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The Error Surface of the 2-2-1
XOR Network:

The finite stationary Points†

Ida G. Sprinkhuizen-Kuyper
Egbert J.W. Boers

Abstract

We investigated the error surface of the XOR problem with a 2-2-1
network with sigmoid transfer functions. In this paper it is proved that
all stationary points with finite weights are saddle points or absolute
minima with error zero. So, for finite weights no local minima occur.
The proof results from a careful analysis of the Taylor series expansion
around the stationary points. For some points coefficients of third or
even fourth order in the Taylor series expansion are used to complete
the proof. The proofs give a deeper insight in the complexity of the
error surface in the neighbourhood of saddle points. These results can
guide the research in finding learning algorithms that can handle these
kind of saddle points.

1 Introduction

In neural network research, the XOR problem is probably the most
frequently used test problem to experiment with different training algo-
rithms. Usually, a network with two hidden nodes (see figure 1) is used.
Training such a network with sigmoid transfer functions can be seen as
searching for a global minimum on the error surface in weight space. Most
learning algorithms, like backpropagation, implement a gradient descent on
this surface. Rumelhart and McClelland [3] give an example of a position in
weight space where such a search process is trapped: the learning algorithm
is not able to find points with less error in the direct neighbourhood of that
position in weight space (i.e. alocal minimum on the error surface is found).

For small networks only, it is possible to investigate all stationary points
of the error surface and determine if they are (local) extremes or saddle
points. The results of such an investigation can however be very valuable for
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the research of learning algorithms. The “difficult” points are known, so it
can be tested how a particular learning algorithm behaves in the neighbour-
hood of specific “difficult” points. Also knowledge about “why” a learning
algorithm is trapped in some particular point of the error surface can guide
the research for learning algorithms that can escape from such points.

We started investigating the simplest network that can learn the XOR
problem with one hidden node and connections directly from the inputs to
the output node and found that the error surface of this network does not
contain local minima (see [5]). The techniques used to find these results for
the simplest “XOR network” are extended and used to investigate the error
surface of the XOR network with two hidden nodes (see figure 1). In this
paper we prove that all stationary points withfinite weights cannot be local
minima: they are absolute minima with error zero or they are saddle points.

In a forthcoming paper [6] we will publish our further results on the error
surface of this XOR network. We found that this network has regions with
local minima when some weights from the inputs to the hidden nodes have
infinite values. However, these regions of local minima have boundary points
that are saddle points. So, we found that from each finite point in weight
space a strictly decreasing path exists to a point with error zero.

In our analysis we used the quadratic error function

It is easily seen that all results also hold for the “cross-entropy” [1, 2] error
function

since all stationary points of  are also stationary points of . For  we
found some extra stationary points (case II.4 in section 4).

The results that no local minima exist for points with finite weights is
independently found by Hamey [1]. He used the error  and based his work
on the work of Lisboa and Perantonis [2], who found the location of all
stationary points for the network with error . We also used part of the
results and techniques in [2], but we met some more complications because
we started from the error . In their paper [2] Lisboa and Perantonis remark
that they investigated all stationary points and found both saddle points and
local minima, but they omitted their proofs. They give 5 examples of
stationary points that are local minima by their analysis. One of these points
has all weights finite and is a saddle point (see figure 2). The other points are
numerically equivalent — using a finite precision floating point representa-
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tion — to points with some of the weights having infinite values and corre-
spond to local minima as will be proved in [6].

2 The 2-2-1 XOR network

In this paper we investigate the error surface of the network, see figure 1,
with two hidden units and without direct connections from the input units to
the output.

For the XOR function we assume that the following patterns should be
learned/represented by the network:

The transfer function used is the sigmoid

(2.1)

Table 1: Patterns for the XOR problem

Patter
n

X
1

X
2

desired
output

P00 0 0 0.1

P01 0 1 0.9

P10 1 0 0.9

P11 1 1 0.1

X1 X2X0=1

u

w01

v1

Figure 1.  The XOR network with 2 hidden units

v2

w21w02

w22

w12

w11
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The input of the output unit is for the four patterns:

(2.2)

So the four patters result in output values equal to , ,
and , respectively.

The mean square error is equal to:

(2.3)

2.1 Some theorems

The following theorems are proved in [5] as theorem A2, A3, A4 and A1,
respectively.

Theorem 2.1Consider the function  of two variables  and  in the
neighbourhood of a point where . If  and

, then the function q attains a saddle point and no extreme in
that point.

Theorem 2.2Let  be a function of three variables ,  and . If in a
point with , , for  and

 (or  or ), then  attains a
saddle point and not an extreme in that point.

Theorem 2.3Let  be a function of three variables ,  and . If in a
point with , , for  and

, then  attains a saddlepoint and not an extreme in that
point.

Theorem 2.4 Let , and let  and † be the
nonzero solutions of the equation , then the set of equa-
tions

(2.4)

has nine solutions which are given in table 2 (  stands for  and
respectively). For all solutions ‡ holds.

†.  and
‡.

A00 u v1f w01( ) v2f w02( )+ +=

A01 u v1f w01 w21+( ) v2f w02 w22+( )+ +=

A10 u v1f w01 w11+( ) v2f w02 w12+( )+ +=

A11 u v1f w01 w11 w21+ +( ) v2f w02 w12 w22+ +( )+ +=

f A00( ) f A01( ) f A10( )
f A11( )

E 1
2
--- f A00( ) 0.1–( ) 2 1

2
--- f A01( ) 0.9–( ) 2

1
2
--- f A10( ) 0.9–( ) 2 1

2
--- f A11( ) 0.1–( ) 2

+ +

+

=

q a b
q∇ 0= q2∂ a2∂⁄ 0=

q2 a b∂∂⁄∂ 0≠

q a b c
q∇ 0= qi j+∂ ai bj∂∂⁄ 0= 0 i j 6<+<

q3∂ a b c∂∂∂⁄ 0≠ q3∂ a2 c∂∂⁄ 0≠ q3∂ b2 c∂∂⁄ 0≠ q

q a b c
q∇ 0= qi j+∂ ai bj∂∂⁄ 0= 0 i j 8<+<

q4∂ a2 b c∂∂∂⁄ 0≠ q

g x( ) f x( ) 0.1–( ) f ′ x( )= P1 P2

P1 1.16139–≈ P2 1.96745–≈

g x( ) g 3x–( )– 0=

g a( ) g a– b–( ) g a– c–( ) g a b c+ +( )= = =

Pi P1 P2

g a( ) g 0( ) g P1( ) g P2( ), ,{ }∈

g 0( ) g P1( ) g P2( ), ,{ } 0.1 0.025132 0.0024389, ,{ }≈
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3 Stationary points

Let us introduce

(3.1)

with  given as in (2.2). The components of the gradient of the error (2.3)
are:

(3.2)

(3.3)

(3.4)

(3.5)

Table 2: Solutions of equation (2.4)

a b c −a−b −a−c a+b+c

0 0 0 0 0 0

Pi −2Pi −2Pi Pi Pi −3Pi

Pi −2Pi 2Pi Pi −3Pi Pi

Pi 2Pi −2Pi −3Pi Pi Pi

−3Pi 2Pi 2Pi Pi Pi Pi

R00 f A00( ) 0.1–( ) f ′ A00( )=

R01 f A01( ) 0.9–( ) f ′ A01( )=

R10 f A10( ) 0.9–( ) f ′ A10( )=

R11 f A11( ) 0.1–( ) f ′ A11( )=

Ai j

u∂
∂E R00 R01 R10 R11+ + +=

v1∂
∂E R00f w01( ) R01f w01 w21+( ) R10f w01 w11+( )

R11f w01 w11 w21+ +( )

+ + +=

v2∂
∂E R00f w02( ) R01f w02 w22+( ) R10f w02 w12+( )

R11f w02 w12 w22+ +( )

+ + +=

w01∂
∂E v1 R00f ′ w01( ) R01f ′ w01 w21+( )

R10f ′ w01 w11+( ) R11f ′ w01 w11 w21+ +( )

+ +

+

(

)

=
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(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

We will distinguish two kinds of stationary points:

• Stationary points with the property that the gradient of the error is zero for
all patterns separately. These points we will callstable stationary points.

• The other stationary points we will callunstable stationary points. For
these stationary points the total gradient of the error is zero, but the
gradient of the error for at least one pattern is unequal to zero.

This distinction is useful both for the analysis of the error surface and for
considering gradient based learning algorithms, since it explains why on-line
learning can escape from some stationary points (unstable ones), while batch
learning does not.

Stable stationary points are obtained when the gradient of the error is zero
for each of the four patterns separately, thus if

(3.11)

For finite weights (3.11) only holds if

and thus all patterns are learned exactly and the error (2.3) is zero. So the
stable stationary points with finite weights are absolute minima with error
zero. In [6] we will prove that a 5-dimensional region exists with error zero.
In the next section the instable stationary points are investigated.

w11∂
∂E v1 R10f ′ w01 w11+( ) R11f ′ w01 w11 w21+ +( )+( )=

w21∂
∂E v1 R01f ′ w01 w21+( ) R11f ′ w01 w11 w21+ +( )+( )=

w02∂
∂E v2 R00f ′ w02( ) R01f ′ w02 w22+( ) R10f ′ w02 w12+( )

R11f ′ w02 w12 w22+ +( )

+ +

+

(

)

=

w12∂
∂E v2 R10f ′ w02 w12+( ) R11f ′ w02 w12 w22+ +( )+( )=

w22∂
∂E v2 R01f ′ w02 w22+( ) R11f ′ w02 w12 w22+ +( )+( )=

R00 R01 R10 R11 0= = = =

f A00( ) 0.1=

f A01( ) 0.9=

f A10( ) 0.9=

f A11( ) 0.1=
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4 Instable stationary points with finite weights

Using equations (3.2) up to (3.10) in  results in 9 equations for ,
,  and . Clearly  is a solution,

resulting in the stable stationary points with error zero for finite weights. In
this section we are investigating solutions with at least one of the terms
unequal to zero. If  and/or  is equal to zero, then the number of equa-
tions is reduced by at least three. So let us first consider the stationary points
where  and/or  is equal to zero.

4.1 Stationary points withv1 and/or v2 equal to zero

Analogously to the case for the simplest XOR network where the weight
from the hidden node to the output unit is equal to zero, we can prove the
following theorem:

Theorem 4.1If in a stationary point  or  or both, then this
point is a saddle point and not an extreme.

Proof Suppose . Then clearly  if ,
since all these derivatives contain at least one factor  (see (3.6) and (3.7)).
If , then at least one of the following inequalities is true:

or

Thus if , it follows from the theorems 2.2 and 2.3 that a stationary
point with  is a saddle point.

Suppose  and . For these points we find from (3.8), (3.9)
and (3.10) that if at least one of the terms  is unequal to zero, then all
terms  are unequal to zero. If both  and  we find

. So  and . From (3.2) it
follows that  and thus  has to hold (see [5]). Thus also for
these stationary points all terms  are unequal to zero. So, especially  is
unequal to zero and no local minimum will be attained if  and all
weights are finite. The case  is proved completely analogously.❑

Figure 2 shows that the point in weight space with , ,
, , , , ,

E∇ 0= R00

R01 R10 R11 R00 R01 R10 R11 0= = = =

Ri j

v1 v2

v1 v2

v1 0= v2 0=

v1 0= ∂ i j+ E ∂w11
i ∂w21

j⁄ 0= i j 0>+
v1

R11 0≠

w11 w21∂ v1∂

3

∂
∂ E

v1 0=

R11f ″ w01 w11 w21+ +( ) 0≠=

w11
2 w21∂ v1∂

4

∂
∂ E

v1 0=

R11f ′′′ w01 w11 w21+ +( ) 0≠=

R11 0≠
v1 0=

v1 0= v2 0≠
Ri j

Ri j v1 0= v2 0=
A00 A01 A10 A11 u= = = = R00 R11= R01 R10=

R00 R11–= u 0=
Ri j R11

v1 0=
v2 0=

u 0.0= v1 0.0=
v2 0.0= w01 1.50931= w11 0.0= w21 0.48349= w02 0.89611–=
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 and , which is classified by Lisboa and Peran-
tonis in [2] as a local minimum, really is a saddle point.

4.2 Stationary points with bothv1 and v2 unequal to zero

From equations (3.5) till (3.10) it follows that:

(4.1)

and

(4.2)

implying:

w12 0.57221–= w22 0.0=

-0.0004

-0.0002

0

0.0002

0.0004

-0.4

-0.2

0

0.2

0.4

0.319999

0.32

0.32

-0.0004

-0.0002

0

0.0002

0.0004

-0.4

-0.2

0

0.2

0.4

999

.32

32

Figure 2.  The error surface in the neighbourhood of the point with weightsu
= v1 = v2 = w11 = w22 = 0,w01 = 1.50931,w21 = 0.48349,w02 = −0.89611,
w12 = −0.57221. This saddle point view is obtained by varying∆v1 from −
0.0005 to 0.0005 and∆w01 = ∆w11 = ∆w21 from −0.5 to 0.5.

R00f ′ w01( ) R01f ′ w01 w21+( )–
R10f ′ w01 w11+( )– R11f ′ w01 w11 w21+ +( )

= =
=

R00f ′ w02( ) R01f ′ w02 w22+( )–
R10f ′ w02 w12+( )– R11f ′ w02 w12 w22+ +( )

= =
=
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(4.3)

Thus either all  or all . So let us suppose that all .
Substitution of the first parts of the equalities (4.3) in equation (3.3) results
in:

(4.4)

Using , this equation is equivalent to:

(4.5)

and thus we have  or  in an instable stationary point with
 and  and finite weights. Similarly we find from the substitution

of the second parts of (4.3) in (3.4) that  or .
So we have to consider the following four cases for instable stationary

points with  and  and finite weights:

• Case I:  and ,
• Case II:  and ,
• Case III:  and ,
• Case IV:  and .

Remark that case I and case IV are essentially the same because of the
symmetry in the network obtained from interchanging  and . Case II
and case III are equivalent as well.

Let us consider cases I and II carefully, taking into account that equations
(4.3) have to hold with , ,  and  given by (3.1).

R01

f ′ w01( )
f ′ w01 w21+( )-----------------------------------R00–

f ′ w02( )
f ′ w02 w22+( )-----------------------------------R00–= =

R10

f ′ w01( )
f ′ w01 w11+( )-----------------------------------R00–

f ′ w02( )
f ′ w02 w12+( )-----------------------------------R00–= =

R11

f ′ w01( )
f ′ w01 w11 w21+ +( )--------------------------------------------------R00

f ′ w02( )
f ′ w02 w12 w22+ +( )--------------------------------------------------R00= =

Ri j 0= Ri j 0≠ Ri j 0≠

f w01( )
f ′ w01( )--------------------

f w01 w21+( )
f ′ w01 w21+( )-----------------------------------–

f w01 w11+( )
f ′ w01 w11+( )-----------------------------------–

f w01 w11 w21+ +( )
f ′ w01 w11 w21+ +( )--------------------------------------------------

+

0=

f x( ) f ′ x( )⁄ 1 ex+=

e
w01 e

w01 w21+
– e

w01 w11+
– e

w01 w11 w21+ +
+

e
w01(1 e

w11– )(1 e
w21)– 0

=

=
w11 0= w21 0=

v1 0≠ v2 0≠
w12 0= w22 0=

v1 0≠ v2 0≠
w21 0= w22 0=
w21 0= w12 0=
w11 0= w22 0=
w11 0= w12 0=

X1 X2

R00 R01 R10 R11
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4.2.1 Case I:w21 = 0 andw22 = 0

In this case equation (4.3) becomes:

while equation (2.2) results in  and . Combining this
with and  leads to (using the results from [5])

(4.6)

and

(4.7)

So also  and the error for case I is 0.32 (all patterns give output
0.5). Further,  implies  and

. Since  if and only if  or
, we find that (  or ) and (  or

). So we can split case I into the four cases I.1 to I.4:

• Case I.1: , ,  and ,
• Case I.2: , ,  and ,
• Case I.3: , ,  and ,
• Case I.4: , ,  and ,

and will investigate these cases further.

Case I.1:w21 = 0,w22 = 0,w11 = 0 andw12 = 0

Equations (4.6) and (4.7) become both equal to

In this case we can choose the weights , ,  (≠ 0) and  (≠ 0). Then
the value of  can be determined such that the former equation hold. So
these stationary points form a 4-dimensional region in the weight space with
error 0.32.

We will prove that these points are saddle points. In order to do so we
consider the second order part of the Taylor expansion of the error:

R01 R00–=

R10

f ′ w01( )
f ′ w01 w11+( )-----------------------------------R00–

f ′ w02( )
f ′ w02 w12+( )-----------------------------------R00–= =

R11

f ′ w01( )
f ′ w01 w11+( )-----------------------------------R00

f ′ w02( )
f ′ w02 w12+( )-----------------------------------R00 R10–= = =

A00 A01= A10 A11=
R01 R00–= R10 R11–=

A00 u v1f w01( ) v2f w02( )+ + 0= =

A11 u v1f w01 w11+( ) v2f w02 w12+( )+ + 0= =

R00 R11=
R00 R11= f ′ w01( ) f ′ w01 w11+( )=

f ′ w02( ) f ′ w02 w12+( )= f ′ a( ) f ′ b( )= a b=
a b–= w11 0= w11 2w01–= w12 0=
w12 2w02–=

w21 0= w22 0= w11 0= w12 0=
w21 0= w22 0= w11 0= w12 2w02–=
w21 0= w22 0= w11 2w01–= w12 0=
w21 0= w22 0= w11 2w01–= w12 2w02–=

u v1f w01( ) v2f w02( )+ + 0=

w01 w02 v1 v2

u
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(4.8)

We will study variations of the weights such that

(4.9)

(4.10)

and

(4.11)

If we choose∆wij  such that equations (4.9), (4.10) and (4.11) are satisfied it
is easily seen from the nonquadratic terms in equation (4.8) that a saddle
point is attained in those points where

(4.12)

with

(4.13)

Consider the stationary points of case I.1 with

(4.14)

Since this is a thin set of the 4-dimensional region of stationary points with
, these points also

have to be saddle points (see [1]).

In the following we will give a proof that these points are saddle points by
showing that certain partial derivatives are unequal to zero. We can choose 6
variables , , , , and  for the variations of the weights in the
hyperplane given by the equations (4.9), (4.10) and (4.11) in order to investi-

∆E f ′ 0( )
2

4 ∆u f w01( )∆v1 f w02( )∆v2 v1f ′ w01( ) w01∆

1
2
---v1f ′ w01( ) w11∆ 1

2
---v1f ′ w01( ) w21∆ v2f ′ w02( ) w02∆

1
2
---v2f ′ w02( ) w12∆ 1

2
---v2f ′ w02( ) w22∆ 

 2

v1f ′ w01( ) w11∆ v2f ′ w02( ) w12∆+( ) 2

v1f ′ w01( ) w21∆ v2f ′ w02( ) w22∆+( ) 2

+ + +

+ + +

+ +

+

+












2v1 f 0( ) 0.1–( ) f ′ 0( )f ″ w01( ) w11 w21∆∆

2v1 f 0( ) 0.1–( ) f ′ 0( )f ″ w02( ) w12 w22∆∆

+

+

=

v1f ′ w01( ) ∆w11 v2f ′ w02( ) ∆w12+ 0=

v1f ′ w01( ) ∆w21 v2f ′ w02( ) ∆w22+ 0=

∆u f w01( ) ∆v1 f w02( ) ∆v2 v1f ′ w01( ) ∆w01
v2f ′ w02( ) ∆w02 0=
+ + +

+

α2v1f ″ w01( ) v2f ″ w02( )+ 0≠

α
v2f ′ w02( )
v1f ′ w01( )-------------------------–=

α2v1f ″ w01( ) v2f ″ w02( )+ 0=

w11 w21 w12 w22 u v1f w01( ) v2f w02( )+ + 0= = = = =

w x0 x1 x2 y z
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gate the neighbourhood of points on the error surface in case I.1 more
precisely:

(4.15)

whereα is given in (4.13) andβ is given by:

(4.16)

If (4.14) holds then all first and second order derivatives of the error  with
respect to the six variables , , , , and  are zero. Calculation of
some third order derivatives in the stationary points of case I.1 in the direc-
tions given by (4.15) results in the following formulas, where  stands for

 restricted to :

(4.17)

(4.18)

(4.19)

(4.20)

Thus a saddlepoint is found if inequality (4.12) or one of the following
inequalities hold:

(4.21)

or

(4.22)

∆w12 x1 ∆w11, αx1= =

∆w22 x2 ∆w21, αx2= =

∆w02 x0 z+ ∆w01, αx0 αz–= =

∆v2 y w+ ∆v1, βy βw–= =

∆u f w01( ) βw f w02( ) w– αv1f ′ w01( ) z v2f ′ w02( ) z–+=

β
f w02( )
f w01( )-----------------–=

E
w x0 x1 x2 y z

Ψ
0

Ψ w x0 x1 x2 y z 0= = = = = =

x1
2

x2∂

3

∂
∂ E

0

f 0( ) 0.1–( ) f ′ 0( ) α3v1f ′′′ w01( ) v2f ′′′ w02( )+( )=

x1 x2 y∂∂

3

∂
∂ E

0

f 0( ) 0.1–( ) f ′ 0( ) α2βf ″ w01( ) f ″ w02( )+( )=

x1 x2 z∂∂

3

∂
∂ E

0

f 0( ) 0.1–( ) f ′ 0( ) α– 3v1f ′′′ w01( )

v2f ′′′ w02( )

+(

)

=

x1 x2 w∂∂

3

∂
∂ E

0

f 0( ) 0.1–( ) f ′ 0( ) α– 2βf ″ w01( ) f ″ w02( )+( )=

α3v1f ′′′ w01( ) v2f ′′′ w02( )+ 0≠

α2βf ″ w01( ) f ″ w02( )+ 0≠
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or

(4.23)

or

(4.24)

At least one of these inequalities has to be fulfilled, since the set of equa-
tions:

(4.25)

has no solutions in the considered case with all weights finite and  and
unequal to zero: From the second and the fourth equation of (4.25) it follows
that , while from the third and fifth equation it has to be
concluded that . Since the last equality implies that
and since  these equalities are contradictory.

Conclusion 4.1All points of case I.1 are saddle points.

In figures 3 and 4 it is visualized that the point with weights ,
, , which is an

example of this case, is indeed a saddle point.

Case I.2:w21 = 0,w22 = 0,w11 = 0 andw12= −2w02

Equations (4.6) and (4.7) result in

and

implying that , thus , and thus .
Thus Case I.2 is a special case of Case I.1.

Case I.3:w21 = 0,w22 = 0,w11 = −2w01and w12= 0

Analogously to the previous case, this case is also a special case of Case I.1.

α– 3v1f ′′′ w01( ) v2f ′′′ w02( )+ 0≠

α– 2βf ″ w01( ) f ″ w02( )+ 0≠

α2v1f ″ w01( ) v2f ″ w02( )+ 0=

α3v1f ′′′ w01( ) v2f ′′′ w02( )+ 0 0=

α2βf ″ w01( ) f ″ w02( )+ 0=

α– 3v1f ′′′ w01( ) v2f ′′′ w02( )+ 0=

α– 2βf ″ w01( ) f ″ w02( )+ 0=

v1 v2

f ′′′ w01( ) 0=
f″ w01( ) 0= w01 0=

f ′′′ 0( ) 0≠

u 1–=
v1 v2 1= = w01 w11 w21 w02 w12 w22 0= = = = = =

u v1f w01( ) v2f w02( )+ + 0=

u v1f w01( ) v2f w– 02( )+ + 0=

v2 2f w02( ) 1–( ) 0= w02 0= w12 0=
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Case I.4:w21 = 0,w22 = 0,w11 = −2w01 and w12= −2w02

Equations (4.6) and (4.7) result in

and

implying that . So choosingw01 ≠
0, w02 ≠ 0 andv1 (≠ 0) determinesu andv2. Thus these stationary points form
a 3-dimensional region in the weight space.

To prove that these points are saddle points we introduce the variablesx
andy such that:

Thus we find for the inputs of the output unit for the 4 patterns, see equation
(2.2):

-0.4

-0.2

0

0.2

0.4
-0.1

-0.05

0

0.05

0.1

0.3196

0.3198

0.32

0.3202

0.3204

-0.4

-0.2

0

0.2

0.4
-0.1

-0.05

0

0.05

0.1

3196

198

.32

02

04

Figure 3.  The neighbourhood of the weightsu = −1, v1 = v2 = 1,w01 = w11
= w21 = w02 = w12 = w22 = 0. This picture is obtained by varying−∆w11 =
−∆w21 = ∆w12 = ∆w22 from −0.5 to 0.5 and−2∆u = ∆w01= ∆w02 from −0.1

u v1f w01( ) v2f w02( )+ + 0=

u v1f w– 01( ) v2f w– 02( )+ + 0=

v1 2f w01( ) 1–( ) v2 f w02( ) 1–( )+ 0=

∆w01 x ∆w21, y ∆u, v1f ′ w01( ) x– 1
2
---v1f ′ w01( ) y–= = =

A00 u v1f ′ w01( ) x– 1
2
---v1f ′ w01( ) y– v1f w01 x+( ) v2f w02( )+ +=



15

For the second order derivatives of the errorE with respect tox andy we find
(using , , ,
and ):

-0.1

-0.05

0

0.05

0.1

-0.4

-0.2

0

0.2

0.4

0.319975

0.32

0.320025

0.32005

0.320075
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0.2

0.4

9975

.32

025

05

75

Figure 4.  The neighbourhood of the same point in weight space as figure 3.
This picture is obtained by varying−2∆u = ∆w01 = −∆w11 = −∆w21 = ∆w02
= ∆w12 = ∆w22 from −0.1 to 0.1 and∆v1 = −∆v2 from −0.5 to 0.5.

A01 u v1f ′ w01( ) x– 1
2
---v1f ′ w01( ) y– v1f w01 w21 x y+ + +( )

v2f w02 w22+( )

+ +=

A10 u v1f ′ w01( ) x– 1
2
---v1f ′ w01( ) y– v1f w01 w11 x+ +( )

v2f w02 w12+( )

+ +=

A11 u v1f ′ w01( ) x– 1
2
---v1f ′ w01( ) y– v1f w01 w11 w21 x y+ + + +( )

v2f w02 w12 w22+ +( )

+ +=

w21 w22 0= = w11 2w01–= w12 2w02–= f ′ x( ) f ′ x–( )=
f ″ x( ) f ″ x–( )–=

x2

2

∂
∂ E

0

0=
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and

Thus using theorem 2.1 it follows that the stationary points of case I.4 are
saddle points if . The case that  (and thus also

) is already considered in case I.1.

Conclusion 4.2All points of case I.4 are saddle points.

4.2.2 Case II:w21 = 0 andw12 = 0

Equations (4.3) become in this case:

(4.26)

resulting in , (  or ) and
(  or ).

Thus analogously to case I we can split this case into the four cases:

• Case II.1:  and  and  and ,
• Case II.2:  and  and  and ,
• Case II.3:  and  and  and ,
• Case II.4:  and  and  and .

Case II.1 is equal to case I.1; Case II.2 is equal to Case I.3 and thus a special
case of Case I.1; Case II.3 is also a special case of Case I.1. So these cases
result in saddle points. Let us consider Case II.4:

Case II.4: w21 = 0 andw12 = 0 andw22 = −2w02 and w11 = −2w01

Equation (3.1) results in this case in:

x y∂

2

∂
∂ E

0

f 0( ) 0.1–( ) f ′ 0( ) 2v1f ″ w01( )–( )=

f ″ w01( ) 0≠ w01 0=
w02 0=

R01 R00–
f ′ w02( )

f ′ w02 w22+( )-----------------------------------R00–= =

R10

f ′ w01( )
f ′ w01 w11+( )-----------------------------------R00– R00–= =

R11

f ′ w01( )
f ′ w01 w11+( )-----------------------------------R00

f ′ w02( )
f ′ w02 w22+( )-----------------------------------R00= =

R00 R01– R10– R11= = = w22 0= w22 2w02–=
w11 0= w11 2w01–=

w21 0= w12 0= w22 0= w11 0=
w21 0= w12 0= w22 0= w11 2w01–=
w21 0= w12 0= w22 2w02–= w11 0=
w21 0= w12 0= w22 2w02–= w11 2w01–=

R00 f u v1f w01( ) v2f w02( )+ +( ) 0.1–( )
f ′ u v1f w01( ) v2f w02( )+ +( )

⋅=

R01 f u v1f w01( ) v2f w– 02( )+ +( ) 0.9–( )
f ′ u v1f w01( ) v2f w– 02( )+ +( )( )

⋅=

R10 f u v1f w– 01( ) v2f w02( )+ +( ) 0.9–( )
f ′ u v1f w– 01( ) v2f w02( )+ +( )

⋅=
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Combining this with  and applying theorem 2.4
(using ) with ,

 and  shows that there exist
exactly 9 different solutions for . For each of the eight solution
points not equal to  we can chose  and , and then

,  and  are determined by this choice. Thus these stationary points
form 2-dimensional regions in the weight space. The corresponding error
values are 0.786045 and 0.805872 (see [5]). The solution
results in  and thus  and is part of case I.1.

The proof that all stationary points of case II.4 are saddle points is
completely equivalent to that of case I.4. The only difference is that in the
second order derivatives of the error with respect tox and y, the factor

 has to be replaced by the more general factor .

Conclusion 4.3We have shown that all instable stationary points with
 and  form regions of dimension at least 2 in the weight space.

This implies that the Hessian matrix of the second order derivatives has at
least two eigenvalues equal to zero. The Hessian can not be positive definite
for these points. We have proved that all instable stationary points are saddle
points.

5 Conclusions

In this paper we investigated the error surface of the XOR network with two
hidden nodes (see figure 1). We proved that stationary points of this error
surface with finite weights are either absolute minima with error zero or
saddle points. So no local minima exist for finite weights.

In this paper we used the quadratic error function

All proofs hold also for the “cross-entropy” error function, used in [1, 2]:

which can be seen immediately by replacing the terms  (see (3.1)) for the
quadratic error function by the (simpler) terms . Since all
stationary points for  are stationary points for  it is clear that also the
error surface for  will not result in local minima for finite values of the
weights.

R11 f u v1f w– 01( ) v2f w– 02( )+ +( ) 0.1–( )
f ′ u v1f w– 01( ) v2f w– 02( )+ +( )

⋅=

R00 R01– R10– R11= = =
f x( ) 1 f x–( )–= a u v1f w01( ) v2f w02( )+ +=

b v2 1 2f w02( )–( )= c v1 1 2f w01( )–( )=
a b c, ,( )

0 0 0, ,( ) w02 0≠ w01 0≠
v1 v2 u

a b c 0= = =
w01 w02 0= = w22 w11 0= =

f 0( ) 0.1–( ) f′ 0( ) R00

v1 0≠ v2 0≠

E 1
2
--- Oα tα–( ) 2

α
∑=

L Oα( ) tα 1 Oα–( ) 1 tα–
 
 ln

α
∑–=

Ri j

Ri j ′ Oα tα–=
L E

L
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The stationary points from case II.4 for the error function  do not occur
for the error . However, the proof that these points are saddle points can be
almost copied from other cases.

In a forthcoming paper [6] we will publish our results on stationary points
for infinite values of the weights. We found that this network has regions
with local minima for some weights from the inputs to the hidden nodes
having infinite values. However, since boundary points of these regions are
saddle points, a strictly decreasing path exists from each finite point in
weight space to a point with error zero. In the neighbourhood of the found
local minima learning algorithms can be trapped, as is the case for the point
given by Rumelhart and McClelland [3] and four of the five points given by
Lisboa and Perantonis [2].
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