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Sentences of Visual Languages (VLs) may often be regardadsasnblies of pictorial objects
with spatial relationships like “above” or “contains” beten them, i.e. their representations are
a kind of directed graphs. Such a spatial relationship grsyofiten complemented by a more
abstract graph, which provides information about the sy(dad the semantics) of the visual
sentence in a more succinct form. As both representatiangraphs, graph grammars are a
natural means for defining the concrete and the abstrachswyfitVLs. They can be used to
generate syntax directed VL editors, which support “freiirggl’ and parsing of their underly-
ing graph structures. Unfortunately, all efficiently warigraph grammar parsing algorithms
deal with restricted classes of context-free graph graramially, while more general classes of
graph grammars are necessary for defining many VLs. Thisvateti us to develop the no-
tion of layered context-sensitive graph grammars, togetiith a bottom-up/top-down parsing
algorithm.

1. Introduction and motivation

Inreading the visual language literature, or any book on software engigeene cannot help
but notice that a large variety of visual languages exists of which owafe equipped with
a proper formal syntax definition. In this paper we will show how grgyammars can be used
as syntax definition formalism for graphical languages, and we will dexeetppphical pars-
ing algorithm based on these grammars. We start with the context ofaiurhy discussing
the internal representations necessary to support editing and executisnafprograms, by
showing how graph grammars fit in, and by arguing why graph parsinddwmiuseful for
users of visual languages.

1.1. Theinternal representationsof adiagram

For auser of avisual language, the two mostimportant aspects of apisgahm are its phys-
ical layout (what the user sees and manipulates), and its meaning (what tbgpussses with
it). Any implementation of the language has to maintain the correspaedeiween these
two aspects. We discuss this in more detail and will use Entity-Relstiip (ER) diagrams as
example language to illustrate the proposed data structures.

e Theabstract syntax graph (ASG) representation of a diagram reflects the internal (log-
ical) structure of the diagram according to its visual language. Nodes ard @dthis

LThis is technical report 96-09 of Leiden University; avai@by ftp fromft p. wi . | ei denuni v. nl, file
/ pub/ CS/ Techni cal Report s/ 1996/ tr96-09. ps. gz. This paper will appear in the September 1996 issue
of the Journal of Visual Languages and Computing
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Text(topleft=(107, 440), textitems=['Book’])
Text(topleft=(93, 468), textitems=["title'])
Text(topleft=(128, 468), textitems=['author’])
Text(topleft=(194, 440), textitems=["publisher’)
Elli(center=(142, 464), size=(17, 6))
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Line(start=(100, 458), end=(107, 447))
Line(start=(142, 458), end=(135, 447))
Line(start=(142, 437), end=(152, 437))
Rect(topleft=(190, 447), botright=(242, 426))
Poly(points=[(152,437)(166,451)(180,437)(166,423)])
Line(start=(180, 437), end=(190, 437))
Text(topleft=(157, 440), textitems=["pub’])

(c) spatial relations (d) physical layout

Figure 1: The internal representations of a diagram

graph representation correspond to language constructs, but do notideteow these
constructs look like. For instance, the graph of Fig. 1(b) is an apjatephSG for the ER
diagram of Fig. 1(a). This representation contains just everything negdssaterpret
the diagram.

e However, the ER diagram has to be represented on a screen to the user, aed io dod
so a physical representation of the diagram must exist. physical layout of a visual
program is built up from some predefined graphical objects (sutinasRect, Elli, and
Text) with properties (such dscation, size, color, andpen kind). This level defines what
the user sees and manipulates. For example, the physical layout of the E&diaiy
Fig. 1(a) is shown in Fig. 1(d). This representation contains justyévieg necessary to
display the diagram.

¢ In order to relate these two, quite different, representations of aatiagome intermedi-
ate data structure is necessary that represengidtagial structure of the diagram. The
spatial relations graph (SRG) abstracts from the physical layout: it contains all graphi-
cal objects, butinstead of containing all individual properties, it reprisgthe higher level
spatial relations which holdetween its objects {ouch, contains, left of, labels). Further-
more, it may use higher level objects, suctDaamond instead ofPoly. An example of
an SRG is given in Fig. 1(c). Note how much more detail this graph catampared to
the corresponding ASG.

The SRG and the ASG representation of a visual sentence are both graphslybeery
specific kinds of graphs represent actual visual sentencag.agh grammar can be used
to define what graphs are correct, and specifies how such graphs may be constrocted
example, Sec. 1.2 presents such a graph grammar for connected ER abstract sypitax gr
Together with a grammar for the allowed spatial relations graphs it farommplete syntax
definition for the visual language of ER diagrams.
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1 N o
The axiom production

2 [Entity ] ::= [Entity kaelationshipmﬁEntity |
Introduction of an entity such that the diagram remains connected

relates
3 [Relationship] ::= [Relationship}——={Entity |
In order to allow for n-ary relationships
[Entity ] [Entity] := [Entity kaelationship mEntity |
4 1 2 1 2

Introduction of a relationship between two already existing entities
5 | [Enfy] := [Enfy 1S R ]
Entities may have attributes

has c-has consist__I™ Agr
[Entity —=f Atr | ::= [Entity ——={C-Atr
6 consist™ Attr |

Attributes may be composed of other attributes
7 | [CAE] = [CoAm 2SS ]
In order to allow for n-ary composition

Figure 2: The grammar for correct ER abstract syntax graphs

1.2. A Graph Grammar for ER Diagrams

Fig. 2 presents the graph grammar of ER abstract syntax graphs in oaliformThis gram-
mar takes care to accept connected ER diagrams only, it allows for n-ary relgiisrestd
it allows for (composite) attributes on entities. In this formalig@wvery production is of the
form“L ::= R", with L andR being graphs which may have a common set of (grey) vertices
and edges. This common part is the so-catleatext and states how the application of the
production is to be embedded in the surrounding graph.

For example, the production which introduces composite attributeR gi&rams is shown
in the top of Fig. 3. The bottom of Fig. 3 shows an application ofgtauction in thegen-
eration (L — R) direction. This production may be applied if the host graph has araphg
which matches the entire left-hand sidgeniy |"2{ aw |". The application then deletes the
portion “ "2.—z]” from the host graph, and adds the portiof™ - fca=... " to it. Next,
the edge labeledc*has” is connected to the vertex in the host graph that matched the con-
text element The reverse application of a productioR (~ L), needed foparsing
purposes, is defined analogously.

1.3. What isthe use of parsing visual sentences?

Given a syntax definition of a visual language one can easily imagine anwtitth supports
the creation of diagrams according to the syntax. However, without a pamséran editor
has to insist that every intermediate diagram is syntactically correct. We avenced that
this will lead to awkward user interfaces which will only be used if therenarether options
available. This would be alleviated if the editor allows the user to entpecialfree-editing
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Figure 3: The application of a production

mode in which he is free to insert, delete, change, or move any graphical objectuwiiny
interference by the syntax directed nature of the editor. At the momennisier indicates that
he is done, the resulting diagram needs to be parsed in order to discevesvthstructure.
This clearly indicates the need for graphical parsing, even in the contexhtzbsglirected
graphical editors.

1.4. Theclass of graph grammarssupported

This paper describes a graph grammar formalism and an associated graph pgusitignal
Both have been developed with the application of graphical syntax defimitidrgraphical
parsing in mind, but will be useful in any context which requires thenitédn of graph lan-
guages and parsing of grapi&omising application fields, where graph grammars were al-
ready used in the past, are modeling the development of plants, docunagetamalysis, pat-
tern recognition for 3D objects, music scores, and the like (cf. [2,9, B0] for further details
about graph grammar applications).

It has turned out that a restriction to context-free graph grammar piodagthere every
left-hand side consists of a single non-terminal node) makes it awkwatefine the syntax
of a large portion of visual languages and would be too restrictive. Watefore allow for
context-sensitive graph grammars (in which both left- and right-hand side of a production
are graphs), even though the performance penalty might be serious. elpagthe parsing
problem is intractable for general context-sensitive graph grammargstréct ourselves to
layered graph grammarsin which the left-hand side of every production must be lexico-
graphically smaller than its right-hand side, and which thus avoids ogetivations.
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2. Analysisof Visual Syntax Definition Formalisms

When inventing a new syntax definition and parsing approach for graphicpldges, the
most important thing is to come up with a reasonable solution ®sthcallecembedding
problem. We compare in Sec. 2.1 our solution to the embedding problem witi@o$ which
are part of other visual language definition formalisms. Sec. 2.2 disstissn the pros and
cons of related approaches in more detail. It explains why we believed it tedessary to de-
velop yet another new formalism — layered graph grammars — together wittablsyparsing
algorithm.

2.1. Embedding Problemsof Graphical Languages

Inthe case of linear textual languages itis clear how to replace a hontermarsgimence by a
corresponding sequence of (non-)terminals. Butin the case of grapiigaldges, with many
possible relationships between language elements, we need a far morecetapiecha-
nism for (re-)establishing relationships between the surroundimgaplaced nonterminal and
its replacing (non-)terminals.

In the previous section we have extended the left- and right-hand sigesdfctions with
context elements, in order to be able to create edges between new vertices and preserved ver-
tices in the rewritten host graph. This is just one popular soludfaghe embedding problem.

The others are:

¢ Implicit Embedding: formalisms like picture layoutgrammars[12, 13] or constraintmul
tisetgrammars[5, 4] do not distinguish between vertex and relationbfepts. Allneeded
relationships between objects are implicitly defined as constraints oveattréute val-
ues. Therefore, attribute assignments within productions have theitside effect to
create new relationships to unknown context elements.

e Embedding Rules: A quite different solution is an essential part of various forms apér
grammars like [15, 20]. These formalisms have separate embedding hitdsallow for
the redirection of arbitrary sets of relationships from a replaced noimattuo its replacing
(non-)terminals.

All three embedding approaches have their specific advantages and disadvantages. T
main drawbacks of themplicit embedding approach are: users are not always aware of the
consequences of attribute assignments, and parsers have to spend arettofdktract im-
plicitly defined knowledge about relationships from attributes andtcaings. Furthermore,
approaches based on this paradigm are usually not able to define produdtionsewrite a
vertex object and change (relabel) its relationships at the same time, suddastfam 6 of
Fig. 2 which relabels has edge.

The context approach is in our opinion the most readable one, but the unrestricteaf us
context elements requires a quite complex parsing algorithm as we witkhsgeh. Further-
more, it is difficult in this setting to rewrite nonterminals which nparticipate in a statically
unknown number of relationships.

In the latter case, thembedding rule approach is the most convenient one. But embed-
ding rules are difficult to understand and all known parsing algorittemproductions with
embedding rules are either hopelessly inefficient or impose too hardttiestsi on left- and
right-hand sides of productions. Furthermore, embedding rules dyeable to redirect or
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relabel already existing relationships. Therefore, they do not allow éddfinition of a pro-
duction, such as production 4 of the ER grammar, which establishes neignslaetween
previously unconnected vertex objects.

2.2. Related work

Summarizing the explanations above, related parsing approaches shouidibd ahd com-
pared by answering the following questions (cf. Table 1):

e |s theleft-hand side of a production restricted to @ngle nonterminal, which will be re-
placed by its right-hand side (context-free production)?

e Are there anyestrictions for theright-hand side of a production?

e Does the formalism allow for references to additiocmltext elements, which have to be
present but remain unmodified during the application of a production?

¢ Does the proposed type of grammar have more or less corepisedding rules, which
establish connections between new elements (created by a production) andiheding
structure?

¢ Are thereadditional restrictionsfor the set of productions or the form of graphs, which do
not fall in the above mentioned categories?

¢ |s thetime and space complexity of the proposed algorithm linear, polynomial, or even
exponential with respect to the size of an input graph?

Theprecedence graph grammar parser of Kaul is an attempt to generalize the idea of oper-
ator precedence based parsing. It has a linear time and space complexity. Tingpacess
is a kind of handle rewriting, where graph handles (subgraphs ohfhe graph) are identi-
fied by analyzing vertex and edge labels of their direct context. Unfortun#teyapproach
works only for a very restricted class of graph languages.

The next three entries in the table contain references to Earley-stylepargimoaches.
The first one by Bunke and Haller [3] usplex grammars, which are a kind of context-free
graph grammars with rather restricted forms of embedding rules. Anymirtal has only
a fixed number of connection points to its context. The second one bgniliitg [25] uses
dotted rules to organize the parsing processdational grammars, but without presenting
any heuristics how to select “good” dotted rules. Furthermore, it isice=dirto the case of
relational structures, where relationships of the same type definalpaders.

Finally, the approach of Ferrucci et al. [11] with so-call®S-RG grammarsis a transla-
tion of the graph grammar approach of Rozenberg/Welzl [20] into the tetody of relational
grammars. In this approach right-hand sides of productions may n@inard@nterminals as
neighbors, thereby guaranteeing local confluence of graph rewriting (passéps. Further-
more, polynomial complexity is guaranteed as long as generated graphs are edamecan
upper boundary for the number of adjacent edges at a single vertex is knagwuance.

All presented approaches up to now are not adequate for generating abstracgsgphs
for connected ER diagrams. Their embedding rules are not able to rewriieyskswncon-
nectedEntity vertices by means of neRelationships vertices as we do in production 4 of
Fig. 2. And even the remaining two approaches of Marriott and Golin woaNg some diffi-
culties to define our language of connected ER diagrams. Their parsinglafgegeneralize
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left-hand side| right-hand side context embedding additional complexity
rules restrictions
Kaul [15] nonterminal | graph no yes implicitly def. | linear
vertex order
Bunke et al. [3] nonterminal | plex structure no fixed # of| no exponential
connections
Wittenburg [25] nonterminal | relational structure no yes explicitly def. | exponential
vertex order
Ferrucci et al. [11] nonterminal | relational structure; no non- no yes bounded exponential
terminal neighbors degree
Rozenberg et al. [20] nonterminal | graph; no nonterminal no yes bounded exponential
neighbors degree
Marriott [5, 4] nonterminal | multiset yes implicit deterministic polynomial
Golin[12, 13] nonterminal | maximal two (non-)| 1terminal| implicit finite set of at-| polynomial
terminals tribute values
Rekers, Schirr [18] || graph graph graph no layering exponential

Table 1. A comparison between various graph parsing algorithms
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the bottom-up algorithms of Tomita or Cocke-Younger-Kasami fotexnfree textual gram-
mars.

Marriott’s constraint multiset grammar formalism [5, 4] offers the concept of context ele-
ments, but the parsing algorithm presented in [5] does not check whegtressthiting deriva-
tion is consistent. This means that a syntax specification has to bedetadw®inistic by ad-
ditional “not exists” constraints which prevent any possible overlapvden the right-hand
sides of productions.

The picture layout grammar approach of Golin [12, 13] allows for terminal context ele-
ments, but has a main focus on productions with one nonterminal deftieand side and at
most two (non-)terminals on the right-hand side, with predefinededpalationships between
them. A definition of a grammar which generates our language of connected Efardgag
should be feasible, but would be quite unreadable.

To summarize, all presented parsing approaches have some difficultiesendtfithition of
connected ER diagrams and they are certainly unable to deal with the runninglexare
following section, well-structured process flow diagrams, in a prof@st Where is a strong
need for a new syntax definition and parsing approach, wherdéfttand right-hand sides
of productions ararbitrary graphswhich share a common context graph. Such a formalism
together with its parsing algorithm will be presented in the sequel.

3. Introduction to Graph Grammars

The history of graph grammars started 25 years ago with two papers aboailexb “web

grammars” [17] and “Chomsky systems for partial orders” [22]. Nowadaysirprisingly

large variety of graph grammar formalisms is existent (cf. graph gramrmeepding volumes
[6, 8, 9, 10]). AImost all of them belong to one of the followingaamilies:

e Thealgebraicfamily of graph grammars which adheresto the explicitembedding approach
by means of context elements and uses category theory as its foundation [7].

e Thealgorithmic family of graph grammars which uses powerful embedding rules instead
of context elements and has set theory as its underlying formalism [16].

Approaches which suppgsérsing of graphsbelong nowadays mainly to the algorithmic branch
of context-free graph grammars. But we have already seen that graph gramricdrsug:
port embedding by means of context elements and which allow for almosizayd#ft- and
right-hand sides would be a very convenient tool fordkfnition of visual languages. It is,
therefore, the goal of our research activities and this paper to define a claaplobgammars
which has the main properties of algebraic graph grammar approaches — akimwghnot
use category theory within definitions — but is still (efficiently) Edrke.

The rest of this section is organized as follows. Sec. 3.1 introduceseatatrorate exam-
ple which will be used in the sequel. The following Sec. 3.2 proviles the reader with a for-
mal definition of graphs, graph grammar productions, and mappings betragims. These
mappings will be used to define the relationship between the left-hded$ia production
and the rewritten subgraph in a given host graph, as well as between thaaighside of a
production and the generated subgraph in the resulting host graph, vikextill introduce
a rather general form of graph grammars and their generated languages in Semaly}. F
Sec. 3.4 defines the clasdafered graph grammarsour parsing algorithm s able to deal with.
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A very simple (well-structured) process
flow diagram (PFD) with two procegs
threads:
1) The fork statement splits one thrgac
into two threads.
2) The join statement has the inverse tasl
3) Each thread is a conditional loop wjth
two statements in its body.
4) The left-hand thread sends message
and the right-hand thread receiye:
them until certain conditions are po
longer true.

Figure 4: An abstract syntax graph for a process flow diagram

3.1. The Running Example

ER diagrams as they were introduced in Sec. 1 are well-known and thereforeataléau
introductory discussions. Unfortunately, they have a rather stfaigtard syntax definition.
They are not well-suited for a more detailed explanation of layered grapmggesvand graph
grammar parsing throughout the rest of this paper. As a consequence, evleschange
the running example and to use a new visual languagpeaness flow diagrams (PFD). It is

a hybrid of well-formed control flow diagrams and Message Sequence Chgradis [14].

It inherits from both types of diagrams the property of having linegugnces of statements
(actions). Furthermore, its control structures (if and while) aredveed from well-structured
control flow diagrams. Last but not least it allows for the definitiomuitiple control flow
threads which exchange asynchronous messages in the same way as Message Seadsnce C
do. Fig. 4 shows an example of a PFD graph which contains all the abovemeshélements.

Fig. 5 contains then the graph grammar for these graph instances. Pooduatithis gram-
mar replaces its axiom RED, by two terminal vertices and one nonterminal vertex, which are
connected by means of twigext) edges. Production 2 deletes a singiat vertex and creates
a newassign vertex, which inherits an incoming and an outgoing control flow edge fram
deleted nonterminal vertex. Two grey context vertices are used for thisgarirpbiey have
to be present, when the production is applied, but remain unmodifiegleTtrcontext vertex
is one ofbegin, fork, orif and either the source ofrdext) or at(rue) or af(alse) edge. The
right context vertex has either the lal®et or assign or . . . and is the target of a(ext) edge.
Separately definekdbel wildcards are used to construct a single production for all the above
mentioned combinations of possible vertex and edge labels.

The other productions have a similar outline: They ext&atl lists, create new process
threads with dork operation at the beginning andan operation at the end, establish com-
munication channels between them, and produce conditional loops as well ekdgaNote
that already such a small grammar contains reasonable examples of produbiicmndevnot
delete any nonterminals (production 3 and 4b), replace more than oresmamd| at the same
time (production 5), and relabel embedding edges between created vertices andpreser
tices (production 7 replacesigext) edge to thd'? vertex by d(alse) edge to the same vertex).
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label wildcards:  B?, C? O { begin, fork, if }
S?, T? O{end, assign, fork, join, send, receive, if }
s?,r? O{n,ft}

1 A = [begin |"»[Sta s end | axiom

2 o= assign

: setemen

w BRI @R e R
i ;

S, e s add

4b
A f process

S
=

=~
°

S

B2 5(Stat 1»[S?
5 - - = asynchronous
r? n send message
s? n s? .t n )
6 = [T while statement
f
s? s? ! 3
7 = n if statement
f at—,

Figure 5: A graph grammar for process flow diagrams

3.2. Graphs, Graph Morphisms, and Productions

Itis nowtime to provide the reader with a formal definition of grggiteductions, and matches
of (left-hand sides of) productions in graphs. We will see that thenifiein of matches, so-
calledredexes, is not as straightforward as it might seem at a first glance. Therefore,live wi
use our new running example to explain the intricacies of finding redexethanésulting
formal definition of a redex.

Definition 3.1 G := (V, E,lv, g, s,t) isagraph over two given label sets Ly, L with:
e V(G) :=V and E(G) := FE arefinite sets of vertices and edges,
e ly(G) : V—=Ly andlg(G) : E— L aretheir labeling functions,
e 5(G): E=V andt(G) : E—V assign each edge its source and target,

e I(G) :=1v(V) Ulg(E) will beused as an abbreviation for the set of all vertex and edge
labelsinagraph G.

Furthermore, we omit the suffix “ V" or “E” of labeling functions whenever it is clear from
context, and we will use z € G asan abbreviationfor z € V(G) vV = € E(G). O

Please note that the presented graph data model is too simple to bemupedtice. Nec-
essary extensions concern the introductionaefe and edge attributes, as well as the defin-
ition of label wildcards. They are omitted over here in order to keep formal definitions and
algorithms as simple as possible. But these extensions were alreadyitisedhe preceding
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examples. The ER abstract syntax graphs of Sec. 1 would need attributes thetoames of
various constructs, and the PFD grammar of Sec. 3.1 uses already label véldearfurther
details concerning label wildcards (hierarchies) the reader is referred tdHd8fhe purpose
of this paper we will simply assume that a single production witllegrds is replaced by an
appropriate set of productions without wildcards. The introduadicattributes is the subject
of ongoing implementation activities.

The following definition formalizes the notion of productionsiwiontext elements. These
context elements are modelled as common subgraphs of the left-hand amghtHeard sides
of productions.

Definition 3.2 A(graphgrammar) productionp := (L, R) isatupleof graphsover thesame
alphabets of vertex and edge labels Ly and Lg. Itsleft-hand side lhs(p) := L and itsright-
hand siderhs(p) := R may have a common (context) subgraph K if the following restrictions
are fulfilled:

e Ve € E(K) = s(e) € V(K) A te) € V(K)with E(K) := E(L)n E(R) and
V(K) := V(L) N V(R),i.e. sourcesand targets of common edges are common vertices
of L and R, too.

eV € LNR = Ir(x) = Igr(x), i.e. common elements of L and R do not differ with
respect to their labelsin L and R.

In the sequel, we will often use the abbreviations X /hs(p) and Xrhs(p) for all graph ele-
ments of |hs(p) and rhs(p), respectively, which are not elements of their common subgraph
common(p) = K. m|

For the definition of the application of a graph grammar produgtitma given grapli, a
precise definition of thenatch of the left-hand side of p in a given host grapt is necessary.
Such a match, in the sequel ternredex, is a special case of a morphism (mapping) between
two graphs over the same alphabets of vertex and edge [Bbedsid L .

Definition 3.3 A pair of functionsh := (hv, hg) isagraph morphism i : G—G' from
graph G tograph G’ with G := (V, E,lv,lg,s,t) and G’ := (V', E', [}, I}y, s', t') iff:

e hy : V=V'and hg : E—E' aretotal mappings,
o YweV:lj(hyv(v)) =lv(v) A Vee€ E:lz(he(e)) =1g(e)
e Vee E:s'(hp(e)) = hv(s(e)) A Vee E:t'(hg(e)) = hy(t(e)).

In the sequel, we will often use h(z) instead of hy (z) or hg(z), if the omitted subscript is
clear from context. |

Beside these definitions of graphs, productions, and graph morghisenusual definition of
the image of a graph under a graph morphism as besaggraph of that graph, as well as the
operations), U, and)\ for intersection, union, anddifference of two graphs with a common
subgraph will be used from now on to define gpplication of a graph grammar production.
The most difficult point with such a definition is to decide which matabfes production’s
left-hand side are allowed and which are to be disallowed.

Consider for instance the production 5 of Fig. 5 which creates a commiamcaiannel be-
tween two processes. It should be able to rewrite the top/left graplhiattop/right graph of
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noninjective application m
t t
—
of production 5 -fork
LT —-.ln n

legal match
~ of production 5

illegal match
of production 5 t

disallowed
application
of prod. 5
(identification
condition)

Figure 6: Noninjective matches and the identification condition

Fig. 6, although some of its context vertices have to share their matcliles frost graph.
Therefore,noninjective graph morphisms are useful in practice. But on the other hand, it
should not be possible to rewrite the top/left graph into thédmograph of Fig. 6. Therefore,
we have to prohibit situations, where twd hs elements of a production match the same host
graph element. This is the purpose of the so-caliiedtification condition within definition
3.4.

Another problem comes along with the treatment of edges at vertices which dévee t
deleted. Consider for instance production 2 of the PFD grammar of kigdér the assump-
tion that the wildcard€3? and7'? match alsaStat labels. In that case it would be possible
to apply the production to the left-hand graph of Fig. 7. The questsimow, what shall we
do with the edge which has the deletgétht node as source? It is not matched by the produc-
tion’s left-hand side and, therefore, not explicitly removed. Onetgwmiwould be to remove
this edge, too. But this leads in almost all cases to unwanted resultgfathand graph of
Fig. 7). Therefore, the so-calleldngling edge condition of definition 3.4 has been introduced.

It prevents the application of a production under these circumstances.

Please note that the identification and the dangling edge conditiorhtyggiarantee that
the application of a graph grammar productioreigersible[7]. This is a very important prop-
erty of graph grammars which simplifies the development of a parsingtgoronsiderably.

It is sufficient to exchange the roles of left- and right-hand sides,d.eerhove all host graph
elements matched I¥rhselements and to add for adjhselement one copy to the host graph.
The dangling edge condition ensures that we do not have to add edges veici eopies of
Xlhs elements, and the identification condition ensures that we have indeed tsapdrate
copy for anyXlhs element.

Definition 3.4 Amorphismh := (hy, hg : L—G) identifiesa redex of L in G with respect
to another graph R iff:
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Figure 7: Deleting vertices and the dangling edge condition

¢ Dangling edge condition:
Vve V(L)\V(R), e€ E(GQ) :

(s(e) = hy(v) Vi(e) =hy(v)) =3 € E(L)\E(R) : hg(e') =e.

¢ |dentification condition:
Ve € L\R, ' € L: h(z) =h(z') —

r=2z.

Furthermore, a morphismiscalled a potential redex if theidentification condition isfulfilled,

but maybe not the dangling edge condition.

3.3. Graph Grammarsand Their Languages

O

During parsing we have to search for redexes of right-hand sides of gifodsiin a given
input graph. Checking the identification condition is possible atiiaking other production
applications into account. But the dangling edge condition needs knge/kabut the exis-
tence of incident edges, i.e. we have to know which edges are already recogniz¢ed)del
by inverse applications of other production instances. This lead tastiealion between re-

dexes and potential redexes in definition 3.4.

Our parsing algorithm, which we presentin the next section, will bieldd into two phases.
The first phase has not enough knowledge for checking dangling edgeicnadit is only
able to find a collection of potential (inverse) production applicatibeeceforth callego-
tential productioninstances. The second phase is afterwards able to eliminate — among other
things — those potential production instances violating the dagglilge condition, and it cre-
ates a subset gdroduction instances which together generate the given input graph (if exis-

tent).

Definition 3.5 A production instance of a productionp := (L, R) isatuplepi := (p, h, h')
suchthat h : L—G and b’ : R—G' define the application of p to a graph G with result G,

where:
e hisaredexof L in G with respect to R,
e 1/ isaredexof Rin G’ with respectto L,

G\ (MIL\R)) = G"\ (h'(R\L))

h|k = h'|k, with K theinterface graph of L and R, and
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The application of a production p to a graph G with result G’ will be denoted as G == G".
A potential production instance is a production instance (p, h, h') for which h and h’ are
potentialredexes. |

Based on the definition of productions and production instances (appfisatgraph gram-
mars and their languages are defined as follows:

Definition 3.6 Agraph grammar gg isatuple (A, P), with A a nonempty initial graph (the
axiom), and P a set of graph grammar productions. To simplify forthcoming definitions, the
initial graph A will be treated as a special case of a production with an empty left-hand side
A. The set of all potential production instances of gg is abbreviated with PZ(gg). |

Definition 3.7 Let gg := (A, P) be a graph grammar. Itslanguage £(gg) is defined as fol-
lowswith G and G’ being graphs:
GeL(gg) e A="G
with
G=G:eIPpecP:G=-q
and
=* being the transitive, reflexive closure of — |

3.4. Layered Graph Grammarsand Their Languages

The above definitions of a graph grammar and its language are unusuedgptct to vertex
and edge labels. Up to now, we have made no distinction betteemmal andnonterminal
labels, and, therefore, also no distinction between intermediate derivasiolts, i.e. senten-
tial graph forms, and final results, i.e. elements of the generated languageealon for this
omission is that we need a mdiee-grained decomposition of our label alphabets into a num-
ber of so-calledayers, instead of the usual decomposition into two layers: a set of terminals
and set of nonterminals. Graph grammars with arbitrary graphs on lefrigiitehand sides
of productions are able to generate type 0 languages. But it is well+ktioat the member-
ship problem is undecidable for type 0 languages in the general case [&tpfdre, we have
to impose additional restrictions onto graph grammars in order to led@bevelop a graph
parsing algorithm. This will be done by defining a kind of lexicodrapl order on graphs
based on decomposition of label alphabets.

Definition 3.8 The decomposition Ly & Ly = Lo & ... ® L,, of the vertex and edge label
alphabet into n subsetsis a layered label set (6 isthe dioint union of sets). We will use a
function layerin the sequel which returnsfor any element of a given graph G the index of the
layer to which its label belongsto, i.e.:

Ve e G:layer(z) =i & I(z) € L; . O

Definition 3.9 Given a decomposition Ly @ ... & L,, of our label alphabet Ly, and Lg,
the language of a graph grammar gg may be decomposed into a number of sub-languages
Lo(99);---,Ln(gg), suchthat £;(gg) :== {G € L(gg) | (G) € U;<,; L;}. O

Using label layers, we are able to define a rather general clésgeodd graph grammars. For
these graph grammars we will present an algorithm which solves the mériggensblem and
returns for any input grapf¥ either the answer “no” or “yes” together with one derivation, or
all possible derivations af.
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Definition 3.10 A graph grammar gg := (A, P) is called a layered graph grammar with
respect to a global layer assignment Lo, . .., L, toitslabels, if Vp := (L, R) € P:

e Risaconnected graph.
e Theleft-hand side L is non-empty.

Theright-hand side R without the elements of i is non-empty.

L < R with respect to the following order for graphs:
G<G :3i:|G;i<|Gi NVji<i: |Gl = |Gl|j

with |G|, defined as [{x € G | layer(z) = k}|, i.e. the number of elementsin G which
have a label of layer Ly. |

These additional restrictions guarantee a number of desirable propehntEswe will need
later on for the development of our parsing algorithm:

e The connectedness of right-hand sides allows us to use linear search pfaatssion match-
ing purposes which can be processed step by step just by traversing edgiefitggen
4.1).

e The non-emptiness of the left-hand side guarantees that each applicatiproolugtion
(see definition 3.5) “uses” graph elements that have been created by another iapplicat
or that belong to the initial graph. This implies that the “derivatitsidry” of a graph is
always aconnected acyclic graph.

¢ The non-emptiness @t\ L implies that we do not have to guess how often such a produc-
tion has been applied in order to generate a certain graph.

¢ The layering condition above defines an ordering relation between vertex amthbets
which guarantees the termination of the parsing algorithm.

Please note that it is not necessarily the task of a language designegtolabsis to layers.
Such adecomposition of label alphabets can usually be computed automatically by applying
the following default rule to any productign layer(z) > layer(y) for anyz € Xlhs(p),
and anyy € Xrhs(p). This determines the assignment of labels to layers completely under
the additional assumption thatyer(z) > layer(y) = layer(z) > layer(y) whenever
possible. Applying these rules to the PFD graph grammar would riesaltayer1 with all
edge labels and the node lalsght. All other node labels belong to layer

The following theorem is now a direct consequence of the introducficetbel layers in
definition 3.10.

Theorem 3.11 The element problem for a layered graph grammar gg is decidable. A naive
parsing algorithm, which applies productions with exchanged left- and right-hand sides as
long as possible and backtracks when necessary, terminates always and produces the correct
answer.

Sketch of Proof. The identification and dangling edge condition guarantee that production
applicationsare reversible by simply exchanging their left- and right- hand sides. The defined
ordering of definition 3.10 guarantees that any sequence of reverse production applications,
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which startswith afinite graph, has a finite length. Furthermore, graphs of finite size possess
afinite number of potential redexesfor afinite set of productions. Finally, we can compareall
intermediate and final results of computed reverse derivation sequences with the grammar’s
axiom graph, i.e. the element problem for layered graph grammarsis decidable (for further
details cf. [18]). |

4. The Parsing Algorithm

We have seen that the membership problem for layered graph grammars mayeloeusihg
a naive exhaustive search algorithm. The main problem with exhaustivahssdnat it may
recompute already found matches (sub-derivations) for afaftthe input again and again
when it explores different parsing alternatives for an unrelatedipaiftthe input. One way
to improve this behavior is to replace depth-first exhaustive search imgakbreadth-first
search algorithm such that possible sub-derivations are constructed and extended in parallel
instead of recomputing them multiple times. Filters have to be usetstard useless sub-
derivations as soon as possible.

Over here we will sketch the main ideas of such a parsing algorithm. Aajlslebncerning
filtering functions and correctness proofs may be found in [18]. Theipgalgorithm has to
solve the following two tasks:

1. Finding matches of right-hand sides of productions and complétgm to production
instances (reverse production applications). This is an expensive pracessworks at
graph element level.

2. Combining computed production instances to derivations. In theafemmbiguities, it
might however happen that more than one derivation exists, or it mégitdn that a con-
structed production instance is not useful at all.

During the development of our parsing algorithm it became evident thahdeaith these
two tasks at the same time results in very complex algorithms. Thesethaige would even
perform a lot of work which turns out to be useless afterwards. Thergfer decided to re-
alize a two-phase parsing algorithm which is divided into a bott@phase and a top-down
phase:

¢ Thebottom-up phase searches the graph for matches of productions’ right-hand sides. On
the recognition of such a right-hand side, a production instahisecreated, and the non-
context elements of its left-hand side are added to the graph, but n@thiekgted from it.
The bottom-up phase thus generatesmapletion G of the input graplG. The additions
to the graph might in turn lead to the recognition of other right-hsidds. The result of
the bottom-up phase is the collectiBRI of all production instances discovered plus the
completed grapli (cf. Sec. 4.1).

e The production instances created haependency relations among each other, such as
above(piy, pi2), which means that production instaneg should occur beforgi, in a
derivation, orexcludes(piy, pi-), which states thati; andpi> may not occur in the same
derivation. These relations can be computed during the bottom-up phase.

¢ Thetop-down phase composes a subset BPI which creates the given graph. Such a
derivation is developed in a pseudo-parallel fashion with a preferencefohdirst de-
velopment (cf. Sec. 4.3).
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Our approach is to concentrate all work which deals with grpiments in the bottom-up
phase. This phase is not bothered with backtracking, ambiguities, anthéikerderivations;

it just generates as many matches as possible. The top-down phase doegnotdomsider
individual graph elements, but only deals witbpendencies between entirely matchegao-
duction instances, and combines constructed production instances into viable derivation se-
guences.

4.1. TheBottom-Up Phase
4.1.1. Search Plans and Dotted Rules

One of the most severe problems of any graph rewriting system or geapm@ algorithm
is to keep track of all potential redexes of a given set of productions, antttementally
construct them while the graph is modified. We apply a method which ranstalinear
search plan for the right-hand side of every production. Such a search plan predatssthie
order in which the redex must be constructed.

Definition 4.1 The right-hand side of a production p := (L, R) can be linearized into a
sear ch plan, whichisa sequence[mdy, mdy, . . ., md,] of pattern matching directives. The
first item of the sequence, mdy, hasthe form

e < head(y : 1) >: find a vertex with label I and call it y,

and each of the remaining items md;, for 1 < i < n, hasone of the following forms:

o < z: x—k>(y : [) >: start at an already known vertex - of R, follow an edge with label
k to a target vertex with label [, and call the edge z and its target vertex y,

o <z x(L(y : 1) >: start at an already known vertex 2 of R, follow an edge with label
k in inverse direction to a source vertex with label 7, and call the edge z and its source
vertex y, or

e < z: x—k>y > check the existence of an edge with label & between two already known
verticesz and y of R, and call it z.

Furthermore, left(md) returnsthe variable name x of a matching directivemd; it isundefined
for the head of a search plan. |

The set of search plans for a productjpis in general quite large, and it is rather difficult to
find a “best” search plan within this set. The quality of the choice depenstzhe extent on
the expected number of vertices and edges with a certain label in the considersatiaond
graphs. We will for now assume that a functi6®(p) selects at least a “good” search plan.
We refer to [18] for a first attempt to define such a function based on estioasts of search
plans.

In constructing a match, the bottom-up phase mowds through the search plan: vertices
and edges left of the dot are already matched, the ones right of it still bdermatched. It
might happen that a searched-for edge is not present in the host grapat ¢tase the dotted
rule is suspended, and will be awakened when a promising edge appears.

Definition 4.2 Atupledr := (p, M, i, h, s) isa dotted rulewith respect to a given graph G,
which is an already constructed completion of an input graph G, if
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Figure 8: A sample graph for dotted rule processing

p := (L, R) isa production of a layered graph grammar,
e M := SP(p)isasequence[mdy,...,md,] of matching directives,

e i, with1 < i < n,isthe position of the “ dot” in the dotted rule. The matching directives
mdy, . . ., md;_1 arealready fulfilled, the matching directivesmd;, . . . , md,, still haveto
be fulfilled in the selected order of the search plan,

e h: R — G isapartially recognized redex of R in @_with respect to L, binding graph ele-
mentsof R to already discovered graph elementsin G astheresult of processing matching
direCtiVESmdo, cooymdi_q, and

* srepresentsthestate of a dotted rule, which can be activeor suspendedf active md; till
hasto be checked against GG. If suspendednd,; can only be fulfilled when an appropriate
edgeisaddedto G. m|

The parsing algorithm stores these dotted rule instances as attachmeetsces inG. A
dotted rule(p, [md, . . . ,mdy,], i, h, s) will be attached to the vertéxleft(md;)) of G, which
is the already known vertex of the next pattern matching directived;.

For example, areasonable search plan for production 6 of the PFD gramnigirafeuld
be:

M= [ < head(Vy,{if}) >,
< B v Y9 (sat) >,
< BV My s,
<FE3:V; QV3 : {end, assign, fork, join, send, receive, if } >,

< Ey Vi YL (begin, fork, i) >

Now, we consider the graph of Fig. 8 with the following dotted rattached tdtat vertex
108:

(pGa M67 2: {(Vi, 105)5 (Ela 107): (‘/Za 108)}5 a.CtiVE)
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At the moment this dotted rule is considered for proceeding, the paasdoltheck whether

the matching directive just after the datE, : V5 {—”ivl > can be fulfilled: it has to check
whether the vertex matched B% (vertex 108) has an outgoing edge labeletb the ver-

tex matched by/; (vertex 105). This is the case, so that the partial redex is extended with
(E>,109) and the following dotted rule is attached to vertex 105, as the next mgtdhic-

tive starts al/;

(pG, Mﬁa 3, {(VL 105), (Ela 107), (Véa 108), (E27 109)}, aCtive)'

However, the parser cannot simply discard the old version of the dattedas another
outgoing edge labeledmight still appear in the future. We have to leave a suspended version
of the dotted rule behind at vertex 108 in order to be able to procesdtidsmming edges. It
is possible to minimize the number of suspended dotted rules bygta&idinality constraints
of edges into account (artat node is the source of one and only enedge) and by using
available layering information (see the remarks at the end of Sec. 4.1.2).

4.1.2. The algorithms of the bottom-up phase

The main idea of the bottom-up part of the parsing algorithm is davist It starts by attach-
ing initial dotted rules to all matching vertices in the host graph. Nerdpeatedly chooses
an active dotted rule to advance. If a dot reaches the end of a search plan, thaeted gor-
duction has been recognized completely. That generates a production instante hostt
graph is extended with the elementdikR; new vertices may give rise to initial dotted rules;
new edges may activate suspended dotted rules. This is repeated until thereeamaiming
active dotted rules.

Algorithm 1 (Bottom-Up Loop) Thebottom-up phase of our parsing algorithmextendsmatch-
ings of right-hand sides of productions step by step by “ pumping” dotted rules through the
graph. The main loop of the bottom-up parser starts with a call to create-initial-dotted-rules
(Alg. 1.1). Next, it repeatedly checks whether there are dotted rules which can extend their
matches, and if so, callsroutine proceedAlg. 1.2) with a discovered possible extension of an
already known match. If thisresultsin a completely recognized production, proceedextends
the graph, calls create-initial-dotted-rule®r all vertices created, and callsreactivate-dotted-
rules(Alg. 1.3) for all edges created.

function BottomUp-Loop(in G : graph) : set of PPl =

G =G
PPl := 0
for every vertexv € G do

create-initial-dotted-rules(G, v)
od
while v € G with dr = (p, M, i, h, active attached to v do

if md; isof theform< z : x—k>(y : 1) > then

for every edgee : v—>v' € G do
if k= k' Al=1(v) then
proceed(G, (p, M,i,hU {z — e,y — v'}, active)
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f
od
elseif md; isof theform < z : 2% (y : 1) > then

for every edgee : vy’ € G do
if k =k Al=1(v") then
proceed(G, (p, M,i,hU {z — e,y — v'}, activa)
fi
od
dseif md; isof theform < z : 2—5y > then
for every edgee : v=50" € G do
if h(y) =o' Ak =k then
proceed(G, (p, M,i,h U {z — e}, active)
fi
od
fi
change the state of dr from activeto suspended
od
return PPI

Algorithm 1.1 (Createinitial dotted rules) If a new vertex v isadded to the graph, then an
initial dotted rule is created for all productions which have a search plan with a matching
head.

proc create-initial-dotted-rules(inout G : graph, in v : vertex) =
for every productionp : (L, R) € gg with
searchplan M := [< head(y : 1) >,...] = SP(p) do
h := completely undefined (partial) morphism
if | =1(v) then
attach (p, M, 1,h U {y — v}, active tov inG
fi
od

Algorithm 1.2 (Proceed with a dotted rule) Matching directive md; has been fulfilled. If
md; is not the last one of the matching directives, a new dotted rule is attached to the vertex
from which matching directive md; 1, hasto proceed. Otherwise, its production p has been
recognized completely, in which case the left-hand side must be added to the graph and can
be processed further on.

proc proceed(inout G : graph, in (p, M,i,h', s)) : dotted rule =
M = [mdy,...,md,]
if var — z,var’ — x € h: var # var’ A var € Xrhs(p) then
return violates identification condition
fi
if i <nthen
attach (p, M,i + 1, h', s) to b/ (left(md;+1))
ese
construct a morphism 4 from k' respecting the conditions of Def. 3.5
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if not inconsistent( (p, h, h') ) then
PPl := PPI U {(p, h, h')}
G := G U h(XIhs(p))
for every vertex v € h(V(Xrhs(p))) do
create-initial-dotted-rules(G, v)
od
for every edgee € h(E(Xrhs(p))) do
reactivate-dotted-rules(G, e)
od
fi
fi

Functioninconsistent(p, h, h') checkswhether the to-be created productioninstancerelieson
production instances that exclude each other. Inthat caseit can be discarded right-away. See
[18] for a more in-depth explanation.

Algorithm 1.3 (Reactivate suspended dotted rules) If we add a new edge e fromw to v’ to
the graph, then it might be the case that there are suspended dotted rules attached to » or »’
which can proceed their pattern matching processwith this edge. These suspended rulesneed
to bere-activated. However, care should be taken that only new edges are considered and not
already traversed edges.

proc reactivate-dotted-rules(inout G : graph, in e : edge) =

v:=s(e)

v = t(e)

for every dr := (p, M, i, h, suspendedattached to v do
M = [,mdl,]

if md; isof theform< z : 2—5(y : 1) > Ak = I(e) Al = I(v") then
proceed(G, (p, M,i,hU {z — e,y — v'}, active)
dseif md; isof theform< z : 2—sy > A v’ = h(y) A k = I(e) then
proceed(G, (p, M,i,h U {z — e}, active)
fi
od
for every dr := (p, M, i, h, suspendedattached to v’ do
M = [,mdl,]
if md; isof theform< z : 2 (y: 1) > Ak =1(e) A I = I(v') then
proceed(G, (p, M,i,h U {z = e,y — v}, active)
fi
od

In the main loop of the bottom-up phase the next to be processed doaliéed selected at
random. However, the layering can also be used to process active dottedhrsles ia way
that productions which generate graph elements of lower layers are givetypiidis means
thatthe layers of the elements that are added to the graph will be incre@kiagnplies again
that dotted rules which are waiting for an element of a lower layer can safelgbt@rded. In
practice, this measure avoids almost all suspended dotted rules; seer[d8héwe in depth
discussion of the layering condition and its consequences.
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1o N assign \n
‘ begin }% fork s 108 join % end ‘
101 103 assign o 110 112
€) 107 the initial graphG
st ]y
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"3 15
o N assign \n
‘ begin n10 fork 56 105 m join }% end ‘
101 103 116 N assign oo 110 112
n 107 18
_
(b) w7 G after recognition of
pi1 andpig
" sty
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"3 15
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begin fork 56 105 m join }% end ‘
101 103 116 N assign oo 110 112
n 107 18
_
(c) w7 G after termination
of the BU phase
Figure 9: Some intermediate grapfisf the BU phase
prod | h(Xlhs) h(common,) h(Xrhs)
piy || 2 113114 115| 103110 104 105 108
pis || 2 116117 118| 103110 106 107 109
piz || 4a 119120121 101112 103113114115110116117 11
pig || 4b 0 103113114 115110 116117118
pis || 4b 0 103116117118110 113114115
pig || 1 0 0 101119120121 112

Figure 10: The production instances created by the example of Fig. 9
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4.1.3. Example of the bottom-up phase

We will parse the process-flow diagram of Fig. 9(a) according to the RRBgar of Fig. 5.
In this example, we will not go into the details of moving dots thlglodotted rules, but will
only explain which production instances are generated, and how they exteingdhgraph
G step by step t@r.

In the graph of Fig. 9(a), the right-hand side of production 2 ¢esstatement) matches
theassign vertex 105 and its context. The application of this production &kts/ertex 114
and its edges to the graph (see Fig. 9(b)), and creates production instantee RHS of pi,
matches the graph elemefi$3, 104, 105, 108, 110} and itsLHSmatcheq 103,113, 114, 115, 110}.
This leads to the assignmentofXhs), h(common) andh(Xrhs) as indicated in the first
row of the table of Fig. 10. Production 2 can be recognized for a secordrithe loweras-
signvertex 107, which leads t@, of Fig. 10, and extends to the graph depicted in Fig. 9(b).

In the extended graph, the right-hand side of production 4a (th&dor statement) can
be recognized, which leads to production instapgeand the graph of Fig. 9(c). However,
in this graph the right-hand side of two instances of productioradid process to fork/join)
can be recognized, too. This leadsiq andpi; of Fig. 10. It is up to the top-down phase
to recognize that these possible production instances do not fit in amgiilen. Finally, the
right-hand side of the axiom production 1 finds a match in the grapfgo®(c), which creates
production instancgig. That completes the work of the bottom-up phase, and the resulting
production instances of Fig. 10 will be shipped to the top-down @fasfurther processing.

4.2. Dependencies between production instances

A production instance represents the application of a production te semsion of the graph,
and it indicates the graph elements matched by both sides of the produBtiasperating
on graph elements, production instances depend on each other. In order te teerablson
about these dependencies, we have introduced the dependency reladiagsonsequence,
excludes, andexcludes*.

Definition 4.3 Aproductioninstance pia = (p2, ha, b)) isa consequence of anotheiproduc-
tion instance pi; = (p1, h1, h}), Or pis € consequence(piy ), if the execution of pi; must be
followed by the execution of pis, i.e. pis # pi; and:

o W (Xrhs(p1)) Nha(X1lhs(p2)) #0 V
(piy createsa graph element which is deleted by pis)

e hi(common(pi)) N ha(X1hs(p2)) # 0
(pi1 needsa context element which is deleted by pis).

Thetransitive, reflexive closure of consequenceis consequence®. |

Definition 4.4 Aproductioninstancepi; = (p1, h1, b)) isaboveanotheproductioninstance
pia = (pa, ho, h}), if pi; must be executed before pio, i.e. pi; # pis and:

e pis € consequence(pi;) V

o b\ (Xrhs(p1)) N ha(common(p2)) #0 V
(piy createsan element which pio needs as context element).
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e Jde € hi(E(XIhs(p1))), v € ho(V(XIhs(p2))) : s(e) =v Vi(e) =v

(pi- deletesa vertex with anincident edge which isremoved by pi; . Inthat case pi; heeds
to be applied first in order to avoid dangling edges.) |

To summarizepi, € consequence(pi; ) means that the application pf; must be followed

by the application opis. This is a consequence of the fact that the bottom-up phase of our
parsing algorithm will guarantee that Xlhs-elements of productiotairces are never Xlhs-
elements of other production instances. Therefore, any intermediate gragmglerhich is

not part of the finally generated graph, must be deleted by applying aelpidefined pro-
duction instance. The dependengy above pi, is weaker in that it states that if bopty, and

pi are applied, thepi; must be applied earlier thams,.

Definition 4.5 A production instance pi; = (p1, h1,h}) excludes anotherproduction in-
stance pis = (p2, he, h!,) (and vice versa) if both production instances depend on each other
or if they add the same elements to a graph (cover the same elements), i.e. piy # pi- and:

piy excludespis &
( pi, abovepis A pis abovepiy )V b} (Xrhs(p1)) N hy(Xrhs(p2)) # 0.

The definition of excludescan be generalized to that of excludes*:

piy excludes* pi, &
I pi| € consequence* (piy), pi), € consequence* (pis) : pi} excludes pil,. |

The intuition behind this definition is the following: ifi; excludes pis, then the choice to
usepi; inhibits the use opi,. However, selectingi; might not be a choice, but a neces-
saryconseguence of an earlier selected production instangdif pi creates an intermediate
“nonterminal” graph element which must be removed by applyin@fterwards). This leads
to the definition ofexclude*, which makes the “real” choice points explicit in the top-down
algorithm of the next section.

Our dependency relations between production instances are far more complexptateo
and use than theover set approach as used in PLG [12] and CMG [4] parsing. In this ap-
proach every symbalovers part of the input. TheXhs symbol of a production covers the
union of the covers of th& rhs symbols, twaX rhs symbols may not have an overlap in their
covers, and the start symbol should cover the entire input. Howelisegtthe straightforward
approach can only be used for context-free productions, and breaks ifactioydmay have
an emptyXhs (where does the union of cover sets go?), or if it may have seX@ial sym-
bols (if these come together again their cover sets do not conflict). Fogsaicimars a history
mechanism between production instances is inevitable.

4.2.1. Example of dependency relations

If we take the possible production instances of Fig. 10 and compuishvdependency re-
lations hold between them according to the above definitions, we ob&ieldtions as de-
picted in Fig. 11. As an example of such a computatign= (pi, h1, h}) is a consequence
of pis = (p3, hs, h}), Or pi; € consequence(pis), as

h3(Xrhs(ps)) N hi(X1hs(p1))
— {103,113,114,115,110,116,117, 118} N {113, 114, 115}
= {113,114,115} # 0.
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pi6 pi6

pi4 —— pi4 ——— pi5 pi4d = pi
pil pi

consequence above excludes excludes*

Figure 11: Dependency relations between PPI's of Fig. 10

4.3. The Top-Down Phase

The top-down phase of the parsing algorithm receives the entire coleatipossible pro-
duction instance®PI from the bottom-up phase, and extracts a subset which would create
the given input graph. In the case that several such subsets exists, it edefitst one en-
countered. The top-down phase maintains sevedlal derivationsin parallel. It returns
finally a sequence of production instances which generates the given iapht(@rexistent).

Definition 4.6 A tuple (G.,API.,EPI,.) is a partial derivation for G in the context of all
possible production instances PPI. GG.. isthe graph as built till now by the applied production
instances in API.. The history of the derivation and the production instances in API. might
exclude certain productioninstances, which arekeptin EPI .. ThesetsAPI . and EPI . areboth
subsets of the original collection of potential production instances PPI. WWe will also refer to
PPI. asan abbreviation for PPI\ (API. U EPI..), the production instances which can till be
applied. m|

The main idea behind the top-down phase is as follows: It startsayptioduction instance
for the axiom production and extends this set without violatingathave restriction. When-
ever aproductioninstance is encountered whichudesother production instances, this marks
a choice point in the algorithm. This means that the derivation at hditslispo two deriva-
tions, one for each possibility. These derivations are developed iawpsparallel fashion
with a preference for depth-first development.

Algorithm 2 (Top-Down Loop) The top-down algorithm keeps its collection of active par-
tial derivationsin a stack, asthis facilitates to pursue derivationsin a depth first manner. A
productioninstance may beappliedin aderivationifits/hs ispresentin G, theapplication of
it does not introduce dangling edges, and if it is not yet excluded by already applied produc-
tion instances. We use the dependency relations between production instances to determine
the candidategproduction instances which fulfill all of these requirements.

If ato be applied production instance pi has an excludes?*relation with any of the not yet
applied production instances, the application of pi indicates a choice point in the algorithm.
Therefore, we push two derivations on the stack of derivations: first onein which pi issim-
ply excluded, next one in which pi is applied. This allows usto continue with the alternative
derivation(s) if the choice turns out to be wrong.
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Thealgorithmuses Cleanup(not described here, see[ 18]) to get rid of productioninstances
which are useless as early as possible. Furthermore, it uses Apply (Alg. 2.1) to compute the
effects of a selected production instance on the current derivation.

function TopDown-Loop(in G : graph, in PPI : set of PPI) : set of PPl =
D := emptystack
for every pi := ((#, A),h,h') € PPI do the axiom production
D := push(Apply(pi, (0,0,0)), D)
od
while —empty(D) do
d = (G.,API.,EPI.) =top(D); D := pop(D)
d := cleanup(d)
Candidates := { pi € PPI. |
dpi' € API.. : pi’ abovepi A
V pi" € PPI : pi" abovepi — (pi” € APl V pi" € EPI.) }
if Candidates= ) A G, = G then

return API,. successful derivation
elseif Candidates = ) then
do nothing dead-end derivation
elseif 4 pi € Candidates: =3 pi’ € PPI.. : pi excludes* pi’ then
D := push(Apply(pi, d), D) simple step
else
select some production instance pi from Candidates
D := push((G.,API.,EPI. U {pi}), D) choice point
] D := push(Apply(pi, d), D)
i
od
return no successful derivation found

Algorithm 2.1 (Apply) Returns a derivation which is the incoming derivation d extended
with an application of production instance pi.

function Apply(in pi = (p,h, ') : PPI,
ind = (G.,API.,EPI.) ) : derivation =
Gy = (G \W(X1hs(p))) U K (Xrhs(p))
API,, := APl U {pi}
EPI,, := EPI. U {pi’ € PPI | pi excludes* pi'}
return (G,,APl,, EPI,)

4.3.1. Example of the top-down phase

Given the simplicity of the running example, the working of the-tlgavn phase on the pos-
sible production instances of Fig. 9 is also pretty straightforward:

1. The algorithm starts with an initial derivation tuple created forgheduction instance
of the axiom production, which igig. According to the dependency relations shown in
Fig. 11,pig hasexcludes* relations withpi, andpis, so the initial derivation becomes:

(G1,{pie}, {pis, pis}), With G| = [begin |- stat |- end |
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2. For this derivation, the single candidate productiopiis which is not involved in an
excludes* relation with any of the still applicable production instances, so it caajp
plied directly:

(G2, {pis, pis}, {pis, pis}), with

n n
‘begin }% fork Q join }% end ‘
Gy =

3. The candidate productions are npiy andpi,. Neither has aexcludes* relation, so we
can freely pick one and apply it. This produces:

(G, {pis, pis, pi1}, {pi4, pis}), with

join }% end ‘

G
4. Application ofpi, on this derivation leads to:

(G4, {pis, piz, pi1, pia}, {pis, pis}), with

join }% end ‘

5. Now the collection oCandidate production instances is empty aéd = G, so we have
found a successful sequence of production instanc€gpii pis, pi1, pis }, which is re-
turned.

5. Conclusions

Graphs and graph grammars are well-suited means for representing visualdarsgntences
and for defining their syntax. They may be used to develop (generate) syreaiedi edi-
tors for visual languages. These editors should offer additional counisrfan“free editing”,
which requires the development of efficiently working parsing algorigh@urrently available
graph grammar parsing algorithms impose rather severe restrictiohs olass of grammars
they are able to deal with. This was our motivation for developing a rgévegral class day-

ered context-sensitive graph grammars, which can conveniently be used to define the syntax
of visual languages, and to design an associgteph parsing algorithm.

This paper sketches the developed parsing algorithm and mentions allofiadditional
improvements which could be used to reduce its search space. The associatedteshoit
[18] describes the algorithm in more detail, and provesdtsination and correctness for
any given layered graph grammar and input graph. The layering conditi@tidable, so a
parser generator can reject any grammar for which termination of the generatec:parssr
be guaranteed.

Our approach differs from other visual language approaches in the largettassnmars
it accepts. This considerably facilitates the definition of complex syntactcalirements.
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Furthermore, our algorithm uses a quite complestory mechanism — a graph of produc-
tion instances — which, among other things, enables us to deal with corememis without
any restriction. The two phases of our parsing algorithm make it plestsi handle multiple
derivations correctly and efficiently. Still, all the above mentioned adhgeed have their price
in a worst case exponential time and space complexity of the resultingthlgo Whether
suggested heuristics for reducing the algorithm’s search space are stffigearantee a bet-
ter behavior for real visual languages has to be proved in practice.

A weakness of the presented parsing algorithm is its inability to ifleatjuivalent sub-
derivations which are the result of local ambiguities. We have an indicatichow to solve
this problem, but that requires further theoretical work. Furthermmesknow that our so-
lution of the “embedding problem” vieontext elements has its drawbacks if a single nonter-
minal node may have an arbitrary number of incident edges. In thisepaslding rules,
which are able to redirect and recolor edge bundles of arbitrary size, woulteappro-
priate. We are planning, therefore, to add embedding rules to our grapmgirdiormalism.
Other considered extensions concern the introduction of attributes aativeegpplication
conditions.

We are currently implementing the parsing algorithm as a stand-aldtvease package
which may be used within different environments. By testing it onaylefinitions of var-
ious real-world visual languages we hope to obtain a better insigheiapplicability of the
developed graph grammar formalism. Furthermore, this will allow usadtyae the efficiency
of the parser on actual visual sentences. The implementation will becomé pastraax di-
rected editor toolkit for visual languages [1, 19] under development,fandraph grammar
programming environmemROGRES23, 24].
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