
1

 Industrial Maintenance Modelled in SOCCA: an Experience Report

Tineke de Bunje1 Gregor Engels2 Luuk Groenewegen2 Aart Matsinger1 Mark Rijnbeek2

1Philips Research Laboratories 2Leiden University, Computer Sc. Dept.
Prof. Holstlaan 4 P.O. Box 9512

NL-5656 AA Eindhoven NL-2300 RA Leiden
The Netherlands The Netherlands

e-mail: {bunje,matsingr}@natlab.research.philips.com e-mail:{engels,luuk}@wi.leidenuniv.nl

Abstract

A large industrial process, software maintenance, has
been modelled by using the process modelling language
SOCCA. The paper reports about the experiences with this
trial. In particular, feasibility, expressiveness, quality, and
the overall benefits of a formal SOCCA model are discussed
and compared to the formerly existing informal process
description. In order to illustrate the results, a well chosen
process model fragment from the larger model is outlined in
detail. It addresses in particular the human-intensive coop-
eration within the process and shows the seamless combi-
nation of technical components and human agent
components in the SOCCA model. The main conclusions
from this trial are that formal SOCCA models are suited to
model realistic industrial processes and that due to an
intrinsic modular structure of a SOCCA model even huge
models remain reasonably readable and understandable.

1. Introduction

Research into software process technology (SPT) has
made great progress during the last decade. On one hand,
software process modelling concepts and languages have
been investigated intensively. They range from activity-ori-
ented to goal-oriented approaches, from high-level, abstract
modelling languages to low-level, programming language
like approaches. They focus on certain aspects of a software
process such as synchronization of activities or try to offer
comprehensive approaches to model all aspects of a soft-
ware process in an integrated way. On the other hand, tool
support for modelling activities as well as process-centred
software development environments have been developed.

An overview of all this is given by the proceedings of the
European as well as International workshop series on SPT
as well as by the proceedings of previous ICSP conferences
(e.g. [21, 17, 22]). In addition, the programme of any major
conference in the field of software engineering comprises at

least one session on SPT. Furthermore, research consortia
have been funded like the ESPRIT basic research working
group PROMOTER to bundle up research activities [9].

While the research agenda on SPT still contains a long
list of open questions, researchers in the field are convinced
that the results reached so far are mature enough to be
tested and employed in realistic industrial situations. But,
since great success stories on employing software process
technology in industrial contexts are still missing, industrial
software process improvement departments are still hesitat-
ing to apply research results in industry. Nevertheless,
industry is keen to learn what the benefits of applying soft-
ware process technology might be. Therefore, the software
industry is running trial applications on transferring soft-
ware process technology to industrial software development
processes.

This article reports about such a trial, that was performed
at Philips Research in close cooperation with the Software
Engineering and Information Systems (SEIS) group at Lei-
den University. The basic idea was to set up a formal model
for a real-life industrial process with the process modelling
language SOCCA (Specification of Coordinated and Coop-
erative Activities). This language has been developed by
members of the SEIS group during the last four years.
While having been tested in several small-size case studies
before, the case study described here is the largest and most
complex one using SOCCA. This case study was mainly
done during a master thesis project as reported in [18].

During this case study, the objectives of the industrial
partner, Philips, and of the research partner, the SEIS group
at Leiden University were to gain more insight in the fol-
lowing points:

1. feasibility: the possibility to formulate a SOCCA model
for a large-scale industrial process;

2. expressiveness: the details of a SOCCA model not only
in relation to the software development process, but
also in relation to the embedding thereof in the more
general business process;

3. quality: the quality of the SOCCA model compared to



2

the original, less formal process description;
4. metaprocess: the SOCCA modelling activity itself, also

in relation to the field of application;
5. benefits: the surplus value of the SOCCA model for the

(industrial) organization.

To this aim the paper has been organised as follows. Sec-
tion 2 describes a concrete software process, i.e., a software
maintenance process, as well as the informal model that
Philips developed. Section 3 presents the SOCCA model
for the maintenance process. Evaluation of the SOCCA
modelling with respect to the above items in particular, is
carried out in Section 4. Section 5 gives a comparison with
related work. Conclusions and future research are the topics
of the final Section 6.

2. The Case: A Maintenance Process

This section contains a short description of the industrial
process to be modelled, the so-called SPI maintenance
process, being defined and enacted at Philips Research. As
the SPI environment consists of a couple of tools that are
being modified and released independently of each other, a
well-planned maintenance process was required. This
maintenance process has been described in terms of a so-
calledSoftwareConfigurationManagementPlan (SCMP).
The SCMP description consists of four parts:

• the various categories of documents, each with its own
lifecycle;

• the project phases; they constitute the maintenance life-
cycle;

• the organization; it establishes the various roles of
involved team members; these roles are developer, con-
figuration manager, project leader, quality assurance
manager, acceptance tester, configuration control board
and event handler;

• the events, which here have the specific meaning of a
change request or a problem report with respect to the
SPI software to be maintained; each event lives through
its own lifecycle, from “new” either to “rejected” or to
“solved” and finally “closed”.

As a complete discussion of this maintenance process is
far too page consuming for this paper, we restrict ourselves
to the change request and problem report events and their
lifecycles. Readers familiar with maintenance in practice,
can roughly guess from the ingredients mentioned above,
how the whole maintenance process has been organized.

Figure 1 is part of the SCMP. It presents the lifecycle for
each event. Each event starts its life with status “new”, the
top of Figure 1. Such an event, together with its status his-
tory, is stored and updated in the database called EventBase
by a person responsible for this, the so-called SPI event

handler. Normally the event will get the status “userboard”,
indicating that it is to be discussed by a qualified group of
user representatives. After that discussion the event will
normally get the status “planned”, possibly after having
asked for external advise - status “external” - or after having
got a low priority - status “hold”. Status “planned” means
that it has been decided in which release of the SPI environ-
ment the solution for the event will be incorporated. Status
“solving” means that work on the solution and the imple-
mentation is continuing. Status “solved” means that this
work has been successfully terminated, but still quite
recently. Status “closed” means that the release in which the
solution has been implemented, has been in use for two
months or longer. In every status before “solved” it is possi-
ble that the request is considered as invalid for whatever
reason. The event’s status is then changed into “rejected”,
irrevocably.

From the above model fragment one can get a good
impression of the informality of the SCMP, as being cur-
rently used. While the possible states of an event are
defined, it is not fixed, which person (or better role) is
allowed to trigger a state change of an event. This means
that a precise description of the cooperation between the
different roles, which are involved in the maintenance proc-
ess, is missing. For instance, it is the SPI Event Handler that
applies the status changes, but to that aim (s)he has to coop-
erate with the user board for one change, and with the
developer for another. It is actually left to the SCMP
reader’s imagination how this cooperation is to happen.

As the informality of this description was also evident to
the designers at Philips Research of the SPI maintenance
process, they were interested in possible answers to the fol-
lowing questions. Can a more formal process modelling
language (PML) describe this process (feasibility)? Can
such a description express more details? If so, which

new

planned

solving

solved

closed rejected

userboard
external

hold

Figure 1. Lifecycle of an SPI event, in state-
chart notation.



3

details, and how easily can one express them (expressive-
ness)? What is the quality of this more formal description
(quality)? How does one arrive at such a description (meta-
process)? What are the advantages of such an approach for
Philips (benefits)?

More directly related to the above process fragment,
these open questions can be put forward much more con-
crete. Can a more formal PML describe the state change of
an event from “planned” to “solving”? Which other compo-
nent(s), with behaviour, is (are) responsible for this change
(feasibility)? Can a more formal PML description express
that a certain behavioural influencing exists between such a
component and event? If so, can it express in detail how and
when this cooperation occurs (expressiveness)? Is the com-
posite description of an event, of the other components and
of their cooperation readable, understandable, small, tech-
nical (quality)? How does one arrive at such a description of
event and the other components, and of their cooperation
(metaprocess)? What are the advantages of such a detailed
description for Philips, not only for the process (model)
designers, but possibly also for the process model users, i.e.
those involved in the execution of the process while being
directed by the enacted process model (benefits)? It is
important to be aware, that at the time this research started,
these questions - the general ones as well as the concrete
ones - were open problems to the process designers at
Philips.

This paper reports our findings in applying SOCCA to
model the SPI maintenance. In so doing answers to the
above questions will be given and discussed. For the sake of
brevity, this paper restricts itself to the events, the SPI event
handler and their cooperation. But this will already give a
good impression how cooperation is precisely described in
a SOCCA model.

3. The SOCCA model

The objective of this section is first, to give a quick over-
view of SOCCA, and second, to introduce the SOCCA
model for SPI maintenance. By studying the latter, ade-
quate experience in the look and feel of SOCCA will be
acquired.

3.1. SOCCA

SOCCA is a graphical, object-oriented, high-level speci-
fication formalism together with a method for the analysis
and design, and ultimately also the enaction of (software)
process models, see e.g. [7, 18]. SOCCA is related to OMT
[20], which it extends considerably by addressing commu-
nication more precisely. The name SOCCA is an acronym
of Specification Of Coordinated and Cooperative Activities.

Like OMT, SOCCA is an eclectic, see [12], process
modelling language. As such it consists of several sublan-
guages carefully integrated with each other. These sublan-
guages are Class Diagrams (CDs), State Transition
Diagrams (STDs) and Paradigm. The name Paradigm is
itself an abbreviation. It means PARallelism, its Analysis,
Design and Implementation by a General Method [23].

Globally speaking, building a SOCCA model consists of
several steps. In the first step the static structure of the prob-
lem and its solution is specified. Like in OMT this is done
by means of a CD. This CD determines the relevant object
classes, their attributes, operations - or methods - and rela-
tionships, among which the well known is-a relationship
and part-of relationship, and furthermore the so-called uses
relationship. This uses relationship - or import-export rela-
tionship - specifies in which classes the various (export)
operations can be imported, i.e. can be called.

In the second step the external or visible behaviour of
each class is specified by means of an STD. All export
operations of such a class may appear as a label of a transi-
tion of this STD. In this STD unlabelled or differently
labelled transitions can also occur. A transition labelled
with an export operation specifies the external, visible state
change of this STD resulting from a call somewhere to the
operation this transition is labelled with. In this way it is
made visible that this particular call is taken care of. An
unlabelled or differently labelled transition specifies the
external, visible state change of the external STD resulting
from internal, invisible behaviour, hidden inside the same
object instance of that class. By means of the external STD
all possible execution sequences of its export operations are
specified. As these executions can be simultaneous, the
sequences only specify the order of the beginnings of these
executions, and not the order of the executions. These
sequences can be interlaced with global effects resulting
from hidden internal behaviour. This specification of the
external behaviour is comparable to the “dynamic model”
in the OMT approach.

The third step in the SOCCA approach consists of speci-
fying the internal behaviour of each export operation by
means of a separate STD. Such an STD usually has a state
denoted as “operation not active” or something similar, and
a transition leaving this state and labelled with “act-opera-
tion”, which means activate that operation. Other transi-
tions of an internal STD can be labelled with “call other
operation”; only “other operations” are allowed which are
imported into this class according to the uses relationship.
Transitions may also remain unlabelled, or labelled with a
short phrase referring to the intuitive meaning of that partic-
ular step in the internal behaviour.

The idea behind this organization of the model is as fol-
lows. The actual external behaviour of each object is
described by the external STD of the corresponding class.



4

This shows which sequence of export operation calls is
actually being executed. The calls to these export opera-
tions are part of the hidden behaviour within the various
internal STDs. The execution model of this huge number of
STDs is, that each STD is being executed on its private
processor, parallel to all the other STDs. This means that
the communication between these STDs still has to be spec-
ified, as these parallel behaviours clearly depend on each
other.

Therefore, the fourth step of the SOCCA approach con-
sists of specifying the coordination and cooperation
between these behaviours. This is done by means of Para-
digm, see e.g. [23] for a more extensive introduction. Para-
digm specifies communication between STDs by using the
notions of manager (process), employee (process), subproc-
ess and trap.

The global idea is as follows. An STD is either a man-
ager, or an employee (of a manager), or both but not an
employee of itself. Each communication that takes place
between STDs, is between a manager and several employ-
ees. To that aim each employee is divided into subproc-
esses, representing restrictions of the original STD and
having the meaning of temporary behaviour restriction of
that STD. The manager, by being in a state, prescribes the
current subprocess to the employee, meaning for the
employee to restrict its behaviour according to that sub-
process. To that aim the states of the manager are labelled
with the subprocesses it is supposed to prescribe there. On
the other hand, each subprocess has one or more traps, rep-
resenting a part of the states of that subprocess that once
entered cannot be left as long as that subprocess is being
prescribed. By entering a trap within a subprocess, the
employee allows its manager to make a transition to a state
where a next subprocess is being prescribed. So entering a
trap is the indication that the current subprocess prescrip-
tion can be changed into the next one, as far as the
employee is concerned. To that aim the transitions of the
manager are additionally labelled with the trap that allows
that transition.

In SOCCA Paradigm is used as follows. Each external
STD is manager process of each internal STD belonging to
the same object (class instance). In addition each external
STD is manager process of each internal STD belonging to
any object that contains a call to an operation exported by
the object this external STD belongs to and imported in the
object this internal STD belongs to. So the employee proc-
esses are the internal STDs. Each internal STD is employee
of at least one manager, the external STD of the object it
belongs to. If this internal STD contains calls to export
operations, it also has those external STDs as managers
where such an operation occurs as transition label.

This concludes our general discussion of SOCCA’s mod-
elling steps. This short and abstract introduction into
SOCCA will become more clear in the next section.

3.2. A fragment of a SOCCA model for SPI main-
tenance

The SOCCA model for SPI maintenance as discussed in
[18] describes all aspects of the maintenance process. In
particular, it pays a lot of attention to the so-called Fagan
inspection and corresponding meeting in relation to the
documents produced by the maintenance process. In this
way the suitability of SOCCA for specifying typical human
cooperation has been investigated and demonstrated. For
our purpose here the details of the various human roles in
the inspection and meeting are too numerous. Therefore we
concentrate on just one very restricted process fragment,
the events, which are handled by one human agent, the
event handler. With respect to this fragment we will mainly
follow [18], but we leave out all details concerning the
event handler being a specialization of the organization’s
employee.

3.2.1. SOCCA’s First Step: Static Structure

According to the first SOCCA step, a class diagram con-
cerning events has to be developed. Figure 2 presents this
class diagram. Only two classes have been drawn, Event
and EventHandler. Event contains all relevant information
concerning a particular event. To that aim it has attributes
for data like: its current status, its current phrasing, the per-
son(s) responsible for the phase leading to the next status.
Moreover, Event offers two export operations, Create and
Update(). As these two operations are exported exclusively
to EventHandler and as Event itself does not import any
operation, EventHandler is the only class that is of immedi-
ate interest to Event.

Event

Status
Info
Responsible
-
-

Create
Update

EventHandler

-

IntroduceEvent
UpdateEvent

Handles

Create
Update

-

Figure 2. Class Diagram with Uses Relation-
ship for the Process Fragment concerning
Event.



5

The graphical symbols in the figure have the following
meaning. A three-layer rectangle denotes a class. The class
name is indicated in the top layer. The middle layer gives
the attributes, and the bottom layer gives the export opera-
tions or methods. Single lines between classes represent
general relationships, their names indicated by the accom-
panying label. A black dot at the end of such a line repre-
sents a multiplicity greater than or equal to 0, whereas no
dot at all at the end of a line represents a multiplicity of
exactly 1. Thus Handles represents a 1 : n relationship
between exactly one EventHandler object and an arbitrary
number of Event objects. A double line with a black arrow
head and labelled with a small rectangle containing one or
more export operations, represents a uses relationship, or
import-export relationship, the arrow pointing towards the
class providing the operations to be exported. Thus
EventHandler imports the methods Create and Update from
Event. This finishes the first step of the SOCCA approach
for this process fragment. By now the static structure is
fixed.

3.2.2. SOCCA’s Second Step: External Behaviour

The second step starts modelling the dynamic structure,
by defining for each class the external or visible behaviour
as consisting of the allowed calling sequences of the meth-
ods provided by that class.

The external behaviour of Event is here presented in dif-
ferent forms, calledviews, each one a different STD.The
first one, see Figure 3, comes closest to the statechart from
Figure 1. The update operations with a different value as
status parameter correspond to ever so many different tran-
sitions. This view of the external behaviour is calledfolded
out, in contrast with the more concise representation from
Figure 4, having only one transition labelled by Update.

Non
Existing

New

Userboard

Extern Hold

Planned

Solving Solved Closed

Rejected

Create(info)

Update(Userboard,info)

Update(Hold,info)Update(Extern,info)

Update(Extern,info)

Update(Hold,info)

Update(Planned,info)

Update(Rejected,info)

Update(Solving,info)

Update Update
(Solved,info) (Closed,info)

Figure 3. External behaviour of Event: organizational view, folded out

Non
CreatedExisting

Create(info) Update
(status,info)

Figure 4. External behaviour of Event: folded
organizational view



6

This STD is afolded view. Later on, Figure 8, some unla-
belled transitions will be added to this STD, reflecting some
relevant communication details. Without these details the
STDs are calledorganizational, representing a global man-
agement view of the external behaviour. With these details,
as in Figure 8, such an STD is calledcommunicative.

The advantage of the folded out view is the clearer visu-
alization of the calling sequences. For instance, from the
STD in Figure 3 it is immediately clear that any alternation
in transition between state Extern and state Hold is allowed,
and in addition, from state New no transition to state
Rejected is permitted. Both facts make the STD behaviour
deviate from the state chart behaviour. This is not visible
from the STD in Figure 4.

The advantage of the folded view is in being more con-
cise. For our discussion we prefer the folded view. In both
Figures 3 and 4 the starting state is Non Existing. First Cre-
ate has to be called. After that Update has to be called. In
the folded out view of Figure 3 it is moreover specified how
many update calls are permitted, with which values for its
status parameter, and in which order these values should
appear. In the folded view of Figure 4 this remains unspeci-
fied. In this representation the external behaviour STD
abstracts from the different states and keeps the current sta-
tus only as an attribute value of each instance of class
Event. It will be part of the communication description of
the SOCCA model to specify in which sequence and in

Neutral
IntroduceEvent

UpdateEvent(event,status)

Starting
Event
Lifecycle

Updating
Event
Status

Figure 5. External behaviour of EventHandler

Not
Created

act_Create(info) Create
Asked

receive input
in attributes

Event
Described

set Status to new Event
Created

Not
Updating

Update
Asked

Status
Set

New
Info
Added

Update
Done

act_Update set Status to
parameter

append
(status,info)

append
historyparameter

info to
info attribute

Not In-
troducing

act_Introduce-
Event

Intro-
duction
Asked

discuss
event

Event
Discussed

determine
info

Info
Agreed

call
Event.Create
(info)

Event
Creation
Wanted

Not
Updating

act_UpdateEvent
(event,status,info)

Update
Asked

call Event.Update
(status,info)

Update
Wanted

status

int_Update:

int_IntroduceEvent:

int_UpdateEvent:

int_Create:

Figure 6. Internal Behaviours: int_Create, int_Update, int_IntroduceEvent and int_UpdateEvent



7

which situation the status of an event may be changed by a
call to the Update operation.

The two export operations of Event - Create and Update
- are called from the internal behaviours of EventHandler,
as it is reflected by the uses relationship in Figure 2. Before
discussing these details, we present the external behaviour
of EventHandler in Figure 5.

The external behaviour of EventHandler is a composi-
tion of its own operations. The starting state is Neutral.
Note that no sequencing whatever of operation calls is
enforced by this external behaviour. The EventHandler,
upon starting to react on a call, returns to its neutral state.
From that state any new call can be reacted on.

3.2.3. SOCCA’s Third Step: Internal Behaviour

The third step of our modelling brings us to the STDs of
the various internal behaviours, one for each method. In

Figure 6 the internal behaviours of Create, Update, Introdu-
ceEvent and UpdateEvent have been visualized, referred to
as int_Create, int_Update, int_IntroduceEvent and
int_UpdateEvent respectively. The corresponding starting
states are Not Created, Not Updating, Not Introducing and
Not Updating. Note the calls of Create and Update inside
the int_IntroduceEvent and int_UpdateEvent respectively.
This is conform the uses relationship as given in Figure 2.
Apart from the labels with prefix act_ and those with call,
the other labels are just an informal reference to their mean-
ing.

It is crucial to keep the execution model of these numer-
ous STDs in mind: each STD is supposed to execute on its
own, private processor. So all STDs are simultaneously
active. In order to handle behaviour that influences other
STDs, cooperation between these STDs takes place in a
coordinated manner.

Not
Created

act_Create

Create Event
Described

Event
Created

Not
Updating

Update
Done

act_Update
(status,info)

Not In-
troducing

Intro-
duction
Asked

Event
Discussed

Info
Agreed

call
Event.Create
(info)

Event
Creation
Wanted

Not
Updating

Update
Asked

call Event.Update
(status,info)

Update
Wanted

(info)

Not
Created Asked

Not
Updating

Update
Asked

Status
Set

New
Info
Added

Update
Done

Not In-
troducing

Intro-
duction
Asked

Event
Discussed

Info
Agreed

Event
Creation
Wanted

Not
Updating

Update
Asked

Update
Wanted

s1: subprocess of int_Create s2: subprocess of int_Create

s3: subprocess of int_Update s4: subprocess of int_Update

s5: subprocess of int_IntroduceEvent s6: subprocess of int_IntroduceEvent

s7: subprocess of int_UpdateEvent s8: subprocess of int_UpdateEvent

t1
t2

t3 t4

t5

t7

t8

Figure 7. Subprocesses and traps of Event’s employees



8

3.2.4. SOCCA’s Fourth Step: Communication

Step four of the SOCCA modelling addresses the com-
munication between different objects by specifying how
they cooperate. This is done by means of Paradigm, as
explained e.g. in [7]. The managers then coordinate the
cooperation with and between their employees. In SOCCA
the managers are the external behaviours. So the external
STD of Event is a manager. Its employees are the internal
behaviours of Create and Update, being the internal behav-
iours belonging to Event itself, and moreover the internal
behaviours of IntroduceEvent and UpdateEvent of an
EventHandler, being the internal behaviours containing a
call to Create or Update. The temporary behaviour restric-
tions of the employees as resulting from the coordination,
are modelled as subprocesses or subSTDs. A trap, a part of
the subprocess’ state space that cannot be left as long as the
current subprocess is being executed, is used to express the
commitment that a relevant part of the current subprocess
has been executed and that the employee will not revoke it
during this subprocess execution.

In our SPI maintenance example the employees of Event
have subprocesses and traps as presented in Figure 7. Sub-
processes are visualized as subSTDs of the original
employee, and traps are visualized as shaded rectangular
areas around the states belonging to that trap. For the sake
of brevity only, most labels of transition have not been
repeated. Note that subprocess s6 does not have a trap. This

is because after s6 has been prescribed to Event, resulting
from a call to Event.Create, there is no need for a second
call to Create of the same Event instance. Therefore, with
respect to the same Event instance subprocess s5 is not
needed after s6, so no trap is needed. The graphical notation
from Figure 7 links on to the type-like descriptions of
behaviour and data from Figures 2, ..., 6. But as we have
observed, communication has a strongly instance-oriented
character: the calling of Event.Create within the operation
IntroduceEvent of EventHandler is towards one particular
Event instance and not towards other Event instances.

In view of the instance-oriented character, subprocesses
s5, ..., s8 are revisualized in a more instantiated manner in
Figure 8. Here the particular Event instance is denoted as
EVENT, whereas the other instances are jointly referred to
as eVent. Note how s6’ allows for calling Create of other
Event’s instances after starting EVENT’s creation.

The names of the subprocesses and traps, indicated in
Figure 7 as s1, ..., s4 and t1, ..., t4, and in Figure 8 as s5’, ...,
s8’ and t5’, t7’, t8’ respectively, will be used in the descrip-
tion of the manager’s coordinating role. As said before, it is
Event - or more precisely, EVENT on the instance level -
that plays this manager role. Paradigm organizes this as fol-
lows.

First of all, the organizational view of the external
behaviour is taken as starting description of the manager
process. But it is expanded into a communicative view by
replacing each transition labelled with an operation by two

Not In-
troducing

Intro-
duction
Asked

Event
Discussed

Info
Agreed

call EVENT.Create(info)

EVENT’s
Creation
Wanted

Not
Updating

Update
Asked

call EVENT.Update(status,info)

s5’: subprocess of int_IntroduceEvent s6’: subprocess of int_IntroduceEvent

s7’: subprocess of int_UpdateEvent s8’: subprocess of int_UpdateEvent

t5’

t7’

eVent’s
Creation
Wanted

call
eVent.Create(info)

Not In-
troducing

Intro-
duction
Asked

Event
Discussed

Info
Agreed

EVENT’s
Creation
Wanted

eVent’s
Creation
Wanted

call
eVent.Create(info)

EVENT’s
Update
Wanted

eVent’s
Update
Wanted

call eVent.Update(status,info)

Not
Updating

Update
Asked

t8’
EVENT’s
Update
Wanted

eVent’s
Update
Wanted

call eVent.Update(status,info)

Figure 8. Instance-oriented subprocesses and traps of Event’s (EVENT) calling employees



9

subsequent transitions, the first one still labelled with the
same operation, and the second one unlabelled. The
labelled transition represents starting the operation’s execu-
tion because of a call. The extra, intermediate state in
between these two transitions represents: the call of the
operation has resulted in starting the operation’s execution.
So this execution has not necessarily been finished as yet.
The unlabelled transition represents informing employee
processes that the execution has proceeded far enough to
handle a possible next call. (In some cases, not in this
example, the unlabelled transitions can be omitted: having
started an execution then also means the readiness for start-
ing another.) The communicative view of EVENT’s exter-
nal behaviour is presented in Figure 9. Compare this with
Figure 4. (The folded out, communicative view can be eas-
ily constructed from Figure 3.)

Each of EVENT’s states (from the communicative view)
is labelled with one or more subprocesses for each of
EVENT’s employees. EVENT, at each time instant being in
exactly one of its states, prescribes these subprocesses to its
employees as their current subprocess (or their current
behaviour restriction) - for each employee one subprocess.
Moreover, each of EVENT’s transitions (from the commu-
nicative view) is labelled with one trap for each of its
employees. Such a trap is trap of a subprocess prescribed in
EVENT’s state where the transition is outgoing; and the
states of that trap are also part of the subprocess prescribed
for the same employee in EVENT’s state where the transi-
tion is incoming. It is the employee, by entering this trap of

its current subprocess, that allows this transition. The tran-
sition can be made only after each employee has allowed it.

The labelling of EVENT’s state and transitions with sub-
processes and traps is given in Figure 10. The label order
for the employees, also indicated in the figure, is:
int_Create, int_Update, int_IntroduceEvent, int_Update-
Event.

More intuitively, the above modelled coordinated behav-
iour between a human EventHandler and an instance of
Event is as follows:

In the beginning, EVENT is in state NonExisting, and
the four employees are in the subprocesses s1, s3, s5’, and
s7’, respectively. EVENT waits for a call of Create, which
is invoked during the execution of IntroduceEvent within
subprocess s5’, when the EventHandler reaches trap t5’ for
this EVENT. Subprocess s1 and trap t1 indicate that
EVENT is ready to be created. At the same time, Update
can not be started, as the corresponding subprocess s3 can
not leave trap t3. While it is possible that already an Update
for this EVENT has been invoked within subprocess s7’,
this subprocess can not continue as it is caught in trap t7’.

After Create has been called (t5’ has been entered; t1
was already entered), int_Create is started (s2 is being pre-
scribed), and int_IntroduceEvent may continue after the
call (s6’ is being prescribed). As soon as EVENT has been
created (t2 has been entered) updates of EVENT’s status
may be handled. (Note how the small size of one state of t2
establishes the sequentialization of these steps.) In view of
the status changes, it is checked whether such an update is

Non Being
Created

Status
Being
UpdatedExisting Created

Create(info)

Update
(status,info)

Figure 9. EVENT’s external behaviour: folded, communicative view

Non Being
Created

Status
Being
UpdatedExisting Created

Create
Update

s1
s3
s5’
s7’

s2
s3
s6’
s7’

s2
s3
s6’
s7’

s2
s4
s6’
s8’

t1
-
t5’
-

t2
-
-
-

-
t3
-
t7’

-
t4
-
t8’

label order:

int_Create
int_Update
int_IntroduceEvent
int_UpdateEvent

Figure 10. EVENT’s external behaviour as manager process: folded communi-
cative view



10

wanted (trap t7’ has been entered), and whether the update
can be handled (trap t3 has been entered). If so, the han-
dling starts (s4 is being prescribed), and int_UpdateEvent is
allowed to proceed after the calling, but a new call for
updating the same EVENT is not yet allowed (s8’ is being
prescribed). After the update has been finished (t4 has been
entered), and after int_UpdateEvent is no longer asking for
this update (t8’ has been entered), the old situation where
updates may be requested, is being restored (s3 and s7’ are
being prescribed).

The reader should note how the differences in trap size
can be used to model different types of coordination: the
larger a trap, the more asynchronous as well as parallel the
corresponding part of the communication. For instance, t1
and t5’ are single state traps, so nothing happens to the cor-
responding STDs in between entering the trap and the next
subprocess prescription. This is synchronous communica-
tion. As another example, the small size of trap t2 lies at the
basis of the complete execution of s2 before any update
request to the same Event instance - EVENT - can be con-
sidered. This is sequentialization.

A new call of an Update request to the same EVENT
parallel to the treatment of the former Update request could
be allowed by enlarging the trap t4 of subprocess s4 to all
states of s4. This would be an example of parallelization.

This concludes the description of a very small part of the
complete SOCCA model for SPI maintenance. It shows
how the cooperation between a human (EventHandler) and
a non-human (Event) agent can be described precisely. In
the same way, the cooperation between the EventHandler
and all other human agents (roles) involved in the mainte-
nance process, like a developer or a user representative, has
been modelled (cf. [18]). In comparison to the SCMP, the
local description of possible states of an event (cf. Figure 1)
is distributed over the behaviour and communication
description of all involved human agents. From the SOCCA
model one can conclude, exactly when and also by which
class instance the methods are to be called, and whether this
communication is synchronous or asynchronous (and what
is the degree of asynchronism).

4. Evaluation of the SOCCA model

Although the above model only represents a very small
part of the complete SOCCA model for SPI maintenance,
the reader by now can have a good overall impression of
SOCCA’s modelling power. For the process designers at
Philips the experience with the SOCCA model and the
SOCCA modelling process made it possible to answer their
open questions from Section 2 as follows.

Feasibility: the SOCCA model indeed describes the
behaviour of Event as well as of EventHandler, see Figures
3 (or 4 or 9) and 5. More concrete, Event’s behaviour
description contains the change from “planned” to “solv-
ing”, as was one of the questions in section 2. In the folded
out view this is immediately visible, see Figure 3. In the
folded view this can be derived from analysing the order of
the parameter values of status corresponding to the transi-
tions labelled with the operation Update in Figure 4 or in
Figure 9. From Figure 2, the uses relationship concerning
Update, it follows that EventHandler is responsible for this
(and other) change(s) of Event. (From the complete over-
view of uses relationships, see Figure 2, it moreover follows
that EventHandler is the only responsible.)

Expressiveness: the SOCCA model presents two levels
of expressing how and when the cooperation between Event
and EventHandler occurs. Through the internal behaviour
of int_UpdateEvent, see Figure 6, EventHandler’s role as
event updater is described. Here the only transition occurs
corresponding to calling Event’s operation Update. So this
role describes on a global level the “how and when” of the
cooperation. “How”: by performing the call, and “when”:
after EventHandler’s operation UpdateEvent has been
started with “solving” as the correct value of status. (From
the complete model it follows that only Developer can start
this, in the role of software producer.) On detailed level the
“how and when” is precisely specified through the subproc-
ess s3, s4, s7’ and s8’, the traps t3, t4, t7’ and t8’ and
EVENT as manager process, see Figures 7, 8 and 10.

Quality: as feasibility and expressiveness are being
addressed separately, we here concentrate on the general
accessibility of the SOCCA model. The richness in expres-
siveness of SOCCA has its price with respect to readability,
understandability, size and technical level. The above
model fragment is itself very small; 2 classes with 2 opera-
tions each, and 1 uses relationship involving 2 of these
operations. This then leads to 6 STDs (apart from the differ-
ent view possible), 8 subprocesses, 7 traps, 1 manager and 4
employees. Here the size is still small, and although the
technical details of the Paradigm part in particular are not
simple, the fragment remains reasonably readable and
understandable.

However, the model as a whole is not just large but huge.
To give an impression of the size, the model in [18] consists
of 13 classes (apart from 7 others that are aggregations or
generalizations/specializations of these) and 43 operations
(17 of which are copies of others, being inherited). This
then results in 56 STDs, 39 of which are different. For the
communication another 138 subprocess and 150 traps were
defined for the 26 different internal STDs. That means 26
different employees are to be controlled by 13 managers.
This certainly disqualifies the model as easily readable.
Because of the many technical details it is moreover not an



11

easy task to understand the model. On the other hand, the
model itself has different levels of expressiveness. The low-
est level is the class diagram together with the uses relation-
ships, cf. Figure 2. Even for the complete model this is
easily readable as well as understandable, even though
some 13 (or 20) classes are involved with 14 uses relation-
ships. The next level of expressiveness consists of all STDs,
i.e. all external and internal behaviours without the Para-
digm details, cf. e.g. Figures 4, 5 and 6 (restricted to one
view). For the complete model this level of expressiveness
consists of 56 STDs. This is certainly large, but still reason-
ably readable and straightforwardly understandable, mainly
because of the structuring effect of SOCCA’s object-orien-
tation. On this level the “how and when” of the cooperation
already are globally specified.

Metaprocess: the steps to be taken in the SOCCA model-
ling process are very clear. For the above fragment they
consist of the steps taken in the subsections 3.1, ..., 3.4. The
eclecticism of SOCCA requires a detailed integration of its
various sublanguages, such that quite a number of consist-
ency constraints have to be fulfilled. On the one hand, this
gives structure to the next steps of the metaprocess: the
occurrence of call Event.Update in an internal behaviour of
EventHandler requires the occurrence of Update in the uses
relationship of Figure 2. On the other hand, this also gives
guidance to possible iteration of earlier steps: Event’s pre-
scription of subprocess s8’ (to EventHandler’s internal
behaviour int_UpdateEvent) in alternation with the pre-
scription of s7’ leads to a revision of EventHandler’s exter-
nal behaviour in Figure 9, the communicative view instead
of the organizational view.

Benefits: the SOCCA model first of all entails positive
answers to the questions of feasibility, expressiveness and
metaprocess, and a sufficiently satisfying answer to the
question of quality. The much clearer process description as
compared to the original one, brought the process designers
at Philips a greater confidence in the model. The new model
indeed describes the actual process more accurately. This
greater confidence is based on facts like the following.

The above model fragment explicitly says, only
EventHandler can update Event’s status. The original
description is vague on this point. The complete SOCCA
model says, only Developer can ask EventHandler to
update Event’s status from “planned” to “solving”. The
original description leaves this open.

In particular, the description of the human-intensive
cooperation was considered as clarifying in being very
detailed as well as allowing many degrees of asynchronism
in the communication. It is apparent from the above exam-
ple too: EventHandler’s behaviour and communication in
SOCCA are very precise, in particular with respect to
(a)synchronism. In the original description these points
were left to the reader’s imagination.

SOCCA moreover provides process guidance as easy as
process enforcement. So it is very suited for modelling dif-
ferent kinds of human behaviour and human interaction. In
the above model fragment the guidance is expressed in the
external behaviour of EventHandler. There is no strict
sequence in the calls to its export operations. Even after the
EventHandler has started some or all internal behaviours, it
is the freedom of the execution mechanism in which order -
strict, interleaved, or even really parallel - these internal
behaviours proceed. The internal behaviours of one object
modelling a human agent, can be compared to the workload
indicated within the workspace for that human agent: (s)he
can choose with which internal behaviour - to be interpreted
as a (small, individual) task or role - to proceed and for how
long.

In the above case the validation of the model took place
through inspection by various persons at Philips involved in
the process. The experiments mentioned moreover show
that animation and simulation, based on suitable metrica-
tion, is within reach. This would be of great help towards
validation of the model, by comparing simulation results
with the real process. The actual benefit of the validation by
inspection was and is a greater confidence in the process as
described by this more precise model. This growth in confi-
dence occurred at two partners. First of all at the designers
(at Philips) of the maintenance process as they preferred
this more precise description. But also at the users (at
Philips) of it, as they see better possibilities for metrication
and simulation based on the new model.

5. Related work

Within the world of software process modelling (SPM),
there are many different SPM languages. Quite a lot of
these are concentrating on formulating the model for the
software process directly in an executable language, e.g.
EPOS [6], Adèle-Tempo [3], ALF [5], Marvel [2], Appl/A
[14]. Other approaches offer diagrammatic support for for-
mulating such a model on a higher, more abstract level first,
before translating this into some executable language, e.g.
LEU [11], SPADE [1], Process Weaver [8]. Also
approaches from the first category are currently being
upgraded towards the second category, e.g. Merlin by
extending it with Escape [16]. Sometimes a diagrammatic
support is given not for the first formulation, but for later
evaluation, e.g. in PADM [5] so-called RADs - Role Activ-
ity Diagrams - are used after the first, high-level BM (Basic
Model) specification.

SOCCA belongs to the second category, like SPADE and
LEU, although at the moment SOCCA does not offer any
implementation of the models formulated. Currently work



12

is in progress to combine SOCCA models with simulation,
and after that with enacting execution. On the other hand,
comparing the graphical approaches in SOCCA with the
Petri nets in LEU, SPADE and Process Weaver, SOCCA
offers clearer modularization by means of its classes and
their STDs. Also in the communication, SOCCA offers the
full range from synchronous to asynchronous, allowing
even for gradations of asynchronism, depending on the size
of traps. In the original Petri net approach there is only syn-
chronous communication. So every form of asynchronous
communication is to be “simulated” through a synchronous
form.

A comparison with Escape-Merlin shows that both start
with a class diagram. In Escape statecharts are used for the
behaviour specifications. So with respect to modularization
through the various STDs SOCCA and Escape are more or
less similar. Although it is not mentioned in [16], there are
possibilities for discriminating between visible and hidden
behaviour, see [13]. But also here the details of the commu-
nication specification in SOCCA are different from those in
statecharts, which only offer synchronous communication.

What essentially makes SOCCA’s communication speci-
fication so different from those in Petri nets and in state-
charts, is the notion of subprocess. This notion describes a
whole part of the behaviour being permitted after some
message has been received, instead of just one step of the
behaviour being permitted. Thus a graphical representation
of a subprocess reflects not only the immediate conse-
quence of a communication but also the more long term
consequences. This turns out to be of great help in model-
ling real life processes such as SPI maintenance.

Apart from a comparison to SPM languages, SOCCA
can also be compared to OMT [20]. In class diagram and in
external behaviour, the similarity is striking. Also here the
differences come in with the communication description. In
that respect OMT is known to be not very detailed. On the
other hand, the object flow description in SOCCA is not yet
graphically supported, so the effect of the behaviour and the
communication for the attributes from the class diagram
still has to be graphically expressed. In OMT behavioural
and communicative effect on the attributes is described in
stages through several diagrams.

6. Conclusions and Further Research

The concrete benefits have been discussed above. On a
more general level the benefits consist of bringing the fol-
lowing possibilities within reach. The clearer description of
human-intensive cooperation leads to more to the point dis-
cussions about model variations. Not only choices between
guidance and enforcement, and between parallelism and

sequentialization can be clearly made. Also the embedding
of the model into a larger business context can be incorpo-
rated. Furthermore, other process fragments, such as ver-
sion-management, can be straightforwardly added.

By means of some suitably chosen value function, things
like reward, profit, cost, duration, number of (certain) steps
can be measured, completely similar to what is being done
in operational research, e.g. in Markov decision processes
or in PERT planning. (In particular, time is a crucial notion
for a complete picture of a process. Duration, as mentioned
here, then could be best defined as the sojourn time in a
state, like in semi-Markov decision processes. This duration
actually expresses how long it takes for a transition to
occur. The transition itself is instantaneous. See e.g. [19].)
Choosing a value function for a process model is also
referred to as adding metrics to a process, or metrication of
a process model. Metrication then facilitates the planning
and coordination, such that in principle optimization with
respect to what is measured, comes within reach. This also
gives insight in which parts of the model are relevant for
what is being measured. The better the model reflects the
real process, the better the optimization with respect to the
model’s metrics corresponds to optimizing the actual on-
goings of the real process. So developing a model that is
both accurate (in reflecting the real process) and precise (in
its formal and unambiguous formulation) is an essential
step towards better management of the corresponding real
life process.

Our main conclusion is that the surplus value of the
SOCCA modelling approach is considerable. Precisely by
being so rich and detailed with respect to behaviour and
communication, SOCCA offers far reaching integration
possibilities between technical, highly automated processes
and human intensive business processes into one model.
SOCCA’s flexibility in metrication provides a sound basis
for controlling the model, and through the model the real
process.

From modelling SPI maintenance, and also from model-
ling other industrial processes, we learned that a SOCCA
model for such a situation can be straightforwardly con-
structed. In general such a model is very detailed, particu-
larly the communication specification within the model.
This has the advantage that a specification is very precise,
but the disadvantage that a specification is not just large, but
huge. A first thing one can do, is to concentrate on the dif-
ferent levels of expressiveness as discussed above. A sec-
ond possibility is the introduction of templates and
communication patterns for the purpose of description
reduction; see also [12, 10] for related thoughts. This is still
a topic of further research.

During the modelling activity it was a handicap not to
have a SOCCA environment. Such an environment cer-
tainly would have had the following advantages: figures can



13

be drawn and adapted much quicker; many consistency
checks can be done automatically; it can give support in
determining various communication details (e.g. a call
means entering a trap). The development of such an envi-
ronment has been started, so we will report on that in the
near future.

SOCCA’s modelling approach, we have learned, is very
useful for human-intensive communication. Not only the
communication between a human agent and a computerized
component, but also between human agents. So the com-
plete organization around the problem situation can be
modelled, too.

This makes it difficult to decide where to stop modelling,
if the original question was to specify the problem situation
accurately. As a positive result we have also learned that a
SOCCA model is easily adaptable and extendable. This is
especially true in view of metrication: to the aim of measur-
ing whatever feature already present in the model, it turns
out that registration can be straightforwardly added. If the
model is lacking the feature to be measured, first the model
is to be adapted in that respect, and then the registration can
be added. Quite often both steps are straightforward, allow-
ing for much reuse of the existing model fragments. With
respect to the difficulty to decide where to stop modelling,
ongoing research indicates the usefulness of metrication
goals. Such goals provide a kind of step-wise refined guid-
ance for the modelling itself, see [4]. In another future
paper we will report our findings concerning metrication as
a modelling guideline.

In view of adapting a SOCCA model towards metrica-
tion it is interesting to mention ongoing research on process
evolution. It presents a formal specification of evolutionary
process (model) change, using a special component called
Wodan. A topic of further research is then to investigate
how Wodan can be tailored towards adapting or extending a
SOCCA model for metrical purposes only.

Acknowledgements

We thank Volker Gruhn for his very constructive
remarks. This has led to a clearer and more concrete
description of the evaluation part.

References

[1] S. Bandinelli, A. Fuggetta, C. Ghezzi, L. Lavazza: SPADE:
an Environment for Software Process Analysis, Design and
Enactment. In [9], 223-247.

[2] N. Barghouti, G. Kaiser: Scaling up Rule-based
Development Environments. Intern. J. on Software
Engineering and Knowledge Engineering, World Scientific,

2(1), 59-78, March 1992.
[3] N. Belkhatir, J. Estublier, W. Melo: Adèle-Tempo: an

Environment to Support Process Modelling and Enaction.
In [9], 187-222.

[4] T. de Bunje, G. Engels, L. Groenewegen, M. Heus, A.
Matsinger: Towards Measurable Process Models. In C.
Montagnero (ed.): Proc. of EWSPT’96. Springer, Berlin,
LNCS, 1996.

[5] R. Bruynooghe, R. Greenwood, I. Robertson, J. Sa, B.
Warboys: PADM: towards a Total Process Modelling
System. In [9], 293-334.

[6] R. Conradi, M. Hagaseth, J.-O. Larsen, M. Nguyên, B.
Munch, P. Westby, W. Zhu, M. Jaccheri, C. Liu: EPOS:
Object-oriented Cooperative Process Modelling. In [9], 33-
70.

[7] G. Engels, L. Groenewegen: SOCCA: Specifications of
Coordinated and Cooperative Activities. In [9], 71-102.

[8] C. Fernström: Process Weaver: Adding Process Support to
Unix. In [17], 12-26.

[9] A. Finkelstein, J. Kramer, B. Nuseibeh (eds.): Software
Process Modelling and Technology. Research Studies Press,
Taunton, UK, 1994.

[10] E. Gamma, R. Helm, R. Johnson, J. Vlissides: Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, Reading, Mass., 1995.

[11] G. Graw, V. Gruhn: Process Management In-the-many. In
[22], 163-178.

[12] L. Groenewegen, G. Engels: Coordination by Behavioural
Views and Communication Patterns. In [22], 189-192.

[13] D. Harel: Statecharts: a Visual Formalism for Complex
Systems. Science of Computer Programming, 8, 1987, 231-
274.

[14] D. Heimbigner, S. Sutton, L. Osterweil: Language
Constructs for Managing Change in Process-centred
Environments. In: Proc. of the 4th ACM/SIGSOFT
Symposium on Software Developments Environments,
December 1990. In ACM SIGPLAN Notices 15(6), 206-
217.

[15] L. Hertzberger (ed.): Intelligent Autonomous Systems
(Intern. Conf., Amsterdam, December 1986). Elsevier,
Amsterdam, 1987.

[16] G. Junkermann: A Dedicated Process Design Language
based on EER Models, Statecharts and Tables. Proc. of the
7th Int. Conf. on Software Engineering and Knowledge
Engineering, Rockville, Maryland, 1995, Knowledge
Systems Institute, 487-496.

[17] L. Osterweil (ed.): Proc. of the 2nd Intern. Conf. on the
Software Process, Berlin, February 1993. IEEE Computer
Society Press, Los Alamitos, Cal, 1993.

[18] M. Rijnbeek: Modelling a Software Process using SOCCA.
Master Thesis, Leiden University, Computer Sc. Dept., Int.
Rep. 95-05, 1995.

[19] S.M. Ross: Applied Probability Models with Optimization
Applications. Holden-Day, San Francisco, 1970.

[20] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, W.
Lorensen: Object-Oriented Modelling and Design. Prentice-
Hall, Englewood Cliffs, 1991.

[21] W. Schäfer (ed.): Proceedings of the 8th International



14

Software Process Workshop. IEEE Computer Society Press,
1993.

[22] W. Schäfer (ed.): Software Process Technology
(EWSPT’95, Noordwijkerhout, The Netherlands). Springer,
Berlin, LNCS 913, 1995.

[23] M. van Steen, L. Groenewegen, G. Oosting: Parallel Control
Processes: Modular Parallelism and Communication. In
[15], 562-579.


