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Abstract

The notion of a graph type T is introduced by a collection of axioms.

A graph of type T (or T -graph) is de�ned as a set of edges, of which the

structure is speci�ed by T . From this, general notions of subgraph and

isomorphism of T -graphs are derived. A Cantor-Bernstein (CB) result

for T -graphs is presented as an illustration of a general proof for di�erent

types of graphs. By de�nition, a relation R on T -graphs satis�es the

CB property if A R B and B R A imply that A and B are isomorphic.

In general, the relation `isomorphic to a subgraph' does not satisfy the

CB property. However, requiring the subgraph to be disconnected from

the remainder of the graph, a relation that satis�es the CB property is

obtained. A similar result is shown for T -graphs with multiple edges.

Introduction

Graphs are used to model the structure of complex systems. As examples one

can think of the 
owchart of a program, the state transition diagram of a �nite

automaton, the 
owgraph of a CCS process (see [11, 10] and [12, Section 3.4]),

or the net of a Petri net [16]. For di�erent purposes, di�erent types of graphs are

used which mainly di�er with respect to the notion of an edge. For instance,

an edge may be directed or undirected, labeled or unlabeled, or it may be a

hyperedge which is incident with any number of nodes rather than just two.

Formally, in these respective cases, an edge is an ordered pair (x; y) of nodes,

or an unordered pair fx; yg (see [7]), or a triple (x; a; y) where a is a label,

or a set fx

1

; : : : ; x

n

g of nodes (for undirected hypergraphs [1]) or a sequence

(x

1

; : : : ; x

n

) of nodes (for relational systems [9], or directed hypergraphs [6]).
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For a Petri net it is natural (but not so usual) to view the places of the net as

nodes and the transitions of the net as edges: in this case an edge is an ordered

pair (X;Y ) where X and Y are sets of nodes (the pre-set and post-set of the

transition, respectively). Each time one needs a new notion of graph, one has

to introduce concepts (such as homomorphisms, connectedness) that are very

similar to the corresponding concepts for ordinary graphs, and one has to repeat

the proofs of similar elementary properties of these concepts. To avoid this, we

propose in this paper an axiomatic approach to all such types of graphs, and we

give an example of how such elementary properties can be proved in one stroke

for every type of graph that satis�es the axioms. The basic intuition, suggested

above, is that we wish to capture with our axioms all types of (generalized)

graphs of which the edges are arbitrary data structures that are built from the

nodes: not just sets or sequences of nodes, but also, e.g., sets of sets of nodes,

matrices of nodes, records of nodes, or even graphs of nodes. In this setting, a

graph homomorphism is, as usual, a mapping f from the nodes of one graph to

the nodes of another, which naturally induces a mapping from edges to edges by

replacing each node x that occurs in an edge by the node f(x). Thus, an edge

(x; a; y) is mapped to the edge (f(x); a; f(y)), and an edge (X;Y ) is mapped to

(f(X); f(Y )) where, as usual, f(X) = ff(x) j x 2 Xg, and similarly for more

complicated data structures. Rather than de�ning a general notion of data

structure, our axioms just formulate some obvious laws that these mappings

should satisfy.

Our interest in graphs of a type more general than the usual ones came

from our investigation [2, 3, 4] into the structure of object-oriented parallel

systems, in particular the processes of the �-calculus (see [14, 13]). In general,

a (massively) parallel system can be viewed as a (large) collection of (active)

objects that communicate with each other through the use of common resources.

The structure of such a system can be modeled by a (generalized) graph, as

follows. The available resources are the nodes of the graph and the objects

are the edges of the graph, where each object is an edge between the resources

that it actually uses. It should be clear that it does not su�ce to consider

hypergraphs (where each object is just a set of resources), because we do not

wish to abstract from the internal structure of an object, such as the order in

which it uses its resources and the actions it executes inbetween. As a concrete

example, a process of the �-calculus is modeled in [2] as a (multi-)set of objects,

where each object is an (unordered, possibly in�nite) tree of which the nodes

are labeled by channel names. Such an object communicates with other objects

through channels, which are the resources; the tree indicates the partial order

between the communications that are executed by the object. It should be

noted here that a process may consist of in�nitely many objects with in�nitely

many resources. As an example, as a result of the replication operator (!) of

the �-calculus, a process term of the form !(�x; y)(P (x; y) j Q(x; y)) stands for

an in�nite collection of objects P (x

i

; y

i

) and Q(x

i

; y

i

), i 2 N, that communicate

through private channels x

i

; y

i

. Thus, the corresponding graph has in�nitely
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many nodes and edges.

In [3, 4] we have investigated the concepts of structural equivalence (well

known from, e.g., [13]) and structural inclusion of parallel systems. Two parallel

systems are structurally equivalent if their (generalized) graphs are isomorphic.

This de�nition is based on the fact that the precise names of the resources

are irrelevant; thus, the names x and y in the above example are bound by

the restriction operator (�x; y), where � stands for `new'. One parallel system

is structurally included in another if the graph of the �rst is (isomorphic to) a

subgraph of the second. Intuitively, this means that one system is a \part" of the

other. A natural question is whether two parallel systems that are structurally

included into each other are also structurally equivalent. This is obviously true

for �nite systems, with �nitely many resources and objects, but in general not

for in�nite systems. In fact, for ordinary graphs it is well known (and easy to

see) that there exist in�nite non-isomorphic graphs which are subgraphs of each

other. It is also easy to prove that if each graph is isomorphic to a collection of

connected components of the other, then they must be isomorphic: one can then

apply the Cantor-Bernstein proposition to the sets of connected components of

both graphs. This is the result that we will prove for generalized graphs, as

an illustration of our axiomatic framework. For parallel systems it means that

for a given parallel system P we only consider those \parts" of P that cannot

communicate with the remainder of P . This is certainly a natural special case of

structural inclusion, but also a drastic restriction. We will show that for certain

natural weaker restrictions the result does not hold. We also note that none

of the other notions of structural inclusion investigated in [4] for the �-calculus

satis�es the above property.

Since a (generalized) graph may be viewed as a set of edges, i.e., a set of

structured objects, the above result may be viewed as an (elementary) Cantor-

Bernstein (CB) proposition for sets of structured objects. In other areas of

mathematics it is well known that, in the presence of structure, the CB prop-

erty sometimes holds, but usually does not. Since this is not meant to be a

survey on such CB-like results, we just give a few references. In algebra, di-

visible abelian groups have the CB property, but abelian groups do not (see

[17, Exercise 9.34]). In topology, there exist non-homeomorphic closed sets that

are (homeomorphic to) open subsets of each other (see [8]). In computability

theory, one-one reducibility satis�es the CB property (see [15]), but one-one

polynomial-time reducibility does not (see [5]).

In the �rst section of this paper we de�ne the notion of a \graph type",

through a small number of axioms. Each graph type T de�nes a particular type

of generalized graph, which we call a \T -graph" for lack of a better name. As

described above, a T -graph is a set of (generalized) edges, i.e., a set of structured

objects built from the nodes of the T -graph. We also prove some elementary

properties of graph types, and de�ne the notions of subgraph and isomorphism

of T -graphs. In the second section we de�ne T -graph B to be a \free subgraph"

of T -graph A if B is isomorphic to a subgraph of A that is not connected to

3



the remainder of A by any edge. Then we show the CB result discussed above:

two T -graphs A;B that are free subgraphs of each other, are isomorphic. In

particular, we show that the bijection that results from the application of the

usual Cantor-Bernstein proposition to the sets of nodes of A and B, is a T -graph

isomorphism. In the last section we extend the CB result to multi-graphs, i.e.,

graphs with multiple edges, by de�ning a unary operation on graph types that

leads from graphs of type T to multi-graphs of type T .

1 Axioms for Generalized Graphs

In this section, we present the basic de�nition of a T -graph as a set of edges

of a speci�c structure. In this view, an edge is composed of nodes, and any

(non-trivial) mapping on its nodes results in a change of location of the edge,

but not in a change of its structure. Thus, every change of nodes induces a

structure preserving change of edges, and hence these mappings can be viewed

as T -graph homomorphisms. Note that, in a T -graph, there is structure at two

levels: at the \local" level of edges, because each edge is a structured object, and

at the \global" level of the graph itself, because a graph represents a structure

through the incidence relation between edges and nodes in the usual way. Both

kinds of structure are preserved by a global change of nodes.

For any set A, we denote by P(A) the set of all subsets of A. For a mapping

f : A ! B and a set A

0

2 P(A), the restriction f�A

0

: A

0

! B of f to A

0

is

de�ned as (f�A

0

)(a) = f(a), for all a 2 A

0

. The image of A

0

under f is de�ned

as f(A

0

) = ff(a) j a 2 A

0

g. We denote the identity mapping on A by id

A

.

Next, the notion of a T -graph is de�ned axiomatically. To stress the fact that

we view its T -edges as being composed of its T -nodes, we will sometimes call

T -edges structured objects. Mostly however, if there is no danger of confusion,

we refer to T -edges simply as edges, and to T -nodes as nodes.

De�nition 1.1 A graph type T is a tuple (V;E; �; �), where

� V is a set of T -nodes,

� E is a set of T -edges (or structured objects),

� � is a mapping E ! P(V ) (for e 2 E, �(e) � V is the set of nodes incident

with e),

� � is a mapping that assigns to every mapping f : V ! V a mapping

f

�

: E ! E (f

�

is the edge relocation induced by f),

such that, for all e 2 E and f; g : V ! V ,

(1) �(f

�

(e)) = f(�(e)),

(2) if f��(e) = g��(e), then f

�

(e) = g

�

(e),
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(3) (g � f)

�

= g

�

� f

�

, and

(4) (id

V

)

�

= id

E

.

A T -graph is a subset of E.

Intuitively, in De�nition 1.1, V is a reservoir of (T -)nodes and E is the

collection of all possible (T -)edges between these nodes. Thus, if we let E =

V � V , then a T -graph is a directed graph in the usual sense, with isolated

nodes excluded (this can be by-passed by viewing isolated nodes as a special

kind of edges, i.e., by letting E = (V � V ) [ V ).

Note that De�nition 1.1 is axiomatic rather than constructive: the precise

way in which the T -edges in E are constructed from the T -nodes in V is left

unspeci�ed. In fact, the only information that one can retrieve from an edge

e are the nodes �(e) incident with it. However, this information su�ces to

determine the global structure of the T -graph.

Also, the precise way in which the relocation f

�

works is left unspeci�ed.

Intuitively, f

�

changes the nodes �(e) incident with e according to f , thereby

relocating the edge e, but preserving its structure. In this perspective, a graph

type acts as a compound datatype; for instance, in a pseudo-Pascal program-

ming language we could think of the following:

type V = <BT>

type E = <CTO> of V,

where <BT> is a basic type, such as Integer or Char, and <CTO> can be any

compound type operator such as Array or Record. Now a relocation that acts

on E changes the V-values in E, but keeps the <CTO> structure. If we elaborate on

this, a database is a natural example of a T -graph. Information in a database is

organized as a collection of records. Each record consists of �elds, corresponding

to related data values, such as a person's name and address. Thus, a change of

data values results in changing the contents of some �elds in a record, but the

structure of the record remains unaltered. Clearly, records in the database are

linked to each other by having the same data values in their �elds, for instance

when two persons have the same address. Thus, a global change of data values

(caused, e.g., by a municipal decision to change the names of certain streets)

does not change the global structure of the database; in database terminology,

a query that is insensitive to such a change is called generic. However, the

comparison with databases is misleading because we are mainly interested in

in�nite sets of structured objects.

In De�nition 1.1, properties (1) and (2) ensure that the nodes incident to

a relocated edge are derived from its original nodes, and that the relocation of

an edge depends only on the change of the nodes incident with it. Property (4)

states that a relocation can a�ect only the nodes of an edge, not its structure.

Finally by property (3), relocation distributes over composition.
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Example 1.2 Below we give some examples of graph types T = (V;E; �; �).

They should suggest the large variety of formalisms that can be expressed as a

speci�c graph type.

(1) Plain sets. This graph type will be denoted T

s

.

E = V ,

�(e) = feg, for e 2 E, and

f

�

= f , for f : V ! V .

For T = T

s

, T -edges just consist of one T -node and thus graphs of this

type T are just sets of nodes, and any mapping between these nodes is a

relocation. In other words, T -graphs are discrete graphs.

(2) Directed graphs. This graph type will be denoted T

g

.

E = V � V ,

�((v; w)) = fv; wg, and

f

�

((v; w)) = (f(v); f(w)), for v; w 2 V and f : V ! V .

For this graph type T = T

g

, a T -graph is a directed graph in the usual

sense, as observed earlier (with isolated nodes excluded). Note that f ,

together with the induced relocation f

�

, forms a graph homomorphism

(in the usual sense). More precisely, if A;B � V � V are directed graphs

then f��(A) is a graph homomorphism from A to B i� f

�

(A) � B; in

particular, f

�

(A) is the homomorphic image of A under f . This example

is easily extended to arbitrary relational systems.

(3) Sets of binary trees of which the nodes are labeled by integers.

V = Z,

E = Set of tree, where

tree = ^ Record (val:Z; left, right:tree),

�(t) = ft^ .valg [ �(t^ .left) [ �(t^ .right), for t: tree

(�(nil) = ?), and

f

�

(t) = u, where u^.val = f(t^ .val), u^ .left = f

�

(t^ .left)

and u^ .right = f

�

(t^ .right), for t: tree and f : Z! Z

(f

�

(nil) = nil).

In this Pascal-like example, T -graphs are sets of binary node-labeled trees,

where each tree is, as usual, a (pointer to a) node-record (its root) which

is labeled by an integer and contains pointers to the (roots of the) direct

subtrees. Relabeling of a tree t is done by a relocation f

�

that changes

the integer values �(t) of its nodes by f : Z ! Z. The reader should

realize that there are two kinds of nodes in this example: the T -nodes
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of the T -graph, which are integers, and the nodes of each T -edge of the

T -graph, which are tree nodes; the tree nodes are labeled by T -nodes.

(4) Petri nets.

E = P(V )� P(V )

�((X;Y )) = X [ Y , and

f

�

((X;Y )) = (f(X); f(Y )), for X;Y � V and f : V ! V .

In this example, V is a reservoir of places, and E is the collection of

transitions (X;Y ) that have X � V as pre-set and Y � V as post-set.

So a T -graph A � E of this type is the net underlying a Petri net, where

�(A) =

S

f�(e) j e 2 Ag is the set of its places. Note that, again, isolated

places are excluded. Note also that there do not exist two transitions

with the same pre- and post-set; in Petri net terminology this means that

we only consider T -simple nets. Arbitrary Petri nets can be modeled as

multisets over E, see Section 3.

(5) Languages over an alphabet V [ C.

E = (V [ C)

�

�(x

1

� � �x

k

) = fx

1

; : : : ; x

k

g \ V , and

f

�

(x

1

� � �x

k

) = x

0

1

� � �x

0

k

, where x

0

i

=

�

f(x

i

) if x

i

2 V

x

i

if x

i

2 C

for k � 0, x

i

2 V [ C, and f : V ! V .

In this example, T -graphs are languages over a (possibly in�nite) alphabet

V [ C, where V and C are assumed disjoint. For a string e 2 E, only its

symbols in V are regarded as nodes (hence if e 2 C

�

, �(e) = ?), and f

�

only changes the symbols in V . A T -graph of this type can also be viewed

as a set of arrays (of unbounded length) of type V [ C. In the database

example explained above, C represents constant data, and hence objects

in C

�

can be viewed as `facts'. �

For a T -graph A, we de�ne �(A) =

S

f�(e) j e 2 Ag (as we did in the Petri

net example above) and for f : V ! V , we let f

�

(A) = ff

�

(e) j e 2 Ag (i.e.,

f

�

(A) is the image of A under f

�

). Intuitively, �(A) is the set of nodes of A and

f

�

(A) is the homomorphic image of A under f . The next lemma shows that

these mappings � and � satisfy property (1){(4) of De�nition 1.1. Intuitively,

this means that Set of is also a CTO. Note that applying this operator to the

graph type T

s

of plain sets (Example 1.2(1)) results in the graph type of (usual)

hypergraphs, in which each edge is a set of nodes. Applying it to the graph

type T

g

of directed graphs (Example 1.2(2)) one obtains generalized graphs of

which the edges are directed graphs. The routine proof of the lemma is left to

the reader.
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Lemma 1.3 Let (V;E; �; �) be a graph type. Then (V;P(E); �; �) is a graph

type.

For a T

g

-graphA (see Example 1.2(2)), it is obvious that if we take a mapping

f that is injective on its nodes �(A), then A and f

�

(A) are isomorphic directed

graphs. Moreover, f

�

is then injective on the edges of A. In general, for every

T -graph A and for every mapping f : V ! V that is injective on �(A), there

exists a mapping f

A

: V ! V such that (f

A

)

�

(f

�

(e)) = e for all e 2 A. In

fact, de�ne f

A

= (f��(A))

�1

[ id

V�f(�(A))

. Then the next lemma shows that,

restricted to A, (f

A

)

�

is the inverse of f

�

.

Lemma 1.4 For a T -graph A, if f : V ! V is injective on �(A), then f

�

is

injective on A. In particular, (f

A

)

�

(f

�

(e)) = e for all e 2 A.

Proof Let e 2 A. Since (f

A

� f)��(e) = id

V

��(e), we have

(f

A

)

�

(f

�

(e)) = (f

A

� f)

�

(e) = (id

V

)

�

(e) = id

E

(e) = e;

by De�nition 1.1(3), (2), and (4), respectively. �

Next, we de�ne isomorphism of T -graphs and the notion of a subgraph of a

T -graph.

De�nition 1.5 For T -graphs A and B, an isomorphism between A and B is a

mapping f : V ! V such that f is injective on �(A) and f

�

(A) = B. If such an

isomorphism exists, A and B are isomorphic, denoted A ' B.

Note that if f

�

(A) = B then f(�(A)) = �(B) by Lemma 1.3 and De�ni-

tion 1.1(1). Thus an isomorphism is a bijection (between nodes) that relocates

T -edges, but preserves their structure �and the global structure of the T -graph,

as discussed in the beginning of this section. Notice that in the set case (T = T

s

),

an isomorphism is nothing more than a bijection, i.e., two sets are isomorphic

if they are equipotent. In the directed graph case (T = T

g

), it corresponds to

the usual de�nition of isomorphism of directed graphs (and, more generally, to

the de�nition of isomorphism of relational systems).

Observe that ' is an equivalence relation: let A ' B and let f be the

isomorphism between A and B. Then also B ' A, by the isomorphism f

A

(cf.

Lemma 1.4). Transitivity follows from De�nition 1.1(3), and re
exivity from

De�nition 1.1(4).

For T -graphs A and B, we de�ne B to be a concrete subgraph of A, if B � A.

Furthermore, B is an (abstract) subgraph of A, if B is isomorphic to a concrete

subgraph of A, i.e., if f

�

(B) � A for some f : V ! V that is injective on �(B).

Note that for T

g

, this corresponds to the usual de�nitions of concrete subgraph

and subgraph, respectively.

Although this will not really be needed in what follows, we now de�ne a T -

graph to be connected if there do not exist nonempty concrete subgraphs B and
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C of A such that A = B[C and �(B)\�(C) = ?. A connected component of a

T -graph is a maximal connected concrete subgraph of A. Clearly, the connected

components A

i

of A form a partition of A such that �(A

i

)\�(A

j

) = ? for i 6= j.

It should be clear that these de�nitions are the appropriate generalizations of

the ones for T

g

.

2 The Cantor-Bernstein Proposition

for Graph Types

It is well known from set theory that two sets � and � are equipotent if � is

equipotent to a subset of � and vice versa, i.e., if there exist injections �

1

: �!

� and �

2

: �! �. This is the Cantor-Bernstein proposition (see for instance [9]

among numerous other works on set theory). The central idea in this proposition

lies in the construction of a bijection between any two such sets. Observe that

since in the above case �

2

is a bijection between � and � = �

2

(�), it su�ces

to show the existence of a bijection between � and �. For completeness sake

we state its construction below, as well as the proof that it is a bijection. We

will consider functions � : �! � where � is a set containing �, because this is

uniform with the functions f : V ! V and f

�

: E ! E of a graph type.

De�nition 2.1 Let � : � ! � be injective on � � � and let �(�) � � � �.

The Bernstein modi�cation of � with respect to (�;�), denoted �

B

: �! �, is

de�ned as

�

B

(x) =

�

�(x) if x 2

S

i�0

�

i

(���)

x otherwise.

The Bernstein modi�cation �

B

of �, with respect to (�;�), is depicted in

Fig. 1. The dark areas inside � show the set

S

i�0

�

i

(���).

�

: : :

��

�

�

Figure 1: The Bernstein modi�cation of �

Proposition 2.2 For every mapping � : �! � and all sets �;� � � such that

� is injective on � and �(�) � � � �, the Bernstein modi�cation �

B

: � ! �

of � with respect to (�;�) is injective on � and moreover, �

B

(�) = �.
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Proof Let 
 =

S

i�0

�

i

(���). Note that 
 � �.

To prove injectivity of �

B

on �, assume x; y 2 � with x 6= y. We consider

four cases. If x =2 
 and y =2 
, then �

B

(x) = x and �

B

(y) = y. Hence

�

B

(x) 6= �

B

(y). If x 2 
 and y =2 
, then �

B

(x) 2 
 and since �

B

(y) = y =2 
,

we have �

B

(x) 6= �

B

(y). The case in which x =2 
 and y 2 
 is proven similarly.

If both x 2 
 and y 2 
, then �

B

(x) = �(x) and �

B

(y) = �(y). Since, by

assumption, � is injective on �, we have �

B

(x) 6= �

B

(y).

Since obviously �

B

(�) � �, it remains to show that � � �

B

(�). Assume

x 2 �. If x 2 
, then there exists p � 1 such that x 2 �

p

(���). Hence there

exists y 2 �

p�1

(���) with x = �(y), and thus �

B

(y) = x, by de�nition of �

B

.

If x =2 
, we immediately derive �

B

(x) = x 2 �. �

Let T = (V;E; �; �) be a graph type. For any pre-order R � P(E)�P(E),

we will say that R satis�es the Cantor-Bernstein (CB) property, if AR B and

B R A imply A ' B, for every pair A, B of T -graphs. Now if we view sets �

and � as T

s

-graphs (as in Example 1.2(1)), then indeed Proposition 2.2 proves

that � and � are isomorphic (in the sense of De�nition 1.5), if � is a subgraph

of � and vice versa. Thus, for sets, the pre-order `subgraph of' (as de�ned at

the end of Section 1) satis�es the CB property. For T

g

however, this does not

hold, as the following example shows.

Example 2.3 Let T = T

g

(see Example 1.2(2)) with V = N = f0; 1; 2; : : :g, and

let A = f(3n+ i; 3n+ j) j n � 0 and 0 � i; j � 2g, B

0

= f(3n+ i; 3n+ j) j n �

1 and 0 � i; j � 2g, and B = B

0

[ f(1; 2); (2; 1)g, as depicted in Fig. 2 (where

a double arrow represents two edges pointing in opposite directions, and loops

are omitted). Observe that A and B are equivalence relations on V . Clearly, B

is a (concrete) subgraph of A. Also, A is a subgraph of B, since A and B

0

are

isomorphic (by the isomorphism f(k) = k+3). However, A and B are evidently

not isomorphic. This example is easily generalized to arbitrary V and arbitrary

equivalence relations A and B, of which all equivalence classes have the same

cardinality, except one which has a smaller cardinality. Thus, the CB property

fails to hold for very simple graphs already. �

1

3 6

2 4 5 7 8

3 6

1 2 4 5 7 8

B

A : : :

: : :

0

Figure 2: A and B are not isomorphic
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The example above suggests that, if we want the subgraph relation to satisfy

the CB property, we should strengthen the concrete subgraph relation B � A

in such a way that B is not connected to A�B. This means that B and A�B

should not have any nodes in common.

De�nition 2.4 For T -graphs A and B, B is a concrete free subgraph of A,

denoted B �

�

A, if B � A and �(B) \ �(A �B) = ?.

In other words, B �

�

A i� B � A and �(A �B) = �(A) � �(B). Note that

�

�

is a partial order on P(E). To show transitivity, let C �

�

B �

�

A. Then

�(A � C) = �((A �B) [ (B � C)) = �(A � B) [ �(B � C) = (�(A) � �(B)) [

(�(B) � �(C)) = �(A) � �(C). Re
exivity and antisymmetry are obvious.

De�nition 2.5 For T -graphs A and B, B is an (abstract) free subgraph of

A, denoted B . A, if B is isomorphic to a concrete free subgraph of A, i.e.,

f

�

(B) �

�

A for some f : V ! V that is injective on �(B).

Clearly (cf. the end of Section 1), a free subgraph B of A is a graph that is

isomorphic to a collection of connected components of A. Note that in the set

case, the notion of concrete free subgraph co��ncides with `subset', since for any

pair of sets A and B, we trivially have B \ (A�B) = ?.

We need the following lemma to show that . is a pre-order on P(E). It

expresses that free subgraphs are preserved under injective relocations; in other

words, an isomorphism preserves connected components.

Lemma 2.6 For T -graphs A and B, if B �

�

A and f : V ! V is injective on

�(A), then f

�

(B) �

�

f

�

(A).

Proof Clearly, f

�

(B) � f

�

(A). Note that by Lemma 1.4, f

�

is injective on A.

Hence f

�

(A)� f

�

(B) = f

�

(A�B) and thus

�(f

�

(B)) \ �(f

�

(A) � f

�

(B)) = f(�(B)) \ f(�(A�B))

= f(�(B) \ �(A�B))

= ?;

by De�nition 1.1(1) (see Lemma 1.3), since f is injective on �(A), and since

�(B) \ �(A �B) = ?, respectively. Hence f

�

(B) �

�

f

�

(A). �

To show transitivity of ., let C . B . A, or, equivalently, let f

�

(C) �

�

B

and g

�

(B) �

�

A, for f; g : V ! V , injective on �(C) and �(B), respectively.

By De�nition 1.1(3) and Lemma 2.6, we have (g � f)

�

(C) = g

�

(f

�

(C)) �

�

g

�

(B) �

�

A. Hence C . A, by transitivity of �

�

and since g � f is injective on

�(C). Consequently, . is a pre-order.

In Theorem 2.10 we will prove that indeed . satis�es the CB property, i.e.,

if g

�

(A) �

�

C and h

�

(C) �

�

A, for mappings g; h : V ! V , injective on �(A)

and �(C), respectively, then A ' C. Before starting the formal proof, we sketch

11



its outlines. By an argument similar to the one in the �rst paragraph of this

section, the CB property can be reduced to a statement involving only one

mapping f = h � g: if we let B = h

�

(C), then we obtain f

�

(A) �

�

B �

�

A, and

hence it su�ces to show that A and B are isomorphic. It is this form of the CB

property that will be proved in Theorem 2.9, i.e., if f

�

(A) �

�

B �

�

A, for two

T -graphs A and B, and a mapping f : V ! V , injective on the nodes of A, then

A ' B. Moreover, we will show that, in particular, the Bernstein modi�cation

f

B

of f with respect to (�(A); �(B)) is an isomorphism between A and B. In

order to prove this, we will show in Lemma 2.8 that f

B

�

is equal to f

�

B

, where

the latter Bernstein modi�cation is taken with respect to (A;B). Note that by

Lemma 1.4, f

�

is injective on A, so f

�

B

exists. Observe that by De�nition 2.1

f

�

B

(e) =

�

f

�

(e) if e 2

S

i�0

f

�

i

(A�B)

e otherwise,

and

f

B

(x) =

�

f(x) if x 2

S

i�0

f

i

(�(A) � �(B))

x otherwise.

To prove that f

B

�

(e) = f

�

B

(e), we will show that for every x 2 �(e), e 2

S

i�0

f

�

i

(A � B) i� x 2

S

i�0

f

i

(�(A) � �(B)). In fact, we will prove in

Lemma 2.7 a claim that is stronger than we need: for an edge e 2 A and a

node x 2 �(e), we show that e 2 f

�

i

(A � B) i� x 2 f

i

(�(A) � �(B)), or, as

depicted in Fig. 3, both A and �(A) are partitioned into dark areas, the itera-

tions of f

�

and f , respectively, and one white area. Each `dark set' in A can

be assigned a number by its iteration; the same holds for `dark sets' in �(A).

Now a node incident with an edge in the ith dark set in A, must be an element

of the ith dark set in �(A), and furthermore, the white area in �(A) represents

exactly the set of nodes incident with the edges in the white area in A.

We now start the formal proof of the CB property of ..

Lemma 2.7 Let, for T -graphs A and B, B �

�

A, and let f : V ! V be

injective on �(A) with f

�

(A) �

�

B. Let, furthermore, e 2 A and x 2 �(e).

Then for every i � 0, e 2 f

�

i

(A�B) if and only if x 2 f

i

(�(A) � �(B)).

Proof We will use the following property of concrete free subgraphs: for all

T -graphs C, if C �

�

A, then for all e 2 A and x 2 �(e) the following holds:

e 2 C () x 2 �(C):

Since f

�

(A) �

�

B �

�

A and A � B �

�

A, by i applications of Lemma 2.6 we

have f

�

i

(A�B) �

�

A, for all i � 0. Hence by the above property, e 2 f

�

i

(A�B)

i� x 2 �(f

�

i

(A�B)) = f

i

(�(A�B)) = f

i

(�(A)��(B)), using the remark below

De�nition 2.4. �

Lemma 2.8 For T -graphs A and B, if B �

�

A and f

�

(A) �

�

B, with f : V !

V injective on �(A), then f

B

�

= f

�

B

, where the Bernstein modi�cations are

taken with respect to (�(A); �(B)) and (A;B), respectively.

12



: : :

: : :

ff

B

A

V

�(A)

�(B)

� � � � � �

E

f

�

f

�

Figure 3: 8x 2 �(e): e 2 f

�

i

(A�B) i� x 2 f

i

(�(A) � �(B))

Proof First observe that f(�(A)) � �(B) � �(A), and hence f , �(A), and

�(B) satisfy the requirements of De�nition 2.1. By Lemma 1.4, this also holds

for f

�

, A, and B. Let C =

S

i�0

f

�

i

(A�B). Let e 2 E. By Lemma 2.7, e 2 C

i� x 2

S

i�0

f

i

(�(A) � �(B)) for all x 2 �(e). Hence

f

B

��(e) =

�

f��(e) if e 2 C

id

V

��(e) otherwise.

Consequently, by De�nition 1.1(2) we obtain

f

B

�

(e) =

�

f

�

(e) if e 2 C

(id

V

)

�

(e) otherwise.

Since by De�nition 1.1(4) (id

V

)

�

= id

E

, we conclude f

B

�

= f

�

B

. �

Next, we state the main CB results of this section; as mentioned earlier,

Theorem 2.10 extends the classical CB proposition to graph types.

Theorem 2.9 For T -graphs A and B, if B �

�

A and f

�

(A) �

�

B, with f :

V ! V injective on �(A), then f

B

is an isomorphism between A and B, where

the Bernstein modi�cation is taken with respect to (�(A); �(B)).

Proof It has to be shown that f

B

is injective on �(A) and f

B

�

(A) = B.

By Lemma 2.8 we have f

B

�

= f

�

B

, where the latter Bernstein modi�cation is

taken with respect to (A;B). As observed in the proof of Lemma 2.8, the triples

(f; �(A); �(B)) and (f

�

; A;B) satisfy the requirements of Proposition 2.2. Thus,

by two applications of Proposition 2.2, f

B

is injective on �(A) and f

�

B

(A) = B.

�

13



Thus, if A . B �

�

A, then A ' B.

Theorem 2.10 For T -graphs A and B, if A is a free subgraph of B and vice

versa, then A and B are isomorphic.

Proof Let A . B . A. Since B . A, B ' B

0

�

�

A for some T -graph B

0

.

Since . is a pre-order, A . B ' B

0

implies A . B

0

. Hence A . B

0

�

�

A. By

Theorem 2.9, we have A ' B

0

and hence A ' B. �

Observe that if A . B and B . A by the mappings f; g : V ! V (injec-

tive on �(A) and �(B), respectively), i.e., f

�

(A) �

�

B and g

�

(B) �

�

A, then

(g � f)

�

(A) �

�

g

�

(B) by De�nition 1.1(3) and Lemma 2.6. Hence by Theo-

rem 2.9, (g �f)

B

is an isomorphism between A and g

�

(B). Since by Lemma 1.4,

(g

B

)

�

(g

�

(B)) = B, we have that g

B

� (g �f)

B

is an isomorphism between A and

B. This is the usual bijection between their sets of nodes, cf. the introduction

of this section.

Example 2.11 Let T = T

g

with V = N, and let A = f(5n; 5n+1); (5n+1; 5n+

2); (5n+3; 5n+4) j n � 0g and B = f(5n; 5n+1); (5n+2; 5n+3); (5n+3; 5n+4) j

n � 0g be the directed graphs shown in Fig. 4. Let f; g : N ! N be de�ned by

: : :

8530

A

1 2 4 6 7 9

: : :

0 2 5 7

B

1 3 4 6 8 9

Figure 4: A and B are isomorphic by h

f(k) = k+2 and g(k) = k+3. Now f

�

(A) �

�

B and g

�

(B) �

�

A, as the reader

easily veri�es. Clearly A and B are isomorphic. Furthermore, h = g

B

� (g � f)

B

is an isomorphism between A and B. In fact, as the reader can check,

(g � f)

B

(k) =

�

k + 5 if k = 5n; 5n+ 1; 5n+ 2

k if k = 5n+ 3; 5n+ 4,

where the Bernstein modi�caton is taken with respect to (N;N + 3), and

g

B

(k) =

�

k � 3 if k � 3

k otherwise.

Hence

h(k) =

�

k + 2 if k = 5n; 5n+ 1; 5n+ 2

k � 3 if k = 5n+ 3; 5n+ 4.

�
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Of course, the CB property is only manifest for in�nite T -graphs, i.e., T -

graphs with an in�nite number of edges. The next result states that, restricted

to T -graphs having a �nite number of nodes, the CB property even holds for

the subgraph relation.

Theorem 2.12 For T -graphs A and B with �nite �(A) and �nite �(B), if A

is a subgraph of B and vice versa, then A and B are isomorphic.

Proof As before, it su�ces to prove this for the case that B is a concrete

subgraph of A (cf. the proof of Theorem 2.10). Thus, let B � A and f

�

(A) �

B, where f : V ! V is a mapping that is injective on �(A). We will show

that f

�

(A) = B, i.e., f is an isomorphism between A and B. First observe

that �(B) � �(A) and f(�(A)) � �(B). Since �(A) and �(B) are �nite and

f is injective on �(A), we have in fact �(B) = �(A) = f(�(A)), so f is a

permutation on �(A). Now let e 2 B. We prove that e 2 f

�

(A). Since f is a

permutation on �(B), and since �(B) is �nite, there exists a number k � 1 such

that f

k

��(B) = id

�(B)

and hence f

k

��(e) = id

V

��(e). By De�nition 1.1(2,3,4),

we have (f

�

)

k

(e) = (f

k

)

�

(e) = (id

V

)

�

(e) = id

E

(e) = e. Since k � 1, we

conclude that e 2 f

�

(A), and hence f

�

(A) = B. �

The �nal part of this section is devoted to one remaining question: how

restrictive is the notion of free subgraph? Upto this point, there is no guarantee

that there does not exist another, weaker relation, of which the abstract version

. also satis�es the CB property. In the remainder of this section we will show

that, provided it satis�es some \natural" assumptions, such an extension of

`free subgraph' does not exist. We need some new terminology to explain these

assumptions.

A relation v � P(E) � P(E) is called an inclusion relation, whenever

B v A implies that B � A. For an inclusion relation v we de�ne the ab-

stract version of v to be Abstr(v) = f(B;A) j f

�

(B) v A for some f : V !

V that is injective on �(B)g. Thus, . = Abstr(�

�

). We say that v is closed

under intersection, whenever B v A implies B\C v A\C; v is closed under �-

disjoint union, whenever B v A and �(A)\�(C) = ? imply that B[C v A[C;

v is closed under isomorphism, whenever B v A implies f

�

(B) v f

�

(A), for

every f : V ! V that is injective on �(A). Note that �

�

is closed under

intersection, �-disjoint union, and isomorphism (cf. Lemma 2.6).

The next result expresses that whenever the free subgraph relation is aug-

mented with pairs B � A such that �(B)\ �(A�B) 6= ?, and the resulting in-

clusion relation is closed under intersection, �-disjoint union, and isomorphism,

then its abstract version does not satisfy the CB property. It assumes a graph

type with in�nite V , which is a neccesary requirement by Theorem 2.12.

Theorem 2.13 Let T = (V;E; �; �) be a graph type with in�nite V . For any

inclusion relation v � P(E)�P(E) that strictly contains �

�

and that is closed

under intersection, �-disjoint union, and isomorphism, Abstr(v) does not sat-

isfy the CB property.
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Proof Assume that v satis�es the conditions in the theorem. Let A and B be

T -graphs with B v A, but B 6�

�

A. Since v is an inclusion relation, B � A.

Let e 2 B and e

0

2 A� B such that �(e) \ �(e

0

) 6= ?. We will show that there

exist non-isomorphic T -graphs A

0

and B

0

such that both (B

0

; A

0

) 2 Abstr(v)

and (A

0

; B

0

) 2 Abstr(v). Since v is closed under intersection, we have feg =

B \ fe; e

0

g v A \ fe; e

0

g = fe; e

0

g. Let V =

S

i2N

V

i

with mutually disjoint V

i

,

such that there exist bijections f

i

: V ! V

i

. Note that this can be accomplished

by the in�niteness of V (and by assuming the axiom of choice from set theory).

Let e

i

= f

�

i

(e) and e

0

i

= f

�

i

(e

0

). Observe that �(fe

i

; e

0

i

g) \ �(fe

j

; e

0

j

g) = ? i�

i 6= j. Moreover, �(e

i

) \ �(e

0

i

) 6= ?, since �(e) \ �(e

0

) 6= ?. Since v is closed

under isomorphism, we have fe

0

g = ff

�

0

(e)g v ff

�

0

(e); f

�

0

(e

0

)g = fe

0

; e

0

0

g. Now

let C =

S

i2N�f0g

fe

i

; e

0

i

g, and let A

0

= fe

0

; e

0

0

g [ C and B

0

= fe

0

g [ C. Since

fe

0

g v fe

0

; e

0

0

g and v is closed under �-disjoint union, we have B

0

v A

0

and

hence (B

0

; A

0

) 2 Abstr(v). Conversely, let f =

S

i2N

(f

i+1

�f

�1

i

). Note that f is

a mapping V ! V that is injective on V with f

�

(e

i

) = e

i+1

and f

�

(e

0

i

) = e

0

i+1

for all i 2 N. Hence we have f

�

(A

0

) = C �

�

B

0

and thus (A

0

; B

0

) 2 Abstr(v).

However, A

0

and B

0

are not isomorphic: B

0

has an edge (viz., e

0

) that has no

nodes in common with any other edge, but A

0

does not have such an edge. �

Example 2.14 To show that there exist numerous inclusion relations that are

closed under intersection, �-disjoint union, and isomorphism, let A and B be T -

graphs for an arbitrary graph type T . If B � A, then we call an edge e 2 A�B

a (B;A)-crossing, if �(B) \ �(e) 6= ?, and we denote by cross(B;A) the set of

all (B;A)-crossings. Let P : P(E) ! ftrue; falseg be an arbitrary hereditary

property of T -graphs that is preserved by isomorphisms, i.e., if P (A) holds for

a T -graph A, then P (B) holds for every subset B of A and P (f

�

(A)) holds for

every mapping f : V ! V that is injective on �(A). Intuitively, P (cross(B;A))

can be viewed as a measure of the way in which B is connected to A�B. Then,

as the reader can check, the relation v

P

de�ned by

B v

P

A i� B � A and P (cross(B;A))

is closed under intersection, �-disjoint union, and isomorphism, since

cross(B \ C;A \ C) � cross(B;A),

cross(B [D;A [D) = cross(B;A), and

cross(f

�

(B); f

�

(A)) = f

�

(cross(B;A)),

for every T -graph C, every T -graph D with �(D) \ �(A) = ?, and every

mapping f : V ! V that is injective on �(A). In particular, if P (cross(B;A))

is the property \cross(B;A) = ?", then v

P

= �

�

. Other examples of such

inclusion relations v

P

are the ones generated by the properties below

- cross(B;A) is �nite,

- �(cross(B;A)) is �nite,
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- #(cross(B;A)) � k, for some �xed number k 2 N,

- cross(B;A) consists of edges labeled by a �xed c 2 C (for the graph type

of Example 1.2(5)).

By Theorem 2.13, none of them satis�es the CB property. �

3 An Extension to Multi-graphs

In this section we will extend the results of Section 2 to multi-graphs, i.e., to

graphs with multiple edges. A multi-graph of an arbitrary graph type T =

(V;E; �; �) is a multiset over E. We present a relation on these multisets that

satis�es the CB property. In fact, it turns out that such multisets can be

represented by the graphs of a special graph type M

T

called the multi-graph

type of T . Thus, the proof is by an application of the CB results in the previous

section.

As discussed in the Introduction, sets and multisets can be used to formalize

the semantics of object-oriented parallel systems. In [2, 3, 4] for instance, the

(Petri net) semantics of a �-calculus process term is a multiset of structured

objects composed of names. The reason that multisets are needed (instead of

just sets) is the replication operation of the �-calculus: if P denotes a process

with, say, one object, then !P denotes a process consisting of in�nitely many

copies of the same object.

As usual, a multiset S (with countable multiplicities) is de�ned as a set D

S

together with a mapping  

S

: D

S

! N

+

[ f!g, that de�nes the multiplicity of

the elements in S (where N

+

= f1; 2; 3; : : :g and ! = @

0

stands for countably

in�nite multiplicity). By convention, we de�ne  

S

(x) = 0 for every object x

not in S. For convenience sake, we sometimes denote multisets by set notation;

e.g., fa; b

2

; c

!

g denotes the multiset S de�ned by D

S

= fa; b; cg and  

S

(a) = 1,

 

S

(b) = 2, and  

S

(c) = !. In order to relate multiplicities, the linear order

� on N is extended to a linear order on N [ f!g, de�ning k � ! for every

k 2 N [ f!g. We call T a submultiset of S, denoted T � S, if  

T

(d) �  

S

(d),

for all d 2 D

T

. For a set X , S is a multiset over X if D

S

� X . If S is a multiset

over X and f : X ! Y is an arbitrary mapping, then the multiset image

f(S) of S under f is de�ned by D

f(S)

= f(D

S

) and  

f(S)

(e) =

P

f(d)=e

 

S

(d)

(where summation is extended to ! in a straightforward way). Obviously this

corresponds to  

f(S)

(f(d)) =  

S

(d) if f is injective on D

S

, i.e., d and f(d) have

the same multiplicity (in S and f(S), respectively).

Next, we de�ne multisets of edges and extend to them the basic de�nitions

of Sections 1 and 2.

De�nition 3.1 Let T = (V;E; �; �) be a graph type. Multisets over E are

called multi-graphs of type T , or just multi-graphs if T is understood. For multi-

graphs S and T , if there exists a mapping f : V ! V such that f is injective on
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�(D

S

) and f

�

(S) = T , then S and T are isomorphic, denoted S ' T . If T � S

and for all e 2 E,  

T

(e) <  

S

(e) implies that �(D

T

) \ �(e) = ?, then T is a

concrete free subgraph of S, denoted T �

�

S. T is an (abstract) free subgraph

of S, denoted T . S, if T is isomorphic to a concrete free subgraph of S, i.e.,

f

�

(T ) �

�

S for some f : V ! V that is injective on �(D

T

).

By realizing that every set is also a multiset, the reader can easily check that

De�nition 3.1 is consistent with De�nitions 1.5, 2.4, and 2.5. Observe that the

notion of isomorphism in De�nition 3.1 is a natural one: by Lemma 1.4, f

�

is

injective on D

S

if f : V ! V is injective on �(D

S

). Hence f

�

preserves the

multiplicity of edges in S as well as their internal structure. Also, the notion of

free subgraph in De�nition 3.1 naturally extends De�nition 2.4; if T �

�

S, then

for any e 2 D

T

, either  

T

(e) =  

S

(e), or  

T

(e) <  

S

(e) and �(e) = ?.

Example 3.2 Some examples of multi-graphs for graph types T = (V;E; �; �).

(1) Plain multisets.

Let T = T

s

, cf. Example 1.2(1). Then multi-graphs are just multisets over

V . Note that T is a concrete free subgraph of S if and only if  

T

(e) =

 

S

(e) for all e 2 D

T

. Also note that S and T are isomorphic if there exists

a bijection f : D

S

! D

T

that preserves the multiplicity of elements in S

and T , i.e., #

S

(e) = #

T

(f(e)), for all e 2 D

S

.

(2) Directed multi-graphs.

Let T = T

g

, cf. Example 1.2(4). Then multi-graphs are directed graphs

with multiple edges: a pair of nodes can be joined by more than one edge.

Isomorphism of such multi-graphs corresponds to the usual isomorphism

of graphs with multiple edges.

(3) Solutions in the Multiset �-Calculus.

A typical example of multisets of structured objects can be found in [2,

3, 4], where a multiset semantics is given of the �-calculus of [13]. For

T = (New;Mol; new; �), multi-graphs are called solutions. A solution is a

multiset of molecules (from the set Mol) and each molecule is a structured

object that can be viewed as a tree of which the nodes are labeled by

(channel) names, cf. the Introduction. New names (from the set New) are

names that are bound by the restriction operator of the �-calculus. The

mapping new(m) collects all the new names occurring in a molecule m.

The semantics of a process term of the �-calculus is de�ned to be such

a solution, modulo an injective renaming of its new names, i.e., modulo

isomorphism (see Lemma 5 of [2]; in [3] isomorphic solutions are said to be

a \copy" of each other). For a renaming f : New! New, f

�

: Mol! Mol

denotes the induced relabeling of molecules. The relation �

new

(de�ned

in De�nition 3.1) is denoted �

n

in [4] and called `strong containment'. �
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It follows immediately from Example 2.3 that the relation `isomorphic to a

submultiset' does not satisfy the CB property for multi-graphs (since every set

is a multiset). In fact, even for plain multisets (as in Example 3.2(1)), it fails to

hold that S and T are isomorphic if S is isomorphic to a submultiset of T and

vice versa. This is shown by the next example.

Example 3.3 Consider the following multi-graphs: S = f0; 1

!

; 2

!

; 3

!

; : : :g and

T = f0

!

; 1

!

; 2

!

; : : :g of type T

s

with V = N. Clearly, S � T , so trivially S

is isomorphic to a submultiset of T . With the mapping f : N ! N de�ned

by f(k) = k + 1, f(T ) = f1

!

; 2

!

; 3

!

; : : :g, and hence T is isomorphic to a

submultiset of S. However, S and T are not isomorphic, since S has an element

of multiplicity 1, which T has not. Note that S is not a free subgraph of T . �

In the remainder of this section we will show that the free subgraph rela-

tion satis�es the CB property for multi-graphs. In order to do so, we de�ne

a graph type M

T

for every graph type T , such that graphs of type M

T

rep-

resent multi-graphs of type T . We can represent any multiset S uniquely by

the set [S] = f(d; k) j d 2 D

S

and 0 � k <  

S

(d)g, since D

S

= fd j (d; k) 2

[S] for some k 2 Ng and  

S

(d) = #fk j (d; k) 2 [S]g (where #N = !). More-

over, subsets [T ] of [S] represent exactly the submultisets T of S, i.e., T � S i�

[T ] � [S]. Note that this is in contrast with subsets of f(d;  

S

(d)) j d 2 D

S

g,

which is the usual representation of S. We will call [S] a multiset representation,

and in particular the representation of S.

De�nition 3.4 Let T = (V;E; �; �) be a graph type. The multi-graph type of

T is the graph type M

T

= (V;E � N; �; �), de�ned by

(1) �((e; k)) = �(e), and

(2) f

�

((e; k)) = (f

�

(e); k),

for all e 2 E, k 2 N, and f : V ! V .

The reader easily veri�es that De�nition 3.4 indeed de�nes a graph type:

properties (1){(4) of De�nition 1.1 are all consequences of the fact that T is a

graph type. For instance, �(f

�

((e; k))) = �((f

�

(e); k)) = �(f

�

(e)) = f(�(e)) =

f(�((e; k))). The other properties are shown in a similar way.

Clearly, the collection of representations of multi-graphs of type T is a proper

subset of the collection of M

T

-graphs. Only if for all (e; k) 2 A, we have

(e; l) 2 A for all 0 � l < k, then A represents a multiset.

By (1) of De�nition 3.4, we have �([S]) = �(D

S

), for a multi-graph S,

and hence the mapping � retrieves all the nodes of S. For T = T

s

, we just have

�([S]) = D

S

. By (2) of De�nition 3.4, relocations do not a�ect the multiplicities

of the edges. This means that although multiset representations are not closed

under arbitrary relocations f

�

, they are closed under injective ones, as expressed

in the following lemma.
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Lemma 3.5 Let T = (V;E; �; �) be a graph type and S a multi-graph of type

T . Let f : V ! V be injective on �(D

S

). Then [f

�

(S)] = f

�

([S]).

Proof By Lemma 1.4, f

�

is injective on D

S

. Hence  

f

�

(S)

(f

�

(e)) =  

S

(e),

for all e 2 D

S

. And so [f

�

(S)] = f(e; k) j e 2 f

�

(D

S

); 0 � k <  

f

�

(S)

(e)g =

f(f

�

(e); k) j e 2 D

S

; 0 � k <  

f

�

(S)

(f

�

(e))g = f

�

([S]). �

Recall that multi-graphs S and T are isomorphic if f

�

(S) = T , for some

f : V ! V that is injective on �(D

S

). Hence by the uniqueness of multiset

representations, this is equivalent with [f

�

(S)] = [T ] and thus with f

�

([S]) = [T ]

by Lemma 3.5. Moreover, �(D

S

) = �([S]) by De�nition 3.4. Consequently, we

have the following lemma.

Lemma 3.6 Let T = (V;E; �; �) be a graph type and let S and T be multi-

graphs of type T . Then S is isomorphic with T in T if and only if [S] is

isomorphic with [T ] in M

T

.

Intuitively, Lemma 3.6 holds because, as expressed in De�nition 3.4(2), f

�

preserves the multiplicity as well as the internal structure of the edges in S.

Finally, we show that any concrete free subgraph of a multi-graph of type T

de�nes a concrete free subgraph of its representation. More precisely, we prove

that T �

�

S i� [T ] �

�

[S]. Since we already established that T ' S i� [T ] ' [S],

this allows us to conclude that the free subgraph relations in T and M

T

are

basically equivalent.

Lemma 3.7 Let T = (V;E; �; �) be a graph type and let S and T be multi-

graphs of type T . Then T �

�

S if and only if [T ] �

�

[S], and T . S if and only

if [T ] . [S].

Proof First, recall that �([T ]) = �(D

T

) and that T � S i� [T ] � [S]. Moreover,

for all e 2 E, there exists k 2 N such that (e; k) 2 [S] � [T ], if and only if

 

T

(e) <  

S

(e). Hence �(D

T

)\ �([S]� [T ]) 6= ? if and only if there exists e 2 E

such that  

T

(e) <  

S

(e) and �(D

T

) \ �(e) 6= ?. �

From Theorem 2.10 (applied to M

T

) the following result can now be in-

ferred, which generalizes Theorem 2.10.

Theorem 3.8 Let T = (V;E; �; �) be a graph type and let S and T be multi-

graphs of type T . If S is a free subgraph of T and vice versa, then S and T are

isomorphic.

The following example shows two isomorphic multi-graphs. The construc-

tion of an isomorphism between the two is similar to the construction of h of

Example 2.11.

Example 3.9 Consider the following multi-graphs of type T

s

with V = N:

S = f0

!

; 1; 2

!

; 3; : : :g and T = f0; 1

!

; 2; 3

!

; : : :g. By the mapping f : N ! N
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with f(k) = k + 1, which is injective on both D

S

and D

T

, we have f(S) �

�

T

and f(T ) �

�

S. Hence by Theorem 3.8, S and T are isomorphic. Moreover,

the mapping h = f

�1

� (f �f)

B

(where the Bernstein modi�cation is taken with

respect to (N; N

+

)), is an isomorphism between S and T . In this particular case,

it yields

h(k) =

�

k + 1 for even k

k � 1 for odd k.

�

The next result is inferred from Theorem 2.12 (applied to M

T

).

Theorem 3.10 Let T = (V;E; �; �) be a graph type and let S and T be multi-

graphs of type T with �nite �(D

S

) and �nite �(D

T

). If S is isomorphic to a

submultiset of T and vice versa, then S and T are isomorphic.

Finally we note that graph types can be naturally composed as follows:

we de�ne the composition T

2

� T

1

of graph types T

1

= (V;E; �; �) and T

2

=

(E;E

0

; �; �), as the structure system (V;E

0

; �; �), where �(e

0

) = �(�(e

0

)) and

� = � ��. For instance, the datatype Array of Record of V could be modelled

in this way, if we let

type V = <BT>

type E = Record of V

type E' = Array of E.

Also, if we take E

0

= E � N and if we de�ne �((e; k)) = feg and f

�

((e; k)) =

(f(e); k), then it is easy to see that the multi-graph type M

T

1

of T

1

is the

composition of T

1

and T

2

. Note that T

2

is M

T

0

where T

0

is the graph type of

plain sets over E; thus M

T

1

=M

T

0

� T

1

. This means that M

T

0

can be viewed

as a CTO \Multi of", and if T

1

is the type Record of V as above, then M

T

1

is the type Multi of Record of V (and sets of this type represent multisets of

records).

4 Conclusion

In this paper we presented a general axiomatic setting for graphs of any type.

Natural notions of subgraph, isomorphism, and connectedness of these graphs

were de�ned and it was shown that the relation `isomorphic to a subgraph

consisting of connected components' satis�es the CB property. It was also shown

that the usual bijection between the nodes of the two graphs is in fact a graph

isomorphism. For graphs with �nitely many nodes (but possibly in�nitely many

edges) the relation `isomorphic to a subgraph' also satis�es the CB property,

but for arbitrary graphs any \natural" relation inbetween these two does not

satisfy the CB property. Finally, similar results were shown for graphs with

multiple edges, by an application of the results for graphs.
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