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Abstract

Bayesian belief networks or causal probabilistic networks may reach a certain size and

complexity where the computations involved in exact probabilistic inference on the net-

work tend to become rather time consuming. Methods for approximating a network by a

simpler one allow the computational complexity of probabilistic inference on the network

to be reduced at least to some extend. We propose a general framework for approximating

Bayesian belief networks based on model simpli�cation by arc removal. The approxima-

tion method aims at reducing the computational complexity of probabilistic inference on a

network at the cost of introducing a bounded error in the prior and posterior probabilities

inferred. We present a practical approximation scheme and give some preliminary results.

1 Introduction

Today, more and more applications based on the Bayesian belief network

1

formalism are

emerging for reasoning and decision making in problem domains with inherent uncertainty.

Current applications range from medical diagnosis and prognosis [1], computer vision [10], to

information retrieval [2]. As applications grow larger, the belief networks involved increase

in size. And as the topology of the network becomes more dense, the run-time complexity of

probabilistic inference increases dramatically, reaching a state where real-time decision making

eventually becomes prohibitive; exact inference in general with Bayesian belief networks has

been proven to be NP-hard [3].

For many applications, computing exact probabilities from a belief network is liable to be

unrealistic due to inaccuracies in the probabilistic assessments for the network. Therefore, in

general, approximate methods su�ce. Furthermore, the employment of approximate methods

alleviates probabilistic inference on a network at least to some extend. Approximate meth-

ods provide probability estimates either by employing simulation methods for approximate

inference, �rst introduced by Henrion [7], or through methods based on model simpli�cation,

examples are annihilating small probabilities [8] and removal of weak dependencies [13].

With the former approach, stochastic simulation methods [4] provide for approximate

inference based on generating multisets of con�gurations of all the variables from a belief

network. From this multiset, (conditional) probabilities of interest are estimated from the

occurrence frequencies. These probability estimates tend to approximate the true probabilities

�
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In this paper we adopt the term Bayesian belief network or belief network for short. Belief networks are

also known as probabilistic networks, causal networks, and recursive models.
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if the generated multiset is su�ciently large. Unfortunately, the computational complexity of

approximate methods is still known to be NP-hard [5] if a certain accuracy of the probability

estimates is demanded for. Hence, just like exact methods, simulation methods have an

exponential worst-case computational complexity.

As has been demonstrated by Kjaerul� [13], forcing additional conditional independence

assumptions portrayed by a belief network provides a promising direction towards belief net-

work approximation in view of model simpli�cation. However, Kjaerul�'s method is speci�-

cally tailored to the Bayesian belief universe approach to probabilistic inference [9] and model

simpli�cation is not applied to a network directly but to the belief universes obtained from

a belief network. The method identi�es weak dependencies in a belief universe of a network

and removes these by removing speci�c links from the network thereby enforcing additional

conditional independencies portrayed by the network. As a result, a speedup in probabilistic

inference is obtained at a cost of a bounded error in inference.

In this paper we propose a general framework for belief network approximation by arc

removal. The proposed approximation method adopts a similar approach as Kjaerul�'s

method [13] with respect to the means for quantifying the strength of arcs in a network

in terms of the Kullback-Leibler information divergence statistic. In general, the Kullback-

Leibler information divergence statistic [14] provides a means for measuring the divergence

between a probability distribution and an approximation of the distribution, see e.g. [22].

However, there are important di�erences to be noted between the approaches. Firstly, the

type of independence statements enforced in our approach renders the direct dependence rela-

tionship portrayed by an arc superuous, in contrast to Kjaerul�'s method where other links

may be rendered superuous as well. As a consequence, we apply more localized the changes

to the network which allows a large set of arcs to be removed simultaneously. Secondly, as

has been mentioned above, Kjaerul�'s method operates only with the Bayesian belief universe

approach to probabilistic inference using the clique-tree propagation algorithm of Lauritzen

and Spiegelhalter [16]. In contrast, the framework we propose operates on a network directly

and therefore applies to any type of method for probabilistic inference. Finally, given an

upper bound on the posterior error in probabilistic inference allowed, a (possibly large) set of

arcs is removed simultaneously from a belief network requiring only one pre-evaluation of the

network in contrast to Kjaerul�'s method in which conditional independence assumptions are

added to the network one at a time.

The rest of this paper is organized as follows. Section 2 provides some preliminaries from

the Bayesian belief network formalism and introduces some notions from information theory.

In Section 3, we present a method for removing arcs from a belief network and analyze the

consequences of the removals on the represented joint probability distribution. In Section 4,

some practical approximation schemes are discussed, aimed at reducing the computational

complexity of inference on a belief network. To conclude, in Section 5 the advantages and

disadvantages of the presented method are compared to other existing methods for approxi-

mating belief networks.

2 Preliminaries

In this section we briey review the basic concepts of the Bayesian belief network formalism

and some notions from information theory. In the sequel, we assume that the reader is well

acquainted with probability theory and with the basic notions from graph theory.
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2.1 Bayesian Belief Networks

Bayesian belief networks allow for the explicit representation of dependencies as well as in-

dependencies using a graphical representation of a joint probability distribution. In general,

undirected and directed graphs are powerful means for representing independency models,

see e.g. [21, 22]. Associated with belief networks are algorithms for probabilistic inference

on a network by propagating evidence, providing a means for reasoning with the uncertain

knowledge represented by the network.

A belief network consists of a qualitative and a quantitative representation of a joint

probability distribution. The qualitative part takes the form of an acyclic digraph G in which

each vertex V

i

2 V (G) represents a discrete statistical variable for stating the truth of a

proposition within a problem domain. In the sequel, the notions of vertex and variable are used

interchangeably. Each arc in the digraph, which we denote as V

i

! V

j

2 A(G) between vertex

V

i

, called the tail of the arc, and vertex V

j

, called the head of the arc, represents a direct causal

inuence between the vertices discerned. Then, vertex V

i

is called an immediate predecessor

of vertex V

j

and vertex V

j

is called an immediate descendant of vertex V

i

. Furthermore,

associated with the digraph of a belief network is a numerical assessment of the strengths of

the causal inuences, constituting the quantitative part of the network.

In the sequel, for ease of exposition, we assume binary statistical variables taking values

in the domain ftrue; falseg. However, the generalization to variables taking values in any

�nite domain is straightforward. Each variable V

i

represents a proposition where V

i

= true

is denoted as v

i

and V

i

= false is denoted as :v

i

. For a set of variables V , the conjunction

C

V

=

V

V

i

2V

V

i

of all variables V

i

2 V is called the con�guration scheme of V ; a con�guration

c

V

of V is a conjunction of value assignments to the variables in V . In the sequel, we use

the concept of con�guration scheme to denote that a speci�c property holds for all possible

con�gurations of a set of variables.

De�nition 2.1 A Bayesian belief network is a tuple B = (G;�) where

� G = (V (G); A(G)) is an acyclic digraph with V (G) = fV

1

; : : : ; V

n

g, n � 1, and

� � = f

V

i

j V

i

2 V (G)g is a set of real-valued functions 

V

i

: fC

V

i

g � fC

�

G

(V

i

)

g ! [0; 1],

called (conditional) probability assessment functions, such that for each con�guration

c

�

G

(V

i

)

of the set �

G

(V

i

) of immediate predecessors of vertex V

i

we have that 

V

i

(:v

i

j

c

�

G

(V

i

)

) = 1� 

V

i

(v

i

j c

�

G

(V

i

)

), i = 1; : : : ; n.

A probabilistic meaning is assigned to the topology of the digraph of a belief network by

means of the d-separation criterion [18]. The criterion allows for the detection of dependency

relationships between the vertices of the network's digraph by traversing undirected paths,

called chains, comprised by the directed links in the digraph. Chains can be blocked by a set

of vertices as is stated more formally in the following de�nition.

De�nition 2.2 Let G = (V (G); A(G)) be an acyclic digraph. Let � be a chain in G. Then

� is blocked by a set of vertices W � V (G) if � contains three consecutive vertices X

1

, X

2

,

X

3

2W for which one of the following three conditions is ful�lled:

� X

1

 X

2

and X

2

! X

3

are on the chain � and X

2

2W ;

� X

1

! X

2

and X

2

! X

3

are on the chain � and X

2

2W ;
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� X

1

! X

2

and X

2

 X

3

are on the chain � and �

�

G

(X

2

)\W = ; where �

�

G

(X

2

) denotes

the set of vertices composed of X

2

and all its descendants.

Note that a chain � is blocked by ; if and only if � contains X

1

! X

2

and X

2

 X

3

. In this

case, vertex X

2

is called a head-to-head vertex with respect to � [6].

De�nition 2.3 Let G = (V (G); A(G)) be an acyclic digraph and let X, Y , Z � V (G) be

disjoint subsets of vertices from G. The set Y is said to d-separate the sets X and Z in G,

denoted hX j Y j Zi

d

G

, if for each V

i

2 X and V

j

2 Z every chain from V

i

to V

j

in G is blocked

by Y .

The d-separation criterion provides for the detection of probabilistic independence relations

from the digraph of a belief network, as is stated more formally in the following de�nition.

De�nition 2.4 Let G = (V (G); A(G)) be an acyclic digraph. Let Pr be a joint probability

distribution on V (G). Digraph G is an I-map for Pr if hX j Z j Y i

d

G

implies X??

Pr

Y j Z for

all disjoint subsets X, Y , Z � V (G), i.e. X is conditionally independent of Z given Y in Pr.

By the chain-rule representation of a joint probability distribution from probability theory,

the initial probability assessment functions of a belief network provide all the information

necessary for uniquely de�ning a joint probability distribution on the set of variables discerned

that respects the independence relations portrayed by the digraph [11, 18].

Theorem 2.5 Let B = (G;�) be a belief network as de�ned in De�nition 2.1. Then,

Pr(C

V (G)

) =

Y

V

i

2V (G)



V

i

(V

i

j C

�

G

(V

i

)

)

de�nes a joint probability distribution Pr on V (G) such that G is an I-map for Pr.

A belief network therefore uniquely represents a joint probability distribution. For computing

(conditional) probabilities from a network, several e�cient algorithms have been developed

from which Pearl's polytree algorithm with cutset conditioning [18, 19] and the method of

clique-tree propagation by Lauritzen and Spiegelhalter [16] (and combinations [20]) are the

most widely used algorithms for exact probabilistic inference. Simulation methods provide

for approximate probabilistic inference, see [4] for an overview.

2.2 Information Theory

The Kullback-Leibler information divergence [14] has several important applications in sta-

tistics. One of which is for measuring how well one joint probability distribution can be

approximated by another with a simpler dependence structure, see e.g. [22]. In the sequel,

we will make extensive use of the Kullback-Leibler information divergence. Before de�n-

ing the Kullback-Leibler information divergence more formally, the concept of continuity is

introduced [14].

De�nition 2.6 Let V be a set of statistical variables and let Pr and Pr

0

be joint probability

distributions on V . Then Pr is absolutely continuous with respect to Pr

0

over a subset of

variables X � V , denoted as Pr � Pr

0

k X, if Pr(c

X

) = 0 whenever Pr

0

(c

X

) = 0 for all

con�gurations c

X

of X.
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We will write Pr � Pr

0

for Pr � Pr

0

k V for short. Note that the continuity relation is

a reexive and transitive relation on probability distributions. Furthermore, the continuity

relation satis�es

� if Pr� Pr

0

k X, then Pr� Pr

0

k Y for all subsets of variables X, Y � V with Y � X;

� if Pr� Pr

0

k X, then Pr(� j c

Y

)� Pr

0

(� j c

Y

) k X for all subsets of variables X, Y � V

and each con�guration c

Y

of Y with Pr(c

Y

) > 0.

That is, if a joint probability distribution Pr is absolutely continuous with respect to a distri-

bution Pr

0

over some set of variables X, then Pr is also absolutely continuous with respect to

Pr

0

over any subset of X. In addition, any posterior distribution Pr(� j c

Y

) of Pr given some

con�guration c

Y

of Y is also absolutely continuous with respect to the posterior distribution

Pr

0

(� j c

Y

) of Pr

0

given c

Y

over X.

De�nition 2.7 Let V be a set of statistical variables and let X � V . Let Pr and Pr

0

be joint

probability distributions on V . The Kullback-Leibler information divergence or cross entropy

of Pr with respect to Pr

0

over X, denoted as I(Pr;Pr

0

;X), is de�ned as

I(Pr;Pr

0

;X) =

8

<

:

X

c

X

Pr(c

X

) � log

Pr(c

X

)

Pr

0

(c

X

)

if Pr� Pr

0

k X

1 otherwise

where 0 � log(0=Pr

0

(c

X

)) = 0.

In the sequel, we will write I(Pr;Pr

0

) for I(Pr;Pr

0

;V ) for short. Note that the information

divergence is not symmetric in Pr and Pr

0

and is �nite if and only if Pr is absolutely continuous

with respect to Pr

0

. Furthermore, the information divergence I satis�es

� I(Pr;Pr

0

;X) � 0 for all subsets of variables X � V , especially I(Pr;Pr

0

;X) = 0 if and

only if Pr(C

X

) = Pr

0

(C

X

);

� I(Pr;Pr

0

;X) � I(Pr;Pr

0

;V ) for all subsets of variables X � V ; and

� I(Pr;Pr

0

;X [ Y ) = I(Pr;Pr

0

;X) + I(Pr;Pr

0

;Y ) for all subsets of variables X, Y � V if

X and Y are independent in both Pr and Pr

0

.

In principle, the base of the logarithm for the Kullback-Leibler information divergence is

immaterial, providing only a unit of measure; in the sequel, we use the natural logarithm.

With this assumption the following property holds.

Proposition 2.8 Let V be a set of statistical variables and let Pr and Pr

0

be joint probability

distributions on V . Furthermore, let I be the Kullback-Leibler information divergence as

de�ned in De�nition 2.7. Then,

�

�

Pr(C

X

)� Pr

0

(C

X

)

�

�

�

r

1

2

I(Pr;Pr

0

;V )

for all X � V .

Hence, the Kullback-Leibler information divergence provides for an upper bound on the

absolute divergence jPr(c

X

)� Pr

0

(c

X

)j over all con�gurations c

X

of X, a property of the

Kullback-Leibler information divergence known as the information inequality [15].

5



V

V

r

s

CTP

Vr

Vs

CC

CC appoximation CTP appoximation

Figure 1: Reducing the complexity of cutset conditioning (CC) and clique-tree propagation (CTP)

by removing arc V

r

! V

s

.

3 Approximating a Belief Network by Removing Arcs

In this section we propose a method for removing arcs from a belief network and we investigate

the consequences of the removal on the computational resources and the error introduced. For

ease of exposition, a method for removing a single arc from a belief network is introduced �rst.

Then, based on this method and the observations made, a method for multiple simultaneous

arc removals is presented.

3.1 Reducing the Complexity of a Belief Network by Removing Arcs

The computational complexity of exact probabilistic inference on a belief network depends to

a large extend on the connectivity of the digraph of the network. Removing an arc from the

digraph of the network may substantially reduce the complexity of probabilistic inference on

the network. For Pearl's polytree algorithm with the method of cutset conditioning [18, 19],

undirected cycles, called loops [18], can be broken resulting in smaller loop cutsets to be

used. The size of the cutset determines the computational complexity of inference on the

network to a large extend. For the method of clique-tree propagation [16], a belief network is

�rst transformed into a decomposable graph. Here, the computational complexity of inference

depends to a large extend on the size of the largest clique in the decomposable graph. Removal

of an appropriate arc or edge results in splitting cliques into several smaller cliques, see e.g.

the method of Kjaerul� [13], yielding a reduction in computational complexity of inference

on the decomposable graph.

In Figure 1 we have depicted the e�ect of removing an arc from the digraph of a belief

network for the method of cutset conditioning and for the method of clique-tree propagation.

For cutset conditioning, a vertex in the cutset (e.g. the vertex drawn in shading) is required

to break the loop. Since removal of arc V

r

! V

s

breaks the loop, a smaller cutset may be

necessary. For clique-tree propagation, the decomposable graph obtained from the example

belief network has three cliques, each with 4 vertices. Removal of arc V

r

! V

s

results in a

decomposable graph with four smaller cliques, one with 2 and three with 3 vertices.

For approximate methods, the computational complexity of for example forward simula-

tion [4] depends to some extend on the distance from a root vertex to a leaf vertex. Therefore,

the removal of arcs may also yield a reduction in the complexity of approximate inference.

However, it is more di�cult to analyze and measure the amount of reduction in complexity
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in general in comparison to exact methods and in the sequel we will discuss arc removal in

view of exact methods for probabilistic inference.

3.2 Removing an Arc from a Belief Network

Although several methods for removing an arc from a belief network can be devised, the

method for removal of an arc as de�ned in the following de�nition is the most natural choice.

This will be made clear when we analyze the e�ects of the removal.

De�nition 3.1 Let B = (G;�) be a belief network and let Pr be the joint probability distri-

bution de�ned by B. Let V

r

! V

s

2 A(G) be an arc in G. We de�ne the tuple B

V

r

6!V

s

=

(G

V

r

6!V

s

;�

V

r

6!V

s

) as

� G

V

r

6!V

s

= (V (G

V

r

6!V

s

); A(G

V

r

6!V

s

)) is the acyclic digraph with V (G

V

r

6!V

s

) = V (G) and

A(G

V

r

6!V

s

) = A(G) n fV

r

! V

s

g;

� �

V

r

6!V

s

= f

0

V

i

j V

i

2 V (G)g is the set of functions 

0

V

i

: fC

V

i

g � fC

�

G

V

r

6!V

s

(V

i

)

g with



0

V

i

= 

V

i

2 � for all V

i

2 V (G), V

i

6= V

s

, and 

0

V

s

(V

s

j C

�

G

V

r

6!V

s

(V

s

)

) = Pr(V

s

j

C

�

G

(V

s

)nfV

r

g

).

Note that network B

V

r

6!V

s

= (G

V

r

6!V

s

;�

V

r

6!V

s

) resulting after removal of an arc V

r

! V

s

from the digraph G of a belief network B, again constitutes a belief network. In this network

the assessment functions for the head vertex of the arc are changed only. In the sequel, we

will refer to B

V

r

6!V

s

as the approximated belief network after removal of arc V

r

! V

s

and the

operation of computing B

V

r

6!V

s

will be referred to as approximating the network.

Removal of an arc from a belief network may result in a change of the represented joint

probability distribution. However, the represented dependency structure of the distribution

portrayed by the graphical part of the network may be retained by introducing a virtual arc

between the two vertices for which a physical arc is removed. A virtual arc may serve for the

detection of dependencies and independencies in the original probability distribution using

the d-separation criterion. A virtual arc, however, is not used in probabilistic inference, still

allowing for a faster, approximate computation of prior and posterior probabilities from the

simpli�ed network.

3.3 The Error Introduced by Removing an Arc

Removing an arc from a belief network yields a (slightly) simpli�ed network that is faster

in inference but exhibits errors in the marginal and conditional probability distributions. In

this section we will analyze the errors introduced in the prior and posterior distributions

upon belief network approximation by removal of an arc. These e�ects can be summarized as

introducing both a change in the qualitative (ignoring any virtual arcs) as well as a change

in the quantitative representation of a joint probability distribution.

The Qualitative Error in Prior and Posterior Distributions

The change in the qualitative belief network representation of the probabilistic dependency

structure by removing an arc from a belief network is described by the following lemma.
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Lemma 3.2 Let G be an acyclic digraph and let V

r

! V

s

2 A(G) be an arc in G. Let

G

V

r

6!V

s

= (V (G

V

r

6!V

s

); A(G

V

r

6!V

s

)) be the digraph G with arc V

r

! V

s

removed, that is,

V (G

V

r

6!V

s

) = V (G) and A(G

V

r

6!V

s

) = A(G) n fV

r

! V

s

g. Then, we have that hfV

r

g j

�

G

V

r

6!V

s

(V

s

) j fV

s

gi

d

G

V

r

6!V

s

.

Proof. To prove that hfV

r

g j �

G

V

r

6!V

s

(V

s

) j fV

s

gi

d

G

V

r

6!V

s

holds, we show that every chain

from vertex V

r

to vertex V

s

in G

V

r

6!V

s

is blocked by the set �

G

V

r

6!V

s

(V

s

). For such a chain �

from V

r

to V

s

two cases can be distinguished:

� � comprises an arc V

i

! V

s

for some V

i

2 V (G

V

r

6!V

s

), V

i

6= V

r

. Since V

i

2 �

G

V

r

6!V

s

(V

s

),

chain � is blocked by �

G

V

r

6!V

s

(V

s

);

� � comprises an arc V

s

! V

j

for some V

j

2 V (G

V

r

6!V

s

). Since G and, therefore, G

V

r

6!V

s

is acyclic, � must contain a head-to-head vertex V

k

, i.e. a vertex with two converging

arcs on �. Since �

�

G

V

r

6!V

s

(V

k

) \ �

G

V

r

6!V

s

(V

s

) = ; chain � is blocked by �

G

V

r

6!V

s

(V

s

).

2

The property states that after removing arc V

r

! V

s

from digraph G of a belief network, the

simpli�ed graphical representation now yields that variable V

r

is conditionally independent

of variable V

s

given �

G

V

r

6!V

s

(V

s

) being the set of immediate predecessors of V

s

in the digraph

G with arc V

r

! V

s

removed.

The Quantitative Error in the Prior Distribution

The change in the qualitative dependency structure portrayed by the network has its quanti-

tative counterpart as the two are inherently linked together in the belief network formalism.

To analyze the error of the approximated prior probability distribution, similar to [13, 22]

we use the Kullback-Leibler information divergence for a quantitative comparison in terms of

the divergence between the joint probability distribution de�ned by a belief network and the

approximated joint probability distribution obtained after removing an arc from the network.

To facilitate the investigation, we will give an expression for the approximated joint prob-

ability distribution in terms of the original distribution. First, we will introduce some addi-

tional notions related to arcs in a digraph that are useful for describing the properties that

follow. These notions are build on the observation that the set of immediate predecessors

�

G

V

r

6!V

s

(V

s

) d-separates tail vertex V

r

from head vertex V

s

in the digraph G with arc V

r

! V

s

removed.

De�nition 3.3 Let G = (V (G); A(G)) be an acyclic digraph and let V

r

! V

s

2 A(G) be an

arc in G. We de�ne the arc block of V

r

! V

s

in G, denoted as �

G

(V

r

! V

s

), as the set of

vertices �

G

(V

r

! V

s

) = �

G

(V

s

)[fV

s

g. Furthermore, we de�ne the arc environment of V

r

! V

s

in G, denoted as �

G

(V

r

! V

s

), as the set of vertices �

G

(V

r

! V

s

) = V (G) n �

G

(V

r

! V

s

).

The joint probability distribution de�ned by the approximated belief network can be factor-

ized in terms of the joint probability distribution de�ned by the original network.

Lemma 3.4 Let B = (G;�) be a belief network and let Pr be the joint probability distribution

de�ned by B. Let V

r

! V

s

2 A(G) be an arc in G and let B

V

r

6!V

s

= (G

V

r

6!V

s

;�

V

r

6!V

s

) be the

8



approximated belief network after removal of V

r

! V

s

as de�ned in De�nition 3.1. Then the

joint probability distribution Pr

V

r

6!V

s

de�ned by B

V

r

6!V

s

satis�es

Pr

V

r

6!V

s

(C

V (G)

) = Pr(C

�

G

(V

r

!V

s

)

j C

�

G

(V

r

!V

s

)

) � Pr(V

r

j C

�

G

(V

s

)nfV

r

g

)

� Pr(V

s

j C

�

G

(V

s

)nfV

r

g

) � Pr(C

�

G

(V

s

)nfV

r

g

)

where �

G

(V

r

! V

s

) is the arc block and �

G

(V

r

! V

s

) is the arc environment of V

r

! V

s

in G

as de�ned in De�nition 3.3.

Proof. From Theorem 2.5, the joint probability distribution Pr

V

r

6!V

s

de�ned by network

B

V

r

6!V

s

equals

Pr

V

r

6!V

s

(C

V (G)

) =

Y

V

i

2V (G)



0

V

i

(V

i

j C

�

G

V

r

6!V

s

(V

i

)

)

where 

0

V

i

2 �

V

r

6!V

s

for all V

i

2 V (G). Exploiting De�nition 3.1 leads to

Pr

V

r

6!V

s

(C

V (G)

) = 

0

V

s

(V

s

j C

�

G

V

r

6!V

s

(V

s

)

) �

Y

V

i

2V (G)nfV

s

g



V

i

(V

i

j C

�

G

(V

i

)

)

= 

0

V

s

(V

s

j C

�

G

V

r

6!V

s

(V

s

)

) �

Pr(C

V (G)

)



V

s

(V

s

j C

�

G

(V

s

)

)

Now, since 

V

s

(V

s

j C

�

G

(V

s

)

) = Pr(V

s

j C

�

G

(V

s

)

) and 

0

V

s

(V

s

j C

�

G

V

r

6!V

s

(V

s

)

) = Pr(V

s

j

C

�

G

(V

s

)nfV

r

g

), we �nd

Pr

V

r

6!V

s

(C

V (G)

) = Pr(V

s

j C

�

G

(V

s

)nfV

r

g

) �

Pr(C

V (G)

)

Pr(V

s

j C

�

G

(V

s

)

)

= Pr(V

s

j C

�

G

(V

s

)nfV

r

g

) � Pr(C

�

G

(V

r

!V

s

)

j C

�

G

(V

r

!V

s

)

) � Pr(C

�

G

(V

s

)

)

= Pr(C

�

G

(V

r

!V

s

)

j C

�

G

(V

r

!V

s

)

) � Pr(V

r

j C

�

G

(V

s

)nfV

r

g

)

� Pr(V

s

j C

�

G

(V

s

)nfV

r

g

) � Pr(C

�

G

(V

s

)nfV

r

g

)

2

Clearly, this property links the graphical implications of removing an arc from a belief net-

work with the numerical probabilistic consequences of the removal; variable V

r

is rendered

conditionally independent of variable V

s

given �

G

V

r

6!V

s

(V

s

) after removal of an arc V

r

! V

s

.

Now, one of the most important consequences to be investigated is the amount of ab-

solute divergence between the prior probability distribution and the approximated distribu-

tion. From the information inequality we have

jPr(C

X

)� Pr

V

r

6!V

s

(C

X

)j �

r

1

2

I(Pr;Pr

V

r

6!V

s

)

for all subsets X � V , where Pr and Pr

V

r

6!V

s

are joint probability distributions on the

set of variables V de�ned by a belief network and the network with arc V

r

! V

s

removed

respectively. However, we recall that this bound is �nite only if Pr is absolutely continuous

with respect to Pr

V

r

6!V

s

. We prove this property in the following lemma.

Lemma 3.5 Let B = (G;�) be a belief network. Let V

r

! V

s

2 A(G) be an arc in G and let

B

V

r

6!V

s

= (G

V

r

6!V

s

;�

V

r

6!V

s

) be the approximated belief network after removal of V

r

! V

s

as

de�ned in De�nition 3.1. Then the joint probability distribution Pr de�ned by B is absolutely

continuous with respect to the joint probability distribution Pr

V

r

6!V

s

de�ned by B

V

r

6!V

s

over

V (G), i.e. Pr� Pr

V

r

6!V

s

.

9



Proof. To prove that Pr is absolutely continuous with respect to Pr

V

r

6!V

s

over V (G), we

prove that Pr(c

V (G)

) > 0 implies that Pr

V

r

6!V

s

(c

V (G)

) > 0 for all con�gurations c

V (G)

of

V (G). First observe that from the chain rule of probability theory we have that

Pr(C

V (G)

) = Pr(C

�

G

(V

r

!V

s

)

j C

�

G

(V

r

!V

s

)

) � Pr(V

r

^ V

s

j C

�

G

(V

s

)nfV

r

g

) � Pr(C

�

G

(V

s

)nfV

r

g

)

where �

G

(V

r

! V

s

) is the arc block and �

G

(V

r

! V

s

) is the arc environment of arc V

r

!

V

s

in G as de�ned by De�nition 3.3. Now consider a con�guration c

V (G)

of V (G) with

Pr(c

V (G)

) > 0. For this con�guration we have that Pr(c

�

G

(V

r

!V

s

)

j c

�

G

(V

r

!V

s

)

) > 0, Pr(c

V

r

^

c

V

s

j c

�

G

(V

s

)nfV

r

g

) > 0, and Pr(c

�

G

(V

s

)nfV

r

g

) > 0, where c

V (G)

= c

�

G

(V

r

!V

s

)

^ c

�

G

(V

r

!V

s

)

=

c

�

G

(V

r

!V

s

)

^ c

V

r

^ c

V

s

^ c

�

G

(V

s

)nfV

r

g

. Furthermore, Pr(c

V

r

^ c

V

s

j c

�

G

(V

s

)nfV

r

g

) > 0 implies that

Pr(c

V

r

j c

�

G

(V

s

)nfV

r

g

) > 0 and Pr(c

V

s

j c

�

G

(V

s

)nfV

r

g

) > 0. These observations lead to

Pr

V

r

6!V

s

(c

V (G)

) = Pr(c

�

G

(V

r

!V

s

)

j c

�

G

(V

r

!V

s

)

) � Pr(c

V

r

j c

�

G

(V

s

)nfV

r

g

)

� Pr(c

V

s

j c

�

G

(V

s

)nfV

r

g

) � Pr(c

�

G

(V

s

)nfV

r

g

)

> 0

Hence, if Pr(c

V (G)

) > 0, then Pr

V

r

6!V

s

(c

V (G)

) > 0 and we conclude that Pr� Pr

V

r

6!V

s

. 2

From this property of absolute continuity, the Kullback-Leibler information divergence pro-

vides a proper upper bound on the error introduced in the joint probability distribution by

removal of an arc from the network. However, the bound can be rather coarse as it can be

expected that removing an arc may not always a�ect the prior probabilities of some speci�c

marginal distributions de�ned by the network. This observation is formalized by the following

lemma which states that the divergence in the prior marginal distributions is always zero for

sets of vertices that are not descendants of the head vertex of an arc that is removed. In

fact, this property is a direct result from the chain-rule representation of the joint probability

distribution by a belief network.

Lemma 3.6 Let B = (G;�) be a belief network and let Pr be the joint probability distribution

de�ned by B. Let V

r

! V

s

2 A(G) be an arc in G and let B

V

r

6!V

s

= (G

V

r

6!V

s

;�

V

r

6!V

s

) be the

approximated belief network after removal of V

r

! V

s

as de�ned in De�nition 3.1. Then the

joint probability distribution Pr

V

r

6!V

s

de�ned by B

V

r

6!V

s

satis�es

Pr

V

r

6!V

s

(C

Y

) = Pr(C

Y

)

for all Y � V (G) n �

�

G

(V

s

), where �

�

G

(V

s

) denotes the set comprised by V

s

and all its descen-

dants.

Proof. First, we will prove that

Pr(C

X

) =

Y

V

k

2X



V

k

(V

k

j C

�

G

(V

k

)

)

where X = V (G) n �

�

G

(V

s

). By applying Theorem 2.5 and by marginalizing Pr we obtain

Pr(c

X

) =

X

c

V (G)nX

Pr(c

V (G)

)

=

X

c

V (G)nX

Y

V

j

2V (G)



V

j

(c

V

j

j c

�

G

(V

j

)

)

=

X

c

V (G)nX

Y

V

j

2V (G)

2

4

Y

V

j

2V (G)nX



V

j

(c

V

j

j c

�

G

(V

j

)

) �

Y

V

k

2X



V

k

(c

V

k

j c

�

G

(V

k

)

)

3

5

10



for all con�gurations c

X

of X with the assumption that the con�gurations that occur within

the sum adhere to c

V (G)

= c

X

^ c

�

�

G

(V

i

)

=

V

V

j

2V (G)

c

V

j

. Now since �

G

(V

k

) \ �

�

G

(V

i

) = ; for

all V

k

2 X and

P

c

V (G)nX

Q

V

j

2V (G)nX



V

j

(c

V

j

j c

�

G

(V

j

)

) = 1, we �nd by rearranging terms

Pr(c

X

) =

2

4

X

c

V (G)nX

Y

V

j

2V (G)nX



V

j

(c

V

j

j c

�

G

(V

j

)

)

3

5

�

Y

V

k

2X



V

k

(c

V

k

j c

�

G

(V

k

)

)

=

Y

V

k

2X



V

k

(c

V

k

j c

�

G

(V

k

)

)

for all con�gurations c

X

of X. Hence, we have

Pr(C

X

) =

Y

V

k

2X



V

k

(V

k

j C

�

G

(V

k

)

)

By a similar exposition for network B

V

r

6!V

s

, we have

Pr

V

r

6!V

s

(C

X

) =

Y

V

k

2X



0

V

k

(V

k

j C

�

G

V

r

6!V

s

(V

k

)

)

where 

0

V

k

2 �

V

r

6!V

s

. Now observe that from De�nition 3.1 

0

V

k

= 

V

k

2 � for all V

k

2 X

and we obtain Pr

V

r

6!V

s

(C

X

) = Pr(C

X

) and since Y � X, by principle of marginalization we

conclude that Pr

V

r

6!V

s

(C

Y

) = Pr(C

Y

). 2

This property provides the key observation for the applicability of multiple arc removals as

will be described in Section 3.4.

The Quantitative Error in Posterior Distributions

Belief networks are generally used for reasoning with uncertainty by processing evidence. That

is, the probability of some hypothesis is computed from the network given some evidence. In

the belief network framework, this amounts to computing the revised probabilities from the

posterior probability distribution given the evidence. We will investigate the implications on

posterior distributions after removal of an arc. We begin our investigation by exploring some

general properties of the Kullback-Leibler information divergence.

Lemma 3.7 Let V be a set of statistical variables and let X, Y � V be subsets of V . Let

Pr and Pr

0

be joint probability distributions on V . Then the Kullback-Leibler information

divergence I satis�es

I(Pr;Pr

0

;X [ Y ) = I(Pr;Pr

0

;Y ) +

X

c

Y

;Pr(c

Y

)>0

Pr(c

Y

) � I(Pr(� j c

Y

);Pr

0

(� j c

Y

);X)

Proof. We distinguish two cases: the case that Pr � Pr

0

k X [ Y and the case that

Pr 6� Pr

0

k X [ Y .

� Assume that Pr� Pr

0

k X[Y . This assumption implies that the information divergence

I(Pr;Pr

0

;X [ Y ) is �nite. By De�nition 2.7 we therefore have that

I(Pr;Pr

0

;X [ Y )

=

X

c

X[Y

Pr(c

X[Y

) � log

Pr(c

X[Y

)

Pr

0

(c

X[Y

)

=

X

c

Y

;Pr(c

Y

)>0

Pr(c

Y

) �

"

X

c

X

Pr(c

X

j c

Y

) � log

Pr(c

X

j c

Y

) � Pr(c

Y

)

Pr

0

(c

X

j c

Y

) � Pr

0

(c

Y

)

#

11



Here, we used the fact that if for some con�guration c

0

Y

of the set of variables Y

the probability distribution Pr(� j c

0

Y

) is unde�ned, that is, if Pr(c

0

Y

) = 0, then for

any con�guration c

0

X

of X the probability Pr(c

0

X

^ c

0

Y

) = 0 and, hence, Pr(c

0

X

^ c

0

Y

) �

log(Pr(c

0

X

^ c

0

Y

)=Pr

0

(c

0

X

^ c

0

Y

)) = 0 by de�nition. Therefore, we let the �rst sum in the

last equality above range over all con�gurations c

Y

of Y for which Pr(c

Y

) > 0. Now by

rearranging terms we �nd

I(Pr;Pr

0

;X [ Y )

=

X

c

Y

;Pr(c

Y

)>0

Pr(c

Y

) �

"

log

Pr(c

Y

)

Pr

0

(c

Y

)

+

X

c

X

Pr(c

X

j c

Y

) � log

Pr(c

X

j c

Y

)

Pr

0

(c

X

j c

Y

)

#

= I(Pr;Pr

0

;Y ) +

X

c

Y

;Pr(c

Y

)>0

Pr(c

Y

) � I(Pr(� j c

Y

);Pr

0

(� j c

Y

);X)

Note that I(Pr;Pr

0

;Y ) and I(Pr(� j c

Y

);Pr

0

(� j c

Y

);X) are �nite.

� Assume that Pr 6� Pr

0

k X [ Y . This implies that I(Pr;Pr

0

;X) = 1. We will

show that I(Pr;Pr

0

;Y ) +

P

c

Y

;Pr(c

Y

)>0

Pr(c

Y

) � I(Pr(� j c

Y

);Pr

0

(� j c

Y

);X) = 1. First,

observe that from the assumption there exists a con�guration c

0

X

^ c

0

Y

of X [ Y such

that Pr(c

0

X

^ c

0

Y

) > 0 and Pr

0

(c

0

X

^ c

0

Y

) = 0. Now, two cases are distinguished: the case

that Pr

0

(c

0

Y

) = 0 and the case that Pr

0

(c

0

Y

) > 0.

{ Assume that Pr

0

(c

0

Y

) = 0. Since Pr(c

0

X

^ c

0

Y

) > 0 implies that Pr(c

0

Y

) > 0, this

yields that Pr 6� Pr

0

k Y . By De�nition 2.7 I(Pr;Pr

0

;Y ) = 1 and using the fact

that the divergence I is non-negative I(Pr(� j c

Y

);Pr

0

(� j c

Y

);X) 6=1 which leads

to I(Pr;Pr

0

;Y ) +

P

c

Y

;Pr(c

Y

)>0

Pr(c

Y

) � I(Pr(� j c

Y

);Pr

0

(� j c

Y

);X) =1.

{ Assume that Pr

0

(c

0

Y

) > 0. From Pr(c

0

X

^ c

0

Y

) > 0 while Pr

0

(c

0

X

^ c

0

Y

) = 0 we get

Pr(c

0

Y

) > 0, Pr(c

0

X

j c

0

Y

) > 0, and Pr

0

(c

0

X

j c

0

Y

) = 0 for the con�gurations c

0

X

and

c

0

Y

. Hence, Pr(� j c

0

Y

) 6� Pr

0

(� j c

0

Y

) k X and by De�nition 2.7 this implies that

Pr(c

0

Y

) � I(Pr(� j c

Y

);Pr

0

(� j c

Y

);X) = 1. Since I(Pr;Pr

0

;Y ) is non-negative, we

conclude that I(Pr;Pr

0

;Y )+

P

c

Y

;Pr(c

Y

)>0

Pr(c

Y

) �I(Pr(� j c

Y

);Pr

0

(� j c

Y

);X) =1.

2

This property of the Kullback-Leibler information divergence leads to the following lemma

stating an upper bound on the absolute divergence of the posterior probability distribution

de�ned by a belief network given some evidence and the (approximated) posterior probability

distribution de�ned by another (approximated) network.

Lemma 3.8 Let V be a set of statistical variables and let Pr and Pr

0

be joint probability

distributions on V such that Pr� Pr

0

. Let I be the Kullback-Leibler information divergence.

Then,

�

�

Pr(C

X

j c

Y

)� Pr

0

(C

X

j c

Y

)

�

�

�

s

1

2

�

I(Pr;Pr

0

)� I(Pr;Pr

0

;Y )

Pr(c

Y

)

for all subsets of variables X, Y � V and all con�gurations c

Y

of Y with Pr(c

Y

) > 0.

Furthermore, this upper bound on the absolute divergence is �nite.

12



Proof. Consider two subsets X, Y � V and a con�guration c

Y

of Y with Pr(c

Y

) > 0. For

this con�guration, Pr� Pr

0

implies that Pr

0

(c

Y

) > 0 and, hence, the posterior distributions

Pr(� j c

Y

) and Pr

0

(� j c

Y

) are well-de�ned. Furthermore, since Pr � Pr

0

also implies that

Pr(� j c

Y

)� Pr

0

(� j c

Y

) it follows from Proposition 2.8 that we have the �nite upper bound

�

�

Pr(C

X

j c

Y

)� Pr

0

(C

X

j c

Y

)

�

�

�

r

1

2

� I(Pr(� j c

Y

);Pr

0

(� j c

Y

))

Furthermore, Lemma 3.7 yields that

I(Pr;Pr

0

) = I(Pr;Pr

0

;V [ Y )

= I(Pr;Pr

0

;Y ) +

X

c

0

Y

;Pr(c

0

Y

)>0

Pr(c

0

Y

) � I(Pr(� j c

Y

);Pr

0

(� j c

Y

))

When we consider the divergence I(Pr(� j c

Y

);Pr

0

(� j c

Y

)) in isolation, we have

I(Pr(� j c

Y

);Pr

0

(� j c

Y

)) �

I(Pr;Pr

0

)� I(Pr;Pr

0

;Y )

Pr(c

Y

)

since for any con�guration c

0

Y

of Y with Pr(c

0

Y

) > 0 the divergence I(Pr(� j c

0

Y

);Pr

0

(� j c

0

Y

))

is �nite and non-negative. From these observations we �nally �nd the �nite upper bound

�

�

Pr(C

X

j c

Y

)� Pr

0

(C

X

j c

Y

)

�

�

�

r

1

2

� I(Pr(� j c

Y

);Pr

0

(� j c

Y

))

�

s

1

2

�

I(Pr;Pr

0

)� I(Pr;Pr

0

;Y )

Pr(c

Y

)

2

Now, from this property of the information divergence, the absolute divergence between the

posterior distribution given evidence c

Y

for a subset of variables Y of a belief network B and

the approximated network B

V

r

6!V

s

after removal of an arc V

r

! V

s

is bounded by

jPr(C

X

j c

Y

)� Pr

V

r

6!V

s

(C

X

j c

Y

)j �

s

1

2

�

I(Pr;Pr

V

r

6!V

s

)� I(Pr;Pr

V

r

6!V

s

;Y )

Pr(c

Y

)

where Pr is the joint probability distribution de�ned by B and Pr

V

r

6!V

s

is the joint proba-

bility distribution de�ned by B

V

r

6!V

s

. This bound is �nite since Pr is absolutely continuous

with respect to Pr

V

r

6!V

s

. Furthermore, from this bound we �nd that in the worst case, i.e.

I(Pr;Pr

V

r

6!V

s

;Y ) = 0, the error in probabilistic inference on an approximated belief net-

work is inversely proportional to the square root of the probability of the evidence; the more

unlikely the evidence, the larger the error may be.

3.4 Multiple Arc Removals

In this section we generalize the method of single arc removal from belief networks to a method

of multiple simultaneous arc removals, thereby still guaranteeing a �nite upper bound on the

error introduced in the prior and posterior distributions.

We recall from De�nition 3.1 that removing an arc yields an appropriate change of the

assessment functions only for the head vertex of the arc to be removed. Therefore, this

operation can be applied in parallel for all arcs not sharing the same head vertex. To formalize

this requirement, we introduce the notion of a linear subset of arcs of a digraph.
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De�nition 3.9 Let G = (V (G); A(G)) be an acyclic digraph with the set of vertices V (G) =

fV

1

; : : : ; V

n

g, n � 1, of G indexed in ascending topological order. The relation �

G

� A(G)�

A(G) on the set of arcs of G is de�ned as V

r

! V

s

�

G

V

r

0

! V

s

0

if and only if s > s

0

for all

pairs of arcs V

r

! V

s

, V

r

0

! V

s

0

2 A(G) in G. Furthermore, let A � A(G) be a subset of arcs

in G. Then we say that A is linear with respect to G if the order �

G

is a total order on A,

that is, either V

r

! V

s

�

G

V

r

0

! V

s

0

or V

r

0

! V

s

0

�

G

V

r

! V

s

for each pair of distinct arcs

V

r

! V

s

, V

r

0

! V

s

0

2 A.

Note that a linear subset of arcs from a digraph contains no pair of arcs that have a head

vertex in common. Now, we formally de�ne the simultaneous removal of a linear set of arcs

from a belief network.

De�nition 3.10 Let B = (G;�) be a belief network. Let A � A(G) be a linear subset of arcs

in G. We de�ne the multiply approximated belief network, denoted as B

A

= (G

A

;�

A

), as

the network resulting after the simultaneous removal of all arcs A from B by De�nition 3.1.

That is, we obtain network B

A

= (G

A

;�

A

) with

� G

A

= (V (G

A

); A(G

A

)) the digraph with V (G

A

) = V (G) and A(G

A

) = A(G) n A;

� �

A

= f

0

V

i

j V

i

2 V (G)g the set of functions 

0

V

i

: fC

V

i

g� fC

�

G

A

(V

i

)

g with 

0

V

i

= 

V

i

2 �

for all V

i

2 V (G) with V

j

! V

i

62 A for any V

j

2 V (G), and 

V

i

(V

i

j C

�

G

V

j

6!V

i

(V

i

)

) =

Pr(V

i

j C

�

G

(V

i

)nfV

j

g

) for all V

i

2 V (G) with V

j

! V

i

2 A.

To analyze the error introduced in the prior as well as in the posterior distribution after

removal of a linear set of arcs from a belief network, we once more exploit the information

inequality. For obtaining a proper upper bound, the essential requirement is that the joint

probability distribution de�ned by the original network is absolutely continuous with respect

to the distribution de�ned by the multiply approximated network. To prove this, we will

exploit the ordering relation on the arcs of a digraph as de�ned above. This ordering relation

induces a total order on the arcs of a linear subset of arcs in a digraph and we show that

a consecutive removal of arcs from a belief network in arc linear order yields a multiply

approximated network. Then, by transitivity of the continuity relation, this directly implies

that the joint probability distribution de�ned by the original network is absolutely continuous

with respect to the distribution de�ned by the multiply approximated network.

Lemma 3.11 Let B = (G;�) be a belief network and let Pr be the joint probability distrib-

ution de�ned by B. Let A = fV

r

1

! V

s

1

; : : : ; V

r

n

! V

s

n

g � A(G), n = jAj � 1, be a linear

subset of arcs in G ordered with respect to �

G

as de�ned in De�nition 3.9, i.e. for all pairs

of arcs V

r

i

! V

s

i

, V

r

j

! V

s

j

2 A with V

r

i

! V

s

i

�

G

V

r

j

! V

s

j

we have that i < j. Now,

let B

A

= (G

A

;�

A

) be the multiply approximated belief network after removal of all arcs A as

de�ned in De�nition 3.10. Then,

B

A

=

�

� � �

�

B

V

r

1

6!V

s

1

�

V

r

2

6!V

s

2

� � �

�

V

r

n

6!V

s

n

where each (approximated) network on the right-hand side is approximated by removal of an

arc V

r

i

! V

s

i

, i = 1; : : : ; n, as de�ned in De�nition 3.1.

Proof. The proof is by induction on n = jAj, the cardinality of A.

Base case n = 1: by de�nition B

fV

r

1

!V

s

1

g

= B

V

r

1

6!V

s

1

.
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For n > 1 assume that B

AnfV

r

n

!V

s

n

g

= (� � � (B

V

r

1

6!V

s

1

)

V

r

2

6!V

s

2

� � �)

V

r

n�1

6!V

s

n�1

holds as the

hypothesis for induction. Now, consider arc V

r

n

! V

s

n

2 A. Then, by principle of in-

duction, to prove that B

A

= (� � � (B

V

r

1

6!V

s

1

)

V

r

2

6!V

s

2

� � �)

V

r

n

6!V

s

n

, we now have to prove that

B

A

= (B

AnfV

r

n

!V

s

n

g

)

V

r

n

6!V

s

n

. Obviously, the digraphs obtained after removal of this arc are

identical, i.e we have G

A

= (G

AnfV

r

n

!V

s

n

g

)

V

r

n

6!V

s

n

. This leaves us with a proof for the prob-

ability assessment functions. First, observe that the simultaneous removal of all arcs A from

network B yields network B

A

with probability assessment functions 

0

V

i

2 �

A

for all V

i

2 V (G)

where we have that 

0

V

s

n

(V

s

n

j C

�

G

A

(V

s

n

)

) = Pr(V

s

n

j C

�

G

(V

s

n

)nfV

r

n

g

). Now, observe that the

removal of arc V

r

n

!V

s

n

from network B

AnfV

r

n

!V

s

n

g

yields probability assessment functions



00

V

i

2 (�

AnfV

r

n

!V

s

n

g

)

V

r

n

6!V

s

n

for all V

i

2 V (G) for which we �nd that 

00

V

i

= 

0

V

i

2 �

A

for all V

i

6= V

s

n

2 V (G) and 

00

V

s

n

(V

s

n

j C

�

G

A

(V

s

n

)

) = Pr

AnfV

r

n

!V

s

n

g

(V

s

n

j C

�

G

A

(V

s

n

)

).

So it remains to prove that 

0

V

s

n

= 

00

V

s

n

, or equivalently, that Pr(V

s

n

j C

�

G

(V

s

n

)nfV

r

n

g

) =

Pr

AnfV

r

n

!V

s

n

g

(V

s

n

j C

�

G

A

(V

s

n

)

). Now, observe that from the ordering relation �

G

we �nd that

all arcs A n fV

r

n

! V

s

n

g that are removed from B are `below' arc V

r

n

! V

s

n

in the digraph G

of B, i.e. by assuming an ascending topological order of the vertices this implies that s

i

> s

n

for all V

r

i

! V

s

i

2 AnfV

r

n

! V

s

n

g. Hence, (�

G

(V

s

n

)[fV

s

n

g)\�

�

G

(V

s

i

) = ; for all V

r

i

! V

s

i

2

A n fV

r

n

! V

s

n

g and by the induction hypothesis, we can apply Lemma 3.6 for each arc in

AnfV

r

n

! V

s

n

g to �nd that Pr(V

s

n

^C

�

G

(V

s

n

)nfV

r

n

g

) = Pr

AnfV

r

n

!V

s

n

g

(V

s

n

^C

�

G

A

(V

s

n

)

). Fur-

thermore, this yields that Pr(V

s

n

j C

�

G

(V

s

n

)nfV

r

n

g

) = Pr

AnfV

r

n

!V

s

n

g

(V

s

n

j C

�

G

A

(V

s

n

)

). Hence,



0

V

s

n

= 

00

V

s

n

and we conclude that B

A

= (� � � (B

V

r

1

6!V

s

1

)

V

r

2

6!V

s

2

� � �)

V

r

n

6!V

s

n

. 2

As a result of this property of multiple arc removals, the Kullback-Leibler information di-

vergence of the joint probability distribution de�ned by a belief network with respect to the

distribution de�ned by the multiply approximated network is �nite. Furthermore, arc linear-

ity implies the following additive property of the Kullback-Leibler information divergence.

Lemma 3.12 Let B = (G;�) be a belief network and let Pr be the joint probability distribu-

tion de�ned by B. Let A � A(G) be a linear subset of arcs in G and let B

A

= (G

A

;�

A

) be the

multiply approximated belief network after removal of all arcs A as de�ned in De�nition 3.10.

Let Pr

A

be the joint probability distribution de�ned by B

A

. Then the Kullback-Leibler infor-

mation divergence I satis�es

I(Pr;Pr

A

) =

X

V

r

!V

s

2A

I(Pr;Pr

V

r

6!V

s

)

Proof. First, we prove that Pr� Pr

A

. Assume that the arcs in the linear set A are ordered

according to the relation �

G

as de�ned in De�nition 3.9, i.e. for all pairs of arcs V

r

i

! V

s

i

,

V

r

j

! V

s

j

2 A with V

r

i

! V

s

i

�

G

V

r

j

! V

s

j

we have that i < j. From Lemma 3.5 we �nd that

Pr � Pr

V

r

1

6!V

s

1

, Pr

V

r

1

6!V

s

1

� (Pr

V

r

1

6!V

s

1

)

V

r

2

6!V

s

2

, . . . , (� � � (Pr

V

r

1

6!V

s

1

) � � �)

V

r

n�1

6!V

s

n�1

�

(� � � (Pr

V

r

1

6!V

s

1

) � � �)

V

r

n

6!V

s

n

. Since� is transitive, we conclude that Pr� Pr

A

by application

of Lemma 3.11. Now, with this observation we �nd

I(Pr;Pr

A

) =

X

c

V (G)

Pr(c

V (G)

) � log

Pr(c

V (G)

)

Pr

A

(c

V (G)

)

=

X

c

V (G)

Pr(c

V (G)

) � log

Q

V

i

2V (G)



V

i

(c

V

i

j c

�

G

(V

i

)

)

Q

V

i

2V (G)



0

V

i

(c

V

i

j c

�

G

A

(V

i

)

)

where 

V

i

2 � and 

0

V

i

2 �

A

for all V

i

2 V (G). Since A is linear, we have for each arc

V

r

! V

s

2 A a new probability assessment function 

0

V

s

2 �

A

, while 

0

V

i

= 

V

i

2 � for each
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V

i

2 V (G) with V

j

! V

i

62 A for any vertex V

j

2 V (G). This leads to

I(Pr;Pr

A

) =

X

c

V (G)

Pr(c

V (G)

) � log

Q

V

r

!V

s

2A



V

s

(c

V

s

j c

�

G

(V

s

)

)

Q

V

r

!V

s

2A



0

V

s

(c

V

s

j c

�

G

V

r

6!V

s

(V

s

)

)

�

Q

V

i

2V (G);V

j

!V

i

62A



V

i

(c

V

i

j c

�

G

(V

i

)

)

Q

V

i

2V (G);V

j

!V

i

62A



V

i

(c

V

i

j c

�

G

(V

i

)

)

=

X

c

V (G)

Pr(c

V (G)

) �

X

V

r

!V

s

2A

log



V

s

(c

V

s

j c

�

G

(V

s

)

)



0

V

s

(c

V

s

j c

�

G

V

r

6!V

s

(V

s

)

)

�

Q

V

i

2V (G);V

j

!V

i

62A



V

i

(c

V

i

j c

�

G

(V

i

)

)

Q

V

i

2V (G);V

j

!V

i

62A



V

i

(c

V

i

j c

�

G

(V

i

)

)

=

X

V

r

!V

s

2A

X

c

V (G)

Pr(c

V (G)

) � log

Pr(c

V (G)

)

Pr

V

r

6!V

s

(c

V (G)

)

=

X

V

r

!V

s

2A

I(Pr;Pr

V

r

6!V

s

)

2

Note that linearity of a set of arcs to be removed is a su�cient condition for the property

stated above, yet not a necessary one.

From these observations, we have that the information inequality provides a �nite upper

bound on the error introduced in the prior and posterior distributions of an approximated

belief network after simultaneous removal of a linear set of arcs. This bound is obtained by

summing the information divergences between the joint probability distribution de�ned by

the network and the approximated distribution after removal of each arc individually from

the set of arcs.

Example 1 Consider the belief network B = (G;�) where G is the digraph depicted in

Figure 2.

V

2

1

V

V

V4

6

V3

V5

VV

V

8 7

9

0.0747 0.0820 0.0094

0.0613

0.0061

0.00410.5261

0 0.1318

0.1533

Figure 2: Information divergence for each arc in the digraph of an example belief network.
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A

q

1

2

I(Pr;Pr

A

) max

c

X

;X�V (G)

fjPr(c

X

)� Pr

A

(c

X

)jg

fV

8

! V

9

g 0 0

fV

6

! V

7

g 0.0453 0.0204

fV

5

! V

7

g 0.0552 0.0190

fV

3

! V

5

g 0.0686 0.0240

fV

6

! V

7

; V

3

! V

5

g 0.0822 0.0240

fV

5

! V

7

; V

3

! V

5

g 0.0880 0.0257

fV

4

! V

6

g 0.1751 0.0503

fV

6

! V

7

; V

4

! V

6

g 0.1808 0.0503

fV

5

! V

7

; V

4

! V

6

g 0.1836 0.0503

fV

4

! V

6

; V

3

! V

5

g 0.1880 0.0503

fV

1

! V

2

g 0.1933 0.0840

fV

6

! V

7

; V

4

! V

6

; V

3

! V

5

g 0.1934 0.0503

fV

5

! V

7

; V

4

! V

6

; V

3

! V

5

g 0.1960 0.0503

fV

6

! V

7

; V

1

! V

2

g 0.1985 0.0840

Table 1: Information inequality and absolute divergence of an approximated example belief network.

The set � consists of the probability assessment functions 

V

1

; : : : ; 

V

9

with



V

1

(v

1

) = 0:3 

V

6

(v

6

j v

2

^ v

4

) = 0:4 

V

8

(v

8

j v

6

) = 0:1



V

2

(v

2

j v

1

) = 0:4 

V

6

(v

6

j :v

2

^ v

4

) = 0:6 

V

8

(v

8

j :v

6

) = 1:0



V

2

(v

2

j :v

1

) = 0:8 

V

6

(v

6

j v

2

^ :v

4

) = 0:1 

V

9

(v

9

j v

7

^ v

8

) = 0:3



V

3

(v

3

) = 0:4 

V

6

(v

6

j :v

2

^ :v

4

) = 0:9 

V

9

(v

9

j :v

7

^ v

8

) = 0:8



V
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4
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) = 0:4 

V

7
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) = 0:4 
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V

5

(v

5
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V
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7
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(v

7
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) = 0:5

For each arc V

r

! V

s

in digraph G, the information divergence I(Pr;Pr

V

r

6!V

s

) between the

joint probability distribution Pr de�ned by B and the joint probability distribution Pr

V

r

6!V

s

de�ned by the approximated network B

V

r

6!V

s

after removal of V

r

! V

s

is computed and

depicted next to each arc in Figure 2.

Note that despite the presence of arc V

8

! V

9

in G, variables V

8

and V

9

are conditionally

independent given variable V

7

from the fact that 

V

9

(V

9

j V

7

^ V

8

) = 

V

9

(V

9

j V

7

). Therefore,

this graphically portrayed dependence can be rendered redundant and arc V

8

! V

9

can be

removed without introducing an error in the probability distribution since I(Pr;Pr

V

8

6!V

9

) = 0

as shown in Figure 2.

Table 1 gives the upper bound provided by the information inequality and the absolute

divergence of the approximated joint probability distributions after removal of various linear

subsets of arcs A from the network's digraph. The table is compressed by leaving out all

linear sets containing arc V

8

! V

9

(except for the set fV

8

! V

9

g) because the second and

third column are both unchanged after leaving out this arc. Note that any subset of arcs

containing both arcs V

5

! V

7

and V

6

! V

7

is not linear.

From this example, it can be concluded that the upper bound provided by the information

inequality exceeds the absolute divergence by a factor of 2 to 3. Furthermore, note that some
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arcs have more weight in the value of the absolute divergence. For example, the absolute

divergence for all sets containing arc V

4

! V

6

is 0:0503. 3

4 Approximation Schemes

In this section we will present static and dynamic approximation schemes for belief networks.

These schemes are based on the observations made in the previous section.

4.1 A Static Approximation Scheme

Clearly, arcs that signi�cantly reduce the computational complexity of inference on a belief

network upon removal are most desirable to remove. However, the error introduced upon

removal may not be too large. For each arc, the error introduced upon removal of the arc is

expressed in terms of the Kullback-Leibler information divergence.

E�ciently Computating the Information Divergence for each Arc

Unfortunately, straightforward computation of the Kullback-Leibler information divergence is

computationally far too expensive as it requires summing over all con�gurations of the entire

set of variables, an operation in the order of O(2

jV (G)j

). However, the following property

of the Kullback-Leibler information divergence can be exploited to compute the information

divergence locally.

Lemma 4.1 Let V be a set of statistical variables and let X, Y , Z � V be mutually disjoint

subsets of V . Let Pr and Pr

0

be joint probability distributions on V such that Pr

0

(C

V

) =

Pr(C

V n(X[Y [Z)

j C

X[Y [Z

) � Pr(C

X

j C

Z

) � Pr(C

Y

j C

Z

) � Pr(C

Z

). Then the Kullback-Leibler

information divergence I satis�es

I(Pr;Pr

0

) = I(Pr;Pr

0

;X [ Y [ Z)

Proof. By exploiting the factorization of Pr

0

in terms of Pr we �nd that Pr � Pr

0

. Using

De�nition 2.7 we derive

I(Pr;Pr

0

)

=

X

c

V

Pr(c

V

) � log

Pr(c

V

)

Pr

0

(c

V

)

=

X

c

V

Pr(c

V

) � log

Pr(c

V n(X[Y [Z)

j c

X[Y [Z

) � Pr(c

X[Y [Z

)

Pr(c

V n(X[Y [Z)

j c

X[Y [Z

) � Pr(c

X

j c

Z

) � Pr(c

Y

j c

Z

) � Pr(c

Z

)

=

X

c

V

Pr(c

V

) � log

Pr(c

X[Y [Z

)

Pr(c

X

j c

Z

) � Pr(c

Y

j c

Z

) � Pr(c

Z

)

=

X

c

X[Y[Z

2

4

X

c

V n(X[Y[Z)

Pr(c

V n(X[Y [Z)

j c

X[Y [Z

)

3

5

� Pr(c

X[Y [Z

)

� log

Pr(c

X[Y [Z

)

Pr(c

X

j c

Z

) � Pr(c

Y

j c

Z

) � Pr(c

Z

)
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Now, since

P

c

V n(X[Y[Z)

Pr(c

V n(X[Y [Z)

j c

X[Y [Z

) = 1, this yields that

I(Pr;Pr

0

)

=

X

c

X[Y[Z

Pr(c

X[Y [Z

) � log

Pr(c

X[Y [Z

)

Pr(c

X

j c

Z

) � Pr(c

Y

j c

Z

) � Pr(c

Z

)

=

X

c

X[Y[Z

Pr(c

X[Y [Z

) � log

Pr(c

X[Y [Z

)

Pr

0

(c

X[Y [Z

)

= I(Pr;Pr

0

;X [ Y [ Z)

2

For e�ciently computing the Kullback-Leibler information divergence I(Pr;Pr

V

r

6!V

s

) for each

arc V

r

! V

s

2 A of a linear subset of arcs A of the digraph of a belief network, it su�ces to

sum over all con�gurations of the arc block �

G

(V

r

! V

s

) of arc V

r

! V

s

only, which amounts

to computing the quantity

I(Pr;Pr

V

r

6!V

s

) = I(Pr;Pr

V

r

6!V

s

;�

G

(V

r

! V

s

))

=

X

c

�

G

(V

s

)[fV

s

g



V

s

(c

V

s

j c

�

G

(V

s

)

) � Pr(c

�

G

(V

s

)

)

� log



V

s

(c

V

s

j c

�

G

(V

s

)

) � Pr(c

V

r

j c

�

G

(V

s

)nfV

r

g

)

Pr(c

V

r

j c

�

G

(V

s

)nfV

r

g

) � Pr(c

V

s

j c

�

G

(V

s

)nfV

r

g

)

which is derived by application of the chain rule from probability theory. Hence, the computa-

tion of the information divergence I(Pr;Pr

V

r

6!V

s

) only requires the probabilities Pr(C

�

G

(V

s

)

),

Pr(V

r

j C

�

G

(V

s

)nfV

r

g

), and Pr(V

s

j C

�

G

(V

s

)nfV

r

g

) to be computed from the original belief net-

work. In fact, the latter two sets of probabilities can simply be computed from the former set

of probabilities using marginalization:

Pr(V

r

j C

�

G

(V

s

)nfV

r

g

) =

Pr(C

�

G

(V

s

)

)

Pr(v

r

^ C

�

G

(V

s

)nfV

r

g

) + Pr(:v

r

^ C

�

G

(V

s

)nfV

r

g

)

and these conditional probabilities are further used to compute

Pr(V

s

j C

�

G

(V

s

)nfV

r

g

) = 

V

s

(V

s

j C

�

G

(V

s

)nfV

r

g

^ v

r

) � Pr(v

r

j C

�

G

(V

s

)nfV

r

g

)

+ 

V

s

(V

s

j C

�

G

(V

s

)nfV

r

g

^ :v

r

) � Pr(:v

r

j C

�

G

(V

s

)nfV

r

g

)

Furthermore, once the probabilities Pr(C

�

G

(V

s

)

) are known, the divergence I(Pr;Pr

V

r

6!V

s

) for

all arcs V

r

! V

s

that share the same head vertex V

s

can be computed simultaneously since

these computations only require the probabilities Pr(C

�

G

(V

s

)

).

Selecting a Set of Arcs for Removal

For selecting an optimal set of linear arcs for removal one should carefully weight the advan-

tage of the reduction in computational complexity in inference on a belief network and the

disadvantage of the error introduced in the represented joint probability distribution after

removal of the arcs.

Given a linear subset of arcs A from the digraph of a belief network B, we de�ne the

function expressing the exact reduction in computational complexity of inference on network

B as

c(B;A) = K(B)�K(B

A

)
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where K is a cost function expressing the computational complexity of inference on a net-

work. Furthermore, we de�ne the exact divergence function d given arcs A on the probability

distribution Pr de�ned by network B as the absolute divergence

d(Pr; A) = max

c

X

;X�V (G)

fjPr(c

X

)� Pr

A

(c

X

)jg

Note that functionK depends on the algorithms used for probabilistic inference. For example,

if the clique-tree propagation algorithm of Lauritzen and Spiegelhalter is employed, K(B)

expresses the sum of the number of con�gurations of the sets of variables of the cliques of the

decomposable graph rendered upon moralization and subsequent triangulation of the digraph.

Then,K(B

A

) expresses this complexity in terms of the approximated network B after removal

of arcs A. Here, we assume an optimal triangulation of the moral graphs of B and B

A

, since

a bad triangulation of the moral graph of B

A

may even yield a negative value for c(B;A).

If Pearl's polytree algorithm with cutset conditioning is employed, K(B) equals the number

of con�gurations of the set of variables of the loop cutset of the digraph. Now, an optimal

selection method weights the advantage expressed by c(B;A) and disadvantage expressed by

d(Pr; A) for removal of a set of arcs A from network B.

Unfortunately, an optimal selection scheme will �rst of all depend heavily on the al-

gorithms used for probabilistic inference and, secondly, will depend on the purpose of the

network within a speci�c application. Furthermore, it is rather expensive from a computa-

tional point of view to evaluate the exact measures c and d for all possible linear subsets of

arcs. In general, the employment of heuristic measures for the selection of a near optimal set

of arcs for removal will su�ce. To avoid costly evaluations for all possible subsets of arcs,

the heuristic measures should be based on combining the local advantages (or disadvantages)

of removing each arc individually. Such heuristic functions ~c and

^

d for respectively c and d,

expressing the impact on the computational complexity and error introduced by removing an

arc may be de�ned with various degrees of sophistication. In fact, the Kullback-Leibler infor-

mation divergence measures how well one joint probability distribution can be approximated

by another exhibiting a simpler dependence structure [22, 13]. Hence, instead of computing

the absolute divergence, the information inequality can be used:

^

d(Pr; A) =

v

u

u

t

1

2

X

V

r

!V

s

2A

I(Pr;Pr

V

r

6!V

s

;�

G

(V

r

! V

s

))

where I(Pr;Pr

V

r

6!V

s

;�

G

(V

r

! V

s

)) is the information divergence associated with each arc

V

r

! V

s

2 A as described in the previous section. Note that

^

d now combines the divergence

of removing each arc separately and independently.

For de�ning a heuristic function ~c valuing the reduction in computational complexity of

inference with exact methods for probabilistic inference upon removal of a set of arcs from a

belief network, the following scheme can be employed. The complexity of methods for exacts

inference depends to a large extend on the connectivity of the digraph of a belief network.

With each arc V

i

! V

j

2 A(G) in the digraph G, a set of loops (undirected cycles), denoted

as loopset (V

i

! V

j

) is associated. A loopset of an arc consists of all loops in the digraph

containing the arc; a loopset of an arc provides local information on the role of the arc in the

connectivity of the digraph. This set can be found by a depth-�rst search for all chains from

V

i

to V

j

in the graph, backtracking for all possibilities and storing the set of vertices found
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along each chain in the form of bit-vector. Now, we de�ne the heuristic function ~c as

~c(B;A) =

�

�

�

�

�

�

[

V

r

!V

s

2A

loopset (V

r

! V

s

)

�

�

�

�

�

�

+ � � jAj

i.e. ~c expresses the number of distinct loops that are broken by removal of a set of arcs from

the digraph plus a fraction � 2 (0; 1] of the the total number of arcs rendered superuous.

The optimal value for � depends on the algorithm used for exact probabilistic inference.

Now, a combined measure reecting the trade-o� between the advantage ~c and disadvan-

tage

^

d of arc removal may have the form

w(B;A) = � ~c(B;A)�

^

d(Pr; A)

as suggested by Kjaerul� [13] where � is chosen such that ~c(B;A) is comparable to

^

d(Pr; A).

Function w expresses the desirability of removing a set of arcs from a belief network.

Now suppose that a maximum absolute error " > 0 is allowed in probabilistic inference on a

multiply approximated belief network and further suppose that the probability of the evidence

to be processed is never smaller than some constant �. Observe that from Lemma 3.8 a set

of arcs A can be safely removed from the network if � �

1

2

I(Pr;Pr

A

)="

2

. Hence, an optimal

set of arcs can be found for removal if we solve the following optimization problem: maximize

w(B;A) for A � A(G) subject to

^

d(Pr; A) � "

p

� and A is linear. Note that the constraint

^

d(Pr; A) � "

p

� ensures that the error in the prior and posterior probability distribution never

exceeds ". This optimization problem can be solved by employing a simulated annealing

technique [12], or by using an evolutionary algorithm [17], to �nd a linear set of arcs for

removal that is nearly optimal. A `real' optimal solution is not appropriate to search for,

since only heuristic functions are involved in the search process.

Example 2 Consider once more the belief network from Example 1. Suppose that the proba-

bility of evidence to be processed by the approximated belief network does not exceed � = 0:5

and further suppose that the maximum absolute error allowed for the (conditional) probabil-

ities to be inferred from the approximated network is " = 0:1.

First, three loops inG can be identi�ed: loop 1 constitutes vertices fV

3

; V

4

; V

5

; V

6

; V

7

g, loop

2 constitutes vertices fV

6

; V

7

; V

8

; V

9

g, and loop 3 constitutes vertices fV

3

; V

4

; V

5

; V

6

; V

7

; V

8

; V

9

g.

Thus, the loopset of arc V

6

! V

7

is f1; 2g and the loopset of arc V

8

! V

9

is f2; 3g. Now, �x

� = 1 in w and � = 1 in ~c. The following table is obtained for

^

d(Pr; A) � "

p

� � 0:0707:

A ~c(B;A)

^

d(Pr; A) w(B;A)

fV

8

! V

9

g 3 0 3

fV

6

! V

7

g 3 0.0453 2.9547

fV

8

! V

9

; V

6

! V

7

g 5 0.0453 4.9547

fV

5

! V

7

g 3 0.0552 2.9448

fV

8

! V

9

; V

5

! V

7

g 5 0.0552 4.9448

fV

3

! V

5

g 3 0.0686 2.9314

fV

8

! V

9

; V

3

! V

5

g 5 0.0686 4.9314

The linear set A = fV

8

! V

9

; V

6

! V

7

g is the most desirable set of arcs for removal (w(B;A) =

4:9547). Note that after removal, the graph G

A

is singly connected and, therefore, the network

is at least twice as fast for probabilistic inference compared to the original network using either

Pearl's polytree algorithm with cutset conditioning or the method of clique-tree propagation.
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Figure 3: Posterior error in probabilities inferred from an approximated example belief network.

Actually, the probability of evidence that can be processed with the approximated net-

work such that the error in inferred probabilities is bounded by " requires that Pr(c

Y

) �

1

2

I(Pr;Pr

A

)="

2

= 0:205 for all evidence c

Y

, Y � V (G). In Figure 3 we show the ob-

served maximum absolute error max

c

X

;X�V (G)

fPr(c

X

j c

Y

)� Pr

A

(c

X

j c

Y

)g and upper bound

q

1

2

I(Pr;Pr

A

)=Pr(c

Y

) obtained for all evidence c

Y

, Y � V (G), with Pr(c

Y

) � 0:205. 3

E�ciently Computing an Approximation of a Belief Network

Removal of a linear set of arcs from a belief network requires the computation of new set

of probability assessment functions that reect the introduced qualitative conditional in-

dependence with a quantitative conditional independence. We recall from De�nition 3.1

that we have that the new probability assessment functions 

0

V

s

(V

s

j C

�

G

V

r

6!V

s

(V

s

)

= Pr(V

s

j

C

�

G

(V

s

)nfV

r

g

) for variable V

s

upon removal of an arc V

r

! V

s

2 A(G). Clearly, arc V

r

! V

s

is

selected for removal only if the Kullback-Leibler information divergence I(Pr;Pr

V

r

6!V

s

) is suf-

�ciently small in order that the error introduced by approximating the network after removal

of V

r

! V

s

is bounded. The probabilities Pr(V

s

j C

�

G

(V

s

)nfV

r

g

) are in fact already computed

by the computation of the information divergence I(Pr;Pr

V

r

6!V

s

) for all arcs V

r

! V

s

in the

digraph of a belief network. When these probabilities are stored temporarily, it su�ces to

assign these probabilities to the new probability assessment functions of the head vertex of

each arc that is selected for removal.

4.2 A Dynamic Approximation Scheme

In this section we will consider belief networks with singly connected digraphs as a special case

for approximation. A singly connected digraph exhibits no loops, that is, at most one chain

exists between any two vertices in the digraph. For these networks, arcs can be removed

dynamically while evidence is being processed in contrast to a static removal of arcs as a

preprocessing phase before inference as described in the previous section. Therefore, the

computational complexity of processing evidence can be reduced depending on the evidence

itself and no estimate for a lower bound for the probability of the evidence has to be provided
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in advance. A detailed description and analysis of the method is beyond the scope of this

paper. However, a practical outline of the scheme will be presented which is based on Pearl's

polytree algorithm.

First, we will show that all variables in the network retain their prior probabilities upon

removal of an arc.

Lemma 4.2 Let B = (G;�) be a belief network with a singly connected digraph G. Let Pr

be the joint probability distribution de�ned by B. Furthermore, let V

r

! V

s

2 A(G) be an arc

in G and let B

V

r

6!V

s

= (G

V

r

6!V

s

;�

V

r

6!V

s

) be the approximated belief network after removal of

V

r

! V

s

as de�ned in De�nition 3.1. Let Pr

V

r

6!V

s

be the joint probability distribution de�ned

by B

V

r

6!V

s

. Then, Pr

V

r

6!V

s

(V

i

) = Pr(V

i

) for all variables V

i

2 V (G).

Proof. Assume that the vertices of the singly connected digraph are indexed in ascending

topological order, i.e. for each pair of vertices V

i

; V

j

2 V (G) with a directed path from V

i

to

V

j

in G we have that i < j. The proof is by induction on the index i of variable V

i

.

Base case i < s: from Lemma 3.6 we have that Pr

V

r

6!V

s

(V

i

) = Pr(V

i

).

For i � s, we apply the chain rule and the principle of marginalization to obtain

Pr

V

r

6!V

s

(V

i

) =

X

c

�

G

V

r

6!V

s

(V

i

)

Pr

V

r

6!V

s

(V

i

j c

�

G

V

r

6!V

s

(V

i

)

) � Pr

V

r

6!V

s

(c

�

G

V

r

6!V

s

(V

i

)

)

=

X

c

�

G

V

r

6!V

s

(V

i

)



0

V

i

(V

i

j c

�

G

V

r

6!V

s

(V

i

)

) � Pr

V

r

6!V

s

(c

�

G

V

r

6!V

s

(V

i

)

)

where 

0

V

i

2 �

V

r

6!V

s

. Since G is singly connected, all variables V

j

2 �

G

(V

i

) are mutually

independent by the d-separation criterion. Hence, we have that Pr

V

r

6!V

s

(c

�

G

V

r

6!V

s

(V

i

)

) =

Q

V

j

2�

G

V

r

6!V

s

(V

i

)

Pr

V

r

6!V

s

(c

V

j

). By the assumption that the vertices in G are ordered in as-

cending topological order, for each V

j

2 �

G

(V

i

) we have that j < i. Now, by the induction

hypothesis assume that for each V

j

2 V (G) with j < i we have Pr

V

r

6!V

s

(V

j

) = Pr(V

j

). Then,

by applying the principle of induction, we �nd

Pr

V

r

6!V

s

(V

i

) =

X

c

�

G

V

r

6!V

s

(V

i

)

Pr(V

i

j c

�

G

V

r

6!V

s

(V

i

)

) �

Y

V

j

2�

G

V

r

6!V

s

(V

i

)

Pr

V

r

6!V

s

(c

V

j

)

=

X

c

�

G

V

r

6!V

s

(V

i

)

Pr(V

i

j c

�

G

V

r

6!V

s

(V

i

)

) �

Y

V

j

2�

G

V

r

6!V

s

(V

i

)

Pr(c

V

j

)

= Pr(V

i

)

2

Now, consider an arc V

r

! V

s

in a singly connected digraph. In a singly connected digraph no

other chain exists from V

r

to V

s

except for the chain constituting the arc V

r

! V

s

. Therefore,

hfV

r

g j �

G

V

r

6!V

s

(V

s

) [ Y j fV

s

gi

d

G

V

r

6!V

s

holds on the singly connected digraph G

V

r

6!V

s

for any

subset of variables Y � V (G). From this observation, we have that the independence rela-

tionship between the variables V

r

and V

s

given �

G

V

r

6!V

s

(V

s

) remain unchanged after evidence

is given for any subset of variables. Informally speaking, this means that after evidence is

processed in a belief network, we can compute the Kullback-Leibler information divergence

between the posterior probability distribution de�ned by a belief network and the posterior

distribution of the approximated network after removal of an arc locally. Then, by a similar
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exposition for the properties of the Kullback-Leibler information divergence applied on gen-

eral belief networks for multiple arc removals as presented in the previous sections, it can be

shown that

I(Pr(� j c

Y

);Pr

A

(� j c

Y

)) =

X

V

r

!V

s

2A

I(Pr(� j c

Y

);Pr

V

r

6!V

s

(� j c

Y

);�

G

(V

r

! V

s

))

for belief network consisting of a singly connected digraph, where Pr is the joint probability

distribution de�ned by the network and Pr

A

is the joint probability distribution de�ned by

the multiple approximated network after removal of all arcs A. We note that the computation

of the divergence I(Pr(� j c

Y

);Pr

V

r

6!V

s

(� j c

Y

);�

G

(V

r

! V

s

)) for arc V

r

! V

s

is as expensive

on the computational resources as the computation of the causal and diagnostic messages

for vertex V

s

in Pearl's polytree algorithm assuming that logarithms require one time unit.

Furthermore, in fact, by using Pearl's polytree algorithm, arcs do not have to be physically

removed, the blocking of causal and diagnostic messages for updating the probability distri-

bution will su�ce. With this observation, we envisage an approximate wave-front version

of the polytree algorithm where the sending of messages is blocked between two connected

vertices in the graph if the probabilistic dependency relationship between the vertices is very

weak. That is, we block all messages for which the information divergence per blocked arc is

small such that the total sum of the information divergences over all blocked arcs does not

exceed some predetermined constant for the maximum absolute error allowed in probabilistic

inference.

5 Discussion and Related Work

We have presented a scheme for approximating Bayesian belief networks based on model

simpli�cation through arc removal. In this section we will compare the proposed method

with other methods for belief network approximation.

Existing belief network approximation methods are annihilating small probabilities from

belief universes [8], and removal of weak dependencies from belief universes [13]. Both methods

have proven to be very successful in reducing the complexity of inference on a belief network

on real-life applications using the Bayesian belief universe approach [9].

The method of annihilating small probabilities by Jensen and Andersen reduces the com-

putational e�ort of probabilistic inference when the method of clique-tree propagation is used

for probabilistic inference. The basic idea of the method is to eliminate con�gurations with

small probabilities from belief universes, accepting a small error in the probabilities inferred

from the network. To this end, the k smallest probability con�gurations are selected for

each belief universe where k is chosen such that the sum of the probabilities of the selected

con�gurations in the universe is less than some predetermined constant ". The constant "

determines the maximum error of the approximated prior probabilities. The belief universes

are then compressed to take advantage of the zeros introduced. Jensen and Andersen further

point out that if the range of probabilities of evidence is known in advance, the method can

be applied to approximate a belief network such that the error of the approximated posterior

probabilities computed from the network are bounded by some predetermined constant.

Similar to the method of annihilating small probabilities, the method of removal of weak

dependencies by Kjaerul� reduces the computational e�ort of probabilistic inference when

the method of clique-tree propagation is used. Kjaerul�'s approximation method and the

method of annihilation are complementary techniques [13]. The basic idea of the method is
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to remove edges from the chordal graph constructed from the digraph of a belief network that

model weak dependencies. The weaker the dependencies, the smaller the error introduced in

the represented joint probability distribution approximated upon removal of an edge. The

method operates on the junction tree of a belief network only. Given a constant ", a set of

edges can be removed sequentially such that the error introduced in the prior distribution is

smaller than ". Removal of an edge results in the decomposition of the clique containing the

edge into two or more smaller cliques which results in a simpli�cation of the junction tree

thereby reducing the computational complexity of inference on the network.

In comparing the methods for approximating belief networks, we �rst of all �nd that

the method of annihilating small probabilities from belief universes introduces an error that

is inversely proportional to the probability of the evidence [8] while the methods based on

removing arcs introduces an error that is inversely proportional to the square root of the

probability of the evidence. Furthermore, since the original joint probability distribution is

absolutely continuous with respect to the approximated probability distribution, the process-

ing of evidence in an approximated belief network by our method is safe in the sense that no

unde�ned conditional probabilities will arise for evidence with a nonzero probability in the

original distribution; the evidence that can be processed in an approximated belief network is

a superset of the evidence that can be processed in the original network. Once more, this is in

contrast to the method of annihilating small probabilities from belief universes. On the other

hand, however, the advantage of annihilating small probabilities is that the method operates

on the quantitative part of a belief network only whereas arc removal methods change the

qualitative representation as well. This can be remedied by introducing virtual arcs to replace

removed arcs. Virtual arcs are not used in probabilistic inference.

The method presented in this paper has some similarities to Kjaerul�'s method of removal

of weak dependencies from belief universes [13]. Both methods aim at reducing inference on a

belief network by removing arcs or edges. However, the independency statements we enforce

are of the form V

r

??V

s

j �

G

(V

s

) n fV

r

g in contrast to V

r

??V

s

j C n fV

r

; V

s

g by Kjaerul�'s

method where C � V (G) denotes the clique containing the edge removed by Kjaerul�'s

method. Furthermore, Kjaerul�'s method of removal is based on the clique-tree propagation

algorithm only and restricts the removal to one edge from a clique at a time in order that the

error introduced is bounded by some predetermined constant. In contrast, our method allows a

larger set of arcs (edges) to be removed in parallel, still guaranteeing that the introduced error

to be bounded by some predetermined constant regardless of the algorithms for probabilistic

inference used.

To summarize the conclusions, the scheme we propose for approximating belief networks

operates directly on the digraph of a belief network, has a relatively low computational com-

plexity, provides a bound on the posterior error in the presence of evidence, and is independent

of the algorithms used for probabilistic inference.
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