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Abstract

The a priori probabilities of boolean functions with two inputs are calculated for a
one-layer neural network and for the 2-2-1 network. The calculations are done both
interpreting boolean values as 0 and 1 and as -1 and 1. For the 2-2-1 network the prob-
abilities of the trivial functions (same output for all patterns) are much larger than
those of the other functions, while the probabilities of the not linearly separable func-
tions are much smaller. Calculation of the conditional entropy of the neural network
based on these probabilities results in an example where the conditional entropy
increases while learning examples.

1  Introduction

The a priori probabilities for a neural network representing certain functions can give infor-
mation about the learnability and the generalization ability of the network when learning
those functions from examples. For small networks these probabilities can be calculated
explicitly. In this paper the a priori probabilities of boolean functions with two inputs are
calculated for a one-layer neural network and for the 2-2-1 network. The calculations are
done both for interpreting boolean values as 0 and 1 and as -1 and 1. For the one-layer
network we will find that

• for boolean values equal to 0 and 1, the a priori probabilities for the trivial functions
(same output for all patterns) are much larger than those for the other linearly separable
functions, while

• for boolean values equal to -1 and 1, the a priori probabilities are more equal for all
functions.
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For both interpretations of the boolean values the probabilities of the trivial functions in
the 2-2-1 network are much larger than those of the other functions, while the probabilities
of the XOR-like functions are much smaller.

In their study of the generalization ability of layered feedforward neural networks
Denkeret al. (1987) introduce the entropySm and the average generalization abilityGm as
function of the sizem of the training set. The entropySm is a measure of the functional
diversity of the chosen architecture restricted so that it correctly represents them examples
of the training set. In Denkeret al. (1987) it is suggested that the entropySm decreases
when m increases, while in Solla (1992) and Schwartzet al. (1990) it is said explicitly.
During his work for his master’s thesis Claas (1996) tried to prove that indeed the entropy
as defined by Denkeret al. (1987) has to decrease withm. He could not find a proof and
thus we tried the opposite: we tried to find a counter example hoping to get more insight in
the behaviour ofSm. We were indeed able to construct a counter example. SoSm will not in
general decrease withm. The case is thatSm is a so-called conditional entropy (McEliece,
1977). On averageSm will decrease, but presenting a special example can lead to an
increase of the entropy. This example of increasing entropy is found for the 2-2-1 network
interpreting the boolean values as 0 and 1.

Section 2 contains the probabilities for the one-layer network and section 3 those for the
2-2-1 network. In both sections the boolean values are interpreted as 0 and 1. Section 4
gives comparable results for the interpretation of the boolean values as -1 and 1. In section
5 the definition of (conditional) entropy is given following Schwartzet al. (1990). In
section 6 we give examples that this entropy can increase. Section 7 contains the conclu-
sions. Appendices A and B contain the calculations of the probabilities for the 2-2-1
network based on those for the one-layer network.

2  Probabilities for a one-layer network

In this section the boolean values are interpreted as 0 (false) and 1 (true).

Consider the one-layer network with two inputs  and  and one output nodeY as
given in figure 1. The extra input  has value 1 and serves as a threshold value of the

output node. This network has three weights , , . We take the transfer function of
the output node equal to the sigmoid , so the output of the network is

 as function of the inputs  and . We interpret the output as
zero if  (i.e. ) and as one if  (i.e. ).

X1 X2

w0
w1

w2

X0 = 1 X1 X2

Y

Figure 1.  A one-layer network with two inputs and one output node.

X0

w0 w1 w2
g x( ) 1 1 e x–+( )⁄=

g w0 w1X1 w2X2+ +( ) X1 X2
g x( ) ε< x α–< g x( ) 1 ε–> x α>
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This network is able to learn/represent all linearly separable boolean functions of 2 vari-
ables. So for example the trivial function  for all  is repre-
sented if the weights satisfy the following inequalities:

Restricting the weight space to a cube  results in a volume of measure
 for the part of the weight space correctly repre-

senting the function with all outputs equal to zero (Claas, 1996).

We computed the volumes of the parts of the weight space corresponding to all repre-
sentable boolean functions and their corresponding probabilities. Taking the limit
resulted in the probabilities given in table 1. Note that if , the exact value of  is no
longer important.

Both the XOR function and the NOT XOR function have probability zero, since they
cannot be represented by the network.

f X1 X2,( ) 0= X1 X2 0 1,{ }∈,

g w0( ) ε< ⇔ w0 α–<

g w0 w1+( ) ε< ⇔ w0 w1+ α–<

g w0 w2+( ) ε< ⇔ w0 w2+ α–<

g w0 w1 w2+ +( ) ε< ⇔ w0 w1 w2+ + α–<

N wi N< <–
N2 N α–( ) N N α–( ) 2 1 6⁄ N α–( ) 3+ +

N ∞→

n outputs offn P0(fn)

0 (0,0,0,0) 13/48
1 (0,0,0,1) 1/48
2 (0,0,1,0) 2/48
3 (0,0,1,1) 2/48
4 (0,1,0,0) 2/48
5 (0,1,0,1) 2/48
6 (0,1,1,0) 0
7 (0,1,1,1) 2/48
8 (1,0,0,0) 2/48
9 (1,0,0,1) 0
10 (1,0,1,0) 2/48
11 (1,0,1,1) 2/48
12 (1,1,0,0) 2/48
13 (1,1,0,1) 2/48
14 (1,1,1,0) 1/48
15 (1,1,1,1) 13/48

Table 1.  The probabilities of the functions of the network of figure 1. The numbern
corresponds to the interpretation of the output pattern as binary number. In the output
pattern the first digit is the output for input (0, 0), the second digit that of , the
third digit is the output of (1, 0) and the most right digit corresponds to the output for
both inputs equal to 1. In the most right column the probabilities are given.

0 1,( )

N ∞→ α
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3  Probabilities in the 2-2-1 network

Also in this section the boolean values are interpreted as 0 (false) and 1 (true).
Using the probabilities of table 1, we were able to compute the probabilities of the 2-2-1

network (see figure 2). These probabilities are given in table 2 (the computations are given
in appendix A). From this table it is clear that the ratio of the probabilities of the trivial
functions  and  to those of the other functions is large (≥ 20), while the probability of
the not linearly separable functions (  and ) is small with respect to those of the other
functions.

 1
X1 X2

Y

 1

Figure 2.  The 2-2-1 network.

n  outputs offn P0(fn)

0 (0,0,0,0) 11013/27648
1 (0,0,0,1) 271/27648
2 (0,0,1,0) 508/27648
3 (0,0,1,1) 484/27648
4 (0,1,0,0) 508/27648
5 (0,1,0,1) 484/27648
6 (0,1,1,0) 24/27648
7 (0,1,1,1) 532/27648
8 (1,0,0,0) 532/27648
9 (1,0,0,1) 24/27648
10 (1,0,1,0) 484/27648
11 (1,0,1,1) 508/27648
12 (1,1,0,0) 484/27648
13 (1,1,0,1) 508/27648
14 (1,1,1,0) 271/27648
15 (1,1,1,1) 11013/27648

Table 2.  The probabilities of the functions of the 2-2-1 network of figure 2. These probabili-
ties are based on the probabilities in table 1.

f0 f15
f6 f9
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4  Probabilities for boolean values -1 and 1

When the inputs of the network for a boolean function are -1 (false) and 1 (true) instead of
0 and 1, it is also possible to calculate the a priori probabilities for the one-layer network of
figure 1. So for example the function  is represented if the weights satisfy the following
inequalities:

Here we suppose that the transfer function  is a sigmoide between the values -1 and
1, e.g. .

If  is equal to zero the volume of the part of the cube , , for
which the weights result in , is equal to . This volume results in an a priori proba-
bility  of . Table 3 contains the a priori probabilities of the boolean functions
of two inputs for the network of figure 1. It is clear from this table that the probability
distribution is more regular than that of table 1. Similarly to the calculations (see appendix
B) for the 2-2-1 network with inputs and outputs between 0 and 1, we calculated the proba-
bilities for this network with inputs and outputs between -1 and 1. The a priori probabilities
for the 2-2-1 network with inputs and outputs -1 and 1 are given in table 4. Again the prob-

f0

g w0 w1– w2–( ) ε< ⇔ w0 w1– w2– α–<

g w0 w1 w2–+( ) ε< ⇔ w0 w1 w2–+ α–<

g w0 w1– w2+( ) ε< ⇔ w0 w1– w2+ α–<

g w0 w1 w2+ +( ) ε< ⇔ w0 w1 w2+ + α–<

g x( )
g x( ) tanh x( )=

α N wi N< <– i 0 1 2, ,=
f0

2
3
---N3

P0 f0( ) 1 12⁄

n  outputs offn P0(fn)

0 (-1,-1,-1,-1) 1/12
1 (-1,-1,-1,1) 1/16
2 (-1,-1,1,-1) 1/16
3 (-1,-1,1,1) 1/12
4 (-1,1,-1,-1) 1/16
5 (-1,1,-1,1) 1/12
6 (-1,1,1,-1) 0
7 (-1,1,1,1) 1/16
8 (1,-1,-1,-1) 1/16
9 (1,-1,-1,1) 0
10 (1,-1,1,-1) 1/12
11 (1,-1,1,1) 1/16
12 (1,1,-1,-1) 1/12
13 (1,1,-1,1) 1/16
14 (1,1,1,-1) 1/16
15 (1,1,1,1) 1/12

Table 3.  The probabilities of the boolean functions of the network of figure 1. The
difference with table 1 is that here the inputs are -1 and 1 instead of 0 and 1.
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abilities of the trivial functions are large with respect to those of the other functions,
however the differences are less extreme than in the case of table 2 (ratio≥ 3.8 instead of≥
20).

5  The entropy of a neural network

Defining the entropy of a neural network, we follow Schwartzet al. (1990) (see also Herz
et al. (1991, section 6.5)).

Consider an ensemble of layered networks with fixed architecture and varying weights.
Such an ensemble is described by its configuration space {W}: every pointW is a list of
values for all weights needed to select a network design within the chosen architecture. The
resulting network realizes a specific input-output function,y = fW(x).

A density  on the weight space constrains the effective volume of the configura-
tion space to

Regions corresponding to the implementation of the functionf are identified by the
masking function

n  outputs offn P0(fn)

0 (-1,-1,-1,-1) 461/2304
1 (-1,1-,-1,1) 110/2304
2 (1-,-1,1,-1) 110/2304
3 (-1,-1,1,1) 121/2304
4 (-1,1,-1,-1) 110/2304
5 (-1,1,-1,1) 121/2304
6 (-1,1,1,-1) 9/2304
7 (-1,1,1,1) 110/2304
8 (1,-1,-1,-1) 110/2304
9 (1,-1,-1,1) 9/2304
10 (1,-1,1,-1) 121/2304
11 (1,-1,1,1) 110/2304
12 (1,1,-1,-1) 121/2304
13 (1,1,-1,1) 110/2304
14 (1,1,1,-1) 110/2304
15 (1,1,1,1) 461/2304

Table 4.  The probabilities of the functions of the 2-2-1 network of figure 2. These probabili-
ties are based on the probabilities in table 1.

ρ0 W( )

Z0 ρ0 W( ) Wd∫=

Θf W( )
1 if fW f=

0 if fW f≠



=
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and occupy a volume

The specification of an architecture and its corresponding configuration space thus defines
a probability on the space of functions:

which results from a full exploration of configuration space.  is the probability that a
randomly chosen network in configuration space will realize the functionf. The class of
functions implementable by a given architecture is

The entropy of the distribution

is a measure of the functional diversity of the chosen architecture. The maximum value of
 is , where  is the number of functions in classF, and is attained when all

realizable functions are equally likely, and corresponds to the uniform distribution,
 for all .

Supervised learning results in a monotonic reduction of the effective volume of the
configuration space. An example  of the desired function  is learned by
removing fromF every function that contradicts it. A sequence ofm input-output pairs

, which are examples of  thus defines a sequence of classes of functions,

where every function  correctly classifies all of the training examples ,
. The effective volume of configuration space is reduced to

by learning a training set of sizem.
The probability on the space of functions is modified by learning and becomes

, for .

The entropy of the distribution after  training examples,

reflects the narrowing of the probability distribution: . The entropy decrease
 defines the efficiency of learning themth example.

The optimal case of  corresponds to the elimination of all ambiguity about the
function to be implemented.

Thus far we followed Schwartzet al. (1990). If all functions have equal probability it is
clear that ,  being the cardinality of , and thus in that case  will

Z f( ) Θf W( ) ρ
0

W( ) Wd∫=

P0 f( ) Z f( )
Z0

------------=

P0 f( )

F f P0 f( ) 0≠{ }=

S0 P0 f( ) log
2

P0 f( )
f{ }

∑–=

S0 n
F

( )log2 n
F

P0 f( ) 1 n
F

⁄= f F∈

ξα xα yα,( )= f̃

ξ1 … ξm, ,( ) f̃

Fm Fm 1– …F1 F⊆ ⊆ ⊆

f Fm∈ ξα

1 α m≤ ≤

Zm Θf
f Fm∈
∑ W( ) ρ0 W( ) Wd∫=

Pm f( ) Z f( )
Zm

------------= f Fm∈

m

Sm Pm f( ) logPm f( )2

f{ }
∑–=

Sm S0<
ηm Sm 1– Sm–=

Sm 0=

Sm log2
Fm= Fm Fm Sm
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decrease when  becomes smaller. However, in general all functions will not have equal
probability as we showed in sections 2 to 4.

6  An example of increasing entropy

We start with an artificial example:
Consider the set of functions  = {f1, f2, f3, f4, f5, f6}, with probabilities

, , . The entropy  is equal to:

Suppose the (m+1)th example accepts  to , but rejects . Then we get the new set of
functions  = {f1, f2, f3, f4, f5} with probabilities , . The
corresponding entropy  is:

since  it is clear that in this case .
In (McEliece, 1977) the conditional entropy ofX, givenY = y is defined as:

and the conditional entropy  is its expectation:

Example 1.7 in (McEliece, 1977) also shows that the conditional entropy  can
be larger than the original entropy . It is also proved that the mutual information

is positive (theorem 1.3 in (McEliece, 1977)). So on the average (learning arbitrary func-
tions) the entropy  will decrease, while for learning some concrete function it is possible
that sometimes  increases.

A concrete example of increasing entropy for a neural network follows from the proba-
bilities of the 2-2-1 network as given in table 2. Presenting the training examples:

, , and  results in values for the entropies:
and . So here we found a real example of a neural network for which the entropy
increases by learning an example. The clue of this example is that after two examples the
trivial function  is allowed, resulting in a low entropy because of the high probability of
the trivial function. After the third example two functions with almost equal probability
remain.

Fm

Fm
Pm f6( ) 1 2⁄= Pm fi( ) 1 10⁄= i 1…5= Sm

Sm
1
2
--- log

2 1
2
--- 

 ⋅– 5 1
10
------ log

2 1
10
------ 

 ⋅ ⋅– 1
2
--- log

2
20 2.16≈⋅= =

f1 f5 f6
Fm 1+ Pm 1+ fi( ) 1 5⁄= i 1…5=

Sm 1+

Sm 1+ 5 1
5
--- log

2 1
5
--- 

 ⋅ ⋅– log
2

5 2.32≈= =

5 20> Sm 1+ Sm>

H X Y=y( ) p x y( ) logp x y( )
x
∑–=

H X Y( )

H X Y( ) p y( ) H X Y=y( )
y
∑=

H X Y=y( )
H X( )

I X Y;( ) H X( ) H X Y( )–=

Sm
Sm

0 0,( ) 0→ 0 1,( ) 0→ 1 0,( ) 1→ S2 0.636≈
S3 1.000≈

f0
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7  Conclusion

We calculated the probabilities of boolean functions of 2 inputs for a one-layer network
and for the 2-2-1 network both interpreting boolean values as 0 and 1 and as -1 and 1. For
the one-layer network the probability distribution for the linearly separable boolean func-
tions is much more regular when interpreting the boolean values as -1 ans 1 than when
using the interpretation 0 and 1. Thus we expect that on the average for the one-layer
network nontrivial functions are easier learned with the -1, 1 interpretation than with the 0,
1 interpretation of boolean values. The trivial functions will be easier learned by a one-
layer network with the 0, 1 interpretation of boolean values.

For the two-layer 2-2-1 network the probabilities of the trivial functions are larger than
those of the other functions for both interpretations. So to speed up learning it seems essen-
tial to find as soon as possible a weight configuration that excludes the trivial functions.

The entropy introduced by Denkeret al. (1987) for learning by examples is a so-called
conditional entropy. It is possible that presenting concrete examples will result in an
increase of the entropy. Finally, after presenting enough examples so that all ambiguity
about the function is eliminated, the entropy will become zero. Especially when the proba-
bilities of the representable functions vary strongly, sometimes the entropy will increase.
When all probabilities are equal, the entropy will always decrease. By computing the prob-
abilities for a simple neural network representing boolean functions of two variables, we
showed that these probabilities can vary strongly in practice. Especially the trivial func-
tions (all patterns giving the same output) have a high probability. Thus for a neural
network it is possible to be confronted with the effect that the entropy  increases some-
times. We showed that for the 2-2-1 network this effect indeed occurs.

From a learning perspective it is interesting to think about the meaning of the remaining
entropy after learning a training set containing a fixed number of examples. As long as one
of the trivial functions is allowed by the training set, the entropy can be smaller than when
both trivial functions are excluded, because of the large probability of the trivial functions.
So, from the perspective of the entropy (functional diversity) it can sometimes be a good
strategy to choose the training set such that it allows one of the trivial functions, because
the entropy will be smaller. However, when a nontrivial function has to be learned it is
probably more realistic to choose a training set that excludes the trivial functions. The
entropy can be larger, but the value of the remaining entropy will be more realistic with
respect to the amount of work that has to be done to learn the desired function. Also the
probability of the desired function will be higher for such a training set.
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Appendix A Probabilities of the 2-2-1 network (inputs 0 and 1)

Table 5 contains the probabilities for the functions  to  as function of the function of
the hidden nodes (in table 5 the first hidden node  =  and the second hidden node runs
from  to ). The probabilities not given in this table with  =  can be derived by the
properties that the probabilities for  =  are equal to those for  =  and also the
probabilties for  are equal to those for . The tables 6 to 11 contain the probabilities
for the first hidden node representing  to , and  (the probability that  represents

f0 f7
H1 f0

f0 f7 H1 f0
H2 fi H2 f15 i–

fi f15 i–

probabilities probability of this combina-
tion of  andf0 f1 f2 f3 f4 f5 f6 f7

f0 f0 1/2 0 0 0 0 0 0 0 13/48 · 13/48

f0 f1 3/8 1/8 0 0 0 0 0 0 13/48 · 1/48

f0 f2 3/8 0 1/8 0 0 0 0 0 13/48 · 2/48

f0 f3 3/8 0 0 1/8 0 0 0 0 13/48 · 2/48

f0 f4 3/8 0 0 0 1/8 0 0 0 13/48 · 2/48

f0 f5 3/8 0 0 0 0 1/8 0 0 13/48 · 2/48

f0 f6 - - - - - - - - 0

f0 f7 3/8 0 0 0 0 0 0 1/8 13/48 · 2/48

H1 H2 H1 H2

Table 5.  The probabilities of the functions  to  as function of the hidden nodes. In
this table the first hidden node  represents the function . The probabilities of the
functions  to  follow from the fact that the probability of  is equal to the proba-
bility of . The probabilities for the second hidden node representing  are
equal to those for the second hidden node representing .

f0 f7
H1 f0

f8 f15 fi
f15 i– f15 i–

fi

f1 f5 f7 H1 f6
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probabilities probability of
this combinationf0 f1 f2 f3 f4 f5 f6 f7

f1 f0 3/8 1/8 0 0 0 0 0 0 1/48 · 13/48

f1 f1 17/48 7/48 0 0 0 0 0 0 1/48 · 1/48

f1 f2 7/24 1/12 1/12 1/24 0 0 0 0 1/48 · 2/48

f1 f3 5/16 1/16 1/24 1/12 0 0 0 0 1/48 · 2/48

f1 f4 7/24 1/12 0 0 1/12 1/24 0 0 1/48 · 2/48

f1 f5 5/16 1/16 0 0 1/24 1/12 0 0 1/48 · 2/48

f1 f6 - - - - - - - - 0

f1 f7 5/16 1/16 0 0 0 0 1/24 1/12 1/48 · 2/48

H1 H2

Table 6.  The probabilities for the first hidden node representingf1

probabilities probability of
this combinationf0 f1 f2 f3 f4 f5 f6 f7

f2 f0 3/8 0 1/8 0 0 0 0 0 2/48 · 13/48

f2 f1 7/24 1/12 1/12 1/24 0 0 0 0 2/48 · 1/48

f2 f2 17/48 0 7/48 0 0 0 0 0 2/48 · 2/48

f2 f3 5/16 1/24 1/16 1/12 0 0 0 0 2/48 · 2/48

f2 f4 7/24 0 1/12 0 1/12 0 1/24 0 2/48 · 2/48

f2 f5 7/24 0 1/12 0 0 1/12 0 1/24 2/48 · 2/48

f2 f6 - - - - - - - - 0

f2 f7 5/16 0 1/16 0 0 1/24 0 1/12 2/48 · 2/48

H1 H2

Table 7.  The probabilities for the first hidden node representingf2

probabilities probability of
this combinationf0 f1 f2 f3 f4 f5 f6 f7

f3 f0 3/8 0 0 1/8 0 0 0 0 2/48 · 13/48

f3 f1 5/16 1/16 1/24 1/12 0 0 0 0 2/48 · 1/48

f3 f2 5/16 1/24 1/16 1/12 0 0 0 0 2/48 · 2/48

f3 f3 17/48 0 0 7/48 0 0 0 0 2/48 · 2/48

f3 f4 7/24 0 0 1/12 1/12 0 0 1/24 2/48 · 2/48

f3 f5 13/48 1/48 1/24 1/24 1/24 1/24 0 1/24 2/48 · 2/48

f3 f6 - - - - - - - - 0

f3 f7 5/16 0 0 1/16 1/24 0 0 1/12 2/48 · 2/48

H1 H2

Table 8.  The probabilities for the first hidden node representingf3
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probabilities probability of
this combinationf0 f1 f2 f3 f4 f5 f6 f7

f4 f0 3/8 0 0 0 1/8 0 0 0 2/48 · 13/48

f4 f1 7/24 1/12 0 0 1/12 1/24 0 0 2/48 · 1/48

f4 f2 7/24 0 1/12 0 1/12 0 1/24 0 2/48 · 2/48

f4 f3 7/24 0 0 1/12 1/12 0 0 1/24 2/48 · 2/48

f4 f4 17/48 0 0 0 7/48 0 0 0 2/48 · 2/48

f4 f5 5/16 1/24 0 0 1/16 1/12 0 0 2/48 · 2/48

f4 f6 - - - - - - - - 0

f4 f7 5/16 0 0 1/24 1/16 0 0 1/12 2/48 · 2/48

H1 H2

Table 9.  The probabilities for the first hidden node representingf4

probabilities probability of
this combinationf0 f1 f2 f3 f4 f5 f6 f7

f5 f0 3/8 0 0 0 0 1/8 0 0 2/48 · 13/48

f5 f1 5/16 1/16 0 0 1/24 1/12 0 0 2/48 · 1/48

f5 f2 7/24 0 1/12 0 0 1/12 0 1/24 2/48 · 2/48

f5 f3 13/48 1/48 1/24 1/24 1/24 1/24 0 1/24 2/48 · 2/48

f5 f4 5/16 1/24 0 0 1/16 1/12 0 0 2/48 · 2/48

f5 f5 17/48 0 0 0 0 7/48 0 0 2/48 · 2/48

f5 f6 - - - - - - - - 0

f5 f7 5/16 0 1/24 0 0 1/16 0 1/12 2/48 · 2/48

H1 H2

Table 10.  The probabilities for the first hidden node representingf5

probabilities probability of
this combinationf0 f1 f2 f3 f4 f5 f6 f7

f7 f0 3/8 0 0 0 0 0 0 1/8 2/48 · 13/48

f7 f1 5/16 1/16 0 0 0 0 1/24 1/12 2/48 · 1/48

f7 f2 5/16 0 1/16 0 0 1/24 0 1/12 2/48 · 2/48

f7 f3 5/16 0 0 1/16 1/24 0 0 1/12 2/48 · 2/48

f7 f4 5/16 0 0 1/24 1/16 0 0 1/12 2/48 · 2/48

f7 f5 5/16 0 1/24 0 0 1/16 0 1/12 2/48 · 2/48

f7 f6 - - - - - - - - 0

f7 f7 17/48 0 0 0 0 0 0 7/48 2/48 · 2/48

H1 H2

Table 11.  The probabilities for the first hidden node representingf7
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is zero).
From these tables the a priori probabilities for the boolean functions in the 2-2-1

network can be derived. For example in table 5 we see that when both hidden nodes repre-
sentf0 the probability of the network representingf0 is equal to 1/2. The probabilty that
both hidden nodes representf0 is equal to (13/48)2. So we find here a contribution of
1/2 · (13/48)2 to the probability off0 for the complete network. This same probability
occurs when the first hidden node representsf0 and the second hidden node representsf15
and vice versa and also when both hidden nodes representf15 , so each probability found in
the tables 5 to 11 has to be multiplied by a factor 4. Calculating the probabilities from the
tables 5 to 11 results in:

P0 f0( ) 4 1 2⁄ 13
48
------ 

  2
⋅ 3

8
--- 13

48
------ 1

48
------⋅ ⋅ 5 3

8
--- 13

48
------ 2

48
------⋅ ⋅ ⋅+ + 

  3
8
---

 1
48
------ 13

48
------⋅ ⋅ 17

48
------ 1

48
------ 1

48
------⋅ ⋅ 7

24
------+ 1

48
------ 2

48
------⋅ ⋅+ + +=

3 5
16
------ 1

48
------ 2

48
------⋅ ⋅ ⋅ 7

24
------ 1

48
------ 2

48
------ 

⋅ ⋅ 3
8
---

 2
48
------ 13

48
------⋅ ⋅ 7

24
------+ 2

48
------ 1

48
------⋅ ⋅ 17

48
------ 2

48
------ 2

48
------⋅ ⋅ 2 5

16
------ 2

48
------ 2

48
------⋅ ⋅ ⋅+ + + + +

2 7
24
------ 2

48
------ 2

48
------ 

⋅ ⋅ ⋅ 3
8
---

+ 2
48
------ 13

48
------⋅ ⋅ 5

16
------ 2

48
------ 1

48
------⋅ ⋅ 2 5

16
------ 2

48
------ 2

48
------⋅ ⋅ ⋅ 17

48
------ 2

48
------ 2

48
------⋅ ⋅ 7

24
------ 2

48
------ 2

48
------⋅ ⋅+ + + + +

13
48
------ 2

48
------ 2

48
------ 

⋅ ⋅ 3
8
---

 2
48
------ 13

48
------⋅ ⋅ 7

24
------ 2

48
------ 1

48
------⋅ ⋅ 2 7

24
------ 2

48
------ 2

48
------⋅ ⋅ ⋅ 17

48
------ 2

48
------ 2

48
------⋅ ⋅ 2 5

16
------ 2

48
------ 2

48
------ 

⋅ ⋅ ⋅+ + + + + +

3
8
---

 2
48
------ 13

48
------⋅ ⋅ 5

16
------ 2

48
------ 1

48
------⋅ ⋅ 7

24
------ 2

48
------ 2

48
------⋅ ⋅ 13

48
------ 2

48
------ 2

48
------⋅ ⋅ 2 5

16
------ 2

48
------ 2

48
------⋅ ⋅ ⋅ 17

48
------+ 2

48
------ 2

48
------ 

⋅ ⋅+ + + + +

3
8
---

 2
48
------ 13

48
------⋅ ⋅ 5

16
------ 2

48
------ 1

48
------⋅ ⋅ 4 5

16
------ 2

48
------ 2

48
------⋅ ⋅ ⋅ 17

48
------ 2

48
------ 2

48
------ 

⋅ ⋅+ + +

11013
12 482⋅
-------------------=

P0 f1( ) 4 1
8
--- 13

48
------ 1

48
------⋅ ⋅ 1

8
---

 1
48
------ 13

48
------⋅ ⋅ 7

48
------ 1

48
------ 1

48
------⋅ ⋅ 2 1

12
------ 1

48
------ 2

48
------⋅ ⋅ ⋅ 3 1

16
------ 1

48
------ 2

48
------ 

⋅ ⋅ ⋅+ + + + +=

1
12
------ 2

48
------ 1

48
------⋅ ⋅ 1

24
------ 2

48
------ 2

48
------⋅ ⋅+ 

  1
16
------

 2
48
------ 1

48
------⋅ ⋅ 1

24
------ 2

48
------ 2

48
------⋅ ⋅ 1

48
------ 2

48
------ 2

48
------ 

⋅ ⋅+ ++ +

1
12
------ 2

48
------ 1

48
------⋅ ⋅ 1

24
------ 2

48
------ 2

48
------⋅ ⋅+ 

  1
16
------ 2

48
------ 1

48
------⋅ ⋅ 1

48
------ 2

48
------ 2

48
------⋅ ⋅ 1

24
------ 2

48
------ 2

48
------⋅ ⋅+ + 

  1
16
------ 2

48
------ 1

48
------⋅ ⋅+ +

271
12 482⋅
-------------------=

P0 f2( ) 4 1
8
--- 13

48
------ 2

48
------⋅ ⋅ 1

12
------

 1
48
------ 2

48
------⋅ ⋅ 1

24
------ 1

48
------ 2

48
------ 

⋅ ⋅ 1
8
---

 2
48
------ 13

48
------⋅ ⋅ 1

12
------ 2

48
------ 1

48
------⋅ ⋅ 7

48
------ 2

48
------ 2

48
------⋅ ⋅+ + + + + +=

2 1
16
------ 2

48
------ 2

48
------⋅ ⋅ ⋅ 2 1

12
------ 2

48
------ 2

48
------ 

⋅ ⋅ ⋅ 1
24
------

 2
48
------ 1

48
------⋅ ⋅ 1

16
------ 2

48
------ 2

48
------⋅ ⋅ 1

24
------ 2

48
------ 2

48
------ 

⋅ ⋅+ ++ + +

1
12
------ 2

48
------ 2

48
------⋅ ⋅ 1

12
------

 2
48
------ 2

48
------⋅ ⋅ 2 1

24
------ 2

48
------ 2

48
------ 

⋅ ⋅ ⋅ 1
16
------

 2
48
------ 2

48
------⋅ ⋅ 1

24
------ 2

48
------ 2

48
------ 

⋅ ⋅++ + +

508
12 482⋅
-------------------=

P0 f3( ) 4 1
8
--- 13

48
------ 2

48
------⋅ ⋅ 1

24
------

 1
48
------ 2

48
------⋅ ⋅ 1

12
------ 1

48
------ 2

48
------ 

⋅ ⋅ 1
24
------

 2
48
------ 1

48
------⋅ ⋅ 1

12
------ 2

48
------ 2

48
------ 

⋅ ⋅ 1
8
---

 2
48
------ 13

48
------⋅ ⋅+ + + + + +=

1
12
------ 2

48
------ 1

48
------⋅ ⋅ 2 1

12
------ 2

48
------ 2

48
------⋅ ⋅ ⋅ 7

48
------ 2

48
------ 2

48
------⋅ ⋅ 1

24
------ 2

48
------ 2

48
------⋅ ⋅ 1

16
------ 2

48
------ 2

48
------ 

⋅ ⋅ 1
12
------

 2
48
------ 2

48
------⋅ ⋅+ + + + + +

1
24
------ 2

48
------ 2

48
------ 

⋅ ⋅ 1
24
------+ 2

48
------ 2

48
------⋅ ⋅ 1

16
------

 2
48
------ 2

48
------⋅ ⋅ 1

24
------ 2

48
------ 2

48
------ 

⋅ ⋅+ +

484
12 482⋅
-------------------=
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Appendix B Probabilities for inputs -1 and 1

Using the probabilities from table 4 in order to compute the probabilities in the 2-2-1
network interpreting the boolean values as -1 (false) and 1 (true) results in the tables 12 to
18. From these tables the following a priori probabilities are derived:

P0 f4( ) P0 f2( ) 508
12 482⋅
-------------------= =

P0 f5( ) P0 f3( ) 484
12 482⋅
-------------------= =

P0 f6( ) 4 1
24
------ 1

48
------ 2

48
------⋅ ⋅ 1

24
------ 2

48
------ 2

48
------⋅ ⋅ 1

24
------ 2

48
------ 2

48
------⋅ ⋅ 1

24
------ 2

48
------ 1

48
------⋅ ⋅+ + + 24

12 482⋅
-------------------= =

P0 f7( ) 4 1
8
--- 13

48
------ 2

48
------⋅ ⋅ 1

12
------ 1

48
------ 2

48
------⋅ ⋅ 1

24
------

 2
48
------ 2

48
------⋅ ⋅ 1

12
------ 2

48
------ 2

48
------ 

⋅ ⋅ 2 1
24
------⋅

 2
48
------ 2

48
------⋅ ⋅ 1

12
------+ 2

48
------ 2

48
------ 

⋅ ⋅+ + + + +=

1
24
------

 2
48
------ 2

48
------⋅ ⋅ 1

12
------ 2

48
------ 2

48
------ 

⋅ ⋅ 2 1
24
------⋅

 2
48
------ 2

48
------⋅ ⋅ 1

12
------+ 2

48
------ 2

48
------ 

⋅ ⋅ 1
8
---

 2
48
------ 13

48
------⋅ ⋅ 1

12
------ 2

48
------ 1

48
------⋅ ⋅+ + + + +

4 1
12
------ 2

48
------ 2

48
------⋅ ⋅ ⋅ 7

48
------+ 2

48
------ 2

48
------ 

⋅ ⋅

532
12 482⋅
-------------------=

probabilities probability of this
combinationf0 f1 f2 f3 f4 f5 f6 f7

f0 f0 1/2 0 0 0 0 0 0 0 1/12 · 1/12

f0 f1 7/24 5/24 0 0 0 0 0 0 1/12 · 1/16

f0 f2 7/24 0 5/24 0 0 0 0 0 1/12 · 1/16

f0 f3 7/24 0 0 5/24 0 0 0 0 1/12 · 1/12

f0 f4 7/24 0 0 0 5/24 0 0 0 1/12 · 1/16

f0 f5 7/24 0 0 0 0 5/24 0 0 1/12 · 1/12

f0 f6 - - - - - - - - 0

f0 f7 7/24 0 0 0 0 0 0 5/24 1/12 · 1/16

H1 H2

Table 12.  The probabilities of the functions  to  as function of the hidden nodes when
the inputs (and outputs) are equal to -1 and 1 and the first hidden node represents .

f0 f7
f0
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probabilities probability of
this combinationf0 f1 f2 f3 f4 f5 f6 f7

f1 f0 7/24 5/24 0 0 0 0 0 0 1/16 · 1/12

f1 f1 5/24 7/24 0 0 0 0 0 0 1/16 · 1/16

f1 f2 7/48 7/48 7/48 1/16 0 0 0 0 1/16 · 1/16

f1 f3 7/48 7/48 1/16 7/48 0 0 0 0 1/16 · 1/12

f1 f4 7/48 7/48 0 0 7/48 1/16 0 0 1/16 · 1/16

f1 f5 7/48 7/48 0 0 1/16 7/48 0 0 1/16 · 1/12

f1 f6 - - - - - - - - 0

f1 f7 7/48 7/48 0 0 0 0 1/16 7/48 1/16 · 1/16

H1 H2

Table 13.  The probabilities for the first hidden node representing  (inputs equal to -1 and 1)f1

probabilities probability of
this combinationf0 f1 f2 f3 f4 f5 f6 f7

f2 f0 7/24 0 5/24 0 0 0 0 0 1/16 · 1/12

f2 f1 7/48 7/48 7/48 1/16 0 0 0 0 1/16 · 1/16

f2 f2 5/24 0 7/24 0 0 0 0 0 1/16 · 1/16

f2 f3 7/48 1/16 7/48 7/48 0 0 0 0 1/16 · 1/12

f2 f4 7/48 0 7/48 0 7/48 0 1/16 0 1/16 · 1/16

f2 f5 7/48 0 7/48 0 0 7/48 0 1/16 1/16 · 1/12

f2 f6 - - - - - - - - 0

f2 f7 7/48 0 7/48 0 0 1/16 0 7/48 1/16 · 1/16

H1 H2

Table 14.  The probabilities for the first hidden node representing  (inputs equal to -1 and 1)f2

probabilities probability of
this combinationf0 f1 f2 f3 f4 f5 f6 f7

f3 f0 7/24 0 0 5/24 0 0 0 0 1/12 · 1/12

f3 f1 7/48 7/48 1/16 7/48 0 0 0 0 1/12 · 1/16

f3 f2 7/48 1/16 7/48 7/48 0 0 0 0 1/12 · 1/16

f3 f3 5/24 0 0 7/24 0 0 0 0 1/12 · 1/12

f3 f4 7/48 0 0 7/48 7/48 0 0 1/16 1/12 · 1/16

f3 f5 1/12 1/16 1/16 1/12 1/16 1/12 0 1/16 1/12 · 1/12

f3 f6 - - - - - - - - 0

f3 f7 7/48 0 0 7/48 1/16 0 0 7/48 1/12 · 1/16

H1 H2

Table 15.  The probabilities for the first hidden node representing  (inputs equal to -1 and 1)f3
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probabilities probability of
this combinationf0 f1 f2 f3 f4 f5 f6 f7

f4 f0 7/24 0 0 0 5/24 0 0 0 1/16 · 1/12

f4 f1 7/48 7/48 0 0 7/48 1/16 0 0 1/16 · 1/16

f4 f2 7/48 0 7/48 0 7/48 0 1/16 0 1/16 · 1/16

f4 f3 7/48 0 0 7/48 7/48 0 0 1/16 1/16 · 1/12

f4 f4 5/24 0 0 0 7/24 0 0 0 1/16 · 1/16

f4 f5 7/48 1/16 0 0 7/48 7/48 0 0 1/16 · 1/12

f4 f6 - - - - - - - - 0

f4 f7 7/48 0 0 1/16 7/48 0 0 7/48 1/16 · 1/16

H1 H2

Table 16.  The probabilities for the first hidden node representing  (inputs equal to -1 and 1)f4

probabilities probability of
this combinationf0 f1 f2 f3 f4 f5 f6 f7

f5 f0 7/24 0 0 0 0 5/24 0 0 1/12 · 1/12

f5 f1 7/48 7/48 0 0 1/16 7/48 0 0 1/12 · 1/16

f5 f2 7/48 0 7/48 0 0 7/48 0 1/16 1/12 · 1/16

f5 f3 1/12 1/16 1/16 1/12 1/16 1/12 0 1/16 1/12 · 1/12

f5 f4 7/48 1/16 0 0 7/48 7/48 0 0 1/12 · 1/16

f5 f5 5/24 0 0 0 0 7/24 0 0 1/12 · 1/12

f5 f6 - - - - - - - - 0

f5 f7 7/48 0 1/16 0 0 7/48 0 7/48 1/12 · 1/16

H1 H2

Table 17.  The probabilities for the first hidden node representing  (inputs equal to -1 and 1)f5

probabilities probability of
this combinationf0 f1 f2 f3 f4 f5 f6 f7

f7 f0 7/24 0 0 0 0 0 0 5/24 1/16 · 1/12

f7 f1 7/48 7/48 0 0 0 0 1/16 7/48 1/16 · 1/16

f7 f2 7/48 0 7/48 0 0 1/16 0 7/48 1/16 · 1/16

f7 f3 7/48 0 0 7/48 1/16 0 0 7/48 1/16 · 1/12

f7 f4 7/48 0 0 1/16 7/48 0 0 7/48 1/16 · 1/16

f7 f5 7/48 0 1/16 0 0 7/48 0 7/48 1/16 · 1/12

f7 f6 - - - - - - - - 0

f7 f7 5/48 0 0 0 0 0 0 7/24 1/16 · 1/16

H1 H2

Table 18.  The probabilities for the first hidden node representing  (inputs equal to -1 and 1)f7
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P0 f0( ) 4 1
2
---

 1
12
------ 1

12
------⋅ ⋅ 4 7

24
------ 1

12
------ 1

16
------⋅ ⋅ ⋅ 2 7

24
------ 1

12
------ 1

12
------ 

⋅ ⋅ ⋅ 7
24
------

 1
16
------ 1

12
------⋅ ⋅ 5

24
------ 1

16
------ 1

16
------⋅ ⋅ 3 7

48
------ 1

16
------ 1

16
------⋅ ⋅ ⋅+ + + + + +=

2 7
48
------ 1

16
------ 1

12
------ 

⋅ ⋅ ⋅ 7
24
------

 1
16
------ 1

12
------⋅ ⋅ 3 7

48
------ 1

16
------ 1

16
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24
------ 1

16
------ 1

16
------⋅ ⋅ 2 7

48
------ 1

16
------ 1

12
------ 

⋅ ⋅ ⋅+ + + + +
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24
------

 1
12
------ 1

12
------⋅ ⋅ 4 7

48
------ 1

12
------ 1

16
------⋅ ⋅ ⋅ 5

24
------ 1

12
------ 1

12
------⋅ ⋅ 1

12
------ 1

12
------ 1

12
------ 

⋅ ⋅ 7
24
------

 1
16
------ 1

12
------⋅ ⋅+ + + + +

3 7
48
------ 1

16
------ 1

16
------⋅ ⋅ ⋅ 2 7

48
------ 1

16
------ 1

12
------⋅ ⋅ ⋅ 5

24
------ 1

16
------ 1

16
------ 

⋅ ⋅ 7
24
------

 1
12
------ 1

12
------⋅ ⋅ 4 7
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------ 1

12
------ 1
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------ 1

12
------ 1
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24
------ 1
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------ 1
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------ 
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24
------
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------ 1

12
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------ 1

16
------ 1

16
------⋅ ⋅ ⋅ 2 7
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------ 1
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------ 1
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24
------ 1

16
------ 1
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------ 

⋅ ⋅+ + + + +

5532
12 482⋅
------------------- 461

482
---------= =
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24
------ 1
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------ 1

16
------⋅ ⋅ 5

24
------
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16
------ 1

12
------⋅ ⋅ 7

24
------ 1

16
------ 1
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------⋅ ⋅ 3 7
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------ 1

16
------ 1
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------⋅ ⋅ ⋅ 2 7

48
------ 1

16
------ 1
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------ 
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7
48
------
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------ 1

16
------⋅ ⋅ 1
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------ 1
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------ 1

12
------ 

⋅ ⋅ 7
48
------
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------ 1

16
------⋅ ⋅ 1

16
------ 1

12
------ 1
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------⋅ ⋅ 1
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------ 1
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------ 1
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------ 
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------
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------ 1
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------⋅ ⋅ 1
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------ 1
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------ 1
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------ 

⋅ ⋅ 7
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------
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------ 1
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------ 1
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------ 1
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------ 
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------ 1
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------ 1
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12 482⋅
------------------- 110

482
---------= =

P0 f2( ) P0 f1( ) 110
482
---------= =

P0 f3( ) 4 5
24
------ 1

12
------ 1
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------⋅ ⋅ 1
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------

 1
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------ 1
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------⋅ ⋅ 7

48
------ 1

16
------ 1
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------ 
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------
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16
------ 1
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------⋅ ⋅ 7
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------ 1
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------ 1
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------ 
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------
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------ 1
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------ 1
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------ 1
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24
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------
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------ 
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---------= =
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---------= =
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---------= =
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------ 1
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------ 1
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------⋅ ⋅ ⋅ 1
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--------- 9
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