
PARSING V ISUAL LANGUAGES WITH LAYERED GRAPH GRAMMARS 1

Defining and Parsing Visual Languages
with Layered Graph Grammars1

J. REKERS* AND A. SCHÜRRy
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Sentences of Visual Languages (VLs) may often be regarded asassemblies of pictorial objects
with spatial relationships like “above” or “contains” between them, i.e. their representations are
a kind of directed graphs. Such a spatial relationship graphis often complemented by a more
abstract graph, which provides information about the syntax (and the semantics) of the visual
sentence in a more succinct form. As both representations are graphs, graph grammars are a
natural means for defining the concrete and the abstract syntax of VLs. They can be used to
generate syntax directed VL editors, which support “free editing” and parsing of their underly-
ing graph structures. Unfortunately, all efficiently working graph grammar parsing algorithms
deal with restricted classes of context-free graph grammars only, while more general classes of
graph grammars are necessary for defining many VLs. This motivated us to develop the no-
tion of layered context-sensitive graph grammars, together with a bottom-up/top-down parsing
algorithm.

1. Introduction and motivation

In reading the visual language literature, or any book on software engineering, one cannot help
but notice that a large variety of visual languages exists of which only a few are equipped with
a proper formal syntax definition. In this paper we will show how graphgrammars can be used
as syntax definition formalism for graphical languages, and we will developa graphical pars-
ing algorithm based on these grammars. We start with the context of our work by discussing
the internal representations necessary to support editing and execution of visual programs, by
showing how graph grammars fit in, and by arguing why graph parsing would be useful for
users of visual languages.

1.1. The internal representations of a diagram

For a user of a visual language, the two most important aspects of a visualprogram are its phys-
ical layout (what the user sees and manipulates), and its meaning (what the userexpresses with
it). Any implementation of the language has to maintain the correspondence between these
two aspects. We discuss this in more detail and will use Entity-Relationship (ER) diagrams as
example language to illustrate the proposed data structures.

� Theabstract syntax graph (ASG) representation of a diagram reflects the internal (log-
ical) structure of the diagram according to its visual language. Nodes and edges in this

1This is technical report 96-09 of Leiden University; available by ftp fromftp.wi.leidenuniv.nl, file
/pub/CS/TechnicalReports/1996/tr96-09.ps.gz. This paper will appear in the September 1996 issue
of theJournal of Visual Languages and Computing.
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Figure 1: The internal representations of a diagram

graph representation correspond to language constructs, but do not determine how these
constructs look like. For instance, the graph of Fig. 1(b) is an appropriate ASG for the ER
diagram of Fig. 1(a). This representation contains just everything necessary to interpret
the diagram.

� However, the ER diagram has to be represented on a screen to the user, and in order to do
so a physical representation of the diagram must exist. Thephysical layout of a visual
program is built up from some predefined graphical objects (such asLine, Rect, Elli, and
Text) with properties (such aslocation, size, color, andpen kind). This level defines what
the user sees and manipulates. For example, the physical layout of the ER diagram of
Fig. 1(a) is shown in Fig. 1(d). This representation contains just everything necessary to
display the diagram.

� In order to relate these two, quite different, representations of a diagram some intermedi-
ate data structure is necessary that represents thepictorial structure of the diagram. The
spatial relations graph (SRG) abstracts from the physical layout: it contains all graphi-
cal objects, but instead of containing all individual properties, it represents the higher level
spatial relations which holdbetween its objects (touch, contains, left of, labels). Further-
more, it may use higher level objects, such asDiamond instead ofPoly. An example of
an SRG is given in Fig. 1(c). Note how much more detail this graph contains compared to
the corresponding ASG.

The SRG and the ASG representation of a visual sentence are both graphs, but only very
specific kinds of graphs represent actual visual sentences. Agraph grammar can be used
to define what graphs are correct, and specifies how such graphs may be constructed. For
example, Sec. 1.2 presents such a graph grammar for connected ER abstract syntax graphs.
Together with a grammar for the allowed spatial relations graphs it formsa complete syntax
definition for the visual language of ER diagrams.
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Figure 2: The grammar for correct ER abstract syntax graphs

1.2. A Graph Grammar for ER Diagrams

Fig. 2 presents the graph grammar of ER abstract syntax graphs in our formalism. This gram-
mar takes care to accept connected ER diagrams only, it allows for n-ary relationships, and
it allows for (composite) attributes on entities. In this formalism,every production is of the
form “L ::= R”, with L andR being graphs which may have a common set of (grey) vertices
and edges. This common part is the so-calledcontext and states how the application of the
production is to be embedded in the surrounding graph.

For example, the productionwhich introduces composite attributes in ER diagrams is shown
in the top of Fig. 3. The bottom of Fig. 3 shows an application of theproduction in thegen-
eration (L! R) direction. This production may be applied if the host graph has a subgraph
which matches the entire left-hand side “ AttrEntity

has ”. The application then deletes the
portion “ Attr

has ” from the host graph, and adds the portion “ C-Attr
c-has

. . . ” to it. Next,
the edge labeled “c-has” is connected to the vertex in the host graph that matched the con-
text element “ Entity ”. The reverse application of a production (R ! L), needed forparsing
purposes, is defined analogously.

1.3. What is the use of parsing visual sentences?

Given a syntax definition of a visual language one can easily imagine an editor which supports
the creation of diagrams according to the syntax. However, without a parser, such an editor
has to insist that every intermediate diagram is syntactically correct. We are convinced that
this will lead to awkward user interfaces which will only be used if there areno other options
available. This would be alleviated if the editor allows the user to enter a specialfree-editing
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Figure 3: The application of a production

mode in which he is free to insert, delete, change, or move any graphical object without any
interference by the syntax directed nature of the editor. At the moment the user indicates that
he is done, the resulting diagram needs to be parsed in order to discover the new structure.
This clearly indicates the need for graphical parsing, even in the context of syntax directed
graphical editors.

1.4. The class of graph grammars supported

This paper describes a graph grammar formalism and an associated graph parsing algorithm.
Both have been developed with the application of graphical syntax definitionand graphical
parsing in mind, but will be useful in any context which requires the definition of graph lan-
guages and parsing of graphs.Promising application fields, where graph grammars were al-
ready used in the past, are modeling the development of plants, document image analysis, pat-
tern recognition for 3D objects, music scores, and the like (cf. [2, 6, 8, 9, 10] for further details
about graph grammar applications).

It has turned out that a restriction to context-free graph grammar productions (where every
left-hand side consists of a single non-terminal node) makes it awkwardto define the syntax
of a large portion of visual languages and would be too restrictive. We therefore allow for
context-sensitive graph grammars (in which both left- and right-hand side of a production
are graphs), even though the performance penalty might be serious. However, as the parsing
problem is intractable for general context-sensitive graph grammars, we restrict ourselves to
layered graph grammars in which the left-hand side of every production must be lexico-
graphically smaller than its right-hand side, and which thus avoids cyclicderivations.
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2. Analysis of Visual Syntax Definition Formalisms

When inventing a new syntax definition and parsing approach for graphical languages, the
most important thing is to come up with a reasonable solution for the so-calledembedding
problem. We compare in Sec. 2.1 our solution to the embedding problem with solutions which
are part of other visual language definition formalisms. Sec. 2.2 discusses then the pros and
cons of related approaches in more detail. It explains why we believed it to be necessary to de-
velop yet another new formalism – layered graph grammars – together with a suitable parsing
algorithm.

2.1. Embedding Problems of Graphical Languages

In the case of linear textual languages it is clear how to replace a nonterminal ina sentence by a
correspondingsequence of (non-)terminals. But in the case of graphical languages, with many
possible relationships between language elements, we need a far more complicated mecha-
nism for (re-)establishing relationships between the surroundingof a replaced nonterminal and
its replacing (non-)terminals.

In the previous section we have extended the left- and right-hand sides ofproductions with
context elements, in order to be able to create edges between new vertices and preserved ver-
tices in the rewritten host graph. This is just one popular solutionof the embedding problem.
The others are:

� Implicit Embedding: formalisms like picture layout grammars [12, 13] or constraint mul-
tiset grammars [5, 4] do not distinguish between vertex and relationshipobjects. All needed
relationships between objects are implicitly defined as constraints over their attribute val-
ues. Therefore, attribute assignments within productions have the implicit side effect to
create new relationships to unknown context elements.

� Embedding Rules: A quite different solution is an essential part of various forms of graph
grammars like [15, 20]. These formalisms have separate embedding rules which allow for
the redirection of arbitrary sets of relationships from a replaced nonterminal to its replacing
(non-)terminals.

All three embedding approaches have their specific advantages and disadvantages. The
main drawbacks of theimplicit embedding approach are: users are not always aware of the
consequences of attribute assignments, and parsers have to spend a lot of time to extract im-
plicitly defined knowledge about relationships from attributes and constraints. Furthermore,
approaches based on this paradigm are usually not able to define productionswhich rewrite a
vertex object and change (relabel) its relationships at the same time, such as production 6 of
Fig. 2 which relabels ahas edge.

Thecontext approach is in our opinion the most readable one, but the unrestricted use of
context elements requires a quite complex parsing algorithm as we will see later on. Further-
more, it is difficult in this setting to rewrite nonterminals which mayparticipate in a statically
unknown number of relationships.

In the latter case, theembedding rule approach is the most convenient one. But embed-
ding rules are difficult to understand and all known parsing algorithmsfor productions with
embedding rules are either hopelessly inefficient or impose too hard restrictions on left- and
right-hand sides of productions. Furthermore, embedding rules are only able to redirect or
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relabel already existing relationships. Therefore, they do not allow for the definition of a pro-
duction, such as production 4 of the ER grammar, which establishes new relations between
previously unconnected vertex objects.

2.2. Related work

Summarizing the explanations above, related parsing approaches should be studied and com-
pared by answering the following questions (cf. Table 1):

� Is theleft-hand side of a production restricted to asingle nonterminal, which will be re-
placed by its right-hand side (context-free production)?

� Are there anyrestrictions for theright-hand side of a production?

� Does the formalism allow for references to additionalcontext elements, which have to be
present but remain unmodified during the application of a production?

� Does the proposed type of grammar have more or less complexembedding rules, which
establish connections between new elements (created by a production)and the surrounding
structure?

� Are thereadditional restrictions for the set of productions or the form of graphs, which do
not fall in the above mentioned categories?

� Is thetime and space complexity of the proposed algorithm linear, polynomial, or even
exponential with respect to the size of an input graph?

Theprecedence graph grammar parser of Kaul is an attempt to generalize the idea of oper-
ator precedence based parsing. It has a linear time and space complexity. The parsing process
is a kind of handle rewriting, where graph handles (subgraphs of the input graph) are identi-
fied by analyzing vertex and edge labels of their direct context. Unfortunately,this approach
works only for a very restricted class of graph languages.

The next three entries in the table contain references to Earley-style parsing approaches.
The first one by Bunke and Haller [3] usesplex grammars, which are a kind of context-free
graph grammars with rather restricted forms of embedding rules. Any nonterminal has only
a fixed number of connection points to its context. The second one by Wittenburg [25] uses
dotted rules to organize the parsing process forrelational grammars, but without presenting
any heuristics how to select “good” dotted rules. Furthermore, it is restricted to the case of
relational structures, where relationships of the same type define partial orders.

Finally, the approach of Ferrucci et al. [11] with so-called1NS-RG grammars is a transla-
tion of the graph grammar approachof Rozenberg/Welzl [20] into the terminologyof relational
grammars. In this approach right-hand sides of productions may not contain nonterminals as
neighbors, thereby guaranteeing local confluence of graph rewriting (parsing) steps. Further-
more, polynomial complexity is guaranteed as long as generated graphs are connected and an
upper boundary for the number of adjacent edges at a single vertex is known in advance.

All presented approaches up to now are not adequate for generating abstract syntax graphs
for connected ER diagrams. Their embedding rules are not able to rewrite previously uncon-
nectedEntity vertices by means of newRelationships vertices as we do in production 4 of
Fig. 2. And even the remaining two approaches of Marriott and Golin wouldhave some diffi-
culties to define our language of connected ER diagrams. Their parsing algorithms generalize
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additional
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complexity

Kaul [15] nonterminal graph no yes implicitly def.
vertex order

linear

Bunke et al. [3] nonterminal plex structure no fixed # of
connections

no exponential

Wittenburg [25] nonterminal relational structure no yes explicitly def.
vertex order

exponential

Ferrucci et al. [11] nonterminal relational structure; no non-
terminal neighbors

no yes bounded
degree

exponential

Rozenberg et al. [20] nonterminal graph; no nonterminal
neighbors

no yes bounded
degree

exponential

Marriott [5, 4] nonterminal multiset yes implicit deterministic polynomial
Golin [12, 13] nonterminal maximal two (non-)

terminals
1 terminal implicit finite set of at-

tribute values
polynomial

Rekers, Schürr [18] graph graph graph no layering exponential

Table 1: A comparison between various graph parsing algorithms
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the bottom-up algorithms of Tomita or Cocke-Younger-Kasami for context-free textual gram-
mars.

Marriott’s constraint multiset grammar formalism [5, 4] offers the concept of context ele-
ments, but the parsing algorithm presented in [5] does not check whether the resulting deriva-
tion is consistent. This means that a syntax specification has to be madedeterministic by ad-
ditional “not exists” constraints which prevent any possible overlap between the right-hand
sides of productions.

The picture layout grammar approach of Golin [12, 13] allows for terminal context ele-
ments, but has a main focus on productions with one nonterminal on theleft-hand side and at
most two (non-)terminals on the right-hand side, with predefined spatial relationships between
them. A definition of a grammar which generates our language of connected ER diagrams
should be feasible, but would be quite unreadable.

To summarize, all presented parsing approaches have some difficulties with the definition of
connected ER diagrams and they are certainly unable to deal with the running example of the
following section, well-structured process flow diagrams, in a proper way. There is a strong
need for a new syntax definition and parsing approach, where bothleft- and right-hand sides
of productions arearbitrary graphs which share a common context graph. Such a formalism
together with its parsing algorithm will be presented in the sequel.

3. Introduction to Graph Grammars

The history of graph grammars started 25 years ago with two papers about so-called “web
grammars” [17] and “Chomsky systems for partial orders” [22]. Nowadays, a surprisingly
large variety of graph grammar formalisms is existent (cf. graph grammar proceeding volumes
[6, 8, 9, 10]). Almost all of them belong to one of the following two families:

� Thealgebraic family of graph grammars which adheres to the explicit embeddingapproach
by means of context elements and uses category theory as its foundation [7].

� Thealgorithmic family of graph grammars which uses powerful embedding rules instead
of context elements and has set theory as its underlying formalism [16].

Approacheswhich supportparsing of graphs belongnowadays mainly to the algorithmicbranch
of context-free graph grammars. But we have already seen that graph grammars which sup-
port embedding by means of context elements and which allow for almost arbitrary left- and
right-hand sides would be a very convenient tool for thedefinition of visual languages. It is,
therefore, the goal of our research activities and this paper to define a class of graph grammars
which has the main properties of algebraic graph grammar approaches — althoughwe will not
use category theory within definitions — but is still (efficiently) parsable.

The rest of this section is organized as follows. Sec. 3.1 introduces a more elaborate exam-
ple which will be used in the sequel. The following Sec. 3.2 provides then the reader with a for-
mal definition of graphs, graph grammar productions, and mappings betweengraphs. These
mappings will be used to define the relationship between the left-hand side of a production
and the rewritten subgraph in a given host graph, as well as between the right-hand side of a
production and the generated subgraph in the resulting host graph. Next, we will introduce
a rather general form of graph grammars and their generated languages in Sec. 3.3. Finally,
Sec. 3.4 defines the class oflayered graph grammars our parsing algorithm is able to deal with.
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Figure 4: An abstract syntax graph for a process flow diagram

3.1. The Running Example

ER diagrams as they were introduced in Sec. 1 are well-known and therefore adequate for
introductory discussions. Unfortunately, they have a rather straightforward syntax definition.
They are not well-suited for a more detailed explanation of layered graph grammars and graph
grammar parsing throughout the rest of this paper. As a consequence, we have to exchange
the running example and to use a new visual language ofprocess flow diagrams (PFD). It is
a hybrid of well-formed control flow diagrams and Message Sequence Chart diagrams [14].
It inherits from both types of diagrams the property of having linear sequences of statements
(actions). Furthermore, its control structures (if and while) are borrowed from well-structured
control flow diagrams. Last but not least it allows for the definition ofmultiple control flow
threads which exchange asynchronousmessages in the same way as Message Sequence Charts
do. Fig. 4 shows an example of a PFD graph which contains all the above mentioned elements.

Fig. 5 contains then the graph grammar for these graph instances. Production 1 of this gram-
mar replaces its axiom, aPFD, by two terminal vertices and one nonterminal vertex, which are
connected by means of twon(ext) edges. Production 2 deletes a singleStat vertex and creates
a newassign vertex, which inherits an incoming and an outgoing control flow edge fromthe
deleted nonterminal vertex. Two grey context vertices are used for this purpose. They have
to be present, when the production is applied, but remain unmodified. The left context vertex
is one ofbegin, fork, or if and either the source of an(ext) or a t(rue) or a f(alse) edge. The
right context vertex has either the labelend or assign or : : : and is the target of an(ext) edge.
Separately definedlabel wildcards are used to construct a single production for all the above
mentioned combinations of possible vertex and edge labels.

The other productions have a similar outline: They extendStat lists, create new process
threads with afork operation at the beginning and ajoin operation at the end, establish com-
munication channels between them, and produce conditional loops as well as branches. Note
that already such a small grammar contains reasonable examples of productions which do not
delete any nonterminals (production 3 and 4b), replace more than one nonterminal at the same
time (production 5), and relabel embedding edges between created vertices and preserved ver-
tices (production 7 replaces an(ext) edge to theT ? vertex by af(alse) edge to the same vertex).
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label wildcards: B?, C? ∈  { begin, fork, if }
S?, T? ∈  { end, assign, fork, join, send, receive, if }
s?, r? ∈  { n, f, t }

::=

S?StatB?
::=

s? n

T?StatC? r? n

S?B? s? n

T?C? r? n

send
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Stat
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B?T?StatB? ::=s? n s?

t n

n

T?StatB? ::=s? n T?B? s? nassign

StatB? ::=s? StatB? s? n
Stat

if T?
Stat

B?T?StatB? ::=s? n s?
t n

f
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7

join T?
Stat

B?T?StatB? ::=s? n s?
n n

n

4b

fork

λ ::= endn n1 begin Stat

join
Statn n

fork join
Statn n
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Statn n

if

f

axiom

assign

statement

Statn n

process
fork/join

add
process

sequence

asynchronous
send message

while statement

if statement

Figure 5: A graph grammar for process flow diagrams

3.2. Graphs, Graph Morphisms, and Productions

It is now time to provide the reader with a formal definition of graphs, productions, and matches
of (left-hand sides of) productions in graphs. We will see that the definition of matches, so-
calledredexes, is not as straightforward as it might seem at a first glance. Therefore, we will
use our new running example to explain the intricacies of finding redexes andthe resulting
formal definition of a redex.

Definition 3.1 G := (V;E; l

V

; l

E

; s; t) is a graph over two given label sets L
V

; L

E

with:

� V (G) := V and E(G) := E are finite sets of vertices and edges,

� l

V

(G) : V!L

V

and l
E

(G) : E!L

E

are their labeling functions,

� s(G) : E!V and t(G) : E!V assign each edge its source and target,

� l(G) := l

V

(V ) [ l

E

(E) will be used as an abbreviation for the set of all vertex and edge
labels in a graph G.

Furthermore, we omit the suffix “V” or “E” of labeling functions whenever it is clear from
context, and we will use x 2 G as an abbreviation for x 2 V (G) _ x 2 E(G). 2

Please note that the presented graph data model is too simple to be usefulin practice. Nec-
essary extensions concern the introduction ofnode and edge attributes, as well as the defin-
ition of label wildcards. They are omitted over here in order to keep formal definitions and
algorithms as simple as possible. But these extensions were already used within the preceding
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examples. The ER abstract syntax graphs of Sec. 1 would need attributes to store the names of
various constructs, and the PFD grammar of Sec. 3.1 uses already label wildcards. For further
details concerning label wildcards (hierarchies) the reader is referred to [18].For the purpose
of this paper we will simply assume that a single production with wildcards is replaced by an
appropriate set of productions without wildcards. The introduction of attributes is the subject
of ongoing implementation activities.

The following definition formalizes the notion of productions with context elements. These
context elements are modelled as common subgraphs of the left-hand and the right-hand sides
of productions.

Definition 3.2 A (graph grammar) production p := (L;R) is a tuple of graphs over the same
alphabets of vertex and edge labels L

V

and L
E

. Its left-hand side lhs(p) := L and its right-
hand side rhs(p) := R may have a common (context) subgraphK if the following restrictions
are fulfilled:

� 8e 2 E(K) ) s(e) 2 V (K) ^ t(e) 2 V (K) with E(K) := E(L) \ E(R) and
V (K) := V (L) \ V (R), i.e. sources and targets of common edges are common vertices
of L and R, too.

� 8x 2 L \ R ) l

L

(x) = l

R

(x), i.e. common elements of L and R do not differ with
respect to their labels in L and R.

In the sequel, we will often use the abbreviations Xlhs(p) and Xrhs(p) for all graph ele-
ments of lhs(p) and rhs(p), respectively, which are not elements of their common subgraph
common(p) = K. 2

For the definition of the application of a graph grammar productionp to a given graphG, a
precise definition of thematch of the left-hand side of p in a given host graphG is necessary.
Such a match, in the sequel termedredex, is a special case of a morphism (mapping) between
two graphs over the same alphabets of vertex and edge labelsL

V

andL
E

.

Definition 3.3 A pair of functions h := (h

V

; h

E

) is a graph morphism h : G!G

0 from
graph G to graph G0 with G := (V;E; l

V

; l

E

; s; t) and G0

:= (V

0

; E

0

; l

0

V

; l

0

E

; s

0

; t

0

) iff:

� h

V

: V!V

0 and h
E

: E!E

0 are total mappings,

� 8v 2 V : l

0

V

(h

V

(v)) = l

V

(v) ^ 8e 2 E : l

0

E

(h

E

(e)) = l

E

(e)

� 8e 2 E : s

0

(h

E

(e)) = h

V

(s(e)) ^ 8e 2 E : t

0

(h

E

(e)) = h

V

(t(e)).

In the sequel, we will often use h(x) instead of h
V

(x) or h
E

(x), if the omitted subscript is
clear from context. 2

Beside these definitions of graphs, productions, and graph morphisms, the usual definition of
the image of a graph under a graph morphism as being asubgraph of that graph, as well as the
operations\, [, andn for intersection, union, anddifference of two graphs with a common
subgraph will be used from now on to define theapplication of a graph grammar production.
The most difficult point with such a definition is to decide which matchesof a production’s
left-hand side are allowed and which are to be disallowed.

Consider for instance the production 5 of Fig. 5 which creates a communication channel be-
tween two processes. It should be able to rewrite the top/left graph into the top/right graph of
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Figure 6: Noninjective matches and the identification condition

Fig. 6, although some of its context vertices have to share their matches inthe host graph.
Therefore,noninjective graph morphisms are useful in practice. But on the other hand, it
should not be possible to rewrite the top/left graph into the bottom graph of Fig. 6. Therefore,
we have to prohibit situations, where twoXlhs elements of a production match the same host
graph element. This is the purpose of the so-calledidentification condition within definition
3.4.

Another problem comes along with the treatment of edges at vertices which have to be
deleted. Consider for instance production 2 of the PFD grammar of Fig. 5under the assump-
tion that the wildcardsB? andT ? match alsoStat labels. In that case it would be possible
to apply the production to the left-hand graph of Fig. 7. The question is now, what shall we
do with the edge which has the deletedStat node as source? It is not matched by the produc-
tion’s left-hand side and, therefore, not explicitly removed. One solution would be to remove
this edge, too. But this leads in almost all cases to unwanted results (cf. right-hand graph of
Fig. 7). Therefore, the so-calleddangling edge condition of definition 3.4 has been introduced.
It prevents the application of a production under these circumstances.

Please note that the identification and the dangling edge condition together guarantee that
the application of a graph grammar production isreversible [7]. This is a very important prop-
erty of graph grammars which simplifies the development of a parsing algorithm considerably.
It is sufficient to exchange the roles of left- and right-hand sides, i.e. to remove all host graph
elements matched byXrhs elements and to add for anyXlhs element one copy to the host graph.
The dangling edge condition ensures that we do not have to add edges which are not copies of
Xlhs elements, and the identification condition ensures that we have indeed to add aseparate
copy for anyXlhs element.

Definition 3.4 A morphism h := (h

V

; h

E

: L!G) identifies a redex of L in G with respect
to another graph R iff:
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Figure 7: Deleting vertices and the dangling edge condition

� Dangling edge condition:

8 v 2 V (L)nV (R); e 2 E(G) :

(s(e) = h

V

(v) _ t(e) = h

V

(v)) ) 9 e

0

2 E(L)nE(R) : h

E

(e

0

) = e.

� Identification condition:
8 x 2 LnR; x

0

2 L : h(x) = h(x

0

) ! x = x

0

:

Furthermore, a morphism is called a potential redex if the identification condition is fulfilled,
but maybe not the dangling edge condition. 2

3.3. Graph Grammars and Their Languages

During parsing we have to search for redexes of right-hand sides of productions in a given
input graph. Checking the identification condition is possible without taking other production
applications into account. But the dangling edge condition needs knowledge about the exis-
tence of incident edges, i.e. we have to know which edges are already recognized (deleted)
by inverse applications of other production instances. This lead to the distinction between re-
dexes and potential redexes in definition 3.4.

Our parsing algorithm, which we present in the next section, will be divided into two phases.
The first phase has not enough knowledge for checking dangling edge conditions. It is only
able to find a collection of potential (inverse) production applications,henceforth calledpo-
tential production instances. The second phase is afterwards able to eliminate – among other
things – those potential production instances violating the dangling edge condition, and it cre-
ates a subset ofproduction instances which together generate the given input graph (if exis-
tent).

Definition 3.5 A production instance of a production p := (L;R) is a tuple pi := (p; h; h

0

)

such that h : L!G and h0 : R!G

0 define the application of p to a graph G with result G0,
where:

� h is a redex of L in G with respect to R,

� h

0 is a redex of R in G0 with respect to L,

� hj

K

= h

0

j

K

, with K the interface graph of L and R, and

� G n ( h(LnR) ) = G

0

n ( h

0

(RnL) )
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The application of a production p to a graph G with result G0 will be denoted as G
p

=) G

0.
A potential production instance is a production instance (p; h; h

0

) for which h and h0 are
potentialredexes. 2

Based on the definition of productions and production instances (applications), graph gram-
mars and their languages are defined as follows:

Definition 3.6 A graph grammar gg is a tuple (A;P), with A a nonempty initial graph (the
axiom), and P a set of graph grammar productions. To simplify forthcoming definitions, the
initial graph A will be treated as a special case of a production with an empty left-hand side
�. The set of all potential production instances of gg is abbreviated with PI(gg). 2

Definition 3.7 Let gg := (A;P) be a graph grammar. Its language L(gg) is defined as fol-
lows with G and G0 being graphs:
G 2 L(gg) :, A =)

�

G

with
G =) G

0

:, 9p 2 P : G

p

=) G

0

and
=)

� being the transitive, reflexive closure of =) 2

3.4. Layered Graph Grammars and Their Languages

The above definitions of a graph grammar and its language are unusual withrespect to vertex
and edge labels. Up to now, we have made no distinction betweenterminal andnonterminal
labels, and, therefore, also no distinction between intermediate derivationresults, i.e. senten-
tial graph forms, and final results, i.e. elements of the generated language. The reason for this
omission is that we need a morefine-grained decomposition of our label alphabets into a num-
ber of so-calledlayers, instead of the usual decomposition into two layers: a set of terminals
and set of nonterminals. Graph grammars with arbitrary graphs on left- andright-hand sides
of productions are able to generate type 0 languages. But it is well-known that the member-
ship problem is undecidable for type 0 languages in the general case [21]. Therefore, we have
to impose additional restrictions onto graph grammars in order to be able to develop a graph
parsing algorithm. This will be done by defining a kind of lexicographical order on graphs
based on decomposition of label alphabets.

Definition 3.8 The decomposition L
V

� L

E

= L

0

� : : : � L

n

of the vertex and edge label
alphabet into n subsets is a layered label set (� is the disjoint union of sets). We will use a
function layerin the sequel which returns for any element of a given graph G the index of the
layer to which its label belongs to, i.e.:
8x 2 G : layer(x) = i :, l(x) 2 L

i

. 2

Definition 3.9 Given a decomposition L

0

� : : : � L

n

of our label alphabet L
V

and L

E

,
the language of a graph grammar gg may be decomposed into a number of sub-languages
L

0

(gg); : : : ;L

n

(gg), such that L
i

(gg) := fG 2 L(gg) j l(G) �

S

j�i

L

j

g. 2

Using label layers, we are able to define a rather general class oflayered graph grammars. For
these graph grammars we will present an algorithm which solves the membership problem and
returns for any input graphG either the answer “no” or “yes” together with one derivation, or
all possible derivations ofG.
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Definition 3.10 A graph grammar gg := (A;P) is called a layered graph grammar with
respect to a global layer assignment L

0

; : : : ; L

n

to its labels, if 8p := (L;R) 2 P:

� R is a connected graph.

� The left-hand side L is non-empty.

� The right-hand side R without the elements of K is non-empty.

� L < R with respect to the following order for graphs:

G < G

0

:, 9 i : jGj

i

< jG

0

j

i

^ 8 j < i : jGj

j

= jG

0

j

j

with jGj
k

defined as jfx 2 G j layer(x) = kgj, i.e. the number of elements in G which
have a label of layer L

k

. 2

These additional restrictions guarantee a number of desirable propertieswhich we will need
later on for the development of our parsing algorithm:

� The connectedness of right-handsides allows us to use linear search plans for pattern match-
ing purposes which can be processed step by step just by traversing edges (seedefinition
4.1).

� The non-emptiness of the left-hand side guarantees that each application of aproduction
(see definition 3.5) “uses” graph elements that have been created by another application
or that belong to the initial graph. This implies that the “derivation history” of a graph is
always aconnected acyclic graph.

� The non-emptiness ofRnL implies that we do not have to guess how often such a produc-
tion has been applied in order to generate a certain graph.

� The layering condition above defines an ordering relation between vertex and edge labels
which guarantees the termination of the parsing algorithm.

Please note that it is not necessarily the task of a language designer to assign labels to layers.
Such adecomposition of label alphabets can usually be computed automatically by applying
the following default rule to any productionp: layer(x) � layer(y) for anyx 2 Xlhs(p),
and anyy 2 Xrhs(p). This determines the assignment of labels to layers completely under
the additional assumption thatlayer(x) � layer(y) ) layer(x) > layer(y) whenever
possible. Applying these rules to the PFD graph grammar would resultin a layer1 with all
edge labels and the node labelStat. All other node labels belong to layer0.

The following theorem is now a direct consequence of the introduction of label layers in
definition 3.10.

Theorem 3.11 The element problem for a layered graph grammar gg is decidable. A naive
parsing algorithm, which applies productions with exchanged left- and right-hand sides as
long as possible and backtracks when necessary, terminates always and produces the correct
answer.
Sketch of Proof. The identification and dangling edge condition guarantee that production
applications are reversible by simply exchanging their left- and right- hand sides. The defined
ordering of definition 3.10 guarantees that any sequence of reverse production applications,



16 REKERS& SCHÜRR

which starts with a finite graph, has a finite length. Furthermore, graphs of finite size possess
a finite number of potential redexes for a finite set of productions. Finally, we can compare all
intermediate and final results of computed reverse derivation sequences with the grammar’s
axiom graph, i.e. the element problem for layered graph grammars is decidable (for further
details cf. [18]). 2

4. The Parsing Algorithm

We have seen that the membership problem for layered graph grammars may be solved using
a naive exhaustive search algorithm. The main problem with exhaustive search is that it may
recompute already found matches (sub-derivations) for a partA of the input again and again
when it explores different parsing alternatives for an unrelated partB of the input. One way
to improve this behavior is to replace depth-first exhaustive search by a kind of breadth-first
search algorithm such that possible sub-derivations are constructed and extended in parallel
instead of recomputing them multiple times. Filters have to be used to discard useless sub-
derivations as soon as possible.

Over here we will sketch the main ideas of such a parsing algorithm. Any details concerning
filtering functions and correctness proofs may be found in [18]. The parsing algorithm has to
solve the following two tasks:

1. Finding matches of right-hand sides of productions and completing them to production
instances (reverse production applications). This is an expensive processwhich works at
graph element level.

2. Combining computed production instances to derivations. In the caseof ambiguities, it
might however happen that more than one derivation exists, or it might happen that a con-
structed production instance is not useful at all.

During the development of our parsing algorithm it became evident that dealing with these
two tasks at the same time results in very complex algorithms. These algorithms would even
perform a lot of work which turns out to be useless afterwards. Therefore, we decided to re-
alize a two-phase parsing algorithm which is divided into a bottom-up phase and a top-down
phase:

� Thebottom-up phase searches the graph for matches of productions’ right-hand sides. On
the recognition of such a right-hand side, a production instancepi is created, and the non-
context elements of its left-hand side are added to the graph, but nothingis deleted from it.
The bottom-up phase thus generates acompletion G of the input graphG. The additions
to the graph might in turn lead to the recognition of other right-handsides. The result of
the bottom-up phase is the collectionPPI of all production instances discovered plus the
completed graphG (cf. Sec. 4.1).

� The production instances created havedependency relations among each other, such as
above(pi

1

; pi

2

), which means that production instancepi
1

should occur beforepi
2

in a
derivation, orexcludes(pi

1

; pi

2

), which states thatpi
1

andpi
2

may not occur in the same
derivation. These relations can be computed during the bottom-up phase.

� The top-down phase composes a subset ofPPI which creates the given graph. Such a
derivation is developed in a pseudo-parallel fashion with a preference for depth-first de-
velopment (cf. Sec. 4.3).
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Our approach is to concentrate all work which deals with graphelements in the bottom-up
phase. This phase is not bothered with backtracking, ambiguities, and alternative derivations;
it just generates as many matches as possible. The top-down phase does not have to consider
individual graph elements, but only deals withdependencies between entirely matchedpro-
duction instances, and combines constructed production instances into viable derivation se-
quences.

4.1. The Bottom-Up Phase

4.1.1. Search Plans and Dotted Rules

One of the most severe problems of any graph rewriting system or graph parsing algorithm
is to keep track of all potential redexes of a given set of productions, and to incrementally
construct them while the graph is modified. We apply a method which constructs alinear
search plan for the right-hand side of every production. Such a search plan predetermines the
order in which the redex must be constructed.

Definition 4.1 The right-hand side of a production p := (L;R) can be linearized into a
search plan, which is a sequence [md

0

;md

1

; : : : ;md

n

] of pattern matching directives. The
first item of the sequence, md

0

, has the form

� < head(y : l) >: find a vertex with label l and call it y,

and each of the remaining items md

i

, for 1 � i � n, has one of the following forms:

� < z : x

k
�!(y : l) >: start at an already known vertex x of R, follow an edge with label

k to a target vertex with label l, and call the edge z and its target vertex y,

� < z : x

k
 �(y : l) >: start at an already known vertex x of R, follow an edge with label

k in inverse direction to a source vertex with label l, and call the edge z and its source
vertex y, or

� < z : x

k
�!y >: check the existence of an edge with label k between two already known

vertices x and y of R, and call it z.

Furthermore, left(md) returns the variable name x of a matching directivemd; it is undefined
for the head of a search plan. 2

The set of search plans for a productionp is in general quite large, and it is rather difficult to
find a “best” search plan within this set. The quality of the choice depends to some extent on
the expected number of vertices and edges with a certain label in the considered language of
graphs. We will for now assume that a functionSP (p) selects at least a “good” search plan.
We refer to [18] for a first attempt to define such a function based on estimated costs of search
plans.

In constructing a match, the bottom-up phase moves adot through the search plan: vertices
and edges left of the dot are already matched, the ones right of it still have to be matched. It
might happen that a searched-for edge is not present in the host graph. In that case the dotted
rule is suspended, and will be awakened when a promising edge appears.

Definition 4.2 A tuple dr := (p;M; i; h; s) is a dotted rule with respect to a given graph G,
which is an already constructed completion of an input graph G, if
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Figure 8: A sample graph for dotted rule processing

� p := (L;R) is a production of a layered graph grammar,

� M := SP (p) is a sequence [md

0

; : : : ;md

n

] of matching directives,

� i, with 1 � i � n, is the position of the “dot” in the dotted rule. The matching directives
md

0

; : : : ;md

i�1

are already fulfilled, the matching directives md

i

; : : : ;md

n

still have to
be fulfilled in the selected order of the search plan,

� h : R! G is a partially recognized redex of R in G with respect to L, binding graph ele-
ments ofR to already discovered graph elements inG as the result of processing matching
directives md

0

; : : : ;md

i�1

, and

� s represents the state of a dotted rule, which can be activeor suspended. If active,md

i

still
has to be checked againstG. If suspended, md

i

can only be fulfilled when an appropriate
edge is added to G. 2

The parsing algorithm stores these dotted rule instances as attachments tovertices inG. A
dotted rule(p; [md

0

; : : : ;md

n

]; i; h; s)will be attached to the vertexh(left(md

i

)) ofG, which
is the already known vertexx of the next pattern matching directivemd

i

.
For example, a reasonable search plan for production 6 of the PFD grammar of Fig. 5 would

be:

M

6

= [ < head(V

1

; fifg) >;

< E

1

: V

1

f t g
�!V

2

: fStatg >;

< E

2

: V

2

f n g
�!V

1

>;

< E

3

: V

1

f f g
�!V

3

: fend, assign, fork, join, send, receive, ifg >;

< E

4

: V

1

f n, t, f g
 � V

4

: fbegin, fork, ifg > ]

Now, we consider the graph of Fig. 8 with the following dotted ruleattached toStat vertex
108:

(p

6

;M

6

; 2; f(V

1

; 105); (E

1

; 107); (V

2

; 108)g; active)
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At the moment this dotted rule is considered for proceeding, the parser has to check whether

the matching directive just after the dot< E

2

: V

2

f n g
�!V

1

> can be fulfilled: it has to check
whether the vertex matched byV

2

(vertex 108) has an outgoing edge labeledn to the ver-
tex matched byV

1

(vertex 105). This is the case, so that the partial redex is extended with
(E

2

; 109) and the following dotted rule is attached to vertex 105, as the next matching direc-
tive starts atV

1

:

(p

6

;M

6

; 3; f(V

1

; 105); (E

1

; 107); (V

2

; 108); (E

2

; 109)g; active):

However, the parser cannot simply discard the old version of the dotted rule, as another
outgoing edge labelednmight still appear in the future. We have to leave a suspended version
of the dotted rule behind at vertex 108 in order to be able to process theseforthcomingedges. It
is possible to minimize the number of suspended dotted rules by taking cardinality constraints
of edges into account (anyStat node is the source of one and only onen edge) and by using
available layering information (see the remarks at the end of Sec. 4.1.2).

4.1.2. The algorithms of the bottom-up phase

The main idea of the bottom-up part of the parsing algorithm is as follows: It starts by attach-
ing initial dotted rules to all matching vertices in the host graph. Next it repeatedly chooses
an active dotted rule to advance. If a dot reaches the end of a search plan, the associated pro-
duction has been recognized completely. That generates a production instance, and the host
graph is extended with the elements inLnR; new vertices may give rise to initial dotted rules;
new edges may activate suspended dotted rules. This is repeated until there are no remaining
active dotted rules.

Algorithm 1 (Bottom-Up Loop) The bottom-up phase of our parsing algorithm extends match-
ings of right-hand sides of productions step by step by “pumping” dotted rules through the
graph. The main loop of the bottom-up parser starts with a call to create-initial-dotted-rules
(Alg. 1.1). Next, it repeatedly checks whether there are dotted rules which can extend their
matches, and if so, calls routine proceed(Alg. 1.2) with a discovered possible extension of an
already known match. If this results in a completely recognized production, proceedextends
the graph, calls create-initial-dotted-rulesfor all vertices created, and calls reactivate-dotted-
rules(Alg. 1.3) for all edges created.

function BottomUp-Loop(in G : graph) : set of PPI =
G := G

PPI := ;
for every vertex v 2 G do

create-initial-dotted-rules(G; v)
od
while 9 v 2 G with dr = (p;M; i; h; active) attached to v do
M = [: : : ;md

i

; : : :]

if md

i

is of the form < z : x

k
�!(y : l) > then

for every edge e : v
k’
�!v

0

2 G do
if k = k

0

^ l = l(v

0

) then
proceed(G; (p;M; i; h [ fz ! e; y ! v

0

g; active))
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fi
od

else if md

i

is of the form < z : x

k
 �(y : l) > then

for every edge e : v
k’
 �v

0

2 G do
if k = k

0

^ l = l(v

0

) then
proceed(G; (p;M; i; h [ fz ! e; y ! v

0

g; active))
fi

od

else if md

i

is of the form < z : x

k
�!y > then

for every edge e : v
k’
�!v

0

2 G do
if h(y) = v

0

^ k = k

0 then
proceed(G; (p;M; i; h [ fz ! eg; active))

fi
od

fi
change the state of dr from activeto suspended

od
return PPI

Algorithm 1.1 (Create initial dotted rules) If a new vertex v is added to the graph, then an
initial dotted rule is created for all productions which have a search plan with a matching
head.

proc create-initial-dotted-rules(inout G : graph; in v : vertex) =
for every production p : (L;R) 2 gg with

search plan M := [< head(y : l) >; : : :] = SP (p) do
h := completely undefined (partial) morphism
if l = l(v) then

attach (p;M; 1; h [ fy ! vg; active) to v in G
fi

od

Algorithm 1.2 (Proceed with a dotted rule) Matching directive md

i

has been fulfilled. If
md

i

is not the last one of the matching directives, a new dotted rule is attached to the vertex
from which matching directive md

i+1

has to proceed. Otherwise, its production p has been
recognized completely, in which case the left-hand side must be added to the graph and can
be processed further on.

proc proceed(inout G : graph; in (p;M; i; h

0

; s)) : dotted rule =

M = [md

0

; : : : ;md

n

]

if 9var! x; var’! x 2 h : var 6= var’ ^ var 2 Xrhs(p) then
return violates identification condition

fi
if i < n then

attach (p;M; i+ 1; h

0

; s) to h0(left(md

i+1

))

else
construct a morphism h from h

0 respecting the conditions of Def. 3.5
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if not inconsistent( (p; h; h0) ) then
PPI := PPI [ f(p; h; h0)g
G := G [ h(Xlhs(p))
for every vertex v 2 h(V (Xrhs(p))) do

create-initial-dotted-rules(G; v)
od
for every edge e 2 h(E(Xrhs(p))) do

reactivate-dotted-rules(G; e)
od

fi
fi

Function inconsistent(p; h; h0) checks whether the to-be created production instance relies on
production instances that exclude each other. In that case it can be discarded right-away. See
[18] for a more in-depth explanation.

Algorithm 1.3 (Reactivate suspended dotted rules) If we add a new edge e from v to v0 to
the graph, then it might be the case that there are suspended dotted rules attached to v or v0

which can proceed their pattern matching process with this edge. These suspended rules need
to be re-activated. However, care should be taken that only new edges are considered and not
already traversed edges.

proc reactivate-dotted-rules(inout G : graph; in e : edge) =
v := s(e)

v

0

:= t(e)

for every dr := (p;M; i; h; suspended) attached to v do
M = [: : : ;md

i

; : : :]

if md

i

is of the form < z : x

k
�!(y : l) > ^ k = l(e) ^ l = l(v

0

) then
proceed(G; (p;M; i; h [ fz ! e; y ! v

0

g; active))

else if md

i

is of the form < z : x

k
�!y > ^ v

0

= h(y) ^ k = l(e) then
proceed(G; (p;M; i; h [ fz ! eg; active))

fi
od
for every dr := (p;M; i; h; suspended) attached to v0 do
M = [: : : ;md

i

; : : :]

if md

i

is of the form < z : x

k
 �(y : l) > ^ k = l(e) ^ l = l(v

0

) then
proceed(G; (p;M; i; h [ fz ! e; y ! vg; active))

fi
od

In the main loop of the bottom-up phase the next to be processed dottedrule is selected at
random. However, the layering can also be used to process active dotted rules in such a way
that productions which generate graph elements of lower layers are given priority. This means
that the layers of the elements that are added to the graph will be increasing.This implies again
that dotted rules which are waiting for an element of a lower layer can safely be discarded. In
practice, this measure avoids almost all suspended dotted rules; see [18] for a more in depth
discussion of the layering condition and its consequences.
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Figure 9: Some intermediate graphsG of the BU phase

prod h(Xlhs) h(common) h(Xrhs)

pi

1

2 113 114 115 103 110 104 105 108
pi

2

2 116 117 118 103 110 106 107 109
pi

3

4a 119 120 121 101 112 103 113 114 115 110 116 117 118
pi

4

4b ; 103 113 114 115 110 116 117 118
pi

5

4b ; 103 116 117 118 110 113 114 115
pi

6

1 ; ; 101 119 120 121 112

Figure 10: The production instances created by the example of Fig. 9
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4.1.3. Example of the bottom-up phase

We will parse the process-flow diagram of Fig. 9(a) according to the PFD grammar of Fig. 5.
In this example, we will not go into the details of moving dots through dotted rules, but will
only explain which production instances are generated, and how they extend theinput graph
G step by step toG.

In the graph of Fig. 9(a), the right-hand side of production 2 (assign statement) matches
theassign vertex 105 and its context. The application of this production addsStat vertex 114
and its edges to the graph (see Fig. 9(b)), and creates production instancepi

1

. TheRHS of pi
1

matches the graph elementsf103; 104; 105; 108; 110gand itsLHS matchesf103; 113; 114; 115; 110g.
This leads to the assignment ofh(Xlhs), h(common) andh(Xrhs) as indicated in the first
row of the table of Fig. 10. Production 2 can be recognized for a second time in the loweras-
sign vertex 107, which leads topi

2

of Fig. 10, and extendsG to the graph depicted in Fig. 9(b).
In the extended graph, the right-hand side of production 4a (the fork/join statement) can

be recognized, which leads to production instancepi

3

and the graph of Fig. 9(c). However,
in this graph the right-hand side of two instances of production 4b (add process to fork/join)
can be recognized, too. This leads topi

4

andpi
5

of Fig. 10. It is up to the top-down phase
to recognize that these possible production instances do not fit in any derivation. Finally, the
right-hand side of the axiom production 1 finds a match in the graph ofFig. 9(c), which creates
production instancepi

6

. That completes the work of the bottom-up phase, and the resulting
production instances of Fig. 10 will be shipped to the top-down phase for further processing.

4.2. Dependencies between production instances

A production instance represents the application of a production to some version of the graph,
and it indicates the graph elements matched by both sides of the production.By operating
on graph elements, production instances depend on each other. In order to be able to reason
about these dependencies, we have introduced the dependency relationsabove, consequence,
excludes, andexcludes*.

Definition 4.3 A production instance pi
2

= (p

2

; h

2

; h

0

2

) is a consequence of anotherproduc-
tion instance pi

1

= (p

1

; h

1

; h

0

1

), or pi
2

2 consequence(pi
1

), if the execution of pi
1

must be
followed by the execution of pi

2

, i.e. pi
2

6= pi

1

and:

� h

0

1

(Xrhs(p

1

)) \ h

2

(Xlhs(p

2

)) 6= ; _

(pi
1

creates a graph element which is deleted by pi
2

)

� h

1

(common(p

1

)) \ h

2

(Xlhs(p

2

)) 6= ;

(pi
1

needs a context element which is deleted by pi
2

).

The transitive, reflexive closure of consequence is consequence*. 2

Definition 4.4 A production instance pi
1

= (p

1

; h

1

; h

0

1

) is above anotherproduction instance
pi

2

= (p

2

; h

2

; h

0

2

), if pi
1

must be executed before pi
2

, i.e. pi
1

6= pi

2

and:

� pi

2

2 consequence(pi
1

) _

� h

0

1

(Xrhs(p

1

)) \ h

2

(common(p

2

)) 6= ; _

(pi
1

creates an element which pi
2

needs as context element).
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� 9e 2 h

1

(E(Xlhs(p

1

))); 9v 2 h

2

(V (Xlhs(p

2

))) : s(e) = v _ t(e) = v

(pi
2

deletes a vertex with an incident edge which is removed by pi
1

. In that case pi
1

needs
to be applied first in order to avoid dangling edges.) 2

To summarize,pi
2

2 consequence(pi
1

) means that the application ofpi
1

must be followed
by the application ofpi

2

. This is a consequence of the fact that the bottom-up phase of our
parsing algorithm will guarantee that Xlhs-elements of production instances are never Xlhs-
elements of other production instances. Therefore, any intermediate graph element, which is
not part of the finally generated graph, must be deleted by applying a uniquely defined pro-
duction instance. The dependencypi

1

above pi
2

is weaker in that it states that if bothpi
1

and
pi

2

are applied, thenpi
1

must be applied earlier thanpi
2

.

Definition 4.5 A production instance pi
1

= (p

1

; h

1

; h

0

1

) excludes anotherproduction in-
stance pi

2

= (p

2

; h

2

; h

0

2

) (and vice versa) if both production instances depend on each other
or if they add the same elements to a graph (cover the same elements), i.e. pi

1

6= pi

2

and:

pi

1

excludes pi
2

:,

( pi

1

above pi
2

^ pi

2

above pi
1

) _ h

0

1

(Xrhs(p

1

)) \ h

0

2

(Xrhs(p

2

)) 6= ;.

The definition of excludescan be generalized to that of excludes*:

pi

1

excludes* pi
2

:,

9 pi

0

1

2 consequence*(pi
1

); pi

0

2

2 consequence*(pi
2

) : pi

0

1

excludes pi0
2

. 2

The intuition behind this definition is the following: ifpi
1

excludes pi
2

, then the choice to
usepi

1

inhibits the use ofpi
2

. However, selectingpi
1

might not be a choice, but a neces-
saryconsequence of an earlier selected production instancepi (if pi creates an intermediate
“nonterminal” graph element which must be removed by applyingpi

1

afterwards). This leads
to the definition ofexclude*, which makes the “real” choice points explicit in the top-down
algorithm of the next section.

Our dependency relations between production instances are far more complex to compute
and use than thecover set approach as used in PLG [12] and CMG [4] parsing. In this ap-
proach every symbolcovers part of the input. TheXlhs symbol of a production covers the
union of the covers of theXrhs symbols, twoXrhs symbols may not have an overlap in their
covers, and the start symbol should cover the entire input. However, this quite straightforward
approach can only be used for context-free productions, and breaks if a production may have
an emptyXlhs (where does the union of cover sets go?), or if it may have severalXlhs sym-
bols (if these come together again their cover sets do not conflict). For suchgrammars a history
mechanism between production instances is inevitable.

4.2.1. Example of dependency relations

If we take the possible production instances of Fig. 10 and compute which dependency re-
lations hold between them according to the above definitions, we obtain the relations as de-
picted in Fig. 11. As an example of such a computation,pi

1

= (p

1

; h

1

; h

0

1

) is a consequence
of pi

3

= (p

3

; h

3

; h

0

3

), or pi
1

2 consequence(pi
3

), as

h

0

3

(Xrhs(p

3

)) \ h

1

(Xlhs(p

1

))

= f103; 113; 114; 115; 110; 116; 117; 118g\ f113; 114; 115g

= f113; 114; 115g 6= ;:
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pi1 pi2

pi4 pi5

pi3

pi6

consequence

pi1 pi2

pi4 pi5

pi3

pi6

above

pi4 pi5

pi3

excludes

pi4 pi5

pi3

pi6

excludes*

Figure 11: Dependency relations between PPI’s of Fig. 10

4.3. The Top-Down Phase

The top-down phase of the parsing algorithm receives the entire collection of possible pro-
duction instancesPPI from the bottom-up phase, and extracts a subset which would create
the given input graph. In the case that several such subsets exists, it selects the first one en-
countered. The top-down phase maintains severalpartial derivations in parallel. It returns
finally a sequence of production instances which generates the given input graph (if existent).

Definition 4.6 A tuple (G

c

;API
c

;EPI
c

) is a partial derivation for G in the context of all
possible production instances PPI. G

c

is the graph as built till now by the applied production
instances in API

c

. The history of the derivation and the production instances in API
c

might
exclude certain production instances, which are kept in EPI

c

. The sets API
c

and EPI
c

are both
subsets of the original collection of potential production instances PPI. We will also refer to
PPI

c

as an abbreviation for PPIn(API
c

[ EPI
c

), the production instances which can still be
applied. 2

The main idea behind the top-down phase is as follows: It starts witha production instance
for the axiom production and extends this set without violating theabove restriction. When-
ever a production instance is encounteredwhichexcludes other production instances, this marks
a choice point in the algorithm. This means that the derivation at hand splits into two deriva-
tions, one for each possibility. These derivations are developed in a pseudo-parallel fashion
with a preference for depth-first development.

Algorithm 2 (Top-Down Loop) The top-down algorithm keeps its collection of active par-
tial derivations in a stack, as this facilitates to pursue derivations in a depth first manner. A
production instance may be applied in a derivation if its lhs is present inG

c

, the application of
it does not introduce dangling edges, and if it is not yet excluded by already applied produc-
tion instances. We use the dependency relations between production instances to determine
the candidateproduction instances which fulfill all of these requirements.

If a to be applied production instance pi has an excludes*relation with any of the not yet
applied production instances, the application of pi indicates a choice point in the algorithm.
Therefore, we push two derivations on the stack of derivations: first one in which pi is sim-
ply excluded, next one in which pi is applied. This allows us to continue with the alternative
derivation(s) if the choice turns out to be wrong.
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The algorithm uses Cleanup(not described here, see [18]) to get rid of production instances
which are useless as early as possible. Furthermore, it uses Apply (Alg. 2.1) to compute the
effects of a selected production instance on the current derivation.

function TopDown-Loop(in G : graph; in PPI : set of PPI) : set of PPI =
D := emptystack
for every pi := ((;; A); h; h

0

) 2 PPI do the axiom production
D := push(Apply(pi; (;; ;; ;)); D)

od
while :empty(D) do
d := (G

c

;API
c

;EPI
c

) = top(D); D := pop(D)

d := cleanup(d)
Candidates := f pi 2 PPI

c

j

9 pi

0

2 API
c

: pi

0 above pi ^
8 pi

00

2 PPI : pi00 above pi! (pi

00

2 API
c

_ pi

00

2 EPI
c

) g

if Candidates = ; ^G
c

= G then
return API

c

successful derivation
else if Candidates = ; then

do nothing dead-end derivation
else if 9 pi 2 Candidates : :9 pi0 2 PPI

c

: pi excludes* pi0 then
D := push(Apply(pi; d); D) simple step

else
select some production instance pi from Candidates
D := push((G

c

;API
c

;EPI
c

[ fpig); D) choice point
D := push(Apply(pi; d); D)

fi
od
return ; no successful derivation found

Algorithm 2.1 (Apply) Returns a derivation which is the incoming derivation d extended
with an application of production instance pi.

function Apply( in pi = (p; h; h

0

) : PPI;
in d = (G

c

;API
c

;EPI
c

) ) : derivation =

G

n

:= (G

c

nh(Xlhs(p))) [ h

0

(Xrhs(p))

API
n

:= API
c

[ fpig

EPI
n

:= EPI
c

[ fpi

0

2 PPI j pi excludes* pi0g
return (G

n

;API
n

;EPI
n

)

4.3.1. Example of the top-down phase

Given the simplicity of the running example, the working of the top-down phase on the pos-
sible production instances of Fig. 9 is also pretty straightforward:

1. The algorithm starts with an initial derivation tuple created for theproduction instance
of the axiom production, which ispi

6

. According to the dependency relations shown in
Fig. 11,pi

6

hasexcludes* relations withpi
4

andpi
5

, so the initial derivation becomes:

(G

1

; fpi

6

g; fpi

4

; pi

5

g); with G

1

=

begin endn nStat
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2. For this derivation, the single candidate production ispi

3

, which is not involved in an
excludes* relation with any of the still applicable production instances, so it can be ap-
plied directly:

(G

2

; fpi

6

; pi

3

g; fpi

4

; pi

5

g); with

G

2

=

begin fork join endn
n

n n

n
n

Stat

Stat

3. The candidate productions are nowpi
1

andpi
2

. Neither has anexcludes* relation, so we
can freely pick one and apply it. This produces:

(G

3

; fpi

6

; pi

3

; pi

1

g; fpi

4

; pi

5

g); with

G

3

=

begin fork

assign

join endn
n

n n

n
n

Stat

4. Application ofpi
2

on this derivation leads to:

(G

4

; fpi

6

; pi

3

; pi

1

; pi

2

g; fpi

4

; pi

5

g); with

G

4

=

begin fork

assign

assign

join endn
n

n n

n
n

5. Now the collection ofCandidate production instances is empty andG
4

� G, so we have
found a successful sequence of production instances infpi

6

; pi

3

; pi

1

; pi

2

g, which is re-
turned.

5. Conclusions

Graphs and graph grammars are well-suited means for representing visual language sentences
and for defining their syntax. They may be used to develop (generate) syntax directed edi-
tors for visual languages. These editors should offer additional commands for “free editing”,
which requires the developmentof efficiently working parsing algorithms. Currently available
graph grammar parsing algorithms impose rather severe restrictions on the class of grammars
they are able to deal with. This was our motivation for developing a rathergeneral class oflay-
ered context-sensitive graph grammars, which can conveniently be used to define the syntax
of visual languages, and to design an associatedgraph parsing algorithm.

This paper sketches the developed parsing algorithm and mentions all kindsof additional
improvements which could be used to reduce its search space. The associated technical report
[18] describes the algorithm in more detail, and proves itstermination and correctness for
any given layered graph grammar and input graph. The layering condition is decidable, so a
parser generator can reject any grammar for which termination of the generated parsercannot
be guaranteed.

Our approach differs from other visual language approaches in the large classof grammars
it accepts. This considerably facilitates the definition of complex syntacticalrequirements.
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Furthermore, our algorithm uses a quite completehistory mechanism – a graph of produc-
tion instances – which, among other things, enables us to deal with context elements without
any restriction. The two phases of our parsing algorithm make it possible to handle multiple
derivations correctly and efficiently. Still, all the above mentioned advantages have their price
in a worst case exponential time and space complexity of the resulting algorithm. Whether
suggested heuristics for reducing the algorithm’s search space are sufficient to guarantee a bet-
ter behavior for real visual languages has to be proved in practice.

A weakness of the presented parsing algorithm is its inability to identify equivalent sub-
derivations which are the result of local ambiguities. We have an indication on how to solve
this problem, but that requires further theoretical work. Furthermore,we know that our so-
lution of the “embedding problem” viacontext elements has its drawbacks if a single nonter-
minal node may have an arbitrary number of incident edges. In this caseembedding rules,
which are able to redirect and recolor edge bundles of arbitrary size, would bemore appro-
priate. We are planning, therefore, to add embedding rules to our graph grammar formalism.
Other considered extensions concern the introduction of attributes and negative application
conditions.

We are currently implementing the parsing algorithm as a stand-alone software package
which may be used within different environments. By testing it on syntax definitions of var-
ious real-world visual languages we hope to obtain a better insight in the applicability of the
developed graph grammar formalism. Furthermore, this will allow us to analyze the efficiency
of the parser on actual visual sentences. The implementation will become part of a syntax di-
rected editor toolkit for visual languages [1, 19] under development, and the graph grammar
programming environmentPROGRES[23, 24].
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