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Abstract

For a �nite undirected graph G = (V;E) and a subset A � V , the vertex-

switching of G by A is de�ned as the graph G

A

= (V;E

0

), which is obtained from

G by removing all edges between A and its complement A and adding as edges all

nonedges between A and A. A switching class [G] determined by G consists of all

vertex-switchings G

A

for subsets A � V . We prove that the trees of a switching

class [G] are isomorphic to each other. We also determine the types of trees T that

have isomorphic copies in [G]. Finally we show that apart from one exceptional

type of forests, the real forests in a switching class are isomorphic. Here a forest is

real, if it is disconnected.

1 Introduction

We denote by E(V ) = fxy j x; y 2 V; x 6= yg the set of all unordered pairs of elements

from the set V . The graphs in this paper will be �nite, undirected and simple, i.e., they

contain no loops or multiple edges.

For a (�nite) set A we let jAj denote its cardinality.

For a graph G = (V;E) and a subset A � V , the vertex-switching of G by A is

de�ned as the graph G

A

= (V;E

A

), where for each xy 2 E(V ) with exactly one of x

and y in A, we add xy to E if xy =2 E, and we remove xy from E if xy 2 E.

We shall identify each subset A � V with its characteristic function A : V ! Z

2

,

where Z

2

= f0; 1g is the cyclic group of order two, and each graph G = (V;E) with the

characteristic function G : E(V )! Z

2

of its set of edges so that G(xy) = 1 for xy 2 E,

and G(xy) = 0 for xy =2 E. With these notations we have for all xy 2 E(V ),

G

A

(xy) = A(x) +G(xy) +A(y) :

Later we shall use both of these notations, G = (V;E) and G : V (E)! Z

2

.
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The set [G] = fG

A

j A � V g is called the switching class of G.

In this paper we �rst prove that every switching class contains at most one tree up

to isomorphism. We also characterize the types of trees for which the switching class

contains more than one tree up to equality.

We then proceed along the same lines with real forests. A real forest is a disconnected

graph whose components are trees. A switching class can contain two nonisomorphic

real forests, but this happens only for one special type of forests as shown in Section 4.

Related results of vertex-switching have been obtained by Seidel [7], who showed that

each switching class contains a unique Euler graph when the graphs have an odd number

of vertices. We refer also to Mallows and Sloane [6] for this problem. For a survey of

switching classes and their relations to two-graphs we refer to Seidel and Taylor [8]. In

this paper we have much adopted the notations of Ellingham [3]. For generalizations

of our approach to graphs we refer also to Gross and Tucker [4] and Ehrenfeucht and

Rozenberg [2].

Cameron [1] has presented two constructions that yield a switching class generated

by a tree, and he has given characterizations of those switching classes in terms of

forbidden subgraphs. In particluar, in [1] it is shown that in those switching classes the

trees are unique up to isomorphisms.

For a graph G we let GjX denote the subgraph of G induced by the subset X of the

vertices. Hence in the function notation GjX : E(X)! Z

2

.

In the following we use V to denote a (�nite) set of vertices and for A � V , we

denote the complement of A with respect to V with A.

We end this section with some immediate results on switching classes.

For graphs G and H we de�ne G+H by (G+H)(e) = G(e) +H(e) for e 2 E(V ).

Clearly, the graphs form an abelian group � under this operation.

Let 0

V

= (V; ;) be the discrete graph on V . Let K

A

denote the complete bipartite

graph with the partition (A;A). Then GjA = G

A

jA and GjA = G

A

jA for all A � V ,

and hence GjA + G

A

jA = 0

A

and GjA + G

A

jA = 0

A

. On the other hand, G

A

and G

di�er on edges between A and A and thus all those edges exist in G

A

+G. This means

that the result is equal to K

A

. Obviously K

A

= K

A

and thus also G

A

= G

A

.

The following lemma is immediate, see also Ellingham [3].

Lemma 1.1

i. [0

V

] consists of the complete bipartite graphs on V , and it is a subgroup of �.

ii. For all A � V and G 2 �: G+G

A

2 [G

0

].

iii. For all A;B � V , (G

A

)

B

= G

A+B

. 2

In particular, (G

A

)

A

= G, and [G] = [G

A

] for all A.

2 Trees

In this section we prove that every switching class [G] for a graph G contains at most

one tree up to isomorphism. Moreover, we indicate the types of trees T for which there

exists a subset A so that T and T

A

are isomorphic trees.
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De�ne a star at x as a tree K

1;n�1

= (V;E), where n = jV j, x 2 V and zy 2 E if

and only if z = x or y = x.

We denote by P

t

(m; k) the tree that is obtained from the path P

t

of t vertices when

the leaves are substituted byK

1;m

andK

1;k

, see Figure 1(b) for P

2

(m; k) and Figure 1(d)

for P

4

(m; k). Similarly, K

�

1;m

denotes the tree, where the leaves of K

1;m

are substituted

by edges K

1;1

, see Figure 1(a). Further, K

1;3

(m; k) denotes the tree, where two of the

leaves of K

1;3

are substituted by the stars K

1;m

and K

1;k

, see Figure 1(c). Note that

K

1;m

= P

2

(1;m� 1) for all stars K

1;m

with m � 1.

(b)

(a)

(c)

(d)

Figure 1: Types of trees having self isomorphic vertex-switchings

We begin with a general result on forests.

Lemma 2.1

Let F = (V;E) and F

A

be forests for a subset A � V .

i. If C is a connected component of F jA, then C consists of at most two vertices.

Moreover, if C = fx; yg with x 6= y, then xy 2 E, and

8z 2 A : either zx 2 E or zy 2 E but not both : (1)

ii. If F jA has an edge, then F jA is discrete.

iii. For any x; y 2 A with x 6= y there exists at most one z 2 A such that zx; zy 2 E.

Proof:

Clearly, F

A

jA and F jA have the same connected components. Let C � A be a connected

component of F jA. By acyclicity for each z 2 A there can be at most one edge zx of F
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and similarly of F

A

such that x 2 C. On the other hand, each zx with x 2 C is an edge

either in F or in F

A

. This shows the �rst claim. The second claim follows immediately

from this.

The third claim is clear, since if z

1

; z

2

2 A with z

i

x; z

i

y 2 E, then (x; z

1

; y; z

2

; x)

would be a cycle in F . 2

Suppose then that T = (V;E) is a tree for which there exists a subset A � V such

that T

A

is also a tree. We may suppose that A 6= ; and A 6= V , since otherwise T

A

= T .

Further, by Lemma 2.1, we may assume that T jA is discrete, since T

A

= T

A

.

Let n = jV j, p = jAj and suppose T jA contains r edges, x

i

y

i

for i = 1; 2; : : : ; r with

x

i

; y

i

2 A, where fx

i

; y

i

g are the nonsingleton connected components of T jA. Since T

is a tree, it has n� 1 edges, and so there are n� 1 � r edges of T in A � A. Also, T

A

has n� 1 edges, and there are p(n� p)� (n� 1� r) edges of T

A

in A�A. Therefore,

the number of edges of T

A

is n� 1 = p(n� p)� (n� 1� r) + r, that is,

(p� 2)n = (p� 2)(p+ 1) + (p� 2r) : (2)

If p = 1, then r = 0, and n = 1, which is a trivial case.

If p = 2, then p = 2r and hence r = 1, and in this case A = fx

1

; y

1

g with x

1

y

1

2 E,

and, by (1), A = B

1

[B

2

, where B

1

= fz 2 A j zx

1

2 Eg and B

2

= fz 2 A j zy

1

2 Eg

form a partition of A. Therefore T is a P

2

(m; k) with m � 0 and k � 1 of Figure 1(b),

where the black vertices are in A. Here T

A

is also a P

2

(m; k), and thus isomorphic to T .

Assume then that p > 2. Now equation (2) becomes

n = p+ 1 +

p� 2r

p� 2

: (3)

It is immediate that either 2r = p, or r = 1, or r = 0. These cases give us the following

solutions.

If 2r = p, then n = p + 1. Now, T jA consists of r edges and it has no singleton

connected components, and T jA is a singleton graph. Therefore T is a K

�

1;r

(with r � 1)

of Figure 1(a), where the black vertex is in A. Clearly, also in this case T

A

is isomorphic

to T .

If r = 1, then n = p + 2, and thus T jA has one edge x

1

y

1

and p � 2 isolated

vertices, and T jA is a discrete graph of two vertices, say z

1

; z

2

. By (1), there are now

two choices: z

1

and z

2

are connected to the same or di�erent vertices of fx

1

; y

1

g. From

these we obtain that T is either K

1;3

(m; k) or P

4

(m; k) with m; k � 0 of Figure 1(c) and

1(d), respectively. Again, as is easy to see, T

A

is isomorphic to T in both of these cases.

If r = 0, then p = 3 or p = 4. In this case n = 7, and there are 11 nonisomorphic

trees on seven vertices, see Harary [5]. Of these trees seven are 3-by-4-bipartite. Now, if

T and T

A

are both trees, then clearly T contains no independent set with two vertices

in A and two vertices in A. Further, T cannot contain a vertex of degree four, and we

are then left with only two trees T of seven vertices. These are the trees of Figure 2(a)

and 2(b), the �rst one of which is a path P

7

, the second one will be referred to as T

7

.

For both of these trees T

A

is isomorphic to T .

We have thus proved our main theorem.
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(a) (b)

A

A

Figure 2: The only two 3-by-4-bipartite trees on seven vertices yielding a tree

Theorem 2.2

Every switching class contains at most one tree up to isomorphism. If it contains more

than one tree up to equality, then the tree is one of K

�

1;m+1

, P

2

(m; k + 1), K

1;3

(m; k),

P

4

(m; k) for m; k � 0, or one of the two special trees P

7

or T

7

of Figure 2 (with the set

A as indicated). 2

3 Trees into real forests

Let k;m � 0, and let S

k;m

denote the tree, which is obtained from a star K

1;k+m

by

substituting m leaves by an edge, see Figure 3(b).

We consider now the case where a tree T produces a real forest T

A

.

Suppose that T = (V;E) is a tree such that T

A

is a real forest for A 6= ; and A 6= V .

As above we may assume that T jA is discrete. Let again n = jV j, p = jAj and suppose

T jA contains r edges. Now, T

A

has less than n� 1 edges, and (2) is transformed into

(p� 2)n < (p� 2)(p+ 1) + (p� 2r) : (4)

If p = 1, then clearly T = K

1;n�1

, and hence T

A

is the discrete graph.

If p = 2, say A = fx; yg, then 2(1 � r) = p� 2r > 0, and therefore r = 0. Since T

is connected there exists a vertex z 2 A such that zx; zy 2 E, and by Lemma 2.1, the

vertex z is unique. Consequently, A = N(x) [ N(y) with N(x) \ N(y) = fzg for the

sets N(x) and N(y) of neighbors of x and y. Hence T is a P

3

(m; k), where the middle

vertex of the P

3

is z, see Figure 3(a) and A is the set of black vertices. In this case T

A

is a real forest, where z is isolated, and the edges are xu and yv for all u 2 N(y) and

v 2 N(x).

z

x y

(a) (b)

Figure 3: Two types of trees yielding a real forest
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If p > 2, then (4) gives

n < p+ 1 +

p� 2r

p� 2

;

which is possible only if r < p=2; if r = p=2 then we would have p � n, which cannot

happen. Assume �rst that p = n� 1, i.e., j

�

Aj = 1. This case holds always if r > 0. The

corresponding tree is T = S

k;m

with k > 0, see Figure 3(b), where the black vertex is in

�

A. Note that this also includes the star graph, namely when m = 0.

If r = 0 we get

n < p+ 1 +

p

p� 2

;

in which case p = 3 yields n < 7 and p = 4 also yields n < 7. Larger values for p yield

n = p+ 1.

For p = 3 only n = 5 and n = 6 remain and for p = 4 only n = 6, because the case

that p = n� 1 has already been taken care of.

If p = 3 and n = 5 there are three possible trees, a star which is not 3-by-2-bipartite

and two others, P

3

(1; 1) and S

2;1

.

If p = 3 and n = 6 only the trees P

6

, P

3

(1; 2) and S

1;2

are 3-by-3-bipartite and yield

a real forest.

If p = 4 and n = 6 there is only one tree, S

3;1

, which is 4-by-2-bipartite.

Theorem 3.1 Let T = (V;E) be a tree such that T

A

is a real forest. Then T is P

3

(m; k),

S

k+1;m

, or P

6

. for some m; k � 0.

4 Real forests

In this section we prove a result analogous to the one in the previous section on trees:

every switching class contains at most one real forest up to isomorphism excepting one

special kind of forests.

The counterexample is the real forest S

k;`;m

which is formed by adding ` isolated

nodes to S

k;m

(see Figure 4(b)). Of course, for S

k;`;m

to be a real forest it is necessary

that ` > 0.

Figure 4: Generic counterexample

If S = S

k;`;m

and we take A to be the one black vertex in the �gure, then S

A

= S

`;k;m

is a forest of the same type, but S

A

is isomorphic to S if and only if k = `.
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Let F = (V;E) be a real forest, A � V and p = jAj > 0, and assume that F

A

is a

real forest. We suppose that jAj � jAj, since F

A

= F

A

. We prove that if F

A

is a real

forest, it is isomorphic to F , unless F = S

k;`;m

with k 6= `.

By Lemma 2.1, we know that either F jA or F jA or both are discrete, and that the

connected components of F jA and F jA are either singletons or edges.

Because F and F

A

both have at least two components and no cycles, together they

contain at most 2(n� 2) edges. Therefore, p(n� p) � 2(n� 2), since there are p(n� p)

edges in K

A

and all of these are in either F or F

A

(but not both). We �nd that

n(p� 2) � p

2

� 4 = (p� 2)(p+ 2). Now, either p = 1 or p = 2, since if n � p+ 2, then

n � 4, because we can assume that p � n=2.

We have thus obtained so far

Lemma 4.1

If F = (V;E) is a real forest with n = jV j, and 2 < jAj < n� 2, then F

A

is not a real

forest. 2

Consider �rst the case p = 1, and let A = fxg. If jAj = 1, then n = 2, and hence

F = S

0;1;0

is discrete, and F

A

= S

1;0;0

is a tree.

Assume then that jAj � 2. By Lemma 2.1(iii), F = S

k;`;m

for some k;m � 0 and

` � 1, and, consequently, F

A

= S

`;k;m

. Hence, in this case, F

A

is a tree if and only if

k = 0, and otherwise F

A

is a real forest. In the latter case, F

A

is not isomorphic to F if

and only if k 6= `.

The case that p = 2 can be treated as follows. Let A = fx; yg.

In this case K

A

contains exactly 2(n � 2) edges, while F and F

A

both contain at

most n� 2 edges. This implies that F and F

A

contain exactly n� 2 edges and all these

edges are between A and A. Therefore F jA is discrete.

Suppose �rst that x and y belong to di�erent connected components. Now, K

A

becomes decomposed into two stars, the leaves of which are the neighbors of x and y,

respectively. In this case, F and F

A

are clearly isomorphic, see Figure 5(a).

On the other hand, if x and y belong to the same connected component, then, by

Lemma 2.1, there exists a unique vertex v 2 A such that vx 2 E and vy 2 E. Since F

is disconnected, there is a vertex z 2 A that such that xz; yz =2 E. Further, because F

A

is acyclic and xz, yz are edges of F

A

, this vertex z must, like v, be unique. This implies

that F and F

A

are isomorphic, the isomorphism is the permutation (x; y)(v; z), which

leaves all other vertices intact, see Figure 5(b).

All these cases together yield the following main result of this section.

Theorem 4.2

Every switching class contains at most one real forest up to isomorphism, unless it is a

class containing S

k;`;m

with k 6= ` and k; ` > 0. If it contains more than one real forest

up to equality, then the forests are of the form given in Figure 5 or is S

k;`;m

with k 6= `

and k; ` > 0. 2

The class containing S

1;2;0

contains P

3

and S

2;1;0

. Hence there is a class containing

three forests up to isomorphism.

From the above we obtain also the following corollary.
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(a) (b)

y

x

v

z

Figure 5: Two cases of self isomorphism

Corollary 4.3

Every switching class contains

� at most two real forests up to isomorphism and the upperbound is reached if and

only if it contains S

k;`;m

with k 6= ` and k; ` > 0.

� at most three forests up to isomorphism. The upper bound is optimal and can

only be reached if it contains two real forests up to isomorphism. 2
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