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Abstract. A graph language L is in the class C-edNCE of context-free

edNCE graph languages if and only if L = f(T ) where f is a function

on graphs that can be de�ned in monadic second-order logic and T is

the set of all trees over some ranked alphabet. This logical characteri-

zation implies a large number of closure and decidability properties of

the context-free edNCE graph languages. Rather than context-free graph

grammars we use regular path descriptions to de�ne graph languages.

1 Introduction

Context-free graph grammars are a general formalism to de�ne sets of graphs

in a recursive fashion, just as context-free grammars are used to recursively de-

�ne sets of strings. Since many interesting graph properties are recursive in one

way or another, context-free graph grammars provide a means to study such

properties in general. As opposed to the case of strings, there are many di�er-

ent types of context-free graph grammars, and there is no agreement on which

is the \correct" one. Here we consider the class of C-edNCE graph languages

generated by the context-free (or con
uent) edNCE graph grammars, which was

�rst investigated in, e.g., [Kau, Bra, Schu, Oos, Eng2]. One advantage of the

class C-edNCE is that it is the largest known class of context-free graph lan-

guages (where `context-free' is taken in the sense of [Cou1]). It includes, e.g., the

HR (i.e., Hyperedge Replacement) languages of [BC, HK, Hab], the B-NLC lan-

guages of [RW1, RW2], and the B-edNCE languages of [ELW, EL]. Thus, results

on C-edNCE apply to a quite large class of recursive praph properties. A second

advantage of C-edNCE is that it seems to be robust in the sense that it can

be characterized in several di�erent ways. It is shown in [CER] that C-edNCE

is also generated by a speci�c type of handle rewriting hypergraph grammars,

generalizing hyperedge replacement. It is also shown in [CER] that C-edNCE

has a least �xed point characterization in terms of very simple graph operations;

in other words, C-edNCE is the class of equational subsets of a certain algebra

of graphs (for the notion of `equational set' see [MW]). In [EO] (see [Oos, Eng2])
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it is shown that the C-edNCE graph languages can be described in terms of

regular tree and string languages. A \regular path description" of a graph lan-

guage mainly consists of a regular tree language together with a regular string

language for each possible edge label. Each tree t from the regular tree language

determines a graph gr(t) in the graph language as follows: gr(t) has the same

nodes as t, with the same labels, and there is a 
-labeled edge from node u to

node v if the string of labels on the shortest (undirected) path from u to v in

t belongs to the regular string language associated with 
. To be precise, gr(t)

has in fact only those nodes of t that have certain labels, and the node labels in

the graph are obtained from those in the tree by a relabeling. In this paper we

will not consider graph grammars but only regular path descriptions, which are

easier to understand for readers familiar with formal (tree) language theory. For

this reason, the class C-edNCE is also denoted RPD.

The main result of this paper is a characterization of C-edNCE in terms of

monadic second-order logic on trees, strengthening our belief that C-edNCE is a

robust class of context-free graph languages. We �rst de�ne the class MSOF of

monadic second-order de�nable functions; they are unary functions that trans-

form graphs into graphs. Then the result is that a graph language L is in

C-edNCE if and only if L = ff(t) j t 2 T

�

g where f is in MSOF and T

�

is the

set of all trees over a ranked alphabet �. Intuitively, the recursive (context-free)

aspect of a graph in L is captured by the tree t, whereas the actual construction

of the graph f(t) from t is speci�ed in monadic second-order logic. In what fol-

lows we abbreviate `monadic second-order' by MSO. As in the case of a regular

path description, the nodes of f(t) are a subset of the nodes of t. Which nodes

of t are in f(t) (and which labels they have), and which edges have to be es-

tablished between these nodes, is described by MSO formulas, to be interpreted

on t. To be precise, f is speci�ed by the following formulas: a closed \domain

formula" �

dom

that should be satis�ed by t (f is in general a partial function),

for each node label � of f(t) a \node formula" �

�

(u) expressing that u will be a

node of f(t) with label �, and for each edge label 
 an \edge formula" �




(u; v)

expressing that there will be a 
-labeled edge from u to v in f(t).

The usefulness of this MSO characterization is that MSO logic is a convenient

language to talk about graphs, and hence can be used as a speci�cation language

for sets of graphs and functions on graphs. The MSO speci�cation language is

more convenient than the (rather technical) formalisms of context-free graph

grammars or regular path descriptions, because it allows one to directly express

properties of graphs, in the way they are usually de�ned in graph theory. In

particular, the MSO characterization is completely grammar independent, in the

sense that there is no need to construct a (graph or tree) grammar to express a

recursive property of graphs; instead, the recursion is incorporated in the input

trees of the MSO de�nable function.

MSO characterizations of classes of languages generated by grammars date

back to [Buc, Elg], where it is shown that the class of regular string languages

equals the class of MSO de�nable string languages. This was generalized to

trees in [Don, TW]: a tree language is regular if and only if it is MSO de�nable.
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For a discussion of such results see Sections 3 and 11 of [Tho], and [Eng4].

Note that these characterizations di�er from the one of C-edNCE: by de�nition,

a language L is MSO de�nable if there exists a closed MSO formula � such

that L consists of all strings (trees, graphs) that satisfy �. The class of MSO

de�nable graph languages is incomparable with C-edNCE (cf. [Cou2]). The proof

of our MSO characterization is heavily based on the classical results of [Buc,

Elg, Don, TW]; for instance, the domain of an MSO de�nable function is MSO

de�nable (by �

dom

) and corresponds directly to the regular tree language of the

regular path description. A relationship between context-free graph languages

and MSO logic was �rst established by Courcelle in [Cou2] (see also Section 4

of [Cou3]), where he showed that the class of HR context-free graph languages

is closed under intersection with MSO de�nable graph languages (generalizing

the corresponding result for strings). For C-edNCE and several of its subclasses

similar results are shown in [Cou1, CER]. These intersection results provide

meta-theorems for closure and decidability properties of these classes (`meta' in

the sense that, historically, such intersection results were �rst proved for several

speci�c, MSO de�nable, properties). Other such meta-theorems (not using MSO

logic) are shown, e.g., in [HKV1, HKV2, LW]; as observed above, the advantage

of MSO logic is that it is grammar independent, well known, and easy to use. Our

MSO characterization of C-edNCE generalizes Courcelle's intersection result for

C-edNCE. It implies additional MSO meta-theorems for closure and decidability

properties of C-edNCE, in particular generalizing the results of [HKV2] from HR

to C-edNCE.

The structure of this paper is as follows. Section 1 contains some preliminary,

and mostly well-known de�nitions on graphs, trees, and strings, on regular tree

languages, and on monadic second-order logic. In Section 3 we recall the notion

of a regular path description from [EO], together with three of its special cases:

type A, type B, and type LIN. The regular tree language of a regular path

description of type LIN consists of linear trees (which are close to strings). In

Section 4 the class MSOF of MSO de�nable functions is introduced, together

with three of its special cases which are also called type A, type B, and type

LIN. MSO de�nable functions of type LIN are applied to strings rather than

trees. It is shown that MSOF is closed under composition. Section 5 contains

the main result: the MSO characterization of the class RPD of graph languages

that can be described by regular path descriptions (i.e., the class C-edNCE).

Similar characterizations hold for types A, B, and LIN. Section 6 contains the

closure and decidability results that follow from the MSO characterization. In

particular, C-edNCE is closed under MSO de�nable functions.

The main result of this paper was established in 1988, and presented in

[Oos, Eng1] and [Eng3]. Its consequences for closure and decidability properties

were obtained in 1990 and presented in [Eng3]. The only newly added result is

the MSO characterization of the RPD languages of type A (i.e., the A-edNCE

languages) which is based on the results of [EHL] (see [EO]).

In the meantime, an MSO characterization of the HR graph languages has

been proved in [CE], which is surprisingly similar to the one of C-edNCE.
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Roughly speaking, the vertices of the tree t are turned into both the nodes

and the edges of the graph f(t), and the incidence relation between nodes and

edges is expressed by an MSO formula. Based on these two characterizations

it is shown in [Cou7] that it is decidable whether or not a given C-edNCE lan-

guage is HR. A general MSO characterization of the equational subsets of certain

algebras of relational structures, with a binary gluing operation and all possi-

ble quanti�er-free �rst-order de�nable unary operations, is presented in [Cou5].

For a recent survey on C-edNCE see [ER2]. Other surveys that discuss work on

C-edNCE and HR are [Cou8, DHK, Eng5, Eng6]. For graph grammars in general

see [Roz, ENRR, EKR, CEER].

2 Preliminaries

N = f0; 1; 2; : : :g and for m;n 2 N, [m;n] = fm; : : : ; ng. The domain of a

function f is denoted dom(f).

2.1 Graphs, trees, and strings

The reader is assumed to be familiar with formal language theory (see, e.g.,

[HU]), in particular tree language theory (see, e.g., [GS]), and with the elemen-

tary concepts of graph theory. Strings and trees will (also) be viewed as particular

types of graphs.

First we de�ne graphs, i.e., directed graphs with labeled nodes (or vertices)

and labeled edges. Let � be an alphabet of node labels and � an alphabet of

edge labels. A graph over � and � is a tuple H = (V;E; �), where V is the

�nite set of nodes, E � f(v; 
; w) j v; w 2 V; v 6= w; 
 2 �g is the set of edges,

and � : V ! � is the node labeling function. The components of H are also

denoted as V

H

, E

H

, and �

H

, respectively. Thus, we consider directed graphs

without loops; multiple edges between the same pair of nodes are allowed, but

they must have di�erent labels. A graph is undirected if for every (v; 
; w) 2 E,

also (w; 
; v) 2 E. Graphs with unlabeled nodes and/or edges can be modeled

by taking � and/or � to be a singleton, respectively.

The set of all graphs over � and � is denoted GR

�;�

. A subset of GR

�;�

is

called a graph language.

As usual, two graphs H and K are isomorphic if there is a bijection f :

V

H

! V

K

such that E

K

= f(f(v); 
; f(w)) j (v; 
; w) 2 E

H

g and, for all v 2 V

H

,

�

K

(f(v)) = �

H

(v). The reader is assumed to be familiar with the way in which

concrete graphs are used as representatives of abstract graphs, which are equiv-

alence classes of concrete graphs with respect to isomorphism. We are usually

interested in abstract graphs, but mostly discuss concrete ones. For instance,

whereas a graph language is de�ned to be a set of concrete graphs, we usually

view it as a set of abstract graphs.

The rooted, ordered trees from tree language theory will be identi�ed (as

usual) with a special type of (abstract) graph: each vertex of the tree has a

directed edge to each of its k children, k � 0, and the order of the children
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is indicated by using the numbers 1; : : : ; k to label these edges; the vertex is

labeled by a symbol of rank k (from a ranked alphabet). For an example of a

tree see Fig. 6(a). A ranked alphabet is an alphabet � together with a mapping

rank : � ! N. By rks(�) we denote the set [1;m] where m is the maximal

number rank(�), � 2 �. A tree over � is a graph t 2 GR

�;rks(�)

with the

following two properties: (1) there is a vertex r of t (its root) such that for every

vertex v of t there is a unique (directed) path from r to v, and (2) every vertex

v of t with label � has exactly k outgoing edges, where k = rank(�), and each

i 2 [1; k] is the label of (exactly) one of these edges. The root of t, i.e., the unique

vertex of t that has no incoming edges, is denoted root(t). The i-th child of a

vertex v, i.e., the unique vertex w such that (v; i; w) 2 E

t

, is denoted v � i. The

child number of a vertex v is 0 if v = root(t), and i if v is the i-th child of its

parent. As usual, for trees t

1

; : : : ; t

k

and � 2 � with k = rank(�), we denote by

�t

1

� � � t

k

the tree consisting of the disjoint union of t

1

; : : : ; t

k

and a root that

has label � and has an i-labeled edge to the root of each t

i

, 1 � i � k. In this

way every tree over � is denoted by a string over �. We write T

�

for the set of

all trees over �. A subset of T

�

is called a tree language.

Strings over an (ordinary) alphabet will also be viewed as a special type

of (abstract) graph: a chain of nodes that are labeled with the symbols of the

string (and edges labeled by �). Let � be an alphabet. A string �

1

� � ��

n

, n � 0,

with �

i

2 �, is identi�ed with the graph (V;E; �) 2 GR

�;f�g

such that V =

fv

1

; : : : ; v

n

g, E = f(v

i

; �; v

i+1

) j 1 � i < ng, and �(v

i

) = �

i

for every 1 � i � n.

Note that the empty string is represented by the empty graph. For an example

of a string see Fig. 5(a). As usual, �

�

denotes the set of all strings over �. A

subset of �

�

is called a string language, or just a language. A language is regular

if it can be recognized by a �nite automaton (or generated by a right-linear

grammar).

2.2 Regular tree languages

Regular tree grammars are recognized by �nite tree automata and can be gen-

erated by regular tree grammars. Let � be a ranked alphabet.

A �nite (deterministic) bottom-up tree automaton over � is a tuple A =

(Q; f�

A

g

�2�

; F ) where Q is a �nite set of states, �

A

is a mapping Q

k

! Q for

every � 2 � of rank k (the state transition function for �), and F � Q is a set

of �nal states. For a tree t 2 T

�

, and a vertex v 2 V

t

, the state reached by A at

v, denoted state

t;A

(v), is de�ned recursively in a bottom-up fashion as follows: if

v has label � of rank k, then state

t;A

(v) = �

A

(state

t;A

(v � 1); : : : ; state

t;A

(v � k)).

The language recognized by A is L(A) = ft 2 T

�

j state

t;A

(root(t)) 2 Fg. A

tree language that is recognized by some �nite tree automaton, is a regular tree

language.

For a tree t 2 T

�

, and a vertex v 2 V

t

, the set of successful states of A

at v, denoted succ

t;A

(v), is de�ned recursively in a top-down fashion as fol-

lows: if v is the root of t, then succ

t;A

(v) = F , and if v has label � of rank

k and 1 � i � k, then succ

t;A

(v � i) is the set of all states q 2 Q such

that �

A

(q

1

; : : : ; q

i�1

; q; q

i+1

; : : : ; q

k

) 2 succ

t;A

(v), where q

j

= state

t;A

(v � j) for
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1 � j � k, j 6= i. Intuitively, q is in succ

t;A

(v) if the automaton, when started at

v in state q, arrives in a �nal state at the root of t. It is easy to see (by a top-down

recursion) that for every vertex v of t, t 2 L(A) i� state

t;A

(v) 2 succ

t;A

(v).

A regular tree grammar over � is a context-free grammar G = (N;�; P; S)

(where N is the set of nonterminals, S the initial nonterminal, and P the set of

productions) such that the right-hand side of every production is in T

�[N

(or

more precisely, denotes a tree in T

�[N

), assuming the nonterminals to have rank

0. It is easy to see that L(G), the language generated by G, is a subset of T

�

(or

more precisely, denotes a subset of T

�

). It is well known that a tree language is

regular i� it is generated by a regular tree grammar.

2.3 Monadic Second Order Logic

For alphabets � and � , we de�ne a monadic second-order logical language

MSOL(�;� ), of which each closed formula expresses a property of the graphs

in GR

�;�

. The language has node variables, denoted u; v; : : : , and node-set vari-

ables, denoted U; V; : : : . For a given graph H , each node variable ranges over

the elements of V

H

and each node-set variable over the subsets of V

H

. There

are four types of atomic formulas in MSOL(�;� ): lab

�

(u), for every � 2 �,

edge




(u; v), for every 
 2 � , u = v, and u 2 U . Their meaning should be clear:

node u has label �, there is an edge with label 
 from node u to node v, nodes

u and v are the same, and node u is an element of node-set U , respectively. The

formulas of the language are constructed from the atomic formulas through the

propositional connectives ^, _, :, !, $, and the quanti�ers 8 and 9, in the

usual way. Note that not only node variables but also node-set variables may be

quanti�ed (which makes the logic monadic second-order rather than �rst-order).

Note also that there are no edge or edge-set variables. As usual, a formula is

closed if it has no free variables. For a closed formula � of MSOL(�;� ) and a

graph H of GR

�;�

we write H j= � if � is true for H . If formula � has free

variables, say u, v, and U (and no others), then we also write the formula as

�(u; v; U). If graph H has nodes x; y 2 V

H

and a set of nodes X � V

H

, then we

write H j= �(x; y;X) to mean that � is true for H when the values x, y, and

X are assigned to u, v, and U , respectively. In fact, with an abuse of language,

we will usually give the same names u,v, and U to both the variables and the

node(set)s x, y, and X . Thus, we write H j= �(u; v; U) to mean that the formula

� is true for H , nodes u; v 2 V

H

, and node-set U � V

H

. This should not lead to

confusion.

By edge(u; v) we denote the disjunction of all formulas edge




(u; v), 
 2 � . It

is well known that there exists an MSOL formula path(u; v) that expresses the

existence of a (possibly empty) directed path from u to v (see, e.g., Lemma 1.2 of

[Cou3]). In fact, if closed(U) is the formula 8u; v : (edge(u; v)^u 2 U)! v 2 U ,

then we can take path(u; v) to be the formula 8U : (closed(U)^u 2 U)! v 2 U .

Thus, as a very simple example, H j= 8u8v : path(u; v) means that H is strongly

connected. As another example, bipartiteness of a graph is expressed by the

formula 9U9V : (part(U; V ) ^ 8u8v : edge(u; v) ! (u 2 U ^ v 2 V ) _ (u 2
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V ^ v 2 U), where part(U; V ) expresses that U and V form a partition of the

set of all nodes: 8u : (u 2 U _ u 2 V ) ^ :(u 2 U ^ u 2 V ).

De�nition 1. A graph language L � GR

�;�

isMSO de�nable if there is a closed

formula � in MSOL(�;� ) such that L = fH 2 GR

�;�

j H j= �g. ut

Thus, as shown above, the set of strongly connected graphs and the set of bi-

partite graphs are MSO de�nable.

For string and tree languages we recall the classical result that MSO de�n-

ability is the same as regularity, proved in [Buc, Elg] and [Don, TW], respec-

tively. Note that strings and trees are special types of graphs, as explained in

Section 2.1.

Proposition 2. A string language is MSO de�nable if and only if it is regular.

A tree language is MSO de�nable if and only if it is regular.

For graph languages there is no generally accepted notion of regularity, but the

MSO de�nable graph languages enjoy several properties that are similar to those

of the regular tree and string languages (see, e.g., [Cou3, Eng4] and Theorem 16).

3 Regular Path Descriptions

A way of describing a set of \tree-like" graphs H is by taking a tree t from some

regular tree language, de�ning the nodes of H as a subset of the vertices of t,

and de�ning an edge between nodes u and v of H if the string of vertex labels

on the shortest (undirected) path between u and v in t belongs to some regular

string language. Note that the nodes of the tree are called `vertices', in order

not to confuse them with the nodes of the de�ned graph. Such a description of

a graph language is called a regular path description. This idea was introduced

in [Wel], and investigated in [ELW, EO]. It is shown in [EO] that the class of

graph languages that can be described by a regular path description is equal to

the class C-edNCE of graph languages generated by C-edNCE graph grammars,

a particular type of context-free graph grammar. In [Wel, ELW] speci�c cases

of this correspondence were established. In this correspondence, the trees from

the regular tree language are related to the derivation trees of the context-free

graph grammar.

First we de�ne the string of labels on the shortest undirected path from one

vertex u of a tree to another vertex v. That path ascends from u to the least

common ancestor of u and v, and then descends to v. In the string this change

of direction is indicated by barring the label of the least common ancestor. To

suggest the special form of the path, we will denote the corresponding string of

labels by bipath(u; v) (as opposed to [EO] where it is denoted path(u; v); here,

path(u; v) is an MSOL formula that expresses the existence of a directed path

from u to v, cf. Section 2.3).

De�nition 3. Let � be a ranked alphabet, and let � = f� j � 2 �g. For t 2 T

�

and u; v 2 V

t

, we de�ne bipath

t

(u; v) 2 �

�

��

�

as follows. Let z 2 V

t

be the
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least common ancestor of u and v in t. Let u

1

; : : : ; u

m

(m � 1) and v

1

; : : : ; v

n

(n � 1) be the vertices on the directed paths in t from z to u and from z to v,

respectively (thus, z = u

1

= v

1

, u = u

m

, and v = v

n

). Then

bipath

t

(u; v) = �

t

(u

m

) � � ��

t

(u

2

)�

t

(z)�

t

(v

2

) � � ��

t

(v

n

):

ut

Regular path descriptions are de�ned next.

De�nition 4. A regular path description is a tuple R = (�;�; �; T; h;W ), where

� is a ranked alphabet, � and � are alphabets (of node and edge labels, respec-

tively), T � T

�

is a regular tree language, h is a partial function from � to �,

and W is a mapping from � to the class of regular string languages, such that,

for every 
 2 � , W (
) � �

�

��

�

.

The graph language described by R is L(R) = fgr

R

(t) j t 2 Tg, where gr

R

(t)

is the graph H 2 GR

�;�

such that

V

H

is the set of vertices v of t with �

t

(v) 2 dom(h),

�

H

(v) = h(�

t

(v)) for v 2 V

H

, and

E

H

is the set of all edges (u; 
; v) with bipath

t

(u; v) 2W (
). ut

Note that L(R) � GR

�;�

. Note that h is used both to determine which vertices

of the tree t are nodes of the graph gr

R

(t), and to de�ne their labels in that

graph (on the basis of their labels in the tree). Note that for each edge label 
,

W (
) is the regular string language that de�nes the graph edges with label 
.

p

n n n

n n


 
 



 
 


n

n







Fig. 1. A \ladder".

Example 1. (1) A \ladder" is a graph as shown in Fig. 1. The graph language

of all such ladders can be described by the regular path description R

1

=

(�;�; �; T; h;W ) with � = fn; a; cg, rank(n) = rank(a) = 1, rank(c) = 0,

� = fn; pg, � = f
g, T = (an)

�

ac (where we have denoted the trees by strings),

h is the total function with h(n) = h(a) = n and h(c) = p, and W is given by

W (
) = fna; cag [ fnan; nac; anag.

Fig. 2(a) shows the tree t = anananac in T , and Fig. 2(b) shows the graph

gr

R

1

(t), which is in fact the ladder of Fig. 1. In general, if t = (an)

k

ac then

gr

R

1

(t) is the ladder with k + 1 steps, k � 0.
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Fig. 2. Regular path description of a \ladder".

(2) As a second example we consider the graph language of all rooted bi-

nary trees with 
-labeled edges from each parent to its children, with addi-

tional �-labeled edges from each leaf to the root, and with additional �-labeled

edges that chain the leaves of the tree. An example of such a graph is given

in Fig. 3(b). This graph language is described by the regular path descrip-

tion R

2

= (�;�; �; T; h;W ) with � = fa; b

l

; b

r

; c

l

; c

r

g, rank(a) = rank(b

l

) =

rank(b

r

) = 2, rank(c

l

) = rank(c

r

) = 0, � = fng, � = f
; �; �g, T = L(G),

where G is the regular tree grammar with productions S ! aLR, L ! b

l

LR,

R ! b

r

LR, L ! c

l

, and R ! c

r

(with nonterminals S;L;R of which S is the

initial one), h is the total function with h(�) = n for all � 2 �, and W is de-

�ned by W (
) = (a [ b

l

[ b

r

)(b

l

[ b

r

[ c

l

[ c

r

), W (�) = (c

l

[ c

r

)(b

l

[ b

r

)

�

a, and

W (�) = (c

r

b

�

r

b

l

[ c

l

)(a [ b

l

[ b

r

)(b

r

b

�

l

c

l

[ c

r

).

Fig. 3(a) shows the tree t = ab

l

c

l

b

r

c

l

c

r

c

r

in L(G), and Fig. 3(b) shows the

graph gr

R

2

(t).

Removing � from � (and W (�) from W ), a regular path description R

0

2

is

obtained of the graph language of all binary trees with additional edges from the

leaves to the root (i.e., the same graphs as in L(R

2

), but without the �-labeled

edges).

(3) A cograph is an undirected, unlabeled graph, recursively de�ned as fol-

lows (see [CLS]). A graph consisting of one node is a cograph. If H and K are

cographs, then so are H +K and H �K, where H +K is the disjoint union of

H and K, and H �K is obtained from H +K by adding all edges between a

node of H and a node of K. A cotree is a tree in T

�

where � = f+;�; ng with

rank(+) = rank(�) = 2 and rank(n) = 0. Clearly, every cotree is an expression

that denotes a cograph (where n is a constant denoting the one-node graph). It

is well known that the cograph H denoted by a cotree t 2 T

�

, can be obtained

as follows: the nodes of H are the leaves of t, and there is an edge between u

and v in H if and only if the least common ancestor of u and v in t has label �.

9
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Fig. 3. Regular path description of a binary tree with additional edges.

From this it follows that the set of all cographs is described by the regular path

description R

3

= (�;�; �; T; h;W ) with � = fng, � = f
g, T = T

�

, h(n) = n,

h(+) and h(�) are unde�ned, and W (
) = nf+;�g

�

�f+;�g

�

n.

Fig. 4(a) shows the tree t = �+nn+nn, in T

�

. The cograph gr

R

3

(t), which

is the square, is shown in Fig. 4(b). ut

Let RPD denote the class of graph languages that are described by regular

path descriptions. We now de�ne some natural subclasses X-RPD of RPD, by

restricting the regular path descriptions to be of type X.

Let B-RPD be the subclass of RPD obtained by restricting every W (
) to

be a subset of �

�

�[��

�

. This means, for a regular path description of type B,

that graph edges are only established between tree vertices of which one is a

descendant of the other.

Let A-RPD be the subclass of RPD obtained by restricting every W (
) to

be �nite. Thus, for a regular path description of type A, graph edges can only

be established between tree vertices that are at a bounded distance from each

other. It is shown in [EO] that A-RPD � B-RPD and that A-RPD is the class

of RPD graph languages of bounded degree.

Let LIN-RPD be the subclass of RPD obtained by restricting the symbols

of the ranked alphabet � to have rank 1 or 0. This means that the trees in

the regular tree language are in fact strings (apart from the edge labels). Thus,

intuitively, a regular path description of type LIN uses regular string languages

only. Note that, obviously, LIN-RPD � B-RPD.

In Example 1, R

1

is of type B, A, and LIN, R

2

and R

3

are not of type B, A,

or LIN, and R

0

2

is of type B (but not of type A or LIN).

The main result of [EO] is that regular path descriptions have the same power

10
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Fig. 4. Regular path description of a cograph.

as C-edNCE graph grammars, a powerful type of context-free graph grammars.

Furthermore, the subclasses of RPD de�ned above correspond to (well-known)

subclasses of the class C-edNCE of graph languages generated by C-edNCE

grammars. For completeness sake we state this result.

Theorem5. C-edNCE = RPD, B-edNCE = B-RPD, A-edNCE = A-RPD, and

LIN-edNCE = LIN-RPD. ut

Thus, in the remainder of this paper C-edNCE can be read for RPD, and simi-

larly for the subclasses. Since Theorem 5 is e�ective, `C-edNCE graph grammar'

can be read for `regular path description' in decidability results (cf. Section 6).

The types B, A, and LIN were �rst introduced for graph grammars, where they

stand for `boundary' [RW1], `apex' [EHL], and `linear' [EL].

4 Monadic Second Order De�nable Functions

The main concept in this paper is that of an MSO de�nable function f on graphs,

introduced in [Eng1, Oos], and independently in [Cou4] (for a recent survey see

[Cou6]). It is inspired by the notion of interpretability in [ALS], to which we refer

for the history of that concept. The idea is that, for a given input graph H , the

nodes, edges, and labels of the output graph H

0

= f(H) are described in terms

11



of MSOL formulas on H . For each node label � of H

0

there is a formula �

�

(u)

expressing that u will be a node of H

0

with label �. Thus, the nodes of H

0

are a

subset of the nodes of H . For each edge label 
 of H

0

there is a formula �




(u; v)

expressing that there will be a 
-labeled edge from u to v in H

0

. Finally, to allow

for partial functions, there is a closed formula �

dom

that speci�es the domain

dom(f) of f (which means that dom(f) is an MSO de�nable set of graphs).

De�nition 6. Let �

i

and �

i

be alphabets, for i 2 f1; 2g. An MSO de�nable

function f : GR

�

1

;�

1

! GR

�

2

;�

2

is speci�ed by formulas in MSOL(�

1

; �

1

), as

follows:

{ a closed formula �

dom

, the domain formula,

{ a formula �

�

(u), for every � 2 �

2

, the node formulas,

{ a formula �




(u; v), for every 
 2 �

2

, the edge formulas.

The domain of f is fH 2 GR

�

1

;�

1

j H j= �

dom

g, and for every H 2 dom(f),

f(H) is the graph (V;E; �) 2 GR

�

2

;�

2

such that

{ V = fu 2 V

H

j there is exactly one � 2 �

2

such that H j= �

�

(u)g

{ E = f(u; 
; v) j u; v 2 V; u 6= v; 
 2 �

2

; and H j= �




(u; v)g, and

{ for u 2 V , �(u) = � where H j= �

�

(u).

ut

The class of MSO de�nable functions will be denoted MSOF.

Note that a node u of H may not be a node of f(H) for two reasons: either

there is no � such that H j= �

�

(u), or there are more than one such �. However,

it is easy to see that we may always assume the formulas �

�

(u) to be mutually

exclusive (replace �

�

(u) by the conjunction of �

�

(u) and all :�

�

0

(u) with �

0

2

�

2

, �

0

6= �), in which case only the �rst reason remains.

Example 2. (0) Consider the function f that is de�ned for every acyclic graph

in GR

�;�

and computes its transitive closure in GR

�;�[f�g

, where � is used

to label the new edges. To show that f is MSO de�nable, we take �

dom

to be

:(9u9v : edge(u; v) ^ path(v; u)), expressing that the input graph H is acyclic.

For every � 2 �, �

�

(u) is lab

�

(u), i.e., every node of H is a node of f(H) and

has the same label. Finally, �




(u; v) is edge




(u; v), for every 
 2 � , and �

�

(u; v)

is path(u; v). Thus, the edges of H remain in f(H), but f(H) also contains all

edges that correspond to paths in H .

(1) Next we consider an MSO de�nable function f

1

that translates strings

into \ladders" (cf. Example 1(1)). Let �

1

= fa; ng. In Fig. 5 it is shown how f

1

translates the string anananan into the ladder of Fig. 1. In general f

1

translates

the string (an)

k

an into a ladder with k+1 steps, k � 0. Thus, f

1

: GR

�

1

;f�g

!

GR

fn;pg;f
g

. The formula �

dom

expresses that the input string belongs to the

regular language (an)

�

an:

8u; v : edge(u; v)! (lab

a

(u) ^ lab

n

(v)) _ (lab

n

(u) ^ lab

a

(v)))

^ 8u : (source(u)! lab

a

(u)) ^ (target(u)! lab

n

(u));
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Fig. 5. MSOF description of a \ladder".

where source(u) is :9v : edge(v; u) and target(u) is :9v : edge(u; v). The node

formula �

p

(u) is target(u) and the node formula �

n

(u) is :target(u). Finally, the

edge formula �




(u; v) is (lab

n

(u) ^ edge(v; u)) _ (9w : edge(u;w) ^ edge(w; v)).

Note that dom(f

1

) also contains graphs that are not strings. If we wish dom(f

1

)

to be a subset of �

�

1

, we have to take the conjunction of �

dom

with a formula ex-

pressing that the input graph is a string, e.g., the conjunction of 9u : source(u)^

8v : path(u; v) with a formula that requires all nodes to be of in- and out-degree

at most one: 8u; v; w : ((edge(v; u) ^ edge(w; u)) _ (edge(u; v) ^ edge(u;w))) !

v = w.

(2) Let us now consider an MSO de�nable function f

2

that translates trees

into the binary trees with additional edges of Example 1(2). Fig. 6 shows how f

2

translates a tree into such a graph. Let �

2

be the ranked alphabet fa; cg with

rank(a) = 2 and rank(c) = 0. Then f

2

: GR

�

2

;rks(�

2

)

! GR

fng;f
;�;�g

. The do-

main formula �

dom

and the node formula �

n

(u) of f

2

are true. The edge formulas

of f

2

are as follows: �




(u; v) is edge(u; v), �

�

(u; v) is target(u)^source(v), where

`target' and `source' are de�ned in the previous example, and �nally �

�

(u; v) is

target(u) ^ target(v)

^ 9z; z

1

; z

2

: edge

1

(z; z

1

) ^ edge

2

(z; z

2

) ^ path

2

(z

1

; u) ^ path

1

(z

2

; v);

where path

i

(x; y) is a formula which expresses that all the edges on the directed

path from x to y have label i (and which can easily be de�ned analogously to the

formula path(x; y)). As in the previous example, if we wish dom(f

2

) to consist

of trees in T

�

2

only, we should take �

dom

to be a formula that expresses that

the input graph is a tree over �

2

(which can easily be found).

If W (�) is dropped from W , an MSO de�nable function f

0

2

is obtained that

translates trees into the same graphs as f

2

, but without the �-labeled edges.

(3) As a last example we show that the function f

3

that maps a cotree into

the cograph it denotes is MSO de�nable, see Example 1(3) and Fig. 4. Thus,
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Fig. 6. MSOF description of a binary tree with additional edges.

f

3

: GR

�

3

;rks(�

3

)

! GR

fng;f
g

, where �

3

= f+;�; ng. The domain formula

is true. The node formula �

n

(u) is lab

n

(u); note that this implies that all tree

vertices with label + or � are dropped. The edge formula �




(u; v) of f

3

is

8z : lca(z; u; v)! lab

�

(z) where lca(z; x; y) expresses that z is the least common

ancestor of u and v:

path(z; u) ^ path(z; v) ^ 8w : (path(w; u) ^ path(w; v)) ! path(w; z):

ut

The main idea of this paper is to use monadic second-order logic for the descrip-

tion of sets of \tree-like" graphs. This is realized by applying MSO de�nable

functions to trees, as in Example 2(2) and (3). Similarly, sets of \string-like"

graphs are obtained by applying MSO de�nable functions to strings, as in Ex-

ample 2(1).

By MSOF(TREES) we denote the class of all graph languages f(T

�

) where

� is a ranked alphabet and f is an MSO de�nable function from GR

�;rks(�)

to

some GR

�;�

. Note that, by this de�nition, dom(f) need not be a subset of T

�

;

thus, the domain formula of f need not require the input graph to be a tree, cf.

Example 2(2). We will show in the next section that RPD = MSOF(TREES).

Similar characterizations will also be given for the subclasses of RPD of type

B, A, and LIN. To obtain characterizations of B-RPD and A-RPD, we will use

the following terminology. A formula �(u; v) in MSOL(�; rks(�)) is of type B

if, for every tree t 2 T

�

, t j= 8u; v : �




(u; v) ! (path(u; v) _ path(v; u)). And

�(u; v) is of type A if there is a number k 2 N such that for every tree t 2 T

�

,

t j= 8u; v : �




(u; v) ! dist

k

(u; v) where dist

k

(u; v) is a formula expressing that
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the (undirected) distance between u and v is at most k, i.e., that there is an

undirected path from u to v of length < k. We say that (the speci�cation of) an

MSO de�nable function f is of type B or A, if all its edge formulas are of type B

or A, respectively. We now de�ne B-MSOF(TREES) to be the class of all f(T

�

)

as above, where f is of type B. As in the case of B-RPD, this means that graph

edges are only established between tree vertices of which one is a descendant of

the other. Similarly, A-MSOF(TREES) is the class of all f(T

�

) with f of type

A. As for A-RPD, this means that graph edges are only established between

tree vertices that are at a bounded distance from each other. For LIN it will

be shown that LIN-RPD = MSOF(STRINGS), the class of all graph languages

f(�

�

) where �

�

is the set of all strings over some alphabet � and f is an MSO

de�nable function from GR

�;f�g

to some GR

�;�

. In fact, this will easily follow

from the fact that LIN-RPD = MSOF(LIN-TREES), which is de�ned in the

same way as MSOF(TREES) with the restriction that the symbols of � all have

rank 1 or 0.

In Example 2, f

1

is of type B and A, f

2

and f

3

are not of type B or A, and f

0

2

is of type B (but not of type A). Note that f

1

(�

�

1

) is in MSOF(STRINGS).

Note also that f

1

(�

�

1

) = L(R

1

), f

2

(T

�

2

) = L(R

2

), f

0

2

(T

�

2

) = L(R

0

2

), and

f

3

(T

�

3

) = L(R

3

), where the R

i

are the regular path descriptions of Example 1(i).

Thus L(R

2

), L(R

0

2

), and L(R

3

) are in MSOF(TREES). As another example we

mention that all context-free (string) languages are in MSOF(TREES): for a

given context-free grammar G, the function that maps each derivation tree of

G into its yield is MSO de�nable (cf. the �-labeled edges of Example 2(2), and

note that the set of derivation trees of G is MSO de�nable).

A useful property of the MSO de�nable functions on graphs is that they are

closed under composition. This follows from the fact that MSO properties of

the output graph can be translated into MSO properties of the input graph, as

expressed in the following basic lemma.

Lemma7. Let f : GR

�

1

;�

1

! GR

�

2

;�

2

be an MSO de�nable function. For

every formula  in MSOL(�

2

; �

2

) there is a formula f

�1

( ) in MSOL(�

1

; �

1

)

such that for every graph H 2 dom(f) (and every assignment of nodes and

node-sets of f(H) to the free variables of  ), f(H) j=  , H j= f

�1

( ).

Proof. Let f be speci�ed by domain formula �

dom

, node formulas �

�

(u), and

edge formulas �




(u; v). Let node(u) be the formula in MSOL(�

1

; �

1

) that ex-

presses that u will be used as a node of the output graph, i.e., node(u) is the

disjunction of all formulas node

�

(u), � 2 �

2

, where node

�

(u) is the conjunction

of �

�

(u) and all :�

�

0

(u) with �

0

2 �

2

, �

0

6= �.

The formula f

�1

( ) is obtained from the formula  by making the following

changes:

{ Relativize all quanti�ers to the formula node(u), i.e., change every subfor-

mula 9x : � into 9x : node(x) ^ �, and every subformula 9X : � into

9X : (8x : x 2 X ! node(x))^�, and similarly for the universal quanti�ers.

{ Change every subformula lab

�

(x) into �

�

(x), and change every subformula

edge




(x; y) into �




(x; y).
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It should be clear that f

�1

( ) satis�es the requirement. ut

Note that for closed formulas  this lemma means that the MSO de�nable graph

languages are closed under inverse MSO de�nable functions.

Theorem8. MSOF is closed under composition.

Proof. Let f : GR

�

1

;�

1

! GR

�

2

;�

2

and g : GR

�

2

;�

2

! GR

�

3

;�

3

be MSO

de�nable functions. The formulas by which f is speci�ed will be indicated by �,

and those of g by  . The composition h = g � f is now speci�ed by formulas �

in MSOL(�

1

; �

1

) as follows: �

dom

is �

dom

^ f

�1

( 

dom

); for every � 2 �

3

, �

�

(u)

is node(u) ^ f

�1

( 

�

(u)), where node(u) is de�ned as in the proof of Lemma 7;

and for every 
 2 �

3

, �




(u; v) is f

�1

( 




(u; v)). ut

Lemma 7 and Theorem 8 were proved independently in Proposition 2.5 and

Corollary 2.6 of [Cou4] (see also Lemma 4.4 of [ALS]).

5 Characterization

In this section we prove the main result, which we �rst state.

Theorem9. RPD = MSOF(TREES), B-RPD = B-MSOF(TREES),

A-RPD = A-MSOF(TREES), and LIN-RPD = MSOF(STRINGS).

We now turn to the proof. As observed in Section 4, in the LIN case we will �rst

prove that LIN-RPD = MSOF(LIN-TREES).

To prove that RPD �MSOF(TREES) (which is the easiest part), we use the

following lemma. It expresses that, for given W (
), the relation bipath

t

(u; v) 2

W (
) between vertices u and v of t (as in De�nition 4) can be expressed by an

MSOL formula.

Lemma10. Let � be a ranked alphabet. For every regular languageW � �

�

��

�

there is a formula �(u; v) in MSOL(�; rks(�)) such that for every tree t 2 T

�

and all vertices u; v 2 V

t

, t j= �(u; v), bipath

t

(u; v) 2 W .

Proof. To construct � we need the following auxiliary MSOL formulas, to be

interpreted for trees in T

�

. First, lca(z; u; v) is the formula which expresses that

z is the least common ancestor of u and v, see the end of Example 2. Second,

pathset(U; u; v) is the formula that expresses that U is the set of vertices on the

directed path from u to v (if that exists): 8z : z 2 U $ path(u; z) ^ path(z; v).

Now let  be the closed formula in MSOL(�[�; f�g) that de�nes the regular

languageW according to Proposition 2, i.e.,W = fw 2 (�[�)

�

j w j=  g. Then

we wish �(u; v) to express that the formula  holds for the string bipath

t

(u; v).

Thus, we de�ne �(u; v) to be the formula 8z; U; V : (lca(z; u; v)^pathset(U; z; u)^

pathset(V; z; v))!  

0

, where the formula  

0

is obtained from the formula  by

the following changes:
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{ The quanti�ers are relativized to the set U [V , i.e., every subformula 9x : �

is changed into 9x : (x 2 U _ x 2 V ) ^ �, and every subformula 9X : � is

changed into 9X : (8x : x 2 X ! (x 2 U _ x 2 V )) ^ �, and similarly for

the universal quanti�ers.

{ For � 2 �, every subformula lab

�

(x) is changed into lab

�

(x) ^ x 6= z, and

every subformula lab

�

�

(x) is changed into lab

�

(x) ^ x = z.

{ Every subformula edge

�

(x; y) is changed into the formula (x 2 U ^ y 2

U ^ edge(y; x)) _ (x 2 V ^ y 2 V ^ edge(x; y)); recall that edge(x; y) is the

disjunction of all edge

i

(x; y), i 2 rks(�).

The correctness of the formula �(u; v) should be clear. Note that U [V is the set

of all vertices on the shortest undirected path from u to v, and that U\V = fzg.

This proves the lemma. For the interested reader we observe that this proof

may be viewed as a variant of the proof of Lemma 7, as follows. Suppose that

the notion of MSO de�nability is extended to functions of type f : f(H; x; y) j

H 2 GR

�

1

;�

1

; x; y 2 V

H

g ! GR

�

2

;�

2

by requiring that all formulas in the

speci�cation have two additional free node variables x and y (and generalizing

De�nition 6 in the obvious way). Then it is not di�cult to prove that the function

bip(t; x; y) = bipath

t

(x; y) is MSO de�nable in this sense, and that (with an

appropriate generalization of Lemma 7) �(u; v) can be de�ned as bip

�1

( ). ut

Lemma11. RPD � MSOF(TREES), B-RPD � B-MSOF(TREES),

A-RPD � A-MSOF(TREES), and LIN-RPD � MSOF(LIN-TREES).

Proof. Let R = (�;�; �; T; h;W ) be a regular path description. We specify an

MSO de�nable function f : GR

�;rks(�)

! GR

�;�

such that f(T

�

) = L(R). The

domain formula �

dom

of f is the closed formula that de�nes the regular tree

language T according to Proposition 2, i.e., for all t 2 T

�

, t j= �

dom

, t 2 T .

For every � 2 �, the node formula �

�

(u) is the disjunction of all formulas

lab

�

(u) with h(�) = �. Finally, for every 
 2 � , the edge formula �




(u; v) is the

formula that corresponds to the regular languageW (
) according to Lemma 10.

Clearly, f is de�ned in such a way that it simulates precisely the regular path

de�nition R. Thus, dom(f) = T and, for every t 2 T , f(t) = gr

R

(t). Hence

f(T

�

) = L(R). This shows that RPD � MSOF(TREES) and that LIN-RPD �

MSOF(LIN-TREES).

If R is of type B, then we know that edges are only established between

descendants. Hence we can replace the edge formulas �




(u; v) by �




(u; v) ^

(path(u; v) _ path(v; u)), without changing f . Now let R be of type A, and let

k be the maximal length of the strings in the W (
), 
 2 � . Then we know that

edges are established only between vertices that are at a distance < k from each

other. Hence we can replace �




(u; v) by �




(u; v) ^ dist

k

(u; v), where dist

k

(u; v)

is the formula 9x

1

; : : : ; x

k

: x

1

= u^x

k

= v^ (x

1

; : : : ; x

k

), and  (x

1

; : : : ; x

k

) is

the conjunction of all formulas edge(x

i

; x

i+1

) _ edge(x

i+1

; x

i

) for 1 � i < k. ut

The essential part of the proof of the more involved inclusion MSOF(TREES)

� RPD is given in the following key lemma. It says that every MSO de�nable

relation between vertices u and v of a tree s can also be expressed in the form

17



bipath

t

(u; v) 2W for some regular language W , where t is a change of the node

labels of s that should belong to a certain regular tree language.

If � and � are ranked alphabets, then a projection is a total function � :

� ! � that is rank preserving, i.e., rank(�(�)) = rank(�) for all � 2 �. For a

tree t 2 T

�

, �(t) denotes the tree in T

�

that is obtained from t by changing

every node label � into �(�). It is easy to see that, as a node relabeling, � is

MSO de�nable. Thus, by Lemma 7, for every MSOL formula � there is an MSOL

formula �

�1

(�) such that �(t) j= �, t j= �

�1

(�). In fact, �

�1

(�) is the formula

� in which every subformula lab

�

(x) is replaced by the disjunction of all lab

�

(x)

with �(�) = �.

Lemma12. Let � be a ranked alphabet. For every formula �(u; v) in MSOL(�;

rks(�)) there are a ranked alphabet �, a regular tree language T � T

�

, a projec-

tion � : �! �, and a regular language W � �

�

��

�

such that �(T ) = T

�

and,

for all trees t 2 T and vertices u; v 2 V

t

, �(t) j= �(u; v) , bipath

t

(u; v) 2 W .

Moreover, if �(u; v) is of type B then W � �

�

�[��

�

, and if �(u; v) is of type

A then W is �nite.

Proof. As in Lemma 10, the proof will be based on Proposition 2. First we

construct, in a well-known way, a tree automatonA that \recognizes" the formula

�(u; v). Let �

2

be the ranked alphabet �[(��f1; 2; 12g) where the elements of

� keep their ranks and every h�; ii has the same rank as �. For a tree s 2 T

�

and

vertices u; v 2 V

s

, the tree mark(s; u; v) in T

�

2

is obtained from s by \marking"

u and v, i.e., adding 1 to the label of u and adding 2 to the label of v (where it is

understood that 12 is added in the case that u = v). Let  be the closed formula

8u; v : (mark

1

(u)^mark

2

(v))! �

0

(u; v), where mark

i

(x) is the disjunction of all

lab

h�;ii

(x)_lab

h�;12i

(x), � 2 �, and �

0

(u; v) is obtained from �(u; v) by changing

every subformula lab

�

(x) into lab

�

(x) _ lab

h�;1i

(x) _ lab

h�;2i

(x) _ lab

h�;12i

(x).

Obviously, for s 2 T

�

and u; v 2 V

s

, s j= �(u; v) , mark(s; u; v) j=  . Now

let A = (Q; f�

A

g

�2�

2

; F ) be a tree automaton that recognizes the regular tree

language corresponding to the closed formula  according to Proposition 2. Then

s j= �(u; v), mark(s; u; v) 2 L(A).

The idea is to incorporate the state behaviour of the tree automaton A into

the labels of a tree s 2 T

�

. Since the vertices of s are not \marked", this can only

be the behaviour of A as far as it does not encounter any marks 1, 2, or 12. For

given vertices u and v of (the relabeled) s, this information tells us the behaviour

of A outside the shortest (undirected) path from u to v. Thus, to �nd out whether

mark(s; u; v) is recognized by A, it then su�ces to simulate the behaviour of A

on that path. Since A behaves on paths as a �nite automaton, this gives us the

regular language W . Then mark(s; u; v) 2 L(A) i� bipath

t

(u; v) 2W , where t is

the relabeling of s. Note that, to incorporate the behaviour of A into the labels

of s we need a new ranked alphabet � and, to check that behaviour, a regular

tree language T � T

�

; then, t should be in T .

The formal construction is as follows. The alphabet � consists of all tuples

(�; g;G; j) such that � 2 �, g is a mapping [1; k] ! Q, where k is the rank of

�, G � Q, and j = 0 or j 2 rks(�). The rank of (�; g;G; j) is the one of �. The
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projection � is de�ned by �(�; g;G; j) = �. The tree language T consists of all

trees t 2 T

�

such that for every vertex v 2 V

t

, if v has label (�; g;G; j) in t and

� has rank k, then g(i) = state

�(t);A

(v � i) for every i 2 [1; k], G = succ

�(t);A

(v),

and j is the child number of v. For the terminology used, see Section 2.2. Thus,

g contains the states reached by A at the children of v and G is the set of

successful states of A at v, both with respect to the tree �(t) which is called

s in the intuitive discussions above. The need for child number j can be seen

by comparing Examples 2(2) and 1(2), where the childnumbers 1 and 2 are the

subscripts l and r of b and c. Using the recursive de�nitions of `state' and `succ'

it is straightforward to show that T is a regular tree language. In fact, it su�ces

to check for each vertex and its children, whether their labels \�t" (i.e., T is

even a \local" tree language). The details are left to the reader. It should also be

clear that for every tree s 2 T

�

there is a tree t 2 T

�

(in fact a unique one) with

�(t) = s, and so �(T ) = T

�

. It remains to de�ne W . The language W consists

of all strings

(�

1

; g

1

; G

1

; j

1

) � � � (�

n

; g

n

; G

n

; j

n

)(�; g;G; j)(�

0

n

0

; g

0

n

0

; G

0

n

0

; j

0

n

0

) � � � (�

0

1

; g

0

1

; G

0

1

; j

0

1

);

n; n

0

� 0, such that there exist states q

1

; : : : ; q

n

; q; q

0

n

0

; : : : ; q

0

1

in Q with the

following six properties. Intuitively, q

1

; : : : ; q

n

; q are the states reached by A (in

the tree mark(�(t); u; v)) on the path from u to z and q

0

1

; : : : ; q

0

n

0

; q are the states

reached by A on the path from v to z, where z is the least common ancestor of

u and v. By k, k

i

, and k

0

i

we denote the rank of �, �

i

and �

0

i

, respectively.

1. If n � 1, then h�

1

; 1i

A

(g

1

(1); : : : ; g

1

(k

1

)) = q

1

.

And similarly with primes and with mark 2 instead of mark 1:

if n

0

� 1, then h�

0

1

; 2i

A

(g

0

1

(1); : : : ; g

0

1

(k

0

1

)) = q

0

1

.

2. For 2 � i � n, �

iA

(g

i

(1); : : : ; g

i

(m � 1); q

i�1

; g

i

(m + 1); : : : ; g

i

(k

i

)) = q

i

,

where m = j

i�1

. And similarly with primes.

3. If n; n

0

� 1, then j

n

6= j

0

n

0

and, depending on whether j

n

is smaller or larger

than j

0

n

0

, either

�

A

(g(1); : : : ; g(m�1); q

n

; g(m+1); : : : ; g(m

0

�1); q

0

n

0

; g(m

0

+1); : : : ; g(k)) = q,

or

�

A

(g(1); : : : ; g(m

0

�1); q

0

n

0

; g(m

0

+1); : : : ; g(m�1); q

n

; g(m+1); : : : ; g(k)) = q,

where m = j

n

and m

0

= j

0

n

0

.

4. If n = 0 and n

0

� 1, then

h�; 1i

A

(g(1); : : : ; g(m

0

� 1); q

0

n

0

; g(m

0

+ 1); : : : ; g(k)) = q, where m

0

= j

0

n

0

.

And similarly, if n � 1 and n

0

= 0, then

h�; 2i

A

(g(1); : : : ; g(m� 1); q

n

; g(m+ 1); : : : ; g(k)) = q, where m = j

n

.

5. If n = 0 and n

0

= 0, then h�; 12i

A

(g(1); : : : ; g(k)) = q.

6. Finally, q 2 G.

This ends the de�nition of W . It is straightforward to show that W is regular. A

�nite automaton recognizingW should simulate the state behaviour of A on the

unprimed part of the string, and (nondeterministically) simulate A backwards

on the primed part of the string, checking properties (1) and (2). At the barred

symbol it should simulate A for that symbol by property (3), (4), or (5), and it
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should check property (6). The details are left to the reader. If �(u; v) is of type

B, then we additionally require that n = 0 or n

0

= 0 in the above de�nition of

W (and hence property (3) can be omitted), and if �(u; v) is of type A for some

upper bound k on the distance, then we restrict W to contain strings of length

� k only.

From the construction it should be clear that for every tree t 2 T and all

vertices u; v 2 V

t

, mark(�(t); u; v) 2 L(A) i� bipath

t

(u; v) 2 W . Note that the

condition j

n

6= j

0

n

0

in property (3) guarantees that the barred symbol labels

the least common ancestor z of u and v. Note also that property (6) expresses

that state

mark(�(t);u;v);A

(z) 2 succ

mark(�(t);u;v);A

(z), i.e., that mark(�(t); u; v) 2

L(A). Hence �(t) j= �(u; v), mark(�(t); u; v) 2 L(A), bipath

t

(u; v) 2W .

ut

Lemma13. MSOF(TREES) � RPD, B-MSOF(TREES) � B-RPD,

A-MSOF(TREES) � A-RPD, and MSOF(LIN-TREES) � LIN-RPD.

Proof. Let f be an MSO de�nable function GR

�;rks(�)

! GR

�;�

, where � is

a ranked alphabet, speci�ed by domain formula �

dom

, node formulas �

�

(u),

and edge formulas �




(u; v). We will de�ne a regular path description R =

(�

0

; �; �; T; h;W ) such that L(R) = f(T

�

). For every 
 2 � , let �




, T




� T

�




,

�




: �




! �, and W




� �

�




�




�

�




be as given by Lemma 12 for the formula

�




(u; v). Thus �




(T




) = T

�

and, for all t 2 T




and u; v 2 V

t

, �




(t) j= �




(u; v),

bipath

t

(u; v) 2W




. The idea of the construction of R is to add the information

to the labels of the trees in T

�

that allows the \recognition" of the edge formula

�




(u; v) (as explained in Lemma 12), for all 
 2 � simultaneously, and, more-

over, add information that indicates for each vertex u whether or not the node

formula �

�

(u) is satis�ed, for all � 2 �.

We de�ne �

0

to consist of all symbols (�; g

e

; g

n

) where � 2 �, g

e

is a mapping

� !

S


2�

�




such that g

e

(
) 2 �




and �




(g

e

(
)) = � for every 
 2 � , and g

n

is a mapping � ! f0; 1g. The rank of (�; g

e

; g

n

) is the one of �. The domain of

the function h consists of all (�; g

e

; g

n

) such that there is exactly one � 2 � with

g

n

(�) = 1, and then h(�; g

e

; g

n

) equals that unique �.

To describe T we need the following projections (the notion of a projection is

de�ned just before Lemma 12): the projection � : �

0

! � with �(�; g

e

; g

n

) = �,

and for every 
 2 � the projection �




: �

0

! �




with �




(�; g

e

; g

n

) = g

e

(
). Note

that, by the de�nition of �

0

, �




� �




= �, for every 
 2 � . The tree language T

is de�ned to consist of all trees t 2 T

�

0

such that (1) �(t) j= �

dom

, (2) �




(t) 2 T




for every 
 2 � , and (3) for every vertex u 2 V

t

, if u has label (�; g

e

; g

n

) then,

for every � 2 �, g

n

(�) = 1 , �(t) j= �

�

(u). Regularity of T can be shown

using Proposition 2 by presenting an MSOL formula that de�nes T : it is the

conjunction of (1) the formula �

�1

(�

dom

), (2) all formulas �

�1




( 




), where  




de�nes T




according to Proposition 2, and (3) the formula 8u : �(u) where �(u)

is the disjunction of all formulas �

�

0

(u), �

0

2 �

0

, and for each �

0

= (�; g

e

; g

n

),

�

�

0

(u) is the conjunction of lab

�

0

(u), all formulas �

�1

(�

�

(u)) with g

n

(�) = 1,

and all formulas �

�1

(:�

�

(u)) with g

n

(�) = 0.
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Finally, for every 
 2 � , we de�neW (
) = �

�1




(W




), i.e.,W (
) consists of all

strings w 2 (�

0

[�

0

)

�

such that �




(w) 2W




, where �




is interpreted on strings

in the obvious way, i.e., as a length-preserving homomorphism (with �




(�

0

) =

�




(�

0

)). Since the regular languages are closed under inverse homomorphisms,

W (
) is regular. Obviously, if all edge formulas of f are of type B then, by

Lemma 12, W




� �

�

� [ ��

�

and hence W (
) � (�

0

)

�

�

0

[ �

0

(�

0

)

�

, which

means that R is of type B. Similarly, if all edge formulas of f are of type A, then

every W (
) is �nite and hence R is of type A.

This ends the de�nition of the regular path description R. To show that

L(R) = f(T

�

), it su�ces to prove that �(T ) = dom(f) and that gr

R

(t) = f(�(t))

for every t 2 T . The inclusion �(T ) � dom(f) is immediate from point (1) in

the de�nition of T . The inclusion dom(f) � �(T ) follows from the de�nition

of T and from the equality �




(T




) = T

�

for every 
 2 � . In fact, for every

s 2 dom(f) there is a unique tree t 2 T such that �(t) = s. Now consider some

t 2 T . By the de�nition of h and point (3) in the de�nition of T , gr

R

(t) and

f(�(t)) have the same nodes, with the same labels. They also have the same

edges (u; 
; v) because

bipath

t

(u; v) 2W (
)

, (by the de�nition of W (
))

bipath

�




(t)

(u; v) 2W




, (by point (2) in the de�nition of T and by Lemma 12)

�




(�




(t)) j= �




(u; v)

, (because �




� �




= �)

�(t) j= �




(u; v):

This proves the lemma. ut

It now remains to prove that strings are equivalent with linear trees, cf. Exam-

ples 2(1) and 1(1).

Lemma14. MSOF(LIN-TREES) = MSOF(STRINGS).

Proof. To show that MSOF(LIN-TREES) � MSOF(STRINGS), let f be an

MSO de�nable function GR

�;rks(�)

! GR

�;�

, where � is a ranked alphabet of

which all symbols have rank 1 or 0. Note that every tree in T

�

is also a string in

�

�

, apart from the edge labels 1 that should be � (note that rks(�) = f1g). Vice

versa, a string w 2 �

�

is in T

�

if it is nonempty, the last symbol of w has rank 0,

and all other symbols have rank 1. De�ne the function f

0

: GR

�;f�g

! GR

�;�

by

changing every edge

1

(x; y) in the formulas of f into edge

�

(x; y), and by adding

to the domain formula of f the above requirement that there is at least one node,

that the label of the (unique) node with no outgoing edges has rank 0, and that

the labels of all other nodes have rank 1 (which can easily be expressed in an

MSOL formula). Then f

0

(�

�

) = f(T

�

) and so f(T

�

) is in MSOF(STRINGS).

To show that MSOF(STRINGS) � MSOF(LIN-TREES), let f be an MSO

de�nable function GR

�;f�g

! GR

�;�

, where � is an ordinary alphabet. De�ne
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the ranked alphabet �

0

= � [ feg where every element of � has rank 1 and e

is a new symbol of rank 0. Then T

�

0

= fwe j w 2 �

�

g. It is easy to see that

the function g : T

�

0

! �

�

with g(we) = w is MSO de�nable (take the domain

formula to be true, take the node formula �

�

(u) to be lab

�

(u), for every � 2 �,

and take the edge formula �

�

(u; v) to be edge

1

(u; v)). Clearly, f(�

�

) = f(g(T

�

0

))

and so, since f � g is MSO de�nable by Theorem 8, f(�

�

) is in MSOF(LIN-

TREES). ut

6 Closure and Decidability Properties

From Theorem 9 a lot of closure properties and decidability results for RPD can

be deduced, which we will now discuss. We start with closure properties. The

main result is that RPD is closed under MSO de�nable functions, i.e., if L 2

RPD and f 2 MSOF, then f(L) = ff(H) j H 2 L;H 2 dom(f)g is in RPD.

This is immediate from Theorem 9 and the closure of MSOF under composition

(Theorem 8).

Theorem15. RPD and LIN-RPD are closed under MSO de�nable functions.

Every tree language T

�

is in A-MSOF(TREES) because the identity on T

�

is MSO de�nable with edge formulas of type A (viz. the formulas edge




(u; v)).

Consequently, RPD is the closure of A-RPD under the MSO de�nable functions.

Hence, since B-RPD is a proper subclass of RPD (see Theorem 22 of [EO]),

neither A-RPD nor B-RPD is closed under arbitrary MSO de�nable functions.

As a corollary of Theorem 15 we reobtain Courcelle's intersection result (cf.

the Introduction) for RPD: RPD is closed under intersection with MSO de�n-

able graph languages (Theorem 6.9 of [CER]). This is because for every MSO

de�nable language R the identity function on R is MSO de�nable.

Theorem16. RPD, B-RPD, A-RPD, and LIN-RPD are closed under intersec-

tion with MSO de�nable graph languages.

Proof. Let R � GR

�;�

be an MSO de�nable graph language, de�ned by a closed

formula � in MSOL(�;� ). Obviously id

R

, the identity function on R, is MSO

de�nable: the domain formula is �, and the node and edge formulas are lab

�

(u)

and edge




(u; v), respectively. Since for every language L, L \ R = id

R

(L), the

statement follows from Theorem 15 for RPD and LIN-RPD. Let L = f(T

�

) be a

graph language in B-MSOF(TREES), where the edge formulas of f are of type

B. Then L\R = (id

R

� f)(T

�

). From the proofs of Theorem 8 and Lemma 7 it

can easily be seen that id

R

� f has the same edge formulas as f . Thus, L \R is

in B-MSOF(TREES). The same argument holds for A-MSOF(TREES). ut

The closure under intersection with MSO de�nable sets was �rst proved by

Courcelle in Corollary 4.8 of [Cou2] for the case of Hyperedge Replacement

graph grammars, which generate a subclass of RPD. This was the �rst result

that related context-free graph languages to monadic second-order logic, and

was the main source of inspiration for the present paper.
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From Theorem 15 we also obtain the known result that RPD is closed under

edge complement (cf. the discussion before Theorem 22 in [EO]): assuming that

there is just one edge label 
, de�ne f by taking :edge




(u; v) as edge formula

(and all lab

�

(u) as node formulas, and true as domain formula). Example 2(1)

shows that RPD is closed under taking the transitive closure of each graph, and

similarly it is easy to see that one can also throw away all existing transitive

edges, i.e., turn an acyclic graph into its Hasse diagram. In general one can add

or remove edges that satisfy certain MSO properties (or rather their incident

nodes satisfy them), and similarly one can remove (but not add) nodes that

satisfy MSO properties, such as removing all isolated nodes from all graphs of

the language.

As another consequence of Theorem 15 we show that if L is an RPD language,

then so is the language of all induced subgraphs (of graphs of L) that satisfy

a given MSO property. For a graph H and U � V

H

, we denote by H [U ] the

subgraph of H induced by U . Let �(U) be an MSOL formula. We say that H [U ]

is an induced �-subgraph of H if H j= �(U).

Theorem17. Let �(U) be a formula in MSOL(�;� ) and let L � GR

�;�

. If

L is in RPD, then the set of all induced �-subgraphs of graphs in L is in RPD.

The same holds for B-RPD, A-RPD, and LIN-RPD.

Proof. The idea of the proof is to add 0 or 1, nondeterministically, to the labels

of a graph H in L, and let U be the set of nodes which are labeled 1. From this

graph, H [U ] can easily be obtained by an MSO de�nable function.

Let �

0

= � � f0; 1g, and let � : GR

�

0

;�

! GR

�;�

be the mapping that

changes every node label (�; i) into �. Let us now show that the graph lan-

guage �

�1

(L) � GR

�

0

;�

is in RPD. By Theorem 9 we know that RPD =

MSOF(TREES). Let L = f(T

�

) for some f in MSOF and some ranked al-

phabet �. Let �

0

be the ranked alphabet � � f0; 1g where the rank of (�; i) is

the one of �, and let � : �

0

! � be the projection such that �(�; i) = �. For

i = 0; 1 let bit

�

i

(u) be the disjunction of all formulas lab

(�;i)

(u), � 2 �. Then

�

�1

(L) = f

0

(T

�

0

) where the de�ning formulas of f

0

are obtained from those of

f as follows: �

0

dom

is �

�1

(�

dom

), �

0

(�;i)

(u) is �

�1

(�

�

(u)) ^ bit

�

i

(u), and �

0




(u; v)

is �

�1

(�




(u; v)). Hence �

�1

(L) 2 RPD.

It is easy to see that there is an MSO de�nable function g that translates

�

�1

(L) into the required language fH [U ] j H 2 L;U � V

H

; H j= �(U)g (and

then the result follows from Theorem 15). In fact, the domain formula �

dom

of

g expresses the fact that the set U of all nodes that have bit 1 in their label

satis�es �(U), i.e., �

dom

is 8U : (8u : u 2 U $ bit

�

1

(u))! �(U), where bit

�

1

(u)

is de�ned just as bit

�

1

(u). The node formula �

�

(u) of g is lab

(�;1)

(u), and the

edge formula �




(u; v) of g is edge




(u; v).

It is left to the reader to verify that the constructions preserve the types B,

A, and LIN. ut

As an example, if L is in RPD, then the set of all connected components of

graphs in L is also in RPD, because there is an MSOL formula �(U) expressing

that U is a connected component (see Example 3(2)).
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The MSO de�nable functions of [Cou4, Cou5] are more general in two ways.

First, they allow the addition of nodes: each node of the input graph is used to

represent (at most) k nodes of the output graph, where k is �xed. As an example,

the function f that maps each graph H into the disjoint union of H with itself

is then MSO de�nable (with k = 2); clearly this function is not MSO de�nable

in our sense, because f(H) has more nodes than H . Second, by admitting free

variables in the de�ning formulas, MSO de�nable relations are obtained. As an

example, a graph can be translated into its connected components. RPD is also

closed under these generalized MSO de�nable relations, and, in fact, Theorem 17

is a special case of this (see Theorems 3.2 and 3.4 of [CE]).

We now turn to decidability properties. As observed after Theorem 5, the

results that follow also hold for C-edNCE graph grammars instead of regular

path descriptions. We start showing that the emptiness and �niteness problems

are decidable for RPD. Although this is well known for C-edNCE grammars, it

is proved here for completeness sake.

Proposition18. It is decidable for an arbitrary regular path description R

whether or not L(R) = ;, and whether or not L(R) is �nite.

Proof. Let R = (�;�; �; T; h;W ). Clearly, L(R) = ; if and only if T = ;.

Since emptiness of regular tree languages is decidable, emptiness of L(R) can be

decided.

To show the decidability of �niteness of L(R) we construct a context-free

grammar G such that L(R) is �nite i� L(G) is �nite (and then use the decid-

ability of the �niteness problem for context-free grammars). Since there are only

�nitely many graphs with a given number of nodes, it su�ces to construct G

in such a way that, for every n 2 N, a

n

2 L(G) i� there is a tree t 2 T such

that gr

R

(t) has n nodes. Let (N;�; P; S) be a regular tree grammar generating

T (see Section 2.2). We de�ne G = (N; fag; P

0

; S) where P

0

is constructed as

follows. If A ! t is a production in P (where t is in T

�[N

, or more precisely,

denotes a tree in T

�[N

) and if every symbol � 2 � that occurs in t is in dom(h),

then A ! w is in P

0

, where the string w is obtained from t by changing every

symbol of � into a (and leaving the nonterminals as they are). ut

It is well known that Proposition 18 and Theorem 16 can be combined in an

obvious way: it is decidable for an RPD language L and an MSO de�nable graph

language R whether or not L\R = ;, and whether or not L � R (and similarly

for �niteness). Proposition 18 and Theorem 15 can be combined in the same

way: it is decidable for an MSO de�nable function f and an RPD language L

whether or not f(L) is empty, and whether or not f(L) is �nite. Concentrating

on �niteness, this implies that certain boundedness problems are decidable for

RPD, cf. [HKV2] where boundedness problems are investigated for Hyperedge

Replacement grammars (see also the recent [Eng5, Dre]). As an example, let f

be the MSO de�nable function that transforms every graph into the discrete

graph consisting of all its isolated nodes. Then the above result shows that it is

decidable for an RPD language L whether there is a bound on the number of
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isolated nodes in the graphs of L. We now show two general decidability results

for boundedness problems.

For an MSOL formula �(U) and a graph H , we denote by size

�

(H) the

maximal number of nodes of an induced �-subgraph of H .

Theorem19. Let �(U) be an MSOL formula. It is decidable for a regular

path description R whether or not there exists a natural number b such that

size

�

(H) � b for all H 2 L(R).

Proof. Let L

�

be the set of all induced �-subgraphs of graphs in L(R). It should

be clear that size

�

(H) is bounded on L(R) if and only if L

�

is �nite. Since

Theorem 17 is e�ective, a regular path description for the language L

�

can be

constructed, and L

�

can be tested on �niteness by Proposition 18. ut

A similar result can be shown for the number of induced �-subgraphs rather than

their size. For an MSOL formula �(U) and a graphH , we denote by num

�

(H) the

number of induced �-subgraphs of H (where isomorphic ones are not identi�ed).

Theorem20. Let �(U) be an MSOL formula. It is decidable for a regular

path description R whether or not there exists a natural number b such that

num

�

(H) � b for all H 2 L(R).

Proof. For a graph H and two nodes u and v of H , de�ne u and v to be �-

equivalent, denoted by u �

�

v, if for all U � V

H

with H j= �(U): u 2 U $

v 2 U . In other words, u and v are �-equivalent if they belong to the same

induced �-subgraphs of H . Let eq

�

(H) be the number of equivalence classes of

the equivalence relation �

�

on V

H

. Clearly, eq

�

(H) � 2

num

�

(H)

and num

�

(H) �

2

eq

�

(H)

. Hence, num

�

(H) is bounded on L(R) if and only if eq

�

(H) is bounded

on L(R). To decide boundedness of eq

�

(H) we consider representatives of the

equivalence classes of �

�

. For a graph H , de�ne a �-representative set to be a

subset of V

H

that contains exactly one node from each equivalence class of �

�

.

Let  (V ) be the MSOL formula that expresses that V is a �-representative set:

(8u 9v : v 2 V ^ u �

�

v) ^ (8u; v : (u 2 V ^ v 2 V ^ u �

�

v) ! u = v), where

u �

�

v is expressed by the formula 8U : �(U) ! (u 2 U $ v 2 U). Then,

clearly, eq

�

(H) is bounded on L(R) if and only if size

 

(H) is bounded on L(R).

The latter is decidable by Theorem 19. ut

It follows from these theorems that (almost) all concrete decidability results

proved for Hyperedge Replacement grammars in [HKV2] are also decidable for

regular path descriptions (and hence for C-edNCE grammars). Moreover, our

results seem to be easier to use than those in [HKV2]. In fact, the general results

of [HKV2] are formulated in terms of compatible functions rather than MSO

formulas, and it is usually much easier to express a certain graph property in

MSOL than to show its compatibility: the graph theoretical de�nition of the

property can usually be written directly in the logic. Let us give some concrete

examples.
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Example 3. (1) It is decidable whether an RPD language is of bounded degree.

In fact, let us say that a set U of nodes of a graph H is a \neighbourhood" if it

consists of all neighbours of some node of H . An MSOL formula �(U) expressing

that U is a neighbourhood is 9u 8v : v 2 U $ edge(u; v) _ edge(v; u). Thus, the

bounded degree property is decidable for RPD languages by Theorem 19.

(2) Let upath(u; v) be a formula expressing that there is an undirected path

from u to v. It can be de�ned in the same way as the formula path(u; v) in

Section 2.3, using edge(u; v) _ edge(v; u) instead of edge(u; v) in the formula

closed(U). Then the formula 9u : u 2 U ^ (8v : v 2 U $ upath(u; v)) expresses

the fact that U is a connected component. Hence it is decidable for an RPD graph

language whether or not there is a bound on the size of the connected compo-

nents of its graphs, and also, whether or not there is a bound on the number of

connected components of its graphs (by Theorems 19 and 20, respectively). The

same holds for the strongly connected components.

(3) Let �(U) be a formula for the property that U is a (maximal) clique.

For instance �(U) is 8v : v 2 U $ (8u : u 2 U ! edge(u; v) ^ edge(v; u)). By

Theorem 19 it is decidable for L 2 RPD whether there is a bound on the size of

cliques in the graphs of L. This was shown for (a subclass of) B-RPD in [RW2].

By Theorem 20 it is decidable whether the number of cliques is bounded for the

graphs in L. ut

Note that, of course, all decidability results of this section hold for classes of

graph grammars that are e�ectively contained in RPD. Thus, apart from the

C-edNCE grammars, they also hold, e.g., for the Hyperedge Replacement gram-

mars (see, e.g., [BC, HK, ER1]), the B-NLC graph grammars (see [RW1]), and

the C-NLC graph grammars (see [Cou1]).
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