For every con�gura-

tion (q; u) 2 Q� V

t

, T [q; u] contains the unique node v with (q; u)�

�

A;t

(q

f

; v),

for some q

f

2 F , if such a node exists. If it does not, T [q; u] = nil. Then

R

t

(�) = f(u; v) 2 V

t

� V

t

j T [q

0

; u] = vg. The algorithm employs a queue L of

con�gurations that is initially empty.

type

Con�g = Q� V

t

;

var

T : array [Con�g] of V

t

[fnilg;

(q; u), (q

0

; u

0

) : Con�g;

L : queue of Con�g;

begin

Init(L);

for all (q; u) 2 Q� V

t

do

T [q; u] := nil

od;

for all (q; u) 2 F � V

t

do

T [q; u] := u;

L((q; u)

od;

while : IsEmpty(L) do

(q

0

; u

0

)(L;

for all (q; u) 2 Q� V

t

with T [q; u] = nil and (q; u)�

A;t

(q

0

; u

0

) do

T [q; u] := T [q

0

; u

0

];

L((q; u)

od

od

end

In this algorithm, Init initializes the queue, L((q; u) adds (q; u) to the end of

queue L, (q

0

; u

0

)(L removes the �rst element from the queue and assigns it to

(q

0

; u

0

), and IsEmpty(L) returns true if L is empty.

The correctness of the algorithm should be clear: in the second for-loop, the

table is �lled in correctly (with respect to the intended contents of the table)

for all �nal con�gurations. From there on, the automaton is followed back on

its walk, and every possible previous con�guration is �lled in correctly. Every

con�guration (q; u) that has a walk leading to a �nal con�guration (q

f

; v) is

eventually considered, as can easily be shown by induction on the length of the

walk (q; u)�

�

A;t

(q

f

; v).

The algorithm runs in time O(n), where n is the size of the tree or, equiva-

lently, the number of con�gurations. In fact, since each con�guration is placed

29

in the queue at most once, the last for-loop (within the while-statement) is

executed O(n) times. Thus, it remains to show that each execution of that for-

loop takes constant time. Let (q

0

; u

0

) be the con�guration considered in such an

execution. Because the automaton A is �xed, there is a �xed number of tran-

sitions (q; d; q

0

) 2 �. For each such transition, there is at most one u such that

(q; u)

d

�

A;t

(q

0

; u

0

). It should be noted that every such u is either u

0

itself or

one of its immediate neighbors in t, and that it can be computed in constant

time. For the directives d = "

i

, u exists i� i 2 [1; rk(lab

t

(u

0

))], and u = u

0

� i.

For the directives d = #

i

, u exists i� u

0

has a parent v with u

0

= v � i, in which

case u = v. Finally, for the directives d = (x), u exists i� (t; u

0

) j= (x), in

which case u = u

0

. Note that the latter test takes constant time because the set

fu

0

j (t; u

0

) j= (x)g has been precomputed in the �rst stage of the algorithm.

Thus, only a constant number of con�gurations (q; u) have to be considered and

they can be computed in constant time. ut

Theorem 20 states that we can �nd R

t

(�) in O(n

k

) time if � has k free node

variables. Using Theorem 21 we can speed up the calculation of R

t

(�) for for-

mulas with more than one free node variable, if one of the variables depends on

(some of) the others.

First we de�ne dependency. We speak of a dependency in a relation when

the value of one of the elements of a tuple in the relation is fully determined by

the value of some of the others. Formally, let R be a k-ary relation, i 2 [1; k],

and D � [1; k]. We say that i (functionally) depends on D (in R) if for all

(a

1

; : : : ; a

k

); (a

0

1

; : : : ; a

0

k

) 2 R with a

d

= a

0

d

for all d 2 D, a

i

is equal to a

0

i

.

Theorem22. Let � be an operator alphabet and let �(x

1

; : : : ; x

k

) be a �xed mso

formula in MSOL

k

(�) with k � 2. Let there be an i 2 [1; k], and a D � [1; k]

with i =2 D, such that i depends on D in R

t

(�) for every t 2 T

�

. Then, for

t 2 T

�

, R

t

(�) can be computed in time O(n

k�1

).

Proof. The case k = 2 is proven in Theorem 21: for i = 2, R

t

(�) is functional,

and for i = 1 the inverse of R

t

(�) is functional.

For the other cases, without loss of generality, we can assume i = k and

D = [1; k�1]. What we will do is the following. For every possibility for the �rst

k�2 arguments, we build a tree with k�2 marks at the appropriate places, and

we have a formula checking the last two arguments, in which the last argument

depends on the previous one.

Using Lemma 5 (with j = k � 2) we transform �(x

1

; : : : ; x

k

) into an mso

formula (x; y) over � [(� �B

k�2

) with two free node variables, such that

(t; u

1

; : : : ; u

k

) j= �(x

1

; : : : ; x

k

), (mark(t; u

1

; : : : ; u

k�2

); u

k�1

; u

k

) j= (x; y):

Moreover, without loss of generality, we may assume that (t

0

; u

k�1

; u

k

) j= (x; y)

does not hold whenever t

0

is not of the form mark(t; u

1

; : : : ; u

k�2

). In fact, it

should be clear that fmark(t; u

1

; : : : ; u

k�2

) j t 2 T

�

; u

1

; : : : ; u

k�2

2 V

t

g is a

regular tree language, and hence can be expressed with a closed mso formula

by Proposition 2. For all tuples (u

1

; : : : ; u

k�1

; u

k

) and (u

1

; : : : ; u

k�1

; u

0

k

) in the

30

relation R

t

(�), by the given dependency of k on [1; k � 1], u

k

is equal to u

0

k

.

Hence, if

(mark(t; u

1

; : : : ; u

k�2

); u

k�1

; u

k

) j= (x; y);

and

(mark(t; u

1

; : : : ; u

k�2

); u

k�1

; u

0

k

) j= (x; y);

then u

k

= u

0

k

. So, R

mark(t;u

1

;:::;u

k�2

)

() is functional. Hence, by the above as-

sumption, (x; y) is functional.

For any sequence of nodes u

1

; : : : ; u

k�2

2 V

t

, we can �nd the corresponding

marked tree mark(t; u

1

; : : : ; u

k�2

) in O(n) time. Because (x; y) is functional, we

can then �nd all pairs (u

k�1

; u

k

) such that (mark(t; u

1

; : : : ; u

k�2

); u

k�1

; u

k

) j=

 (x; y) in O(n) time, as shown in Theorem 21. There are O(n

k�2

) possible

combinations for u

1

; : : : ; u

k�2

, so the time needed to �nd all u

1

; : : : ; u

k

such

that (mark(t; u

1

; : : : ; u

k�2

); u

k�1

; u

k

) j= (x; y) is O(n

k�1

). ut

The assumption in Theorem 22 is decidable, i.e., it is decidable for a formula

�(x

1

; : : : ; x

k

) 2 MSOL

k

(�), i 2 [1; k], and D � [1; k], whether or not i func-

tionally depends on D in R

t

(�) for all t 2 T

�

. In fact, this holds if and only if

L(: func

�;i;D

) = ;, for the closed formula

func

�;i;D

= 8x

1

; : : : ; x

k

; y

1

; : : : ; y

k

(�(x

1

; : : : ; x

k

) ^ �(y

1

; : : : ; y

k

) ^ 8d 2 D(x

d

= y

d

))! x

i

= y

i

;

which is decidable by Proposition 3. In particular it is decidable whether or not

an mso formula is functional, cf. [KlaSch] (Appendix A4).

We �nally note that it follows from Theorem 20 that every mso de�nable

graph transduction of which the input graph is a tree (cf. the Introduction) can

be computed in quadratic time. Moreover, if all outgoing edges of each node

of the output graph have distinct labels (as, e.g., for term graphs), then, by

Theorem 21, it can be computed in linear time. In particular, mso de�nable tree

transductions can be computed in linear time. As mentioned in the Introduction,

it is shown in [Blo, BloEng2] that they can in fact be computed by two-stage

attribute grammars.

References

[AhoUll] A. V. Aho, J. D. Ullman; Translations on a context-free grammar, Inf.

and Control 19 (1971), 439{475

[ArnLagSee] S. Arnborg, J. Lagergren, D. Seese; Easy problems for tree-decomposable

graphs, J. of Algorithms 12 (1991), 308{340

[Blo] R. Bloem; Attribute Grammars and Monadic Second Order Logic, Mas-

ter's Thesis, Leiden University, June 1996

[BloEng1] R. Bloem, J. Engelfriet; Monadic second order logic and node relations

on graphs and trees, to appear in Lecture Notes in Computer Science,

1997

[BloEng2] R. Bloem, J. Engelfriet; A comparison of tree transductions de�ned by

monadic second order logic and by attribute grammars, in preparation

31

[Boc] G. V. Bochmann; Semantic evaluation from left to right, Comm. of the

ACM 19 (1976), 55{62

[B�uc] J. B�uchi; Weak second-order arithmetic and �nite automata, Z. Math.

Logik Grundlag. Math. 6 (1960), 66{92

[Cou1] B. Courcelle; Graph rewriting: an algebraic and logic approach, in Hand-

book of Theoretical Computer Science, Vol. B (J. van Leeuwen, ed.), El-

sevier, 1990, 193{242

[Cou2] B. Courcelle; The monadic second-order logic of graphs V: On closing

the gap between de�nability and recognizability, Theor. Comput. Sci. 80

(1991), 153{202

[Cou3] B. Courcelle; Monadic second-order de�nable graph transductions: a sur-

vey, Theor. Comput. Sci. 126 (1994), 53{75

[Cou4] B. Courcelle; The expression of graph properties and graph transfor-

mations in monadic second-order logic, Chapter 5 of Handbook of Graph

Grammars and Computing by Graph Transformation, Vol. 1: Foundations

(G. Rozenberg, ed.), World Scienti�c, 1997

[CouEng] B. Courcelle, J. Engelfriet; A logical characterization of the sets of hy-

pergraphs de�ned by hyperedge replacement grammars, Math. Systems

Theory 28 (1995), 515{552

[DerJouLor] P. Deransart, M. Jourdan, B. Lorho; Attribute Grammars, Lecture Notes

in Computer Science 323, Springer-Verlag, Berlin, 1988

[Don] J. Doner; Tree acceptors and some of their applications, J. of Comp. Syst.

Sci. 4 (1970), 406{451

[Elg] C. C. Elgot; Decision problems of �nite automata and related arithmetics,

Trans. Amer. Math. Soc. 98 (1961), 21{51

[Eng1] J. Engelfriet; Simple Program Schemes and Formal Languages, Lecture

Notes in Computer Science 20, Springer-Verlag, Berlin, 1974

[Eng2] J. Engelfriet; Attribute grammars: attribute evaluation methods, in

Methods and Tools for Compiler Construction (ed. B. Lorho), Cambridge

University Press, 1984, 103{138

[Eng3] J. Engelfriet; A characterization of context-free NCE graph languages by

monadic second-order logic on trees, in Graph Grammars and their Ap-

plication to Computer Science (H. Ehrig, H.-J. Kreowski, G. Rozenberg,

eds.), Lecture Notes in Computer Science 532, Springer-Verlag, Berlin,

1991, 311{327

[Eng4] J. Engelfriet; A regular characterization of graph languages de�nable in

monadic second-order logic, Theor. Comput. Sci. 88 (1991), 139{150.

[Eng5] J. Engelfriet; Context-free graph grammars, Chapter 3 of Handbook of

Formal Languages, Vol. 3: Beyond Words (G. Rozenberg, A. Salomaa,

eds.), Springer-Verlag, 1997

[EngOos1] J. Engelfriet, V. van Oostrom; Regular description of context-free graph

languages, J. of Comp. Syst. Sci. 53 (1996), 556{574

[EngOos2] J. Engelfriet, V. van Oostrom; Logical description of context-free graph

languages, Tech. Report 96{22, Leiden University, August 1996, to appear

in J. of Comp. Syst. Sci.

[EngRozSlu] J. Engelfriet, G. Rozenberg, G. Slutzki; Tree transducers, L systems, and

two-way machines, J. of Comp. Syst. Sci. 20 (1980), 150{202

[F�ul] Z. F�ul�op; On attributed tree transducers, Acta Cybernetica 5 (1981),

261{279

[G�ecSte] F. G�ecseg, M. Steinby; Tree automata, Akad�emiai Kiad�o, Budapest, 1984

32

[HopUll] J. E. Hopcroft, J. D. Ullman; Introduction to Automata Theory, Lan-

guages, and Computation, Addison-Wesley, Reading, Mass., 1979

[KamSlu] T. Kamimura, G. Slutzki; Parallel and two-way automata on directed

ordered acyclic graphs, Inf. and Control 49 (1981), 10{51

[KlaSch] N. Klarlund, M. L. Schwartzbach; Graph Types, in Proc. of the 20th

Conference on Principles of Programming Languages, 1993, 196{205

[Knu] D. E. Knuth; Semantics of context-free languages, Math. Syst. Theory 2

(1968), 127{145. Correction: Math. Syst. Theory 5 (1971), 95{96

[NevBus] F. Neven, J. Van den Bussche; On the expressive power of Boolean-valued

attribute grammars, extended abstract, University of Limburg, Belgium,

1997

[ThaWri] J. W. Thatcher, J. B. Wright; Generalized �nite automata theory with an

application to a decision problem of second-order logic, Math. Systems

Theory 2 (1968), 57{81

[Tho] W. Thomas; Automata on in�nite objects, in Handbook of Theoretical

Computer Science, Vol. B (J. van Leeuwen, ed.), Elsevier, 1990, 133{192

This article was processed using the L

A

T

E

X macro package with LLNCS style

33

