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Abstract

In this paper it is proved that the error surface of the two-layer XOR
network with two hidden units has a number of regions with local
minima. These regions of local minima occur for combinations of the
weights from the inputs to the hidden nodes such that one or both
hidden nodes are saturated (give output O or 1) for at least two
patterns. However, boundary points of these regions of local minima
are saddle points. From these results it can be concluded that from
each finite point in weight space a strictly decreasing path exists to a
point with error zero. Furthermore we give proofs that points with
error zero exist, and that points with the output unit saturated are
either saddle points or (local) maxima. In [10] it is proved that
stationary points with finite weights are either saddle points or abso-
lute minima.

1 Introduction

To investigate the error surfaces of XOR networks thoroughly is important,
since Prechelt [5] found in his investigation of articles on learning algorithms
in neural networks th&0 articles (18%) employed the “grandfather” of all
neural network problems, the XOR or n-bit parp there are many experi-
mental results that can possibly better be explained with more knowledge of
the error surface of these networks.

More insight in the error surfaces of a number of concrete problems can
give a better insight in the specific behaviour of the learning algorithms
under investigation.

In literature we found a number of results concerning the error surface of
these networks, but we didn’t find a complete investigation of the error
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surfaces of the XOR networks. In [7, 8] we described our results for the error
surface of the XOR network with one hidden node and connections directly
from the inputs to the output node (see figure 1a). In this paper together with

(a) (b)

Figure 1. The simplest XOR network (a) and one with two hidden node

[10] we give a complete investigation of the error surface of the two-layer
XOR network with two hidden nodes (see figure 1b). The transfer function
used is the usual sigmofdx) = 1/ (1+eX*) . We consider the quadratic
error function

-1 _t)2
E = ZZ (O —ty)
while in literature also the “cross-entropy”
L=-Y IN[ (Og) " (1-0y) * ']
a

is used. The difference is that the terms

Ry = (Oy =t ) f' (1)
which occur in the partial derivatives of the quadratic elfror  simplify to

Ra' = (Oa_ta)
for the cross-entropy. . So the analysis for the quadratic &ror is more
complicated than that for the cross entrdpy . Especially more stationary
points (points where all partial derivatives with respect to the weights are
zero, so the gradient of the error is zero in these points) occhr for  than for
L. We mention the stationary points for which the output node is saturated
(I, is equal to plus or minus infinity) for at least one of the patterns. In
subsection 4.2 we will show that these points are saddle points or local
maxima. Also some more stationary points occur for finite weights (see
[10]).

Since all stationary points of the error surface with the cross-entropy
form a subset of the stationary points for the quadratic &ror , it is easily

checked that all results obtained here also hold for the cross ehtropy . So
especially the regions of local minima found for the quadratic &ror , which



are summarized in tables 2 until 11, are also regions of local minima for the
cross-entropyL

In this paper it is proved that the error surface of the 2-2-1 XOR network
has a number of regions consisting of local minima. These regions of local
minima occur for combinations of the weights from the inputs to the hidden
nodes such that one or both hidden nodes are saturated (give output O or 1,
since the input is eithero+ of0 ) for at least two patterns. However,
boundary points of these regions of local minima are saddle points. From
these results it can be concluded that from each finite point in weight space a
strictly decreasing path exists to a point with error zero. Furthermore we give
proofs that points with error zero exist, that stationary points with finite
weights are either saddle points or absolute minima, and that points with the
output unit saturated are either saddle points or (local) maxima.

Relation to previous work

Blum [1] investigated the 2-2-1 XOR network with the cross-entropy as error
function. He restricted the weights to be symmetrical. For the 5 remaining
independent weights he proved that exact solutions exist for the XOR
problem. In section 3 we give our proof that the XOR problem can be repre-
sented exactly by the 2-2-1 network. Blum’s proof is more complicated since
the network considered has less degrees of freedom. In the same paper [1]
Blum identified a linear manifold of stationary points to be local minima. In
this paper it is shown that for the network with 9 independent weights this
line does not contain local minima. In [9] we proved that also with
symmetric constraints on the weights no local minima exist on the manifold
given by Blum. Hamey [2] also found that Blum’s proof was incorrect.

Lisboa and Perantonis [4] characterize the stationary points of all two-
layer XOR networks with and without connections directly from the inputs
to the output unit, considering the cross-entropy as error function. They also
give some local minima for the 2-2-1 network and tell that they checked that
these points are indeed local minima by considering the second order partial
derivatives. However, they do not give details of their proofs. Four of their
local minima are found to be numerical equivalent to local minima resulting
from our research (see section 5.7). The fifth point is not a local minimum
(see [10]).

Hamey [2, 3] also investigated the 2-2-1 XOR network with the cross-
entropy as error function. In [2] he shows that for all points with finite
weights a finite non-ascending trajectory exists to a point with error zero. He
concludes that the 2-2-1 XOR network has no (regional) local minima. He
defines a regional local minimum as a local minimum that has to be reached



by a non-ascending path from points in the neighbourhood. In [3] Hamey
proves that all finite stationary points are saddle points. In this paper we
prove that the 2-2-1 XOR network has local minima for infinite values of the
weights from the inputs to the hidden nodes. However, this result does not
contradict Hamey's results, since our definition of a local minimum in a
point (finite or infinite) is that a local minimum is attained in a paint  if for
all pointsw' in a neighbourhood of the inequalitjw) <f(w') holds
and we accept that points with infinite weights exist. Such an infinite local
minimum can trap a learning algorithm, since a decreasing path to a point
with error zero will first get closer to the infinite point and will not neces-
sarily reach a neighbourhood where the learning algorithm can escape from
the region with the local minimum value.

Contents of the paper

In section 2 the network and its parameters are introduced and also the error
function is given. In section 3 it is proved that the network can represent the
XOR function, as specified in section 2, exactly. In [7] we introduced the
notions of stable stationary points, i.e. points which are stationary points for
the error of each individual pattern, and instable stationary points. The latter
points are stationary points for the total error, but not for each individual
pattern. In section 4 it is proved that stable stationary points are either abso-
lute minima with error zero or saddle points or (local) maxima, but not local
minima. Both finite and infinite weights are investigated in this section.
Logically the next section would contain the proofs that instable stationary
points with finite weights can not be local minima. We decided to publish
this part separately in [10]. In section 5 the instable points with infinite
weights are treated. Here it is found that local minima only can exist if at
most two patterns are learned. The resulting local minima with two patterns
learned are summarized in subsection 5.3, while subsection 5.5 contains the
local minima with one pattern learned, and section 5.6 contains the local
minima with all patterns giving a wrong output. In subsection 5.7 some
examples of local minima found in literature are shown to belong to one of
the classes found earlier. The paper ends with section 6 containing some
conclusions.



2 The network

In this paper we investigate the error surface of the network with two hidden
units and without direct connections from the inputs to the output (see figure

2).

Figure 2. The XOR network with 2 hidden u

For the XOR function we assume that the patterns given in table 1 should be
learned/represented by the network.

Table 1: Patterns for the XOR problem

Pattern X1 X5 desired output
Poo 0 0 0.1
Po1 0 1 0.9
Pio 1 0 0.9
= 1 1 0.1

The input of the output unit is for the four patterns:

AOO

u+ vlf (WOl) + vzf (Woz)

o1 = Ut Vi (Wop +Wy) +Vof (W, +W,))

A
Arp = Ut vif(woy + W) +V,f (W, +wy))
A

2.1)

11 = Ut v (Woy +wyg +Wyp) +Vof (Wop + Wy, +W,))

So the four patterns result in output values equaf (., f(A,,) :

f(A;p andf(A;,) ,respectively.
The mean square error is equal to:



E = %(f(AOO) ~0.1) 2+%(f(A01) ~0.92+ )
2(f(Ay) 0.9 2+ 3 (F(A;) —0.1)2

The weight space has a number of symmetries for this problem, which we
will exploit in order to reduce the number of different cases that have to be
investigated. Especially, we will consider the following four transformations
of the weight space:
Transformation 2.1: (interchanging the inputs using the symmetry of the
training patterns with respect to the inputs)

Wip' = Wop, Woy' = Wyp, Wyo' = Wy, W, = Wy, Other weights

equal.
Transformation 2.2: (interchangiigy,, aRd;, , dfg gl )

Wop = Wop+ Wy +Wop, W' = Wop+ Wy +Woy, Wyg' = =Wy,

Wo,' = —Wyp, Wyo' = =Wy,, Wy, = —W,,, other weights equal.
Transformation 2.3: (using that(x) = 1-f(—x) , and interchanging
patterns with desired output 0.1 and those with desired output 0.9)

U= —U—Vy =V, Wop' = =Wpy =Wy, Wop' = —Wpp—Wpy,

Wy, = -Wwyp, W' = =Wy, other weights equal.

Transformation 2.4: (mirroring the network)
V1'.: V21 VZ' = Vl,Wil’ = Wi2,Wi2' = Wil’i O {O, 1, 2} , other
weights equal.

3 Representation

In this section we prove that the XOR function can be represented exactly by
the network with two hidden units given in figure 2.

The XOR function is exactly represented by the network if the weights
Vi, Vo, Wop, Wyg s Woy s Wop , Wy andw,, are such that the following equa-
tions hold:

f(Ay) = 0.1
f(Ay) = 0.9
f(A,) = 0.9 1)
f(A;) = 0.1

Application of the inverse df on both sides of (3.1), using (2.1), leads to:



u+v,f(wgy) +v,of(wy,) = f2(0.1)

u+ vy f (Woy +Wy) +Vof (Wo, +W,,) = f-1(0.9)

u+ v, f(wo, +wy) +v,f (wy, +wy,) = £71(0.9) (3.2)
U+ vy (Woq +Wyg +W,) +Vof (Wop + Wy +Wpp) = £71(0.1)
From these equations it follows that:
—u = v,f(wgyy) +v,f(wy,) —f71(0.1)
= v, f (W + Wyy) + Vof (W, +W,,) —F1(0.9) 3.3)

= v, (W + Wy,p) + Vof (W, +wy,) —F71(0.9)
= vy (Wop + Wpg +Wpp) +Vof (Wop + Wiy + W) —f71(0.1)
leading to the following three equations for the weights with exception of
vy (F(Wog) —f (W +Wyy +Wyp) ) +
+V, (F(Wop) —F (Wt Wi+ wyy)) =0
vy (F(Woy + W) —F(Woy +Wyp)) +
+Vy, (F(Wop + Wop) =T (Wop+ Wy5))
vy (F(Wog) —f (W +Wy)) +
+V, (f(wpy) —f(Wp,+w,,)) = =2f -1(0.9)

(3.4)

I
o

The set of equations (3.4) is a set of three linear equations in the two varia-
blesv, andv, .

Let us consider points withw,; = w,,#0 and,, = w,,#0 . For
these points the second equation of (3.4) is identically zero, and for almost
all values of the Weightwij the first and third equation will be linearly inde-
pendent, sv; and, are determined by these equations and follows from
(3.3). Thus at least one region in weight space exists where the p&grns
Po1: P1o @andP,; are represented exactly. The dimension of this region is at
least 4 and probably 5, since the condition that the first two equations of (3.4)
have to be linearly dependent results in one restriction on the 6 Ww'ights

4 Stable stationary points

Let us introduce

Roo = (f(Age) —0.1) ' (Ayp)
Rop = (f(Agp) —0.9 ' (Agy)
Rip = (f(A) —0.9f (A (4.1)
Ry, = (F(Ay) —0.1) 1" (A)



Stable stationary points are obtained when the gradient of the error is zero for
each of the four patterns separately, thus if
R =Ry =Rjg=R;; =0 (4.2)

The cases with all weights finite and one or more weights infinite are consid-
ered here.

4.1 Finite weights

If all weights are finite the only points with eFHij 's equal to zero are the
points satisfying equations (3.1) and thus all patterns are learned exactly and
the error is zero.

4.2 Output O or 1

We have to investigate those points where one or more of the ﬁgjrms are
infinite and the other terms result in the desired output.

Let us consider points in weight space in the neighbourhood of such a
stable stationary point. We will show that it is not possible that an infinite
value of Ay, corresponds to a local minimum. The other céggs A, ,
and/orA,; tending to plus or minus infinity are treated by transformations of
the weight space.

First let us try to keep,; A,, andl;; constant. By (2.1) the effect of
small variations of/; w,, w;; and,, ORAy, Ay; A, ald, is:

DAy = F(Wyy) Avy + v, f' (W) AWy,
AAgy = F(Wop +Wyp) Avy + V' (Woy + W) (Awg, +AW,,)
AA o = F(Wop +Wqyg) Avy + V' (Woy +wyy) (Awg, +Aw,,) (4.3)
DAy = F(Wop +Wyg +Wyy) Av, +
+Vaf (Wop + Wy +Wyy) (AWg, + AW, +AW,))
Solving Aw, , Aw,, andAw,,; from the equations f&A,,  &A, =
AA,; =0, results in:
DAy, =
Of (Wop)  FWoy +W,y) — F(Wpy +Wyy)
T (Wop) 7 (Woy +wWpy) ' (Woy +wyy)

' (wpy) AV

F(Wog +Wyy +Wpy)
f"(Wop + Wy +wy) U

—f' (Wp,) AvleWOlgl - ewll%l — eWmE

Thus ifw,, #0 andw,, #0 then itis possible to vary the weightsw,,
w,; andw,, such thaf,, becomes closer to the desired value, dhile



A, andA,; remain constant. The effect is that the error decreases when the
weights are altered in a direction away from the stationary point. So if
w,; #0 andw,; #0 therA,, -~ oo will never result in a local minimum.

Similarly it is proved that fow,,#0 an@,,#0 it is possible to vary
the weightsv, ,w,, Ww;, andv,, such th&,, becomes closer to the
desired value, whilé\,; A;, and;; remain constant, and also in this case
Ayo — oo will not yield a local minimum.

The cases that have to be investigated further are the cases where both

w,;; = 0 orw,, =0, andw,, = 0 orw,, = 0 . These cases lead to the
four cases:

* w;; = 0andw,,

* w;; = 0 andw,,

W, = 0 andw12

o O O O

* W,;, = 0 andw,,

In the first casew,; = 0 and,, = 0 ) equation (2.1) becomes:
Ago = Ao
Anr = A

u+ vlf (WOl) + v2f (WOZ)

4.4
U+ v, f (Woy +Wy) +V,f (W, +W,)) (*4)

Stable stationary points can only be found in this case if all four tA{Jms
are infinite. Ifv, is varied a little bit such thay, aAg,  are moving away
from infinity and w,, is varied correspondingly such thg}; and
remain constant, then the total error is decreased andAtus *o will
not result in a local minimum in this case.

In the second casev(, = 0 amg, = 0 ) equation (2.1) becomes:

A00 = u+ vlf (WOl) +v2f (W02)

Apr = Ut vif(woy +wyg) +V,f (Wpy) (4.5)
Ao = U+ vf (Wop) +Vof (W, +Wyp) .
App = Ut vf (W +Wyp) +Vof (Wop + W)

From equations (4.5) it follows that:
Aso—Ao1=AptA; =0 (4.6)

So if Ay, » £ then at least one of the other teriyg A,y  AQ[ will
also approacko . Because of equation (4.6) one of the following possibili-
ties will occur:A,, andA;; have opposite signAy, has the same sign as
A,; (or A,,) where the concerning terms are approactiig

If AypandA,; have opposite sign we can vary v,, w,,  &and such
thatA,, andA;, remain constant, resulting in:



DA, = f(wgy) Av, +f(wy,) Av,
DA, = F(wgy+Wyy) Avy +T(Wy,) Av, + v, (W, +W,,) Aw,,
DAy = T(Woy) Avy + T (Woy +Wyp) AV, + Vo' (Wop + Wop) AWy, (4.7)
AA ;= F(wgy+Wy,) Avy +F(wy, +wWy,) Av, +
Vo' (Wop + Waq) AW, + Vof (Wop + Wy o) Aw,,

Using the equations fakA,;, &A,;, =0 leads to:

AA;; = —f(wy) Av, —F(wy,) Av, = —-AA, (4.8)
So it is possible to change the valuespfv, ,w,, angl suchAfhat
andA,, remain constant, and body,  ahgd move away from infinity,

thus decreasing the error. So this case will not result in a local minimum.
If Ayg and A,; approach infinity with the same sign, we find analogously

to the previous case that varying v, w,,  amg, such fat and
A,; remain constant leads to:
AAy, = T(wgy) Av, +F(wg,) Av, = AA, (4.9)

So bothA,; andA,, can be moved away from infinity, resulting in a
decreasing error. So also this case will not result in a local minimum. From
symmetry it is clear that also the case whiyg Apd approach infinity,
with the same sign, will not lead to a local minimum.

The third casew,, = 0 an#,;, = 0 ) and the fourth casg,(= O
andw,, = 0) are equivalent to the second and the first case, respectively.

So we can conclude that no local minima will be foundl i approaches
infinity. From transformations 2.1, 2.2 and 2.3 it can be concluded that also
no local minima will be found if one of the other teriyg A,y  andpr
approaches infinity.

In the proofs we did not really use the fact that we were considering stable
stationary points. So we can extend these results immediately to unstable
stationary points.

Conclusion 4.1Stationary points with the output for at least one of the
patterns equal to O or 1 cannot be local minima.

Conclusion 4.2 The only stable stationary points that behave like a
minimum are the points with all four patterns exactly learned, so in those
points the absolute minimum with error zero is found. All other stable
stationary points, both with finite weights and with infinite weights, are
either saddle points or (local) maxima.
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5 Instable stationary points with infinite weights

For instable stationary points the gradient of the total error is equal to zero,
while the gradient of the error of at least one of the patterns is unequal to
zero. In [10] it is proved that all instable stationary points with finite weights
are saddle points. In this section we will show that local minima exist when
one or more of the weights to the hidden units are equabto

We will divide the problem in classes with respect to the number of terms
R; equal to zero. In section 4.2 we showed that no local minima occur if one
of the termsRij is equal to zero because of the input of the output node being
infinite. So we will study here the cases that a number of the patterns is
learned, resulting in the corresponding telﬁ?ﬂs being zero.

5.1 Three of the patternsP;; are learned

Since the partial derivative ofE with respect 10 iIs equal to
Roo+ Ryp + Ry + Ry itis clear that_if three of the four ternfy  are zero,
the fourth has to be zero too. So in that case we are in a stable stationary
point.

5.2 Two of the patternsP;; are learned
There are 6 possibilities to have two of the four patté?iﬁ\s learned, but
essentially there are two different cases:

* Pyy andP,, are learned and
* Pyy andP,, are learned.

The other possibilities can be obtained from these two cases by transforma-
tion of the weights. So we will consider these two cases first.

5.2.1 The patternsPyg and Py, are learned
In this caseR,; = Ry; = 0 holds and all first order partial derivativeg of
with respect to the weights are equal to zero if in addition:
Rip = Ry, #0
f(Wop +Wpq) = f(Woy + Wy +W,)
f(Wop +Wyp) = f(Wopt+ Wy, + W)
vif' (Woy +wyy) =0 (5.1)
Vif' (Woy +Wyp +Wyp) =0
Vof' (Wp, +Wy,) =0
Vol ' (Wop + Wyp +Wyp) = 0

11



We are considering the cases where at least one of the weights is. itifinite
Wy, + Wy, is finite, then necessariw,, = 0 and = 0  has to hold. In
this case we find (see also the proofs in [10]) that all partial derivatives of the
error with respect to combinationswf,  andvoy; are equal to zero. But
taking also the partial derivative with respectjo  results in:

3
a E —_ n 1
oV, 0W, ,0W = Ry f" (Wop +wyy) #0 if wy, +wy; #0
7120 | ghat pnt
4
0E = Ry f"" (Woy +Wy,) 20 if Wy, +W,, =0
V. OW2 W = Ry f"" (Woy +wyy) T Woq +Wypq =
10WT10W5q
stat.pnt

and thus the points withvy, + w;, finite are saddle points (see theorems A2,
A3 and A4 in [7]). Analogously points witlvy, + W, +W,; Wy, +W,;, Or
Wy, + Wy, + W,, finite are saddle points. So the remaining points that have to
be investigated can be divided into the following four cases:

* Wop ¥ Wyq = Wop T Wyg ¥ Wyp = Wyt Wyp = Wy + Wyip Wy, =

* Wop ¥ Wpq = Wog T Wyq T Wy = 00, Wyt Wiy = Wt Wyp+ Wy, = —0
* Wop ¥ Wpg = Wog T Wyq FWpp = =0, Wyt Wyp = Wy Wip+ Wy, = ©
* Wop tWyq = Wog T Wyg FWyp = Wy Wyp = Wop+ Wy + Wy, = —00

We will consider these cases in the following.

Case 5.2.1. 1W01+W11 = W01+W11+W21 = W02+W12 = W02+W12+W22 = 00
In this case equations (2.1) give:
Ay = U+ v f(wy,) +Vv,f(wy,) = f1(0.1)
Ay = U+ vf(Wo, +Wsy) +V,f (Wo, +W,y,) = £71(0.9 (5.2)
Ajg=A;; =utv+v, =0

The corresponding error level is 0.16. Eliminating  results in:
Ay = —V4f (W) —Vof (—wy,) = £71(0.1) =-2.197
Ay = Vi f (—Woy —W,) = Vof (W, —W,,) = £71(0.9) =2.197

(5.3)

Sincef (x) is positive and,,; and,; have opposite sign, gnd  will
have opposite sign and will not be equal to zero in this case. Since
f(x) O[O0, 1] it follows that either

« v, 2f71(0.9) andv,<f-1(0.1) or
. v,<f(0.1) andv,=f2(0.9) .

Equations (5.3) have a solution fey angl if the following inequality
holds:

12



f(—Wpy) F(=Wp, —Wsy,) # T (—Wg,) f(=wWy —W,,) (5.4)

In order to investigate points witliy, + w,; = Wy, +w,;, = © , we use the
substitution:

p, = e "o andp, = e
The stationary points considered correspond with= p, = 0 and we are
interested in the behaviour of the error surfacedpri 0 andp, ¢ O.
Computation of the partial derivatives of the erfor ~ with respepito  and
p, for p, andp, equal to zero, choosing,, Wy, W, ang, inde-
pendent ofp, ang, , results in:

Wo2 —Wpo

9E

= = 0.4f'(0)v; (1-€"2),i0{1,2} (5.5)

! p =0

Since bothp, ang, are greater than or equal to zero it is clear that if one of
the derivatives in equation (5.5) is negative, then the error will decrgase if

or p, moves away from zero (analy; +w;; @, +W,, moves away
from infinity, correspondingly). Thus then the stationary point is not a local
minimum. The sign of the derivatives in (5.5) is determined by the signs of
Vi, Vy, Wy, @andw,, . So we can conclude:

Conclusion 5.1Stationary points with the patteriy, afy, learned,
U+ Vi 4V, = 0, Wop+Wyg = Woy+tWyg Wy = 0 and wo, + Wy, =
W, + Wy, + W,, = oo, are not local minima if

« v, 2f71(0.9) andw,,<0,or

« v, <f1(0.1) andw,,>0, or

« v,2f1(0.9 andw,,<0,or

« v,<f1(0.1) andw,,>0.

If both derivatives in equation (5.5) are positive, increaging arqjor

will lead to an increase of the error. Whep  amd  are equal to zero the
error can only be decreased by altening v, +v, (see (5.2)), such that the
error corresponding td,, andl,  decreases, and altering the other weights

in order to keep the error correspondinghlp and equal to zero. But
the error corresponding #,, ard, as a functioxef u+v, +v, is
equal to:
-1 2,1 2
E = é(f(x) -09 4+ é(f(x) -0.1) (5.6)

which attains a minimum fax = O

So each variation ofi + v; +v,  will increase the error with respect to
A, andA,; . So here a local minimum is found!

13



The dimension of the region in which this minimum value is attained
follows from (5.2), (5.3) and (5.4): Wy, w,, W,; and,, are chosen
such that the inequality (5.4) holds, thenv,, and are determined by
(5.2) and (5.3). So the dimension of this region of local minima is 4.

Conclusion 5.2A 4-dimensional region of local minima with error 0.16 is
found if the pattern®,, anB,, are learnad} v, +v, = 0 Wy, +w,,;
= Wop + Wyq +Wyy = 00 andwy, + Wyp = Wgy+ Wyp+ Wy, =, and

e v, 217109, v,<f1(0.1) , w,, >0 andw,,<0 , or
e v, <f1(0.1),v,2f1(0.9 ,w,, <0 andw,,>0 .

Finally consider the case that one or both of the derivatives in (5.5) are equal
to zero, i.,ew,, = 0 and/ow,, = 0 . These points are boundary points of
the region with saddle points given in conclusion 5.1, so they are saddle
points too. In the following we will show that points witin,; = 0 are

saddle points by considering the partial derivatives.,lf = 0 , then we find
from (5.3) that
—V, { f(=Wp,—W,,) —f(—wy,)} = 2f1(0.9) >0 (5.7)

implying that either
* v,>0 andw,,>0, or
* V,<0 andw,,<0.

So conclusion 5.1 can not be applied to conclude that these points are saddle
points. Let us consider the second order derivatives of the error with respect
to u andp, . Calculation results in:

2
> = 2{f'(1(0.1))} 2 (5.8)
w2l oo
Py =Wy =0
oE
= ! 2
S 2{1(0)} 2v, (5.9)
Py =Wy =0
2
OE = 2{f'(0)} 22 (5.10)
op;5
Py =Wy =0

leading to the following terms in the second order part of the Taylor expan-
sion of the error:

AE=2{f"(0)} 2(v,Ap, —Au) 2+
—2[{f'(0)} 2-{f'(f71(0.2))} 2] (Au)?2
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So if Au is chosen equal o, Ap, itisclear tieE <O  and thus no local
minimum exists in the points witw,,;, = 0
So we can sharpen conclusion 5.1 to:

Conclusion 5.3Stationary points with the patteriy, afj, learned,
UtVp+Vy = 0, Wop+Wyg = Wop + Wy + Wy, = 0 and wo, +wy, =
Wy, + Wy, + W,, = o are not local minima if

« v, 2f71(0.9 andw,,<0,or
« v, <f7(0.1) andw,,20,or
« v,2f1(0.9 andw,,<0,or
* v,<f71(0.1) andw,,=0.

Now consider the regions where a local minimum is attained. In these
regions equations (5.2), (5.3) and (5.4) hold and

- v, 2f1(0.9,v,<f7(0.1) , w,, >0 andw,,<0 , or

« v, <f2(0.1),v,2f1(0.9) , w,, <0 andw,,>0 .

It is possible to altew,, w,; w,, and,, smoothly such that inequality
(5.4) keeps holding untiv,, = 0 . Thus itis clear that the points with (5.2),
(5.3) and (5.4) anav,;, = 0 are boundary points of the region where a local
minimum is attained.

So the local minima of conclusion 5.2 form a kind of rain gutter where the
water can escape in some sink at the end.

So if with on-line learning a movement is caused in the neighbourhood of
the region of local minima such that,, wy, s tending to zero, at last a
point is reached that is not a local minimum and the learning algorithm
escapes at the end. However, this can take a lot of time.

Case 5.2.1.2W01+W11 = Wp1tWq11tWpq = 00, WyotWqo = Wot Wy ot Woo
= —0
In this case we have:
Ay = U+ v f(wy,) +Vv,f(wy,) = f1(0.1)
Ay = U+ vf(Wop +W,y) +V,f (Wo, +W,y,) = £71(0.9) (5.11)
Ag=A;;=u+v; =0
The corresponding error level is again 0.16. Elimination of  results in:
Ay = Vi f (W) +V,of(wy,) = f1(0.1) =-2.197
Ay = Vi f (—Woy —Wy) +Vof (W, +W,,) = 71(0.9) =2.197

(5.12)

So clearlyv, and/, will have the same sign, and thus either
e v, 2f71(0.9) andv,2f-1(0.9) or
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« v, <f7(0.1) andv,<f-1(0.1) .

Consider the behaviour of the error whep, +w, angd +w,, are in
the neighbourhood of plus and minus infinity, respectively, by substituting
p, = € "u""u andq, = Ve Wiz (5.13)

Calculation of the partial derivatives of the eror ~ with respeqi;to  and
q, for p; andg, equalto zero results in:

g_';l = 0.4 (0) v, (1— ™)
P =0 (5.14)

= —0.4f'(0) v, (1—e")
q,=0
Similarly to case 1, it is clear that if both derivatives in equation (5.14) are
positive, a local minimum will be found.

OE
a4,

Conclusion 5.4A 4-dimensional region of local minima with error 0.16 is
found if the pattern®,, an@®,, are learned+ v, = 0 wg, +w,;; =
Wop +Wyq +Wyy = 0 andWg, + Wy =Woy+ Wyp +W,, = —00, and

e v, 2f71(0.9,v,2f1(0.9 , w,, >0 andw,,>0 , or
- v,<f1(0.1),v,<f1(0.12) , w,, <0 andw,,<0 .

Similarly to case 1 the boundary points of this region witfj = 0 or
w,, = 0 are saddle points.

Case 5.2.1.3wq+Wq1 = W tWy1HWoq = —00, WotWq o = Wt Wy 5+ Woo
=00
This case is equivalent to the case considered before by interchanging the

two hidden units. This leads with respect to the local minima to the conclu-
sion:

Conclusion 5.5A 4-dimensional region of local minima with error 0.16 is
found if the pattern®,, an@®, are learnedi+v, = 0 wy, +w;; =
Wop + Wyg + Wy = —0 andwp, + Wyy =Wy +Wyp+ W,y = 0, and

« v, 2f1(0.9,v,2f71(0.9) , w,, >0 andw,,>0 , or

e v, <f71(0.1), v,<f(0.1) , w,, <0 andw,,<0 .

Case 5.2.1.4wg1+tWqq = Wo1HWyHWoq = WootWq o = WootWq oHWoo =
—00

All calculations are similar to the calculations made earlier, leading to the
following local minima:
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Conclusion 5.6A 4-dimensional region of local minima with error 0.16 is
found if the patternsP,, andP,, are learned,= 0 Wy, +w,; =
Wop + WyWpy = =00 andWo, + Wy, =Wg, +Wop +W,, = —00, and

« v, 2f1(0.9,v,<f1(0.1) , w,, >0 andw,,<0 , or

e v, <f1(0.1),v,2f1(0.9 , w,, <0 andw,,>0 .

5.2.2 The patternsPqyy and P4 are learned

In this caseR,, = Ry; = 0 and the first order partial derivativek ofith
respect to the weights are equal to zero if:

Rop = ~Ryg#0

f(Wop +Wpq) = f(Woy +wWyy)

(W + Wpp) = f(Woy+ W)

vif' (Woy +wyy) =0 (5.15)

v, (Wy +W,) =0

Vof' (Wp, +Wy,) =0

Vof' (W, +W,,) = 0
Similarly to the case with the patterRg, angh learned, it was proved
that no local minima occur if one or more of the termg, +w,; ,

W, + W, , 1 0 {1, 2} isfinite. The remaining points that have to be inves-
tigated are given in the following four cases:

* Wop ¥ Wyq = Wop T Wy = Wyt Wiy = Wyt Wy, = ©

* Wop tWyq = WoptWpq = 0, Wpy +Wyp = Wyt Wy, = —®
* Wop tWyq = Wop Wy = =00, Wy + Wyy = Wpy+ Wy, = 00
* Wop +Wyq = WoptWoqp = Wyt Wpp = Wyt Wyy = —0

In the first case we find:
Ajp = Agp=u+v+v, =0 (5.16)

which is in contradiction with the first equation of (5.15), so in this case no
local minimum is found, since even no stationary points are found. Analo-
gously also the other cases will not result in local minima.

Conclusion 5.7No stationary points and thus no local minima occur if the
patternsP,, andP,, are learned ari®});, = -R;,#0

Using the transformations 2.1, 2.2 and 2.3 local minima are found if the
patternsP,, and P,,, P,; and P,,, or P,, and P, are learned. The
resulting local minima are summarized in the following subsection.
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5.3 The local minima for two of the patternsP; learned

Table 2: Local minima with Py and Py, learned

u+ v f(wy) +v,f(wy,) = f71(0.2) error 0.1€
- f-1
u+ v, f(wg +wyp) +Vof (Wg, +w,,) = F72(0.9)
Wop tWyp = Wog FWpg ¥ Wy =0 | U+ Vv +V, =0 v, 2172(0.9), w,; >0,
W+ Wyp = Wop+ Wyp+ Wy, = vzsf—l(o.l),W22<O
or or
Wop +Wyq = Wog +Wyq #Wyy = —0| U =0 v, <f71(0.1), w,, <0,
Woo* Wyp = Wopt Wyp+Wop = — v, 2171(0.9), w,,>0
_ - + = —
Wop ¥ Wy = Wog Wy Wy = 00 | UtV 0 vy = f 1(0_9)’W21>0,
Wopt Wyp = Wt Wyp+Wo, = — v, 2f71(0.9), w,,>0
or or
— - _ + = —
Wop ¥ Wy = Wog+ Wy Wy, = —00 | UtV 0 vy <f 1(0_1)’W21<0,
Wopt Wyp = Wt Wypp+Wo, = @ v,<f71(0.1), w,,<0

Table 3: Local minima with Py and P1g learned

u+ vy f(wy,) +v,f(wy,) = f1(0.1)

u+ vy f(Wop +Wyp) +V,f (W, +wy,) = f71(0.9)

error 0.1€

Wop + Wpy = Wy + Wy + Wy, = o

— = +V, +V, = -
Wop ¥ Wy = Woy Wy +Wyy = 00 | UtV 4V, 0 vy 2 f 1(0_9)’W11>0,
Wopt Wop = Wt Wyp+ Wy, = @ v,<f71(0.1), w,,<0
or or
Wop ¥ Woq = W+ Wy +Wyy = —00 | U= 0 Vlﬁf_l(o-l),W11<0,
Wop T Wop = Wop t Wyp+Woy = —0 v, 2f71(0.9), wy,>0
= = + = —
Wyt Woq = Wyt Wy +Wyy =00 | UtV 0 vy 2 f 1(0.9),W11>O,
Wop + Wpp = Wop ¥ Wpp + W5, = —© v,2f71(0.9), w;,>0
or or
= = — + = —
Woq +Wyy = Wpq + Wy +Woy | UtV, =0 vy <t 1(0.1),W11<O,

v,<f1(0.1),w;,<0
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Table 4: Local minima with Py, and Py, learned

u+ vy (Woy +Wyp) +Vof (W, +w,,) = £71(0.9)

U+ vy (Wog + Wpg +Wog) +Vof (Wop+ Wpp+W,y) = £72(0.)

error 0.16
- - +V, +V, = =
Wop = Wop tWypy = @ u+tvp+v, =0 v, 2f71(0.9), wy,; <0,
Wop = WoptWypp = v,<f1(0.1), w;,>0
or & or
Wop = Woy + Wy = —oo u=0 v, <f71(0.2), wy, >0,
Wop = Wop+ Wyp = —® v, 2f71(0.9), w;,<0
—_ —_ + = =
Wop = Wop FWyg = u+v, =0 v, 2f1(0.9), wy; <0,
Woa = Wopt Wyp = —© v, 2f71(0.9), W ,<0
or & or
— — + = —
Wop = Wop T Wyg = — u+v, =0 v, <f1(0.1), wy; >0,
Wop = Wop ¥ Wyp = @ v,<f1(0.1),w;,>0

Table 5: Local minima with P;o and Py, learned

u+ vy f (Woy +wy,p) +Vof (Wo,+wy,) = £71(0.9)

U+ vy f (Wog + Wpg +Wog) +Vof (Woy + Wy +W,0) = F71(0.1)

error 0.16
- - +V, +V, = =
Wop = Wop T Wpy = utvy+v, =0 v, 271(0.9), w,, <0,
Wop = Wop t Wy, = v,<f1(0.2), w,,>0
or & or
Wop = Wpp *Wpy = —® u=20 v, <f71(0.2), w,, >0,
Wop = Wop+Wpp = — v,2f71(0.9), w,,<0
— - + = -
Wop = Wpp Wy = @ u+v, =0 v, 2f1(0.9), w,, <0,
Wop = Wop+ Wapp = — v,2171(0.9), w,,<0
or & or
— —- + = -
Wop = Wpp TWpy = — u+v, =0 v, <f1(0.1), w,, >0,
Wo = Wop+Wop = @ v,<f1(0.2), w,,>0
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It is possible to escape from all these local minima via points wyjth =0
(tables 3 and 4) and,, = 0 (tables 2 andij) [0 {1, 2} ), respectively.

5.4 Exactly one of the pattern$; is learned

The case that the patteRy, is learned will be studied first. A number of
regions with local minima will be found. Via transformations of the weights
corresponding results are derived for the cases that one of the other patterns
IS learned.

5.4.3 The patternPy is learned

In this caseR,, = 0 and the equalities for stationary points become:

RoptRyg+tRy; = 0

Rogf (Woy + Waq) + Rygf (Wop + W) +Ryf (Wog + Wiy +Wpy) = 0

Roaf (Wop + Wop) + Rygf (Woo +Wy5) +Ryf (Wop + Wyp +W,0) = 0

v f'(wg, +w,,) =0

v f'(wg, +wy;) =0 (5.17)

Vif' (Woy +Wyp +Wyp) =0

Vof' (W, +W,,) =0

Vof' (Wp, +Wy,) =0

Vol (Wop + Wyp +Wyp) = 0
Similarly to the proof in section 5.2.1 it can be shown that no local minima
occur if one of the term/y; + Wy; Wy + W, Wy +Wy; +Wy, 1,0 {1, 2}
is finite. Thus we have to consider the cases where all these terms are equal
to plus or minus infinity. Ifwg, +w,;; = «© andvy, +w,, = —» , then
equations (5.17) result iRy, = 0 oR;; =0 , which case we don't
consider here. Similarly we will not have to consider cases where one of the
termswy, + Wy, ,Wo; +W,; andwy, + wy; +W,, is going tee — ) and
the other terms are tending teo o ( ). For the weigims +w,, ,
Wg, + W,, andwy, + W, +W,, the same argument holds.

Thus four cases remain:

* WoptWyg = Wop T Wy = Wy T Wy ¥ Wy = Wopt Wy = Wt Wy, =
Woo T Wyp t Wy, =

© Woyt Wy = Woy Wy = Woy # Wy Wy = 0 and wp, +w,, =
Wz T Wopp = Wop + Wy + W,y = —00

© WoytWyp = Woy+ Wy = Woy + Wy Wy = —0 and Wo,+ Wy, =
Woo + Wpp = Wy + Wyp + Wy, =00
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* Wop tWyq = Wog +Woq = Wy T Wyq ¥ Wyp = Wyt Wip = Wyt Wy, =
Woo T Wy + Wyy = —00

We will investigate these cases in the following.
Case 5.4.1.1: W01+W11= W01+W21 = W01+W11+W21 = W02+W12=
Wo2otWop = WootWy otWoo = 00

In this case equations (2.1) result in

Agp = U+ Vi f(Wy) +V,f(wy,) = f1(0.2) (5.18)
Agp = Ag = A = UV HY,
Using equations (4.1) and (5.18) in (5.17) leads to:
Ror T Rig* Ry =
2(f(u+vy+v,) =09 f (u+v, +v,) +
(f(u+v, +v,) =0.)f" (u+v, +v,) =
(Bf(u+v,+v,)) =19 f (u+v, +v,) =0
and thus
utv, +v, = f (19793 (5.19)

Using (5.19) in order to eliminate  from the equationAgy in (5.18) and
using thatl —f(x) = f(—x) results in:

vy f (W) +Vof(mwp,) = F2(1.9/3 -f1(0.1) >0 (5.20)
and thusv, >0 and/ov,>0 has to hold.

ForR,; , R,y andR,; we find:

Ry, = Ry = (F(F 1.9/ 3) —0.9)f'(f "(1.9/ 3 ) = —0.061925¢

R, = (f(f (1.9/ 9)—0.0)f'(f (1.9/ 3) =0.123852= (5.21)
= —2R); = 2Ry,

Altering u + v; +v, while keepingA,, constant can only increase the error,
since the functior? (f (x) —0.9) 2+ (f(x) —0.1)2 attains a minimum for
f(x) = 1.93.

So let us consider what happens when mowiRg+W;; Wq;+ Wy, ,
and/orwg, + w,; + w,; away from infinity.

We split this case into two cases:
* Wop = ®
* Wy, is finite

_ o : :
For wyy = o consideringp = €t w,, anav,, as independent varia-
bles results in:
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ol RV, (671 + e — 27 W War) (5.22)
p=0
So, sinceR,, <0 , saddle points are found if
* v, 20 ande™u+ea—_2e7"u"Wa<0 or
e v;<0 ande™un+eMa_2e7 "2 >0
(Boundary points of regions of saddle points are saddle points too.)

So a necessary condition to obtain a local minimum wigh = oo , IS
that
«v;>0ande™u+eMa—_2e""u"a >0, or
e v;<0ande™u+ea_2e7"u"a <,

A similar condition is necessary for a local minimum witk, = oo .

Now supposev,, is finite. Then botin,  ang, are infinite, because
we are considering stationary points wify, + Wy, = Wy, + W,y = 0 .
Consideringwy; ,p; = e%u andp, = eWa as independent variables,
yields:

OE
op,

D
m

= = Ry v, (5.23)
p,=p,=0 p,=p,=0
So, sinceR,; is negative, saddle points are foung 0

Hence, a necessary condition to obtain a local minimum with finite,

(3]

P2

is
e v, >0.
Similarly a necessary condition to obtain a local minimum with finite is
*Vv,>0.
So local minima are obtained if both the weights connected to the first hidden
unit and those connected to the second hidden unit satisfy the given restric-

tions. Remarking that;, >0 and/er,>0 hasto hold and Whgt wgr
has to be finite, because of equations (5.18) and (5.19) leads to:

Conclusion 5.8If pattern P, is learned, then regions with local minima
with error 0.213333 are found @i+ v, +v, = f (1.9 3 wy +w;; =
Wop + Wop = Wop FWyg + Wy = Wop+ Wyp = Wop+ W= W+ Wip+ Wop
= oo and if one of the following conditions is fulfilled:
* Wy, = %, Wy, finite and either
¢ v;>0,v,>0ande™u+e"a—2e7"u""a > Qor
¢ v;<0,v,>0ande™u+ea_2e7"u"a <0
or
* Wy, = ®, Wy, finite and either
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¢ v;>0,v,>0 ande™"z+e"2—2e7 272 > Qor
¢ v;>0,v,<0ande™2+e2_2e7"2"N2 < 0
or
* Wy, andw,, are finite and/; >0 and,>0.

Case 5.4.1.2W01+W11 = W01+W21 = W01+W11+W21 =o0 and W02+W12 =
Wo2tWpo = Wt Wy ptWop = —0
Analogously to case 1 we find:
Ay = U+ v f(wy,) +Vv,f(wy,) = f1(0.1)
Aor = Ag = Ay = Uy,
Ryt Rip+ Ry = (Bf(u+vy) =1.9f (u+v)) =0
u+v, = f (193
andRy, ,R;, andR,; are given by (5.21).
Removingu from the equation foA,, , using the last equation of (5.24),
results in:
vy f (—Wg,) —Vof (W) = (1973 -f71(0.1) >0 (5.25)

and thusv, >0 and/ov, <0 has to hold.

Altering u+v, increases the error. Consideration of the weights
connected to the first hidden unit again leads to the necessary conditions for
local minima:

* Wy, = * and either
« v;>0 ande™u+ea_2e7" "2 >0or
« v;<0ande™u+eMa_2e7"u""a <0
or
* W, finite andv, >0 .

(5.24)

Let us consider the weights connected to the second hidden unit. We split this
case into the two cases:

* Wop = =
* Wy, Is finite
If wy, = —eo considering the independent variablps= "z w,,, ang
gives:
oE
aqq:0
So, sinceR,; <0 , a necessary condition to obtain a local minimum with
Wy, = — iS:

= Ry,V, ("2 + "2 — 2e"12"22) (5.26)
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* v,>0 ande™z+ eV —2e"2" "2 < 0 or
* v, <0 ande"z+e"z2—2e"2 V2 > Q,

Now supposew,, is finite and thus bath, angl, are equal to minus

infinity. Considering the independent variableg, q, = e%. and
q, = eV leads to:
3_51 = g_'éz = Ry, (5.27)
4;=09,=0 0;=09,=0
So a necessary condition to obtain a local minimuwm,if is finitevand
andw,, are equal to minus infinity is
*v,<0.

Sincev, >0 and/ov, <0 has to hold and sineg, = o ang = —oo
can not occur because of equation (5.24), the following conclusion results:

Conclusion 5.9If pattern P, is learned, then regions with local minima
with error 0.213333 will be found ifi+v, = f1(1.9/3 wy,+w,; =
Wy T Wap = Wop+Wyy+Wyy = 0 and wWoy+ Wy, = Wyt Wy, =
Wq, + Wy, +W,, = —0 and if one of the following conditions is fulfilled:
* Wy, = %, Wy, finite and either
¢ v;>0,v,<0 ande™u+e"a—2e7"u""a > Qor
* v,<0,v,<0andeMu+ea_2e7"u""2 <0
or
* Wy, = —, Wy, finite and either
¢ v;>0,V,>0 ande"z+ eV — 2e"12" "2 < O or
¢ v,>0,v,<0 ande"z+ "z —2e"2" "2 > 0
or
* Wy, andw,, are finitey; >0 and/, <0.

Also boundary points of the regions with local minima of conclusion 5.9 are
saddle points.

Case 5.4.1.3W01+W11 = W01+W21 = W01+W11+W21 = —00 and W02+W12
= WpotWoo = WoptWqptWop = 0
Analogously to case 2 we find the following conclusion:

Conclusion 5.10if pattern P, is learned, then regions with local minima
with error 0.213333 will be found ifi+v, = f1(1.9/3 wy, +w,; =
Wop *Wop = W+ Wy + Wy = —0 and Wo,+ Wy, = Wop+ Wy, =
W, + Wy, + W,, = o and if one of the following conditions is fulfilled:
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* Wy, = ®, Wy, finite and either
¢ v;<0,v,>0 ande™z+e"2—2e" 272 > Qor
¢ v;<0,v,<0 ande™z+e2—2e7 272 < 0
or
* Wy, = —%, Wy, finite and either
e v;>0,v,>0 ande" + "z —2e"u*Wa < Qor
e v,;<0,v,>0 ande"u + e"n—2e"u""a > 0
or
* Wy, andw,, are finitey; <0 and,>0.
These regions have boundary points which are saddle points.

Case 5.4.1.4:W01+Wll = W01+W21 = W01+W11+W21 = W02+W12 =
WootWop = WootWy otWoo = —00
Analogously to the previous cases we find:

Ay = U+ v f(wy,) +Vv,f(wy,) = f1(0.2)
Aoy = A=A = U

(5.28)
Ros T Rip+t Ry = (3f(u) =1.9f'(u) =0
u=f1(1.9793
andR,, ,R;, andr,; are given by (5.21). Hence:
vy f (Wop) +V,f(wg,) = F2(0.1) —-f1(1.9/3 <0 (5.29)

and thusv, <0 and/ov,<0 has to hold.
Sincev, <0 and/ov,<0 andvy; = Wy, = — can not hold, we find
the conclusion:

Conclusion 5.11lf pattern P, is learned, then regions with local minima
with error 0.213333 will be found iu = f1(1.9/3 wy,+w,; =
Wop ¥ Wpp = Wop + Wyg + Wy = Wop+ Wyp = Wop ¥ Wop = W+ Wip+ Wop
= —oo and if one of the following conditions is fulfilled:
* Wy, = —®, Wy, finite and either
e v;>0,v,<0 ande™ +e"a—2e"u*Wa < Qor
¢ v,;<0,v,<0 ande": +e"n—2e"u""a >0
or
* Wy, = —», W, finite and either
¢ v,;<0,v,>0 ande™z+e"z—2e"2" W2 < Qor
¢ v,;<0,v,<0 ande"z+ "z —2e"2" "2 > 0
or
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* Wy, andw, are finitey; <0 and, <0.

Also these regions with local minima have boundary points which are saddle
points.

So conclusions 5.8, 5.9, 5.10 and 5.11 give the local minima for the case
that pattern P, is learned anR,, R;, anR;; are unequal to zero. All
these local minima have boundary points which are saddle points.

Using the transformations 1, 2 and 3 from section 5.2 immediately gives
the corresponding local minima if one of the other patterns is learned. These
local minima are summarized in the next subsection.
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5.5 Summary of the local minima with one pattern learned

Table 6: Local minima with pattern Pyglearned

u+ vy f(wy,) +v,f(wy,) =f71(0.2) error 0.21333:

Wop+Wyq = Wyt Wy = Wyq = ©, Wy, finite and

W+ Wy + Wy, = @ v, >0,v,>0,e "+ e 21— 2e” 1121 0 or
Wop ¥ Wiy = Wop + W,y = v;<0,v,>0, ey gVa_peWu""ac
Wy + Wy + Wy = Wy = 0, Wy, finite and

utvy+v, = f1(1.9/ 3 v;>0,v,>0, e "2+ e 227" 272> 0 or

v, >0,v,<0, 62+ g2 2672 W2 < 0

W1, Woo finite, v;>0,v,>0

Wop ¥ Wy = Wop Wy, = Wop = 9, Wp, finite and
Wop+ Wyp + Wy, = o v, >0,v,<0,e "+ e 2e7 " 11""21> 0 or

= = W11 4 o Wo1_ 9 Wi1—Woy
Woo + Wiy = Woy+ Wy, = v1<0,v2<0,e +e 2e <0

- _ Wn, = —00, W, finite and
Wpy + Wyy+W,, = —00 02 01 .
W. W. W. W.
u+v, = (193 v;>0,v,>0,e12+e"22—-2e712" "2<0 or
v, >0,v,<0,e"2+ e"22_pgh12" W22

Wo1s Woo finite, v;>0,v,<0

Wop+Wyq = Wy Wy = Wy, = ©, Wy, finite and

Woq + Wy +W,, = —o v, <0,v,>0,e "2+ e 2227 12722 > 0 or
Wop ¥ Wiy = Wop + W,y = v, <0,v,<0,e "2+ e 222" M12" M2 < 0
Wy + Wy + Wy = Wyp = =%, Wy, finite and

u+v, = f1(1.9/ 3 v;>0,v,>0, e"1i+ g1 2¢" " 1< 0 or

v, <0,v,>0,e"1+e"21 2" 21> 0

W1, Woo finite, v;<0,v,>0

Wop ¥ Wyq = Wop Wy, = Wop = =%, Wy, finite and
+

Wop + Wyp + Wy, = —00 v, >0,v,<0,e"1+e"2_2e"1u1" 2120 or
+

Woo + Wiy = Woy+ Wy, = v, < 0, Vv, < 0, "4 gV21_pg"untWa s g

- _ Wn, = —00, W, finite and
Wpy + Wyy+W,, = —00 02 01 .
u= (193 v, <0,v,>0,e"12+e"22—2e"12" 222 0 or

v, <0,v,<0,e"12+e"2_2¢"12" V225 0

Wo1s Woo finite, v;<0,v,<0
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Table 7: Local minima with pattern Py, learned

u+ vy (Woy +Wy) +Vof (W, +w,,) =£71(0.9)

Wop = Wor tWyg =
Wopt Wy tWpy = —
W2 = Wop tWyp =
Wopt Wypt Wy, = —00
u=f11173

Wop+ Woq = =00, Wy, + W, finite and
v, >0,v,>0,e"1+e "2 2e"11""21> 0 or

v, <0,v,>0,e"+eg "2 2e" 1121

Wop + Woy = =00, Wy, + W,y finite and
v, >0,v,>0,e"2+e"22—2e"127"22> 0 or

v, >0,v,<0,e"12+e "2 2e"27"2< 0

Wop + Woq, Woy + W,y finite, v;>0,v,>0

Wor = Wo1tWqq =
Wop Wyt Wy = —®
Woz = Wopt Wyp =
Wop ¥ Wyp Wy, =
u+v, = f1(1L13

Wop + Woq = =0, Wy, + W, finite and
v, >0,v,<0,e"1+e"2_2e"11""215 0 or

v, <0,v,<0,e"+e 226" "<

Wop + Woy = 00, Wy, + Wy finite and
v, >0,v,>0,e 12+ "2 26 Wi2* W2 < g or

vy >0,v,<0,e M2+ V2222225 0

Wop + Woq, Woy + W,y finite, v;>0,v,<0

Wop = Wor tWyg =
Wopt Wyt Wy = @
Wop = Wop tWyp =
Wopt Wypt Wy, = —00
u+v, = f1(113

Wop + Woy = =00, Wy, + W,y finite and
v, <0,v,>0,e"12+ e "22—2e"27"22> 0 or

v, <0,v,<0,e" 12+ "2 2e"27"22< 0

Wop + Woq = 0, Wg,+ W, finite and
v, >0,v,>0, e "1+ "2 2e™ "< 0 or

v, <0,v,>0, e "1+ 22T s 0

Wop + Woq, Woy + W,y finite, v;<0,v,>0

Wor = Wo1tWyp =

Wop ¥ Wyt Wy = ®
Woz = Wopt Wyp =

Wop ¥ Wyt Wy, =
u+tv, +v, = f1(1.1/3

Wop + Woq = 0, Wy, + W, finite and
v, >0,v,<0,e "1+ 2 2e™ M < 0 or

v, <0,v,<0,& "1+ e a0

Wop + Woy = 00, Wy, + Wy finite and
v, <0,v,>0,e 12+ "2 26 Wi2* W2 < g or

v <0,v,<0,e M2+ V2222 225 0

Wop + Woq, Woy + W,y finite , v;<0,v,<0
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Table 8: Local minima with pattern P,glearned

u+ vy (Woy +wyp) +Vof (W, +wy,) =£71(0.9)

Wop = Wop tWpy =
Wopt Wy tWpy = —
Wo2 = Wop t Wpp =
Wopt Wypt Wy, = —00
u=f11173

Wop+ Wyq = =0, Wy, + Wy, finite and
v, >0,v,>0,e"2+e"1_2e"217"11> 0 or

v, <0,v,>0,e"2+g "1 2e"21" 1<

Wop + Wyp = =00, Wy, + W,y finite and
v, >0,v,>0,e"2+e"12_2e"227"12> 0 or

v, >0,v,<0,e"2+e "2 2e"2""12< 0

Wop + Wyq, Wop + Wy, finite, v;>0,v,>0

Wo1 = Wo1tWpy =
Wop Wyt Wy = —®
Woz = Wopt Wy =
Wop ¥ Wyp Wy, =
u+v, = f1(1L13

Wop+Wyq = =0, Wy, + Wy, finite and
v, >0,v,<0,e"2+e"11_2e"217"11> 0 or

v, <0,v,<0,e"2+e " 1_2e"27"M11<

Wop + Wyp = 00, Wy, + W,y finite and
v, >0,v,>0,e 22+ e"12— 26 V2" Wiz < g or

v;>0,v,<0,e 22+ ez 2e 22 125 0

Wop + Wy, Woy + Wy, finite, v;>0,v,<0

Wop = Wop tWpy =
Wopt Wyt Wy = @
Wop = Wop t Wpp =
Wopt Wypt Wy, = —00
u+v, = f1(113

Wop+ Wyp = =00, Wy + W,y finite and
v, <0,v,>0,e"2+e "2 2e"227"12> 0 or

v, <0,v,<0,e"2+¢ "2 2e"22""12< 0

Wop+ Wyq = 9, W, + Wy, finite and
v;>0,v,>0, e "2+ eM1_2e™ 2 M <0 or

v, <0,v,>0, e "2+ M2 s 0

Wop + Wyq, Wop + Wy, finite, v;<0,v,>0

Wo1 = Wo1tWpy =

Wop ¥ Wyt Wy = ®
Woz = Wopt Wy =

Wop ¥ Wyt Wy, =
u+tv, +v, = f1(1.1/3

Wop+Wyq = 9, W, + Wy, finite and
v;>0,v,<0,e "2+ eM1_2e™2 M0 or

v, <0,v,<0,e "2+ M2 s

Wop + Wyp = 00, Wy, + W,y finite and
v, <0,v,>0,e 22+ e"12— 26 V2" Wiz < g or

v <0,v,<0,e 22+ M2 2e 22 125 0

Wop + Wy, Woy + Wy, finite , v;<0,v,<0
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Table 9: Local minima with pattern P4, learned

U+ vy (Woy + Wy +W,p) +Vof (o, + Wy, +w,,) =f71(0.1)

error 0.21333:

Wop = Wor tWyg =
Wopt Wy = @

W2 = Wop tWyp =
Wopt Wpp = @

u+v +v, = f1(1.9/3

Wop+ Wyq + Wy = 00, Wy, +Wypp+ Wy finite and
v, >0,v,>0,e"+e"21— 2e"M11 W21 0 or

v, <0,v,>0,e"+e"21— 2e"M11 W1 <

Wop + Wyp+Wyy = 00, Wy +Wyq + Wy finite and
v, >0,v,>0,e"12+ "2 2e"12" 225 0 or

v, >0,v,<0,e"12+e"22_2e"2""22< 0

Wop + Wy + Woq, Wop + Wyp + W,y finite, v;>0,v,>0

Wop = Wop tWqg =
Wop tWp = @
Wop = Wop t Wyp =
Wop + Wopp = =
u+v, = f1(1.93

Wop + Wyq +Wyy = 00, Woy+ Wy +Woy finite and
v, >0,v,<0,e"11+e"2—2e"11" 215 0 or

v, <0,v,<0,e"1+ge"2_2e"11" "<

Wop + Wyp+ Woy = —00, Wy +Wyq +Woy finite and
v, >0,v,>0,e 12+ e 222127222 0 or

v, >0,v,<0,e 12+ e 222127225 0

Wop + Wqq + Wyq, Wop + Wyp + W,y finite, v;>0,v,<0

Wop = Wor tWyg =
Wopt Wy = —
Wop = Wop tWyp =
Wopt Wpp = @
u+v, = f1(1.9/3

Wop + Wyp+ Woy = 00, Wy +Wypq +Woy finite and
v, <0,v,>0,e"12+e"22— 2e"12*Wa2 5 0 or

v, <0,v,<0,e"2+e"22— 2eM12 W2 <

Wop + Wqq + Wy = —00, Wyy + Wyp + W,y finite and

W.

v, >0,v,>0,e 11+ e 2e™ "1 <0 or

W.

Vv, <0,v,>0,e 11+ e _2e™ 215 0

Wop + Wy + Woq, Wop + Wyp + W,y finite, v;<0,v,>0

Wor = Wo1tWqg =
Woy + Wy = —
Woz = Wopt Wyp =
Wop t Wpp = —©
u=f1(193

Wop + Wqq + Wy = =00, Wy, + Wy + W,y finite and
v, >0,v,<0,e "1+ e 2e™" "1 <0 or

v, <0,v,<0,e 1+ e a_2e™ "5 0

Wop + Wyp+ Woy = —00, Wy +Wyq +Woy finite and
Vv, <0,v,>0,e 12+ e 22 2e™M127"22< 0 or

Vv, <0,v,<0,e "2+ e 222127225 0

Wop + Wqq + Wyq, Wy + Wyp+ W,y finite, v;<0,v,<0
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5.6 All terms R;; are unequal to zero
The conditions for stationary points become in this case:
Roo* Roa*Ryp+Ry3 = 0
Roof (Wo1) + Roaf (Wop +Wyp) +
+ Ryof (Wop +Wyg) + Ry f (Woy +wyy +w,p) =0

Roof (Wop) + Ryyf (W, + W) +

+ Ryof (Wop + Wyp) + Ryf (Wop +Wpp +W,0) = 0 (5.30)
ViRaof ' (Wop) = —V;Ro f" (Wop + W) =
ViR of (Wop + W) = ViR (Wop + Wy +W,y)
VoRaof (Wgp) = —VoRg f" (Wop + Wpp) =

VR of (Wop + Wip) = VR (Wop + Wy, + Wo)

If wy, is finite, then eitherv, = or alsay, +w;; Wy, +W,; and
Wy, + Wy, +W,, have to be finite. Similarly to previous proofs = 0
and/orv, = O result in saddle points. All termg; Wy, +W;; Wy + Wy
Wo + Wy +W,,, i 0 {1, 2} finite also result in saddle points (see section
4.2 in [10]). So we have to consider here the stationary pointswyith
Wop + Wyq, Wop + Wy, @NdWy, + Wy, + W, infinite and/owy, wq,+w;, ,
W, + W,,, aNdWy, + Wy, + W, infinite.

Remark thatR; #0 ,i,j 0 {0, 1} , andwy + (W + Wy +Wyy) =
(Wpg +Wyp) + (Wy; +W,,) and equations (5.30) have to hold. So, we have
the following possibilities for wy; , W, Wy, , Wy +W,, , and
Woq + Wyq + W, infinite:

* Wop = Wop t Wyg = Wop +Wpy = Wog +Wyg +Wyy = %o OF
* Wop = Wop +Wyy =200 andwp, +Wy; = Wy +Wyy + W,y = Foo Or
Woy + Wpy = 00 andWp, +Wyq = Wop +Wyy + Wy = Foo.

* Wo1

In the following we will investigate a number of characteristic cases:

* Wgy = WoptWyy = Woyt Wy = Woy+t Wy Wy, = 0 and wy, ,
W, + Wy, Wy + Wy, , aNdWg, + Wy, + W, finite

* Woy = WoptWyq = WoptWpy = Wop tWpp+ W,y = 0 andwg, =
Wop t Wy = Wop + Wpp = Wy + Wop +Woy = 0

* Woy = Wop +Wypq = 0 andwy, + Wy = Woy +Wyy +W,, = —0 andwy, ,
Woo + Wyp, Wy, + Wy, aNdW,, + Wy, + W, finite

* Woy = WoptWyg = WoptWpp = W +Wpp+ W,y = 0 andwg, =
Wop + Wy, = 00 andWp, + Wy, = Woy + Wy + Wy, = —00

* Woy = Wy +Wyp = 0 andwy, + Wyy = Wy + Wy + Wy = —0 andw,
= Wop+ Wy, = 0 andwg, + Wy, = W, + Wyp + Wp, = —00

* Woy = Wy +Wyy = 0 andwy, + Wy = Wy + Wy + W,y = —0 andw,
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= Wy + Wyy = 0 andWp, + Wy, = Wy + Wiy + Wy, = —00

We will find a number of regions with local minima. Analogously, the other
regions with local minima can be derived.

Case 5.6.1:Wp1 = Wgq + Wqq =Wp7 + Woq = Wgp +Wqq +Wpq = 0 and
Wo2, Wo2 + Wpo, Woo + Woo, and Woo + Wpo +Woo finite

If Wy, Wpy+ Wyp, Woy+ Wy, @andwg, + Wy, +W,, are finite and, #0 it
follows thatw,, = 0 orw,, = 0 has to hold (see section 4.2 in [10]). If
w,, = 0 it follows from (2.1) thatA,, = A}, and from (5.30) that
thus alsow,, = 0 has to hold. Thug,; = Ay; = Aj; =A; =0 , and
Ryo = =Ry = —Ryg = Ry4 for the stationary points considered here. So
takingp = €1 ,w;; andw,, as independent variables results in

g_g = _ROOV1 (1- e Wi _gWar 4 g~ W11_W21) =
p=0
—Ryovy (1—e"1) (1—-e"2)
and thus, sinc®,, = (f(0) -0.)f'(0) >0 , if
¢ v, (1-e"u)(1-e"2) < 0 or equivalentlyv,w,,w,, <0
decreasingw,, away from infinity will result in an increasing error. If
Wy, = o thenw,; andw,, have no influence on the error. Considering the
second order part of the Taylor series expansion with respect to the weights
U, Vq, Vo, Wy, , Wy, , andw,, leads to:
AE = 4{f"(0)} 2[Au+ Av, +f(Wy,) AV, + V,f' (W) A, +
1
2
{f'(0)} 2va{f" (Wpp) } 2[ (Awyy) 2+ (Aw,y) 2] +
2v, (f(0) —0.1) f (0) f" (wy,) Aw,,Aw,,
The first quadratic term can be made zero by cho&ung . The remaining
terms inAE are positive itw,,#0 and/dxw,,# 0 if the discriminant of
the quadratic equation is negative:
[2v, (f(0) —0.2) ' (0) " (W) 1 2—4[{f'(0)} 2v5{f"(wpy)} 2 2<0

resulting in

A (WOZ) (Awy, + Aw,,) ] 24 (5.31)

" (wWg,)
{f" (w2} 2
So under this condition altering;, andigg,  can only increase the error.
But if w;, andw,, are kept constant equal to zero then all tekns are

vy >1.6 (5.32)
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equal tou + v, +Vv,f(w,,) and altering this also results in increasing the
error. Thus we found the region of local minima:

Conclusion 5.12If all terms R; are unequal to zero, a 5-dimensional
region of local minima exists if; #0 V,#0 Wy = Wy +Wy; =
Wop+Way = Wopt Wy +Wy = o, Wy, finite, wj, = wy, =0,
u+v; +v,f(wy,) = 0and

* V,W;,W,, <0 and
Vo| > LE[f" (Woy) |/ { ' (Wpp) } 2

Case 5.6.2wp1 = Wgp + Wi1 = Wgp + Woq = Wgq + Wyp + Wyg = 0 and
W2 = Wop + Wy =Wpp + Wpp = Wpp + Wy + Wy = o0

Here we find the following local minima:

Conclusion 5.13If all terms R; are unequal to zero, a 6-dimensional
region of local minima exists i, #0 Vv, 20 Wy, = Wy +Wy; =
Wor tWpp = WoptWyg F Wy = @, Wop = Wt Wpp = W+ Wy, =
Wgy + Wyo+ Wy, =00, U+V; +V, = 0 and

* V,W;;W,, <0 and
* VpWioWo, <0

Case 5.6.3W01= Wo1 T Wqp = andW01 + Wy =Wg1 +Wqq +Wyq —00
and Wp2, Wp2 + W, Wo2 + Wy, and Wo2 +Wpo+ szﬁnite

From (5.30) it follows thaR,, = -R;; an®;; = -R,; . Also it can be
derived thatw,, = 0 omw,, = 0 (see section 4.2 in [10))wf, =0 it
follows from (5.30) thatR,;, = -R,; = -R;; = Ry; . Ifw,, = 0 then
either w;, = 0 or w;, = -w,, , because of (5.30). W,, =0 and
Wy, = —W,,, then (5.30) leads tqR,;—R;;) (2f(wy,) —1) = 0 . Thus
either Ry, = Ry;; or wy, = 0. In both cases we find again that
Roo = ~Ro1 = Ryp = Ryy.

Consideringp = e q = "o*"2a angv,, as independent variables
yields

g_'sl = —Rygv, (1—e™)

T = oo (1-e")
Thus saddle points are foundvfw,, =0  andvifw;;<0 . So no local

minima are found in this case.
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Case 564W01 = WOl + Wll = W01 + W21 = WOl + Wll + W21 = o and
Wp2 = Wo2 + Wy = 0 andWgy + Wop = Wop + Wyp + Wop = —00

Here we find from equations (2.1) thag, = A;; = u+v,; +v,  and that
Ao = A =u+v,. From (5.30) it follows thatR,, = -R,, and
Ry; = Ry, and thus all termg\;  are equal to zero and we find that
v, = 0. Thus these points are saddle points.

Case 5.6.5W01: Wo1 + Wjpq = o and Wo1 + Ws1 = Wp1 + W11 + Wpq =
—oo and W02 = W02 + W12 = o and W02 + W22 = W02 + W12 + W22 = —0

In this case we find\y; = Ay, H+Vv;+v, =0 A; =A;; u=0
Thus we haveR,, = -R,; = -R;; = R;; and the same argument as in
case 5.6.3 can be used to prove that no local minima are found in this case.

Case 5.6.6W01: Wp1 + Wqq = and Wo1 t Wo1 =Wg1 + Wqq +Woq =
—eo and Wop = Wop + Wap = 0 @andWop + Wyp = Wop +Wyp + Wop = —o

From (5.30) it follows thaR,, = -R,;; = -R;; = R;; . So the same argu-
ment as in case 5.6.3 shows that no local minima occur in this case.

So only case 5.6.1 and case 5.6.3 and cases similar to these cases will result
in local minima. In tables 10 and 11 these local minima are summarized.

All these regions with local minima have boundary points that are saddle
points.

5.7 Some concrete examples

Lisboa and Perantonis [4] give 5 examples of points which are local minima.
The fifth example is one with finite weights and is not a real local minimum
but a saddle point, as proved in [10]. The other points are examples of local
minima with some of the weights from the input units to the hidden units
equal to plus or minus infinity. The points they have found have finite
weights, but the error does not further decrease because of numerical satura-
tion. The numerical saturation occurs as soon as the input of the hidden

nodes results in a value of the transfer funcfi¢r) very close to 0 or 1.
The four examples they give are shown in tablel12.
From the table it is clear that saturationf ¢k) occursxfer-11 and

x>11. Examples 1 and 2 are of the category that exactly two patterns are
learned and the other two are not. The first example is of the class (see table
3 in section 5.3):

Ay = U+ v f(wy,) +Vv,f(wy,) = f0.1)
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Table 10: Local minima with one of the hidden nodes saturated fol
all patterns

error 0.32
Wop = Wop tWqq = Woq t#Wypq = Wy ¥ Wyq+t Wy =0

Wy, finite, w;, = W,, = 0

u+v; +vf(wg,) =0

ViWyqWoy <0

Vo] > L6 (W) |/ {F' (W) }

Wop = Wop ¥ Wpg = Wop FWypg = Wy + Wy ¥ Wpy = —

Wy, finite, Wy, = Wy, = 0
u+vf(wy,) =0

V{Wq3Wp, >0

Vo] > LB (woo) |/ {F' (W) }
W, finite, w;; = Wy = 0

Wop = Wop T Wiy = Wopt Wop = Wop T Wpp t Wy, = @
u+vf(wg) +v, =0

v > LB (wop) |7 L' (wop) } 2

VoW, Wy, <0

W, finite, w;; = Wy = 0

Wop = Wop*Wyp = Wop+ Wop = Wop+Wyp +Wpy = —
u+vf(wy) =0

v > LB (Wop) |/ £ (wop) } 2

VoWypWp, >0

A = U+ vf(wy, +wyy) +V,f(wg, +wy,) = £71(0.9
Agp = A =uUu+y, =0
Wop ¥ Wpy = Woy + Wy +Wpy = =00, Wop + Woy = Wop + Wi+ Wy = 00
v, <f1(0.1),wy, <0,v,<f1(0.1),w,;,<0

The second example belongs to the class (see table 5 in section 5.3):
Ay = ut v f(wy, +wyy) +Vof(wg,+w,,) = f71(0.9
Arp = U+ v (Wop + Wy +Wo) +Vof (Woy + Wpp +Wpp) = £71(0.1)
Agg = App = utvy+v, =0

Wop = Wpg +Wyq = 0, Wpy = Wyt Wy, = ®
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Table 11: Local minima with both hidden units saturated for all
patterns

error 0.32
Wop = Wop tWyq = WoptWpq = Woq tWypq t Wy = 0

Wop = Wopt Wiy = Wopt Wy = Wy + Wy + Wy, = 0
u+v, +v, = 0
ViWy Wy, <0

VoW Wyy <0

Wor = Wo1rtWyg = Wop T Wpp = Wop Wyt Wy =0
Wop = Wop tWyp = Wop+ Wpy = Wyt Wpp t Wy = —©
u+v, =0

V{Wq3Wy, <0

VoW oWy, >0

Wop = Wop T Wyg = Woy +Wpy = Wy tWyg t Wy = —©

Wop = Wop T Wyp = Wopt Why = Wyt Wip t Wy, = @
u+v, =0

V{Wq3Wpq >0
VW3 Woy < 0

Wop = Wop +Wyq = Wop + Wy = Wog Wy Wy = —0
Woa = Wop t Wip = Wop t Wyy = Wop + Wpp + W,y = —00
u=20

ViWqqWpqp >0

oWy Wy, <0

v, 2f71(0.9), w,; <0, v, <f1(0.1), w,,>0

Examples 3 and 4 have exactly one pattern learned. The third example
belongs to the class (see conclusion 5.10 and/or table 6 in section 5.5):

AOO

u+ vy f(wy) +v,f(wy,) = f71(0.0)

Ay = Ay = Ay = U+, = f(19/3

Wop tWqq = Wop+Wopq = Wy ¥ Wyq + Wy = —0,

I
8

Woo T Wiy = Wop+ Woy = Wy +Wpy + W,y
Wy, andwy,, finite, v; <0,v,>0

The fourth example belongs to the class (see table 7 in section 5.5):
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Table 12: The local minima found by Lisboa and Perantonis

Example 1 Example2 Example3 Example 4
f(Ago) 0.1 0.5 0.1 0.366
f(Agy) 0.5 0.5 0.633 0.9
f(Ap) 0.9 0.9 0.633 0.366
f(Ay) 0.5 0.1 0.633 0.366
u 5.05670 1.54884 0.10897 —0.54656
v, —2.78335 4.59262 -3.42122 0.66331
v, -5.05670 —6.14146 0.43758 4.23784
Wy, 1.41913 12.59865 1.39427 —10.2800¢
Wi, -5.52058 -11.52144 —13.70896 -10.4246
Wy -13.69016 —1.10568 —13.70896 8.55786
W, 4.73579 11.70733 5.121702 —10.9726:
Wy, ~4.50867  -11.89991  6.01491  -12.7141
W, 12.27468 4.01044 6.01491 11.47785

Ay = U+ vf(Wo, +W,y) +V,f (Wo, +W,y,) = £71(0.9)

Ap = A=Ay, =u =1LV 3

Wpp = Wpp T Wqq =

Woo =

Wop + Wpp =

Wop +Wyq + Wy

Woo T Wpp + Wy,

= —00

= —00

Woy + Wy andw02 + Wo, finite andv1 >0, v, > 0

Rumelhart and McClelland [6] give the following example of a local
minimum:

u=-08,vy, =-45,v, =53, wy, = 20,w;; =-20,w,, =9.2,
Wy, = 0.1, wy, = 4.3, w,, = 9.2,
the outputs: f(A,) = 0.096 , f(A,) = 0.499¢,

resulting
f(A;p) = 0.898 andf(A;;) = 0.500.

This local minimum belongs to the class described in table 3 in section
5.3, satisfying the conditions:
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Ay = U+ v f(wy,) +Vv,f(wy,) = f1(0.1)

— 4
Ao = u+vif(wy, +wyy) +vf(wy, +wy,) = (0.9

Agp = Ajp = utvy+v, =0

Wop T Wpq = Wog +Wyq ¥ Wy = 00, Wpy+Wyy = Wyt Wiy + Wy, =

v, <f1(0.1),wy, <0,v,2f1(0.9),w,;,>0

6 Conclusions

In this paper it is proved that the error surface of the two-layer XOR network
with two hidden units has a number of regions with local minima. These
regions of local minima occur for combinations of the weights from the
inputs to the hidden nodes such that one or both hidden nodes are saturated
(give output 0 or 1) for at least two of the patterns. However, boundary
points of these regions of local minima are saddle points. From these results
it can be concluded that from each finite point in weight space a strictly
decreasing path exists to a point with error zero. In the neighbourhood of a
region of local minima, this path will combine a decreasing step towards the
local minimum and a step “parallel” to the region of local minima towards
the boundary points that are saddle points. Section 5.3, 5.5, and 5.6 contain a
summary of all regions of local minima for the considered XOR network.

The results of this paper can explain a number of experimentally found
results. For example the fact that with a higher numerical precision less
“local minima” are met. This fact can be explained by the observation that
with a higher numerical precision the learning algorithm will less soon get
stuck and cannot proceed further because of the saturation of the hidden
units. As long as the learning algorithm makes some movement in the neigh-
bourhood of a region of local minima, the possibility exists that a point near
the boundary of such a region will be met, and a path to the global minimum
will be found. Testing this idea we started in the four “local minima” given
by Lisboa and Perantonis (see section 5.7) using on-line backpropagation
and “double” precision. As a result, in three of the four cases the algorithm
found at last a point with error zero, so the algorithm escaped from the neigh-
bourhood of the region with local minima. In the fourth case the path chosen
by the algorithm leaded away from the boundary points which are saddle
points.

38



7 References

[1]

[2]
[3]

[4]
[5]

[6]

[7]

[8]

[9]

[10]

E.K. Blum; “Approximation of Boolean Functions by Sigmoidal
Networks: Part I: XOR and other Two-variable functions”.Nigural
Computationl, 532-540, 1989.

L.G.C. Hamey; “The analysis of local minima in feed-forward neural
networks”.Neural Networks1994. (submitted)

L.G.C. HameyAnalysis of the Error Surface of the XOR Network with
Two Hidden NodesComputing Report 95/167C, Department of
Computing, Macquarie University, NSW 2109 Australia, 1995. Acces-
sible by FTP from ftp.mpce.mqg.edu.au in pub/comp/techre-
ports/950167.hamey.ps.

P.J.G. Lisboa and S.J. Perantonis; “Complete solution of the local
minima in the XOR problem’Network 2 pp. 119124, 1991.

L. Prechelt;A study of Experimental Evaluations of Neural Network
Learning Algorithms: Current Research PracticBechnical Report
19/94, Fakultat fur Informatik, Universitat Karlsruhe, 1994.

D.E. Rumelhart, J.L. McClelland and the PDP Research Group;
Parallel Distributed Processing, Volume. 1The MIT Press,
Cambridge, Massachusetts, 1986.

I.G. Sprinkhuizen-Kuyper and E.J.W. Boers; “The Error Surface of the
simplest XOR Network has only global Minim&leural Computation

Vol. 8, nr. 6, 1996. An earlier version is Technical Report 94-21, Dept.
of Computer Science, Leiden University, The Netherlands.

I.G. Sprinkhuizen-Kuyper and E.J.W. Boers; “Classification of all
stationary points on a neural network error surface”. In: J.C. Bioch and
S.H. Nienhuys-Cheng, edsProceedings of Benelearn-94: 4th
Belgian-Dutch Conference on Machine Learnipg. 192-201, Report
EUR-CS-94-05, Dept. of Computer Science, Fac. of Economics,
Erasmus University, Rotterdam, The Netherlands, June 1994. Also as
Technical Report 94-19, Dept. of Computer Science, Leiden Univer-
sity, The Netherlands.

I.G. Sprinkhuizen-Kuyper and E.J.W. BoeAsComment on a Paper of
Blum: Blum’s “local minima” are saddle point§echnical Report 94-
34, Dept. of Computer Science, Leiden University, The Netherlands.
I.G. Sprinkhuizen-Kuyper and E.J.W. Boef$ie Error Surface of the
2-2-1 XOR Network: The finite stationary Poirfischnical Report 95-

39, Dept. of Computer Science, Leiden University, The Netherlands.

39



