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Abstract

An extension of evolution strategies to multi-parent recombina-

tion involving a variable number % of parents to create an o�spring

individual is proposed. The extension is experimentally evaluated on

a number of test functions, including unimodal and multimodal func-

tions of high dimensionality. Multi-parent diagonal crossover, uniform

scanning crossover, and a multi-parent version of intermediary recom-

bination are considered in the experiments.

Algorithm performance is observed to strongly depend on the par-

ticular combination of recombination operator and objective function.

In some cases, a signi�cant increase of performance is observed even

for multimodal objective functions as the number of parents increases,

but there might also be no signi�cant impact of recombination at all.

Furthermore, the algorithm might also exhibit a divergent behavior

in case of a unimodal optimization problem when the recombination

operator is chosen inappropriately.
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1 Introduction

In natural evolution reproduction mechanisms are either asexual, or sexual.

In the case of asexual reproduction one parent creates one (or more) o�spring,

whereas sexual reproduction requires two parents. It should be noted, how-

ever, that allelic recombination occurs during meiosis, i.e., the formation of

a gamete within the parental organisms. In other words, rather than the

genetic information of two di�erent parents, it is the genetic information of

diploid (in case of the human genome) homologous chromosomes within each

parent that is subject to a rearrangement or recombination [12]. Although

it is biologically incorrect, in the �eld of evolutionary computation the term

crossing-over or crossover is often used synonymously with recombination,

and this convention is adopted in this paper as well.

In simulated evolution, that is in evolutionary algorithms, many tech-

nical features are inspired by natural mechanisms. In particular, abstract

variants of sexual and asexual reproduction are implemented as search oper-

ators. Some evolutionary techniques, e.g. evolutionary programming, work

exclusively with mutation (i.e., they implement a simpli�cation of asexual

reproduction), while others, e.g. genetic algorithms and evolution strategies,

use recombination (i.e., they implement a simpli�cation of sexual reproduc-

tion) and mutation. There are several papers investigating the advantages

and disadvantages of mutation with respect to crossover [8, 10, 11, 13, 18, 21].

At the moment the question whether mutation or crossover is preferable (or

rather, which one is preferable under certain circumstances) is still an open

research issue.

Technically, the question concerns the arity of the reproduction operators.

Mutation and crossover have arity one and two, respectively and the question

is whether unary or binary operators are preferable for typical instances of

practically relevant optimization problems. From a purely technical point of

view there is no need to restrict the arity of reproduction operators to one

or two. In general, a reproduction operator can have an arity from one up to

the population size (or even more, if we allow repetition among the parents).

Hereby the analogy with natural evolution breaks down, to our knowledge

there are no species on Earth that would apply multi-parent reproduction

mechanisms where genetic material of more than two parents is mixed in one

reproductive action. Simulating %-ary reproduction operators, however, is no

problem.

In evolution strategies, recombination has a local and a global form [2, 19].

In global recombination the i-th parameter of the child is determined choos-

ing one of the parents randomly anew from the parent population for each

value of i. Thus, global recombination is a multi-parent operator, although
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its arity is unde�ned (or it has a random arity). Recently, Schwefel and

Rudolph [20] proposed an extension of recombination in evolution strategies

to allow a variable number % (with 2 � % � �) of parents to be involved

in recombination. This generalization of recombination in evolution strate-

gies has strong similarities to the multi-parent crossover operators introduced

earlier by Eiben et al. [6]. The latter operators form the basis for our multi-

parent recombination operators that will be discussed in detail in sections 2.1

and 2.2. Beyer's (�=%

I

; �)- and (�=%

D

; �)-strategies also introduce a variable

number of parents [4], but it should be noted that this variant of interme-

diary recombination (select % parents and yield the arithmetic average of

these as the result) is di�erent from the original intermediary recombination

[2], which selects the two parents anew (at random) for each object variable

from the set of % available (i.e., preselected from the population) parents.

Only for % = 2 are both recombination schemes identical, while for % = �

Beyer's intermediary recombination always creates the same o�spring when

applied to the parent population, thus drastically reducing the diversity in

the population after recombination. This kind of recombination operator was

introduced just for the purpose of making possible a theoretical analysis of

the algorithm.

Recently, Voigt and M�uhlenbein introduced so-called Gene Pool Recom-

bination (GPR) in genetic algorithms [17, 22]. The basic mechanism of GPR

is identical to global recombination in ES, thus the arity of the reproduction

operator is again unde�ned. Note that in ES and in GAs with GPR, sex-

uality is a Boolean feature: recombination is either on or o�, but its arity

cannot be tuned.

Eiben et al. [6] generalized the traditional (binary) 1-point crossover and

uniform crossover to % parents. According to these de�nitions (see section 2.2

for details) the reproduction operator has an arity that can be set by the user.

Hereby sexuality becomes a graded feature: by tuning the arity of crossover

the `amount of sex' can also be varied in an evolutionary algorithm.

In previous papers, the e�ect of using more parents within diagonal and

uniform scanning crossover was investigated. In [5], numerical optimiza-

tion problems were bit-coded and solved by a GA using these operators.

In [7], pure bit-problems (NK-landscapes [14]) were investigated. The cur-

rent paper investigates numerical optimization problems with oating point

representation and using an evolution strategy with generalized arity of the

recombination operators.

There are a number of hypotheses and questions to be investigated. The

main working hypothesis is the following.

� H1 Increasing the number of parents leads to increased EA perfor-
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mance in terms of achieved accuracy, i.e., distance from the global

optimum (measured as quality of the result) at termination.

Clearly, further re�nements of this hypothesis are needed. Below are a num-

ber of questions concerning particular re�nements.

� Q1 On what (type of) functions does H1 hold? What characteristics

of a given objective function facilitate the increase of performance in

the case of using more parents?

� Q2 For which multi-parent operators does H1 hold?

To this end, note that three di�erent recombination mechanisms are in-

vestigated and there is no reason to expect that they behave the same way,

i.e. show the same response to increasing the number of parents.

Particular attention will be paid to the transition from one to two in the

number of parents. Namely, this step from one to two amounts to introducing

sexual reproduction in the system. Further increases in the number of parents

only intensify the already present sexual character of reproduction. From this

viewpoint the main working hypothesis can be broken into two components.

� H1a Increasing the number of parents from one to two leads to in-

creased EA performance, i.e. `sex is good'.

� H1b Increasing the number of parents from two to larger numbers leads

to increased EA performance, i.e. `more sex is better'.

Investigations on NK-landscapes showed that neither H1a nor H1b hold for

very rugged landscapes with many randomly distributed local optima [7].

The experiments, however, suggested that on landscapes where H1a holds,

H1b holds as well, thus H1a implies H1b; in common parlance `if sex is good,

then more sex is even better'.

2 Evolutionary Algorithm

This section presents the evolutionary algorithm used for the experiments,

as well as the investigated multi-parent recombination operators.

2.1 Evolution Strategies

In the following, only a brief overview of the basic principles of evolution

strategies is presented. The interested reader is referred to more thorough

introductions to evolution strategies such as [1, 20].
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As fundamental characteristics of evolution strategies, their emphasis on

strategy parameter self-adaptation (i.e., on-line adaptation of mutation vari-

ances and covariances by evolutionary principles), a mutation operator work-

ing with normally distributed variations of real-valued vectors ~x 2 <

n

, a

deterministic selection operator that selects � individuals from a surplus of

� > � o�spring, and on the utilization of recombination both for object vari-

ables x

i

and strategy parameters are to be identi�ed. The presentation in this

paper is restricted to the application of evolution strategies where either one

or n variances of the normally distributed variation of object variables are

self-adapted (i.e., so-called correlated mutations are not taken into account

here). Individuals ~a = (~x; ~�) then consist of the object variable vector ~x and

n

�

2 f1; ng standard deviations ~� = (�

1

; : : : ; �

n

�

), and mutation proceeds

by modifying standard deviations and object variables according to

�

0

i

= �

i

� exp(�

0

N(0; 1) + �N

i

(0; 1)) (1)

x

0

i

= x

i

+ �

0

i

N

i

(0; 1) ; (2)

if n

�

> 1, while �

0

= � � exp(�

0

N(0; 1)) if n

�

= 1. For the so-called learning

rates � , �

0

, and �

0

, the settings �

0

� (2n)

�1=2

, � � (2

p

n)

�1=2

, and �

0

� n

�1=2

are robust and e�ective recommended values (see e.g. [1]). It should be noted,

however, that for particular problems a �ne-tuning of these parameters might

yield a considerable improvement in performance. The notation N(0; 1) de-

notes a realization of a normally distributed one-dimensional random variable

with expectation zero and standard deviation one; N

i

(0; 1) indicates that it

is sampled anew for each value of i.

Concerning recombination, evolution strategies have typically been re-

stricted to involving either two or potentially all � parents (in case of so-

called global recombination types) in the creation of new individuals either

by randomly deciding the individual from which an object variable is copied

to the o�spring (discrete recombination, analogous with uniform crossover in

genetic algorithms) or by arithmetic averaging of pairs x

i

j

, x

i

k

of correspond-

ing object variables that come from parents j, k randomly selected from the

set of either two or � parents (intermediary recombination). Notice that in-

termediary recombination of two parents reduces to simply averaging each

of their corresponding pairs of object variables.

The generalization to multi-parent recombination involving % with 2 �

% � � parent individuals has recently been proposed by Schwefel and Rudolph

[20], independently of the work of Eiben et al. [6], who were the �rst who for-

mulated and tested multi-parent recombination operators of arbitrary arity.

For evolution strategies, experimental investigations have not been performed

yet with multi-parent operators. The generalized operators proceed by �rst

5



picking % parents uniformly at random, without repetition, and then mixing

characters from these % parents to form one o�spring . The precise working

mechanism of the multi-parent operators investigated here will be discussed

in more detail in section 2.2.

It should be noted that, in addition to the object variables, also the strat-

egy parameters typically undergo recombination in an evolution strategy.

The recombination type, however, might (and typically will) di�er between

object variables and strategy parameters, and in the experiments discussed

here we restrict ourselves to investigating the impact of multi-parent recombi-

nation on the object variables. In this paper, strategy parameters are always

recombined using global intermediary recombination.

Finally, the selection operator of contemporary (�,�)-evolution strategies

deterministically picks the � best out of � > � o�spring individuals to form

the parent population of the next generation. The � o�spring individuals

are created by �-fold application of recombination, followed by mutation,

to the parent population (i.e., recombination is always applied in evolution

strategies, not just with a certain probability p

c

such as in genetic algorithms

| although this could also be introduced, as proposed in [20]).

At present, even the relative bene�ts of global recombination compared

to two-parent recombination are neither theoretically understood nor exper-

imentally investigated. Certain idealistic variants of global intermediary and

global discrete recombination (i.e., using � parents), however, have been

analysed and shown to yield a �-fold speedup on convex objective functions

when compared to no recombination [4]. It is not clear, however, how these

results relate to the real implementations of discrete and intermediary recom-

binations and how they are a�ected by the parameter %. This study aims

at giving some experimental hints about the impact of a varying number of

parents involved in recombination on the accuracy of the evolution strategy.

2.2 Operators

The multi-parent operators investigated in this paper are intermediary re-

combination, scanning crossover, and diagonal crossover, and they are all

designed or modi�ed to produce one o�spring individual as is common in

evolution strategies.

The intermediary crossover creates one child from � parents. For each

variable (i = 1; : : : ; n) two `donors' are chosen uniformly from among the �

parents and their genetic material is mixed by averaging them, i.e., the value

(x

donor

1

i

+ x

donor

2

i

)=2 is passed to the child. Scanning crossover generalizes

uniform crossover, although creating only one child. The idea behind it is

to take % parents and to create one child by scanning the parents' variable
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vectors from left to right and deciding at each position which parent can de-

liver its value to the child. The choice of the parent delivering its value can

be random, based on a uniform distribution (uniform scanning), or biased

by the �tness of the parents (�tness-based scanning). It can also be deter-

ministic, choosing the most frequently occurring parent allele (occurrence

based scanning).

1

In this investigation uniform scanning crossover is used.

Note that uniform scanning crossover corresponds directly to the generaliza-

tion of discrete recombination (according to [20]). For % = 2 and % = �,

scanning crossover is equivalent to the well-known variants of local discrete

and global discrete recombination. Likewise, the generalized intermediary

recombination operator introduced here is equivalent to local intermediary

recombination for % = 2 and global intermediary recombination for % = �.

For both operators, a gradual variation between the two extremes % = 2 and

% = � is facilitated by the generalization to arbitrary values of %, while keep-

ing the resulting evolution strategy as closely related to the standard variant

as possible.

Diagonal crossover generalizes 1-point crossover and to some extent n-

point crossover. On % parents it works by selecting (% � 1) crossover points

(identical for each parent) and composing % children by taking the resulting

% chromosome segments from the parents `along the diagonals'. Note that

using % parents, the number of children is 1 for intermediate recombination

and scanning crossover, while it equals % for diagonal crossover. This means

that for creating � o�spring � recombination operations are needed for in-

termediate recombination and scanning crossover, implying that all together

information from � �% parents is utilized. Since the number of children equals

the number of parents for diagonal crossover, only � parents are needed to

be utilized for creating � o�spring This might cause unintended e�ects that

disturb fair comparisons between the operators. Therefore a slightly modi-

�ed version of diagonal crossover that creates one child instead of % is used.

Figure 1 illustrates this idea for % = 3.

To summarize, the most important properties of the multi-parent recom-

bination operators introduced here into evolution strategies are the following:

� The selection of % potential parents for recombination is performed

uniformly at random.

� The value selection in scanning crossover, the parent selection in inter-

mediary recombination, and the crossover point selection in diagonal

crossover are performed uniformly at random.

1

In case of order-based representation a more general scanning mechanism is needed,

which will not be used here. For the de�nition see [6].
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parent 1

parent 2

parent 3

child

Figure 1: Diagonal crossover with three parents and one child. For three par-

ents, two crossover points are chosen randomly, but identical on all parents.

The o�spring individual is then produced by concatenating the �rst segment

of the �rst parent, the second segment of the second parent, and the third

segment of the third parent (in general, the ith segment of the ith parent;

i = 1; : : : ; %).

� Only one o�spring individual is created per application of the recom-

bination operator.

These properties are emphasized because they assure that selective biases are

excluded from the recombination operator and that the multi-parent version

of recombination stays as close as possible to the original recombination

operator used in evolution strategies.

3 Test Functions and Experimental Setups

The test functions used for a �rst experimental assessment of the charac-

teristics of multi-parent recombination in evolution strategies are selected to

reect a certain basic diversity of topological characteristics, including uni-

modal and multimodal objective functions of scalable dimensionality. Expe-

rience led to the selection of the following six functions:

� Sphere model:

f

1

(~x) =

n

X

i=1

x

2

i

;

where n = 30, n

�

= 1, and the object variables x

i

are initialized in the

range �5:12 � x

0

i

� 5:12.
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� Schwefel's double sum:

f

2

(~x) =

n

X

i=1

0

@

i

X

j=1

x

j

1

A

2

;

where n = 30, n

�

= 30, and �65:536 � x

0

i

� 65:536.

� Generalized Ackley's function:

f

3

(~x) = 20 + e� 20 exp

0

@

�0:2

v

u

u

t

1

n

n

X

i=1

x

2

i

1

A

� exp

 

1

n

n

X

i=1

cos(2�x

i

)

!

;

where n = 30, n

�

= 30, e = exp(1), and �20 � x

0

i

� 30.

� Generalized Rastrigin's function:

f

4

(~x) = 10n+

n

X

i=1

x

2

i

� 10 cos(2�x

i

) ;

where n = 30, n

�

= 30, and �5:12 � x

0

i

� 5:12.

� Generalized Griewangk function:

f

5

(~x) = 1 +

n

X

i=1

x

2

i

400n

�

n

Y

i=1

cos

 

x

i

p

i

!

;

where n = 30, n

�

= 30, and �600 � x

0

i

� 600.

� Fletcher-Powell function:

f

6

(~x) =

n

X

i=1

(A

i

� B

i

)

2

A

i

=

n

X

j=1

(a

ij

sin�

j

+ b

ij

cos�

j

)

B

i

=

n

X

j=1

(a

ij

sinx

j

+ b

ij

cos x

j

) ;

where n = 30, n

�

= 30, and�� � x

0

i

� �. The a

ij

; b

ij

2 f�100; : : : ; 100g

are random integers, and �

j

2 [��; �] is the randomly chosen global

optimum position. Reference values for matrices A;B as well as the

vector ~� are published in [1] (pp. 265{267).

9



For all experiments reported in section 4, a typical (16,100)-evolution

strategy was used with 1 � % � 16 (% = 1 means no recombination), per-

forming 100 independent runs for each setting of % and each of the three

recombination operators. For intermediary recombination, an additional set

of 100 independent runs was also performed for all objective functions, using

a skewed initialization where the initial population is located in a subset of

the search space far apart from the global optimum. This skewed initaliza-

tion takes into account a recent result by Fogel and Beyer [9] stating that

if the global optimum is located in the center of the search region covered

by initializing the population uniformly at random, intermediary recombina-

tion generates o�spring individuals which are essentially unbiased estimates

of the global optimum with lower variance than o�spring generated solely

by Gaussian mutation. In other words, the uniform initialization technique

is assumed to introduce a bias that favors a successful identi�cation of the

global optimum, such that the success of a strategy employing intermediary

recombination might be just an artefact of a useful combination of initializa-

tion and global optimum location. To check whether this assumption holds

we attempt to mislead the EA by using the following initialization intervals

for an additional set of runs:

Function Interval

f

1

[4:0; 5:0]

f

2

[60:0; 65:0]

f

3

[4:0; 5:0]

f

4

[15:0; 30:0]

f

5

[580:0; 600:0]

f

6

[2:0; 3:0]

The experiments were run for 2000 generations on f

4

and f

6

, for 1000

generations on f

2

, for 500 generations on f

3

, for 300 generations on f

5

, and

for 200 generations on f

1

, and the average �nal best objective function values

over the 100 runs are reported as the accuracy measure of the algorithm.

4 Experimental Results

The experimental results obtained on the six test functions according to the

experimental setup described in section 3 are summarized in �gure 2 for f

1

and f

2

, in �gure 3 for f

3

and f

4

, and in �gure 5 for f

5

and f

6

by plotting

the average �nal best objective function value as a function of the number

of recombinants % involved in recombination, for each of the three di�erent

recombination types and for intermediary recombination also with the skewed

initialization.
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Figure 2: Average �nal best objective function value depending on the

number of recombinants for the sphere model (left) and the double sum

(right). The unlabeled dashed curves belong to intermediary recombination

and skewed initialization.

As to the �rst question, Q1, concerning the relationship between objective

function and the e�ect of more parents the following can be observed. The

e�ect of increasing the number of parents can be clearly di�erent on di�erent

objective functions. The e�ect of using high arity operators can be positive

(e.g. Rastrigin's function), negative (scanning and diagonal crossover on the

double sum), or there might even be no clear relationship between the number

of parents and performance (e.g., the Fletcher-Powell function). Interesting,

however, is that on �ve of the six test functions (the double sum being the

exception) the three operators show the same kind of response to increasing

%.

As �gure 2 clearly demonstrates we might obtain di�erent behaviors on

di�erent unimodal objective functions. The hypothesis H1 is supported on

f

1

for all recombination operators, while this is not the case on f

2

. On

this function H1 holds for intermediary recombination, neither H1a nor H1b

holds for scanning crossover, while for diagonal crossover H1a holds and

H1b does not. The unlabeled curves showing the behavior of intermediary

recombination after skewed initialization are practically identical to those

with normal initialization.

On the multimodal objective functions f

3

and f

4

, as shown in �gure 3,

both H1a and H1b hold, i.e., an increase of the number of parents involved

generally improves the solution accuracy. Moreover, the di�erence between
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Figure 3: Average �nal best objective function value depending on the num-

ber of recombinants for Ackley's function (left) and Rastrigin's function

(right). The unlabeled dashed curve on the left plot belongs to intermediary

recombination and skewed initialization.

algorithms based on mutation only (i.e., with % = 1) and those using recom-

bination (% > 1) is striking. A further increase of the number of parents for

diagonal and scanning crossovers gives a substantial advantage on f

3

, while

only a small improvement on f

4

. For intermediary recombination the advan-

tage of more than two parents is visible, but small on both functions. One

might argue from these �ndings that the multimodal landscapes f

3

and f

4

have a structure that facilitates the exploitation of recombination, e.g. for

reasons of their regular arrangement of local optima and a global structure

that is similar to a unimodal landscape. Looking at the curves belonging to

skewed initialization we see no di�erence in behavior for Rastrigin's function

(the unlabeled curve in �gure 3, left). On the Ackley function, however, we

see a steep valley in a plateau. From a statistical point of view this suggests

the presence of outliers in the data. The disturbing e�ect of the outliers can

be �ltered out by disregarding the best and/or worst results and plotting the

curves again. In �gure 4 we provide trimmed mean curves. The left side

�gure is obtained by omitting the best and worst 5% of the data, the right

side �gure is created by disregarding the worst 10%.

The trimmed curves show that the outliers are the bad runs causing the

plateau. The best-worst 5% trimmed curve for skewed initialization and

intermediary recombination still shows data distortion, but worst 10% trim-

ming, keeping 90% of the data yields a regular curve. This shows that the be-
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Figure 4: Best-worst 5% trimmed mean (left) and worst 10% trimmed mean

curves for Ackley's function. The unlabeled dashed curves belong to inter-

mediary recombination and skewed initialization.

havior of intermediary recombination is not changed signi�cantly by skewed

initialization on Ackley's function either.

The performance of the evolution strategy on Griewangk's function as

shown in the left part of �gure 5 shows no regularities at all except an in-

dication that H1a holds, and the variances of the measured data points are

extremely large. This plot suggets that further increasing the number of

parents beyond two has no measurable impact on the performance.

Given the results from �gure 3, this is counterintuitive, because Griewangk's

function also has a global structure that is supposed to make this function

quite easy, especially for high dimensionality. In fact, the noisy character

of the results for f

5

is caused by the fact that most runs found the global

optimum, but usually a few runs stagnated in local optima of bad quality,

such that the averaged result shows no statistical signi�cance in favor of a

particular parameter setting. To see whether this explanation is valid the

data was trimmed again. In �gure 6 the best-worst 5%, respectively worst

10% trimmed mean curves are provided. These curves show a more regu-

lar character than the ones without trimming. Best-worst 5% trimming for

scanning and diagonal crossover leads to more regular curves showing the

H1 e�ect on Griewangk's function. Using worst 10% trimming this becomes

clearly visible. Also for intermediary recombination trimming results in de-

creasing curves. For % = 4, % = 13, and % = 16 the results after worst 10%

trimming are not shown in the curves because they are as small as 10

�13

,
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Figure 5: Average �nal best objective function value depending on the num-

ber of recombinants for Griewangk's function (left) and the Fletcher-Powell

function (right). The unlabeled dashed curves belong to intermediary recom-

bination and skewed initialization.

indicating that a reasonably small percentage of outliers is responsible for

the deterioration of results in case of this recombination operator.

For f

6

the local optima are randomly distributed. Thus, this function

has a structure di�erent from the other ones. The results shown in the right

part of �gure 5 have no statistically signi�cant structure at all. The trimmed

curves given in �gure 7 exhibit the same lack of structure, so the argument

about the outliers cannot be applied here. The only plausible conclusion is

that on this function the number of parents has no e�ect on the performance,

i.e., H1 does not hold.

One might argue that it is the very irregular character of the �tness

landscape that does not allow recombination to exploit any implicit regular-

ities in the sense of combining good `building blocks' from di�erent parents.

The correlation coe�cient analysis of Manderick et al. [15] showed that the

performance of (two-parent) crossover is inversely related to the correlation

between the �tness of parent and o�spring chromosomes. For an irregular

landscape as the Fletcher-Powell function this correlation is low and our re-

sults show that Manderick's argument holds for multi-parent crossovers too.

Furthermore, (binary) NK-landscapes, where K is relatively high with re-

spect to N have a similar chaotic structure and the performance curves of

multi-parent operators on rugged landscapes in [7] are very similar to those

on the left of �gure 5 and in �gure 7 above. Nevertheless, it would be nec-

14



Figure 6: Best-worst 5% trimmed mean (left) and worst 10% trimmed mean

for Griewangk's function. The unlabeled dashed curves belong to intermedi-

ary recombination and skewed initialization.

essary to perform more experiments with continuous landscapes where the

optima are arranged in an irregular way in order to gain more insight into

the general working principles of recombination operators.

Looking at the results with our second question, Q2, in mind leads to

the following observations. On those functions where the H1 e�ect occurs at

all, it occurs for every crossover, with one exception. On the double sum f

2

,

the operators respond di�erently. A divergence of the (16/%,100)-evolution

strategy is observed for scanning crossover with % > 1, i.e. both H1a and

H1b are falsi�ed in a strong sense, i.e., increasing the arity of the operator

decreasing performance is obtained. For diagonal crossover deterioration of

performance occurs with % > 2, meaning that H1a holds, while H1b does not.

This result is of special importance, because it demonstrates that the opti-

mum number of parents might be neither one (i.e., mutation only) nor � (the

maximum), but something in between. This can be explained because for

the double sum function f

2

there is a strong correspondance between consec-

utive objective variables. Diagonal crossover becomes increasingly disruptive

when increasing %, and with % = 2, corresponding to an ordinary one-point

crossover known from genetic algorithms, this operator is likely to transfer a

large number of already good consecutive objective variables of one parent

to the o�spring in such a way, that it is combined with a helpful `building

block' of the other parent. The results for intermediary recombination on f

2

con�rm the working hypothesis that the increase of the number of parents

15



Figure 7: Best-worst 5% trimmed mean (left) and worst 10% trimmed mean

for the Fletcher-Powell function. The unlabeled dashed curves belong to

intermediary recombination and skewed initialization.

also increases the solution accuracy for this problem. Nevertheless, the dif-

ference between di�erent numbers of parents is smaller on f

2

than on other

functions. Summarizing, based on the experimental results available at the

moment the conjecture is obtained that using multi-parent recombination

does not lead to increased performance

1. if the objective function is irregular, having many randomly distributed

local optima and

2. if consecutive parameters are strongly correlated and the increase in the

number of parents implies an increase of disruptiveness of the operator.

An extension of this conjecture is based on reformulating the working hypoth-

esis H1 as having a positive correlation between the number of parents and

EA performance. This formulation allows a distinction between falsifying

the working hypothesis in two possible ways:

i. there is no (signi�cant) correlation between the arity of the recombi-

nation operator and EA performance;

ii. there is a negative correlation between operator arity and EA perfor-

mance, i.e., the performance is inversely proportional to the arity.

The experiments described in this paper suggest that on objective functions

of type 1 the EA shows type (i) behavior, whereas on type 2 functions the

behavior is of type (ii).
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5 Conclusions

In this paper we described experiments on a typical `evolutionary' test suite

with an evolution strategy using a typical parameter setting and new recom-

bination operators with tunable arity. The following table summarizes the

observed behavior of the three multi-parent recombination operators with

respect to the working hypotheses H1a and H1b by indicating whether a hy-

pothesis holds (marked by a \+"-sign), does not hold (\�"), or does not hold

in the strong sense, i.e. type (ii) behavior (\-").

f

1

f

2

f

3

f

4

f

5

f

6

Intermediary:

H1a + + + + + �

H1b + � � + � �

Scanning:

H1a + - + + + �

H1b + - + + � �

Diagonal:

H1a + + + + + �

H1b + - + + + �

As the summary table again clari�es, a diversity of possible outcomes is

observed, and whether the working hypotheses hold or not depends strongly

on the particular combination of objective function and recombination oper-

ator. The results demonstrate that hypothesis H1a holds in more than 70%

of the cases studied, but a further increase of the number of parents beyond

two does not necessarily have a signi�cant impact on the accuracy achieved.

Even worse, in case of f

2

with diagonal crossover, H1a holds but a further

increase of the number of parents results in a catastrophic deterioration of

solution accuracy.

Although the results are encouraging concerning the usefulness of recom-

bination, the objective function f

6

|which is the only one with a completely

irregular, random arrangement of the locations of local optima | suggests

that recombination operators might be advantageous only in case of objective

functions with regularly arranged local optima and a superimposed unimodal

topology (as in case of f

3

, f

4

, and f

5

). More experimental work with such

irregular multimodal objective functions needs to be performed in order to

obtain a clearer picture concerning the validity of this new hypothesis.

Unfortunately, as f

2

demonstrates, there even exist objective functions

where a certain choice of a recombination operator (scanning crossover, in

this case) is generally harmful and causes a non-elitist algorithm such as the
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(�,�)-evolution strategy to diverge. And, as diagonal crossover clari�es for

this function, even if H1a holds, a further increase of the number of parents

might still invert the behavior and cause divergence again.

Concerning the combination of a skewed initialization of the population

with intermediary recombination, no signi�cant impact on the �nal solution

accuracy is observed for all but one objective function, namely f

3

, i.e., Ack-

ley's function. In case of this function, the skewed initialization causes a

certain percentage | up to less than 10%, as �gure 4 reveals | of all runs

to stagnate in local optima, such that the averaged results are strongly de-

teriorated by these outliers. The majority of the runs, however, still �nd

the global optimum of this function, where starting in the almost totally at

region x

i

2 [15; 30] implies a serious handicap for any kind of optimization

algorithm.
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