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Abstract

In this paper it is proved that the error surface of the two-layer XOR
network with two hidden units has a number of regions with local
minima. These regions of local minima occur for combinations of the
weights from the inputs to the hidden nodes such that one or both
hidden nodes are saturated (give output 0 or 1) for at least two
patterns. However, boundary points of these regions of local minima
are saddle points. From these results it can be concluded that from
each finite point in weight space a strictly decreasing path exists to a
point with error zero. Furthermore we give proofs that points with
error zero exist, and that points with the output unit saturated are
either saddle points or (local) maxima. In [10] it is proved that
stationary points with finite weights are either saddle points or abso-
lute minima.

1 Introduction

To investigate the error surfaces of XOR networks thoroughly is important,
since Prechelt [5] found in his investigation of articles on learning algorithms
in neural networks that20 articles (18%) employed the “grandfather” of all
neural network problems, the XOR or n-bit parity. So there are many experi-
mental results that can possibly better be explained with more knowledge of
the error surface of these networks.

More insight in the error surfaces of a number of concrete problems can
give a better insight in the specific behaviour of the learning algorithms
under investigation.

In literature we found a number of results concerning the error surface of
these networks, but we didn’t find a complete investigation of the error
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surfaces of the XOR networks. In [7, 8] we described our results for the error
surface of the XOR network with one hidden node and connections directly
from the inputs to the output node (see figure 1a). In this paper together with

[10] we give a complete investigation of the error surface of the two-layer
XOR network with two hidden nodes (see figure 1b). The transfer function
used is the usual sigmoid . We consider the quadratic
error function

while in literature also the “cross-entropy”

is used. The difference is that the terms

which occur in the partial derivatives of the quadratic error  simplify to

for the cross-entropy . So the analysis for the quadratic error  is more
complicated than that for the cross entropy . Especially more stationary
points (points where all partial derivatives with respect to the weights are
zero, so the gradient of the error is zero in these points) occur for  than for

. We mention the stationary points for which the output node is saturated
(  is equal to plus or minus infinity) for at least one of the patterns. In
subsection 4.2 we will show that these points are saddle points or local
maxima. Also some more stationary points occur for finite weights (see
[10]).

Since all stationary points of the error surface with the cross-entropy
form a subset of the stationary points for the quadratic error , it is easily
checked that all results obtained here also hold for the cross entropy . So
especially the regions of local minima found for the quadratic error , which

Figure 1.  The simplest XOR network (a) and one with two hidden nodes (b).
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are summarized in tables 2 until 11, are also regions of local minima for the
cross-entropy .

In this paper it is proved that the error surface of the 2-2-1 XOR network
has a number of regions consisting of local minima. These regions of local
minima occur for combinations of the weights from the inputs to the hidden
nodes such that one or both hidden nodes are saturated (give output 0 or 1,
since the input is either +  or ) for at least two patterns. However,
boundary points of these regions of local minima are saddle points. From
these results it can be concluded that from each finite point in weight space a
strictly decreasing path exists to a point with error zero. Furthermore we give
proofs that points with error zero exist, that stationary points with finite
weights are either saddle points or absolute minima, and that points with the
output unit saturated are either saddle points or (local) maxima.

Relation to previous work

Blum [1] investigated the 2-2-1 XOR network with the cross-entropy as error
function. He restricted the weights to be symmetrical. For the 5 remaining
independent weights he proved that exact solutions exist for the XOR
problem. In section 3 we give our proof that the XOR problem can be repre-
sented exactly by the 2-2-1 network. Blum’s proof is more complicated since
the network considered has less degrees of freedom. In the same paper [1]
Blum identified a linear manifold of stationary points to be local minima. In
this paper it is shown that for the network with 9 independent weights this
line does not contain local minima. In [9] we proved that also with
symmetric constraints on the weights no local minima exist on the manifold
given by Blum. Hamey [2] also found that Blum’s proof was incorrect.

Lisboa and Perantonis [4] characterize the stationary points of all two-
layer XOR networks with and without connections directly from the inputs
to the output unit, considering the cross-entropy as error function. They also
give some local minima for the 2-2-1 network and tell that they checked that
these points are indeed local minima by considering the second order partial
derivatives. However, they do not give details of their proofs. Four of their
local minima are found to be numerical equivalent to local minima resulting
from our research (see section 5.7). The fifth point is not a local minimum
(see [10]).

Hamey [2, 3] also investigated the 2-2-1 XOR network with the cross-
entropy as error function. In [2] he shows that for all points with finite
weights a finite non-ascending trajectory exists to a point with error zero. He
concludes that the 2-2-1 XOR network has no (regional) local minima. He
defines a regional local minimum as a local minimum that has to be reached

L
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by a non-ascending path from points in the neighbourhood. In [3] Hamey
proves that all finite stationary points are saddle points. In this paper we
prove that the 2-2-1 XOR network has local minima for infinite values of the
weights from the inputs to the hidden nodes. However, this result does not
contradict Hamey’s results, since our definition of a local minimum in a
point (finite or infinite) is that a local minimum is attained in a point  if for
all points  in a neighbourhood of  the inequality  holds
and we accept that points with infinite weights exist. Such an infinite local
minimum can trap a learning algorithm, since a decreasing path to a point
with error zero will first get closer to the infinite point and will not neces-
sarily reach a neighbourhood where the learning algorithm can escape from
the region with the local minimum value.

Contents of the paper

In section 2 the network and its parameters are introduced and also the error
function is given. In section 3 it is proved that the network can represent the
XOR function, as specified in section 2, exactly. In [7] we introduced the
notions of stable stationary points, i.e. points which are stationary points for
the error of each individual pattern, and instable stationary points. The latter
points are stationary points for the total error, but not for each individual
pattern. In section 4 it is proved that stable stationary points are either abso-
lute minima with error zero or saddle points or (local) maxima, but not local
minima. Both finite and infinite weights are investigated in this section.
Logically the next section would contain the proofs that instable stationary
points with finite weights can not be local minima. We decided to publish
this part separately in [10]. In section 5 the instable points with infinite
weights are treated. Here it is found that local minima only can exist if at
most two patterns are learned. The resulting local minima with two patterns
learned are summarized in subsection 5.3, while subsection 5.5 contains the
local minima with one pattern learned, and section 5.6 contains the local
minima with all patterns giving a wrong output. In subsection 5.7 some
examples of local minima found in literature are shown to belong to one of
the classes found earlier. The paper ends with section 6 containing some
conclusions.

w
w′ w f w( ) f w′( )≤
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2 The network

In this paper we investigate the error surface of the network with two hidden
units and without direct connections from the inputs to the output (see figure
2).

For the XOR function we assume that the patterns given in table 1 should be
learned/represented by the network.

The input of the output unit is for the four patterns:

(2.1)

So the four patterns result in output values equal to , ,
 and , respectively.

The mean square error is equal to:

X1 X2

bias u

bias w01

v1

Figure 2.  The XOR network with 2 hidden units

v2

w21

bias w02

w22

w12

w11

Table 1: Patterns for the XOR problem

Pattern X1 X2 desired output

P00 0 0 0.1

P01 0 1 0.9

P10 1 0 0.9

P11 1 1 0.1

A00 u v1f w01( ) v2f w02( )+ +=

A01 u v1f w01 w21+( ) v2f w02 w22+( )+ +=

A10 u v1f w01 w11+( ) v2f w02 w12+( )+ +=

A11 u v1f w01 w11 w21+ +( ) v2f w02 w12 w22+ +( )+ +=

f A00( ) f A01( )
f A10( ) f A11( )
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(2.2)

The weight space has a number of symmetries for this problem, which we
will exploit in order to reduce the number of different cases that have to be
investigated. Especially, we will consider the following four transformations
of the weight space:
Transformation 2.1: (interchanging the inputs using the symmetry of the
training patterns with respect to the inputs)

, , , ,other weights
equal.

Transformation 2.2: (interchanging  and , and  and )
, , ,

, , , other weights equal.
Transformation 2.3: (using that , and interchanging
patterns with desired output 0.1 and those with desired output 0.9)

, , ,
, , other weights equal.

Transformation 2.4: (mirroring the network)
, , , , , other

weights equal.

3 Representation

In this section we prove that the XOR function can be represented exactly by
the network with two hidden units given in figure 2.

The XOR function is exactly represented by the network if the weights ,
, , , , , ,  and  are such that the following equa-

tions hold:

(3.1)

Application of the inverse of on both sides of (3.1), using (2.1), leads to:

E 1
2
--- f A00( ) 0.1–( ) 2 1

2
--- f A01( ) 0.9–( ) 2+ +=

1
2
--- f A10( ) 0.9–( ) 2 1

2
--- f A11( ) 0.1–( ) 2+

w11′ w21= w21′ w11= w12′ w22= w22′ w12=

P00 P11 P01 P10
w01′ w01 w11 w21+ += w02′ w02 w12 w22+ += w11′ w11–=
w21′ w21–= w12′ w12–= w22′ w22–=

f x( ) 1 f x–( )–=

u′ u– v1– v2–= w01′ w01– w21–= w02′ w02– w22–=
w11′ w11–= w12′ w12–=

v1′ v2= v2′ v1= wi1′ wi2= wi2′ wi1= i 0 1 2, ,{ }∈

u
v1 v2 w01 w11 w21 w02 w12 w22

f A00( ) 0.1=

f A01( ) 0.9=

f A10( ) 0.9=

f A11( ) 0.1=

f
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(3.2)

From these equations it follows that:

(3.3)

leading to the following three equations for the weights with exception of :

(3.4)

The set of equations (3.4) is a set of three linear equations in the two varia-
bles  and .

Let us consider points with  and . For
these points the second equation of (3.4) is identically zero, and for almost
all values of the weights  the first and third equation will be linearly inde-
pendent, so  and  are determined by these equations and  follows from
(3.3). Thus at least one region in weight space exists where the patterns ,

,  and  are represented exactly. The dimension of this region is at
least 4 and probably 5, since the condition that the first two equations of (3.4)
have to be linearly dependent results in one restriction on the 6 weights .

4 Stable stationary points

Let us introduce

(4.1)

u v1f w01( ) v2f w02( )+ + f 1– 0.1( )=

u v1f w01 w21+( ) v2f w02 w22+( )+ + f 1– 0.9( )=

u v1f w01 w11+( ) v2f w02 w12+( )+ + f 1– 0.9( )=

u v1f w01 w11 w21+ +( ) v2f w02 w12 w22+ +( )+ + f 1– 0.1( )=

u– v1f w01( ) v2f w02( ) f 1– 0.1( )–+=

v1f w01 w21+( ) v2f w02 w22+( ) f 1– 0.9( )–+=

v1f w01 w11+( ) v2f w02 w12+( ) f 1– 0.9( )–+=

v1f w01 w11 w21+ +( ) v2f w02 w12 w22+ +( ) f 1– 0.1( )–+=

u

v1 f w01( ) f w01 w11 w21+ +( )–( ) +

v+ 2 f w02( ) f w02 w12 w22+ +( )–( ) 0=

v1 f w01 w21+( ) f w01 w11+( )–( ) +

v+ 2 f w02 w22+( ) f w02 w12+( )–( ) 0=

v1 f w01( ) f w01 w21+( )–( ) +

v+ 2 f w02( ) f w02 w22+( )–( ) 2f 1– 0.9( )–=

v1 v2

w11 w21 0≠= w12 w22 0≠=

wij
v1 v2 u

P00
P01 P10 P11

wij

R00 f A00( ) 0.1–( ) f ′ A00( )=

R01 f A01( ) 0.9–( ) f ′ A01( )=

R10 f A10( ) 0.9–( ) f ′ A10( )=

R11 f A11( ) 0.1–( ) f ′ A11( )=
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Stable stationary points are obtained when the gradient of the error is zero for
each of the four patterns separately, thus if

(4.2)

The cases with all weights finite and one or more weights infinite are consid-
ered here.

4.1 Finite weights

If all weights are finite the only points with all ’s equal to zero are the
points satisfying equations (3.1) and thus all patterns are learned exactly and
the error is zero.

4.2 Output 0 or 1

We have to investigate those points where one or more of the terms  are
infinite and the other terms result in the desired output.

Let us consider points in weight space in the neighbourhood of such a
stable stationary point. We will show that it is not possible that an infinite
value of corresponds to a local minimum. The other cases ,
and/or  tending to plus or minus infinity are treated by transformations of
the weight space.

First let us try to keep ,  and  constant. By (2.1) the effect of
small variations of , , and  on , ,  and  is:

(4.3)

Solving ,  and  from the equations for  =  =
 = 0, results in:

Thus if  and  then it is possible to vary the weights , ,
and  such that  becomes closer to the desired value, while ,

R00 R01 R10 R11 0= = = =

Rij

Aij

A00 A01 A10
A11

A01 A10 A11
v1 w01 w11 w21 A00 A01 A10 A11

∆A00 f w01( ) ∆v1 v1f ′ w01( ) ∆w01+=

∆A01 f w01 w21+( ) ∆v1 v1f ′ w01 w21+( ) ∆w01 ∆w21+( )+=

∆A10 f w01 w11+( ) ∆v1 v1f ′ w01 w11+( ) ∆w01 ∆w11+( )+=

∆A11 f w01 w11 w21+ +( ) ∆v1 +=

v1f ′ w01 w11 w21+ +( ) ∆w01 ∆w11 ∆w21+ +( )+

∆w01 ∆w10 ∆w11 ∆A01 ∆A10
∆A11

∆A00 =

f ′ w01( ) ∆v1

f w01( )
f ′ w01( )-------------------

 f w01 w21+( )
f ′ w01 w21+( )----------------------------------

f w01 w11+( )
f ′ w01 w11+( )----------------------------------– +–

f w01 w11 w21+ +( )
f ′ w01 w11 w21+ +( )-------------------------------------------------+ 

 =

f ′ w01( ) ∆v1e
w01 1 e

w11– 
 

1 e
w21– 

 
–

w11 0≠ w21 0≠ v1 w01
w11 w21 A00 A01
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and  remain constant. The effect is that the error decreases when the
weights are altered in a direction away from the stationary point. So if

 and  then  will never result in a local minimum.

Similarly it is proved that for  and  it is possible to vary
the weights , , and  such that  becomes closer to the
desired value, while , and  remain constant, and also in this case

 will not yield a local minimum.

The cases that have to be investigated further are the cases where both
or , and or . These cases lead to the

four cases:

• and ,

• and ,

• and ,

• and .

In the first case ( and ) equation (2.1) becomes:

(4.4)

Stable stationary points can only be found in this case if all four terms
are infinite. If  is varied a little bit such that  and  are moving away
from infinity and  is varied correspondingly such that  and
remain constant, then the total error is decreased and thus will
not result in a local minimum in this case.

In the second case ( and ) equation (2.1) becomes:

(4.5)

From equations (4.5) it follows that:

(4.6)

So if  then at least one of the other terms ,  or  will
also approach . Because of equation (4.6) one of the following possibili-
ties will occur:  and  have opposite sign or  has the same sign as

 (or ) where the concerning terms are approaching .

If  and  have opposite sign we can vary , ,  and  such
that  and remain constant, resulting in:

A10 A11

w11 0≠ w21 0≠ A00 ∞±→
w12 0≠ w22 0≠

v2 w02 w12 w22 A00
A01 A10 A11

A00 ∞±→

w11 0= w21 0= w12 0= w22 0=

w11 0= w12 0=

w11 0= w22 0=

w21 0= w12 0=

w21 0= w22 0=

w11 0= w12 0=

A00 A10 u v1f w01( ) v2f w02( )+ += =

A01 A11 u v1f w01 w21+( ) v2f w02 w22+( )+ += =

Aij
v1 A00 A10

w21 A01 A11
A00 ∞±→

w11 0= w22 0=

A00 u v1f w01( ) v2f w02( )+ +=

A01 u v1f w01 w21+( ) v2f w02( )+ +=

A10 u v1f w01( ) v2f w02 w12+( )+ +=

A11 u v1f w01 w21+( ) v2f w02 w12+( )+ +=

A00 A01– A10– A11+ 0=

A00 ∞±→ A01 A10 A11
∞±
A00 A11 A00

A01 A10 ∞±
A00 A11 v1 v2 w21 w12

A01 A10
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(4.7)

Using the equations for  =  = 0 leads to:

(4.8)

So it is possible to change the values of , ,  and  such that
and  remain constant, and both  and  move away from infinity,
thus decreasing the error. So this case will not result in a local minimum.

If  and  approach infinity with the same sign, we find analogously
to the previous case that varying , ,  and  such that  and

 remain constant leads to:

(4.9)

So both  and  can be moved away from infinity, resulting in a
decreasing error. So also this case will not result in a local minimum. From
symmetry it is clear that also the case where  and approach infinity,
with the same sign, will not lead to a local minimum.

The third case (  and ) and the fourth case (
and ) are equivalent to the second and the first case, respectively.

So we can conclude that no local minima will be found if  approaches
infinity. From transformations 2.1, 2.2 and 2.3 it can be concluded that also
no local minima will be found if one of the other terms ,  and/or
approaches infinity.

In the proofs we did not really use the fact that we were considering stable
stationary points. So we can extend these results immediately to unstable
stationary points.

Conclusion 4.1Stationary points with the output for at least one of the
patterns equal to 0 or 1 cannot be local minima.

Conclusion 4.2 The only stable stationary points that behave like a
minimum are the points with all four patterns exactly learned, so in those
points the absolute minimum with error zero is found. All other stable
stationary points, both with finite weights and with infinite weights, are
either saddle points or (local) maxima.

∆A00 f w01( ) ∆v1 f w02( ) ∆v2+=

∆A01 f w01 w21+( ) ∆v1 f w02( ) ∆v2 v1f ′ w01 w21+( ) ∆w21+ +=

∆A10 f w01( ) ∆v1 f w02 w12+( ) ∆v2 v2f ′ w02 w12+( ) ∆w12+ +=

∆A11 f w01 w21+( ) ∆v1 f w02 w12+( ) ∆v2+ +=

v1f ′ w01 w21+( ) ∆w21 v2f ′ w02 w12+( ) ∆w12+

∆A01 ∆A10

∆A11 f w01( ) ∆v1 f w02( ) ∆v2–– ∆A00–= =

v1 v2 w21 w12 A01
A10 A00 A11

A00 A01
v1 v2 w21 w12 A10

A11

∆A01 f w01( ) ∆v1 f w02( ) ∆v2+ ∆A00= =

A01 A00

A00 A10

w21 0= w12 0= w21 0=
w22 0=

A00

A01 A10 A11
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5 Instable stationary points with infinite weights

For instable stationary points the gradient of the total error is equal to zero,
while the gradient of the error of at least one of the patterns is unequal to
zero. In [10] it is proved that all instable stationary points with finite weights
are saddle points. In this section we will show that local minima exist when
one or more of the weights to the hidden units are equal to.

We will divide the problem in classes with respect to the number of terms
 equal to zero. In section 4.2 we showed that no local minima occur if one

of the terms  is equal to zero because of the input of the output node being
infinite. So we will study here the cases that a number of the patterns is
learned, resulting in the corresponding terms  being zero.

5.1 Three of the patternsPij are learned

Since the partial derivative of  with respect to  is equal to
it is clear that if three of the four terms  are zero,

the fourth has to be zero too. So in that case we are in a stable stationary
point.

5.2 Two of the patternsPij are learned

There are 6 possibilities to have two of the four patterns learned, but
essentially there are two different cases:

• and  are learned and

• and  are learned.

The other possibilities can be obtained from these two cases by transforma-
tion of the weights. So we will consider these two cases first.

5.2.1 The patternsP00 and P01 are learned

In this case  holds and all first order partial derivatives of
with respect to the weights are equal to zero if in addition:

(5.1)

∞±

Rij
Rij

Rij

E u
R00 R01 R10 R11+ + + Rij

Pij

P00 P01

P00 P11

R00 R01 0= = E

R10 R11 0≠–=

f w01 w11+( ) f w01 w11 w21+ +( )=

f w02 w12+( ) f w02 w12 w22+ +( )=

v1f ′ w01 w11+( ) 0=

v1f ′ w01 w11 w21+ +( ) 0=

v2f ′ w02 w12+( ) 0=

v2f ′ w02 w12 w22+ +( ) 0=
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We are considering the cases where at least one of the weights is infinite. If
 is finite, then necessarily  and  has to hold. In

this case we find (see also the proofs in [10]) that all partial derivatives of the
error with respect to combinations of  and/or  are equal to zero. But
taking also the partial derivative with respect to  results in:

and thus the points with  finite are saddle points (see theorems A2,
A3 and A4 in [7]). Analogously points with ,  or

 finite are saddle points. So the remaining points that have to
be investigated can be divided into the following four cases:

•

•

•

•

We will consider these cases in the following.

Case 5.2.1.1:w01+w11 = w01+w11+w21 = w02+w12 = w02+w12+w22= ∞

In this case equations (2.1) give:

(5.2)

The corresponding error level is 0.16. Eliminating  results in:

(5.3)

Since  is positive and  and  have opposite sign,  and  will
have opposite sign and will not be equal to zero in this case. Since

 it follows that either

•  and  or

•  and .

Equations (5.3) have a solution for  and  if the following inequality
holds:

w01 w11+ w21 0= v1 0=

w11 w21
v1

v1 w11∂ w21∂

3

∂
∂ E

stat.pnt

R11f ″ w01 w11+( ) 0 if w01 w11+ 0≠≠=

v1 w11
2∂ w21∂

4

∂
∂ E

stat.pnt

R11f ′′′ w01 w11+( ) 0 if w01 w11+ 0=≠=

w01 w11+
w01 w11 w21+ + w02 w12+

w02 w12 w22+ +

w01 w11+ w01 w11 w12+ + w02 w12+ w02 w12 w22+ + ∞= = = =
w01 w11+ w01 w11 w12+ + ∞ w, 02 w12+ w02 w12 w22+ + ∞–= = = =
w01 w11+ w01 w11 w12+ + ∞– w, 02 w12+ w02 w12 w22+ + ∞= = = =
w01 w11+ w01 w11 w12+ + w02 w12+ w02 w12 w22+ + ∞–= = = =

A00 u v1f w01( ) v2f w02( )+ + f 1– 0.1( )= =

A01 u v1f w01 w21+( ) v2f w02 w22+( )+ + f 1– 0.9( )= =

A10 A11 u v1 v2+ + 0= = =

u

A00 v1– f w– 01( ) v2f w02–( )– f 1– 0.1( ) 2.197–≈= =

A01 v1– f w– 01 w21–( ) v2f w– 02 w22–( )– f 1– 0.9( ) 2.197≈= =

f x( ) A00 A01 v1 v2

f x( ) 0 1,[ ]∈
v1 f 1– 0.9( )≥ v2 f 1– 0.1( )≤
v1 f 1– 0.1( )≤ v2 f 1– 0.9( )≥

v1 v2
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(5.4)

In order to investigate points with , we use the
substitution:

 and
The stationary points considered correspond with  and we are
interested in the behaviour of the error surface for↓ 0 and  ↓ 0.
Computation of the partial derivatives of the error  with respect to  and

 for  and  equal to zero, choosing , ,  and  inde-
pendent of  and , results in:

(5.5)

Since both  and  are greater than or equal to zero it is clear that if one of
the derivatives in equation (5.5) is negative, then the error will decrease if
or  moves away from zero (and  or  moves away
from infinity, correspondingly). Thus then the stationary point is not a local
minimum. The sign of the derivatives in (5.5) is determined by the signs of

, , and . So we can conclude:

Conclusion 5.1Stationary points with the patterns  and  learned,
,  =  = ∞ and  =
 = ∞, are not local minima if

•  and , or

•  and , or

•  and , or

•  and .

If both derivatives in equation (5.5) are positive, increasing and/or
will lead to an increase of the error. When and  are equal to zero the
error can only be decreased by altering  (see (5.2)), such that the
error corresponding to  and  decreases, and altering the other weights
in order to keep the error corresponding to  and  equal to zero. But
the error corresponding to  and  as a function of is
equal to:

(5.6)

which attains a minimum for .
So each variation of will increase the error with respect to
 and . So here a local minimum is found!

f w01–( ) f w02– w22–( ) f w02–( ) f w01– w21–( )≠

w01 w11+ w02 w12+ ∞= =

p1 e w01– w11–= p2 e w02– w12–=
p1 p2 0= =

p1 p2
E p1

p2 p1 p2 w01 w21 w02 w22
p1 p2

pi∂
∂E

pi 0=

0.4f ′ 0( ) vi 1 e w2i––( )= i 1 2,{ }∈,

p1 p2
p1

p2 w01 w11+ w02 w12+

v1 v2 w21 w22

P00 P01
u v1 v2+ + 0= w01 w11+ w01 w11 w21+ + w02 w12+
w02 w12 w22+ +

v1 f 1– 0.9( )≥ w21 0<
v1 f 1– 0.1( )≤ w21 0>
v2 f 1– 0.9( )≥ w22 0<
v2 f 1– 0.1( )≤ w22 0>

p1 p2
p1 p2

u v1 v2+ +
A10 A11

A00 A01
A10 A11 x u v1 v2+ +=

E 1
2
--- f x( ) 0.9–( ) 2 1

2
--- f x( ) 0.1–( ) 2+=

x 0=
u v1 v2+ +

A10 A11
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The dimension of the region in which this minimum value is attained
follows from (5.2), (5.3) and (5.4): if , ,  and  are chosen
such that the inequality (5.4) holds, then ,  and  are determined by
(5.2) and (5.3). So the dimension of this region of local minima is 4.

Conclusion 5.2A 4-dimensional region of local minima with error 0.16 is
found if the patterns  and  are learned, ,
=  = ∞ and  =  = ∞, and

• , ,  and , or

• , ,  and .

Finally consider the case that one or both of the derivatives in (5.5) are equal
to zero, i.e.  and/or . These points are boundary points of
the region with saddle points given in conclusion 5.1, so they are saddle
points too. In the following we will show that points with  are
saddle points by considering the partial derivatives. If , then we find
from (5.3) that

(5.7)

implying that either

• and , or

• and .

So conclusion 5.1 can not be applied to conclude that these points are saddle
points. Let us consider the second order derivatives of the error with respect
to  and . Calculation results in:

(5.8)

(5.9)

(5.10)

leading to the following terms in the second order part of the Taylor expan-
sion of the error:

w01 w02 w21 w22
u v1 v2

P00 P01 u v1 v2+ + 0= w01 w11+
w01 w11 w21+ + w02 w12+ w02 w12 w22+ +

v1 f 1– 0.9( )≥ v2 f 1– 0.1( )≤ w21 0> w22 0<
v1 f 1– 0.1( )≤ v2 f 1– 0.9( )≥ w21 0< w22 0>

w21 0= w22 0=

w21 0=
w21 0=

v2 f w02– w22–( ) f w02–( )–{ }– 2f 1– 0.9( ) 0>=

v2 0> w22 0>
v2 0< w22 0<

u p1

u2

2

∂
∂ E

p1 w21 0= =

2 f ′ f 1– 0.1( )( ){ } 2=

u p1∂

2

∂
∂ E

p1 w21 0= =

2– f ′ 0( ){ } 2v1=

p1
2

2

∂
∂ E

p1 w21 0= =

2 f ′ 0( ){ } 2v1
2=

∆E 2 f ′ 0( ){ } 2 v1∆p1 ∆u–( ) 2 +≈

2 f ′ 0( ){ } 2 f ′ f 1– 0.1( )( ){ } 2–[ ] ∆u( ) 2–
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So if  is chosen equal to  it is clear that  and thus no local
minimum exists in the points with .

So we can sharpen conclusion 5.1 to:

Conclusion 5.3Stationary points with the patterns  and  learned,
,  =  = ∞ and  =
 = ∞ are not local minima if

•  and , or
•  and , or
•  and , or
•  and .

Now consider the regions where a local minimum is attained. In these
regions equations (5.2), (5.3) and (5.4) hold and

• , ,  and , or
• , ,  and .

It is possible to alter , ,  and  smoothly such that inequality
(5.4) keeps holding until . Thus it is clear that the points with (5.2),
(5.3) and (5.4) and  are boundary points of the region where a local
minimum is attained.

So the local minima of conclusion 5.2 form a kind of rain gutter where the
water can escape in some sink at the end.

So if with on-line learning a movement is caused in the neighbourhood of
the region of local minima such that  or  is tending to zero, at last a
point is reached that is not a local minimum and the learning algorithm
escapes at the end. However, this can take a lot of time.

Case 5.2.1.2: w01+w11 = w01+w11+w21 = ∞, w02+w12 = w02+w12+w22
= –∞

In this case we have:

(5.11)

The corresponding error level is again 0.16. Elimination of  results in:

(5.12)

So clearly  and  will have the same sign, and thus either

• and or

∆u v1∆p1 ∆E 0<
w21 0=

P00 P01
u v1 v2+ + 0= w01 w11+ w01 w11 w21+ + w02 w12+
w02 w12 w22+ +

v1 f 1– 0.9( )≥ w21 0≤
v1 f 1– 0.1( )≤ w21 0≥
v2 f 1– 0.9( )≥ w22 0≤
v2 f 1– 0.1( )≤ w22 0≥

v1 f 1– 0.9( )≥ v2 f 1– 0.1( )≤ w21 0> w22 0<
v1 f 1– 0.1( )≤ v2 f 1– 0.9( )≥ w21 0< w22 0>

w01 w21 w02 w22
w21 0=

w21 0=

w21 w22

A00 u v1f w01( ) v2f w02( )+ + f 1– 0.1( )= =

A01 u v1f w01 w21+( ) v2f w02 w22+( )+ + f 1– 0.9( )= =

A10 A11 u v1+ 0= = =

u

A00 v1– f w– 01( ) v2f w02( )+ f 1– 0.1( ) 2.197–≈= =

A01 v1– f w– 01 w21–( ) v2f w02 w22+( )+ f 1– 0.9( ) 2.197≈= =

v1 v2

v1 f 1– 0.9( )≥ v2 f 1– 0.9( )≥
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•  and .
Consider the behaviour of the error when  and  are in
the neighbourhood of plus and minus infinity, respectively, by substituting

 and (5.13)

Calculation of the partial derivatives of the error  with respect to  and
 for  and  equal to zero results in:

(5.14)

Similarly to case 1, it is clear that if both derivatives in equation (5.14) are
positive, a local minimum will be found.

Conclusion 5.4A 4-dimensional region of local minima with error 0.16 is
found if the patterns  and  are learned, ,  =

 and  = , and

• , ,  and , or
• , ,  and .

Similarly to case 1 the boundary points of this region with  or
 are saddle points.

Case 5.2.1.3: w01+w11 = w01+w11+w21 = –∞, w02+w12 = w02+w12+w22
= ∞

This case is equivalent to the case considered before by interchanging the
two hidden units. This leads with respect to the local minima to the conclu-
sion:

Conclusion 5.5A 4-dimensional region of local minima with error 0.16 is
found if the patterns  and  are learned, ,  =

 and  = , and

• , ,  and , or
• , ,  and .

Case 5.2.1.4: w01+w11 = w01+w11+w21 = w02+w12 = w02+w12+w22 =

All calculations are similar to the calculations made earlier, leading to the
following local minima:

v1 f 1– 0.1( )≤ v2 f 1– 0.1( )≤
w01 w11+ w02 w12+

p1 e w01– w11–= q2 ew02 w12+=

E p1
q2 p1 q2

p1∂
∂E

p1 0=

0.4f ′ 0( ) v1 1 e w21––( )=

q2∂
∂E

q2 0=

0.4– f ′ 0( ) v2 1 ew22–( )=

P00 P01 u v1+ 0= w01 w11+
w01 w11 w21+ + ∞= w02 w12+ w02 w12 w22+ + ∞–=

v1 f 1– 0.9( )≥ v2 f 1– 0.9( )≥ w21 0> w22 0>
v1 f 1– 0.1( )≤ v2 f 1– 0.1( )≤ w21 0< w22 0<

w21 0=
w22 0=

P00 P01 u v2+ 0= w01 w11+
w01 w11 w21++ ∞–= w02 w12+ w02 w12 w22+ + ∞=

v1 f 1– 0.9( )≥ v2 f 1– 0.9( )≥ w21 0> w22 0>
v1 f 1– 0.1( )≤ v2 f 1– 0.1( )≤ w21 0< w22 0<

∞–
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Conclusion 5.6A 4-dimensional region of local minima with error 0.16 is
found if the patterns  and  are learned, ,  =

and  = , and

• , ,  and , or

• , ,  and .

5.2.2 The patternsP00 and P11 are learned

In this case  and the first order partial derivatives ofE with
respect to the weights are equal to zero if:

(5.15)

Similarly to the case with the patterns  and  learned, it was proved
that no local minima occur if one or more of the terms ,

,  is finite. The remaining points that have to be inves-
tigated are given in the following four cases:

•

•

•

•

In the first case we find:

(5.16)

which is in contradiction with the first equation of (5.15), so in this case no
local minimum is found, since even no stationary points are found. Analo-
gously also the other cases will not result in local minima.

Conclusion 5.7No stationary points and thus no local minima occur if the
patterns  and  are learned and .

Using the transformations 2.1, 2.2 and 2.3 local minima are found if the
patterns  and ,  and , or  and  are learned. The
resulting local minima are summarized in the following subsection.

P00 P01 u 0= w01 w11+
w01 w11w21+ ∞–= w02 w12+ w02 w12 w22+ + ∞–=

v1 f 1– 0.9( )≥ v2 f 1– 0.1( )≤ w21 0> w22 0<
v1 f 1– 0.1( )≤ v2 f 1– 0.9( )≥ w21 0< w22 0>

R00 R01 0= =

R01 R10 0≠–=

f w01 w21+( ) f w01 w11+( )=

f w02 w22+( ) f w02 w12+( )=

v1f ′ w01 w11+( ) 0=

v1f ′ w01 w21+( ) 0=

v2f ′ w02 w12+( ) 0=

v2f ′ w02 w22+( ) 0=

P00 P01
w0i w1i+

w0i w2i+ i 1 2,{ }∈

w01 w11+ w01 w21+ w02 w12+ w02 w22+ ∞= = = =

w01 w11+ w01 w21+ ∞ w, 02 w12+ w02 w22+ ∞–= = = =

w01 w11+ w01 w21+ ∞– w, 02 w12+ w02 w22+ ∞= = = =

w01 w11+ w01 w21+ w02 w12+ w02 w22+ ∞–= = = =

A01 A10 u v1 v2+ + 0= = =

P00 P11 R01 R10 0≠–=

P00 P10 P01 P11 P10 P11
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5.3 The local minima for two of the patternsPij learned

Table 2: Local minima with P00 and P01 learned

or & or

or & or

u v1f w01( ) v2f w02( )+ + f 1– 0.1( )=

u v1f w01 w21+( ) v2f w02 w22+( )+ + f 1– 0.9( )=

error 0.16

w01 w11+ w01 w11 w21+ + ∞= =

w02 w12+ w02 w12 w22+ + ∞= =

u v1 v2+ + 0= v1 f 1– 0.9( )≥ w21 0>, ,

v2 f 1– 0.1( )≤ w22 0<,

w01 w11+ w01 w11 w21+ + ∞–= =

w02 w12+ w02 w12 w22+ + ∞–= =

u 0= v1 f 1– 0.1( )≤ w21 0<, ,

v2 f 1– 0.9( )≥ w22 0>,

w01 w11+ w01 w11 w21+ + ∞= =

w02 w12+ w02 w12 w22+ + ∞–= =

u v1+ 0= v1 f 1– 0.9( )≥ w21 0>, ,

v2 f 1– 0.9( )≥ w22 0>,

w01 w11+ w01 w11 w21+ + ∞–= =

w02 w12+ w02 w12 w22+ + ∞= =

u v2+ 0= v1 f 1– 0.1( )≤ w21 0<, ,

v2 f 1– 0.1( )≤ w22 0<,

Table 3: Local minima with P00 and P10 learned

or & or

or & or

u v1f w01( ) v2f w02( )+ + f 1– 0.1( )=

u v1f w01 w11+( ) v2f w02 w12+( )+ + f 1– 0.9( )=

error 0.16

w01 w21+ w01 w11 w21+ + ∞= =

w02 w22+ w02 w12 w22+ + ∞= =

u v1 v2+ + 0= v1 f 1– 0.9( )≥ w11 0>, ,

v2 f 1– 0.1( )≤ w12 0<,

w01 w21+ w01 w11 w21+ + ∞–= =

w02 w22+ w02 w12 w22+ + ∞–= =

u 0= v1 f 1– 0.1( )≤ w11 0<, ,

v2 f 1– 0.9( )≥ w12 0>,

w01 w21+ w01 w11 w21+ + ∞= =

w02 w22+ w02 w12 w22+ + ∞–= =

u v1+ 0= v1 f 1– 0.9( )≥ w11 0>, ,

v2 f 1– 0.9( )≥ w12 0>,

w01 w21+ w01 w11 w21+ + ∞–= =

w02 w22+ w02 w12 w22+ + ∞= =

u v2+ 0= v1 f 1– 0.1( )≤ w11 0<, ,

v2 f 1– 0.1( )≤ w12 0<,
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Table 4: Local minima with P01 and P11 learned

or & or

or & or

u v1f w01 w21+( ) v2f w02 w22+( )+ + f 1– 0.9( )=

u v1f w01 w11 w21+ +( ) v2f w02 w12 w22+ +( )+ + f 1– 0.1( )=

error 0.16

w01 w01 w11+ ∞= =

w02 w02 w12+ ∞= =

u v1 v2+ + 0= v1 f 1– 0.9( )≥ w11 0<, ,

v2 f 1– 0.1( )≤ w12 0>,

w01 w01 w11+ ∞–= =

w02 w02 w12+ ∞–= =

u 0= v1 f 1– 0.1( )≤ w11 0>, ,

v2 f 1– 0.9( )≥ w12 0<,

w01 w01 w11+ ∞= =

w02 w02 w12+ ∞–= =

u v1+ 0= v1 f 1– 0.9( )≥ w11 0<, ,

v2 f 1– 0.9( )≥ w12 0<,

w01 w01 w11+ ∞–= =

w02 w02 w12+ ∞= =

u v2+ 0= v1 f 1– 0.1( )≤ w11 0>, ,

v2 f 1– 0.1( )≤ w12 0>,

Table 5: Local minima with P10 and P11 learned

or & or

or & or

u v1f w01 w11+( ) v2f w02 w12+( )+ + f 1– 0.9( )=

u v1f w01 w11 w21+ +( ) v2f w02 w12 w22+ +( )+ + f 1– 0.1( )=

error 0.16

w01 w01 w21+ ∞= =

w02 w02 w22+ ∞= =

u v1 v2+ + 0= v1 f 1– 0.9( )≥ w21 0<, ,

v2 f 1– 0.1( )≤ w22 0>,

w01 w01 w21+ ∞–= =

w02 w02 w22+ ∞–= =

u 0= v1 f 1– 0.1( )≤ w21 0>, ,

v2 f 1– 0.9( )≥ w22 0<,

w01 w01 w21+ ∞= =

w02 w02 w22+ ∞–= =

u v1+ 0= v1 f 1– 0.9( )≥ w21 0<, ,

v2 f 1– 0.9( )≥ w22 0<,

w01 w01 w21+ ∞–= =

w02 w02 w22+ ∞= =

u v2+ 0= v1 f 1– 0.1( )≤ w21 0>, ,

v2 f 1– 0.1( )≤ w22 0>,
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It is possible to escape from all these local minima via points with  = 0
(tables 3 and 4) and  (tables 2 and 5) ( ), respectively.

5.4 Exactly one of the patternsPij is learned

The case that the pattern  is learned will be studied first. A number of
regions with local minima will be found. Via transformations of the weights
corresponding results are derived for the cases that one of the other patterns
is learned.

5.4.3 The patternP00 is learned

In this case  and the equalities for stationary points become:

(5.17)

Similarly to the proof in section 5.2.1 it can be shown that no local minima
occur if one of the terms , , ,
is finite. Thus we have to consider the cases where all these terms are equal
to plus or minus infinity. If  and , then
equations (5.17) result in  or , which case we don’t
consider here. Similarly we will not have to consider cases where one of the
terms , and is going to  ( ) and
the other terms are tending to  ( ). For the weights ,

and the same argument holds.
Thus four cases remain:

• = = = = =
= ∞

• = =  = ∞ and =
= = –∞

• = = = –∞ and =
= = ∞

w1i
w2i 0= i j 1 2,{ }∈,

P00

R00 0=

R01 R10 R11+ + 0=

R01f w01 w21+( ) R10f w01 w11+( ) R11f w01 w11 w21+ +( )+ + 0=

R01f w02 w22+( ) R10f w02 w12+( ) R11f w02 w12 w22+ +( )+ + 0=

v1f ′ w01 w21+( ) 0=

v1f ′ w01 w11+( ) 0=

v1f ′ w01 w11 w21+ +( ) 0=

v2f ′ w02 w22+( ) 0=

v2f ′ w02 w12+( ) 0=

v2f ′ w02 w12 w22+ +( ) 0=

w0i w1i+ w0i w2i+ w0i w1i w2i+ + i 1 2,{ }∈

w01 w11+ ∞= w01 w21+ ∞–=
R01 0= R10 0=

w01 w11+ w01 w21+ w01 w11 w21+ + ∞ ∞–
∞– ∞ w02 w12+

w02 w22+ w02 w12 w22+ +

w01 w11+ w01 w21+ w01 w11 w21+ + w02 w12+ w02 w22+
w02 w12 w22+ +

w01 w11+ w01 w21+ w01 w11 w21+ + w02 w12+
w02 w22+ w02 w12 w22+ +

w01 w11+ w01 w21+ w01 w11 w21+ + w02 w12+
w02 w22+ w02 w12 w22+ +
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• = = = = =
=

We will investigate these cases in the following.

Case 5.4.1.1: w01+w11= w01+w21 = w01+w11+w21 = w02+w12=
w02+w22 = w02+w12+w22 = ∞

In this case equations (2.1) result in

(5.18)

Using equations (4.1) and (5.18) in (5.17) leads to:

and thus

(5.19)

Using (5.19) in order to eliminate  from the equation for  in (5.18) and
using that  results in:

(5.20)

and thus  and/or  has to hold.
For ,  and we find:

(5.21)

Altering  while keeping  constant can only increase the error,
since the function  attains a minimum for

.
So let us consider what happens when moving , ,

and/or away from infinity.
We split this case into two cases:

•
• is finite

For considering , and  as independent varia-
bles results in:

w01 w11+ w01 w21+ w01 w11 w21+ + w02 w12+ w02 w22+
w02 w12 w22+ + ∞–

A00 u v1f w01( ) v2f w02( )+ + f 1– 0.1( )= =

A01 A10 A11 u v1 v2+ += = =

R01 R10 R11+ + =

2 f u v1 v2+ +( ) 0.9–( ) f ′ u v1 v2+ +( ) +

f u v1 v2+ +( ) 0.1–( ) f ′ u v1 v2+ +( ) =

3f u v1 v2+ +( ) 1.9–( ) f ′ u v1 v2+ +( ) 0=

u v1 v2+ + f 1– 1.9 3⁄( )=

u A00
1 f x( )– f x–( )=

v1f w01–( ) v2f w02–( )+ f 1– 1.9 3⁄( ) f 1– 0.1( )– 0>=

v1 0> v2 0>
R01 R10 R11

R01 R10 (f(f
1–

1.9 3⁄( ) ) 0.9– )f ′(f 1–
1.9 3⁄( ) ) 0.0619259–≈= =

R11 (f(f
1–

1.9 3⁄( ) ) 0.1– )f ′(f 1–
1.9 3⁄( ) ) 0.123852≈= =

2R– 01 2R10–= =

u v1 v2+ + A00
2 f x( ) 0.9–( ) 2 f x( ) 0.1–( ) 2+

f x( ) 1.9 3⁄=
w01 w11+ w01 w21+

w01 w11 w21++

w01 ∞=
w01

w01 ∞= p e w01–= w11 w21
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(5.22)

So, since , saddle points are found if

•  and  or
•  and

(Boundary points of regions of saddle points are saddle points too.)
So a necessary condition to obtain a local minimum with , is

that

• and  > 0, or
• and  < 0.

A similar condition is necessary for a local minimum with .
Now suppose  is finite. Then both and  are infinite, because

we are considering stationary points with .
Considering , and as independent variables,
yields:

(5.23)

So, since  is negative, saddle points are found if .
Hence, a necessary condition to obtain a local minimum with  finite,

is

• .
Similarly a necessary condition to obtain a local minimum with  finite is

• .
So local minima are obtained if both the weights connected to the first hidden
unit and those connected to the second hidden unit satisfy the given restric-
tions. Remarking that  and/or  has to hold and that or
has to be finite, because of equations (5.18) and (5.19) leads to:

Conclusion 5.8If pattern  is learned, then regions with local minima
with error 0.213333 are found if ,  =

 =  =  =  =
= ∞ and if one of the following conditions is fulfilled:

• , finite and either

• , and  > 0 or

• , and  < 0

or

• , finite and either

p∂
∂E

p 0=

R01– v1 e w11– e w21– 2e w11– w21––+( )=

R01 0<
v1 0≥ e w11– e w21– 2e w11– w21––+ 0≤
v1 0≤ e w11– e w21– 2e w11– w21––+ 0≥

w01 ∞=

v1 0> e w11– e w21– 2e w11– w21––+
v1 0< e w11– e w21– 2e w11– w21––+

w02 ∞=
w01 w11 w21

w01 w11+ w01 w21+ ∞= =
w01 p1 e w11–= p2 e w21–=

p1∂
∂E

p1 p2 0= =
p2∂

∂E

p1 p2 0= =

R01– v1e w01–= =

R01 v1 0≤
w01

v1 0>
w02

v2 0>

v1 0> v2 0> w01 w02

P00
u v1 v2+ + f 1– 1.9 3⁄( )= w01 w11+

w01 w21+ w01 w11 w21+ + w02 w12+ w02 w22+ w02 w12 w22+ +

w01 ∞= w02

v1 0> v2 0> e w11– e w21– 2e w11– w21––+

v1 0< v2 0> e w11– e w21– 2e w11– w21––+

w02 ∞= w01
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• , and  > 0 or

• , and  < 0

or

•  and are finite and and .

Case 5.4.1.2:w01+w11 = w01+w21 = w01+w11+w21 = ∞ and w02+w12 =
w02+w22 = w02+w12+w22 = –∞

Analogously to case 1 we find:

(5.24)

and ,  and  are given by (5.21).
Removing from the equation for , using the last equation of (5.24),

results in:

(5.25)

and thus  and/or  has to hold.
Altering  increases the error. Consideration of the weights

connected to the first hidden unit again leads to the necessary conditions for
local minima:

• and either

•  and  > 0 or

•  and  < 0

or

• finite and .

Let us consider the weights connected to the second hidden unit. We split this
case into the two cases:

•
• is finite

If considering the independent variables ,  and
gives:

(5.26)

So, since , a necessary condition to obtain a local minimum with
is:

v1 0> v2 0> e w12– e w22– 2e w12– w22––+

v1 0> v2 0< e w12– e w22– 2e w12– w22––+

w01 w02 v1 0> v2 0>

A00 u v1f w01( ) v2f w02( )+ + f 1– 0.1( )= =

A01 A10 A11 u v1+= = =

R01 R10 R11+ + 3f u v1+( ) 1.9–( ) f ′ u v1+( ) 0= =

u v1+ f 1– 1.9 3⁄( )=

R01 R10 R11
u A00

v1f w01–( ) v2f w02( )– f 1– 1.9 3⁄( ) f 1– 0.1( )– 0>=

v1 0> v2 0<
u v1+

w01 ∞=

v1 0> e w11– e w21– 2e w11– w21––+

v1 0< e w11– e w21– 2e w11– w21––+

w01 v1 0>

w02 ∞–=
w02

w02 ∞–= q ew02= w12 w22

q∂
∂E

q 0=

R01v2 ew12 ew22 2ew12w22–+( )=

R01 0<
w02 ∞–=
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•  and  < 0 or
•  and  > 0.

Now suppose  is finite and thus both and are equal to minus
infinity. Considering the independent variables , and

leads to:

(5.27)

So a necessary condition to obtain a local minimum if  is finite and
and  are equal to minus infinity is

• .
Since and/or has to hold and since  and
can not occur because of equation (5.24), the following conclusion results:

Conclusion 5.9If pattern  is learned, then regions with local minima
with error 0.213333 will be found if ,  =

 =  = ∞ and  =  =
 =  and if one of the following conditions is fulfilled:

• ,  finite and either

• ,  and  > 0 or

• ,  and  < 0

or

• ,  finite and either

• , and  < 0 or

• ,  and  > 0

or

• and are finite,  and .

Also boundary points of the regions with local minima of conclusion 5.9 are
saddle points.

Case 5.4.1.3:w01+w11 = w01+w21 = w01+w11+w21 = –∞ and w02+w12
= w02+w22 = w02+w12+w22 = ∞

Analogously to case 2 we find the following conclusion:

Conclusion 5.10If pattern  is learned, then regions with local minima
with error 0.213333 will be found if ,  =

 =  =  and  =  =
 = ∞ and if one of the following conditions is fulfilled:

v2 0> ew12 ew22 2ew12 w22+–+
v2 0< ew12 ew22 2ew12 w22+–+

w02 w12 w22
w02 q1 ew12=

q2 ew22=

q1∂
∂E

q1 q2 0= =
q2∂

∂E

q1 q2 0= =

R01v2ew02= =

w02 w12
w22

v2 0<
v1 0> v2 0< w01 ∞= w02 ∞–=

P00
u v1+ f 1– 1.9 3⁄( )= w01 w11+

w01 w21+ w01 w11 w21+ + w02 w12+ w02 w22+
w02 w12 w22+ + ∞–

w01 ∞= w02

v1 0> v2 0< e w11– e w21– 2e w11– w21––+

v1 0< v2 0< e w11– e w21– 2e w11– w21––+

w02 ∞–= w01

v1 0> v2 0> ew12 ew22 2ew12 w22+–+

v1 0> v2 0< ew12 ew22 2ew12 w22+–+

w01 w02 v1 0> v2 0<

P00
u v2+ f 1– 1.9 3⁄( )= w01 w11+

w01 w21+ w01 w11 w21+ + ∞– w02 w12+ w02 w22+
w02 w12 w22+ +
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• , finite and either

• ,  and  > 0 or

• ,  and  < 0

or

• , finite and either

• ,  and  < 0 or

• ,  and  > 0

or

•  and  are finite,  and .
These regions have boundary points which are saddle points.

Case 5.4.1.4:w01+w11 = w01+w21 = w01+w11+w21 = w02+w12 =
w02+w22 = w02+w12+w22 = –∞

Analogously to the previous cases we find:

(5.28)

and ,  and  are given by (5.21). Hence:

(5.29)

and thus and/or has to hold.
Since and/or and can not hold, we find

the conclusion:

Conclusion 5.11If pattern  is learned, then regions with local minima
with error 0.213333 will be found if ,  =

 =  =  =  =
=  and if one of the following conditions is fulfilled:

• , finite and either

• ,  and  < 0 or

• ,  and  > 0

or

• , finite and either

• ,  and  < 0 or

• ,  and  > 0

or

w02 ∞= w01

v1 0< v2 0> e w12– e w22– 2e w12– w22––+

v1 0< v2 0< e w12– e w22– 2e w12– w22––+

w01 ∞–= w02

v1 0> v2 0> ew11 ew21 2ew11 w21+–+

v1 0< v2 0> ew11 ew21 2ew11 w21+–+

w01 w02 v1 0< v2 0>

A00 u v1f w01( ) v2f w02( )+ + f 1– 0.1( )= =

A01 A10 A11 u= = =

R01 R10 R11+ + 3f u( ) 1.9–( ) f ′ u( ) 0= =

u f 1– 1.9 3⁄( )=

R01 R10 R11

v1f w01( ) v2f w02( )+ f 1– 0.1( ) f 1– 1.9 3⁄( )– 0<=

v1 0< v2 0<
v1 0< v2 0< w01 w02 ∞–= =

P00
u f 1– 1.9 3⁄( )= w01 w11+

w01 w21+ w01 w11 w21+ + w02 w12+ w02 w22+ w02 w12 w22+ +
∞–

w01 ∞–= w02

v1 0> v2 0< ew11 ew21 2ew11 w21+–+

v1 0< v2 0< ew11 ew21 2ew11 w21+–+

w02 ∞–= w01

v1 0< v2 0> ew12 ew22 2ew12 w22+–+

v1 0< v2 0< ew12 ew22 2ew12 w22+–+
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• and are finite,  and .

Also these regions with local minima have boundary points which are saddle
points.

So conclusions 5.8, 5.9, 5.10 and 5.11 give the local minima for the case
that pattern  is learned and , and are unequal to zero. All
these local minima have boundary points which are saddle points.

Using the transformations 1, 2 and 3 from section 5.2 immediately gives
the corresponding local minima if one of the other patterns is learned. These
local minima are summarized in the next subsection.

w01 w02 v1 0< v2 0<

P00 R01 R10 R11
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5.5 Summary of the local minima with one pattern learned

Table 6: Local minima with pattern P00 learned

u v1f w01( ) v2f w02( )+ + f 1– 0.1( )= error 0.213333

w01 w11+ w01 w21+= =

w01 w11 w21+ + ∞=

w02 w12+ w02 w22+= =

w02 w12 w22+ + ∞=

u v1 v2+ + f 1– 1.9 3⁄( )=

w01 ∞ w02 finite and,=

v1 0 v2 0 e w11– e w21– 2e w11– w21––+ 0 or>,>,>

v1 0 v2 0 e w11– e w21– 2e w11– w21––+ 0<,>,<
w02 ∞ w01 finite and,=

v1 0 v2 0 e w12– e w22– 2e w12– w22––+ 0 or>,>,>

v1 0 v2 0 e w12– e w22– 2e w12– w22––+ 0<,<,>
w01 w02 finite v1 0 v2 0>,>, ,

w01 w11+ w01 w21+= =

w01 w11 w21+ + ∞=

w02 w12+ w02 w22+= =

w02 w12 w22+ + ∞–=

u v1+ f 1– 1.9 3⁄( )=

w01 ∞ w02 finite and,=

v1 0 v2 0 e w11– e w21– 2e w11– w21––+ 0 or>,<,>

v1 0 v2 0 e w11– e w21– 2e w11– w21––+ 0<,<,<
w02 ∞– w01 finite and,=

v1 0 v2 0 ew12 ew22 2ew12 w22+–+ 0 or<,>,>

v1 0 v2 0 ew12 ew22 2ew12 w22+–+ 0>,<,>
w01 w02 finite,, v1 0 v2 0<,>

w01 w11+ w01 w21+= =

w01 w11 w21+ + ∞–=

w02 w12+ w02 w22+= =

w02 w12 w22+ + ∞=

u v2+ f 1– 1.9 3⁄( )=

w02 ∞ w01 finite and,=

v1 0 v2 0 e w12– e w22– 2e w12– w22––+ 0 or>,>,<

v1 0 v2 0 e w12– e w22– 2e w12– w22––+ 0<,<,<
w01 ∞– w02 finite and,=

v1 0 v2 0 ew11 ew21 2ew11 w21+–+ 0 or<,>,>

v1 0 v2 0 ew11 ew21 2ew11 w21+–+ 0>,>,<
w01 w02 finite v1, , 0 v2 0>,<

w01 w11+ w01 w21+= =

w01 w11 w21+ + ∞–=

w02 w12+ w02 w22+= =

w02 w12 w22+ + ∞–=

u f 1– 1.9 3⁄( )=

w01 ∞– w02 finite and,=

v1 0 v2 0 ew11 ew21 2ew11 w21+–+ 0 or<,<,>

v1 0 v2 0 ew11 ew21 2ew11 w21+–+ 0>,<,<
w02 ∞– w01 finite and,=

v1 0 v2 0 ew12 ew22 2ew12 w22+–+ 0 or<,>,<

v1 0 v2 0 ew12 ew22 2ew12 w22+–+ 0>,<,<
w01 w02 finite, v1 0 v2 0<,<,
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Table 7: Local minima with pattern P01 learned

u v1f w01 w21+( ) v2f w02 w22+( )+ + f 1– 0.9( )= error 0.213333

w01 w01 w11+= =

w01 w11 w21+ + ∞–=

w02 w02 w12+= =

w02 w12 w22+ + ∞–=

u f 1– 1.1 3⁄( )=

w01 w21+ ∞– w02 w22 finite and+,=

v1 0 v2 0 ew11 e w21– 2ew11 w21––+ 0 or>,>,>

v1 0 v2 0 ew11 e w21– 2ew11 w21––+ 0<,>,<
w02 w22+ ∞– w01 w21+ finite and,=

v1 0 v2 0 ew12 e w22– 2ew12 w22––+ 0 or>,>,>

v1 0 v2 0 ew12 e w22– 2ew12 w22––+ 0<,<,>
w01 w21+ w02 w22+ finite v1, , 0 v2 0>,>

w01 w01 w11+= =

w01 w11 w21+ + ∞–=

w02 w02 w12+= =

w02 w12 w22+ + ∞=

u v2+ f 1– 1.1 3⁄( )=

w01 w21+ ∞– w02 w22 finite and+,=

v1 0 v2 0 ew11 e w21– 2ew11 w21––+ 0 or>,<,>

v1 0 v2 0 ew11 e w21– 2ew11 w21––+ 0<,<,<
w02 w22+ ∞ w01 w21 finite and+,=

v1 0 v2 0 e w– 12 ew22 2e w– 12 w22+–+ 0 or<,>,>

v1 0 v2 0 e w– 12 ew22 2e w– 12 w22+–+ 0>,<,>
w01 w21+ w02 w22+ finite,, v1 0 v2 0<,>

w01 w01 w11+= =

w01 w11 w21+ + ∞=

w02 w02 w12+= =

w02 w12 w22+ + ∞–=

u v1+ f 1– 1.1 3⁄( )=

w02 w22+ ∞ w01 w21 finite and+,–=

v1 0 v2 0 ew12 e w22– 2ew12 w22––+ 0 or>,>,<

v1 0 v2 0 ew12 e w22– 2ew12 w22––+ 0<,<,<
w01 w21+ ∞ w02 w22 finite and+,=

v1 0 v2 0 e w– 11 ew21 2e w– 11 w21+–+ 0 or<,>,>

v1 0 v2 0 e w– 11 ew21 2e w– 11 w21+–+ 0>,>,<
w01 w21+ w02 w22+ finite v1, , 0 v2 0>,<

w01 w01 w12+= =

w01 w11 w21+ + ∞=

w02 w02 w12+= =

w02 w12 w22+ + ∞=

u v1 v2+ + f 1– 1.1 3⁄( )=

w01 w21+ ∞ w02 w22+ finite and,=

v1 0 v2 0 e w– 11 ew21 2e w– 11 w21+–+ 0 or<,<,>

v1 0 v2 0 e w– 11 ew21 2e w– 11 w21+–+ 0>,<,<
w02 w22+ ∞ w01 w21+ finite and,=

v1 0 v2 0 e w– 12 ew22 2e w– 12 w22+–+ 0 or<,>,<

v1 0 v2 0 e w– 12 ew22 2e w– 12 w22+–+ 0>,<,<
w01 w21 w02 w22 finite , v1+,+ 0 v2 0<,<
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Table 8: Local minima with pattern P10 learned

u v1f w01 w11+( ) v2f w02 w12+( )+ + f 1– 0.9( )= error 0.213333

w01 w01 w21+= =

w01 w11 w21+ + ∞–=

w02 w02 w22+= =

w02 w12 w22+ + ∞–=

u f 1– 1.1 3⁄( )=

w01 w11+ ∞– w02 w12 finite and+,=

v1 0 v2 0 ew21 e w11– 2ew21 w11––+ 0 or>,>,>

v1 0 v2 0 ew21 e w11– 2ew21 w11––+ 0<,>,<
w02 w12+ ∞ w01 w11+ finite and,–=

v1 0 v2 0 ew22 e w12– 2ew22 w12––+ 0 or>,>,>

v1 0 v2 0 ew22 e w12– 2ew22 w12––+ 0<,<,>
w01 w11+ w02 w12+ finite v1, , 0 v2 0>,>

w01 w01 w21+= =

w01 w11 w21+ + ∞–=

w02 w02 w22+= =

w02 w12 w22+ + ∞=

u v2+ f 1– 1.1 3⁄( )=

w01 w11+ ∞ w02 w12 finite and+,–=

v1 0 v2 0 ew21 e w11– 2ew21 w11––+ 0 or>,<,>

v1 0 v2 0 ew21 e w11– 2ew21 w11––+ 0<,<,<
w02 w12+ ∞ w01 w11 finite and+,=

v1 0 v2 0 e w– 22 ew12 2e w– 22 w12+–+ 0 or<,>,>

v1 0 v2 0 e w– 22 ew12 2e w– 22 w12+–+ 0>,<,>
w01 w11+ w02 w12+ finite,, v1 0 v2 0<,>

w01 w01 w21+= =

w01 w11 w21+ + ∞=

w02 w02 w22+= =

w02 w12 w22+ + ∞–=

u v1+ f 1– 1.1 3⁄( )=

w02 w12+ ∞ w01 w11 finite and+,–=

v1 0 v2 0 ew22 e w12– 2ew22 w12––+ 0 or>,>,<

v1 0 v2 0 ew22 e w12– 2ew22 w12––+ 0<,<,<
w01 w11+ ∞ w02 w12 finite and+,=

v1 0 v2 0 e w– 21 ew11 2e w– 21 w11+–+ 0 or<,>,>

v1 0 v2 0 e w– 21 ew11 2e w– 21 w11+–+ 0>,>,<
w01 w11+ w02 w12+ finite v1, , 0 v2 0>,<

w01 w01 w21+= =

w01 w11 w21+ + ∞=

w02 w02 w22+= =

w02 w12 w22+ + ∞=

u v1 v2+ + f 1– 1.1 3⁄( )=

w01 w11+ ∞ w02 w12+ finite and,=

v1 0 v2 0 e w– 21 ew11 2e w– 21 w11+–+ 0 or<,<,>

v1 0 v2 0 e w– 21 ew11 2e w– 21 w11+–+ 0>,<,<
w02 w12+ ∞ w01 w11+ finite and,=

v1 0 v2 0 e w– 22 ew12 2e w– 22 w12+–+ 0 or<,>,<

v1 0 v2 0 e w– 22 ew12 2e w– 22 w12+–+ 0>,<,<
w01 w11 w02 w12 finite , v1+,+ 0 v2 0<,<
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Table 9: Local minima with pattern P11 learned

u v1f w01 w11 w21+ +( ) v2f w02 w12 w22+ +( )+ + f 1– 0.1( )= error 0.213333

w01 w01 w11+= =

w01 w21+ ∞=

w02 w02 w12+= =

w02 w22+ ∞=

u v1 v2+ + f 1– 1.9 3⁄( )=

w01 w11 w21+ + ∞ w02 w12 w22+ + finite and,=

v1 0 v2 0 ew11 ew21 2ew11 w21+–+ 0 or>,>,>

v1 0 v2 0 ew11 ew21 2ew11 w21+–+ 0<,>,<
w02 w12 w22+ + ∞ w01 w11 w21+ + finite and,=

v1 0 v2 0 ew12 ew22 2ew12 w22+–+ 0 or>,>,>

v1 0 v2 0 ew12 ew22 2ew12 w22+–+ 0<,<,>
w01 w11 w21+ + w02 w12 w22+ + finite v1, , 0 v2 0>,>

w01 w01 w11+= =

w01 w21+ ∞=

w02 w02 w12+= =

w02 w22+ ∞–=

u v1+ f 1– 1.9 3⁄( )=

w01 w11 w21+ + ∞ w02 w12 w22+ + finite and,=

v1 0 v2 0 ew11 ew21 2ew11 w21+–+ 0 or>,<,>

v1 0 v2 0 ew11 ew21 2ew11 w21+–+ 0<,<,<
w02 w12 w22+ + ∞ w01 w11 w21+ + finite and,–=

v1 0 v2 0 e w– 12 e w– 22 2e w– 12 w22––+ 0 or<,>,>

v1 0 v2 0 e w– 12 e w– 22 2e w– 12 w22––+ 0>,<,>
w01 w11 w21+ + w02 w12 w22+ + finite,, v1 0 v2 0<,>

w01 w01 w11+= =

w01 w21+ ∞–=

w02 w02 w12+= =

w02 w22+ ∞=

u v2+ f 1– 1.9 3⁄( )=

w02 w12 w22+ + ∞ w01 w11 w21+ + finite and,=

v1 0 v2 0 ew12 ew22 2ew12 w22+–+ 0 or>,>,<

v1 0 v2 0 ew12 ew22 2ew12 w22+–+ 0<,<,<
w01 w11 w21+ + ∞– w02 w12 w22+ + finite and,=

v1 0 v2 0 e w– 11 e w– 21 2e w– 11 w21––+ 0 or<,>,>

v1 0 v2 0 e w– 11 e w– 21 2e w– 11 w21––+ 0>,>,<
w01 w11 w21+ + w02 w12 w22+ + finite v1, , 0 v2 0>,<

w01 w01 w11+= =

w01 w21+ ∞–=

w02 w02 w12+= =

w02 w22+ ∞–=

u f 1– 1.9 3⁄( )=

w01 w11 w21+ + ∞ w02 w12 w22+ + finite and,–=

v1 0 v2 0 e w– 11 e w– 21 2e w– 11 w21––+ 0 or<,<,>

v1 0 v2 0 e w– 11 e w– 21 2e w– 11 w21––+ 0>,<,<
w02 w12 w22+ + ∞ w01 w11 w21+ + finite and,–=

v1 0 v2 0 e w– 12 e w– 22 2e w– 12 w22––+ 0 or<,>,<

v1 0 v2 0 e w– 12 e w– 22 2e w– 12 w22––+ 0>,<,<
w01 w11 w21+ + w02 w12 w22+ + finite v1, , 0 v2 0<,<
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5.6 All terms Rij are unequal to zero

The conditions for stationary points become in this case:

(5.30)

If  is finite, then either  or also ,  and
 have to be finite. Similarly to previous proofs

and/or  result in saddle points. All terms , , ,
,  finite also result in saddle points (see section

4.2 in [10]). So we have to consider here the stationary points with ,
, , and  infinite and/or , ,
, and  infinite.

Remark that , , and  =
 and equations (5.30) have to hold. So, we have

the following possibilities for , , , and
 infinite:

•  =  =  =  =  or
•  = =  and  =  =  or
•  = =  and  =  = .

In the following we will investigate a number of characteristic cases:

•  =  =  =  =  and ,
, , and  finite

•  =  =  =  =  and  =
 =  =  =

•  = =  and  =  =  and ,
, , and  finite

•  =  =  =  =  and  =
=  and  =  =

•  = =  and  =  =  and
= =  and  =  =

•  = =  and  =  =  and

R00 R01 R10 R11+ + + 0=

R00f w01( ) R01f w01 w21+( )+ +

R+ 10f w01 w11+( ) R11f w01 w11 w21+ +( )+ 0=

R00f w02( ) R01f w02 w22+( )+ +

R+ 10f w02 w12+( ) R11f w02 w12 w22+ +( )+ 0=

v1R00f ′ w01( ) v– 1R01f ′ w01 w21+( )= =

v– 1R10f ′ w01 w11+( ) v1R11f ′ w01 w11 w21+ +( )=

v2R00f ′ w02( ) v– 2R01f ′ w02 w22+( )= =

v– 2R10f ′ w02 w12+( ) v2R11f ′ w02 w12 w22+ +( )=

w01 v1 0= w01 w11+ w01 w21+
w01 w11 w21+ + v1 0=

v2 0= w0i w0i w1i+ w0i w2i+
w0i w1i w2i+ + i 1 2,{ }∈

w01
w01 w11+ w01 w21+ w01 w11 w21+ + w02 w02 w12+
w02 w22+ w02 w12 w22+ +

Rij 0≠ i j 0 1,{ }∈, w01 w01 w11 w21+ +( )+
w01 w11+( ) w01 w21+( )+

w01 w01 w11+ w01 w21+
w01 w11 w21+ +

w01 w01 w11+ w01 w21+ w01 w11 w21+ + ∞±
w01 w01 w11+ ∞± w01 w21+ w01 w11 w21+ + ∞+−
w01 w01 w21+ ∞± w01 w11+ w01 w11 w21+ + ∞+−

w01 w01 w11+ w01 w21+ w01 w11 w21+ + ∞ w02
w02 w12+ w02 w22+ w02 w12 w22+ +
w01 w01 w11+ w01 w21+ w01 w11 w21+ + ∞ w02
w02 w12+ w02 w22+ w02 w12 w22+ + ∞
w01 w01 w11+ ∞ w01 w21+ w01 w11 w21+ + ∞– w02
w02 w12+ w02 w22+ w02 w12 w22+ +
w01 w01 w11+ w01 w21+ w01 w11 w21+ + ∞ w02
w02 w12+ ∞ w02 w22+ w02 w12 w22+ + ∞–
w01 w01 w11+ ∞ w01 w21+ w01 w11 w21+ + ∞– w02

w02 w12+ ∞ w02 w22+ w02 w12 w22+ + ∞–
w01 w01 w11+ ∞ w01 w21+ w01 w11 w21+ + ∞– w02



32

= =  and  =  =

We will find a number of regions with local minima. Analogously, the other
regions with local minima can be derived.

Case 5.6.1: w01 = w01 + w11 = w01 + w21 = w01 + w11 + w21 =  and
w02, w02 + w12, w02 + w22, and w02 + w12 + w22finite

If , , , and  are finite and  it
follows that  or  has to hold (see section 4.2 in [10]). If

 it follows from (2.1) that  and from (5.30) that
 and thus . Also we find  and

thus also  has to hold. Thus , and
 for the stationary points considered here. So

taking ,  and  as independent variables results in

and thus, since , if

•  or equivalently
decreasing  away from infinity will result in an increasing error. If

 then  and  have no influence on the error. Considering the
second order part of the Taylor series expansion with respect to the weights

, , , , , and  leads to:

(5.31)

The first quadratic term can be made zero by chosing . The remaining
terms in  are positive if  and/or  if the discriminant of
the quadratic equation is negative:

resulting in

(5.32)

So under this condition altering  and/or  can only increase the error.
But if  and  are kept constant equal to zero then all terms  are

w02 w22+ ∞ w02 w12+ w02 w12 w22+ + ∞–

∞

w02 w02 w12+ w02 w22+ w02 w12 w22+ + v2 0≠
w12 0= w22 0=

w12 0= A00 A10=
R00 R10–= A00 A10 0= = A01 A11 0= =

w22 0= A00 A01 A10 A11 0= = = =
R00 R01– R10– R11= = =

p e w01–= w11 w21

p∂
∂E

p 0=

R00v1 1 e w11–– e w21–– e w11– w21–+( )–= =

R00v1 1 e w11––( ) 1 e w21––( )–

R00 f 0( ) 0.1–( ) f ′ 0( ) 0>=

v1(1 e w11–– )(1 e w21–– ) 0< v1w11w21 0<
w01

w01 ∞= w11 w21

u v1 v2 w02 w12 w22

∆E 4 f ′ 0( ){ } 2 ∆u ∆v1 f w02( ) ∆v2 v2f ′ w02( ) ∆w02+ + + +[=

1
2
---v2f ′ w02( ) ∆w12 ∆w22+( ) ] 2 +

f ′ 0( ){ } 2v2
2 f ′ w02( ){ } 2 ∆w12( ) 2 ∆w22( ) 2+[ ] +

2v2 f 0( ) 0.1–( ) f ′ 0( ) f ″ w02( ) ∆w12∆w22

∆u
∆E ∆w12 0≠ ∆w22 0≠

2v2 f 0( ) 0.1–( ) f ′ 0( ) f ″ w02( )[ ] 2 4 f ′ 0( ){ } 2v2
2 f ′ w02( ){ } 2[ ] 2– 0<

v2 1.6
f ″ w02( )
f ′ w02( ){ } 2

------------------------------>

w12 w22
w12 w22 Aij
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equal to  and altering this also results in increasing the
error. Thus we found the region of local minima:

Conclusion 5.12If all terms  are unequal to zero, a 5-dimensional
region of local minima exists if , ,  =  =

 =  = ,  finite, ,
 and

• and

•

Case 5.6.2:w01 = w01 + w11 = w01 + w21 = w01 + w11 + w21 =  and
w02= w02 + w12 = w02 + w22 = w02 + w12 + w22 =

Here we find the following local minima:

Conclusion 5.13If all terms  are unequal to zero, a 6-dimensional
region of local minima exists if , ,  =  =

 =  = ,  =  =  =
 = ,  and

• and

•

Case 5.6.3: w01= w01 + w11 =  andw01 + w21 = w01 + w11 + w21
and w02, w02 + w12, w02 + w22, and w02 + w12 + w22finite

From (5.30) it follows that  and . Also it can be
derived that  or  (see section 4.2 in [10]). If , it
follows from (5.30) that . If  then
either  or , because of (5.30). If  and

, then (5.30) leads to . Thus
either  or . In both cases we find again that

.
Considering ,  and  as independent variables

yields

Thus saddle points are found if  and if . So no local
minima are found in this case.

u v1 v2f w02( )+ +

Rij
v1 0≠ v2 0≠ w01 w01 w11+

w01 w21+ w01 w11 w21+ + ∞ w02 w12 w22 0= =
u v1 v2f w02( )+ + 0=

v1w11w21 0<
v2 1.6 f ″ w02( ) f ′ w02( ){ } 2⁄>

∞
∞

Rij
v1 0≠ v2 0≠ w01 w01 w11+

w01 w21+ w01 w11 w21+ + ∞ w02 w02 w12+ w02 w22+
w02 w12 w22+ + ∞ u v1 v2++ 0=

v1w11w21 0<
v2w12w22 0<

∞ ∞–

R00 R– 10= R11 R01–=
w12 0= w22 0= w12 0=

R00 R01– R10– R11= = = w22 0=
w12 0= w12 w02–= w22 0=

w12 w02–= R00 R11–( ) 2f w02( ) 1–( ) 0=
R00 R11= w02 0=

R00 R01– R10– R11= = =
p e w01–= q ew01 w21+= w11

p1∂
∂E R00v1 1 e w11––( )–=

q1∂
∂E R– 00v1 1 ew11–( )=

v1w11 0≥ v1w11 0≤
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Case 5.6.4:w01 = w01 + w11 = w01 + w21 = w01 + w11 + w21 =  and
w02= w02 + w12 =  andw02 + w22 = w02 + w12 + w22 =

Here we find from equations (2.1) that  and that
. From (5.30) it follows that  and

, and thus all terms  are equal to zero and we find that
. Thus these points are saddle points.

Case 5.6.5:w01 = w01 + w11 =  and w01 + w21 = w01 + w11 + w21 =
 and w02= w02 + w12 =  andw02 + w22 = w02 + w12 + w22 =

In this case we find  = ,  = .
Thus we have  and the same argument as in
case 5.6.3 can be used to prove that no local minima are found in this case.

Case 5.6.6:w01 = w01 + w11 =  and w01 + w21 = w01 + w11 + w21 =
 and w02= w02 + w22 =  andw02 + w12 = w02 + w12 + w22 =  .

From (5.30) it follows that . So the same argu-
ment as in case 5.6.3 shows that no local minima occur in this case.

So only case 5.6.1 and case 5.6.3 and cases similar to these cases will result
in local minima. In tables 10 and 11 these local minima are summarized.

All these regions with local minima have boundary points that are saddle
points.

5.7 Some concrete examples

Lisboa and Perantonis [4] give 5 examples of points which are local minima.
The fifth example is one with finite weights and is not a real local minimum
but a saddle point, as proved in [10]. The other points are examples of local
minima with some of the weights from the input units to the hidden units
equal to plus or minus infinity. The points they have found have finite
weights, but the error does not further decrease because of numerical satura-
tion. The numerical saturation occurs as soon as the input of the hidden
nodes results in a value of the transfer function  very close to 0 or 1.
The four examples they give are shown in table12.

From the table it is clear that saturation of  occurs for  and
. Examples 1 and 2 are of the category that exactly two patterns are

learned and the other two are not. The first example is of the class (see table
3 in section 5.3):

∞
∞ ∞–

A00 A10 u v1 v2+ += =
A10 A11 u v1+= = R00 R– 10=
R01 R11–= Aij
v2 0=

∞
∞– ∞ ∞–

A00 A10= u v1 v2+ + 0= A11 A01= u 0=
R00 R01– R10– R11= = =

∞
∞– ∞ ∞–

R00 R01– R10– R11= = =

f x( )

f x( ) x 11–<
x 11>

A00 u v1f w01( ) v2f w02( )+ + f 1– 0.1( )= =
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The second example belongs to the class (see table 5 in section 5.3):

Table 10: Local minima with one of the hidden nodes saturated for
all patterns

error 0.32

 finite,

 finite,

 finite,

 finite,

w01 w01 w11+ w01 w11+ w01 w11 w21+ + ∞= = = =

w02 w12 w22 0= =

u v1 v2f w02( )+ + 0=

v1w11w21 0<

v2 1.6 f ″ w02( ) f ′ w02( ){ }2⁄>
w01 w01 w11+ w01 w11+ w01 w11 w21+ + ∞–= = = =

w02 w12 w22 0= =

u v2f w02( )+ 0=

v1w11w21 0>

v2 1.6 f ″ w02( ) f ′ w02( ){ }2⁄>
w01 w11 w21 0= =

w02 w02 w12+ w02 w22+ w02 w12 w22+ + ∞= = = =

u v1f w01( ) v2+ + 0=

v1 1.6 f ″ w01( ) f ′ w01( ){ }2⁄>

v2w12w22 0<
w01 w11 w21 0= =

w02 w02 w12+ w02 w22+ w02 w12 w22+ + ∞–= = = =

u v1f w01( )+ 0=

v1 1.6 f ″ w01( ) f ′ w01( ){ }2⁄>

v2w12w22 0>

A10 u v1f w01 w11+( ) v2f w02 w12+( )+ + f 1– 0.9( )= =

A01 A11 u v2+ 0= = =

w01 w21+ w01 w11 w21+ + ∞–= = w02 w22+ w02 w12 w22+ + ∞= =,

v1 f 1– 0.1( )≤ w11 0< v2 f 1– 0.1( )≤ w12 0<, , ,

A10 u v1f w01 w11+( ) v2f w02 w12+( )+ + f 1– 0.9( )= =

A11 u v1f w01 w11 w21+ +( ) v2f w02 w12 w22+ +( )+ + f 1– 0.1( )= =

A00 A01 u v1 v2+ + 0= = =

w01 w01 w21+ ∞ w02, w02 w22+ ∞= = = =
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Examples 3 and 4 have exactly one pattern learned. The third example
belongs to the class (see conclusion 5.10 and/or table 6 in section 5.5):

The fourth example belongs to the class (see table 7 in section 5.5):

Table 11: Local minima with both hidden units saturated for all
patterns

error 0.32

w01 w01 w11+ w01 w21+ w01 w11 w21+ + ∞= = = =

w02 w02 w12+ w02 w22+ w02 w12 w22+ + ∞= = = =

u v1 v2+ + 0=

v1w11w21 0<

v2w12w22 0<
w01 w01 w11+ w01 w21+ w01 w11 w21+ + ∞= = = =

w02 w02 w12+ w02 w22+ w02 w12 w22+ + ∞–= = = =

u v1+ 0=

v1w11w21 0<

v2w12w22 0>
w01 w01 w11+ w01 w21+ w01 w11 w21+ + ∞–= = = =

w02 w02 w12+ w02 w22+ w02 w12 w22+ + ∞= = = =

u v2+ 0=

v1w11w21 0>

v2w12w22 0<
w01 w01 w11+ w01 w21+ w01 w11 w21+ + ∞–= = = =

w02 w02 w12+ w02 w22+ w02 w12 w22+ + ∞–= = = =

u 0=

v1w11w21 0>

v2w12w22 0<

v1 f 1– 0.9( )≥ w21 0< v2 f 1– 0.1( )≤ w22 0>, , ,

A00 u v1f w01( ) v2f w02( )+ + f 1– 0.1( )= =

A01 A10 A11 u v2+ f 1– 1.9 3⁄( )= = = =

w01 w11+ w01 w21+ w01 w11 w21+ + ∞,–= = =

w02 w12+ w02 w22+ w02 w12 w22+ + ∞= = =

w01 andw02 finite, v1 0 v2 0>,<
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Rumelhart and McClelland [6] give the following example of a local
minimum:

, , , , , ,
, , ,

resulting in the outputs: , ,
 and .

This local minimum belongs to the class described in table 3 in section
5.3, satisfying the conditions:

Table 12: The local minima found by Lisboa and Perantonis

Example 1 Example 2 Example 3 Example 4

0.1 0.5 0.1 0.366

0.5 0.5 0.633 0.9

0.9 0.9 0.633 0.366

0.5 0.1 0.633 0.366

5.05670 1.54884 0.10897 –0.54656

–2.78335 4.59262 –3.42122 0.66331

–5.05670 –6.14146 0.43758 4.23784

1.41913 12.59865 1.39427 –10.28005

–5.52058 –11.52144 –13.70896 –10.42464

–13.69016 –1.10568 –13.70896 8.55786

4.73579 11.70733 5.121702 –10.97265

–4.50867 –11.89991 6.01491 –12.71414

12.27468 4.01044 6.01491 11.47785

f A00( )

f A01( )

f A10( )

f A11( )

u

v1

v2

w01

w11

w21

w02

w12

w22

A01 u v1f w01 w21+( ) v2f w02 w22+( )+ + f 1– 0.9( )= =

A00 A10 A11 u f 1– 1.1 3⁄( )= = = =

w01 w01 w11+ w01 w11 w21+ + ∞–= = =

w02 w02 w12+ w02 w12 w22+ + ∞–= = =

w01 w21+ andw02 w22+ finite andv1 0 v2 0>,>

u 0.8–= v1 4.5–= v2 5.3= w01 2.0= w11 2.0–= w21 9.2=
w02 0.1–= w12 4.3= w22 9.2=

f A00( ) 0.096= f A01( ) 0.4999=
f A10( ) 0.898= f A11( ) 0.500=



38

6 Conclusions

In this paper it is proved that the error surface of the two-layer XOR network
with two hidden units has a number of regions with local minima. These
regions of local minima occur for combinations of the weights from the
inputs to the hidden nodes such that one or both hidden nodes are saturated
(give output 0 or 1) for at least two of the patterns. However, boundary
points of these regions of local minima are saddle points. From these results
it can be concluded that from each finite point in weight space a strictly
decreasing path exists to a point with error zero. In the neighbourhood of a
region of local minima, this path will combine a decreasing step towards the
local minimum and a step “parallel” to the region of local minima towards
the boundary points that are saddle points. Section 5.3, 5.5, and 5.6 contain a
summary of all regions of local minima for the considered XOR network.

The results of this paper can explain a number of experimentally found
results. For example the fact that with a higher numerical precision less
“local minima” are met. This fact can be explained by the observation that
with a higher numerical precision the learning algorithm will less soon get
stuck and cannot proceed further because of the saturation of the hidden
units. As long as the learning algorithm makes some movement in the neigh-
bourhood of a region of local minima, the possibility exists that a point near
the boundary of such a region will be met, and a path to the global minimum
will be found. Testing this idea we started in the four “local minima” given
by Lisboa and Perantonis (see section 5.7) using on-line backpropagation
and “double” precision. As a result, in three of the four cases the algorithm
found at last a point with error zero, so the algorithm escaped from the neigh-
bourhood of the region with local minima. In the fourth case the path chosen
by the algorithm leaded away from the boundary points which are saddle
points.

A00 u v1f w01( ) v2f w02( )+ + f 1– 0.1( )= =

A10 u v1f w01 w11+( ) v2f w02 w12+( )+ + f 1– 0.9( )= =

A01 A11 u v1 v2+ + 0= = =

w01 w21+ w01 w11 w21+ + ∞ w02 w22+, w02 w12 w22+ + ∞= = = =

v1 f 1– 0.1( ) w11 0 v2 f 1– 0.9( ) w12 0>,≥,<,≤
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