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Abstract

The a priori probabilities of boolean functions with two inputs are calculated for a
one-layer neural network and for the 2-2-1 network. The calculations are done both
interpreting boolean values as 0 and 1 and as -1 and 1. For the 2-2-1 network the prob-
abilities of the trivial functions (same output for all patterns) are much larger than
those of the other functions, while the probabilities of the not linearly separable func-
tions are much smaller. Calculation of the conditional entropy of the neural network
based on these probabilities results in an example where the conditional entropy
increases while learning examples.

1 Introduction

The a priori probabilities for a neural network representing certain functions can give infor-
mation about the learnability and the generalization ability of the network when learning
those functions from examples. For small networks these probabilities can be calculated
explicitly. In this paper the a priori probabilities of boolean functions with two inputs are
calculated for a one-layer neural network and for the 2-2-1 network. The calculations are
done both for interpreting boolean values as 0 and 1 and as -1 and 1. For the one-layer
network we will find that

« for boolean values equal to 0 and 1, the a priori probabilities for the trivial functions
(same output for all patterns) are much larger than those for the other linearly separable
functions, while

« for boolean values equal to -1 and 1, the a priori probabilities are more equal for all
functions.
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For both interpretations of the boolean values the probabilities of the trivial functions in
the 2-2-1 network are much larger than those of the other functions, while the probabilities
of the XOR-like functions are much smaller.

In their study of the generalization ability of layered feedforward neural networks
Denkeret al. (1987) introduce the entrof$, and the average generalization abilty, as
function of the sizam of the training set. The entrof$, is a measure of the functional
diversity of the chosen architecture restricted so that it correctly represemsxaenples
of the training set. In Denket al. (1987) it is suggested that the entrdfy decreases
whenm increases, while in Solla (1992) and Schwattal. (1990) it is said explicitly.
During his work for his master’s thesis Claas (1996) tried to prove that indeed the entropy
as defined by Denket al. (1987) has to decrease withh He could not find a proof and
thus we tried the opposite: we tried to find a counter example hoping to get more insight in
the behaviour 08, We were indeed able to construct a counter examplg,, 8all not in
general decrease with. The case is th&,, is a so-called conditional entropy (McEliece,
1977). On averag&,, will decrease, but presenting a special example can lead to an
increase of the entropy. This example of increasing entropy is found for the 2-2-1 network
interpreting the boolean values as 0 and 1.

Section 2 contains the probabilities for the one-layer network and section 3 those for the
2-2-1 network. In both sections the boolean values are interpreted as 0 and 1. Section 4
gives comparable results for the interpretation of the boolean values as -1 and 1. In section
5 the definition of (conditional) entropy is given following Schwaatzal. (1990). In
section 6 we give examples that this entropy can increase. Section 7 contains the conclu-
sions. Appendices A and B contain the calculations of the probabilities for the 2-2-1
network based on those for the one-layer network.

2 Probabilitiesfor a one-layer network

In this section the boolean values are interpreted as O (false) and 1 (true).

Consider the one-layer network with two inpits a6 and one outputYhasle
given in figure 1. The extra input, has value 1 and serves as a threshold value of the
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Figure 1. A one-layer network with two inputs and one output nod

output node. This network has three weighgs w, , w,, . We take the transfer function of
the output node equal to the sigmgi¢x) = 1/ (1+¢e™) , SO the output of the network is
g (wy+w; X, +W,X,) as function of the inputX, and, . We interpret the output as
zeroifg(x) <e (i.ex<-a )andasone@(x) >1-¢ (i.e>a ).



This network is able to learn/represent all linearly separable boolean functions of 2 vari-
ables. So for example the trivial functib(X,, X,) = 0  for4ll, X, O {0, 1} is repre-
sented if the weights satisfy the following inequalities:

g(wy) <t = W, <—a
g(wy+w,) <t & Wy + W, <—a
g(wy+w,) <t = Wy + W, <—a
g(wy+w; +w,) <€ = W+ W, + W, <—0
Restricting the weight space to a cubB <w, <N results in a volume of measure

N2(N—a) +N(N-a)2+1/6(N-a) 3 for the part of the weight space correctly repre-
senting the function with all outputs equal to zero (Claas, 1996).

We computed the volumes of the parts of the weight space corresponding to all repre-
sentable boolean functions and their corresponding probabilities. Taking thél limib
resulted in the probabilities given in table 1. Note that if oo , the exact valwe of isno
longer important.

Both the XOR function and the NOT XOR function have probability zero, since they
cannot be represented by the network.

n outputs off,, Po(f)
0 (0,0,0,0) 13/48
1 (0,0,0,1) 1/48
2 (0,0,1,0) 2/48
3 (0,0,1,1) 2/48
4 (0,1,0,0) 2/48
5 (0,1,0,2) 2/48
6 (0,1,1,0) 0

7 (0,1,1,1) 2/48
8 (2,0,0,0) 2/48
9 (2,0,0,1) 0

10 (1,0,1,0) 2/48
11 (2,0,1,1) 2/48
12 (2,1,0,0) 2/48
13 (1,1,0,1) 2/48
14 (1,1,1,0) 1/48
15 (1,1,1,1) 13/48

Table 1. The probabilities of the functions of the network of figure 1. The number
corresponds to the interpretation of the output pattern as binary number. In the outf
pattern the first digit is the output for input (0, 0), the second digit thé®o1) , the
third digit is the output of (1, 0) and the most right digit corresponds to the output fo
both inputs equal to 1. In the most right column the probabilities are given.
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Figure 2. The 2-2-1 network.

3 Probabilitiesin the 2-2-1 networ k

Also in this section the boolean values are interpreted as O (false) and 1 (true).

Using the probabilities of table 1, we were able to compute the probabilities of the 2-2-1
network (see figure 2). These probabilities are given in table 2 (the computations are given
in appendix A). From this table it is clear that the ratio of the probabilities of the trivial
functionsf, and,; to those of the other functions is lazge0j, while the probability of
the not linearly separable functiorfg ( aigd ) is small with respect to those of the other
functions.

n outputs off, Po(f)

0 (0,0,0,0) 11013/27648
1 (0,0,0,2) 271/27648
2 (0,0,1,0) 508/27648
3 (0,0,1,1) 484/27648
4 (0,1,0,0) 508/27648
5 (0,1,0,2) 484/27648
6 (0,1,1,0) 24/27648

7 (0,1,1,2) 532/27648
8 (2,0,0,0) 532/27648
9 (2,0,0,1) 24/27648
10 (1,0,1,0) 484/27648
11 (1,0,1,1) 508/27648
12 (1,1,0,0) 484/27648
13 (1,1,0,1) 508/27648
14 (1,1,1,0) 271/27648
15 (1,1,1,1) 11013/27648

Table 2. The probabilities of the functions of the 2-2-1 network of figure 2. These probs
ties are based on the probabilities in table 1.



4 Probabilitiesfor boolean values-1 and 1

When the inputs of the network for a boolean function are -1 (false) and 1 (true) instead of
0 and 1, it is also possible to calculate the a priori probabilities for the one-layer network of
figure 1. So for example the functién is represented if the weights satisfy the following
inequalities:

g(wWyg—w; —w,) <€ - Wy —W,; =W, <—a

g(wg+w;—w,) <g = Wp +W; =W, <—a

g(wg—w; +w,) <g - Wy —W,; + W, <—0

g(wy+w, +w,) <e = Wp + W, +W, <—a
Here we suppose that the transfer funcodix) is a sigmoide between the values -1 and
1,e.0.9(x) = tanh(x) .

If a is equal to zero the volume of the part of the cube<w, <N i =,0,1, 2 , for

which the weights result ify , is equal38§® . This volume results in an a priori proba-
bility P, (f,) of 1/12. Table 3 contains the a priori probabilities of the boolean functions
of two inputs for the network of figure 1. It is clear from this table that the probability
distribution is more regular than that of table 1. Similarly to the calculations (see appendix
B) for the 2-2-1 network with inputs and outputs between 0 and 1, we calculated the proba-
bilities for this network with inputs and outputs between -1 and 1. The a priori probabilities
for the 2-2-1 network with inputs and outputs -1 and 1 are given in table 4. Again the prob-

n outputs off, Po(fr)
0 (-1,-1,-1,-1) 1/12
1 | (-1,-1,-1,1) 1/16
2 (-1,-1,1,-1) 1/16
3 (-1,-1,1,1) 1/12
4 | (-1,1,-1,-1) 1/16
5 (-1,1,-1,2) 1/12
6 (-1,1,1,-1) 0

7 (-1,1,1,1) 1/16
8 (1,-1,-1,-1) 1/16
9 (1,-1,-1,1) 0

10 | (1,-1,1,-1) 1/12
11 (1,-1,1,1) 1/16
12 (1,1,-1,-1) 1/12
13 | (1,1,-1,2) 1/16
14 1,1,1,-1) 1/16
15 (1,1,1,2) 1/12

Table 3. The probabilities of the boolean functions of the network of figure 1. The
difference with table 1 is that here the inputs are -1 and 1 instead of 0 and 1.



n outputs off, Po(fr)

0 | (-1-1-1-1) 461/2304
1 (-1,1-,-1,1) 110/2304
2 | (1--1,1,-1) 110/2304
3 (-1,-1,1,1) 121/2304
4 (-1,1,-1,-1) 110/2304
5 (-1,1,-1,1) 121/2304
6 (-1,1,1,-1) 9/2304
7 (-1,1,1,1) 110/2304
8 | (1,-1,-1,-1) 110/2304
9 (1,-1,-1,1) 9/2304
10 (1,-1,1,-1) 121/2304
11 (1,-1,1,1) 110/2304
12 (1,1,-1,-1) 121/2304
13 (1,1,-1,1) 110/2304
14 (1,1,1,-1) 110/2304
15 (1,1,1,1) 461/2304

Table 4. The probabilities of the functions of the 2-2-1 network of figure 2. These prol
ties are based on the probabilities in table 1.

abilities of the trivial functions are large with respect to those of the other functions,
however the differences are less extreme than in the case of table 2 g.8tiostead o¢
20).

5 Theentropy of a neural network

Defining the entropy of a neural network, we follow Schweire. (1990) (see also Herz
et al. (1991, section 6.5)).

Consider an ensemble of layered networks with fixed architecture and varying weights.
Such an ensemble is described by its configuration spE¢edvery pointW is a list of
values for all weights needed to select a network design within the chosen architecture. The
resulting network realizes a specific input-output functyonfyy (X).

A densityp, (W) on the weight space constrains the effective volume of the configura-
tion space to

Z, = I Po (W) dwW
Regions corresponding to the implementation of the fundti@me identified by the

masking function

WY =Ly it g,



and occupy a volume
Z() = [0 (W) py (W) dW

The specification of an architecture and its corresponding configuration space thus defines
a probability on the space of functions:

Z(f
Po(f) = £
which results from a full exploration of configuration spdeg(f) is the probability that a

randomly chosen network in configuration space will realize the funttidhe class of
functions implementable by a given architecture is

F = {f|P,(f) #0}
The entropy of the distribution

S = —g P, (f) “logP, (f)

is a measure of the functional diversity of the chosen architecture. The maximum value of
S is Zlog (nz) , whereng is the number of functions in cl&ssnd is attained when all
realizable functions are equally likely, and corresponds to the uniform distribution,
Po(f) = 1/np forall fOF.

Supervised learning results in a monotonic reduction of the effective volume of the
configuration space. An exampi€ = (x9, y%) of the desired function is learned by
removing fromF every function that contradicts it. A sequencearoinput-output pairs
(&%, ..., Em) , Which are examples df thus defines a sequence of classes of functions,

F OF _,0..F,OF

where every functionf JF ~ correctly classifies all of the training exampkes ,
1< a <m. The effective volume of configuration space is reduced to

z = L ;Fmef (W) pg (W) dW

by learning a training set of sire
The probability on the space of functions is modified by learning and becomes

Pn(f) = X fortoF,,.

m

The entropy of the distribution aftem  training examples,
2
S, = —% P, (f) “logP,, (f)

reflects the narrowing of the probability distributior§, <S, . The entropy decrease
Nm = Sy_1— S, defines the efficiency of learning thieh example.

The optimal case o, = 0 corresponds to the elimination of all ambiguity about the
function to be implemented.

Thus far we followed Schwartt al. (1990). If all functions have equal probability it is
clear thatS,, = 2Iog|F |F'r| being the cardinality &, , and thus in that Ggse  will
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decrease wheR , becomes smaller. However, in general all functions will not have equal
probability as we showed in sections 2 to 4.

6 An example of increasing entropy

We start with an artificial example:
Consider the set of function# =f{ o, f3, f4, f5, fg}, with probabilities
Pn(fe) = 1/2,P,(f) = 1/10,i = 1...5. The entropy§,, is equal to:

S, = —% DzlogE:—ZLE— 5 Dllo Dzloggl—log - % Flog20= 2.1€

Suppose thenf+1)th example accepfs fg , but rejeifs . Then we get the new set of
functionsF, ., = {1, Ty, f3, fy, f5} with probabilitiesP,,, (f) = 1/5,i = 1...5 . The
corresponding entrop®..,, is:

Sp+1 = -5 logFEH = “logs = 2.32

since5>,/20 itis clear thatin this caSe, ;> S, .
In (McEliece, 1977) the conditional entropyXgfgivenY =y is defined as:

H(X|Y=y) = =5 p(x]y)logp (x]y)
X
and the conditional entrog (X|Y) s its expectation:
H(XIY) =5 p(y)H(X]Y=y)
y

Example 1.7 in (McEliece, 1977) also shows that the conditional entdpy| Y=y) can
be larger than the original entropy(X) . Itis also proved that the mutual information

L(XY) = H(X) =H(X]Y)
is positive (theorem 1.3 in (McEliece, 1977)). So on the average (learning arbitrary func-
tions) the entropys,, will decrease, while for learning some concrete function it is possible
that sometimess,, increases.

A concrete example of increasing entropy for a neural network follows from the proba-
bilities of the 2-2-1 network as given in table 2. Presenting the training examples:
(0,00 -0, (0,1) - 0,and(1,0) - 1 resultsin values for the entropi€s= 0.636
andS; = 1.000. So here we found a real example of a neural network for which the entropy
increases by learning an example. The clue of this example is that after two examples the
trivial function f, is allowed, resulting in a low entropy because of the high probability of
the trivial function. After the third example two functions with almost equal probability
remain.



7 Conclusion

We calculated the probabilities of boolean functions of 2 inputs for a one-layer network
and for the 2-2-1 network both interpreting boolean values as 0 and 1 and as -1 and 1. For
the one-layer network the probability distribution for the linearly separable boolean func-
tions is much more regular when interpreting the boolean values as -1 ans 1 than when
using the interpretation O and 1. Thus we expect that on the average for the one-layer
network nontrivial functions are easier learned with the -1, 1 interpretation than with the 0O,

1 interpretation of boolean values. The trivial functions will be easier learned by a one-
layer network with the 0, 1 interpretation of boolean values.

For the two-layer 2-2-1 network the probabilities of the trivial functions are larger than
those of the other functions for both interpretations. So to speed up learning it seems essen-
tial to find as soon as possible a weight configuration that excludes the trivial functions.

The entropy introduced by Denketral. (1987) for learning by examples is a so-called
conditional entropy. It is possible that presenting concrete examples will result in an
increase of the entropy. Finally, after presenting enough examples so that all ambiguity
about the function is eliminated, the entropy will become zero. Especially when the proba-
bilities of the representable functions vary strongly, sometimes the entropy will increase.
When all probabilities are equal, the entropy will always decrease. By computing the prob-
abilities for a simple neural network representing boolean functions of two variables, we
showed that these probabilities can vary strongly in practice. Especially the trivial func-
tions (all patterns giving the same output) have a high probability. Thus for a neural
network it is possible to be confronted with the effect that the entgpy increases some-
times. We showed that for the 2-2-1 network this effect indeed occurs.

From a learning perspective it is interesting to think about the meaning of the remaining
entropy after learning a training set containing a fixed number of examples. As long as one
of the trivial functions is allowed by the training set, the entropy can be smaller than when
both trivial functions are excluded, because of the large probability of the trivial functions.
So, from the perspective of the entropy (functional diversity) it can sometimes be a good
strategy to choose the training set such that it allows one of the trivial functions, because
the entropy will be smaller. However, when a nontrivial function has to be learned it is
probably more realistic to choose a training set that excludes the trivial functions. The
entropy can be larger, but the value of the remaining entropy will be more realistic with
respect to the amount of work that has to be done to learn the desired function. Also the
probability of the desired function will be higher for such a training set.
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Appendix A Probabilities of the 2-2-1 network (inputs0 and 1)
Table 5 contains the probabilities for the functidps f;to  as function of the function of

the hidden nodes (in table 5 the first hidden ndde f, = and the second hidden node runs
from f, tof, ). The probabilities not given in this table wilh f= can be derived by the
properties that the probabilities fer, f= are equal to thoseifor f,-= and also the
probabilties forf, are equal to those fgg_; . The tables 6 to 11 contain the probabilities
for the first hidden node representifjg fio ,&nd  (the probabilityHhat représents
probabilities probability of this combina-

HilHo| fo | Ty | fo | fa | T4 | 5 | fg | f7 tion of H; andH,

folfo|2/2] O| O| O] O] O| O] O 13/48 - 13/48

fo|fy|3/8/1/8 0| O] O] O| O] O 13/48 - 1/48

fo|f,|3/8| 0| 1/8 0| O] O| O] O 13/48 - 2/48

fo|f3(3/8) 0| 0| 1/8 O O] O] O 13/48 - 2/48

fo|f4|3/8) O O| O| 2/8 0| O] O 13/48 - 2/48

fo|fs(3/8)/ O] O| O| O| 18 O] O 13/48 - 2/48

folfs| - | - | -1 -1-1-1-1- 0

fo|f713/8/ 0| O| O] O| O| O 1/8 13/48 - 2/48

Table 5. The probabilities of the functiofbs fto  as function of the hidden nodes.
this table the first hidden nodd,  represents the fundtjon . The probabilities of |
functionsfg tof,- follow from the fact that the probability bf is equal to the proba
bility of f15_i. The probabilities for the second hidden node represerigiggi a
equal to those for the second hidden node represefiting
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probabilities probability of
Hi|Ho| fo | f1 | fo | fg | fa | f5 | fs | f7 |this combination
fi | fo| 3/8 | 1/8 0 0 0 0 0 0 1/48 - 13/48
fi | f, |17/48] 7/48) O 0 0 0 0 0 1/48 - 1/48
fi | fo | 7124 | 1/12| 1/12] 1/24 0 0 0 0 1/48 - 2/48
fi | f3 | 5/16 | 1/16| 1/24) 1/12 0 0 0 0 1/48 - 2/48
fi | fa | 7/24| 1/22] O 0 1/12 1/24 O 0 1/48 - 2/48
fi | f5 | 5/16 | 1/16] O 0 1/24 1/12 O 0 1/48 - 2/48
f1 | fs - - - - - - - - 0
fi | f7 | 5/16 | 1/16] O 0 0 0| 124 1/12 1/48 - 2/48

Table 6. The probabilities for the first hidden node represehing

probabilities probability of
HilHo| fo | 1 | T | fa | f4 | f5 | fg | f7 |this combination
fo | fo | 3/8 0 1/8 0 0 0 0 0 2/48 - 13/48
fo | Ty | 7124 | 1/12| 1/12) 1/24 0 0 0 0 2/48 - 1/48
f, | f, |17/48 O | 7/48) O 0 0 0 0 2/48 - 2/48
f, | f3 | 5/16 | 1/24| 1/16| 1/12 0 0 0 0 2/48 - 2/48
fo | T4 | 724 0 1/12| 0 | 1/12 0| 1/24 O 2/48 - 2/48
f, | f5 | 7/24 0 1/12 O 0| 1/172 0 1/24 2/48 - 2/48
fy | fg - - - - - - - - 0
f, | f7 | 5/16 0 1/16| O 0| 1/24 0 1/12 2/48 - 2/48

Table 7. The probabilities for the first hidden node represeh}ing

probabilities probability of
HilHa| fo | 1 | T | fa | fa | f5 | fe | f7 |[this combination
fa | fo | 3/8 0 0 1/8 0 0 0 0 2/48 - 13/48
fa | fy | 5/16 | 1/16| 1/24) 1/17 0 0 0 0 2/48 - 1/48
fa | f, | 5/16 | 1/24| 1/16| 1/12 0 0 0 0 2/48 - 2/48
f3 | f3 |17/48] O 0 | 7/48 O 0 0 0 2/48 - 2/48
fa | T4 | 7/24 0 0 | /12 1/12 0 0 1/24 2/48 - 2/48
fa | f5 | 13/48| 1/48| 1/24 1/24 1/24 1/24 0 1/24 2/48 - 2/48
fa3 | g - - - - - - - - 0
f3 | f7 | 5/16 0 0 | 1/16, 1/24 0 0 1/12 2/48 - 2/48

Table 8. The probabilities for the first hidden node represefing
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probabilities

probability of

HilHa| fo | f1 [ fo | fs | fa | s | fg | f7 |this combinatiol
fq | fo | 3/8 0 0 0 1/8 0 0 0 2/48 - 13/48
fo | f1 | 7124 1/12) O 0| /12 1/24 O 0 2/48 - 1/48
fo || 724 0 | /12| O | 1/12 0| 1/24 O 2/48 - 2/48
fa| T3] 7/24| O 0 | 1/12| 1/22 O 0| 1/24 2/48 - 2/48
fq | T4 |17/48] O 0 0| 748 O 0 0 2/48 - 2/48
fqg | f5 | 5/16 | 1/24| O 0| /1 1/22 O 0 2/48 - 2/48
fq | g - - - - - - - - 0
fo | f7 | 5/16| O 0 | /24 1/726 O 0| 1l/12 2/48 - 2/48
Table 9. The probabilities for the first hidden node represefing
probabilities probability of
HilHo| fo | 1 | T | f3 | f4 | 5 | fg | f7 |this combinatiof
fg | fo | 3/8 0 0 0 0 1/8 0 0 2/48 - 13/48
fs | f; | 5/16 | 1/16| O 0| 1/24 1/122 O 0 2/48 - 1/48
fs | fo | 7/24] 0 | 1/12] O 0| 1/12 0| 1/24 2/48 - 2/48
fs | f3 | 13/48| 1/48| 1/24 1/24 1/24 1/24 0 1/24 2/48 - 2/4§
fg | f4 | 5/16 | 1/24| O 0| /1 1/22 O 0 2/48 - 2/48
fg | f5 |17/48] O 0 0 0| 7/48 O 0 2/48 - 2/48
fs | fg - - - - - - - - 0
fs | f, | 516 | 0 | 1/24 O 0| 1/16 o 1/12 2/48 - 2/48
Table 10. The probabilities for the first hidden node represefiing
probabilities probability of
HilHa| fo | 1 | fo | fs | fa | 5 | fe | f7 |this combinatiof
f; | fo | 3/8 0 0 0 0 0 0 1/8 2/48 - 13/48
f, | f, | 5/16 | 1/16] O 0 0 0| 1/24 1/12 2/48 - 1/48
f1f, | 516 0 | 1/16] O 0| 1/24 0| 1/12 2/48 - 2/48
f, | f3| 516 O 0 | 1/16| 1/24 O o 1/12 2/48 - 2/48
f, | f4 | 5/16| O 0 | 1/24| 1/726 O o 1/12 2/48 - 2/48
f; | fs | 5/16 | 0 | 1/24f O 0 | 1/16 0| /12 2/48 - 2/48
f7 | fg - - - - - - - - 0
f, | f, |17/48] O 0 0 0 0 0| 7/48 2/48 - 2/48

Table 11. The probabilities for the first hidden node represehting
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From these tables the a priori probabilities for the boolean functions in the 2-2-1
network can be derived. For example in table 5 we see that when both hidden nodes repre-

sentfy the probability of the network representifagis equal to 1/2. The probabilty that

both hidden nodes represdgtis equal to (13/4§) So we find here a contribution of
the tables 5 to 11 has to be multiplied by a factor 4. Calculating the probabilities from the

occurs when the first hidden node represgyasid the second hidden node represgats
tables 5 to 11 results in:

and vice versa and also when both hidden nodes repfeses each probability found in

1/2 - (13/485 to the probability offy for the complete network. This same probability

IS zero).

oo}
242&4
oo}
T ol
~NS
+ +8
0
R NIF
0 X
R NS
(N
ﬂ%1_4
+
0
—
1@4 N
0
o~
1@4 &4
<
m__mwlz
+ +
™00
D_W_o <
o~
AR
2%
i
n OO
+ foo)
o~
fo0) ~
—|R D
moo THS
N <
3_87_2
+ +8
Yo NS
] [
Al 53
N
Od om
| I—
<
Il
—_
o
oS
N—r
o
o

2&4

~I @

N~
<

NES

o)
NI

e

[e0]
<

o)
2&4
0|3

™00
~

!
2&4

B

o

o)
NI
N

N

+ +
© e}
l&4
[e0] n/_m_ml.o
© ©
w|g
|
¢ s e
2&4 1

Q% 2 2 =

o™

NEMN

1&4
e

™00

=

iy
[e0]
NIF

o)
NI

—|©

508

12 U&

=S

oo

®
NIF

~IZ
IS
~IZ
~IZ
O
O

o)
N|<F

(o0]
NIF

4
I
2&%
2&%

Sl

13

484

12 U&



_ _ 508
Po(fy) = Polfy) = 12U&
_ _ 484
Po(fs) = PO(f3) = g
112,122, 122 1.2-17_ 24
Po“e)-4[24%%%4%%*24%%*24%%} LT
_ 1432 1.1 -2.01 22,1220 122,12 20
Polt) = 4| 5 Ui ™ 12 5 s ™ o s i 12 s i " 2 i s Ui 33 s i
01 22,1220 122,12 20,01 243,121
54 Crs i+ 13 s Cis 0 2 oz Cis s * 15 s i 0 05 s s " 12 s s
1.2.2.72-20
4 z%%us%%m}
_ 532
12 U&

Appendix B Probabilitiesfor inputs-1and 1

Using the probabilities from table 4 in order to compute the probabilities in the 2-2-1
network interpreting the boolean values as -1 (false) and 1 (true) results in the tables 12 to
18. From these tables the following a priori probabilities are derived:

probabilities probability of this
HilHo| fo | f1 [ o | f3 | fa | fs | fs | f7 combination
folfol 2| 0] 0| 0] 0] 0] 0| O 112 - 112
fo |f, | 7/24| 5/24 0| 0| 0] o] o] o 112 - 1/16
fo|f,|7/24] 0 | 524 0| 0] o] o] o 112 - 1/16
fo|fs|7/24] 0| 0 |524 0| 0| 0| o 112 - 112
fo|fs|7/24] 0| 0| 0|524 0| 0| o 112 - 116
fofs|7/24] 0] 0| 0| 0] 524 o] o 112 - 112
folfel - | - | - | - | - | - | - | - 0
fo|f,|7/24] 0] 0| 0| 0] 0| O 5/24 112-1/16

Table 12. The probabilities of the functiohs fio  as function of the hidden nodes v
the inputs (and outputs) are equal to -1 and 1 and the first hidden node reggesents
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probabilities probability of

Hi|Ho| fo | fu | fo | T3 [ fa | fs | fg | f7 |this combination
fi | fo | 7/124| 5/24) O 0 0 0 0 0 1/16 - 1/12

f, | f, |5/24| 7724 0| 0| 0| 0| 0| 0| 116-1/16

fi | T, | 7/48| 7/48| 7/48 1/16 O 0 0 0 1/16 - 1/16
f, | f5 | 7/48| 7/48] U1 7/48 0| 0| 0] o0 116112
f | T4 | 7/48| 7/48] O 0| 7/48 1/26 O 0 1/16 - 1/16
fi | fs | 7/48| 7/48] O 0| 1/16 7/48 O 0 1/16 - 1/12
| - | - | - - | -1 --1- 0

fi | f7 | 7/148| 7/48) O 0 0 0| 1/16 7/48 1/16 - 1/16

Table 13. The probabilities for the first hidden node represeflting (inputs equal to -1 ¢

probabilities probability of
Hi|Hy| fo | f1 | fo | T3 | f4 | f5 | fs | 7 |this combination

f, | fo | 7/24] O | 524 0] 0| 0| 0| O] 1/16 1/12
f, | f, | 7/48| 7/148] 7149 116 o o] ol o 1/16-1/16
f, | f, [5/24] 0 [ 724 o] o| o] o| o] 116 1/16
f, | t3 | 7/48| 1/16] 7/49 7/148 o o] ol o 116-1/12
f, | f, |7/48] 0 | 7/48 0| 7/48 o] 116 0] 1/16-1/16

f, | f5 | 7/48] 0 | 7/48 O O 7/48 0| 1/16 1/16 - 1/12
folfg!| - - - - - - - - 0

f, | f,17/48] 0 | 7/48 O 0| 1/16 O 7/48 1/16 - 1/16
Table 14. The probabilities for the first hidden node represefying  (inputs equal to -1 ¢

prObabilitieS prObab”Ity of
Hi|Hy| fo | f1 | fo | f3 | f4 | f5 | fs | 7 |this combination

fa|fo |7/24] O | O | 524 0| 0] 0| 0] 1/12-1/12
f; | f, [7/48] 7/48] 1/14 7/48 0| 0| o] o 1/12-1/16
fy | f, |7/48] 1/16] 7/44 7/48 0| 0| o o 112 1716
fa| f3 [5/24] 0| 0724 o] o] o] o w12.-1/12
fo | f, [7/48] 0 | o | 7/48 7148 0| o| 11p 1/12-1/16
fs | fs [1/12] 1/16] 1/16 1/12 116 112 o 116 1/12-1/12

tlfs| - | - -1 -1 -1-1-71-1 o
fo | f, [7/48] o | o | 7748 116 o] o] 748 1/12-1/16

Table 15. The probabilities for the first hidden node represefifing  (inputs equal to -1 ¢
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probabilities probability of
Hi|Ha| fo | fo | fo | f3 | fa | f5 | f6 | f7 |this combination
f,1fo|7/24] 0] O] O] 524 o] 0| 0] 116 112
fq | T, | 7/48| 7/148] O O| 7/48 1/16 O 0 1/16 - 1/16
fgo | T | 7/48| O | 7/48 0 | 7/48 Ol 1/16 O 1/16 - 1/16
fp | f3 | 7/48] O 0 | 7/48 7/49 0 0| 1/1p 1/16 - 1/12
f,|f, |5/24] 0| 0| 0| 724 o| o] 0| 116 1/16
f, | fs | 7/48| 1/16] 0| 0| 7/48 7/48 0| 0  1/16-1/12
0l fe| - | - | -] - -1 -1-1- 0

fo | f7|7/48] O 0| 1/16 7/48 O 0| 7/4B 1/16 - 1/16

Table 16. The probabilities for the first hidden node represefjting  (inputs equal to -1 ¢

probabilities probability of
Hi|Ha| fo | o | fo | f3 | fa | fs | f6 | f7 |this combination
fg | fo | 7/24] O 0 0 0 | 5/24 0 0 1/12 - 1/12
fg | f1 | 7/48| 7/48] O 0| 1/16 7/48 O 0 1/12 - 1/16
fg | fo | 7/48| 0O | 7/48 O O 7/48 0| 1/1b 1/12 - 1/16
fs | f3 | 1/12| 1/16| 1/1 1/12 1/16 1/232 O 1/16 1/12 - 1/12
fs | f, | 7/48] 1/16] 0| 0| 7/48 7148 0| o0 112 1/16
fs | fs |5/24] 0| 0| 0] 0] 724 0| 0| 112 112
el fe| - | - | - | -1 -1 -1-1- 0

fs | f, | 7/48] 0O | 1/16f O O 7/48 0| 7/48 1/12 - 1/16

Table 17. The probabilities for the first hidden node represefifing  (inputs equal to -1 ¢

probabilities probability of
HilHa| fo | fo | fo | f3 | fa | fs | f | f7 |this combination
f; | fo | 7/124] O 0 0 0 0 0| 5/24 1/16 - 1/12
f, | fy | 7/48| 7/148] O 0 0 0| 1/16 7/48 1/16 - 1/16
f, | f, | 7/48] 0 | 7/48 O O 1716 O 7/48 1/16 - 1/16
f, 1%, |7/48] 0| 0| 7/48 116 0| 0| 7/48 1/16-1/12
f, | f4 | 7/48] O 0| 1/16 7/48 O 0| 7/4B 1/16 - 1/16
f, | f5 | 7/48] 0 | /16 O O 7/48 0| 7/48 1/16 - 1/12
ot - | - | - | - | -] -1-1- 0
f, | f,|15/48] O 0 0 0 0 0| 7/24 1/16 - 1/16

Table 18. The probabilities for the first hidden node represeﬁ;ing (inputs equal to -1 ¢
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