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Abstract. A notion of derivation tree is introduced for ground term

rewriting systems and new proofs are given for some old results.

1 Introduction

A ground term rewriting system is a term rewriting system of which the rules do

not contain variables. We will show that a natural concept of derivation tree can

be de�ned for these rewriting systems, in such a way that a tree t

1

can be (itera-

tively) rewritten to a tree t

2

i� there is a derivation tree of which the \yield" is the

pair (t

1

; t

2

), with an appropriate de�nition of `yield'. Derivations that di�er only

in the order of independent rule applications, correspond to the same derivation

tree. Moreover, the set of derivation trees forms a regular tree language. Thus,

the situation is analogous to (and, in fact, generalizes) the situation for context-

free grammars. Using this concept of derivation tree, and the well-known closure

properties of the regular tree languages, we give a new proof for (a slight exten-

sion of) the main result of [Bra]: the set of trees that can be obtained by (iterated)

rewriting of the trees of a regular tree language (using the rules of a ground term

rewriting system), is again a regular tree language. Viewing strings as monadic

trees in the usual way, the result of [Bra] generalizes the original result of [B�uc]:

every regular canonical system generates a regular string language (e�ectively).

Thus, we provide in particular a tree language theoretic proof of B�uchi's result

on strings. Based on the result of [Bra] we also give a new proof of the following

result of [DauTis1, DHLT]. For every ground term rewriting system there exist

regular tree languages L

1

; R

1

; : : : ; L

n

; R

n

such that a tree t

1

can be (iteratively)

rewritten to a tree t

2

i� t

2

can be obtained (in one stroke) from t

1

by replacing

independent subtrees u

1

; : : : ; u

k

of t

1

by subtrees v

1

; : : : ; v

k

, respectively, where

for every i there exists j such that (u

i

; v

i

) 2 (L

j

; R

j

). In the terminology of

[DauTis1, DHLT], every ground term rewriting system can be simulated by a

ground tree transducer. This result was used in [DauTis1, DHLT, DauTis2] to

give an elegant proof of the decidability of conuence of a ground term rewriting

system (also proved in [Oya]), and, more generally, of the decidability of the

�rst-order theory of ground term rewriting. At the end of the paper we discuss

this decidability result, together with the decidability of termination of a ground

term rewriting system (shown in [HueLan]).
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Derivation trees of ground term rewriting sytems were considered before in

[Oya, CoqGil], but they seem to be less natural than the ones introduced here,

which were inspired by [DauTis1, DHLT].

2 Ground Term Rewriting Systems

We assume the reader to be familiar with tree language theory (see, e.g., [G�ecSte1,

G�ecSte2]), in particular with the notion of a regular (or recognizable) tree lan-

guage, i.e., a tree language generated by a regular tree grammar (or accepted

by a �nite tree automaton). For a ranked alphabet �, the class of regular tree

languages over � is denoted REGT

�

. The class of all regular tree languages

is denoted REGT. We will make extensive use of well-known (e�ective) closure

properties of REGT, such as closure under union, intersection, and complemen-

tation (see, e.g., Theorem II.4.2 of [G�ecSte1]).

For a ranked alphabet �, the set of all trees (or ground terms) over � is

denoted T

�

. Trees with variables are not allowed in ground rewriting systems.

However, they will be used as a technical tool, in particular to de�ne the context

in which ground terms are replaced by other ground terms. Trees with variables

are trees over � [X , where X = fx

1

; x

2

; x

3

; : : : g and each variable x

i

is of rank

0. For a tree t 2 T

�[X

and trees t

1

; : : : ; t

k

(k 2 N = f0; 1; 2; : : :g), t[t

1

; : : : ; t

k

]

denotes the tree obtained from t by substituting t

i

for every occurrence of x

i

,

for 1 � i � k. For k 2 N, a k-place context is a tree c over � [ fx

1

; : : : ; x

k

g such

that every variable from fx

1

; : : : ; x

k

g occurs in c exactly once. As usual, a tree

u is a subtree of a tree t if t = c[u] for some 1-place context c. Intuitively, such

a decomposition c[u] of t is uniquely determined by a node of t, viz. the root of

the (occurrence of the) subtree u in t. For an example see Fig. 1.

t =

a

�

b b

�

c = �

x

1

a

�u =

b b

Fig. 1. A node of t determines a decomposition c[u] of t; for c = �(x

1

; a) and u = �(b; b),

t = c[u] = �(�(b; b); a).

Let � be a ranked alphabet. A ground rewrite system over � is a �nite

subset P of T

�

� T

�

. An element (u; v) of P is called a rule (or production) of

P , and is also written u ! v. The rewrite relation !

P

� T

�

� T

�

is de�ned

as follows: for s; t 2 T

�

, s !

P

t i� there are a rule u ! v of P and a 1-place
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context c such that s = c[u] and t = c[v]. As usual, !

�

P

denotes the reexive,

transitive closure of !

P

. The parallel rewrite relation )

P

� T

�

�T

�

is de�ned

in the following way: for s; t 2 T

�

, s )

P

t i� there are a k 2 N, a k-place

context c, and rules u

1

! v

1

; : : : ; u

k

! v

k

in P , such that s = c[u

1

; : : : ; u

k

] and

t = c[v

1

; : : : ; v

k

]. Thus, in a parallel rewrite step any number of rules can be

applied, to independent subtrees. Note that )

�

P

=!

�

P

.

Example 1. Let � = f�; a; b; p; q; r; sg, where � has rank 2 and all other symbols

have rank 0. As an example, consider the ground rewrite system P = P

1

[

P

2

over �, where P

1

consists of the rules a ! p, �(p; p) ! p, �(p; p) ! q,

q ! �(q; b), and q ! b, and P

2

consists of the rules �(b; b) ! r, �(r; b) ! r,

r ! s, s! �(a; s), and s! a. Then, for instance, �(�(a; a); a) !

�

P

�(�(b; b); a),

as a result of the following rewrite steps: �(�(a; a); a) !

P

�(�(p; a); a) !

P

�(�(p; p); a) !

P

�(q; a) !

P

�(�(q; b); a) !

P

�(�(b; b); a). And, for instance,

�(�(b; b); s))

P

�(r; �(a; s)). ut

Apart from the usual ground rewrite systems we will also be interested in ground

rewrite systems with in�nitely many rules that can be represented by regular

tree languages. For ground rewrite systems with in�nitely many rules the above

de�nitions are valid too. An extended ground rewrite system over � is a �nite

subset P of REGT

�

� REGT

�

. Let P

0

� T

�

� T

�

be the (ordinary) ground

rewrite system consisting of all rules u! v such that u 2 L and v 2 R for some

(L;R) 2 P . Then, by de�nition, !

P

= !

P

0

, )

P

= )

P

0

, and the rules of P

are those of P

0

. Thus, each \regular rule" (L;R), where L and R are regular

tree languages, abbreviates all rules u ! v with u 2 L and v 2 R. Note that

the rules that are used in a parallel rewrite step of P , are derived from possibly

di�erent regular rules. For algorithmic purposes, an extended ground rewrite

system is speci�ed by giving regular tree grammars (or �nite tree automata) for

the regular tree languages involved. Obviously every ground rewrite system is

also an extended ground rewrite system.

Example 2. Let � = f�; a; bg, where � has rank 2 and a; b have rank 0. Consider

the extended ground rewrite system Q over � containing the two regular rules

(A;C

b

) and (C

0

b

; C

a

), where A is the set of all trees over f�; ag that contain at

least one �, i.e., A = T

f�;ag

�fag, C

b

is the set of all trees �(�(� � � �(b; b) � � � ; b); b)

with n � 0 symbols �, C

0

b

is the same as C

b

except that n � 1, and C

a

is the

set of all trees �(a; �(a; � � ��(a; a) � � � )) with n � 0 symbols �. It is not di�cult

to see that for all trees t

1

; t

2

2 T

�

, t

1

!

�

Q

t

2

if and only if t

1

!

�

P

t

2

, where P is

the ground rewrite system of Example 1. ut

The relation of interest for an extended ground rewrite system P is the relation

!

�

P

. Whenever we are mainly interested in the parallel rewrite relation )

P

, an

extended ground rewrite system P will also be called a ground tree transducer.

Ground tree transducers were introduced in [DauTis1, DHLT], in a di�erent, but

obviously equivalent, way (cf. II.3 of [DauTis1]). It is shown in II.5 of [DauTis1]

and Proposition 2 of [DHLT] that for every extended ground rewrite system P

there is a ground tree transducer Q such that!

�

P

=)

Q

. Thus, any sequence of
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rewrite steps in P is simulated by one parallel rewrite step in Q, and vice versa.

In Section 4 we will give a new proof of this result.

A ground tree grammar, introduced in [Bra] where it is called a regular

system, is a tuple G = (�;�; P; S) where P is a ground rewrite system over

�, � � �, and S is a �nite subset of T

�

. The language generated by G is

L(G) =!

�

P

(S) \ T

�

, i.e., the set of all trees t 2 T

�

such that s!

�

P

t for some

s 2 S. A regular tree grammar is a ground tree grammar G = (�;�; P; S) such

that (1) all elements of ��� have rank 0 (and are called nonterminals), (2) the

left-hand side of each rule of P is in � ��, and (3) S is a singleton containing

one element of � � �. This is the usual notion of regular tree grammar (see

Section II.3 of [G�ecSte1]). The main result of [Bra] is that for every ground tree

grammar an equivalent regular tree grammar can e�ectively be constructed. In

Section 4 we will give a new proof of this result, and show, as a slight generaliza-

tion, that it also holds for every extended ground tree grammar, which is de�ned

as above, except that P is an extended ground rewrite system over �.

Example 3. Consider the ground tree grammar G = (�;�; P; S) where P is

the ground rewrite system over � of Example 1, � = f�; a; bg, and S = fsg.

It can be shown that L(G) = L(G

0

) where G

0

= (�;�

0

; P

0

; S) is the regular

tree grammar with �

0

= f�; a; b; sg and P

0

consists of all rules s ! �(a; s),

s! �(s; b), s! a, and s! b. An example of an extended ground tree grammar

is G

00

= (�;�;Q; f�(a; a)g) where Q is the extended ground rewrite system over

� of Example 2. It can be shown that also L(G

00

) = L(G

0

). ut

The main result of [Bra] is a generalization of the following result of [B�uc] for

strings: every regular canonical system generates a regular string language (e�ec-

tively), see, e.g., Section 2.3 of [Sal]. In fact, it is well known that strings corre-

spond to trees over a monadic ranked alphabet. A ranked alphabet � is monadic

if it is of the form � = A [ feg where e is a �xed symbol of rank 0 (standing

for the empty string) and every element of A has rank 1. The string a

1

a

2

� � � a

n

over the alphabet A will be identi�ed with the tree a

n

(� � � a

2

(a

1

(e)) � � � ) over

�. A regular canonical system is a ground tree grammar G = (�;�; P; S) with

monadic ranked alphabets � and �. Thus, if � = A [ feg, then L(G) � A

�

.

Note that, on strings, the rules of P are Chomsky type 0 rules that are applied

to pre�xes of the sentential forms only (because the subtrees of a monadic tree

are the pre�xes of the corresponding string). Since, in the monadic case, a regu-

lar tree grammar is the same as a left-linear grammar (with productions of the

form X ! Y w or X ! w where X and Y are nonterminals and w is a terminal

string), it should be clear that the result of [B�uc] is the monadic case of the

result of [Bra].

3 Derivation Trees

Let P be an extended ground rewrite system over �. A derivation of P is a

sequence of trees t

1

!

P

t

2

!

P

� � � !

P

t

n

. The basic idea of this paper is that the

derivations of P can be represented by derivation trees (modulo the interchange
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of independent derivation steps), and that the derivation trees of P form a regular

tree language. This is similar to the situation for context-free grammars. If t is a

derivation tree of the above derivation, then the \transduction" of t is the pair

of trees (t

1

; t

n

); hence, the set of transductions of all derivation trees of P is the

relation!

�

P

. This is similar to the fact that the set of yields of derivation trees of

a context-free grammar G is the language generated by G. Thus, in our setting,

`transduction' plays the role of `yield'. Also similar to yield, the transduction of

a tree t can be de�ned in a straightforward way, for arbitrary trees rather than

just derivation trees. We will use a special symbol # which, for derivation trees,

indicates the application of a rule.

For a ranked alphabet � we denote by �# the ranked alphabet � [ f#g,

where # is a new symbol of rank 2. For a tree t 2 T

�#

, the trees left(t) and

right(t) in T

�

are de�ned recursively as follows, where � is an element of � of

rank k � 0, and the t

i

are trees in T

�#

:

left(�(t

1

; : : : ; t

k

)) = �(left(t

1

); : : : ; left(t

k

));

left(#(t

1

; t

2

)) = left(t

1

);

right(�(t

1

; : : : ; t

k

)) = �(right(t

1

); : : : ; right(t

k

)); and

right(#(t

1

; t

2

)) = right(t

2

):

For a tree t 2 T

�#

, the transduction of t is de�ned as trans(t) = (left(t); right(t)).

For a tree language L � T

�#

, the transduction of L is de�ned as trans(L) =

ftrans(t) j t 2 Lg. Note that trans(L) � T

�

� T

�

.

Thus, for a tree t 2 T

�#

, left(t) (right(t)) is obtained from t by choosing the

left (right) subtree of every occurrence of #. Clearly, both `left' and `right' are

linear tree homomorphisms from T

�#

to T

�

(see, e.g., Section II.4 of [G�ecSte1]

for the concept of a linear tree homomorphism). Intuitively, left(t) can be seen

as a part of t, in the sense that the nodes of left(t) are a subset of the nodes of

t and the edges of left(t) are paths in t, as follows. A node x of t is a node of

left(t) if its label is not # and, walking from the root of t to x, at each #-labeled

node the left child is chosen. For two nodes x and y of t that are also nodes of

left(t), y is the left (right) child of x in left(t) if y is a descendant of the left

(right) child of x in t and, walking from x to y in t, all intermediate nodes have

label #. In the same way right(t) can be viewed as a part of t, see Fig. 2 for an

example.

Let P be an extended ground rewrite system over �. A derivation tree of P

is a tree t 2 T

�#

such that for every subtree #(t

1

; t

2

) of t, right(t

1

) ! left(t

2

)

is a rule of P . The set of all derivation trees of P is denoted D

P

.

Example 4. Figure 3 shows a derivation tree t of the ground rewrite system P

of Example 1. Considering the �ve nodes with label # in in�x order, the rules

right(t

1

) ! left(t

2

) in P corresponding to these nodes are a ! p, a ! p,

�(p; p) ! q, q ! �(q; b), and q ! b, respectively. Since, as shown in Fig. 2,

left(t) = �(�(a; a); a) and right(t) = �(�(b; b); a), the transduction of t is the pair

trans(t) = (�(�(a; a); a); �(�(b; b); a)). In fact, as will be clear from the proof of
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b

q b

b

b b

a�

�

right(t) =

a a

p p

a�

�

left(t) =

q

bq

p

q

p

�

#

# aa

#

#

#

#

�

a#

�

aa

##

�

#

�

�

t = =

a

Fig. 2. The left and right of a tree t 2 T

�#

.

p

bq

b

r

q

bq

b

q

pp p �

# a

�

# #

a

�

aa

#

a #

##

� #

a

#

#

#

� t

0

=t =

�

Fig. 3. Derivation trees t and t

0

of the ground rewrite system P of Example 1.
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the next theorem, t corresponds to the derivation �(�(a; a); a) !

�

P

�(�(b; b); a)

given in Example 1.

Figure 3 also shows another derivation tree t

0

of P , closely related to t. The

(in�x order) sequence of rules right(t

1

) ! left(t

2

) of t

0

is the same as that of t,

followed by the rule �(b; b)! r. ut

The main properties of D

P

are that trans(D

P

) =!

�

P

and that D

P

is a regular

tree language.

Theorem1. For every extended ground rewrite system P , trans(D

P

) =!

�

P

.

Proof. Let P be an extended ground rewrite system over �. As in the case of

context-free grammars, we will associate derivations with derivation trees, and

derivation trees with derivations. We start with the former.

To prove the inclusion trans(D

P

) �!

�

P

we show the following by structural

induction on t: if t 2 D

P

, then left(t) !

�

P

right(t). First, let t = �(t

1

; : : : ; t

k

)

with � 2 �. Then, by de�nition, left(t) = �(left(t

1

); : : : ; left(t

k

)) and right(t) =

�(right(t

1

); : : : ; right(t

k

)). Note that every subtree of t is in D

P

. Hence, by in-

duction, left(t

i

) !

�

P

right(t

i

) for every 1 � i � k. This implies that left(t) !

�

P

right(t). Second, let t = #(t

1

; t

2

). Then left(t) = left(t

1

) and right(t) = right(t

2

).

Since t is a derivation tree of P , right(t

1

) ! left(t

2

) is a rule of P and hence

right(t

1

) !

P

left(t

2

). Thus, by induction, left(t

1

) !

�

P

right(t

1

) !

P

left(t

2

) !

�

P

right(t

2

). This shows that left(t)!

�

P

right(t).

Next we show the inclusion !

�

P

� trans(D

P

). For this purpose we prove the

following: for trees s

1

; : : : ; s

n

2 T

�

(n � 1), if s

1

!

P

s

2

!

P

� � � !

P

s

n

then

there exists t 2 D

P

such that s

1

= left(t) and s

n

= right(t). We prove this

by induction on the sum of the sizes of s

1

; : : : ; s

n

, distinguishing two cases. In

the �rst case there exists a derivation step s

i

!

P

s

i+1

such that s

i

! s

i+1

is

in P . By induction there are derivation trees t

1

and t

2

such that left(t

1

) = s

1

,

right(t

1

) = s

i

, left(t

2

) = s

i+1

, and right(t

2

) = s

n

. Hence t = #(t

1

; t

2

) satis�es

the requirements. In the second case no s

i

! s

i+1

is in P . This means intuitively

that the roots of the s

i

remain unchanged. Formally it is straightforward to show

that there exist k � 0, � 2 � of rank k, and trees r

i;j

(1 � i � n, 1 � j � k) such

that s

i

= �(r

i;1

; : : : ; r

i;k

), and r

i;j

!

P

r

i+1;j

or r

i;j

= r

i+1;j

. Thus r

1;j

!

�

P

r

n;j

by a smaller derivation, and so, by induction, there are derivation trees t

1

; : : : ; t

k

such that left(t

j

) = r

1;j

and right(t

j

) = r

n;j

. Hence t = �(t

1

; : : : ; t

k

) satis�es the

requirements. ut

It is easy to see that the above inductive proofs describe a constructive way of

associating derivations with derivation trees, and vice versa. As in the case of

context-free grammars, the derivations associated with derivation trees are left-

most derivations (where `left-most' is de�ned in the obvious way). In fact, every

node with label # of a derivation tree t corresponds to the application of a rule,

and in the corresponding left-most derivation the rules are applied according to

the in�x order of these nodes in t, cf. Example 4. In the other direction, the

proof does not produce a unique derivation tree; it is, however, unique modulo

associativity of #. This is due to the fact that in a derivation there may be
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several derivation steps that are rules in P . If systematically the left-most such

derivation step is always taken, then the constructed derivation trees t have the

following property: the left child of a node with label # does not have label

# (cf. Fig. 3). It can be shown (but we will not do this here) that, analogous

to the case of context-free grammars, there is a one-to-one correspondence be-

tween derivation trees with the above property and left-most derivations. As an

example, derivation tree t of Fig. 3 corresponds in this way to the derivation

given in Example 1, and derivation tree t

0

corresponds to that same derivation

extended by �(�(b; b); a)!

P

�(r; a). Note that there is a one-to-one correspon-

dence between left-most derivations and equivalence classes of derivations with

respect to the interchange of independent derivation steps. Thus, as for context-

free grammars, derivation trees (with the above property) faithfully represent

the \parallelism" in derivations. This does not hold for the derivation trees in

[CoqGil]. As a simple example, if P has two rules a ! p and a ! q, then both

derivations �(a; a) !

P

�(p; a) !

P

�(p; q) and �(a; a) !

P

�(a; q) !

P

�(p; q)

have derivation tree �(#(a; p);#(a; q)).

Derivation trees can also be constructed incrementally: if t is a derivation

tree for a derivation s

1

!

�

P

s

2

, and s

2

!

P

s

3

is another derivation step, then

it is straightforward to construct a derivation tree t

0

for s

1

!

�

P

s

2

!

P

s

3

, as

follows. Suppose that s

2

= c[u] and s

3

= c[v] with u ! v in P ; thus right(t) =

c[u]. Now it can be shown that t = c

0

[u

0

] with right(c

0

) = c and right(u

0

) = u

(and the root label of u

0

is not #), and it can be shown that t

0

= c

0

[#(u

0

; v)]

satis�es the requirements, cf. Fig. 3. In fact, if the decomposition c[u] of right(t)

is determined by node x of right(t), i.e., x is the root of (the occurrence of) u

in right(t), then the decomposition c

0

[u

0

] of t is also determined by x, viewed

as a node of t. Recall that, intuitively, right(t) can be viewed as a part of t, as

shown in Fig. 2. Thus, if (in that �gure) x is the lowest node of right(t) with

label �, then the corresponding node x in t is also the lowest (encircled) node

with label �. The decomposition c[u] is shown in Fig. 1, and t = c

0

[u

0

] with

c

0

= �(#(�(#(a; p);#(a; p));#(q; x

1

)); a) and u

0

= �(#(q; b); b).

Up to now we did not use the regularity of the tree languages L and R in a

\regular rule" (L;R) of an extended ground rewrite system. Thus, Theorem 1

holds in fact for arbitrary term rewriting systems (with variables), viewed as

abbreviations of ground term rewriting systems with in�nitely many rules, in

the obvious way.

The regularity of the set of derivation treesD

P

of an extended ground rewrite

system P is an easy exercise in tree language theory.

Theorem2. For every extended ground rewrite system P , D

P

is a regular tree

language (e�ectively).

Proof. To prove this we use (e�ective) closure properties of the class of regular

tree languages. For any tree language L, let allsub(L) denote the set of all trees

t such that every subtree of t is in L. It is easy to see that REGT is e�ectively

closed under the allsub operation (see, e.g., Section II.8 of [G�ecSte1], where

`allsub' is denoted `rest'). For a symbol � of rank k and tree languages L

1

; : : : ; L

k

,
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�(L

1

; : : : ; L

k

) denotes the set of all trees �(t

1

; : : : ; t

k

) such that t

i

2 L

i

for every

1 � i � k. It is well known that REGT is e�ectively closed under these operations

(see, e.g., Corollary II.4.12 of [G�ecSte1]).

Let P be an extended ground rewrite system over �. De�ne D

0

P

to be the set

of all trees t 2 T

�#

such that either the root label of t is in � or t = #(t

1

; t

2

)

and right(t

1

) ! left(t

2

) is a rule of P . Then D

P

= allsub(D

0

P

). Clearly, D

0

P

is

the (�nite) union of all tree languages �(T

�#

; : : : ; T

�#

), for � 2 �, and all tree

languages #(right

�1

(L); left

�1

(R)), for (L;R) 2 P . The result now follows from

the fact that T

�#

and all L and R are regular, from the above closure properties

and closure under union, and from the (e�ective) closure of REGT under inverse

tree homomorphisms (see, e.g., Theorem II.4.18 of [G�ecSte1]). Recall that both

`left' and `right' are tree homomorphisms. ut

These results show that the derivation trees of extended ground rewrite systems

have properties similar to those of context-free grammars. In fact, in a sense to

be explained now (informally), the former can be viewed as a proper generaliza-

tion of the latter. With every context-free grammarG one can associate a ground

rewrite system G

0

in a natural (and well-known) way. In fact, G

0

is a regular tree

grammar that has the same nonterminals as G (with the same initial nontermi-

nal), and for every production A! �

1

� � ��

k

of G (where A is a nonterminal and

each �

i

is either a nonterminal or a terminal) G

0

has a rule A! c

k

(�

1

; : : : ; �

k

)

where c

k

is a (new) terminal symbol of rank k (intuitively standing for the con-

catenation of k strings), and each �

i

has rank 0. It should now be clear that

there is a natural one-to-one correspondence between the derivations of G and

G

0

, and thus a very close one-to-one relationship between the (usual) derivation

trees of G and the derivation trees of G

0

, see the following example. Thus, the

derivation trees of ground rewrite systems model the parallelism in derivations

in the same way as those of context-free grammars.

Example 5. Consider the context-free grammar G with productions A ! aAB,

A ! adB, B ! bB, and B ! bb, generating all strings a

n

db

m

with n � 1 and

m � 2n (assuming that A is the initial nonterminal). Then the ground rewrite

system (regular tree grammar) G

0

has rules A ! c

3

(a;A;B), A ! c

3

(a; d;B),

B ! c

2

(b; B), and B ! c

2

(b; b). Figure 4 shows derivation trees of corresponding

derivations of G and G

0

. Clearly, for a derivation tree t of G, the corresponding

derivation tree der(t) of G

0

can be obtained recursively as follows:

der(A(t

1

; t

2

; t

3

)) = #(A; c

3

(der(t

1

); der(t

2

); der(t

3

)))

der(B(t

1

; t

2

)) = #(B; c

2

(der(t

1

); der(t

2

))); and

der(x) = x for x 2 fa; b; dg:

Thus, `der' is a straightforward linear tree homomorphism. Note that the in�x

order of the #-labeled nodes of der(t) corresponds to the (usual) pre�x order of

the nonterminal nodes of t. Thus, the association between left-most derivations

and derivation trees is the same in G

0

and G. ut
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A

A

B

B B

a

a d

b b

#

# #

# #

A

A

B

B

B

d

b b

c

3

c

3

c

2

c

2

c

2

b b

b

a

a

b b

b

Fig. 4. Derivation trees of a context-free grammar and the corresponding ground

rewrite system.

4 New Proofs of Old Results

Using the known closure properties of REGT (as in the proof of Theorem 2), it

is now easy to show that the relation !

�

P

preserves regular tree languages.

Theorem3. For every extended ground rewrite system P and every regular tree

language R, !

�

P

(R) is a regular tree language (e�ectively).

Proof. By Theorem 1, !

�

P

(R) = fs

2

j s

1

!

�

P

s

2

for some s

1

2 Rg = fs

2

j

(s

1

; s

2

) 2 trans(D

P

) for some s

1

2 Rg = fright(t) j t 2 D

P

; left(t) 2 Rg.

Hence !

�

P

(R) = right(D

P

\ left

�1

(R)). Since D

P

is regular by Theorem 2,

and since REGT is e�ectively closed under inverse tree homomorphisms, inter-

section, and linear tree homomorphisms (for the latter, see, e.g., Theorem II.4.16

of [G�ecSte1]), the result follows. ut

The language generated by an extended ground tree grammar G = (�;�; P; S)

is L(G) =!

�

P

(S)\ T

�

. Since every �nite tree language S is regular and REGT

is closed under intersection with T

�

, the (slight extension of the) main result of

[Bra] follows immediately from Theorem 3.

Theorem4. For every extended ground tree grammar G a regular tree grammar

G

0

with L(G

0

) = L(G) can e�ectively be constructed.

It was shown in Theorem 3.21 of [Bra] that in a ground tree grammar G =

(�;�; P; S) one can also allow the set S to be a regular tree language. This

means that, in fact, Theorem 3 was also proved in [Bra] (for ordinary ground

rewrite systems).

Using Theorem 3 (and Theorem 1) it is now straightforward to prove result

II.5 of [DauTis1] (see also Proposition 2 of [DHLT], which, however, does not

show e�ectivity).
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Theorem5. For every extended ground rewrite system P a ground tree trans-

ducer Q such that !

�

P

=)

Q

, can e�ectively be constructed.

Proof. Let P be an extended ground rewrite system over �. By  

�

P

we denote

the relation (!

�

P

)

�1

. It is easy to see that this is the relation!

�

P

�1

, where P

�1

is the extended ground rewrite system f(R;L) j (L;R) 2 Pg. This shows, by

Theorem 3, that  

�

P

(L) is (e�ectively) regular for every regular tree language

L.

De�ne Q = f( 

�

P

(L);!

�

P

(R)) j (L;R) 2 Pg. Then Q is a ground tree

transducer (e�ectively), by Theorem 3. We �rst show that !

�

P

� )

Q

. Let

s !

�

P

s

0

. By Theorem 1 there is a tree t 2 D

P

such that left(t) = s and

right(t) = s

0

. The derivation tree t 2 T

�#

can be decomposed (in a unique

way) as t = c[#(t

1

; t

0

1

); : : : ;#(t

k

; t

0

k

)] where c is a k-place context (for some

k � 0) that does not contain #, and the t

i

; t

0

i

are derivation trees of P such that

right(t

i

) ! left(t

0

i

) is a rule of P . De�ne, for 1 � i � k, the trees p

i

= left(t

i

)

and p

0

i

= right(t

0

i

) over �. Since t

i

; t

0

i

2 D

P

, it follows from Theorem 1 that p

i

2

 

�

P

(right(t

i

)) and p

0

i

2 !

�

P

(left(t

0

i

)). Hence, since right(t

i

) ! left(t

0

i

) is a rule

of P , p

i

2  

�

P

(L) and p

0

i

2 !

�

P

(R) for some (L;R) 2 P . Thus, p

i

! p

0

i

is a rule

of Q. Since clearly s = left(t) = c[p

1

; : : : ; p

k

] and s

0

= right(t) = c[p

0

1

; : : : ; p

0

k

],

this shows that s)

Q

s

0

.

We note here that an experienced reader can easily give the above proof

without the use of derivation trees, i.e., without the use of Theorem 1: if s!

�

P

s

0

then, obviously, there exist a k-place context c and trees p

i

; p

0

i

; u

i

; u

0

i

such that

s = c[p

1

; : : : ; p

k

], s

0

= c[p

0

1

; : : : ; p

0

k

], p

i

!

�

P

u

i

!

P

u

0

i

!

�

P

p

0

i

, and u

i

! u

0

i

in

P (which shows s )

Q

s

0

). However, the above proof illustrates that derivation

trees can be used to give precise formal proofs of such obvious statements.

The proof of the inclusion )

Q

� !

�

P

is even easier. Given a context c

and trees p

i

2  

�

P

(L) and p

0

i

2 !

�

P

(R) (for some (L;R) 2 P depending

on i) such that s = c[p

1

; : : : ; p

k

] and s

0

= c[p

0

1

; : : : ; p

0

k

], there are derivations

p

i

!

�

P

u

i

and u

0

i

!

�

P

p

0

i

such that u

i

! u

0

i

is a rule of P . Hence p

i

!

�

P

p

0

i

and

so s = c[p

1

; : : : ; p

k

] !

�

P

c[p

0

1

; : : : ; p

0

k

] = s

0

. Note that if t

i

and t

0

i

are derivation

trees of p

i

!

�

P

u

i

and u

0

i

!

�

P

p

0

i

, respectively, then c[#(t

1

; t

0

1

); : : : ;#(t

k

; t

0

k

)] is a

derivation tree of s!

�

P

s

0

. ut

Theorem 5 is equivalent to saying that the class of ground tree transductions is

closed under star (as shown in [DauTis1, DHLT]), because for every ground tree

transducer P , )

�

P

=!

�

P

.

It is rather obvious that ground tree transducers also have \derivation trees".

Lemma6. For every ground tree transducer P over � there is a regular tree

language D over �# such that trans(D) =)

P

(e�ectively).

Proof. De�ne D to be the set of all trees t 2 T

�#

such that for every subtree

#(t

1

; t

2

) of t, (t

1

; t

2

) 2 (L;R) for some (L;R) 2 P . Note that in such a tree

there are no nested occurrences of #. It should be clear that trans(D) = )

P

.

To show that D is (e�ectively) regular, let D

0

be the regular tree language

that is the union of all #(L;R), for (L;R) 2 P . Then D is the set of all trees

11



c[t

1

; : : : ; t

k

] where c is a k-place context (for some k � 0) and t

i

2 D

0

. From this

it easily follows that D is regular (to be precise, D = T

�[fx

1

g

�

x

1

D

0

, see, e.g.,

Theorem II.4.6 of [G�ecSte1]). ut

This lemma immediately gives us the following result, by exactly the same proof

as the one of Theorem 3.

Theorem7. For every ground tree transducer P and every regular tree language

R, )

P

(R) is a regular tree language (e�ectively).

Note that Theorem 3 follows from Theorems 5 and 7, as shown in Proposition 3.2

of [CoqGil], and in Lemmas 3.6 and 3.7 of [F�ulV�ag] for the case that !

�

P

is a

congruence. Thus, Theorems 3 and 5 are quite closely related.

As observed in Section 2, the above results hold in particular for monadic

ranked alphabets, in which case they concern strings rather than trees: ground

rewrite systems correspond to the regular canonical systems of [B�uc] (which are

Chomsky type 0 grammars of which the productions are applied to pre�xes of the

sentential forms only), and regular tree languages correspond to regular string

languages. Thus, Theorem 4 expresses the (extended version of the) main result

of [B�uc]: for every regular canonical system an equivalent left-linear grammar

(or right-linear grammar, or �nite automaton) can e�ectively be constructed

(for other proofs see, e.g., Section 2.3 of [Sal], or see [FraPag]). This result is

equivalent with the well-known fact that the possible contents of a pushdown

automaton form a regular language (see [Gre] and, e.g., page 335 of [Har]).

The results of [B�uc] and [Bra] were rediscovered in [DauTis1, DHLT] (in the

sense of the above-mentioned close relationship between Theorems 3 and 5), in

[F�ulV�ag], and in [FraPag]. Complexity issues are considered in [CoqGil, FraPag,

V�ag]. Theorem 3 is generalized to linear semi-monadic term rewriting systems

in Theorem 5.1 of [CDGV]; it is not clear whether the notion of derivation tree

is relevant to this generalization.

In the remainder of this section we discuss conuence and termination of

ground rewrite systems.

An extended ground rewrite system P over � is conuent if for all trees

t; u; v 2 T

�

with t !

�

P

u and t !

�

P

v, there is a tree w 2 T

�

such that

u !

�

P

w and v !

�

P

w. In [DauTis1, DHLT, DauTis2] it is shown on the basis

of Theorem 5 that conuence is decidable for extended ground rewrite systems.

The nicest proof is the one in [DauTis2], where it is even shown that the �rst-

order theory of extended ground rewrite systems is decidable. This �rst-order

theory includes properties such as conuence (as should be clear from the above

standard de�nition) and unique normalization (i.e., for every s 2 T

�

there is

a unique t 2 T

�

such that s !

�

P

t and there is no u 2 T

�

with t !

P

u).

The essence of the proof in [DauTis2] is that for every extended ground rewrite

system P , !

�

P

is a so-called binary RR relation (introduced in [DauTis2] and

shown to have a decidable �rst-order theory). In view of Theorem 5, it is in fact

proved that every ground tree transduction is a binary RR relation. We now

wish to convince the reader who is familiar with [DauTis2], that the proof can

as well be based on Theorems 1 and 2, instead of on Theorem 5.
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Let Non denote the set of all trees t 2 T

�#

that do not have nested occur-

rences of # (i.e., for every subtree #(t

1

; t

2

) of t, t

1

and t

2

are in T

�

).

Lemma8. For every regular tree language R over �# there is (e�ectively) a

regular tree language R

0

over �# such that trans(R

0

) = trans(R) and R

0

� Non.

Proof. Let `prune' be the mapping from T

�#

to T

�#

, de�ned recursively as

follows, where � is an element of � of rank k, and t

i

2 T

�#

:

prune(�(t

1

; : : : ; t

k

)) = �(prune(t

1

); : : : ; prune(t

k

)); and

prune(#(t

1

; t

2

)) = #(left(t

1

); right(t

2

)):

Clearly, for every t 2 T

�#

, trans(prune(t)) = trans(t), and # is not nested

in prune(t). Thus, trans(prune(R)) = trans(R) and prune(R) � Non. From

the recursive de�nition of `prune' (and `left' and `right') it is immediate that

`prune' is a linear top-down tree transduction (see, e.g., Chapter IV of [G�ecSte1]

where top-down tree transducers are called root-to-frontier tree transducers).

Since REGT is e�ectively closed under linear top-down tree transductions (see

Corollary IV.6.6 of [G�ecSte1]), prune(R) is regular. Thus,R

0

= prune(R) satis�es

the requirements.

We observe here that for every extended ground rewrite system P , prune(D

P

)

is the set of derivation trees (as de�ned in the proof of Lemma 6) of the ground

tree transducer Q de�ned in the proof of Theorem 5. ut

Tree transductions of the form trans(R), where R is a regular tree language

consisting of trees that do not have nested occurrences of #, are just a slight

generalization of ground tree transductions (cf. the proof of Lemma 6). Thus, it

is straightforward to generalize the proof of the Lemma in Section 5 of [DauTis2],

which shows that every ground tree transduction is a binary RR relation, to a

proof that every transduction trans(R) with R � Non is a binary RR relation.

Together with Lemma 8, this gives the following proposition.

Proposition 9. For every regular tree language R over �#, trans(R) is a binary

RR relation (e�ectively).

Clearly, Proposition 9 and Theorems 1 and 2 imply that !

�

P

is a binary RR

relation for every extended ground rewrite system P .

Finally we discuss the termination problem of extended ground rewrite sys-

tems. Termination does not seem to be expressible in the �rst-order theory

of ground rewriting (cf. [DauTis2]). However, its decidability is much easier

to show than that of conuence. An extended ground rewrite system P is �-

nitely terminating or noetherian if there does not exist an in�nite derivation

t

1

!

P

t

2

!

P

t

3

!

P

� � � . As mentioned in [HueOpp], decidability of the

noetherian property for (ordinary) ground rewrite systems is shown in [HueLan];

a proof that uses ground tree transducers is given in V.3 of [DauTis1].

Theorem10. It is decidable for an extended ground rewrite system P whether

or not P is �nitely terminating.
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Proof. Let P be an extended ground rewrite system over �. We say that a tree

t 2 T

�

is nonterminating if there is an in�nite derivation t

1

!

P

t

2

!

P

t

3

!

P

� � �

that starts with t, i.e., t = t

1

. We �rst prove (by structural induction on t) that

if t is nonterminating then there exist a 1-place context c and a rule u ! v

of P such that t !

�

P

c[u] and v is nonterminating. If, in the above in�nite

derivation, t

i

! t

i+1

is a rule of P , for some i � 1, then the statement obviously

holds (with the empty context x

1

). Otherwise, the roots of t

1

; t

2

; : : : remain

unchanged, which implies that there must be an in�nite derivation that starts

with a proper subtree s

j

of t = �(s

1

; : : : ; s

k

). Then, by induction, s

j

!

�

P

c

0

[u]

and v is nonterminating, for some context c

0

and rule u ! v. Clearly, for this

rule and context c = �(s

1

; : : : ; c

0

; : : : ; s

k

) the statement holds.

Suppose that P is not �nitely terminating. Then, by repeated application of

the above argument, there is an in�nite sequence u

1

! v

1

; u

2

! v

2

; u

3

! v

3

; : : :

of rules of P such that for every i, v

i

!

�

P

c[u

i+1

] for some 1-place context c.

This implies that for all i; j with i < j there is a 1-place context c such that

v

i

!

�

P

c[u

j

]. Now let (L

i

; R

i

) 2 P with u

i

2 L

i

and v

i

2 R

i

, for all i. Since P is

�nite, there exist i < j such that (L

i

; R

i

) = (L

j

; R

j

). This shows the existence

of a rule u ! v (viz. u

j

! v

i

) such that v !

�

P

c[u] for some context c. In the

other direction, the existence of such a rule clearly implies that P is not �nitely

terminating: v !

�

P

c[u]!

P

c[v]!

�

P

c[c[u]]!

P

� � � .

Thus, P is �nitely terminating if and only if !

�

P

(R) \ exsub(L) = ; for

all (L;R) 2 P , where exsub(L) is the set of all trees that have at least one

subtree in L (i.e., all c[u] with u 2 L). By Theorem 3, !

�

P

(R) is a regular

tree language. Clearly, exsub(L) is a regular tree language (e.g., exsub(L) =

T

�

� allsub(T

�

� L) and REGT is closed under complementation; for `allsub'

see the proof of Theorem 2). Hence, by the closure of REGT under intersection,

!

�

P

(R)\exsub(L) is a regular tree language. Thus, since the emptiness problem

is decidable for regular tree languages (see, e.g., Theorem II.10.2 of [G�ecSte1]),

the above property can be decided. ut
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