
Notions of Re�nement for

a Coordination Language for Gamma

�

Michel Chaudron

Department of Informatics

Leiden University, The Netherlands

chaudron@cs.leidenuniv.nl

Revised: February 14, 1997

Abstract

Gamma has shown to be a powerful and expressive formalism that allows the basic com-

putation of an algorithm to be expressed with a minimum of control. In a second stage of the

design process, the highly nondeterministic behaviour of Gamma can be exploited to impose

additional control using a separate coordination language.

Separating computation from coordination facilitates correctness proofs of the computa-

tion component, because operational details need not be taken into account. In this respect it

is important that the coordination component does not invalidate the established correctness

of the program.

In this paper we propose several notions of re�nement that allow the coordination com-

ponent of a Gamma program to be constructed through a correctness preserving derivation

process. We show that the notions can be combined into a hybrid proof method that can be

used to reason about di�erent properties of the coordination component.

�

A short version of this report appears as [6]

1

Contents

1 Introduction 3

2 Gamma and its coordination language 3

2.1 The Computation Language Gamma : 4

2.2 A Coordination Language for Gamma : 4

2.2.1 Introduction to Schedules : 5

2.2.2 Operational Semantics of Schedules : 6

2.2.3 The Most General Schedule : 10

3 Notions of Re�nement for Schedules 11

3.1 Statebased Re�nement : 11

3.2 Weak Statebased Simulation : 16

3.3 Relating Re�nement and Capability : 20

3.4 Stateless Re�nement : 21

3.5 Weak Stateless Re�nement : 23

3.6 Relating the notions of re�nement : 30

4 Applications 31

4.1 Application 1: Summation : 32

4.2 Application 2: Single Source Shortest Paths : 34

4.2.1 A First Re�nement : 34

4.2.2 Some Further Re�nements : 38

5 Conclusions 39

6 Appendix On Multisets 41

2

1 Introduction

From di�erent areas of computer programming, the view has emerged that a program is made up

from a computation and a coordination component. A computation component speci�es the basic

actions to be performed in order to solve a problem. A coordination component determines the

way in which the computations are combined into a coherent ensemble [10].

In accordance to this view, we proposed in [8] a method for the design of parallel programs

where computation and coordination are addressed separately. The main bene�t of this approach,

is that it leads to a uniform approach for parallel and distributed computing. This results in a

greater ease of design, a high degree of portability (of the computation component) and supports

collections of heterogeneous computing agents.

It is argued in [2] and [8] that the Gamma formalism is well suited for expressing the basic

computations of an algorithm with a minimum of control. Hence Gamma programs are not biased

towards any particular mode of execution. The abstraction of control-ow is an advantage is

the design stage, because in proving the correctness of a program, one does not have to take

(e�ciency related) operational details into account. A method for the construction of correct

Gamma programs, akin to the one advocated by [11], was described by Bânatre and Le M�etayer

in [1].

In a second phase of the design process, we can exploit the highly nondeterministic behaviour of

Gamma programs to obtain e�ciency. To this end, we proposed in [7], a language for coordinating

the actions of Gamma programs. This language enables the programmer to determine operational

details that are left unspeci�ed by the Gamma program.

In this paper we focus on methods for the construction and veri�cation of the coordination

component of a Gamma program. We investigate several notions of re�nement that allow the

construction of a coordination component through a correctness preserving derivation process

such that the correctness of the initial Gamma program is not invalidated.

The paper is organized as follows. In Section 2 we briey describe the Gamma model and

its coordination language. In Section 3 we examine various notions of re�nement for schedules

and illustrate their use in the derivation process. In Section 4 we illustrate how the notions

of re�nement can be combined into a method for the derivation of coordination strategies. We

conclude with some �nal remarks and directions for future research in Section 5.

2 Gamma and its coordination language

We start with a brief introduction to the components that make up our programming model: the

Gamma language, which is used to specify computations, and the coordination language which is

used to control Gamma computations.

3

2.1 The Computation Language Gamma

The Gamma model [2] provides the multiset as the basic data structuring mechanism. Multisets

can be formed over arbitrary domains of values, including integers, reals, booleans and tuples. The

set of multisets is denoted M . Gamma programs are built from conditional multiset rewrite rules,

denoted x 7!m (b. Here x denotes a sequence x

1

; : : : ; x

n

of variables, m denotes a multiset

expression, and b denotes a boolean expression, called the reaction condition. The free variables

in m and b are taken from x

1

; : : : ; x

n

.

A rewrite rule may execute if there are values in the multiset that satisfy the rule's reaction

condition. These values are then replaced by (transformed into) the elements that result from

evaluating the multiset expression (for these values). Execution of a rule proceeds until there are

no more matching elements in the multiset.

Example 2.0.1 Consider the rewrite rule

sieve b=x; y 7! x (ymod x = 0

Execution of this rule eliminates a number, y, that is a multiple of some other number, x, present

in the multiset. When started with a multiset M

0

= f2; : : : ; ng, execution of the program sieve

continues until it reaches a state that contains only the prime numbers up to n.

The Gamma program does not specify in which order numbers are deleted. Di�erent numbers

may be compared and removed in parallel, but this need not be the case. The program may behave

as the well known algorithm of Eratosthenes as well as in some apparently chaotic way. �

From individual rewrite-rules more complex programs can be built. Rules may be composed

in parallel, forming so-called simple programs, using the \+" operator. The constituent rules of

a simple program are executed in any order, possibly in parallel, until none of these rules can be

applied. Simple programs can in turn be composed using the sequential operator, denoted \ � ".

A program P

2

� P

1

�rst executes P

1

until completion, after which execution continues with P

2

.

Formal de�nitions of Gamma's operational semantics are given in [12] and [7]. In [12] Hankin

et al. use a single step transition system as opposed to [7] where a multistep transition system is

used. We postpone a treatment of the formal semantics until Section 2.2.3, where we shall present

an alternative de�nition in terms of our coordination language.

2.2 A Coordination Language for Gamma

Execution in Gamma proceeds in a highly nondeterministic fashion. Therefore, a Gamma program

can be seen as the speci�cation of a wide spectrum of (more deterministic) behaviours. The lan-

guage, to be presented shortly, is designed as a kernel language for coordinating Gamma programs.

It provides the means to specify execution plans according to which a Gamma program may be

executed. Hence we usually refer to the terms from the coordination language as schedules.

4

2.2.1 Introduction to Schedules

The basic components of the coordination language are the multiset rewrite-rules from a Gamma

program. The set S of schedules consists of all terms that can be built from these rules according

to the following abstract syntax. Here s denotes a schedule, r a multiset rewrite-rule, c a boolean

expression, S a schedule identi�er, and v a sequence of values.

s ::= skip j r ! s[s] j s; s j s k s j c . s[s] j !s j S(v)

skip denotes the empty schedule. The link between schedules and Gamma programs is made

by the rule-conditional schedule r ! s[t]. This schedule �rst attempts to execute r. If this

succeeds, then execution continues with s; otherwise, if r fails, execution continues with t. As a

notational convention, we write r ! s[skip] as r ! s and r ! skip as r. More complex schedules

can be obtained using \;", which denotes sequential composition, and \ k " which denotes parallel

composition. The execution of s k t proceeds by a step performed by either s or t, or by a parallel

step in which both s and t participate. We use �

n

i=1

s

i

to denote s

1

k : : : k s

n

and write s

k

, for

k � 0, to denote k copies of s composed in parallel.

Execution of Gamma programs is such that the number of rules that may be executed in

parallel varies dynamically with the number of elements available in the multiset. In order to

describe this dynamic behaviour using schedules, the replication operator \!" is included. The

schedule !s denotes a dynamically varying number of copies of s executing in parallel.

Each occurrence of a schedule identi�er, as in S(v), has a corresponding schedule de�nition of

the form S(x) b= s where the free variables in s are taken from x. From a program design point of

view, schedule de�nitions provide the means for specifying schedules in a modular fashion. From

a theoretical point of view, it enables the construction of recursive schedules. Execution of S(v)

proceeds by execution of its body s, where the actual arguments v are substituted for the variables

x.

Recursive de�nitions are typically accompanied by the use of the conditional construct c . s[t],

which serves as a guard to the recursion. Here c represents a boolean expression that is independent

from the multiset. If c evaluates to true, then execution continues with s, otherwise t is executed.

Analogously to the rule conditional, c . s[skip] is written as c . s.

Nondeterminism in Gamma arises at two levels:

1. at the selection of a rewrite-rule,

2. in selecting elements from the multiset.

The coordination language as introduced so far is only capable of resolving the �rst type of

nondeterminism. The second type is resolved by strengthening the condition of a rewrite-rule.

Consider a rule r = x 7!m (b. Rather than scheduling r directly, we can schedule a rule

r

0

= x 7!m (b

0

, such that b

0

) b. Rule r

0

exhibits restricted behaviour compared to r, because

there are fewer elements from the multiset that satisfy the stronger condition b

0

.

In general, a rewrite rule may not be replaced by an arbitrary strengthening of that rule,

5

because this may invalidate computational correctness. In practice, strengthening is used to

restrict the enabling condition of a rewrite rule such that it pin-points the elements to be selected

for rewriting. The techniques for re�nement, to be presented later on, will enable us to assert the

correctness of the strengthenings used.

2.2.2 Operational Semantics of Schedules

Formally, execution of a rule x 7!m (b in a multiset M takes place if there are elements v �M

such that the boolean expression with v substituted for x, denoted b[x := v], evaluates to true.

Then the values v are removed, and the values from the multiset M

0

= m[x := v] are inserted.

The e�ect of a rewrite is formally represented by M [�] where � denotes a multiset substitution

M

0

=v. More formally, given a multiset substitution � = N

0

=N , then M [�] = (M 	N) [N

0

. The

operators 	 and [denote multiset di�erence and union and are de�ned formally in Section 6.

Two multiset substitutions �

1

and �

2

may be applied in the same multiset if they do not interfere.

This is denoted M j= �

1

on�

2

and is de�ned in Section 6.

A con�guration of a schedule s and a multiset M is written hs;Mi. The set S�M of con�gura-

tions is denoted C . The operational semantics of schedules is de�ned by the structural congruence

relation in Figure 1 and a multistep transition relation

�

�! � C � C depicted in Figure 2. The

label � of a transition is either a multiset substitution or the special symbol " which denotes a

transition that does not change the multiset.

(E1) skip; s � s

(E2) s

1

; (s

2

; s

3

) � (s

1

; s

2

); s

3

(E3) skip k s � s

(E4) s

1

k (s

2

k s

3

) � (s

1

k s

2

) k s

3

(E5) s

1

k s

2

� s

2

k s

1

(E6) true . s[t] � s

(E7) false . s[t] � t

(E8) !skip � skip

(E9) S(v) � skip if S(x) b= s and s[x := v]� skip

Figure 1: Structural Congruences for Schedules

6

(N0) hr ! s[t];Mi

"

�!ht;Mi if @v �M : b[x := v]

(N1) hr ! s[t];Mi

�

�!hs;M [�]i if v �M ^ b[x := v] and � = m[x := v]=v

(N2)

hs

1

;Mi

�

�!hs

0

1

;M

0

i

hs

1

k s

2

;Mi

�

�!hs

0

1

k s

2

;M

0

i

(N3)

hs

1

;Mi

�

�!hs

0

1

;M

0

i

hs

2

;Mi

"

�!hs

0

2

;Mi

hs

1

k s

2

;Mi

�

�!hs

0

1

k s

0

2

;M

0

i

(N4)

hs

1

;Mi

�

1

�!hs

0

1

;M

1

i

hs

2

;Mi

�

2

�!hs

0

2

;M

2

i

hs

1

k s

2

;Mi

�

�!hs

0

1

k s

0

2

;M [�]i

where � = �

1

� �

2

and M j= �

1

on�

2

(N5)

hs

1

;Mi

�

�!hs

0

1

;M

0

i

hs

1

; s

2

;Mi

�

�!hs

0

1

; s

2

;M

0

i

(N6)

hs;Mi

�

�!hs

0

;M

0

i

h!s;Mi

�

�!hs

0

;M

0

i

(N7)

hs k !s;Mi

�

�!hs

0

;M

0

i

h!s;Mi

�

�!hs

0

;M

0

i

(N8)

hs[x := v];Mi

�

�!hs

0

;M

0

i

hS(v);Mi

�

�!hs

0

;M

0

i

if S(x) b= s

(N9)

s � t

hs;Mi

�

�!hs

0

;M

0

i

s

0

� t

0

ht;Mi

�

�!ht

0

;M

0

i

Figure 2: Structured Operational Semantics of Schedules

7

De�nition 1 A transition hs;Mi

�

�!hs

0

;M

0

i is called a single step transition if it is derived

without inferences by rule (N3) or rule (N4).

The single-step transitions are exactly those transitions that can be derived from the execution

of a single rewrite rule. Inference rules (N3) and (N4) allow the parallel execution of multiple

rewrite rules to be modelled by a single transition. Hence these inference rules are responsible for

the multi-step character of the semantics.

The operational semantics describes behavioural aspects of our coordination language. A

particular aspect of interest is the parallelism in the behaviour of coordination strategies. An

important reason for using multi-step semantics is that it distinguishes parallel execution from

interleaved execution which the single-step semantics does not.

A property of the operational semantics in Figure 2 is that any multi-step transition can be

split into a sequence of single-step transitions which has the same e�ect on the multiset. This has

as a consequence that sequential behaviour is a special case of parallel behaviour.

Lemma 2.1 If hs;Mi

�

�!hs

0

;M

0

i, then there exist �

1

; : : : ; �

n

; n � 1 such that

hs

0

;M

0

i

�

1

�!hs

1

;M

1

i : : :

�

i

�! : : : hs

n�1

;M

n�1

i

�

n

�!hs

n

;M

n

i

where hs;Mi = hs

0

;M

0

i and hs

n

;M

n

i = hs

0

;M

0

i and each hs

i�1

;M

i�1

i

�

i

�!hs

i

;M

i

i, 1 � i � n, is

a single-step transition

Proof By transition induction. We consider the di�erent ways in which the last step of the

inference is done:

� By (N0), with s � r ! s

1

[s

2

] and � = ", from 6 9v �M : b[x := v].

This transition is clearly single-step.

� By (N1), with s � r ! s

1

[s

2

] and � = � = m[x := v]=v, from 9v � M : b[x := v]. This

transition is clearly single-step.

� By (N2), with s � s

1

k s

2

, from hs

1

;Mi

�

�!hs

0

1

;M

0

i. Then by the induction hypothesis

hs

1

;Mi

�

1

�!hs

1;1

;M

1

i : : :

�

i

�! : : : hs

1;n�1

;M

n�1

i

�

n

�!hs

1;n

;M

n

i

where hs

1;n

;M

n

i = hs

0

1

;M

0

i and each transition is single-step.

By repeated use of (N2) we derive

hs

1

k s

2

;Mi

�

1

�!hs

1;1

k s

2

;M

1

i : : :

�

i

�! : : : hs

1;n�1

k s

2

;M

n�1

i

�

n

�!hs

0

1

k s

2

;M

0

i

� By (N2), with s � s

1

k s

2

, from hs

2

;Mi

�

�!hs

0

2

;M

0

i. Analogous to the previous case.

� By (N3), with s � s

1

k s

2

, from hs

1

;Mi

"

�!hs

0

1

;M

0

i and hs

2

;Mi

�

�!hs

0

2

;Mi.

The induction hypothesis applies to both of these transition. This gives

hs

1

;Mi

"

�!hs

1;1

;Mi : : :

"

�! : : : hs

1;n�1

;Mi

"

�!hs

1;n

;Mi

8

where s

1;n

= s

0

1

and each transition is single-step and

hs

2

;Mi

�

1

�!hs

2;1

;M

1

i : : :

�

i

�! : : : hs

2;n�1

;M

n�1

i

�

n

�!hs

2;n

;M

n

i

where hs

2;n

;M

n

i = hs

0

2

;M

0

i and each transition is single-step.

By repeated use of (N2) we derive

hs

1

k s

2

;Mi

"

�!hs

1;1

k s

2

;Mi : : :

"

�! : : : hs

1;n�1

k s

2

;Mi

"

�!hs

0

1

k s

2

;Mi

and

hs

0

1

k s

2

;Mi

�

1

�!hs

0

1

k s

2;1

;M

1

i : : :

�

i

�! : : : hs

0

1

k s

2;n�1

;M

n�1

i

�

n

�!hs

0

1

k s

0

2

;M

0

i

The result follows by concatenating these sequences:

hs

1

k s

2

;Mi

"

�! : : :

"

�!hs

0

1

k s

2

;Mi

�

1

�! : : :

�

n

�!hs

0

1

k s

0

2

;M

0

i

� By (N3), with s � s

1

k s

2

, from hs

1

;Mi

�

1

�!hs

0

1

;M

0

i and hs

2

;Mi

"

�!hs

0

2

;Mi.

The proof is analogous to the previous case.

� By (N4), with s � s

1

k s

2

, from hs

1

;Mi

�

1

�!hs

0

1

;M

1

i and hs

2

;Mi

�

2

�!hs

0

2

;M

2

i whereM j= �

1

on�

2

and � = �

1

� �

2

. The induction hypothesis applies to both, which gives

hs

1

;Mi

�

1

�! : : :

�

n

1

�!hs

0

1

;M

1

i and hs

2

;Mi

�

0

1

�! : : :

�

0

n

2

�!hs

0

2

;M

2

i

where each transition is single-step. By repeated use of (N2) we derive

hs

1

k s

2

;Mi

�

1

�! : : :

�

n

1

�!hs

0

1

k s

2

;M

1

i and hs

0

1

k s

2

;Mi

�

0

1

�! : : :

�

0

n

2

�!hs

0

1

k s

0

2

;M

2

i

We concatenate these sequences into

hs

1

k s

2

;Mi

�

1

�! : : :

�

n

1

�!hs

0

1

k s

2

;M

1

i

�

0

1

�! : : :

�

0

n

2

�!hs

0

1

k s

0

2

;M

0

i

for which the proposition clearly holds.

� By (N5) if s � s

1

; s

2

. The proof is analogous to the previous case.

� By (N6), if s �!s, from hs;Mi

�

�!hs

0

;M

0

i. From the induction hypothesis follows

hs

0

;M

0

i

�

1

�!hs

1

;M

1

i : : :

�

i

�! : : : hs

n�1

;M

n�1

i

�

n

�!hs

n

;M

n

i

where hs;Mi = hs

0

;M

0

i and hs

n

;M

n

i = hs

0

;M

0

i and each transition is single-step.

For the �rst transition we use (N6) to derive h!s;Mi

�

1

�!hs

1

;M

1

i. By transitivity of �!

follows h!s;Mi

�

1

�! : : :

�

n

�!hs

0

;M

0

i.

9

� By (N7), if s �!s, from hs k !s;Mi

�

�!hs

0

;M

0

i. From the induction hypothesis follows

hs

0

;M

0

i

�

1

�!hs

1

;M

1

i : : :

�

i

�! : : : hs

n�1

;M

n�1

i

�

n

�!hs

n

;M

n

i

where hs k !s;Mi = hs

0

;M

0

i and hs

n

;M

n

i = hs

0

;M

0

i and each transition is single-step.

For the �rst transition we use (N7) to infer h!s;Mi

�

1

�!hs

1

;M

1

i. By transitivity of �! follows

h!s;Mi

�

1

�! : : :

�

n

�!hs

0

;M

0

i.

� By (N8), for s � S(v), where S(x) b= s:

A transition can be derived, (only) by (N8), from hs[x := v];Mi

�

�!hs

0

;M

0

i.

By the induction hypothesis

hs

0

;M

0

i

�

1

�!hs

1

;M

1

i : : :

�

i

�! : : : hs

n�1

;M

n�1

i

�

n

�!hs

n

;M

n

i

where hs

0

;M

0

i = hs[x := v];Mi and hs

n

;M

n

i = hs

0

;M

0

i and each transition is single-step.

By (N8) we conclude hS(v);Mi

�

1

�! : : :

�

n

�!hs

0

;M

0

i.

� By (N9), from s � t, s

0

� t

0

and ht;Mi

�

�!ht

0

;M

0

i. By the induction hypothesis

ht

0

;M

0

i

�

1

�!ht

1

;M

1

i : : :

�

i

�! : : : ht

n�1

;M

n�1

i

�

n

�!ht

n

;M

n

i

where ht

0

;M

0

i = ht;Mi and ht

n

;M

n

i = ht

0

;M

0

i and each transition is single-step. By (N9)

we infer from the �rst and the last of this sequence of transitions hs;Mi

�

1

�!ht

1

;M

1

i and

ht

n�1

;M

n�1

i

�

n

�!hs

0

;M

0

i. Hence by transitivity of �!:

hs;Mi

�

1

�!ht

1

;M

1

i : : :

�

i

�! : : : ht

n�1

;M

n�1

i

�

n

�!hs

0

;M

0

i

�

2.2.3 The Most General Schedule

The schedule language allows us to specify behaviours from a wide spectrum of possibilities,

ranging from the chaotic execution of a Gamma program to the completely deterministic behaviour

of known algorithms. The former can be seen by constructing a schedule that comprises all possible

behaviours of a Gamma program. We refer to this schedule as the most general schedule, and for

a given program, it can be de�ned as follows.

De�nition 2 Let R be a simple Gamma program r

1

+ : : : + r

n

and let P

1

and P

2

be arbitrary

Gamma programs. The most general schedules for R and P

1

� P

2

are de�ned as

�

R

b= !(r

1

! �

R

k : : : k r

n

! �

R

)

�

P

1

� P

2

b= �

P

2

; �

P

1

10

In [3] it was shown that a Gamma program P and its most general schedule �

P

are equivalent

with respect to their possible transition sequences. Therefore, �

P

can be thought of as a model

for the operational semantics of P .

Due to this property, the most general schedule plays a crucial rôle in the derivation process.

The fact that the most general schedule explicitly represents the behaviour that is implicit in

Gamma programs, makes it amenable to formal manipulation. Hence, the most general schedule

may serve as starting point in the derivation process. A successive series of re�nements of the most

general schedule should enable the programmer to derive more deterministic execution strategies.

3 Notions of Re�nement for Schedules

We make a separation between computation and coordination because they concern aspects of

programming of a di�erent nature. For both these aspects, a notion of re�nement can be de�ned

that suits the conceptual nature of that aspect.

A common notion of re�nement that is suitable for the computational aspect, is subset inclu-

sion of the set of possible outcomes. This approach has been used to investigate re�nement of

Gamma programs by formulating a capability function which captures the input-output relation

of programs [12].

A coordination component is intended to capture the behavioural aspects of a program. Hence

for the re�nement of the coordination component, a notion should be used that addresses the issue

of behaviour. In our setting, we consider a schedule to be a re�nement of another schedule if it

constitutes a more deterministic description of the behaviour. Limiting the behaviour may have

as a side-e�ect (for nondeterministic programs) that the set of possible outcomes is reduced, hence

also results in a re�nement of the computation.

3.1 Statebased Re�nement

The starting point for our investigations into re�nement is the notion of bisimulation. This notion

was successfully used for comparing behaviours of communicating (parallel) processes [13] and

automaton [14]. In order to apply the theory of bisimulation to our setting, we need to make the

following modi�cations.

In CCS [13], process and state are identi�ed, suggesting that every process has a local state

which can only be accessed by other processes through message-passing communication. An

essential feature of the Gamma model is its use of a shared dataspace. In a shared dataspace,

all processes may concurrently operate upon the current state, and any change is noticed by all

processes. Clearly, the behaviour of schedules depends on the (global) state, therefore, we are

concerned with the behaviour of con�gurations hs;Mi rather than schedules in isolation.

Additionally, bisimulation induces an equivalence relation, while we are interested in a partial

ordering of re�nements where s is considered to be a re�nement of t, if s can be simulated by

t, but not necessarily the other way around. Such an ordering can be obtained by breaking the

symmetry of bisimulation which leads to the following characterization of re�nement: s can be

11

simulated by t, if every action of s can be matched by t. This characterization is not su�cient

to preserve total correctness, because s may terminate prematurely (after having displayed only a

pre�x of the behaviour of t.) We adapt the de�nition of simulation in such a way that the modi�ed

version preserves termination. We achieve this by adding a clause which requires that a re�ning

schedule may terminate only if the re�ned schedule may terminate. Thus we arrive at following

de�nition. Recall that C = S� M where C denotes the set of con�gurations, S denotes the set of

schedules and M denotes the set of multisets.

De�nition 3 A binary relation on con�gurations R � C � C is a strong statebased simulation if

(hs;Mi; ht;Ni) 2 R implies, for all �,

i: N =M

ii: hs;Mi

�

�!hs

0

;M

0

i) 9t

0

: ht;Mi

�

�!ht

0

;M

0

i such that (hs

0

;M

0

i; ht

0

;M

0

i) 2 R

iii: s� skip) t� skip

For a binary relation R on con�gurations, we sometimes write hs;MiRht;Mi to mean

(hs;Mi; ht;Mi) 2 R.

In compliance with [13], this notion of simulation is called strong simulation because every

single transition of the re�ning schedule can be mimicked by a single corresponding transition

of the re�ned schedule. Below we shall relax on this property by introducing a weak notion of

re�nement. The adjective statebased is added, because the current state of a computation is taken

into account { this in contrast to the stateless notion presented in the next section.

We show some basic properties of strong statebased simulation.

Lemma 3.1 Let R

i

for i = 1; 2; : : : be strong statebased simulations. Then the following are also

strong statebased simulations

1. the identity relation on con�gurations Id

C

= f(hs;Mi; hs;Mi) j s 2 S;M 2 M g,

2. the composition: R

1

R

2

,

3. the union:

S

i2I

R

i

.

Proof

1. By reexivity of = and) .

2. Let R = R

1

R

2

. Suppose (hs

1

;Mi; hs

2

; Ni) 2 R.

Then for some t we have (hs

1

;Mi; ht;N

0

i) 2 R

1

and (ht;N

0

i; hs

2

; Ni) 2 R

2

.

Because R

1

and R

2

are strong statebased simulations, we have M = N

0

and N

0

= N , hence

M = N

0

= N .

Now let hs

1

;Mi

�

�!hs

0

1

;M

0

i.

Because (hs

1

;Mi; ht;Mi) 2 R

1

we have ht;Mi

�

�!ht

0

;M

0

i and (hs

0

1

;M

0

i; ht

0

;M

0

i) 2 R

1

.

Because (ht;Mi; hs

2

;Mi) 2 R

2

, we have hs

2

;Mi

�

�!hs

0

2

;M

0

i and (ht

0

;M

0

i; hs

0

2

;M

0

i) 2 R

2

.

From (hs

0

1

;M

0

i; ht

0

;M

0

i) 2 R

1

and (ht

0

;M

0

i; hs

0

2

;M

0

i) 2 R

2

follows (hs

0

1

;M

0

i; hs

0

2

;M

0

i) 2 R.

12

If s

1

� skip then, from (hs

1

;Mi; ht;Mi) 2 R

1

, we have t� skip . Then from (ht;Mi; hs

2

;Mi) 2

R

2

we have s

2

� skip .

3. Let R =

S

i2I

R

i

. Suppose (hs

1

;Mi; hs

2

; Ni) 2 R.

Then (hs

1

;Mi; hs

2

; Ni) 2 R

i

for some i 2 I , hence N =M .

If hs

1

;Mi

�

�!hs

0

1

;M

0

i, then because R

i

is a strong statebased simulation, we have

hs

2

;Mi

�

�!hs

0

2

;M

0

i and (hs

0

1

;M

0

i; hs

0

2

;M

0

i) 2 R

i

.

Because R

i

� R also (hs

0

1

;M

0

i; hs

0

2

;M

0

i) 2 R.

The case s

1

� skip goes analogously.

�

Let hs;Mi and ht;Mi be con�gurations. We say that hs;Mi is a strong statebased re�nement of

ht;Mi, denoted hs;Mi5 ht;Mi, if (hs;Mi; ht;Mi) 2 R for some strong statebased simulation R.

Hence, we de�ne the strong statebased re�nement relation as the maximal strong statebased simu-

lation. Strong statebased equivalence is de�ned as the intersection of strong statebased re�nement

and its inverse.

De�nition 4

1. 5 =

S

fR j R is a strong statebased simulation g

2.

�

=

= 5 \ 5

�1

Lemma 3.2

1. 5 is the largest strong statebased simulation.

2. 5 is a partial order.

3.

�

=

is an equivalence relation.

Proof

1. By Lemma 3.1.3 5 is a strong statebased simulation and by De�nition 3.2 it includes any

other such.

2. Reexivity: By Lemma 3.1.1.

Transitivity: By Lemma 3.1.2.

Antisymmetry If hs;Mi5 ht;Mi and ht;Mi5 hs;Mi, then by De�nition 3.2.2 hs;Mi

�

=

ht;Mi.

3.

�

=

is reexive and transitive by Lemma 3.2.(1 and 2).

Symmetry follows from De�nition 3.2.2.

�

Analogously to [13], we use some �xed-point theory (see e.g. [9]) to show that 5 de�nes the

relation that contains precisely all strong statebased simulations.

13

De�nition 5 De�ne a function F : C � C ! C � C as follows:

If R � C � C , then (hs;Mi; ht;Mi) 2 F(R) if and only if, for all �,

1: hs;Mi

�

�!hs

0

;M

0

i) ht;Mi

�

�!ht

0

;M

0

i ^ (hs

0

;M

0

i; ht

0

;M

0

i) 2 R

2: s� skip) t� skip

Lemma 3.3

1. F is monotonic; i.e. if R

1

� R

2

, then F(R

1

) � F(R

2

).

2. R is a strong statebased simulation if and only if R � F(R).

Proof

1. Follows directly from De�nition 3.3 of F .

2. Follows directly from De�nition 3.3 of F and De�nition 3.1 of strong statebased simulation.

�

Monotonicity says that F preserves the ordering� on P(C �C ! C �C). We callR a �xed-point

of F if R = F(R). Similarly, we say that R is a pre-�xed-point of F if R � F(R). So statebased

simulations are, by Lemma 3.3.2, exactly the pre-�xed-points of F , and we wish to show that 5 ,

which is, by Lemma 3.2, the largest pre-�xed-point, is a �xed-point of F .

Lemma 3.4 5 is a largest �xed point of F .

Proof

� 5 � F(5): By Lemma 3.2, 5 is a strong statebased simulation. By Lemma 3.3.2 then

follows 5 � F(5).

� F(5) � 5 : Monotonicity of F implies F(5) � F(F(5)); i.e. F(5) is a pre-�xed point of

F . But because 5 is the largest pre-�xed point, it includes F(5), i.e. F(5) � 5 .

Moreover, 5 must be a largest �xed point of F , because it is the largest pre-�xed point. �

Thus 5 is the largest relation that satis�es the de�nition of strong statebased simulation.

The up-tomethod (from [13]) for proving simulations can be carried over onto strong statebased

re�nement.

De�nition 6 A relation R � C � C is a strong statebased simulation up-to strong statebased

re�nement if (hs;Mi; ht;Mi) 2 R implies, for all �,

i: hs;Mi

�

�!hs

0

;M

0

i) 9t

0

: ht;Mi

�

�!ht

0

;M

0

i and hs

0

;M

0

i5R5 ht

0

;M

0

i

ii: s� skip) t� skip

14

Lemma 3.5 If R is a strong statebased simulation up-to strong statebased re�nement, then 5R5

is a strong statebased simulation.

Proof Assume hs;Mi5R5 ht;Mi.

Then there are u and v such that hs;Mi5 hu;MiRhv;Mi5 ht;Mi.

transition

Assume hs;Mi

�

�!hs

0

;M

0

i.

Then by hs;Mi5 hu;Mi, hu;Mi

�

�!hu

0

;M

0

i such that hs

0

;M

0

i5 hu

0

;M

0

i.

By hu;MiRhv;Mi follows hu;Mi

�

�!hv

0

;M

0

i such that hu

0

;M

0

i5R5 hv

0

;M

0

i.

By hv;Mi5 ht;Mi follows ht;Mi

�

�!ht

0

;M

0

i such that hu

0

;M

0

i5 ht

0

;M

0

i.

Hence hs

0

;M

0

i5 5R5 5 ht

0

;M

0

i. By transitivity of 5 : hs

0

;M

0

i5R5 ht

0

;M

0

i.

termination

If s� skip , then by hs;Mi5 hu;Mi, u� skip . By hu;MiRhv;Mi follows v� skip .

By hv;Mi5 ht;Mi follows t� skip . �

Lemma 3.6

If R is a strong statebased simulation up-to strong statebased re�nement, then R � 5 .

Proof

By Lemma 3.5, 5R5 is a strong statebased simulation, hence by Lemma 3.2, 5R5 � 5 .

From Id

C

� 5 follows R � 5 . �

An important feature of the current notion of re�nement is its ability to exploit properties

of the multiset. This is possible because the multiset is an explicit component of the simulation

relation. The following example illustrates the idea.

Example 3.6.1 Consider a Gamma program for computing the sum of a multiset of numbers:

add b=x; y 7! x+ y (true

The program operates by adding pairs of numbers from the initial multiset in any order - possibly

in parallel. This behaviour is equivalently expressed by the program's most general schedule:

�

add

b=!(add ! �

add

)

A more deterministic schedule may exploit the size, say n, of the initial multiset by performing

exactly n� 1 additions in sequence, e.g. by Sum(n) where

Sum(i) b= i > 1 . (add;Sum(i� 1))

15

Now we would expect Sum(n) to be a re�nement of �

add

, i.e. hSum(n);Mi5 h�

add

;Mi with

#M = n. However, the following counterexample disproves this re�nement. Consider, for in-

stance, the initial multiset f1; 5; 3g. Then Sum(3) may perform the following transition sequence.

hSum(3); f1; 5; 3gi

f6g=f1;5g

�! hSum(2); f6; 3gi

f9g=f6;3g

�! hskip; f9gi

The most general schedule �

add

can also make these transitions, but inevitably needs an additional

"-transition to detect termination, e.g.

h�

add

; f1; 5; 3gi

f6g=f1;5g

�! h�

add

; f6; 3gi

f9g=f6;3g

�! h�

add

; f9gi

"

�!hskip; f9gi

�

If the behaviour of a con�guration hs;Mi di�ers from that of another con�guration ht;Mi only

by the fact that it makes a di�erent number of "-transitions, we still want to consider the former

a re�nement of the latter because " transitions do not change the multiset, hence do not change

the input-output behaviour. In the next section we propose a more liberal notion of re�nement

that supports this intuition.

3.2 Weak Statebased Simulation

In the Section 3.1 we observed that strong statebased re�nement does not justify re�nements

where the only di�erence between con�gurations is the number of "-steps they may make. From

the semantic rules in Figure 2 we see that "-transitions do not change the multiset. So adding

or removing "-transitions in a transition sequence cannot change the outcome of a computation.

Analogously to [13] this brings us to de�ne a weak notion of re�nement, that is insensitive to

"-transitions.

We de�ne the transition relation

�

�!

�

as the reexive transitive closure of the transition relation

�! from Figure 2. The label � denotes the sequence obtained by concatenating, in order, all

individual labels of the constituent transitions. Furthermore, we use

b

� to denote the sequence �

where all occurrences of " have been removed.

De�nition 7 A relation R � C � C is a weak statebased simulation if,

for all (hs;Mi; ht;Ni) 2 R

i: M = N

ii: hs;Mi

�

�!hs

0

;M

0

i) 9t

0

: ht;Mi

�

0

�!

�

ht

0

;M

0

i where

b

�

0

=

b

� and (hs

0

;M

0

i; ht

0

;M

0

i) 2 R

iii: s� skip) ht;Mi

�

0

�!

�

hskip;Mi where

b

�

0

= h i

Lemma 3.7 Let R

i

for i = 1; 2; : : : be weak statebased simulations. Then the following are also

weak statebased simulations

1. the identity Id

C

= f(hs;Mi; hs;Mi) j s 2 S;M 2 M g,

16

2. the composition R

1

R

2

,

3. the union

S

i2I

R

i

.

Proof

1. Follows by �! � �!

�

and reexivity of) and =.

2. Let R = R

1

R

2

. Suppose (hs

1

;Mi; hs

2

; Ni) 2 R, then for some t we have (hs

1

;Mi; ht;N

0

i) 2

R

1

and (ht;N

0

i; hs

2

; Ni) 2 R

2

. Because R

1

and R

2

are weak statebased simulations, we

have M = N

0

= N .

Now let hs

1

;Mi

�

�!hs

0

1

;M

0

i. Because (hs

1

;Mi; ht;Mi) 2 R

1

we have ht;Mi

�

0

�!

�

ht

0

;M

0

i

where

b

� =

b

�

0

and (hs

0

1

;M

0

i; ht

0

;M

0

i) 2 R

1

. By de�nition of �!

�

, �

0

= h�

0

1

; : : : ; �

0

n

i such

that

ht

0

;M

0

i

�

0

1

�!ht

1

;M

1

i

�

0

2

�! : : :

�

0

n�1

�!ht

n�1

;M

n�1

i

�

0

n

�!ht

n

;M

n

i

where t = t

0

;M = M

0

; t

0

= t

n

and M

0

= M

n

. Because (ht

0

;Mi; hs

2

;Mi) 2 R

2

, we have,

from the �rst transition, hs

2

;Mi

�

00

1

�!

�

hs

2;1

;M

1

i where

c

�

0

1

=

c

�

00

1

and (ht

1

;M

1

i; hs

2;1

;M

1

i) 2

R

2

. By induction on n it can be shown that

hs

2;0

;M

0

i

�

00

1

�!

�

hs

2;1

;M

1

i

�

00

2

�!

�

: : :

�

00

n�1

�!

�

hs

2;n�1

;M

n�1

i

�

00

n

�!

�

hs

2;n

;M

n

i

where

b

�

0

i

=

c

�

00

i

and (ht

i

;M

i

i; hs

2;i

;M

i

i) 2 R

2

for all 1 � i � n and s

2

= s

2;0

;M =M

0

;

s

0

2

= s

2;n

andM

0

=M

n

. Hence hs

2

;Mi

�

00

�!

�

hs

0

2

;M

0

i where

c

�

00

=

b

�

0

and (ht

0

;M

0

i; hs

0

2

;M

0

i) 2

R

2

. From (hs

0

1

;M

0

i; ht

0

;M

0

i) 2 R

1

and (ht

0

;M

0

i; hs

0

2

;M

0

i) 2 R

2

follows (hs

0

1

;M

0

i; hs

0

2

;M

0

i) 2

R.

If s

1

� skip then, from (hs

1

;Mi; ht;Mi) 2 R

1

, we have ht;Mi

�

�!

�

hskip;Mi where

b

� = h i.

Then from (ht;Mi; hs

2

;Mi) 2 R

2

we have, analogous to the previous case, hs

2

;Mi

�

0

�!

�

hskip;Mi

where

b

�

0

= h i.

3. Let R =

S

i2I

R

i

. Suppose (hs

1

;Mi; hs

2

; Ni) 2 R.

Then (hs

1

;Mi; hs

2

; Ni) 2 R

i

for some i 2 I , hence M = N .

If hs

1

;Mi

�

�!hs

0

1

;M

0

i, then because R

i

is a weak statebased simulation, we have

hs

2

;Mi

�

0

�!

�

hs

0

2

;M

0

i where

b

�

0

=

b

� and (hs

0

1

;M

0

i; hs

0

2

;M

0

i) 2 R

i

.

Because R

i

� R also (hs

0

1

;M

0

i; hs

0

2

;M

0

i) 2 R.

The case s

1

� skip goes analogously.

�

Let hs;Mi and ht;Mi be con�gurations. We say that hs;Mi is a weak statebased re�nement of

ht;Mi, denoted hs;Miw ht;Mi, if (hs;Mi; ht;Mi) 2 R for some weak statebased simulation R.

As is standard, weak statebased equivalence is de�ned as the kernel of weak statebased re�nement.

17

De�nition 8

1. w =

S

fR j R is a weak statebased simulation g

2. � = w \ w

�1

Lemma 3.8

1. w is the largest weak statebased simulation.

2. w is a partial order.

3. � is an equivalence relation.

Proof Analogous to the proofs of Lemma 3.2. �

Analogously to strong statebased re�nement in the previous section, it can be shown that w

de�nes the relation that contains precisely all weak statebased simulations.

De�nition 9 De�ne a function F : C � C ! C � C as follows:

If R � C � C , then (hs;Mi; ht;Mi) 2 F(R) if and only if, for all �,

i: hs;Mi

�

�!hs

0

;M

0

i) 9t

0

: ht;Mi

�

0

�!

�

ht

0

;M

0

i where

b

�

0

=

b

� and (hs

0

;M

0

i; ht

0

;M

0

i) 2 R

ii: s� skip) ht;Mi

�

0

�!

�

hskip;Mi where

b

�

0

= h i

Lemma 3.9 w is a largest �xed point of F .

Proof Analogous to the proof of Lemma 3.4. �

Next, we develop the up-to technique (from [13]) for proving weak statebased re�nement.

De�nition 10 A relation R � C � C is a weak statebased simulation up-to weak statebased

re�nement if, for all (hs;Mi; ht;Mi) 2 R

i: hs;Mi

�

�!hs

0

;M

0

i) 9t

0

: ht;Mi

�

0

�!

�

ht

0

;M

0

i where

b

�

0

=

b

� and hs

0

;M

0

iwRw ht

0

;M

0

i

ii: s� skip) ht;Mi

�

0

�!

�

hskip;Mi where

b

�

0

= h i

Lemma 3.10 If R is a weak statebased simulation up-to weak statebased re�nement, then wRw

is a weak statebased simulation.

Proof Assume hs;MiwRw ht;Mi.

Then there are u and v such that hs;Miw hu;MiRhv;Miw ht;Mi.

transition

Assume hs;Mi

�

�!hs

0

;M

0

i.

Then by hs;Miw hu;Mi, hu;Mi

�

0

�!

�

hu

0

;M

0

i such that

b

�

0

=

b

� and hs

0

;M

0

iw hu

0

;M

0

i.

18

By hu;MiRhv;Mi follows hu;Mi

�

00

�!

�

hv

0

;M

0

i such that

c

�

00

=

b

�

0

and hu

0

;M

0

iwRw hv

0

;M

0

i.

By hv;Miw ht;Mi follows ht;Mi

�

000

�!

�

ht

0

;M

0

i such that

c

�

000

=

c

�

00

and hu

0

;M

0

iw ht

0

;M

0

i.

Hence

c

�

000

=

b

� and hs

0

;M

0

iw wRw w ht

0

;M

0

i.

By transitivity of w : hs

0

;M

0

iwRw ht

0

;M

0

i.

termination

If s� skip , then by hs;Miw hu;Mi, hu;Mi

�

�!

�

hskip;Mi such that

b

� = h i.

By hu;MiRhv;Mi follows hv;Mi

�

0

�!

�

hskip;Mi such that

b

�

0

= h i.

By hv;Miw ht;Mi follows ht;Mi

�

00

�!

�

hskip;Mi such that

c

�

00

= h i. �

Lemma 3.11 If R is a weak statebased simulation up-to weak statebased re�nement, thenR � w .

Proof

By Lemma 3.10, wRw is a weak statebased simulation, hence by Lemma 3.8, wRw � w .

From Id

C

� w follows R � w . �

Using the weak notion of simulation we are now able to prove the re�nement from Example 3.1.

Example 3.11.1 Let R = f(hSum(n);Mi; h�

add

;Mi) j #M = n; n � 0g.

We prove that R is a weak statebased simulation by induction on n.

� n � 1: then Sum(0) � skip. Because #M � 2 we derive by (N0), (N6) and (N9),

h�

add

;Mi

"

�!hskip;Mi.

By de�nition of �!

�

follows h�

add

;Mi

h " i

�!

�

hskip;Mi. Clearly

d

h " i = h i.

� n > 1 and hSum(n);Mi

�

�!hSum(n� 1);M

0

i where #M

0

= n� 1.

Then, by (N1), (N6) and (N9), h�

add

;Mi

�

�!h�

add

;M

0

i.

By de�nition of �!

�

h�

add

;Mi

h� i

�!

�

h�

add

;M

0

i.

By induction we have (hSum(n� 1);M

0

i; h�

add

;M

0

i) 2 R. �

The method of statebased simulation in principle su�ces for proving any (valid) re�nement.

However, the operational reasoning using simulations that is required for proving re�nements is

considered to be rather complex and therefore error-prone.

A common approach, followed for instance by Milner [13], is to de�ne an equivalence rela-

tion over programs (in terms of their semantics) and show that this relation is a congruence

over program terms. The congruence property makes it possible to use program equivalences as

equational laws to reason about programs in a modular (or compositional) fashion. Equational

reasoning facilitates formal calculation and avoids the complexity of operational details.

If we want to follow this approach for the re�nement of our coordination language, we have to

show that our notions of re�nement are precongruences for the set of schedules. Unfortunately,

we run into the problem that our notions of re�nement, 5 and w , are relations over the set of

19

con�gurations rather than over the set of schedules. This makes the notion of congruence mean-

ingless because the composition operators \;" and \ k" etc. over which we want our equivalence

to be congruent operate on schedules.

The fact that the statebased notions of re�nement are not precongruences, means that re�ne-

ment cannot be applied in a modular fashion. Hence schedules need to be considered as a whole,

which may result in complex proofs. In Section 3.4 we present results that facilitate proving

re�nements.

3.3 Relating Re�nement and Capability

In [12] Hankin et al. de�ne a so-called capability function which models the input-output behaviour

of Gamma programs. Subsequently, they use the relational ordering (subset inclusion) of the

set of possible outcomes as the basis of a calculus of re�nement. In this section we show that

the statebased notions of re�nement preserve the relational ordering on schedules for Gamma

programs.

The capability of a con�guration is de�ned as the set of possible multisets it may produce,

plus the special symbol ? if the con�guration may never terminate.

De�nition 11 We de�ne the divergence predicate " on con�gurations:

hs;Mi" if and only if

hs;Mi = hs

0

;M

0

i and for all i � 0 there exists a �

i

such that hs

i

;M

i

i

�

i

�!hs

i+1

;M

i+1

i

De�nition 12 The capability function C : S� M ! P(M) [f?g for schedules, is de�ned as

C(s;M) = f? j hs;Mi"g [

fM

0

j hs;Mi

�

�!

�

hskip;M

0

ig

Theorem 3.12 If hs;Mi and ht;Mi are con�gurations such that hs;Mi5 ht;Mi,

then C(s;M) � C(t;M).

Proof Let x 2 C(s;M), we have to show that x 2 C(t;M).

Consider the following cases:

� x = ?:

Hence if hs;Mi = hs

0

;M

0

i, then for all i � 0 there exists a �

i

such that hs

i

;M

i

i

�

i

�!hs

i+1

;M

i+1

i.

By hs;Mi5 ht;Mi follows ht;Mi = ht

0

;M

0

i and, by induction on the length of the tran-

sition sequence, for all i � 0 there exists a �

i

such that ht

i

;M

i

i

�

i

�!ht

i+1

;M

i+1

i. Hence

? 2 C(t;M).

� x =M

0

:

Hence hs;Mi

�

�!

�

hskip;M

0

i. By hs;Mi5 ht;Mi and induction on the length of the transi-

tion sequence, follows ht;Mi

�

�!

�

hskip;M

0

i. Hence M

0

2 C(t;M).

20

�

The power of weak re�nement is that it is insensitive to a di�ering number of " transitions.

However, this has the undesirable consequence that weak re�nement does not preserve total cor-

rectness. Because fail is weakly equivalent to skip, we may introduce an arbitrary number of

failing transitions. In particular, we may introduce an in�nite number of failing transitions which

invalidates total correctness.

Example 3.12.1 Let F b= fail;F . It is straightforward to prove that F is a weak re�nement of skip;

i.e. hF;Mi w hskip;Mi for any M . However replacing skip by F introduces a in�nite sequence

of " transitions. In terms of the capability function, we have, for all M , C(F;M) = f?g and

C(skip;M) = fMg. So while F is a re�nement of skip, we have ? 2 C(F;M), while ? 62 C(skip;M).

In [13] (pp. 147-149) Milner runs into a similar problem. We share the opinion that in a theory

where actions without e�ect may be discarded, it is natural to allow an in�nite number of these

actions. When using weak re�nement, one should realise that this does not guarantee termination

of the re�ning schedule. However, weak re�nement does preserve partial correctness; i.e. if the

re�ning schedule does terminate, then the resulting state is a �nal state of the re�ned schedule.

Theorem 3.13 Let hs;Mi and ht;Mi be con�gurations such that hs;Miw ht;Mi.

Then (C(s;M)� f?g) � C(t;M).

Proof LetM

0

2 (C(s;M)�f?g). Hence hs;Mi

�

�!

�

hskip;M

0

i for some �. From hs;Miw ht;Mi

follows, by induction on the length of the transition sequence, that ht;Mi

�

0

�!

�

hskip;M

0

i where

b

� =

b

�

0

. Hence M

0

2 C(t;M). �

3.4 Stateless Re�nement

In this section we develop a notion of re�nement that allows an algebraic approach to re�nement.

To this end we de�ne a re�nement relation over schedules rather than over con�guration (which was

the case for statebased re�nement) that is a precongruence. By dropping the multiset component

from a simulation relation, we e�ectively require that transitions can be matched for any multiset

[4]. Hence we refer to this type of simulation as \stateless simulation". First consider the strong

variant, later we look at the weak variant.

De�nition 13 A relation R � S� S is a strong stateless simulation if,

for all (s; t) 2 R, for all M 2 M

i: hs;Mi

�

�!hs

0

;M

0

i) 9t

0

: ht;Mi

�

�!ht

0

;M

0

i such that (s

0

; t

0

) 2 R

ii: s� skip) t� skip

As before, we de�ne strong stateless re�nement as the largest strong stateless simulation relation.

We consider a pair of schedules to be (strongly) equivalent if the re�nement relation holds in both

directions.

21

De�nition 14

1. 6 =

S

fR j R is a strong stateless simulation g

2. ' = 6 \ 6

�1

The up-to method for strong stateless re�nement is developed in [4].

We see that using stateless simulation, s is a re�nement of t, if t can match the transitions by s,

independent of the multiset. This relation cannot be invalidated by some (demonic) modi�cation

of the multiset by the environment. This has the bene�cial consequence that stateless re�nement

is a precongruence.

Theorem 3.14 Let s

1

, s

2

, t

1

and t

2

be schedules such that s

1

6 t

1

and s

2

6 t

2

.

Then r ! s

1

[t

1

]6 r ! s

2

[t

2

], s

1

; s

2

6 t

1

; t

2

, s

1

k s

2

6 t

1

k t

2

, !s

1

6 !t

1

and c . s

1

[s

2

]6 c . t

1

[t

2

].

Proof In [4]. �

The notion of stateless simulation gives rise to a number of interesting re�nement laws. These

laws can be applied in an algebraic style of reasoning about schedules, whereas precongruence

of stateless re�nement enables a modular approach. We present the laws grouped per operator,

starting with sequential and parallel composition. The proofs follow either from the structural

congruence in Figure 1 or by determining appropriate simulations [4].

1: skip; s

�

=

s 5: skip k s

�

=

s

2: s; skip

�

=

s 6: s

1

k s

2

�

=

s

2

k s

1

3: s

1

; (s

2

; s

3

)

�

=

(s

1

; s

2

); s

3

7: s

1

k (s

2

k s

3

)

�

=

(s

1

k s

2

) k s

3

4: r ! (s

1

; t)[s

2

; t]

�

=

(r ! s

1

[s

2

]); t 8: r ! (s

1

k t)[s

2

k t] 6 (r ! s

1

[s

2

]) k t

Sequential and parallel composition are related by the following law.

9: (s

1

k s

3

); (s

2

k s

4

) 6 (s

1

; s

2

) k (s

3

; s

4

)

In essence law 9 states that parallel composition may be re�ned by sequential composition, as

exempli�ed by the derived property s

1

; s

2

6 s

1

k s

2

, which is a special case of law 9.

Finally, we can derive some basic laws for replication, among which its idempotency. Note

that laws 12 and 13 below imply that !s may be re�ned by s

k

, for any k � 1.

10: !skip

�

=

skip 12: s 6 !s 14: !(s

1

k s

2

) 6 !s

1

k !s

2

11: !(!s)

�

=

!s 13: s k !s 6 !s

A number of basic laws involving the conditional operator follow easily from structural congruence.

They can be found in [8] and are omitted here.

22

3.5 Weak Stateless Re�nement

In Section 3.2 we exploited that failing rewrites (corresponding to "-labelled transitions) are ir-

relevant to the outcome of a computation. We shall do the same here by extending the notion of

stateless simulation to its weak variant, which is indi�erent to "-transitions.

De�nition 15 A relation R � S� S is a weak stateless simulation if,

for all (s; t) 2 R, for all M 2 M

i: hs;Mi

�

�!hs

0

;M

0

i) 9t

0

: ht;Mi

�

0

�!

�

ht

0

;M

0

i where

b

�

0

=

b

� and (s

0

; t

0

) 2 R

ii: s� skip) ht;Mi

�

0

�!

�

hskip;Mi where

b

�

0

= h i

We show some basic properties of weak stateless simulation.

Lemma 3.15 Let R

i

for i = 1; 2; : : : be weak stateless simulations. Then the following are also

weak stateless simulations

1. the identity relation on schedules Id

S

= f(s; s) j s 2 Sg,

2. the composition: R

1

R

2

,

3. the union:

S

i2I

R

i

.

Proof Analogous to the proofs of Lemma 3.7. �

De�nition 16

1. - =

S

fR j R is a weak stateless simulation g

2. � = - \ -

�1

Lemma 3.16

1. - is the largest weak stateless simulation.

2. - is a partial order.

3. � is an equivalence relation.

Proof Analogous to the proofs of Lemma 3.8. �

Analogously to the statebased re�nements, it can be shown that - de�nes the relation that

contains precisely all weak stateless simulations.

De�nition 17 De�ne a function F : S� S! S� S as follows:

If R � S� S, then (s; t) 2 F(R) if and only if, for all �, for all M

23

i: hs;Mi

�

�!hs

0

;M

0

i) 9t

0

: ht;Mi

�

0

�!

�

ht

0

;M

0

i where

b

�

0

=

b

� and (s

0

; t

0

) 2 R

ii: s� skip) ht;Mi

�

0

�!

�

hskip;Mi where

b

�

0

= h i

Lemma 3.17 - is a largest �xed point of F .

Proof Analogous to the proof of Lemma 3.9. �

The up-to technique (from [13]) can be adapted for weak stateless re�nement.

De�nition 18 A relation R � S�S is a weak stateless simulation up-to weak stateless re�nement

if, for all (s; t) 2 R, for all M ,

i: hs;Mi

�

�!hs

0

;M

0

i) 9t

0

: ht;Mi

�

0

�!

�

ht

0

;M

0

i where

b

�

0

=

b

� and s

0

wRw t

0

ii: s� skip) ht;Mi

�

0

�!

�

hskip;Mi where

b

�

0

= h i

Lemma 3.18 If R is a weak stateless simulation up-to weak stateless re�nement, then -R- is

a weak stateless simulation.

Proof Assume s-R- t. Then there are u and v such that s- uRv - t.

transition

Assume hs;Mi

�

�!hs

0

;M

0

i.

Then by s- u, hu;Mi

�

0

�!

�

hu

0

;M

0

i such that

b

�

0

=

b

� and s

0

- u

0

.

By uRv follows hu;Mi

�

00

�!

�

hv

0

;M

0

i such that

c

�

00

=

b

�

0

and u

0

-R- v

0

.

By v - t follows ht;Mi

�

000

�!

�

ht

0

;M

0

i such that

c

�

000

=

c

�

00

and u

0

- t

0

.

Hence

c

�

000

=

b

� and s

0

- -R- - t

0

. By transitivity of - : s

0

-R- t

0

.

termination

If s� skip , then by s- u, hu;Mi

�

�!

�

hskip;Mi such that

b

� = h i.

By uRv follows hv;Mi

�

0

�!

�

hskip;Mi such that

b

�

0

= h i.

By v - t follows ht;Mi

�

00

�!

�

hskip;Mi such that

c

�

00

= h i. �

Lemma 3.19 If R is a weak stateless simulation up-to weak stateless re�nement, then R � - .

Proof

By Lemma 3.18, -R- is a weak stateless simulation, hence by Lemma 3.16, -R- � - .

From Id

S

� - follows R � - . �

Weak stateless re�nement can be shown to be a precongruence for schedules. We show that

the ordering - is preserved by all composition operators for schedules.

24

Lemma 3.20 If s

1

, s

2

, t

1

and t

2

are schedules such that s

1

- t

1

and s

2

- t

2

.

Then r ! s

1

[t

1

]- r ! s

2

[t

2

].

Proof

If hr ! s

1

[s

2

];Mi

�

�!hs

1

;M

0

i, then, by (N2) hr ! t

1

[t

2

];Mi

�

�!ht

1

;M

0

i.

Clearly hr ! t

1

[t

2

];Mi

h� i

�!

�

ht

1

;M

0

i and b� = b�.

If hr ! s

1

[s

2

];Mi

"

�!hs

2

;Mi, then, by (N1) hr ! t

1

[t

2

];Mi

"

�!ht

2

;Mi.

Clearly hr ! t

1

[t

2

];Mi

"

�!

�

ht

2

;Mi and b" = h i = b". �

Lemma 3.21 If s

1

, s

2

, t

1

and t

2

are schedules such that s

1

- t

1

and s

2

- t

2

, then s

1

k s

2

- t

1

k t

2

.

Proof Let R = f(s

1

k s

2

; t

1

k t

2

) j s

1

- t

1

and s

2

- t

2

g.

We show that R is a weak stateless simulation by transition induction.

transition

There are �ve possible ways to derive a transition:

� By (N2) from hs

1

;Mi

�

1

�!hs

0

1

;M

0

i.

Then, by s

1

- t

1

, ht

1

;Mi

�

0

�!

�

ht

0

1

;M

0

i where

b

� =

b

�

0

and s

0

1

- t

0

1

.

By (repeated inference using) (N2) we derive ht

1

k t

2

;Mi

�

0

�!

�

ht

0

1

k t

2

;M

0

i.

Clearly (s

0

1

k s

2

; t

0

1

k t

2

) 2 R.

� By (N2) from hs

2

;Mi

�

1

�!hs

0

2

;M

0

i.

The proof is analogous to the previous case.

� By (N3) from hs

1

;Mi

�

�!hs

0

1

;M

0

i and hs

2

;Mi

"

�!hs

0

2

;Mi.

From s

1

- t

1

follows ht

1

;Mi

�

0

�!

�

ht

0

1

;M

0

i where

b

� =

b

�

0

and s

0

1

- t

0

1

.

From s

2

- t

2

follows ht

2

;Mi

�

00

�!

�

ht

0

2

;Mi where

c

�

00

= h i and s

0

2

- t

0

2

.

By (repeated inference using) (N2) we derive ht

1

k t

2

;Mi

�

00

�!

�

ht

1

k t

0

2

;M

0

i

�

0

�!

�

ht

0

1

k t

0

2

;M

0

i,

Hence by transitivity of �!

�

we get ht

1

k t

2

;Mi

�

00

��

0

�!

�

ht

0

1

k t

0

2

;M

0

i, where

\

�

00

� �

0

=

b

� and

(s

0

1

k s

2

; t

0

1

k t

2

) 2 R.

� By (N3) from hs

1

;Mi

"

�!hs

0

1

;Mi and hs

2

;Mi

�

�!hs

0

2

;M

0

i.

The proof is analogous to the previous case.

� By (N4) from hs

1

;Mi

�

1

�!hs

0

1

;M

0

1

i and hs

2

;Mi

�

2

�!hs

0

2

;M

2

i where � = �

1

��

2

andM j= �

1

on�

2

.

From s

1

- t

1

follows ht

1

;Mi

�

1

�!

�

ht

0

1

;M

1

i where

c

�

1

= h�

1

i and s

0

1

- t

0

1

.

From s

2

- t

2

follows ht

2

;Mi

�

2

�!

�

ht

0

2

;M

2

i where

c

�

2

= h�

2

i and s

0

2

- t

0

2

.

By de�nition of �!

�

, these transitions can also be written as

ht

1

;Mi

"

k

1

�!

�

ht

1;1

;Mi

�

1

�!ht

1;2

;M

1

i

"

k

2

�!

�

ht

0

1

;M

1

i

25

and

ht

2

;Mi

"

k

3

�!

�

ht

2;1

;Mi

�

2

�!ht

2;2

;M

2

i

"

k

4

�!

�

ht

0

2

;M

2

i

By (k

1

+k

3

times) (N2), then by (N4) (which is possible because M j= �

1

on�

2

), and (k

2

+k

4

times) (N2), we derive

ht

1

k t

2

;Mi

"

k

1

+k

3

�!

�

ht

1;1

k t

2;1

;Mi

�

1

��

2

�!ht

1;2

k t

2;2

;M

0

i

"

k

2

+k

4

�!

�

ht

0

1

k t

0

2

;M

0

i

Hence

ht

1

k t

2

;Mi

�

�!

�

ht

0

1

k t

0

2

;M

0

i

where

b

� = h� i. Clearly (s

0

1

k s

0

2

; t

0

1

k t

0

2

) 2 R.

termination

Then s

1

� skip and s

2

� skip .

From s

1

- t

1

follows ht

1

;Mi

�

1

�!hskip;Mi where

c

�

1

= h i.

From s

2

- t

2

follows ht

2

;Mi

�

2

�!hskip;Mi where

c

�

2

= h i.

Then by (N2) we derive ht

1

k t

2

;Mi

�

1

�!

�

ht

2

;Mi

�

2

�!

�

hskip;Mi.

By transitivity of �!

�

we get ht

1

k t

2

;Mi

�

1

��

1

�!

�

hskip;Mi where

\

�

1

� �

2

= h i as required. �

Lemma 3.22 If s

1

, s

2

, t

1

and t

2

are schedules such that s

1

- t

1

and s

2

- t

2

, then s

1

; s

2

- t

1

; t

2

.

Proof Let R = f(s

1

; s

2

; t

1

; t

2

) j s

1

- t

1

and s

2

- t

2

g.

We show that R is a weak stateless simulation up-to � by transition induction.

transition

There are two possible ways to derive a transition:

� By (N5) from hs

1

;Mi

�

�!hs

0

1

;M

0

i.

Then, by s

1

- t

1

, ht

1

;Mi

�

0

�!

�

ht

0

1

;M

0

i where

b

� =

b

�

0

and s

0

1

- t

0

1

.

By (repeated inference using) (N5) we derive ht

1

; t

2

;Mi

�

0

�!

�

ht

0

1

; t

2

;M

0

i.

By reexivity of � follows (s

0

1

; s

2

; t

0

1

; t

2

) 2 �R� .

� By (N9) from s

1

� skip and hs

2

;Mi

�

�!hs

0

2

;M

0

i.

From s

1

- t

1

we get ht

1

;Mi

�

1

�!

�

hskip;Mi where

c

�

1

= h i.

From s

2

- t

2

we get ht

2

;Mi

�

2

�!

�

ht

0

2

;M

0

i where

b

� =

c

�

2

and s

0

2

- t

0

2

.

By (N5) we derive ht

1

; t

2

;Mi

�

1

�!

�

ht

2

;Mi

�

2

�!

�

ht

0

2

;M

0

i.

Hence by transitivity of �!

�

we get ht

1

; t

2

;Mi

�

1

��

2

�!

�

ht

0

2

;M

0

i where

\

�

1

� �

2

=

c

�

2

as required.

By skip; s

0

2

� s

0

2

and skip; t

0

2

� t

0

2

follows (s

0

2

; t

0

2

) 2 �R� .

termination

Then s

1

� skip and s

2

� skip . The proof proceeds analogous to the termination-case for parallel

26

composition. �

Lemma 3.23 Let s

1

, s

2

, t

1

and t

2

be schedules such that s

1

- t

1

and s

2

- t

2

.

Then c . s

1

[s

2

]- c . t

1

[t

2

].

Proof Follows straightforwardly using structural congruence by considering the cases c = true

and c = false. �

Lemma 3.24 If s and t are schedules such that s- t then !s- !t.

Proof Let R = f(s

1

k !s

2

; t

1

k !t

2

) j s

1

- t

1

; s

2

- t

2

g.

We show that R is a weak stateless simulation up-to � by induction on the depth of the inference.

The result then follows from structural congruence by taking s

1

� skip and t

1

� skip .

By Lemma 3.21 follows that R satis�es the following property

If (s; t) 2 R and s

0

- t

0

then (s

0

k s; t

0

k t) 2 R (�)

transition

We consider the possible transitions for (s

1

k !s

2

; t

1

k !t

2

).

A transition can be derived in the following ways:

1. By (N2) from hs

1

;Mi

�

�!hs

0

1

;M

0

i.

By s

1

- t

1

follows ht

1

;Mi

�

0

�!

�

ht

0

1

;M

0

i where

b

�

0

=

b

� and s

0

1

- t

0

1

.

By (N2) we infer ht

1

k !t

2

;Mi

�

0

�!

�

ht

0

1

k !t

2

;M

0

i. By reexivity of � follows (s

0

1

k !s

2

; t

0

1

k !t

2

) 2

�R� .

2. By (N2) from h!s

2

;Mi

�

�!hs

0

2

;M

0

i.

This transition can in turn be derived in the following ways:

(a) By (N6) from hs

2

;Mi

�

�!hs

0

2

;M

0

i.

From s

2

- t

2

follows ht

2

;Mi

�

0

�!

�

ht

0

2

;M

0

i where

b

� =

b

�

0

and s

0

2

- t

0

2

.

By (N6) we get h!t

2

;Mi

�

0

�!

�

ht

0

2

;M

0

i.

By (N2) we get ht

1

k !t

2

;Mi

�

0

�!

�

ht

1

k t

0

2

;M

0

i.

From Lemma 3.21 follows that s

1

k s

0

2

- t

1

k t

0

2

. By structural congruence s � s k !skip,

hence (s

1

k s

0

2

; t

1

k t

0

2

) 2 �R� .

(b) By (N7) from hs

2

k !s

2

;Mi

�

�!hs

0

2

;M

0

i.

By induction we have ht

2

k !t

2

;Mi

�

0

�!

�

ht

0

2

;M

0

i where

b

� =

b

�

0

and s

0

2

�R� t

0

2

.

By (N7) we get h!t

2

;Mi

�

0

�!

�

ht

0

2

;M

0

i.

By (N2) we get ht

1

k !t

2

;Mi

�

0

�!

�

ht

1

k t

0

2

;M

0

i.

27

Since (s

0

2

; t

0

2

) 2 R we have by (�) that (s

1

k s

0

2

; t

1

k t

0

2

) 2 R. By reexivity of � follows

(s

1

k s

0

2

; t

1

k t

0

2

) 2 �R� .

3. By (N3) from hs

1

;Mi

�

�!hs

0

1

;M

0

i and h!s

2

;Mi

"

�!hs

0

2

;M

0

i.

The proof is a routine combination of cases 1. and 2. analogous to the corresponding case

(derivation by (N3)) in the proof of precongruence of parallel composition.

4. By (N3) from hs

1

;Mi

"

�!hs

0

1

;M

0

i and h!s

2

;Mi

�

�!hs

0

2

;M

0

i.

The remainder of this proof is analogous to the previous case.

5. By (N4) from hs

1

;Mi

�

1

�!hs

0

1

;M

1

i and h!s

2

;Mi

�

2

�!hs

0

2

;M

2

i where � = �

1

��

2

andM j= �

1

on�

2

.

The proof is a routine combination of cases 1. and 2. analogous to the corresponding case

(derivation by (N5)) in the proof of precongruence of parallel composition.

termination

Then s

1

� skip and s

2

� skip . The proof proceeds analogously to the termination proof for par-

allel composition. �

Lemma 3.25 Weak stateless re�nement is preserved by recursive de�nitions.

Proof Analogous to the recursion proof for strong stateless re�nement in [4]. �

Theorem 3.26 Weak stateless re�nement is a precongruence for schedules.

Proof From Lemma's 3.20, 3.21, 3.22, 3.23 3.24 and 3.25. �

The essential di�erence between weak and strong stateless re�nement can be expressed as an

algebraic law. In this law we use the rewrite rule fail that represents the class of rules that, when

executed, can only make a failing transition (denoted by "). We can think of it as being de�ned

as: fail b=x 7!m (false. We then arrive at the following weak stateless law, which enables the

elimination of fail from schedules.

15: t � fail ! s[t]

Lemma 3.27 t� fail ! s[t]

Proof

� t- fail ! s[t]: We show that R = f(t; fail ! s[t])g [Id

S

is a weak stateless simulation.

transition

If ht;Mi

�

�!ht

0

;M

0

i, then, by (N0), hfail ! s[t];Mi

"

�!ht;Mi.

By transitivity of �!: hfail ! s[t];Mi

"��

�!

�

ht

0

;M

0

i.

Clearly

d

" � � =

b

� and (t

0

; t

0

) 2 Id

S

� R.

28

termination

If t � skip, then by (N0), hfail ! s[t];Mi

"

�!ht;Mi. Clearly b" = h i.

� fail ! s[t]- t:

We show that R = f(fail ! s[t]; t)g [Id

S

is a weak stateless simulation.

transition

By (N0), hfail ! s[t];Mi

"

�!ht;Mi. By reexivity of �!

�

: ht;Mi

h i

�!

�

ht;Mi.

Clearly (t; t) 2 Id

S

� R.

termination

There are no s and t such that fail ! s[t]� skip , hence this case holds vacuously.

�

Taking both s � skip and t � skip, we get skip� fail as a special case of Law 15. These

laws may seem futile because no sensible program or schedule uses fail. However, consider the

following law that relates the schedule conditional c . [] to the reaction condition b of a rewrite

rule x 7!m (b. Law 16 is a strong stateless equivalence that introduces fail.

16: r ! s[t] ' c . (r ! s[t])[fail; t] if b) c

Lemma 3.28 If b) c then r ! s[t]' c . (r ! s[t])[fail; t].

Proof If c = true, then by structural congruence c . (r ! s[t])[fail; t] � r ! s[t], and the result

follows by reexivity of ' . It remains to consider the case c = false. From b) c follows :b.

From structural congruence follows c . (r ! s[t])[fail; t] � fail; t.

� We show that R = f(r ! s[t]; fail; t) j :bg [Id

S

is a strong stateless simulation.

By reexivity of 6 we know that Id

S

is a strong stateless simulation. We concentrate on

the remaining terms. We consider the possible transitions.

transition

From :b, we get by (N0), hr ! s[t];Mi

"

�!ht;Mi.

By (N0) and (N5), hfail; t;Mi

"

�!ht;Mi, and (t; t) 2 Id

S

� R.

termination

There are no s and t such that r ! s[t]� skip , hence this case holds vacuously.

� We show that R = f(fail; t; r ! s[t]) j :bg [Id

S

is a strong stateless simulation.

By reexivity of 6 we know that Id

S

is a strong stateless simulation. We concentrate on

the remaining terms. We consider the possible transitions.

transition

By (N0), hfail; t;Mi

"

�!ht;Mi.

Because :b, we get by (N0), hr ! s[t];Mi

"

�!ht;Mi, and (t; t) 2 Id

S

� R.

termination

There are no s and t such that fail; t� skip , hence this case holds vacuously.

29

�

In the next section, we formally prove how the use of the notions of re�nement that we have

seen can be combined. In particular we may combine strong and weak stateless laws to derive

weak stateless re�nements. For example, using the weak stateless law 15 and the strong stateless

law 16 we derive the following weak stateless equivalence

17: r ! s[t] � c . (r ! s[t])[t] if b) c

3.6 Relating the notions of re�nement

In the previous sections we presented some di�erent notions of re�nement. In this section we show

how they are related and how their use can be combined into a hybrid proof method.

Our �rst result is that strong re�nement is contained in weak re�nement, for both statebased

and stateless re�nement.

Lemma 3.29

1. hs;Mi5 ht;Mi) hs;Miw ht;Mi for all M (or 5 � w)

2. s6 t) s- t (or 6 � -)

Proof Immediately from the de�nitions of strong and weak re�nement, and the fact that

�! � �!

�

. �

Secondly, stateless re�nement is contained in statebased re�nement, for both their strong and

weak versions.

Lemma 3.30

1. s6 t) hs;Mi5 ht;Mi for all M

2. s- t) hs;Miw ht;Mi for all M

Proof

1. Let R = f(hs;Mi; ht;Mi) j s6 t;M 2 M g.

The result follows by showing that R is a strong statebased simulation.

transition

Consider an arbitrary transition for s: hs;Mi

�

�!hs

0

;M

0

i.

From s6 t follows ht;Mi

�

�!ht

0

;M

0

i such that s

0

6 t

0

, hence (hs

0

;M

0

i; ht

0

;M

0

i) 2 R.

termination

If s� skip , then from s6 t follows t� skip .

2. The proof is analogous to that of part 1.

30

�

Law 15 implies that strong stateless re�nement is strictly contained in weak stateless re�ne-

ment. From Lemma 3.30, then follows that strong statebased re�nement is strictly smaller than

weak statebased re�nement. Analogous to Example 3.2 we can prove hSum(n); fail;Mi5 h�

add

;Mi

for #M = n, and by Lemma 3.29 hSum(n);Miw h�

add

;Mi for #M = n. But Sum(n); fail is not

a strong stateless re�nement of �

add

, and Sum(n) is not a weak stateless re�nement of �

add

. This

proves that strong- and weak stateless are strictly contained in their statebased counterparts.

The inclusion relations between the various notions of re�nement are schematically depicted

in Figure 3. It shows that weak statebased re�nement is the most liberal notion and strong

stateless is the strictest. From Lemmas 3.29 and 3.30 follows that the re�nements contained in

the stricter notions are also contained in the more liberal ones. Deriving re�nements will be an

interplay between the methods presented. Typically, the �rst re�nements involve the introduction

of ordering on the selection of data. This relates the progress of a schedule to the contents of

the multiset, which clearly is a statebased property, hence proving this requires the use of one of

the statebased simulation methods. Subsequently, the ordering of actions may be re�ned using

stateless laws. Through precongruence of the stateless notions, these re�nements may be obtained

in a modular way using the algebraic laws. The containment within statebased methods ensures

that these re�nement are also valid there.

strong stateless � weak stateless

\ \

strong statebased � weak statebased

Figure 3: Relation between the notions of re�nement.

These results make it possible to use hybrid up-to methods. For instance, we may use the

strong stateless re�nement laws of Section 3.4 to show that some relation R is a weak statebased

simulation as follows:

Suppose that, given hs

0

;MiRht

0

;Mi, we want to show that hs;MiwRw ht;Mi. Now if we

can prove using the strong stateless laws that s6 s

0

and t

0

6 t, then by Lemma 3.29(2) follows

s- s

0

and t

0

- t. And by Lemma 3.30(2) follows hs;Mi- hs

0

;Mi and ht

0

;Mi- ht;Mi. Hence

hs;MiwRw ht;Mi.

4 Applications

In this section we will illustrate the method of development with two examples: summation and

the single source shortest paths problem.

31

4.1 Application 1: Summation

We return to the summation program add from Example 3.1. As in Example 3.1, we may exploit

the size n of the given multiset to perform exactly n� 1 additions. However, unlike there, we will

not impose any (sequential) order on the computation. The schedule we consider here is simply

add

n�1

. Hence we are interested in the re�nement hadd

n�1

;Miw h�

add

;Mi with #M = n.

Lemma 4.1 hadd

n�1

;Miw h�

add

;Mi with #M = n.

Proof Let R = f(hadd

n�1

;Mi; h�

k

add

;Mi) j #M = n; n � 0; k � 1g. Showing that R is a weak

statebased simulation proceeds analogously to the proof of Example 3.2. �

We can further re�ne the control structure by algebraic reasoning using the stateless re�nement

laws. For instance, a schedule that performs recursive doubling can be de�ned as follows.

RecDubSum(i) b=(i > 1) . (add

bi=2c

;RecDubSum(di=2e))

Lemma 4.2 For all n, RecDubSum(n)6 add

n�1

Proof By induction on n.

� n � 1: RecDubSum(n)' skip' add

n�1

as required.

� n > 1: RecDubSum(n)

' def.RecDubSum

add

bn=2c

;RecDubSum(dn=2e)

6 Induction

add

bn=2c

; add

dn=2e�1

6 law 9

add

n�1

�

In its turn, we may re�ne RecDubSum(n) by Sum(n) where Sum(n) b=n > 1 . (add;Sum(n�1))

is the sequential schedule for summation which we saw earlier in Examples 3.1 and 3.2.

Lemma 4.3 For all n, Sum(n)6RecDubSum(n)

Proof By induction on n.

� n � 1: Sum(n)' skip'RecDubSum(n)

32

� n > 1: Sum(n)

' def. Sum; bn=2c � 1

add; : : : ; add

| {z }

bn=2c

;Sum(dn=2e)

6 law 9

add

bn=2c

;Sum(dn=2e)

6 Induction

add

bn=2c

;RecDubSum(dn=2e)

' def. RecDubSum

RecDubSum(n)

�

Hence we arrive at the re�nement ordering (for #M = n):

hSum(n);Mi w hRecDubSum(n);Mi w hadd

n�1

;Mi w h�

add

;Mi

Figure 4 depicts the method by which we derived these re�nement.

schedule

Gamma

program

add n-1

statebased

simulation

(operational)

automatic
construction

stateless

simulation

(algebraic)

final

schedule

intermediate

schedule

most general

RecDubSum

Γadd

add

Sum

Figure 4: Lattice of Re�nements for Summation

Even though the summation program is fairly simple, the results we have proven here provided

useful in the more complex case of solving triangular systems of linear equations [5].

33

4.2 Application 2: Single Source Shortest Paths

We demonstrate application of the re�nement techniques by considering an example problem that

is commonly known as the single source shortest paths problem. Pursuing separation between

computation and coordination we shall �rst specify the basic computation that is required to

solve the problem in Gamma. After that we shall relate several coordination strategies.

The problem description is as follows. Assume we are given a directed graph with vertices

V = f1; : : : ; ng. A function L associates with every edge (u; v) a non-negative length L(u; v). If

there is no edge between vertices u and v, then we take L(u; v) = 1. Also L(u; u) = 0 for all

vertices u. Given a source vertex s, the problem is to determine for every vertex v, the length of

a shortest path from s to v.

A Gamma program for solving this problem is given by the rule:

�nd(u; v) b=(u; x); (v; y) 7! (u; x); (v; x+ L(u; v)) (x+ L(u; v) < y

The multiset consists of pairs (v; x), where v is a vertex number and x is the length of a path from

the source s to v. The initial multiset is given by: M

0

= f(s; 0)g [f (v;1) j 1 � v � n; v 6= sg.

4.2.1 A First Re�nement

Though the program performs the required computation, as can be proven formally using tech-

niques from [1], it is hopelessly ine�cient because of its unstructured search through the graph.

We may coordinate the program's activities into a coherent (more deterministic) searching strat-

egy by conducting a directed search on the graph starting from the source. From a given vertex

u the search proceeds by an attempt to construct a shorter path to every adjacent vertex v (in

no preferred order). If the attempt succeeds, the search is continued; otherwise the search at v is

aborted. A schedule that expresses this strategy is given by Search(s), where

Search(u) b= (�

n

v=1

�nd(u; v) ! Search(v))

Note that the schedule still exhibits highly nondeterministic behaviour. The paths in the graph

are traversed in any order (possibly in parallel). Using the re�nement techniques, however, we can

transform the schedule into more deterministic versions [4].

As an illustration of the method, we shall prove that Search is a correct re�nement of �

�nd

.

We start by giving a general schedule, denoted GS, that allows us to describe any form that the

schedule Search may evolve into during execution. Let F be a multiset over V � V , de�ne

GS(F) b=(�

(u

1

;u

2

)2F

�nd(u

1

; u

2

) ! Search(u

2

))

The next results prepare the ground for proving a simulation relation which establishes our

34

ultimate goal: showing that there is some a weak statebased simulation relation R such that

(hSearch(s);Mi; h�

�nd

;Mi) 2 R.

Let #i denote the number of tuples (v; x) 2M such that

1

v = i. De�ne

R = f(hGS(F);Mi; h�

k

�nd

;Mi) j Inv1 (M) ^ Inv2 (M;F); k � 1g

where

Inv1 (M) = 8i : 1 � i � n : #i = 1

and

Inv2 (M;F) = 8(v

1

; x

1

); (v

2

; x

2

) 2M : (v

1

; v

2

) 62 F : x

2

� x

1

+ L(v

1

; v

2

)

In the next two lemmas we consider the possible transitions that are derived from the execution

of a single rewrite rule �nd(u; v) and show that these preserve invariants Inv1 and Inv2 as well

as the syntactical form GS.

Lemma 4.4 Let hGS(F);Mi be a con�guration such that Inv1(M) and Inv2(M;F).

If hGS(F);Mi

"

�!hs

0

;M

0

i is a single step transition, then

1. s

0

'GS(F

0

) where F

0

= F 	 f(u; v)g for some (u; v) 2 F

2. Inv1(M

0

)

3. Inv2(M

0

; F

0

)

Proof

1. By (N0) and (N2) we derive s

0

� GS(F

0

) where F

0

= F 	 f(u; v)g.

By Lemma 4.7 from [4] follows s

0

'GS(F

0

).

2. Because M

0

=M , clearly Inv1(M

0

).

3. We have (u; x); (v; y) 2M and x+ L(u; v) � y. Consequently, using Inv2 (M;F):

8(v

1

; x

1

); (v

2

; x

2

) 2M : (v

1

; v

2

) 62 (F 	 f(u; v)g) : x

2

� x

1

+ L(v

1

; v

2

)

Because F

0

= F 	 f(u; v)g this establishes Inv2 (M;F

0

).

�

Lemma 4.5 Let hGS(F);Mi be a con�guration such that Inv1(M) and Inv2(M;F).

If hGS(F);Mi

�

�!hs

0

;M

0

i is a single step transition, then

1. s

0

'GS(F

0

) where F

0

= F 	 f(u; v)g [f(v; w) j w 2 V g

2. Inv1(M

0

)

1

Because M is formally a function, we can de�ne #i = �

x2N[f1g

M(i; x).

35

3. Inv2(M

0

; F

0

)

Proof Because � is the label of a single step transition, � = f(v; y

0

)g=f(v; y)g for some

(v; y); (u; x) 2M such that y

0

= x+ L(u; v), y

0

< y and (u; v) 2 F .

1. By (N1) and (N2) we derive s

0

� GS(F	f(u; v)g) kSearch(v). From Search(v) 'GS(f(v; w) j

w 2 V g) follows s

0

'GS(F

0

) where F

0

= F 	 f(u; v)g [f(v; w) j w 2 V g.

2. From Inv1 (M) and M

0

=M 	 f(v; y)g) [f(v; x+L(u; v))g it is clear that Inv1 (M

0

) holds.

3. We start by deriving some auxiliary results.

� As a special case of Inv2 (M;F) we have

8(v

1

; x

1

); (v

2

; x

2

) 2M : (v

1

; v

2

) 62 F ^ (v

2

; x

2

) = (v; y) : y � x

1

+ L(v

1

; v) (1)

By de�nition of M

0

and y

0

< y we have, by Inv1 (M

0

),

8(v

1

; x

1

); (v

2

; x

2

) 2M

0

: (v

1

; v

2

) 62 F ^ (v

2

; x

2

) = (v; y

0

) : y

0

� x

1

+ L(v

1

; v) (2)

� By de�nition of M

0

and Inv1 (M

0

) follows

8(v

1

; x

1

); (v

2

; x

2

) 2M

0

: v

1

= u ^ v

2

= v : x

2

= x

1

+ L(v

1

; v

2

) (3)

By de�nition of M

0

and Inv2 (M;F) follows

8(v

1

; x

1

); (v

2

; x

2

) 2M

0

: (v

1

; v

2

) 62 F ^ v

1

6= v ^ v

2

6= v : x

2

� x

1

+ L(v

1

; v

2

)

) f by (2) g

8(v

1

; x

1

); (v

2

; x

2

) 2M

0

: (v

1

; v

2

) 62 F ^ v

1

6= v : x

2

� x

1

+ L(v

1

; v

2

)

) f set calculus g

8(v

1

; x

1

); (v

2

; x

2

) 2M

0

: (v

1

; v

2

) 62 (F [f(v; w) j w 2 V g) : x

2

� x

1

+ L(v

1

; v

2

)

) f F

0

[f(u; v)g = F [f(v; w) j w 2 V g g

8(v

1

; x

1

); (v

2

; x

2

) 2M

0

: (v

1

; v

2

) 62 (F

0

[f(u; v)g) : x

2

� x

1

+ L(v

1

; v

2

)

) f by (3) and Inv1(M

0

) g

8(v

1

; x

1

); (v

2

; x

2

) 2M

0

: (v

1

; v

2

) 62 F

0

: x

2

� x

1

+ L(v

1

; v

2

)

Which proves Inv2 (M

0

; F

0

).

�

Lemma 4.6 If hGS(F);Mi

�

�!hs

0

;M

0

i, then h�

�nd

;Mi

�

�!h�

k

�nd

;M

0

i for some k � 1

Proof By induction on #F . Note that the proposition holds vacuously if F = ;.

Consider the case #F = 1; i.e. F = f(u; v)g. Then GS(F) b=�nd(u; v) ! �

�nd

.

A transition hGF (F);Mi

�

�!hs

0

;M

0

i can be derived by (N0) or by (N1):

36

� (N0): � = ": hence h�nd(u; v) ! �

�nd

;Mi

"

�!hskip;Mi.

By (N2) h�nd(u; v) ! �

�nd

k�

�nd

;Mi

"

�!h�

�nd

;Mi.

By (N7) h�

�nd

;Mi

"

�!h�

�nd

;Mi.

� (N1): then � = � and s

0

� Search(v). h�nd(u; v) ! �

�nd

;Mi

�

�!h�

�nd

;M

0

i.

By (N6) and (N8) h�

�nd

;Mi

�

�!h�

�nd

;M

0

i.

Next, we consider #F � 2. By commutativity and associativity of k follows that GS(F) can be

written as GS(F) � GS(F

1

) kGS(F

2

) where F

1

= f(u; v)g and F

2

= F 	 f(u; v)g. Now, consider

the possible derivations of a transition hGS(F

1

) kGS(F

2

);Mi

�

�!hs

0

;M

0

i:

� By (N2) or (N3): If the last derivation is by (N2) or (N3), then the result follows immedi-

ately from the induction hypothesis.

� By (N4) from hGS(F

1

);Mi

�

1

�!hs

1

;M

1

i and hGS(F

2

);Mi

�

2

�!hs

2

;M

2

i where � = �

1

��

2

and

M j= �

1

on�

2

. By the induction hypothesis follows h�

�nd

;Mi

�

2

�!h�

k

�nd

;M

2

i for some k � 1.

From the former transition we get by (N8) and (N1) that h�nd ! �

�nd

;Mi

�

1

�!h�

�nd

;M

1

i.

Then by (N4) follows h(�nd ! �

�nd

) k�

�nd

;Mi

�

�!h�

k+1

�nd

;M

0

i.

And by (N7) we conclude h�

�nd

;Mi

�

�!h�

k+1

�nd

;M

0

i such that k + 1 � 1.

�

Lemma 4.7 R = f(hGS(F);Mi; h�

k

�nd

;Mi) j Inv1 (M)^Inv2 (M;F); k � 1g is a weak statebased

simulation up-to weak statebased re�nement.

Proof

transition

If hGS(F);Mi

�

�!hs

0

;M

0

i, then by Lemma 2.1 there exist �

1

; : : : ; �

n

; n � 1 such that

hs

0

;M

0

i

�

1

�!hs

1

;M

1

i : : :

�

i

�! : : : hs

n�1

;M

n�1

i

�

n

�!hs

n

;M

n

i

where hGS(F);Mi = hs

0

;M

0

i, hs

n

;M

n

i = hs

0

;M

0

i and each transition is single-step. By induction

on the length of the transition sequence it follows by Lemma 4.4 and Lemma 4.5 that s

0

'GS(F

0

)

and Inv1(M

0

) and Inv2(M

0

; F

0

).

By Lemma 4.6 follows h�

�nd

;Mi

�

�!h�

k

0

�nd

;M

0

i for some k

0

� 1.

By (N2), h�

k

�nd

;Mi

�

�!h�

k�1+k

0

�nd

;M

0

i with k � 1 + k

0

� 1.

Hence hs

0

;M

0

i-R- h�

k�1+k

0

�nd

;M

0

i.

termination

GS(F;W) � skip only if F = ;. By Inv2(M; ;) then follows that for all (v

1

; x

1

); (v

2

; x

2

) 2 M :

x

2

� x

1

+ L(v

1

; v

2

). Hence by (N0) hfind ! �

�nd

;Mi

"

�!hskip;Mi.

By (N6), (N9) and (N2) and the de�nition of �!

�

, h�

k

�nd

;Mi

"

�!

�

hskip;Mi.

�

37

To prove hSearch(s);M

0

iw h�

�nd

;M

0

i it remains to show that (hSearch(s);M

0

i; h�

�nd

;M

0

i) 2

R. Clearly Inv1 (M

0

) holds. To verify Inv2 (M

0

; f(s; v) j v 2 V g) we need to check that

8(v

1

; x

1

); (v

2

; x

2

) 2 M

0

: v

2

62 fsg : x

2

� x

1

+ L(v

1

; v

2

). This follows from the initialization of

all vertices v

i

2 V � fsg by (v

i

;1) because it entails 1+ L(v

i

; v

j

) � 1.

The most laborious part of proving statebased re�nements consists of showing that the invari-

ants are preserved by all possible transitions of the schedule. If a schedule consists of the parallel

composition of k components, then the multistep semantics may give rise to an exponential num-

ber, 2

k

� 1, of possible transitions. However, Lemma 2.1 allows us to consider only the single-step

transitions (as illustrated by Lemma 4.4 and Lemma 4.5). This e�ectively reduces reasoning about

the parallel behaviour of schedules to reasoning about their interleaved behaviour.

A further reduction of the e�ort of proving statebased re�nements can be obtained by gener-

alizing Lemma 4.6. We conjecture that the most general schedule has the following more general

property (which entails Lemma 4.6): the most general schedule can mimic any transition by a

schedule that is built from strengthenings of rules that the most general schedule is built from.

This reduces the proof obligation of Lemmas analogous to 4.6 to checking that a schedule is built

from strengthenings of the rules of the most general schedule. The formal proof of this property

will be the subject of future research.

In the next section we will illustrate how a further re�nement of the shortest paths schedule

Search can be proven by algebraic reasoning using results from Section 3.5.

4.2.2 Some Further Re�nements

Further re�nements can be derived using the algebraic laws from Sections 3.4 and 3.5. Because a

shorter path to v via u can be found only if there is an edge between u and v, we only need to look

for shorter paths from u to neighbours of u; i.e. the vertices v such that L(u; v) < 1. Formally,

this depends on the following property:

x+ L(u; v) < y) L(u; v) <1

By law 17 from Section 3.5 then follows

(�

n

v=1

L(u; v) <1 . �nd(u; v) ! Search(v)) � (�

n

v=1

�nd(u; v) ! Search(v))

hence Search

0

(s)� Search(s) where

Search

0

(u) b=(�

n

v=1

L(u; v) <1 . �nd(u; v) ! Search

0

(v))

In [4] we derive, mainly using algebraic reasoning, a number of schedules that re�ne the schedule

Search'. These schedules impose depth-�rst and (parallel) breadth-�rst orderings on the execution

of the shortest paths program. Figure 5 illustrates the method of re�nement. It shows how the

schedules are related by the notions of re�nement.

38

schedule

automatic

construction

stateless

simulation

statebased

simulation

Search

ParBF DepthFirst

BreadthFirst

final

schedule

most general

intermediate

Search’
schedule

Γ

find

find

program

Gamma

Figure 5: Lattice of Re�nements for Shortest Path Schedules

5 Conclusions

Our aim is to devise a formal method for the design of (parallel) programs where computation

and coordination are addressed separately. In our approach we use Gamma to express the basic

computations of a program with only a minimum of control. In a second stage of the design

process we exploit the highly nondeterministic behaviour of Gamma to introduce explicit control

by using a separate coordination language.

It is desirable that by adding operational detail, the established correctness of a Gamma

program remains una�ected. We therefore aim at a correctness preserving derivation process.

The starting point is the most general schedule, which can be regarded as a model for Gamma's

operational behaviour.

In this paper we discussed di�erent notions of re�nement, based on the concept of simulation.

Each of these notions has an associated proof method. Together, these notions can be combined

into a hybrid method that can be used e�ectively for proving re�nements between schedules.

The concept of statebased simulation provides the most powerful proof method in the sense

that it allows to resolve nondeterminism by using properties of the multiset. However, the entailed

re�nement relation is not a precongruence. In practice this results in complex proofs for large

programs.

Stateless simulation yields a smaller re�nement relation that is precongruent. It induces a

number of re�nement laws that can be used in an algebraic and hence compositional style of

reasoning about schedules. It is less powerful than statebased re�nement because of its neglect of

the multiset.

39

By combining both notions of re�nement we obtain a hybrid proof method that can be used

to reason about di�erent properties of schedules. It would be interesting to learn whether a pre-

congruence relation exists that is larger than stateless re�nement but still contained in statebased

re�nement. Work on this topic is currently in progress.

Acknowledgments

This report has bene�ted from detailed comments by Edwin de Jong, Chris Hankin and Juarez

Milhaert Filho.

References

[1] J.-P. Banâtre and D. Le M�etayer. The gamma model and its discipline of programming.

Science of Computer Programming, 15:55{77, November 1990.

[2] J.-P. Banâtre and D. Le M�etayer. Programming by multiset transformation. Communications

of the ACM, 36(1):98{111, January 1993.

[3] M. Chaudron. Schedules for multiset transformer programs. Technical Report 94-36, Rijk-

suniversiteit Leiden, Departement of Mathematics and Computing Science, P.O. Box 9512,

2300 RA Leiden, The Netherlands, December 1994.

[4] M. Chaudron. Towards compositional design of schedules for multiset transformer programs.

Technical Report 95-32, Rijksuniversiteit Leiden, Departement of Mathematics and Comput-

ing Science, P.O. Box 9512, 2300 RA Leiden, The Netherlands, November 1995.

[5] M. Chaudron and A. C. N. van Duin. Design of strategies for solving triangular systems using

Gamma. Technical Report 96-08, Rijksuniversiteit Leiden, Departement of Mathematics and

Computing Science, P.O. Box 9512, 2300 RA Leiden, The Netherlands, 1996.

[6] M. Chaudron and E. De Jong. Notions of re�nement for a coordination language for Gamma.

In Proceedings of the Theory and Formal Methods Workshop 1996. Imperial College Press,

1996. (to be published).

[7] M. Chaudron and E. De Jong. Schedules for multiset transformer programs. In Coordination

Programming: Mechanisms, Models and Semantics. Imperial College Press, 1996.

[8] M. Chaudron and E. De Jong. Towards a compositional method for coordinating Gamma

programs. In LNCS 1061, Proceedings Coordination '96, pages 107{123. Springer Verlag,

1996.

[9] B. A. Davey and H. A. Priesty. Introduction to Lattices and Order. Cambridge University

Press, 1990.

40

[10] D. Gelernter and N. Carriero. Coordination languages and their signi�cance. Communications

of the ACM, 35(2):97{107, February 1992.

[11] D. Gries. The Science of Computer Programming. Springer-Verlag, 1981.

[12] C. Hankin, D. Le M�etayer, and D. Sands. A calculus of gamma programs. In 5

th

International

Workshop on Languages and Compilers for Parallel Computing, LNCS 757, pages 342{355.

Springer-Verlag, 1992.

[13] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[14] D. M. R. Park. Concurrency and automata on in�nite sequences. In LNCS 104, Proceedings

of the 5th G. I. Conference on Theoretical Computer Science, pages 167{183. Springer-Verlag,

1980.

6 Appendix On Multisets

De�nition 19 Let A be a set.

1. A multiset over A is a function M : A! N .

2. Let M be the set of multisets; i.e. M = fM jM is a multisetg.

De�nition 20 Let A be a set and let M and N be multisets over A.

1. a is a member of M , denoted a 2M , if M(a) > 0.

2. M is equal to N , denoted M = N , if M(a) = N(a) for all a 2 A.

3. M is a sub-multiset of N , denoted M � N , if M(a) � N(a) for all a 2 A.

De�nition 21 Let A be a set and let M and N be multisets over A.

1. M [N = f(a;M(a) +N(a)) j a 2 Ag is the union of M and N .

2. M \N = f(a;min(M(a); N(a))) j a 2 Ag is the intersection of M and N .

3. M 	N = f(a;M(a)

:

�N(a))) j a 2 Ag where x

:

� y =

(

x� y if x � y

0 otherwise

is the di�erence between M and N .

De�nition 22 Let N and N

0

be multisets. A multiset substitution that replaces N by N

0

is a

function � : M ! M that is written as N

0

=N . Formally

�(M) =

(

(M 	N) [N

0

if N �M

M otherwise

To conform with conventional notation for substition, we also write M [�] to denote the application

of � to M .

41

De�nition 23 Let M be a multiset and let �

1

= N

1

=M

1

and �

2

= N

2

=M

2

be multisets substitu-

tions.

1. �

1

is independent from �

2

in M , denoted M j= �

1

/ �

2

, if N

1

� (M 	N

2

) [N

0

2

.

2. If �

1

and �

2

are mutually independent from each other, more succinctly called independent,

then we write M j= �

1

on�

2

.

Lemma 6.1 Let M be a multiset and let �

1

= N

0

1

=N

1

and �

2

= N

0

2

=N

2

be multiset substitutions.

If N

1

�M , N

2

�M and M j= �

1

on�

2

, then �

2

� �

1

(M) = �

1

� �

2

(M).

Proof Recall that M(x) denotes the number of elements x in multiset M . We reason as follows

x 2 �

2

� �

1

(M)

, subst. �

1

; N

1

�M

x 2 �

2

((M 	N

1

) [N

0

1

)

, subst. �

2

; N

2

� (M 	N

1

) [N

0

1

x 2 (((M 	N

1

) [N

0

1

)	N

2

) [N

0

2

, def. 	;[; N

1

�M;N

2

�M 	N

1

[N

0

1

M(x)�N

1

(x) +N

0

1

(x) �N

2

(x) +N

0

2

(x) � 1

, arithmetic

M(x)�N

2

(x) +N

0

2

(x) �N

1

(x) +N

0

1

(x) � 1

, def. 	;[; N

2

�M;N

1

�M 	N

2

[N

0

2

x 2 (((M 	N

2

) [N

0

2

)	N

1

) [N

0

1

, subst. �

2

; N

1

� (M 	N

2

) [N

0

2

x 2 �

1

((M 	N

2

) [N

0

2

)

, subst. �

1

; N

2

�M

x 2 �

1

� �

2

(M)

�

42

