
A Cantor-Bernstein Result for Structured Objects

Joost Engelfriet Tjalling Gelsema

Department of Computer Science, Leiden University,

P.O.Box 9512, 2300 RA Leiden, Netherlands

email:

engelfri@wi.leidenuniv.nl

gelsema@wi.leidenuniv.nl

Abstract

The notion of a structure system | sets of structured objects that are

composed of atomic objects | is introduced by a collection of axioms.

By a uniform change of the atomic objects, the relationship, induced by

the atomic objects, between the structured objects is preserved, resulting

in a notion of isomorphism of sets of structured objects. By de�nition, a

relation R on such structured sets satis�es the Cantor-Bernstein property

if A R B and B R A imply that A and B are isomorphic. It is shown that

`isomorphic to a subset' does not satisfy the Cantor-Bernstein property.

However, a restricted version of this relation does, resulting in an extension

of the Cantor-Bernstein proposition for sets of structured objects. Similar

results are shown for multisets of structured objects.

Introduction

In set theory, the Cantor-Bernstein proposition expresses that two sets are of

equal size, if a subset of the one is of equal size to the other and vice versa.

Here, `equal size' means that the elements of one set can be put in a one to

one correspondence with the elements of another set. Another way to view

this correspondence is as an isomorphism. Indeed, although the structure of

a plain set is the simplest one could imagine, this correspondence is structure

preserving. The goal of this paper is to investigate whether the Cantor-Bernstein

proposition holds for isomorphisms between sets of structured objects.

In many �elds of mathematics and computer science we encounter structured

objects that are composed of atomic objects. Often the latter act as information

carriers and are organized in some way to form the former, providing them with

their structure. Immediately the object-oriented paradigm springs to mind.

Indeed, an object | or more precisely: an object class | has a collection of

methods or attributes which, according to a set of actions, enable it to interact

1

with other objects. Hence these methods, among other entities that describe

the object class, give structure to the objects to which they belong. Moreover,

they also induce a | perhaps more important | structure on a collection of

objects, relating objects that are capable of interaction.

Often though, this second, global interaction structure is the sole objective

of the atomic objects, i.e., their identity is of no importance. For instance, if we

view a graph as a collection of structured objects | viz. its edges | that are

composed of atomic objects | viz. its nodes |, then the identity of the nodes

is unimportant: we could change their identity, as long as the structure they

induce, i.e., the graph, is unchanged. As another example, in the �-calculus

(see [2]), bound variables impose a structure on a �-term, that is independent

of the names given to them. Thus, both �x:ux(�y:xy) and �z:uz(�x:zx) are

instances of the same �-term; the one is renamed into the other by �-conversion.

As a matter of fact, this structure, i.e., the relationship among the occurences

of bound variables, is the only role bound variables play in a �-term. Indeed,

in [3], de Bruijn proposes a single notation for �-congruent �-terms (obtaining

the so called namefree expressions), in which bound names are eliminated from

ordinary �-terms and replaced by numbers, thereby preserving their interrela-

tionship. In process algebra, bound names resulting from restriction (CCS [10]

and �-Calculus [12]) or encapsulation (ACP [1]) impose a similar structure on

process terms.

Abstracting away from the identity of atomic objects, it is natural to de�ne

an isomorphism relation on structured objects (and hence on sets of structured

objects), calling two (sets of) structured objects isomorphic, if, by a uniform

change of atomic objects, the one is changed into the other. In the example

above this isomorphism corresponds to �-congruence, in the graph case it is

equal to graph isomorphism.

In this paper we present a general framework for de�ning structured objects

that are composed of atomic objects. Moreover, we investigate the circum-

stances under which the Cantor-Bernstein property holds for these structured

sets, i.e., when two structured sets A and B are isomorphic if, for an appropriate

preorder R, A R B and B R A. It is shown that the preorder `A is isomorphic

to a subset of B' does not satisfy the Cantor-Bernstein property. However, a

restricted version, in which a subset B

0

of B has no atomic objects in common

with its complement B �B

0

, does.

In other branches of mathematics this possible failure of the Cantor-Bern-

stein proposition has also been noticed. For instance in [8] two closed and

bounded sets A and B are de�ned in a topological space. It is shown that A

and B are not homeomorphic | which is the usual notion of isomorphism in a

topological context | although A is homeomorphic to an open subset of B and

vice versa. A computability result closely related to the Cantor-Bernstein propo-

sition appears in [13] in which it is proven that if a set A is one-one reducible

to B and vice versa, A and B are recursively isomorphic. However, restricted

to polynomial-time reductions, this result fails to hold: in [6] it is shown that

2

there exist sets that are not p-isomorphic, yet each one is reducible to the other

by one-one, polynomial-time invertible reductions (assuming P 6= PSPACE).

In the �rst section of this paper, we de�ne sets of structured objects formally

by a collection of axioms. This axiomatic approach has the advantage of meeting

many formalisms in mathematics and computer science, such as (labeled) graphs

or trees, multisets, formal languages, etc. In the second section we study pre-

orders on these sets that satisfy the Cantor-Bernstein property. In the third

section, we extend the results of the second section to multisets of structured

objects. We de�ne a natural notion of isomorphism on these multisets and we

present a multiset relation that satis�es the Cantor-Bernstein property.

1 Basic De�nitions

In this section, we present the basic de�nitions of \structures": sets of struc-

tured objects. A structured object is composed of atomic objects; changing its

atomic objects changes the object, but not its structure. Thus, every change

of atomic objects induces a structure preserving change of objects, and hence

these mappings can be viewed as homomorphisms on structures. Also, struc-

tures themselves are not just plain sets; there is a relationship among structured

objects that have atomic objects in common. We could think of such structured

objects as being akin. Hence, the atomic objects induce a second, global struc-

ture on these sets. We will show that there exist non-isomorphic sets (i.e., sets

that di�er in their global structure), the one being isomorphic to a subset of the

other and vice versa. The goal of this paper is to show that this de�ciency is

removed if we take a restricted inclusion relation, the proof of which results in

an extension of the Cantor-Bernstein proposition to sets of structured objects.

For any set A, we denote by P(A) the set of all subsets of A. For a mapping

f : A ! B and a set A

0

2 P(A), the restriction f�A

0

: A

0

! B of f to A

0

is de�ned as (f�A

0

)(a) = f(a), for all a 2 A

0

. The identity mapping on A is

denoted by id

A

.

Next, sets of structured objects are de�ned. To stress the fact that the

atomic objects are viewed as unstructured objects we also call them labels. For

structured objects we will use the letter m (which stands for \molecule").

De�nition 1.1 A structure system S is a tuple (M;L; �; �), where

� M is a set of (structured) objects,

� L is a set of atomic objects or labels,

� � is a mapping M ! P(L) (for m 2 L, �(m) � L is the set of labels used

in m),

� � is a mapping that assigns to every mapping f : L ! L a mapping

f

�

:M !M (f

�

is the relabeling induced by f),

3

such that, for all m 2M and f; g : L! L,

(1) �(f

�

(m)) = f(�(m)),

(2) if f��(m) = g��(m), then f

�

(m) = g

�

(m),

(3) (g � f)

�

= g

�

� f

�

, and

(4) (id

L

)

�

= id

M

.

An S-structure is a subset of M .

Note that De�nition 1.1 is axiomatic rather than constructive: the precise

way in which the (structured) objects in M are built from the labels in L is

left unspeci�ed. In fact, the only information that one can retrieve from a

structured object m are its labels �(m). However, this information su�ces to

induce a relationship among structured objects: two structured objects m

1

and

m

2

are globally related if they share a common label, i.e., if �(m

1

)\�(m

2

) 6= ?.

Hence we can think of an S-structure as being connected if the graph this global

relationship induces is connected.

Also, the precise way in which the relabeling f

�

works is left unspeci�ed.

Intuitively, f

�

changes the labels �(m) of an objectm according to f , preserving

the structure of m. In this perspective, a structure system acts as a compound

datatype; for instance, in a pseudo-Pascal programming language we could think

of the following:

type L = <BT>

type M = <CTO> of L,

where <BT> is a basic type, such as Integer or Char, and <CTO> can be any

compound type operator such as Array or Record. Now a relabeling that acts

on M changes the L-values in M, but keeps the <CTO> structure. If we elaborate

on this, a database is perhaps the most explanatory example of an S-structure.

Information in a database is organized as a collection of records. Each record

consists of �elds, corresponding to related data values, such as a persons name

and address. Thus, a change of data values results in changing the contents

of some �elds in a record, but the structure of the record remains unaltered.

Clearly, records in the database are akin if they have the same data value in

some �eld, for instance when two persons have the same address. Thus, a

global change of data values (caused, e.g., by a municipal decision to change the

names of certain streets) does not change the global structure of the database.

However, the comparison with databases is slightly misleading: we are mainly

interested in in�nite sets of objects.

In De�nition 1.1, properties (1) and (2) ensure that any label of a relabeled

object is derived from one of its original labels, and that two relabelings act

upon an object in the same way if they change its labels in the same way.

4

Property (4) states that a relabeling can a�ect only the labels of an object, not

its structure. Finally by property (3), � distributes over composition.

Example 1.2 Some examples of structure systems S = (M;L; �; �).

(1) Plain sets.

M = L,

�(m) = fmg, for m 2M , and

f

�

= f , for f : L! L.

Here, objects just consist of one atomic object and thus S-structures are

just sets of unstructured objects. Hence a relabeling is just a mapping

between (atomic) objects.

(2) Sets of binary trees of which the nodes are labeled by integers.

L = Z,

M = Set of tree, where

tree = Record (val:Z; left, right:^ tree),

�(t) = ft.valg [�(t.left^) [�(t.right^), for t:tree, and

f

�

(t) = u, where u.val = f(t.val), u.left^ = f

�

(t.left^) and

u.right^ = f

�

(t.right^), for f : Z! Z.

In this Pascal-like example, S-structures are sets of binary node-labeled

trees, where each tree is, as usual, a node-record (its root) which is labeled

by an integer and contains pointers to the (roots of the) direct subtrees.

Relabeling of a tree t is done by changing the integer values �(t) of its

nodes by f .

(3) Languages over an alphabet L [L

0

.

M = (L [L

0

)

�

�(x

1

� � �x

k

) = fx

1

; : : : ; x

k

g \ L, and

f

�

(x

1

� � �x

k

) = x

0

1

� � �x

0

k

, where x

0

i

=

�

f(x

i

) if x

i

2 L

x

i

if x

i

2 L

0

with k � 0, x

i

2 L [L

0

and f : L! L. In this example, S-structures are

languages over a (possibly in�nite) alphabet L [L

0

, where L and L

0

are

assumed disjoint. For a word m 2M , only its symbols in L are regarded

as atomic objects (hence if m 2 L

�

, �(m) = ?), and f

�

only changes

symbols in L. An S-structure can also be viewed as a set of arrays (of

unbounded length) of type L [L

0

. In the database example explained

above, L

0

represents data that remain unchanged, and hence objects in

(L

0

)

�

can be viewed as `facts'.

5

(4) Directed graphs.

M = L� L,

�((v; w)) = fv; wg, and

f

�

((v; w)) = (f(v); f(w)),

where v; w 2 L and f : L ! L. Intuitively, L is a reservoir of nodes and

M is the collection of all possible edges between these nodes. Hence an S-

structure in this sense is a directed graph (with isolated nodes excluded).

The set of nodes incident to an edge e 2 M is now denoted by �(e), and

relabeling of an edge is done by changing the nodes incident to it. This

example is easily extended to arbitrary relational algebras. �

For an S-structureA, we de�ne �(A) =

S

f�(m) j m 2 Ag and for f : L! L,

we let f

�

(A) = ff

�

(m) j m 2 Ag as customary. The next lemma shows that

these mappings satisfy property (1){(4) of De�nition 1.1. Intuitively, this means

that Set of is also a CTO. The routine proof is left to the reader.

Lemma 1.3 Let (M;L; �; �) be a structure system. Then (P(M); L; �; �) is a

structure system.

To show the e�ect of a relabeling of an S-structure, let L = N and let

A = f(1; 2); (2; 3); (3; 1)g be an S-structure in the sense of Example 1.2(4). Let

f : N ! N be a mapping such that f(1) = 1, f(2) = 3 and f(3) = 1. Then

f

�

(A) = f(1; 3); (3; 1); (1; 1)g, and the directed graphs A and f

�

(A) are shown

pictorially in Fig. 1.

f

�

(A)

31

f

�

A

1 3

2

Figure 1: Relabeling of A

Obviously, if we take a mapping f that is injective on the labels �(A) =

f1; 2; 3g of A, say f(n) = n+1 for all n 2 N, then A and f

�

(A) = f(2; 3); (3; 4);

(4; 2)g are isomorphic directed graphs. Moreover, f

�

is then injective on the

elements of A. In general, for every mapping f : L ! L that is injective on

�(A), there exists a mapping f

A

: L ! L such that (f

A

)

�

(f

�

(m)) = m for all

m 2 A. In fact, de�ne f

A

= (f��(A))

�1

[id

L�f(�(A))

. Then the next lemma

shows that, restricted to A, (f

A

)

�

is the inverse of f .

6

Lemma 1.4 For an S-structure A, if f : L! L is injective on �(A), then f

�

is injective on A. In particular, (f

A

)

�

(f

�

(m)) = m for all m 2 A.

Proof Let m 2 A. Since (f

A

� f)��(m) = id

L

��(m), by De�nition 1.1(3), (2)

and (4), respectively we have (f

A

)

�

(f

�

(m)) = (f

A

� f)

�

(m) = (id

L

)

�

(m) =

id

M

(m) = m. �

Next, we de�ne isomorphism of S-structures.

De�nition 1.5 S-structures A and B are isomorphic, denoted A ' B, if there

is a mapping f : L! L such that f is injective on �(A) and f

�

(A) = B.

A mapping F : M ! M , such that F (A) = B and F = f

�

for some

f : L! L that is injective on �(A), is de�ned to be an isomorphism between A

and B. Thus an isomorphism is a mapping that preserves the global structure

of an S-structure, as observed in the beginning of this section. Notice that

in the set case (see Example 1.2(1)), an isomorphism is nothing more than a

bijection, i.e., two sets are isomorphic if they are equipotent. In the graph

case (see Example 1.2(4)), it corresponds to the usual de�nition of isomorphism

of directed graphs (and, more generally, to the de�nition of isomorphism of

relational algebras).

Observe that ' is an equivalence relation: let A ' B and let f

�

be the

isomorphism between A and B. Then also B ' A by the existence of f

A

(cf.

Lemma 1.4) and by Lemma 1.3. Transitivity follows from De�nition 1.1(1,3),

and re
exivity from De�nition 1.1(4).

For S-structures A and B, we de�ne B to be a concrete substructure of A, if

B � A. Furthermore, B is a substructure of A, if B is isomorphic to a concrete

substructure of A, i.e., if f

�

(B) � A for some f : L ! L that is injective on

�(B). Note that in the graph case, these notions correspond to the de�nitions

of concrete subgraph, and (isomorphic to a concrete) subgraph, respectively.

2 The Cantor-Bernstein Proposition

for Structure Systems

It is a well-known fact from set theory that two sets � and � are equipotent

if � is equipotent to a subset of � and vice versa, i.e., if there exist injections

�

1

: � ! � and �

2

: � ! �. This is the Cantor-Bernstein proposition (see for

instance [9] among numerous other works on set theory). The central idea in

this proposition lies in the construction of a bijection between any two such sets.

Observe that since in the above case � = �

2

(�) � � and � = (�

2

��

1

) : �! �

is injective, it su�ces to show the existence of a bijection between � and �. For

completeness sake we state its construction below, as well as the proof that it is

a bijection. For technical reasons we assume a universe � that contains � and

�.

7

De�nition 2.1 Let � : � ! � be injective on � � � and let �(�) � � � �.

The Bernstein modi�cation of � with respect to (�;�), denoted �

B

: �! �, is

de�ned as

�

B

(x) =

�

�(x) if x 2

S

i�0

�

i

(���)

x otherwise.

The Bernstein modi�cation �

B

of �, with respect to (�;�), is depicted in

Fig. 2. The dark areas inside � show the set

S

i�0

�

i

(���).

�

: : :

��

�

�

Figure 2: The Bernstein modi�cation of �

Proposition 2.2 For every mapping � : �! � and all sets �;� � � such that

� is injective on � and �(�) � � � �, the Bernstein modi�cation �

B

: � ! �

of � with respect to (�;�) is injective on � and moreover, �

B

(�) = �.

Proof Let
 =

S

i�0

�

i

(���). Note that
 � �.

To prove injectivity of �

B

on �, assume x; y 2 � with x 6= y. We consider

four cases. If x =2
 and y =2
, then �

B

(x) = x and �

B

(y) = y. Hence

�

B

(x) 6= �

B

(y). If x 2
 and y =2
, then �

B

(x) 2
 and since �

B

(y) = y =2
,

we have �

B

(x) 6= �

B

(y). The case in which x =2
 and y 2
 is proven similarly.

If both x 2
 and y 2
, then �

B

(x) = �(x) and �

B

(y) = �(y). Since, by

assumption, � is injective on �, we have �

B

(x) 6= �

B

(y).

Since obviously �

B

(�) � �, it remains to show that � � �

B

(�). Assume

x 2 �. If x 2
, then there exists p � 1 such that x 2 �

p

(���). Hence there

exists y 2 �

p�1

(���) with x = �(y), and thus �

B

(y) = x, by de�nition of �

B

.

If x =2
, we immediately derive �

B

(x) = x 2 �. �

Let S = (M;L; �; �) be a structure system. For any pre-ordering R�

P(M) � P(M), we will say that R satis�es the Cantor-Bernstein property, if

A R B and B R A imply A ' B, for every pair A, B of S-structures. Now if we

view sets � and � as S-structures (as in Example 1.2(1)), then indeed Proposi-

tion 2.2 proves that � and � are isomorphic (in the sense of De�nition 1.5), if � is

a substructure of � and vice versa. Thus, for sets, the pre-ordering `substructure

of' (as de�ned at the end of Section 2) satis�es the Cantor-Bernstein property.

In the general case however, this does not hold, as the following example shows.

8

Example 2.3 Consider the S-structures (in the sense of Example 1.2(4)) A

0

=

f(x

i

; y

j

) j i � 0; j � 1g and B = f(u

i

; v

j

) j i; j � 0g and let A = A

0

[f(x

0

; y

0

)g,

as depicted in Fig. 3. It is easy to see that A is a substructure of B, since

A [f(x

i

; y

0

); j i � 1g is isomorphic to B. Also, B is a substructure of A, since

by the bijection f : �(B) ! �(A

0

) with f(u

i

) = x

i

and f(v

j

) = y

j+1

, B and

A

0

are isomorphic. However A and B are not isomorphic, since A has a node of

degree one, viz. y

0

, which B has not. �

: : :: : :

: : : : : :

x

0

x

1

y

0

y

1

v

0

v

1

v

2

u

0

u

1

A B

y

2

Figure 3: A and B are not isomorphic

In order to satisfy the Cantor-Bernstein property, we adapt the substructure

relation B � A so that it will not a�ect the degree of any nodes of B. In general,

this means for arbitrary S-structures A and B, that no object in B may share

a label with an object in A�B. Intuitively, this means that there is no global

relationship between objects in B and A�B. We adapt the de�nition of concrete

substructure accordingly.

De�nition 2.4 For S-structures A and B, B is a concrete component of A,

denoted B �

�

A, if B � A and �(B) \ �(A�B) = ?.

Hence if B �

�

A, then �(A�B) = �(A)� �(B). Note that �

�

is a partial

order on P(M); to show transitivity, let C �

�

B �

�

A. Then �(A � C) =

�((A�B)[(B�C)) = �(A�B)[�(B�C) = (�(A)��(B))[(�(B)��(C)) =

�(A) � �(C). Re
exivity and antisymmetry are obvious.

De�nition 2.5 For S-structures A and B, B is a component of A, denoted

B . A, if B is isomorphic to a concrete component of A, i.e., f

�

(B) �

�

A for

some f : L! L that is injective on �(B).

Observe that in the graph case, B is a component of A, if B is isomorphic to

a collection of connected components of A. Also note that in the set case, the

notions of (concrete) component and of (concrete) substructure co��ncide, since

for any pair of sets A and B, we trivially have B \ (A�B) = ?.

We need the following lemma to show that . is a pre-order on P(M). It

expresses that components are preserved under injective relabelings; in graph

terms, this means that a graph isomorphism preserves connected components.

9

Lemma 2.6 For S-structures A and B, if B �

�

A and f : L! L is injective

on �(A), then f

�

(B) �

�

f

�

(A).

Proof Clearly, f

�

(B) � f

�

(A). Note that by Lemma 1.4, f

�

is injective on A.

Hence f

�

(A)� f

�

(B) = f

�

(A�B) and thus

�(f

�

(B)) \ �(f

�

(A) � f

�

(B)) = f(�(B)) \ f(�(A�B))

= f(�(B) \ �(A�B))

= ?;

by De�nition 1.1(1) (see Lemma 1.3), since f is injective on �(A), and since

�(B) \ �(A �B) = ?, respectively. Hence f

�

(B) �

�

f

�

(A). �

To show transitivity of ., let C . B . A, or, equivalently, let f

�

(C) �

�

B

and g

�

(B) �

�

A, for f; g : L ! L, injective on �(C) and �(B), respectively.

By De�nition 1.1(3) and Lemma 2.6, we have (g � f)

�

(C) = g

�

(f

�

(C)) �

�

g

�

(B) �

�

A. Hence C . A, by transitivity of �

�

and since g � f is injective on

�(C). Consequently, . is a preorder.

In the remainder of this section we will prove that indeed . satis�es the

Cantor-Bernstein property, i.e., if f

�

(A) �

�

B �

�

A, for two S-structures A

and B, and a mapping f : L ! L, injective on the labels of A, then A ' B.

Moreover, we will show that the relabeling induced by the Bernstein modi�ca-

tion of f with respect to (�(A); �(B)), i.e., f

B

�

, always yields an isomorphism

of A and B. In order to prove this, we will show that f

B

�

is in fact equal to

f

�

B

, where the latter Bernstein modi�cation is taken with respect to (A;B).

Note that by Lemma 1.4, f

�

is injective on A, so f

�

B

exists. Observe that by

De�nition 2.1

f

�

B

(m) =

�

f

�

(m) if m 2

S

i�0

f

�

i

(A�B)

m otherwise,

and

f

B

(x) =

�

f(x) if x 2

S

i�0

f

i

(�(A) � �(B))

x otherwise.

To prove that f

B

�

(m) = f

�

B

(m), we will show that for every x 2 �(m),

m 2

S

i�0

f

�

i

(A � B) i� x 2

S

i�0

f

i

(�(A) � �(B)). In fact, we will prove a

claim that is stronger than we need: for an object m 2 A and a label x 2 �(m),

we show that m 2 f

�

i

(A�B) i� x 2 f

i

(�(A)��(B)), or, as depicted in Fig. 4,

both A and �(A) are partitioned in dark areas, the iterations of f

�

and f ,

respectively, and one white area. Each `dark set' in A can be assigned a number

by its iteration; the same holds for `dark sets' in �(A). Now an object in the ith

dark set in A must have its labels in the ith dark set in �(A), and furthermore,

the white area in �(A) represents exactly the set of labels of objects in the white

area in A.

10

: : :

f

�

: : :

f

��� � ��

f

f

�

L

�(A)

�(B)

M

B

A

Figure 4: 8x 2 �(m): m 2 f

�

i

(A�B) i� x 2 f

i

(�(A) � �(B))

Lemma 2.7 Let, for S-structures A and B, B �

�

A, and let f : L ! L be

injective on �(A) with f

�

(A) �

�

B. Let, furthermore, m 2 A and x 2 �(m).

Then for every i � 0, m 2 f

�

i

(A�B) if and only if x 2 f

i

(�(A) � �(B)).

Proof We will use the following property of concrete components: for all S-

structures C, if C �

�

A, then for all m 2 A and x 2 �(m) the following holds

m 2 C () x 2 �(C):

Since f

�

(A) �

�

B �

�

A and A � B �

�

A, by i applications of Lemma 2.6

we have f

�

i

(A � B) �

�

A, for all i � 0. Hence m 2 f

�

i

(A � B) i� x 2

�(f

�

i

(A� B)) = f

i

(�(A �B)) = f

i

(�(A) � �(B)), by the above claim. �

Lemma 2.8 For S-structures A and B, if B �

�

A and f

�

(A) �

�

B, where f :

L! L is injective on �(A), then f

B

�

= f

�

B

, where the Bernstein modi�cations

are taken with respect to (�(A); �(B)) and (A;B), respectively.

Proof First observe that f(�(A)) � �(B) � �(A), and hence f , �(A) and

�(B) satisfy the requirements of De�nition 2.1. By Lemma 1.4, this also holds

for f

�

, A and B. Let C =

S

i�0

f

�

i

(A � B). Let m 2 M . By Lemma 2.7,

m 2 C i� x 2

S

i�0

f

i

(�(A) � �(B)) for all x 2 �(m). Hence

f

B

��(m) =

�

f��(m) if m 2 C

id

L

��(m) otherwise.

Consequently, by De�nition 1.1(2) we obtain

f

B

�

(m) =

�

f

�

(m) if m 2 C

(id

L

)

�

(m) otherwise.

11

Since by De�nition 1.1(4) (id

L

)

�

= id

M

, we conclude f

B

�

= f

�

B

. �

Finally we state the two main results of this section; as observed earlier in this

section, Theorem 2.10 extends the Cantor-Bernstein proposition to structure

systems.

Theorem 2.9 For S-structures A and B, if B �

�

A and f

�

(A) �

�

B, where

f : L! L is injective on �(A), then f

B

�

is an isomorphism between A and B,

where the Bernstein modi�cation is taken with respect to (�(A); �(B)).

Proof By Lemma 2.8 we have f

B

�

= f

�

B

, where the latter Bernstein modi�-

cation is taken with respect to (A;B). By two instances of Proposition 2.2, f

B

is injective on �(A) and f

�

B

(A) = B. �

Theorem 2.10 For S-structures A and B, if A is a component of B and vice

versa, then A and B are isomorphic.

Proof Let A . B . A. Then B ' B

0

�

�

A, for some S-structure B

0

. Since

. is a pre-order, we have A . B

0

�

�

A. Hence A ' A

0

�

�

B

0

�

�

A, for some

S-structure A

0

. By Theorem 2.9, we have A ' B

0

and hence A ' B. �

Observe that if A . B and B . A by the mappings f; g : L ! L (in-

jective on �(A) and �(B), respectively), i.e., f

�

(A) �

�

B and g

�

(B) �

�

A,

then (g � f)

�

(A) �

�

g

�

(B) by De�nition 1.1(3) and Lemma 2.6. Hence by

Theorem 2.9, (g � f)

B

�

is an isomorphism between A and g

�

(B). Since by

Lemma 1.4, (g

B

)

�

(g

�

(B)) = B, we have that (g

B

� (g �f)

B

)

�

is an isomorphism

between A and B.

Example 2.11 Let S be the structure system of Example 1.2(4) with L = N,

and let A = f(5n; 5n + 1); (5n + 1; 5n + 2); (5n + 3; 5n + 4) j n � 0g and

B = f(5n; 5n+1); (5n+2; 5n+3); (5n+3; 5n+4) j n � 0g be the graphs shown

in Fig. 5. Let f; g : N ! N be de�ned by f(k) = k + 2 and g(k) = k + 3. Now

: : :

8530

A

1 2 4 6 7 9

: : :

0 2 5 7

B

1 3 4 6 8 9

Figure 5: A and B are isomorphic by h

�

f

�

(A) �

�

B and g

�

(B) �

�

A, as the reader easily veri�es. Clearly A and B

are isomorphic. Furthermore, the relabeling induced by h = g

B

� (g � f)

B

is an

isomorphism between A and B. As the reader can check,

(g � f)

B

(k) =

�

k + 5 if k = 5n; 5n+ 1; 5n+ 2

k if k = 5n+ 3; 5n+ 4,

12

where the Bernstein modi�caton is taken with respect to (N;N + 3), and

g

B

(k) =

�

k � 3 if k � 3

k otherwise.

Hence

h(k) =

�

k + 2 if k = 5n; 5n+ 1; 5n+ 2

k � 3 if k = 5n+ 3; 5n+ 4.

3 Multisets of Structured Objects

In this section we will extend the results of Section 2 to multisets of structured

objects in an arbitrary structure system S = (M;L; �; �), i.e., to the multisets

over M . We present a relation on these multisets that satis�es the Cantor-

Bernstein property. In fact, it turns out that such multisets can be represented

by the structures of a special structure system called the multi structure system

of S. Thus, the proof is by an application of the results in the previous section.

In a Petri net (or multiset transition system) a multiset is exactly the math-

ematical concept that �ts the notion of concurrency. In [4, 5] for instance, the

semantics of a �-calculus term is a multiset of structured objects composed of

names. In other �elds of computer science multisets are used to model data-

bases for example. In [7] an algebra for nested multisets is presented to model

hierarchical data structures.

As usual, a multiset S (with countable multiplicities) is de�ned as a set D

S

together with a mapping

S

: D

S

! N

+

[f!g, that de�nes the multiplicity of

the elements in S (where N

+

= f1; 2; 3; : : :g and ! = @

0

stands for countably

in�nite multiplicity). By convention, we de�ne

S

(x) = 0 for every object x

not in S. For convenience sake, we sometimes denote multisets by set notation;

e.g., fa; b

2

; c

!

g denotes the multiset S de�ned by D

S

= fa; b; cg and

S

(a) = 1,

S

(b) = 2, and

S

(c) = !. In order to relate multiplicities, the partial order �

on N = N

+

[f0g is extended to a partial order on N [f!g, de�ning k � ! for

every k 2 N [f!g. We call T a submultiset of S, denoted T � S, if

T

(d) �

S

(d), for all d 2 D

T

. For a set X , S is a multiset over X if D

S

� X . If S is a

multiset overX and f : X ! Y is an arbitrary mapping, then themultiset image

f(S) of S under f is de�ned by D

f(S)

= f(D

S

) and

f(S)

(e) =

P

f(d)=e

S

(d)

(where summation is extended to ! in a straightforward way). Obviously this

corresponds to

f(S)

(f(d)) =

S

(d) if f is injective on D

S

, i.e., d and f(d) have

the same multiplicity (in S and f(S), respectively).

Next, we de�ne multisets of structured objects and extend to them the basic

de�nitions of Sections 1 and 2.

De�nition 3.1 Let S = (M;L; �; �) be a structure system. Multisets over M

are called multi S-structures. For multi S-structures S and T , if there exists a

13

mapping f : L! L such that f is injective on �(D

S

) and f

�

(S) = T , then S and

T are isomorphic, denoted S ' T . If T � S and for allm 2M ,

T

(m) <

S

(m)

implies that �(D

T

) \ �(m) = ?, then T is a concrete component of S, denoted

T �

�

S. T is a component of S, denoted T . S, if T is isomorphic to a concrete

component of S, i.e., f

�

(T) �

�

S for some f : L! L that is injective on �(D

T

).

By realizing that every set is also a multiset, the reader can easily check that

De�nition 3.1 is consistent with De�nitions 1.5, 2.4, and 2.5. Observe that the

notion of isomorphism in De�nition 3.1 is a natural one: by Lemma 1.4, f

�

is

injective on D

S

if f : N ! N is injective on �(D

S

). Hence f

�

preserves the

multiplicity of objects in S as well as their internal structure. Also, the notion

of component in De�nition 3.1 naturally extends De�nition 2.4; if T �

�

S, then

for any m 2 D

T

, either

T

(m) =

S

(m), or

T

(m) <

S

(m) and �(m) = ?.

Example 3.2 Some examples of multi S-structures for structure systems S =

(M;L; �; �).

(1) Plain multisets.

Let S be the structure system of Example 1.2(1). Then multi S-structures

are unstructured multisets over L. Note that T is a concrete component

of S if and only if

T

(m) =

S

(m) for all m 2 D

T

. Also note that S and

T are isomorphic if there exists a bijection f : D

S

! D

T

that preserves

the multiplicity of elements in S and T , i.e., #

S

(m) = #

T

(f(m)), for all

m 2 D

S

.

(2) Directed multi-graphs.

Let S be the structure system of Example 1.2(4). Then multi S-structures

are multi-graphs, i.e., directed graphs with multiple edges: a pair of nodes

can be joined by more than one edge. Isomorphism of such multi S-

structures is the usual isomorphism of multi-graphs.

(3) Solutions in the Multiset �-Calculus.

A typical example of multisets of structured objects can be found in [4, 5].

For S = (Mol;New; �; �), multi S-structures are called solutions, where

New is the set of new names, building molecules as structured objects

which in turn form the set Mol. The semantics of a process term of the

�-calculus of [11] is de�ned to be such a solution, modulo an injective

renaming of its new names, i.e., modulo isomorphism (see Lemma 5 of [4];

in [5] isomorphic solutions are said to be a \copy" of each other). �

It follows immediately from Example 2.3 that the relation `isomorphic to

a submultiset' does not satisfy the Cantor-Bernstein property for multi S-

structures (since by the remark below De�nition 3.1, every set is a multiset). In

14

fact, even for plain multisets (as in Example 3.2(1)), it fails to hold that S and

T are isomorphic if S is isomorphic to a submultiset of T and vice versa. This

is shown by the next example.

Example 3.3 Consider the following multi S-structures, where S is the struc-

ture system of Example 3.2(1) with M = L = N: S = f0; 1

!

; 2

!

; 3

!

; : : :g

and T = f0

!

; 1

!

; 2

!

; : : :g. Clearly, S � T , so trivially S is isomorphic to a

submultiset of T . With the mapping f : N ! N de�ned by f(k) = k + 1,

f(T) = f1

!

; 2

!

; 3

!

; : : :g, and hence T is isomorphic to a submultiset of S. How-

ever, S and T are not isomorphic, since S has an element of multiplicity 1,

which T has not. Note that S is not a concrete component of T . �

In the remainder of this section we will show that the component inclusion

satis�es the Cantor-Bernstein property for multi S-structures. In order to do

so, we de�ne a structure system M

S

for every structure system S, such that

M

S

-structures represent multi S-structures. We can represent any multiset

S uniquely by the set [S] = f(d; k) j d 2 D

S

and 0 � k <

S

(d)g, since

D

S

= fd j (d; k) 2 [S] for some k 2 Ng, and

S

(d) = #fk j (d; k) 2 [S]g (where

#N = !). Moreover, subsets [T] of [S] represent exactly the submultisets T

of S, i.e., T � S i� [T] � [S]. Note that this is in contrast with subsets of

f(d;

S

(d)) j d 2 D

S

g, which is the usual representation of S. We will call [S] a

multiset representation, and in particular the representation of S.

De�nition 3.4 Let S = (M;L; �; �) be a structure system. Themulti structure

system of S, M

S

= (M � N; L; �; �), is de�ned by

(1) �((m; k)) = �(m), and

(2) f

�

((m; k)) = (f

�

(m); k),

for all m 2M , k 2 N and f : L! L.

The reader easily veri�es that De�nition 3.4 de�nes a structure system:

properties (1){(4) of De�nition 1.1 are all consequences of the fact that S is

a structure system. Let f : L ! L. Then, for instance, �(f

�

((m; k))) =

�((f

�

(m); k)) = �(f

�

(m)) = f(�(m)) = f(�((m; k))). The other properties

are shown in a similar way.

Clearly, the collection of representations of multi S-structures is a proper

subset of the collection of M

S

-structures. Only if for all (m; k) 2 A, we have

(m; l) 2 A for all 0 � l � k, then A represents a multiset. By (1) of De�n-

ition 3.4, we have �([S]) = �(D

S

), for a multi S-structure S, and hence the

mapping � retrieves all labels of objects in S. In the case of Example 3.2(1),

we just have �([S]) = D

S

. By (2) of De�nition 3.4, relabelings do not a�ect

the multiplicities of elements in a multiset. This means that although multiset

representations are not closed under arbitrary relabelings f

�

, they are closed

under injective ones, as expressed in the following lemma.

15

Lemma 3.5 Let S = (M;L; �; �) be a structure system and S a multi S-

structure. Let f : L! L be injective on �(D

S

). Then [f

�

(S)] = f

�

([S]).

Proof By Lemma 1.4, f

�

is injective on D

S

. Hence

f

�

(S)

(f

�

(m)) =

S

(m),

for all m 2 D

S

. And so [f

�

(S)] = f(m; k) j m 2 f

�

(D

S

); 0 � k <

f

�

(S)

(m)g =

f(f

�

(m); k) j m 2 D

S

; 0 � k <

f

�

(S)

(f

�

(m))g = f

�

([S]). �

Recall that multi S-structures S and T are isomorphic if f

�

(S) = T , for

some f : L! L that is injective on �(D

S

). Hence by the uniqueness of multiset

representations, this is equivalent with [f

�

(S)] = [T] and thus with f

�

([S]) = [T]

by Lemma 3.5. Moreover, �(D

S

) = �([S]) by De�nition 3.4. Consequently, we

have the following lemma.

Lemma 3.6 Let S = (M;L; �; �) be a structure system and S and T multi

S-structures. Then S is isomorphic with T in S if and only if [S] is isomorphic

with [T] in M

S

.

Intuitively, Lemma 3.6 holds because, as expressed in De�nition 3.4(2), f

�

preserves the multiplicity as well as the internal structure of the objects in S.

Finally, we show that any concrete component of a multi S-structure de�nes

a concrete component of its representation. More speci�cally, we prove that

T �

�

S i� [T] �

�

[S]. Since we already established that T ' S i� [T] ' [S], this

allows us to conclude that the component relations in S and M

S

are basically

equivalent.

Lemma 3.7 Let S = (M;L; �; �) be a structure system and let S and T be

multi S-structures. Then T �

�

S if and only if [T] �

�

[S], and T . S if and

only if [T] . [S].

Proof First, recall that �([T]) = �(D

T

) and that T � S i� [T] � [S]. Moreover,

for all m 2 M , there exists k 2 N such that (m; k) 2 [S] � [T], if and only if

T

(m) <

S

(m). Hence �(D

T

) \ �([S] � [T]) 6= ?, if and only if there exists

m 2M such that

T

(m) <

S

(m) and �(D

T

) \ �(m) 6= ?. �

From Theorem 2.10 (applied toM

S

) the following result can now be inferred,

which generalizes Theorem 2.10.

Theorem 3.8 Let S = (M;L; �; �) be a structure system and let S and T be

multi S-structures. If S is a component of T and vice versa, then S and T are

isomorphic.

The following example shows two isomorphic multi S-structures. The con-

struction of an isomorphism between the two is similar to the construction of

h

�

of Example 2.11.

16

Example 3.9 Consider the following multi S-structures, where S is the struc-

ture system of Example 3.2(1) with M = L = N: S = f0

!

; 1; 2

!

; 3; : : :g and

T = f0; 1

!

; 2; 3

!

; : : :g. By the mapping f : N ! N with f(k) = k + 1, which is

injective on both D

S

and D

T

, we have f(S) �

�

T and f(T) �

�

S. Hence by

Theorem 3.8, S and T are isomorphic. Moreover, the mapping h = f

�1

�(f �f)

B

(where the Bernstein modi�cation is taken with respect to (N;N

+

)), is an iso-

morphism between S and T . In this particular case, it yields

h(k) =

�

k + 1 for even k

k � 1 for odd k.

�

Finally we note that structure systems can be naturally composed as follows:

we de�ne the composition S

2

�S

1

of structure systems S

1

= (M;L; �; �) and S

2

=

(M

0

;M;
; �), as the structure system (M

0

; L; �; �), where �(m

0

) = �(
(m

0

))

and � = � � �. For instance, the datatype Array of Record of L could be

modelled in this way, if we let

type L = <BT>

type M = Record of L

type M' = Array of M.

Also, if we takeM

0

=M�N and if we de�ne
((m; k)) = fmg and f

�

((m; k)) =

(f(m); k), then it is easy to see that the multi structure system M

S

1

of S

1

is

the composition of S

1

and S

2

. Note that S

2

is M

S

0

where S

0

is the structure

system of plain sets (overM); thusM

S

1

=M

S

0

�S

1

. This means thatM

S

0

can

be viewed as a CTO \Multi of", and if S

1

is the type Record of L as above,

then M

S

1

is the type Multi of Record of L (and sets of this type represent

multisets of records).

References

[1] J.C.M. Baeten and W.P. Weijland, Process Algebra, (Cambridge University

Press, Cambridge, 1990).

[2] H.P. Barendregt, The Lambda Calculus, (North-Holland, Amsterdam,

1984).

[3] N.G. de Bruijn, Lambda calculus notation with nameless dummies, a tool

for automatic formula manipulation, with application to the Church-Rosser

Theorem, Indagat. Mathem. 34 (1972) 381-392.

[4] J. Engelfriet, A multiset semantics for the pi-calculus with replication, The-

oret. Comput. Sci. 153 (1996) 65-94.

17

[5] J. Engelfriet and T.E. Gelsema, Multisets and structural congruence of the

pi-calculus with replication, Tech. Report 95-02, Department of Computer

Science, Leiden University, January 1995. To appear in Theoret. Comput.

Sci.

[6] S.A. Fenner, S.A. Kurtz and J.S. Royer, Every polynomial-time 1-degree

collapses i� P = PSPACE, Proc. of the 30th Ann. IEEE Symp. on Found.

of Comput. Sci. (1989) 624-629.

[7] S. Grumbach and T. Milo, Towards tractable algebras for bags, Journ. of

Comput. and Syst. Sci. 52 (1996) 570-588.

[8] K. Kuratowski, On a topological problem connected with the Cantor-

Bernstein theorem, Fundam. Mathem. 37 (1950) 213-216.

[9] K. Kuratowski and A. Mostowski, Set Theory, (North-Holland, Amster-

dam, 1968).

[10] R. Milner, Communication and Concurrency, (Prentice-Hall, Englewood

Cli�s, NJ, 1989).

[11] R. Milner, Functions as processes, Math. Struct. in Comput. Sci. 2 (1992)

119-141.

[12] R. Milner, J. Parrow and D. Walker, A calculus of mobile processes, Inform.

and Comput. 100 (1992) 1-77.

[13] J. Myhill, Creative Sets, Zeitschr. fur mathem. Log. und Grundl. der

Mathem. 1 (1955) 97-108.

18

