
De�nition of an Encapsulated Hierarchical Graph Data Model

Static Aspects, Part 1

G. Busatto G. Engels

Leiden University, Dept. of Computer Science

Niels Bohrweg I

P.O. Box 9512 2300 RA Leiden, The Netherlands

fbusatto,engelsg@wi.leidenuniv.nl

Abstract

Graph grammars have been successfully used as a formalism for the speci�cation of real-

istic problems but, as far as speci�cation-in-the-large activities are concerned, they still

have some de�ciencies. In particular, most of them only support the use of at graphs,

whereas for certain applications hierarchical graphs would be a more suitable modelling

tool. Furthermore, there is still the need for a graph grammar module concept that al-

lows to split large speci�cations into smaller sub-speci�cations. We want to address this

problem by applying object-oriented concepts to develop a hierarchical graph data model

that supports a suitable module concept for graph grammars.

In this paper, we present the �rst step in the de�nition of our encapsulated hierarchical

graph (EHG) data model. We introduce the notion of EHG that supports complex nodes

(i.e. nodes with an encapsulated graph as their content), edges, encapsulated graphs (i.e.

graphs that support importing and exporting of nodes and edges), hierarchical structuring

of complex nodes (through a node-subnode relationship), and appropriate conditions for

exporting elements of a node along a hierarchy of nodes.

We illustrate the introduced notions by modelling the underlying data structure of a

WWW application.

An advantage of graph grammar approaches over existing object-oriented approaches

is that the �rst allow a better coupling between the de�nition of data constraints and

operations. Therefore our data model should also give some insight on how to achieve

such integration between constraints and operations in object-oriented data models.

Contents

1 Introduction 3

1.1 Software Engineering and Programming Languages : : : : : : : : : : : : : : : 3

1.2 Object-Orientation : 3

1.3 Graph-Grammars : 5

1.4 Guidelines for the De�nition of the EHG Data Model : : : : : : : : : : : : : 6

1.5 Scope and Organization of the Paper : 7

2 The Running Example 8

2.1 Hypertexts and the World Wide Web : 8

2.2 Maintaining Consistency in the Web : 9

2.3 Modelling the Web with EHG : 9

1

CONTENTS 2

3 Encapsulated Hierarchical Graphs 12

3.1 Basic Concepts : 12

3.2 Encapsulated Graphs and Complex Nodes : 13

3.3 Representation of the Hierarchical Structure of Graphs : : : : : : : : : : : : : 18

3.4 Encapsulated Hierarchical Graphs : 22

4 Conclusions and Future Work 23

A Supplement to the Running Example 24

References 26

1 INTRODUCTION 3

1 Introduction

In this paper we present the �rst step in the de�nition of an encapsulated hierarchical graph

(EHG) data model. One of the inspiring ideas for this work is that of integrating concepts

from the graph grammar world and from the software engineering and object-oriented world

into a single data model. The resulting data model would not only have the advantage of

incorporating useful features from di�erent approaches to data modelling, but it should also

provide some new ideas on how to deal with some of their drawbacks. In the sequel we explain

which concepts we have taken into account and how we plan to develop the full EHG data

model.

1.1 Software Engineering and Programming Languages

In order to manage the increasing size and complexity of software systems, almost all pro-

gramming methodologies encourage the decomposition of large programs into smaller pieces,

called modules, each one implementing a speci�c functionality. For example, a compiler could

contain a lexical analyzer module, a parser module, a symbol table management module, and

so on.

The evolution of programming languages has seen the progressive introduction of language

constructs to support modularization in software development. Pascal's procedures and func-

tions, for example, are a construct that allows to group together instructions with a common

purpose.

A more advanced kind of module construct can be found, for example, in languages like

Modula2 (see for example [Wir 85]) or Ada (see [Dod 83]). A Modula2 module may contain

variable declarations, data type declarations, procedures and some initialization code. Only

the elements that are explicitly exported are visible to outer modules while the non-exported

elements are hidden. An import speci�cation at the beginning of a module speci�es which

entities exported by external modules are to be imported (i.e. used) by the current module.

Summarizing, the main ideas of modularization in software engineering are the following:

� Every module should implement a well de�ned functionality inside a system.

� Every module has an interface that speci�es which of the entities that it de�nes are to

be exported to other modules and which externally de�ned entities are to be imported

from other modules for internal use. The exported entities (for instance data type or

procedure declarations) represent the protocol to be used by an external agent to use

access the module's functionality.

� Any entity de�ned inside a module that is not exported is hidden to the outside world

and is only for internal use of the module itself (this is the principle of encapsulation

or information hiding). Hidden entities (for example procedure bodies) are used by the

module to implement its functionality.

We will use these ideas in our de�nition of the EHG data model.

1.2 Object-Orientation

Object-orientation (see for example [KA 90]) is a software development technology that has

become particularly popular in the 1990s.

1 INTRODUCTION 4

We focus our attention on OMT (see [Rum 91]), one of the best-known approaches to

object-oriented modelling. OMT is an object-oriented software development method that

encompasses all the steps from the de�nition of a conceptual model of a software system to its

implementation. A model consists actually of three sub-models: the object model (describing

the static properties of a system), the dynamic model (describing the possible states and

state transitions of the system), the functional model (describing the data transformations

performed by a system).

The basic idea of object-orientation is to model a real world situation or a software system

as a set of entities called objects. Objects have an internal state, usually described by means

of attributes. Objects can interact with each other by exchanging messages. Upon receiving

a message, an object selects and executes one of its methods. A method performs some

computation and produces some output value and/or modi�es its owner object's internal

state.

For example, in the implementation of a window graphical user interface, there could

be an object associated to each window. Such an object could have attributes including,

for instance, the window's position (x and y coordinates on the screen) and the window's

dimensions (its width and height), it could have methods like Move (to move the window to

a new position on the screen) or Size (to modify the window's dimensions).

We give a summary of some concepts of object oriented modelling in OMT that we are

interested to incorporate in our EHG data model.

� Objects. An object is an abstraction representing an entity of the real world or a

software component. An object is characterized by an internal state (described by its

attributes) and its possible behaviour (described by its methods).

� Links. A link is some relation between objects. Links can be binary, ternary or higher

order, depending on the number of objects involved in the link. Links can also be

considered as tuples of objects.

� Classes. An (object) class is a collection of objects with the same attributes and

methods. A class can also be thought of as a pattern from which it is possible to

generate objects with the same internal structure.

� Associations. An association is a collection of links with the same structure, i.e. whose

involved objects orderly belong to the same classes.

� Aggregation. Aggregation is a particular type of association, allowing the de�nition

of aggregate object classes, i.e. of classes whose objects can

1

contain sub-objects from

other classes.

� Inheritance. Inheritance is a relation between classes that allows to de�ne more spe-

ci�c (re�ned) classes from more general ones. If C

1

and C

2

are two classes and C

2

re�nes C

1

then we say that C

1

is a superclass of C

2

and that C

2

is a subclass of C

1

.

Class C

2

inherits all the attributes and methods of class C

1

. Furthermore class C

2

can

add new attributes or methods to the ones it inherits from C

1

. C

2

can also override

attributes and/or methods that have been inherited from C

1

by rede�ning them. In-

heritance is therefore a mechanism that allows de�ning new classes from more general

ones by adding new features to them.

1

or must, according to possible constraints

1 INTRODUCTION 5

The named concepts of OMT object modeling will play an important role in the de�nition of

our EHG data model as we will illustrate in 1.4.

While OMT, like other object-oriented methods, claims that there is a close coupling

between the de�nition of data constraints and operations, this is in fact restricted to the

syntactic coupling of operation names to data constraints within class speci�cations. What

is missing is a semantic coupling, in the sense that the de�nition of the functionality of

operations (in the functional model) obey the de�nitions of data constraints (in the object

model). Some insight on how to address this problem should be provided by the world of

graph-grammar based speci�cation.

1.3 Graph-Grammars

Graph-grammars and graph transformation systems have been used by computer scientists

for about 25 years in many theoretical and practical application �elds. There are experiences

with the use of graph-grammar based speci�cation languages in modelling realistic problems,

for example [And 96, Zam 96] using the PROGRES graph programming language ([NS 91,

Sch 91a, Sch 91b, Z�un 92, Z�un 95]). In [EMRS 96] (pp. 37{38), an application of graph-

grammars in an educational software engineering game is presented. For more examples of

graph-grammars applications the reader can refer to [CER 79, ENR 83, ENRR 87, EKR 91,

CEER 96].

One interesting feature of the graph-grammar approach to data structures speci�cation is

that they allow to integrate the de�nition of static and dynamic aspects. For example, in a

PROGRES speci�cation we can de�ne graph schemata (i.e. node and edge types, cardinality

constraints on edges) and then write rewrite rules that transform a schema consistent graph

into another schema consistent graph (i.e. constraint preserving graph transformations).

Unfortunately, graph transformation systems still have some de�ciencies (cf. [NS 96]):

1. Many of them only support the use of at graphs, whereas for certain applications

hierarchical graphs would be a more suitable modelling tool.

2. Even in graph transformation systems that support the use of hierarchical graphs it is

often not possible:

� To hide some elements of a subgraph, thus allowing some kind of data encapsula-

tion.

� To de�ne edges between subnodes of a given node (we call such edges subgraph

crossing edges), although several object oriented data models (like OMT) support

such edges (as links between sub-objects of a given object).

3. There is still a need for a suitable module concept for graph-grammars, in order to split

large speci�cations into smaller sub-speci�cations.

As far as point 1 above is concerned, some authors have already considered the possibility

of de�ning graph rewrite systems on hierarchical graphs. For example, in [Pra 79] a kind of

hierarchical graph (called H-graph) and graph-grammars (H-graph grammars) on them are

presented. More examples can be found in [HLW 92, PP 95]. Although the data models pro-

posed in the cited papers support hierarchical graphs, none of them supports both information

hiding and subgraph crossing edges (point 2).

1 INTRODUCTION 6

As far as point 3 above is concerned, there are some proposals for a graph-grammar

module concept. In [EE 95], Ehrig and Engels introduce an abstract framework to study

the possibility of applying some \modularization" ideas to the world of graph-grammars. In

[KK 96], Kreowski and Kuske introduce transformation units, which allow to build modules

of related rules whose semantics are binary relations between graphs. In such a framework, a

derivation step can be performed either by applying a rewrite rule or by \calling" an entire

transformation unit.

In de�ning our EHG data model we try to support the abovementioned features by taking

inspiration from the software engineering and object orientation world.

1.4 Guidelines for the De�nition of the EHG Data Model

We devised the following guidelines for the de�nition of our encapsulated hierarchical graph

(EHG) data model:

1. Nodes in an EHG play a similar role as objects in OMT: Each node has an internal

structure that may include:

� Attributes.

� An internal graph, hence the name hierarchical. Notice that the relationship be-

tween a node and the nodes of its internal graph correspond to an aggregation

link/association in OMT.

� Operations to be performed on attributes or on the node's internal graph. These

operations should be speci�ed through rewrite rules.

2. Edges represent links/associations (hyper-edges should be supported in the case of

ternary or higher order links).

3. Each element inside a node can be hidden (private) or visible (public, exported). Each

node/object can access (import) visible elements of other nodes. On the other hand,

according to the afore-mentioned software engineering notion of encapsulation, a node

is not allowed to access hidden elements of other nodes.

4. Inheritance, a powerful concept of object-orientation, should also be introduced in our

model, allowing to re�ne a node's internal structure by adding new attributes and/or

operations and by enlarging its internal graph.

From the point of view of graph-grammars, the bene�ts of such an approach would be the

following:

1. The development of a graph-grammar module concept.

2. The study of rewrite rules on hierarchical graphs, which have been scarcely investigated

so far.

As far as the object-oriented world is concerned, the new data model should o�er a model

how to write speci�cations with a better integration between the description of static and

dynamic properties of data.

1 INTRODUCTION 7

1.5 Scope and Organization of the Paper

In this paper we do a �rst step towards the de�nition of our EHG data model. We deal with

the static aspect of EHG's, namely:

� Nodes and edges.

� Encapsulated graphs, as a means to describe a node's internal structure.

� Organization of nodes into a hierarchical structure by means of structuring trees.

� De�nition of scoping rules for import/export of elements between nodes inside a hier-

archy.

In this paper we do not yet consider attributes of nodes and the possibility to introduce

an inheritance-like relationship between nodes: their study is postponed to further research.

Also operations on EHG's are not supported by the current EHG data model and they will

be the topic of future research, too.

This paper is organized as follows: In section 2 we introduce a running example that

will serve to illustrate our de�nitions. In section 3 we give a formal de�nition of our notion

of EHG. In section 4 we compare our data model with existing work and we sketch future

development for the EHG model.

2 THE RUNNING EXAMPLE 8

2 The Running Example

We describe a simple modelling situation where hierarchical graphs can be used as a modelling

tool and we exploit it in the following sections as a running example to introduce our de�nition

of encapsulated hierarchical graphs. We assume that the reader has an intuitive idea of what

a hierarchical graph is, i.e. a graph where nodes may contain other nodes and edges. In the

next section we will provide a formal de�nition of hierarchical graphs.

2.1 Hypertexts and the World Wide Web

Our example deals with hypertexts and their use in the World Wide Web (WWW). For the

reader's convenience we recall some concepts and terminology here.

The WWW is made of a number of sites, i.e. by individual computer systems storing

di�erent types of documents and communicating with each other through the internet. By

means of appropriate software applications (so-called browsers) a user can see this computer

network as a uni�ed source of information and can navigate among the documents stored in

the WWW without being aware of its underlying structure.

One important class of documents to be found on the WWW is represented by hypertexts,

that are normally stored as texts in HTML. HTML (HyperText Markup Language) is a

language that permits to describe the logical structure of a WWW document as well as

all navigating information related to it. Such navigating information consists of links from

one HTML document to other WWW documents or even to speci�c points inside WWW

documents that allow browsers to access the data stored in the WWW in a nonlinear way.

When a browser, running on some computer on the internet, is required to display a document,

it requests it from the site that provides it, it receives the HTML text for the document and

translates it into a suitable visual representation (di�erent browsers may display the same

document di�erently). An introduction to HTML can be found in [NCSA].

For our example it is su�cient to consider a situation where only HTML coded hypertexts

are stored in the WWW (we will mention some other types of resources available on the WWW

shortly). Furthermore, the only elements of HTML that are of interest for us are anchors,

i.e. language constructs that permit to set up links between two documents. An anchor can

specify:

� A place inside a document to which a browser can jump (in this case we call the anchor

a target anchor).

� A link to some object in the WWW (in this case we call the anchor a hyperlink anchor).

� Both of the above cases.

A target anchor has a name attribute whose value can be used to identify it among the anchors

of a speci�c page. A hyperlink anchor has a href attribute that speci�es an object on the

WWW that must be accessed by a browser if it is required to follow that hyperlink. The

href attribute contains a so-called URL (Uniform Resource Locator). We consider only a

simpli�ed type of URL for our example, namely only URL's of the form

http://<site-address>[<path><�lename>[#<target-anchor-name>]]

will be allowed. The pre�x http indicates the access scheme or protocol to be used to access

the speci�ed object. The only protocol we allow here is http, i.e. the HyperText Transfer

Protocol, used to access �les on a WWW server. Other possible protocols are, for example:

2 THE RUNNING EXAMPLE 9

� file: access a �le on the system running the browser.

� ftp: access a �le on an anonymous ftp server.

� news: access a usenet newsgroup.

The remaining part of the URL speci�es a site address, an HTML �le on that site and

an anchor inside that HTML �le. A browser will use such an URL to retrieve the HTML

document, format it for output and display it starting at the position speci�ed by the anchor.

If no anchor is speci�ed the browser will display the document from its beginning. If the

page's �lename is not speci�ed either, the browser will retrieve the site's default page (its

homepage) and go to its beginning.

HTML possesses a rich set of document structuring constructs which we will not consider

here, assuming that a document is made of a sequence of pieces of text interspersed with

anchors.

2.2 Maintaining Consistency in the Web

Suppose to have a number of WWW sites, each providing a set of HTML documents (pages).

If, for example, a document is removed from a site, then all documents containing references

to it contain dangling hyperlinks. This is a common problem that arises within the more

general issue of distributed hypertext infostructures maintenance (see [Fie 94]).

Current solutions to this problem involve the use of spiders, i.e. of programs that can

traverse the web and check for inconsistencies between documents. In [Fie 94] such a program,

called MOMspider, is presented.

We hint at a possible research direction for an alternative solution: An infostructure

can be modelled as a hierarchical graph satisfying appropriate constraints and all possible

modi�cations to it should be de�ned as constraints preserving operations on hierarchical

graphs. This idea has to be fully developed and by now will only serve as a means to provide

an example of data modelling with EHG.

2.3 Modelling the Web with EHG

We want to build a model of a world of web sites by representing information that enables us

to:

1. Know all link-dependences between pages and between sites. For example, if a page is

removed, we would like to have at hand the information needed to update all pages that

contained a link to it.

2. Store information about mirror sites of one site and use it, for example, to redirect

requests to a non responding site to one of its mirrors.

We therefore need a data model to represent this situation and hierarchical graphs seem quite

appropriate for our purposes, namely:

� Sites can be represented as nodes. The \is a mirror of" relationships between sites can

be represented by edges between site nodes.

2 THE RUNNING EXAMPLE 10

� HTML pages can be represented as nodes inside site nodes (therefore site nodes are

complex nodes, i.e. nodes with an internal graph). Every site node must contain a

default page node, its homepage.

� The contents of pages can be in turn represented as a sequence of nodes of two kinds:

anchor nodes and text nodes (i.e. nodes representing any portion of text between two

subsequent anchors).

� The normal reading sequence of a page is represented by edges linking each (anchor or

text) node to its successor.

� For each hyperlink anchor node there will be an edge connecting it to its target anchor.

If an hyperlink's URL speci�es a target page but no target anchor inside it, then an edge

between the hyperlink anchor node and the target page node is drawn. If the hyperlink

does not even specify a target page, then the hyperlink node is connected with an edge

to the target site node.

Figure 1, depicting a graph with three site nodes and seven documents, is meant to give a

�rst idea of our example and of the proposed modelling technique. At this stage we will not

give a formal de�nition of the type of graphs that we are using, assuming that �gure 1 is

intuitive enough.

For the sake of readability, text nodes are depicted as empty boxes while anchors are

depicted as full boxes. We refer to nodes of �gure 1 by using a dotted notation. There-

fore, S1.P2 denotes the page node P2 inside the site node S1. As already said, in our graph

representation only some structural information about the setting of pages, sites and their mu-

tual relationships is considered. Therefore, most of the information contained in the original

HTML documents is not modelled. Appendix A is a supplement to this section, containing

more precise information about our running example.

2 THE RUNNING EXAMPLE 11

P1: Page P2: Page

ToNext ToNext

ToNext

ToNext

ToNextToNext

ToNext

T1

A1

T2

T1

A1

A2 T2

P3: Page

ToNextToNext

ToNext

ToNext

ToNext

A1T1

T2

A2 A3

S1: Site

Link

Link

P1: Page

S2: Site

ToHomepage

Link

ToNext

ToNext
ToNext

ToNext LinkA1

T1

A2

T2

P2: Page

ToNext ToNextToNext

T1 A1 A2

ToHomepage

ToNext

ToNext
ToNext

ToNext LinkA1

T1

A2

T2

P1: Page

ToHomepage

Link

P2: Page

ToNext ToNextToNext

T1 A1 A2

S3: Site

Link
Link

Link

Link

Link

Link

ToMirror

Figure 1: An example containing three site nodes.

3 ENCAPSULATED HIERARCHICAL GRAPHS 12

3 Encapsulated Hierarchical Graphs

In this section we give a formal de�nition of encapsulated hierarchical graphs. It is organized

as follows:

� In subsection 3.1 we introduce some basic concepts, i.e. the alphabets of node identi�ers,

node labels and edge labels, atomic nodes and edges.

� In subsection 3.2 we will introduce encapsulated graphs and complex nodes.

� In subsection 3.3 we introduce trees, which serve to describe the hierarchical structure

of an EHG, and information spreading conditions, which describe how knowledge about

elements of an EHG can be spread along its structure.

� Finally, in 3.4, we will use all the aforementioned concepts to de�ne encapsulated hier-

archical graphs.

3.1 Basic Concepts

When dealing with encapsulated hierarchical graphs, we will always use three di�erent alpha-

bets to specify:

� Nodes' identity, i.e. every node will have a unique identi�er.

� Nodes' and edges' type, i.e. every node and every edge will be labeled with a symbol

denoting its type.

De�nition 3.1.1 (Basic alphabets) In the sequel we will need three alphabets, namely:

1. NID, the alphabet of node identi�ers,

2. NL, the alphabet of node labels,

3. EL, the alphabet of edge labels.

Remark 3.1.2 For our running example we use the following alphabets:

� The set of node identi�ers is

NID := fS1; S1.P1; S1.P2; S1.P3; S1.P1.T1; : : :g

i.e. the set of all strings that are well-formed node names according to the dotted

notation informally introduced in 2.3.

� NL := fSite; Page; Text; Anchorg. Recall that in �gure 1 nodes of type Text are

depicted as empty rectangles, nodes of type Anchor are depicted as full rectangles

whereas the types of the other nodes are written explicitly on the nodes' labels. Notice

also that we don't distinguish between target and hyperlink anchor in our model.

� EL := fToNext; Link; ToHomepage; ToMirrorg. Edge labels are written near edges in

�gure 1.

We can now de�ne atomic nodes as nodes that \do not contain any subnodes".

3 ENCAPSULATED HIERARCHICAL GRAPHS 13

De�nition 3.1.3 (Atomic nodes) Given a set of node identi�ers NID and set of node

labels NL, a set AN � NID �NL is a set of atomic nodes on NID and NL i�

8n = (i; l); n

0

= (i

0

; l

0

) 2 AN:(i = i

0

)) (n = n

0

)

i.e. the identi�er of each node is unique in AN. If n = (i; l) 2 AN (for some set of atomic

nodes AN), we write i = nid(n) and l = nl(n) and we call n an atomic node.

Remark 3.1.4 In our example the set of atomic nodes is

AN := f(S1.P1.T1; Text); (S1.P1.A1; Anchor); (S2.P2.A1; Anchor); : : :g

i.e. all nodes of type Text and Anchor are atomic nodes. It is easy to verify that each atomic

node has a unique identi�er.

In the sequel, to simplify our notation, we will often use a node's identi�er instead of the

node itself, i.e. we will write, for example, S1.P1.T1 instead of (S1.P1.T1; Text). Although

this notation can be imprecise, it does not introduce any inconsistency since nodes are uniquely

determined by their identi�ers.

If we have a set N (whose elements' internal structure is not important here) and a set of

edge labels EL, we can build binary, labelled, directed edges from them.

De�nition 3.1.5 (Edges) Given a set N and a set of edge labels EL, then an edge on N

and EL is a triple (s; l; t), with s; t 2 N and l 2 EL, i.e. an edge is any e 2 N � EL �N.

Instead of (s; l; t) we will often use the more intuitive notation s�l! t.

Remark 3.1.6

Two example edges from �gure 1 are: (S3.P2.A1; Anchor)�Link! (S3.P1.A2; Anchor) and

(S1.P2.A1; Anchor)�Link! (S1.P2.A2; Anchor).

3.2 Encapsulated Graphs and Complex Nodes

In our running example we have informally introduced a hierarchical graph to represent some

aspects of the underlying structure of the WWW. If such a modeling technique were to be

used in a practical application the resulting graph would be very large (due to the size of the

real WWW). On the other hand, it is hardly likely that a single application should need a

representation of the whole WWW. We think that a reasonable way to address this issue is

to use some formal method, which allows us to:

� De�ne local views of the entire graph describing the WWW. For example \the view of

site S1" (used by the site's manager) or \the view of page S2.P1" (used by the page's

author).

� Associate to every view speci�c permissions to query/modify only some elements of the

entire graph. For example, in the view of site S2 it seems reasonable that we can:

{ Query and modify page S2.P1 (S2 owns it).

{ Query but not modify site S1 (some page inside S2 has a reference to it).

{ Neither query nor modify node S1.P3 (it is a page owned by another site and not

referenced from S2).

3 ENCAPSULATED HIERARCHICAL GRAPHS 14

� Decide, for each element of such a view, whether other views can query (see) it or not.

For example, if we associate a view to page S2.P1, such a view should allow other views

to see its internal anchor S2.P1.A2 (it is referenced from page S2.P2) while S2.P1.A1

could be kept for internal use only.

We have decided to associate a partial view of a hierarchical graph to each of its nodes. A node

with an internal view will be called a complex node and its internal view will be represented

by a so-called encapsulated graph (EG). Atomic nodes, which have already been de�ned, can

be considered as complex nodes with an empty internal view. We will introduce EG's �rst.

An EG is made of a set of nodes and a set of labeled directed edges. An element (node or

edge) of an EG G can be local (owned by G) or context (owned by another graph but known

and usable for query operations by G). In our example, node S2.P2.A2 should be a local

node of the graph associated to node S2.P2 while node S1 should be a context node to enable

page S2.P2 to draw a Link edge to it (the operation of creating or removing an edge does

not modify the edge's ends, therefore creating edge S2.P2.A2�Link! S1 can be considered

a query operation on S1).

Furthermore, each element of an EG G can be visible (G allows information about that

element to be seen by the outside world) or hidden. A visible element of one EG can be a

context element of some other EG whereas a hidden element cannot (hence the term encap-

sulated). In our example, node S2.P1.A2 should be a visible node of the graph of S2.P1 (a

target anchor is made public in order to be used by other pages) and a context node of the

graph of S2.P2 which contains a Link edge to it.

We now give our formal de�nition of EG's.

De�nition 3.2.1 (Encapsulated graphs) Let N be a given set (of nodes) and EL a given

set of edge labels, then an encapsulated graph over N and EL is a tuple

G = (N

G

;E

G

;vis

G

; loc

G

)

such that:

1. N

G

� N is the set of nodes of G.

2. E

G

� N

G

� EL �N

G

is the set of edges of G.

3. vis

G

: N

G

� E

G

! ftrue; falseg is a predicate stating whether an element of G is

visible or hidden.

4. loc

G

: N

G

�E

G

! ftrue; falseg is a predicate stating whether an element of G is local

or context.

5. 8e = (s; l; t) 2 E

G

:loc

G

(e))(loc

G

(s) _ loc

G

(t)), i.e. if e is a local edge of G, then at

least one of its ends must be a local node of G.

6. 8e = (s; l; t) 2 E

G

:vis

G

(e))(vis

G

(s) ^ vis

G

(t)), i.e. if e is a visible edge of G, then

both ends of e must be visible nodes of G.

We denote the empty encapsulated graph (;; ;; ;; ;) with ;

EG

.

Before we proceed we introduce some useful abbreviations. Given an EG G =

(N

G

;E

G

;vis

G

; loc

G

), we let:

3 ENCAPSULATED HIERARCHICAL GRAPHS 15

� HN

G

:= fn 2 N

G

jvis

G

(n) = falseg be the set of hidden nodes of G,

� VN

G

:= fn 2 N

G

jvis

G

(n) = trueg be the set of visible nodes of G,

� LN

G

:= fn 2 N

G

jloc

G

(n) = trueg be the set of local nodes of G,

� CN

G

:= fn 2 N

G

jloc

G

(n) = falseg be the set of context nodes of G,

� HE

G

:= fe 2 E

G

jvis

G

(e) = falseg be the set of hidden edges of G,

� VE

G

:= fe 2 E

G

jvis

G

(e) = trueg be the set of visible edges of G,

� LE

G

:= fe 2 E

G

jloc

G

(e) = trueg be the set of local edges of G,

� CE

G

:= fe 2 E

G

jloc

G

(e) = falseg be the set of context edges of G.

Furthermore, for ease of notation, we let:

� HLN

G

:= HN

G

\ LN

G

,

� VLN

G

:= VN

G

\ LN

G

,

� HLE

G

:= HE

G

\ LE

G

,

� and so forth.

The whole situation (and the corresponding notation) is summarized in the tables of �gure

2.

Nodes

HN VN

LN HLN VLN

CN HCN VCN

Edges

HE VE

LE HLE VLE

CE HCE VCE

Figure 2: Notation for hidden/visible and local/context property of nodes and edges.

Example 3.2.2 In �gure 3 we show the EG associated to page S2.P1 of our running example.

Notice that we have re�ned our graphical notation to distinguish between local/context and

hidden/visible elements. This is done by drawing all elements of a graph inside a rectangular

area that is partitioned into four regions corresponding to all the possible combinations of

values of hidden/visible and local/context property. The properties of an edge are visually

determined by the position of the black bullet associated to it. Let G be the EG of �gure 3,

then:

� HLN

G

= fS2.P1.T1; S2.P1.T2; S2.P1.A1g,

� VLN

G

= fS2.P1.A2g,

� HCN

G

= fS2.P1g,

� VCN

G

= ;,

3 ENCAPSULATED HIERARCHICAL GRAPHS 16

VL

VCHC

HL

S2.P1

S2.P1.A1

S2.P1.T1

S2.P1.T2

S2.P1.A2

ToNext

ToNext

ToNext

ToNext

Link

Figure 3: The encapsulated graph associated to page S2.P1.

� HLE

G

= fS2.P1�ToNext! S2.P1.A1; S2.P1.A1�ToNext! S2.P1.A2;

S2.P1.A2�ToNext! S2.P1.T2; S2.P1.A1�Link! S2.P1.A2g;

� HCE

G

= VE

G

= ;.

The distinction between local and context elements will be important when de�ning operations

on EG's (these are not yet supported by our data model). More precisely, an operation on

an EG should be allowed to query and/or modify a local element of an EG but only to query

a context element.

In the graph G of �gure 3, all nodes that represent the internal structure of page S2.P1

(namely S2.P1.A1, S2.P1.T1, S2.P1.A2, S2.P1.T2) are local nodes: operations on G should

be allowed, for example, to delete these nodes or to modify their internal attributes (node

attributes are not yet supported). The edges inside G describe the possible reading sequences

of page S2.P1 and their creation and/or deletion should be performed by operations on G.

Therefore all edges of G are local edges. Such operations associated to G could be executed,

say, by an application run by the page's author.

Node S2.P1 is a context node of G. Following our modelling choices, it should be a

local node of the graph of S2 and modi�cations on it should only be performed by op-

erations of the graph of S2 (such operations could be executed by some program run by

the site's manager). S2.P1 is a context node of G in order to allow the existence of edge

S2.P1�ToNext! S2.P1.A1. The creation and deletion of such an edge should be performed

by an operation associated to G.

Any context element of an EG must be an element of some other EG (i.e. it must be

imported). A node or edge of an EG K can (cannot) be a context element of an EG L 6= K

if it is visible (hidden). We let all elements of the graph G of �gure 3 be hidden, with the

exception of node A2, which is visible because it is needed by the EG of page S2.P2.

3 ENCAPSULATED HIERARCHICAL GRAPHS 17

Our next step is to de�ne a set of complex nodes N, i.e. of nodes that possess an internal

view, which is described by an EG on N. Atomic nodes are embedded in N by considering

them complex nodes with an empty graph as internal state. Notice that a complex node can

contain an EG, which in turn can contain complex nodes, which can contain other EG's, and

so on. Such a chain will eventually stop with EG's containing only atomic nodes.

De�nition 3.2.3 (Complex nodes) If we have three alphabets NID, NL, EL and a set

of atomic nodes AN over NID and NL, then a set of complex nodes CN on NID, NL, EL

and AN is a set CN such that:

� 8n 2 CN:9i;G; l:n = (i;G; l), where i 2 NID, G is an EG on CN and EL, l 2 NL.

� 8n = (i; l) 2 AN:9n

0

= (i; ;

EG

; l) 2 CN, i.e. for each atomic node there is a corre-

sponding complex node.

� 8n = (i;G; l) 2 CN::9n

0

= (i

0

; G

0

; l

0

) 2 CN:n

0

6= n^ i = i

0

, i.e. all nodes in CN have a

unique identi�er.

If N is a set of complex nodes and c 2 CN, c = (i;G; l), we denote i as nid(c), G as G(c)

and l as nl(c). Furthermore, we call c a complex node.

Example 3.2.4 In �gure 4 we display the complex node S2.P2 of our example. Notice that

we use a graphical notation similar to that of �gure 3: we have only added a top bar containing

the node's identi�er and label.

ToNext Link Link

ToNextToNext

S2.P2 S2.P1.A2 S1

S2.P2.T1 S2.P2.A1 S2.P2.A2

VCHC

VLHL

S2.P2: Page

Figure 4: The complex node S2.P2.

3 ENCAPSULATED HIERARCHICAL GRAPHS 18

3.3 Representation of the Hierarchical Structure of Graphs

The �nal step in our de�nition of EHG consists of describing how complex nodes can be put

together to form an EHG. We need two more tools:

� trees, as a means to represent the hierarchical structure of an EHG and

� information spreading conditions, i.e. conditions that specify how knowledge about

elements of an EHG can be spread through its structure.

De�nition 3.3.1 (Trees) A (directed) tree is a couple T = (N;A), where N is a set of nodes

and A � N �N n f(n; n)jn 2 Ng is a set of arcs such that:

1. 9!r 2 N::9n 2 N:(n; r) 2 A, i.e. T has a root node that is not the target of any edge of

T . We denote the root of T with �(T).

2. 8n 2 N , if n 6= �(T) then there exists a unique path from �(T) to n in T , i.e. there

exists a unique sequence of nodes n

1

; : : : ; n

k

2 N (k > 1) such that:

� for all i 2 f1; : : : ; k � 1g, (n

i

; n

i+1

) 2 A,

� n

1

= �(T), n

k

= n.

If n 2 N and :9n

0

:(n; n

0

) 2 A, then n is a leaf of T .

We are going to use trees as structuring graphs for EHG's. An arc (n

1

; n

2

) in such a tree

has the meaning \n

2

is a subnode of n

1

", or \n

1

contains n

2

". Therefore, in the sequel, if

T = (N;A) is a known tree and n

1

; n

2

2 N , we will often use the more intuitive notation

n

1

contains n

2

instead of (n

1

; n

2

) 2 A.

Example 3.3.2 In �gure 5 we display the structuring tree associated to the overall graph of

our running example. Notice that we have introduced a �ctitious root node that contains all

other nodes.

We anticipate some intuitive ideas that are useful to understand the following de�nition 3.3.3.

An encapsulated hierarchical graph will consist of a set of complex nodes linked by structuring

edges to form a tree. If n is a complex node in such a tree, then:

� LN

G(n)

:= fn

0

jn contains n

0

g, i.e. the local nodes of a node are all and only its

subnodes. Local edges of G(n) only need to satisfy the conditions described in 3.2.1.

� Context elements ofG(n) must be imported from the EG associated to some other node.

Information spreading conditions (ISC, to be de�ned shortly) express the constraints

that must be satis�ed by such imported elements.

There are four ISC's. The �rst two rules deal with visible context elements while the second

two deal with hidden context elements. The di�erence between these two cases is very slight:

� In all four cases we require that a context element x of a node c be an element of a

supernode (parent node) of c.

3 ENCAPSULATED HIERARCHICAL GRAPHS 19

S1.P1.T1

S1.P1.A1

S1.P1.T2

S1.P1 S1.P3

S1.P3.T1 S1.P3.T2

S1.P3.A1 S1.P3.A2

S1.P3.A3

S1.P2

S1.P2.A1

S1.P2.A2

S1.P2.T2

S1.P2.T1

S1

S2.P1.A1 S2.P1.A2

S2.P1.T1 S2.P1.T2

S2.P1

S2.P2.T1

S2.P2.A1

S2.P2.A2

S2.P2

S2

S3.P1.A1 S3.P1.A2

S3.P1.T1 S3.P1.T2

S3.P1

S3.P2.T1

S3.P2

S3.P2.A1

S3.P2.A2

S3

ROOT

Figure 5: The structuring tree for the WWW example.

� Otherwise we require that x be an element of a subnode (child node) c

0

of c. In such a

case x must a visible element of the subnode (otherwise c would not be allowed to know

about x). If we also want x to be a visible context element of c, then c

0

(the subnode

providing information about x) must be itself a visible subnode of c (it would not make

sense to make visible some information coming from a hidden source).

We now give the formal de�nition of ISC's.

De�nition 3.3.3 (Information spreading conditions) Let CN be a set of complex

nodes and T = (N;A) be a tree such that N � CN). Then the information spreading

conditions for T are, for all c 2 N and all context elements x of G(c), the following:

1. x 2 VCN

G(c)

) (9c

0

2 N:(c

0

contains c ^ x 2 N

G(c

0

)

)_

(c contains c

0

^ c

0

2 VLN

G(c)

^ x 2 VN

G(c

0

)

))

i.e. if x is a visible context node of a node c, then x must either be a node of a parent

node of c or a visible node of a visible child node of c.

3 ENCAPSULATED HIERARCHICAL GRAPHS 20

2. x 2 VCE

G(c)

) (9c

0

2 N:(c

0

contains c ^ x 2 E

G(c

0

)

)_

(c contains c

0

^ c

0

2 VLN

G(c)

^ x 2 VE

G(c

0

)

))

i.e. if x is a visible context edge of a node c, then x must either be an edge of a parent

node of c or a visible edge of a visible child node of c.

3. x 2 HCN

G(c)

) (9c

0

2 N:(c

0

contains c ^ x 2 N

G(c

0

)

)_

(c contains c

0

^ c

0

2 LN

G(c)

^ x 2 VN

G(c

0

)

))

i.e. if x is a hidden context node of a node c, then x must either be a node of a parent

node of c or a visible node of a child node of c.

4. x 2 HCE

G(c)

) (9c

0

2 N:(c

0

contains c ^ x 2 E

G(c

0

)

)_

(c contains c

0

^ c

0

2 LN

G(c)

^ x 2 VE

G(c

0

)

))

i.e. if x is a visible context edge of a node c, then x must either be an edge of a parent

node of c or a visible edge of a child node of c.

Example 3.3.4 We give more intuitive ideas by means of our running example. We suppose

that our structuring tree T = (N;A) is the one depicted in �gure 5. Let us consider for

instance nodes S2, S2.P1, S2.P2 and let their internal graphs be the following:

� G(S2) = G

1

= (N

G

1

;E

G

1

;vis

G

1

; loc

G

1

), where:

{ N

G

1

= fS1; S2; S3; S2.P1; S2.P2; S2.P1.A2g

{ E

G

1

= fS2�ToHomePage! S2.P1; S2�ToMirror! S3g

{ 8x 2 fS2.P1; S2.P2; S2�ToHomePage! S2.P1; S2�ToMirror! S3g:loc

G

1

(x) =

true

{ 8x 2 fS1; S2; S3; S2.P1.A2g:loc

G

1

(x) = false

{ 8x 2 N

G

1

[E

G

1

:vis

G

1

(x) = false

� G(S2.P1) = G

2

= (N

G

2

;E

G

2

;vis

G

2

; loc

G

2

), where:

{ N

G

2

= fS2.P1; S2.P1.A1; S2.P1.T1; S2.P1.A2; S2.P1.T2g

{ E

G

2

= fS2.P1�ToNext! S2.P1.A1; S2.P1.A1�ToNext! S2.P1.T1;

S2.P1.T1�ToNext! S2.P1.A2; S2.P1.A2�ToNext! S2.P1.T2g

{ loc

G

2

(S2.P1) = false

{ 8x 2 (N

G

2

[E

G

2

) n fS2.P1g:loc

G

2

(x) = true

{ vis

G

2

(S2.P1.A2) = true

{ 8x 2 (N

G

2

[E

G

2

) n fS2.P1.A2g:vis

G

2

(x) = false

� G(S2.P2) = G

3

= (N

G

3

;E

G

3

;vis

G

3

; loc

G

3

), where:

{ N

G

3

= fS1; S2.P2; S2.P2.T1; S2.P2.A1; S2.P2.A2; S2.P2.T2g

{ E

G

3

= fS2.P2�ToNext! S2.P2.T1; S2.P2.T1�ToNext! S2.P2.A1;

S2.P2.A1�ToNext! S2.P2.A2; S2.P2.A1�Link! S2.P1.A2;

S2.P2.A2�Link! S1g

{ 8x 2 fS2.P2.T1; S2.P2.A1; S2.P2.A2g [E

G

3

:loc

G

3

(x) = true

{ 8x 2 fS2.P2; S2.P1.A2; S1g:loc

G

3

(x) = false

3 ENCAPSULATED HIERARCHICAL GRAPHS 21

{ 8x 2 N

G

3

[E

G

3

:vis

G

3

(x) = false

We can verify that these three nodes respect the ISC's for T . For instance, S1 2 HCN

G(S2.P2)

.

Then condition 3 of de�nition 3.3.3 must be satis�ed. It actually is because S1 2 N

G(S2)

and S2 contains S2.P2. More intuitively, site S1 is a hidden context node in page S2.P1. It

means that either site S1 is a visible node of a subnode of S2.P1 (which is not the case) or

that S1 is a node of the graph of a super-node of S1.P2. Since S1 is a context node of site S2

which contains page S2.P1, the required condition is satis�ed.

As a second example, we can trace how knowledge about node S2.P1.A2 is transmitted

from page S2.P1 to page S2.P2 (see also �gure 6). This is done in two steps:

S2.P1.A1 S2.P1.A2

S2.P1.T1 S2.P1.T2

S2.P1

S2.P2.T1

S2.P2.A1

S2.P2.A2

S2.P2

S2

Cannot spread upwards

Can always spread downwards

S2.P1.A2 MUST be hidden

Can spread upwards
because visible

Visible: {S2.P1.A2}
Hidden: {S2.P1.A1, ...}
Local: {S2.P1.A1, S2.P1.T1,
 S2.P1.A2, S2.P1.T2}

Hidden: {S2.P1, S2.P1.A2, ...}
Local: {S2.P1, S2.P2}
Context: {S2.P1.A2, ...}

Context: {S2.P1.A2, ...}
Local: {S2.P2.T1, S2.P2.A1,
 S2.P2.A2}

Figure 6: Application of spreading conditions in example 3.3.4.

� First the common parent node S2 can have S2.P1.A2 among its context nodes because

it is a visible node in S2.P1. In other words, S2.P1.A2 2 HCN

G(S2)

means that S2

and S2.P1.A2 must satisfy condition 3. It actually does because S2 contains S2.P1

and S2.P1.A2 2 VN

G(S2.P1)

.

� Since S2.P1.A2 is in HCN

G(S2)

� N

G(S2)

, both conditions 1 and 3 are satis�ed for

S2.P2 and S2.P1.A2. Then S2.P1.A2 can be also in CN

G(S2.P2)

and it can be either a

visible or hidden node there.

3 ENCAPSULATED HIERARCHICAL GRAPHS 22

Further veri�cations are left to the reader.

3.4 Encapsulated Hierarchical Graphs

We are now able to introduce encapsulated hierarchical graphs. Intuitively, an EHG is a tree

(i.e. a set of nodes and a contains relationship between them satisfying proper conditions)

where all nodes have an internal state represented by an encapsulated graph (i.e. they are

complex nodes). As has been already partially anticipated, such a tree must satisfy the

following conditions:

� The local nodes inside the internal graph of any node c are all and only the sub-nodes

of c with respect to T .

� The local edges of the graph of any node c of T only need to satisfy the conditions

described in 3.2.1

� The leaves of T must be atomic nodes.

� All ISC's for T (which de�ne constraints on context elements of nodes of T) must be

satis�ed.

De�nition 3.4.1 (Encapsulated hierarchical graphs) Given three alphabets NID,

NL, EL and a set of atomic nodes AN on NID, NL, an encapsulated hierarchical graph

on NID, NL, EL and AN is a tree T = (N;A) satisfying the following conditions:

1. N is a set of complex nodes on NID, NL, EL and AN (therefore every c 2 N has an

encapsulated graph on N as its internal state).

2. 8n 2 N , if n is a leaf, then n 2 AN.

3. 8n 2 N:LN

G(n)

:= fn

0

2 N jn contains n

0

g.

4. All ISC's for T are satis�ed.

Fact 3.4.2 In an EHG T = (N;A), for every n 2 N , n 6= �(T), there exists exactly one node

n

0

such that n 2 LN

G(n

0

)

.

Remark 3.4.3 In the proposed EHG data model, we have decided that every node has a

view (encapsulated graph) associated to it and that, although nodes can be context elements

of more than one view, they must be local elements of exactly one view. In other words, every

node in an EHG can be owned by (and, therefore, be modi�ed by the operations associated

to) exactly one EG inside that EHG.

A slightly di�erent approach is to be found in [ES 95a] where the visible local nodes of

a node n are local nodes of its super-node (if such a super-node exists). The condition that

a node can only modify its direct sub-node could prove to be too restricted and could be

relaxed following the choices taken in the mentioned paper.

To put this question in terms of our WWW example, we have chosen that, say, no oper-

ation associated to node S2 is allowed to modify anchor S2.P1.A2 directly. It could achieve

this by calling a possible exported operation of page S2.P1. If the approach of [ES 95a] had to

be chosen, an operation associated to site S1 could modify (maybe delete?) anchor S2.P1.A2

inside page S2.P1 directly.

4 CONCLUSIONS AND FUTURE WORK 23

4 Conclusions and Future Work

In this paper we have introduced �rst concepts of a new encapsulated hierarchical graph data

model. It supports the creation of graphs which consist of a hierarchically structured set of

nodes. Nodes have an internal state that is an encapsulated graph. Encapsulated graphs

support importing of nodes and edges as well as information hiding.

In an object model in OMT we can de�ne graph-like structures which are comparable to

EHG's, in particular:

� The concepts of object/class in OMT correspond to the concept of node in EHG.

� Binary links/associations correspond to edges.

� Aggregation links/associations correspond to the contains relation between nodes.

The major di�erences between the two data models are the following:

� The EHG model does not (yet) support node attributes and operations.

� The EHG model only supports binary edges while OMT allows ternary or higher order

links/associations.

� EHG does not allow to de�ne any inheritance-like relation between nodes.

� The EHG data model does not (yet) allow to distinguish between graph instances (ob-

jects) and graph schemata (classes).

� OMT only supports encapsulation for attributes and operations inside an object/class.

Sub-objects of a given object cannot be hidden and associations can be freely drawn

between sub-objects of di�erent objects.

It is the purpose of a forthcoming paper to enhance the EHG model with the following

features:

� Node attributes.

� An inheritance-like relation between nodes.

� Support for the de�nition of graph instances and graph schemata.

A more complex issue is the introduction of rewrite rules on EHG. A powerful feature that

they should support is the possibility to modify the internal graph of a node together with

the internal graph of some of its subnodes within a single rewrite step.

Thinking of our WWW example, a rewrite rule that removes a page from one site should

also update all pages (possibly in other sites) containing references to it. Therefore such a

rule should be applied to the overall graph (i.e. it should be a rule of the root node) and

should be capable to descend into the node hierarchy and update the internal graph of nodes

where needed.

The issue of operations on EHG is the subject of ongoing research.

A SUPPLEMENT TO THE RUNNING EXAMPLE 24

A Supplement to the Running Example

This appendix serves to complete the information about our running example. Some basic

knowledge of HTML is assumed here. The few notions that are needed to read the following

can be found in the already cited [NCSA].

We give the listing of the HTML documents whose structure is depicted in �gure 1. Of

course we are not interested in the text parts that they contain. We will therefore denote

them with the symbol text.

Our example contains three web sites, namely: S1 (internet address www.site1.nl), S2

(internet address www.site2.nl), S3 (internet address www.site3.nl). S3 is a mirror of S2.

S1 contains three WWW pages: /page1.html, /page2.html and /page3.html (referring to

nodes S1.P1, S1.P2 and S1.P3 of �gure 1 respectively). Likewise, site S2 maintains two

�les: /page1.html and /page2.html (nodes S2.P1 and S2.P2) and its mirror S3 two �les

with the same names (nodes S3.P1 and S3.P2). The (simpli�ed) HTML sources of the seven

documents are the following:

http://www.site1.nl/page1.html:

text

 text

text

http://www.site1.nl/page2.html:

text

 text

 text

text

http://www.site1.nl/page2.html:

text

 text

text

 text

 text

http://www.site2.nl/page1.html:

 text

text

 text

text

http://www.site2.nl/page2.html:

text

 text

 text

http://www.site3.nl/page1.html:

A SUPPLEMENT TO THE RUNNING EXAMPLE 25

 text

text

 text

text

http://www.site3.nl/page2.html:

text

 text

 text

REFERENCES 26

References

[And 96] M. Andries, Graph Rewrite Systems and Visual Database Languages, PhD thesis,

Leiden University (NL) 1996.

[CAB 94] D. Coleman, P. Arnold, S. Bodo�, C. Dollin, H. Gilchrist, F. Hayes, P. Jeremaes,

Object-Oriented Development|The Fusion Method, Prentice Hall, 1994.

[CER 79] V. Claus, H. Ehrig, G. Rozenberg, Proc. 1st Int. Workshop on Graph-Grammars

and Their Application to Computer Science and Biology, International Work-

shop, LNCS 73, Springer-Verlag (1979).

[CEER 96] J. Cuny, H. Ehrig, G. Engels, G. Rozenberg (eds.): Proc. 5th Int. Workshop

on Graph Grammars and Their Application to Computer Science, LNCS 1073,

Springer Verlag (1996).

[CH 95] A. Corradini, R. Heckel: A Compositional Approach to Structuring and Re-

�nement of Typed Graph Grammars, in U. Montanari et al. (ed.): Proc. Joint

COMPUGRAPH/SEMAGRAPH Workshop on Graph Rewriting and Compu-

tation, Electronic Notes in Theoretical Computer Science (ENTCS), Elsevier

Science Publ. (1995).

[Dod 83] Reference Manual for the Ada Programming Language, ANSI/MIL STD 1815A,

US DoD (Jan 1983).

[EE 95] H. Ehrig, G. Engels: Towards a Module Concept for Graph Transformation

Systems, Technical Report 93-34, Dept. of Computer Science, Leiden University

(1993).

[EKR 91] H. Ehrig, H.-J. Kreowski, G. Rozenberg (eds.): Proc. 4th Int. Workshop

on Graph-Grammars and Their Application to Computer Science, LNCS 532,

Springer Verlag (1991).

[ENR 83] H. Ehrig, M. Nagl, G. Rozenberg (eds.): Proc. 2nd Int. Workshop on Graph

Grammars and Their Application to Computer Science, Proceedings, LNCS 153,

Springer-Verlag (1983).

[ENRR 87] H. Ehrig, M. Nagl, G. Rozenberg, A. Rosenfeld (eds.): Proc. 3rd Int. Workshop

on Graph Grammars and Their Application to Computer Science, LNCS 291,

Springer-Verlag (1987).

[EMRS 96] H. Ehrig, U. Montanari, G. Rozenberg, H. J. Schneider (eds), Graph Transfor-

mations in Computer Science, Dagstuhl-Seminar-Report; 155, 09.09.-13.09.96

(9637).

[ES 95a] G. Engels, A. Sch�urr: Encapsulated Hierarchical Graphs, Graph Types, and

Meta Types. In A. Corradini, U. Montanari (eds.): Proc. Joint COMPU-

GRAPH/SEMAGRAPH Workshop on Graph Rewriting and Computation, Au-

gust 1995, Volterra (Italy), Electronic Notes in Theoretical Computer Science 1

(1995), 75-84.

REFERENCES 27

[ES 95b] G. Engels, A. Sch�urr: Encapsulated Hierarchical Graphs, Graph Types, and Meta

Types, Technical Report 95-21, Department of Computer Science, Leiden Uni-

versity, July 1995.

[Fie 94] R. T. Fielding: Maintaining Distributed Hypertext Infostructures: Welcome to

MOMspider's Web, in Computer Networks and ISDN Systems (Special Issues)

Vol. 27, no. 2, Selected Papers of the First World-Wide Web Conference, Geneva,

Switzerland, 25-27 May 1994.

[HLW 92] F. H�ofting, T. Lengauer, E. Wanke: Processing of Hierarchically De�ned Graphs

and Graph Families, in Lecture Notes in Computer Science 594, Springer-Verlag

(1992).

[KA 90] S. Khosha�an, R. Abnous: Object Orientation, Concepts, Languages, Databases,

User Interfaces, John Wiley & Sons, inc. (1990).

[KK 96] H. J. Kreowski, S. Kuske: On the Interleaving Semantics of Transformation

Units - A Step into GRACE, in [CEER 96].

[NCSA] NCSA Beginner's Guide to HTML:

http://www.ncsa.uiuc.edu/General/Internet/WWW/HTMLPrimer.html.

[NS 91] M. Nagl, A. Sch�urr: A Speci�cation Environment for Graph Grammars, in

[EKR 91], 599-609.

[NS 96] M. Nagl, A. Sch�urr: Software Integration Problems and Coupling of Graph

Grammar Speci�cations, in [CEER 96].

[Pra 79] T. W. Pratt, De�nition of Programming Language Semantics Using Grammars

for Hierarchical Graphs, in [CER 79].

[PP 95] F. Parisi-Presicce, G. Piersanti: Multilevel Graph Grammars, in Lecture Notes

in Computer Science 903, Springer Verlag (1995).

[Rum 91] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, W. Lorensen: Object Mod-

elling and Design, Prentice Hall inc. (1991).

[Sch 91a] A. Sch�urr: PROGRES: A VHL-Language Based on Graph Grammars, in

[EKR 91], 641-659.

[Sch 91b] A. Sch�urr: Operationales Spezi�zieren mit Programmierten Graphersetzungssys-

temen: Formale De�nitionen, Anwendungen und Werkzeuge, Dissertation,

RWTH Aachen, Deutscher Universit�atsverlag (1991).

[Sch 96] A. Sch�urr, Programmed Graph Replacement Systems, to appear.

[Set 96] R. Sethi, Programming Languages, Concepts and Constructs 2

nd

edition, Addi-

son Wesley (1996).

[ST 95] A. Sch�urr, G. Taentzer, DIEGO, Another Step Towards a Module Concept for

Graph Transformation Systems, in Electronic Notes in Theoretical Computer

Science 2 (1995).

REFERENCES 28

[Wir 85] N. Wirth, Programming in Modula2, Springer (1985).

[Zam 96] A. Zamperoni, GRIDS - GRaph-based, Integrated Development of Software:

Integrating Di�erent Perspectives of Software Engineering, in Proceedings of

the 18

th

International Conference on Software Engineering, Berlin (Germany),

March 25-29, 1996.

[Z�un 92] A. Z�undorf: Implementation of the Imperative/Rule Based Language PRO-

GRES, TR No. AIB 92-38, RWTH Aachen, Germany (1992).

[Z�un 95] A. Z�undorf: Eine Entwicklungsumgebung f�ur PROgrammierte GRaphErset-

zungsSysteme, Dissertation, RWTH Aachen (1995).

