The Error Surface of the 2-2-1
XOR Network:
The finite stationary Points

lda G. Sprinkhuizen-Kuyper
Egbert J.W. Boers

Abstract

We investigated the error surface of the XOR problem with a 2-2-1
network with sigmoid transfer functions. In this paper it is proved that
all stationary points with finite weights are saddle points or absolute
minima with error zero. So, for finite weights no local minima occur.
The proof results from a careful analysis of the Taylor series expansion
around the stationary points. For some points coefficients of third or
even fourth order in the Taylor series expansion are used to complete
the proof. The proofs give a deeper insight in the complexity of the
error surface in the neighbourhood of saddle points. These results can
guide the research in finding learning algorithms that can handle these
kind of saddle points.

1 Introduction

In neural network research, the XOR problem is probably the most
frequently used test problem to experiment with different training algo-
rithms. Usually, a network with two hidden nodes (see figure 1) is used.
Training such a network with sigmoid transfer functions can be seen as
searching for a global minimum on the error surface in weight space. Most
learning algorithms, like backpropagation, implement a gradient descent on
this surface. Rumelhart and McClelland [3] give an example of a position in
weight space where such a search process is trapped: the learning algorithm
Is not able to find points with less error in the direct neighbourhood of that
position in weight space (i.el@cal minimumon the error surface is found).

For small networks only, it is possible to investigate all stationary points
of the error surface and determine if they are (local) extremes or saddle
points. The results of such an investigation can however be very valuable for

T Technical Report 95-39, Dept. of Computer Science, Leiden University. Avail-
able as ftp://ftp.wi.leidenuniv.nl/pub/CS/TechnicalReports/1995/tr95-39.ps.gz



the research of learning algorithms. The “difficult” points are known, so it
can be tested how a particular learning algorithm behaves in the neighbour-
hood of specific “difficult” points. Also knowledge about “why” a learning
algorithm is trapped in some particular point of the error surface can guide
the research for learning algorithms that can escape from such points.

We started investigating the simplest network that can learn the XOR
problem with one hidden node and connections directly from the inputs to
the output node and found that the error surface of this network does not
contain local minima (see [5]). The techniques used to find these results for
the simplest “XOR network” are extended and used to investigate the error
surface of the XOR network with two hidden nodes (see figure 1). In this
paper we prove that all stationary points wittite weights cannot be local
minima: they are absolute minima with error zero or they are saddle points.

In a forthcoming paper [6] we will publish our further results on the error
surface of this XOR network. We found that this network has regions with
local minima when some weights from the inputs to the hidden nodes have
infinite values. However, these regions of local minima have boundary points
that are saddle points. So, we found that from each finite point in weight
space a strictly decreasing path exists to a point with error zero.

In our analysis we used the quadratic error function

_1 Y.
E =35y (Ot

It is easily seen that all results also hold for the “cross-entropy” [1, 2] error
function

L=-Y INB(0,) * (1-0,) * %5
a

since all stationary points df are also stationary pointg of .Hror we
found some extra stationary points (case 1.4 in section 4).

The results that no local minima exist for points with finite weights is
independently found by Hamey [1]. He used the etror  and based his work
on the work of Lisboa and Perantonis [2], who found the location of all
stationary points for the network with errer . We also used part of the
results and techniques in [2], but we met some more complications because
we started from the errd . In their paper [2] Lisboa and Perantonis remark
that they investigated all stationary points and found both saddle points and
local minima, but they omitted their proofs. They give 5 examples of
stationary points that are local minima by their analysis. One of these points
has all weights finite and is a saddle point (see figure 2). The other points are
numerically equivalent — using a finite precision floating point representa-



Figure 1. The XOR network with 2 hidden units

tion — to points with some of the weights having infinite values and corre-
spond to local minima as will be proved in [6].

2 The 2-2-1 XOR network

In this paper we investigate the error surface of the network, see figure 1,
with two hidden units and without direct connections from the input units to
the output.

For the XOR function we assume that the following patterns should be
learned/represented by the network:

Table 1: Patterns for the XOR problem

Patter | X X desired

n 1 2 output
Poo 0O O 0.1
Pog | O 1 0.9
Po |1 O 0.9
Pp |1 1 0.1

The transfer function used is the sigmoid

f(x) = 1+1e—X 2.1)



The input of the output unit is for the four patterns:

Ay = u+ vlf (WOl) + v2f (W02)
Agy = U+ v (wop +Wyp) +vof (W, + W) 2.2)
Arp = U+ vif(wop +wypp) +v,f (W, +wyp)

A = Ut V(W + Wy +Wop) +Vof (Woy + Wi, +W,))

So the four patters result in output values equél#y,) , f(A,,) , f(A)
andf(A,,) , respectively.
The mean square error is equal to:

E = %(f(AOO) —0.1)2+%(f(A01) ~0.92+ 2.3)
2(f(A) ~0.92+ 3 (F(A;) —0.1)2

2.1 Some theorems

The following theorems are proved in [5] as theorem A2, A3, A4 and Al,
respectively.

Theorem 2.1Consider the functiory of two variables abd in the
neighbourhood of a point wheredq =0 . I'i')zq/aa2 =0 and
02q/aa6b¢ 0, then the function g attains a saddle point and no extreme in
that point.

Theorem 2.2Let g be a function of three variables b, and . Ifin a
point with Ogq =0, 0 "g/daob =0, for O<i+j<6 and
0°q/0adbdcz 0 (or 8°q/da’dc# 0 or 8°g/db’°dc20), thenq attains a
saddle point and not an extreme in that point.

Theorem 2.3Let g be a function of three variables b, and . Ifin a
point with Og=0, 0"g/0adob' =0, for O0<i+j<8 and
d%q/0a2dboc# 0, thenq attains a saddlepoint and not an extreme in that
point.

Theorem 2.4 Let g(x) = (f(x)—0.1)f' (), and letP, andP,’ be the
nonzero solutions of the equatigfx) —g(-3x) = 0 , then the set of equa-
tions

g(a) = g(-a-b) =g(-a-c) =g(atb+g (2.4)
has nine solutions which are given in tableR2 (  standsPfjpr  Rnd
respectively). For all solutiong(a) O { g(0), a(P,), a(P,)} *holds

f.P, =—1.1613C andP, = —1.9674E
% {9(0), g(P,), 9(P,)} = {0.1, 0.025132 0.002438¢



Table 2: Solutions of equation (2.4)
a b ¢ -ab —a—c atb+c
0 0 0 0 0 0
P, —2P, 2P, P, P, -3P
P, -2P; 2P, P, -3P, P
P, 2P, -2P; -3, P, P
-3p, 2P, 2P, P, PP

3 Stationary points

Let us introduce

Ryp = (F(Agp) —0.1) ' (Agp)
Ry = (F(Ag) —0.9F' (Ay)
Rip = (F(Ap) —0.9f (A
R, = (F(Ay) —0.0)f' (A

with A, given as in (2.2). The components of the gradient of the error (2.3)
are:

S
1

-

(3.1)

0E _
au - RootRort R+ Ry (3.2)

oE
av, Roof (Wo1) + Rosf (Woy +Waq) + Ryof (Woq +Wyy) + (3.3)

Ry f (Wop +Wyp +W,)

oE
v, Roof (Wop) + Rosf (Wop + Wap) +Ryof (Wop +Wyp) + (3.4)

Ry 1f(Wop + Wyp +W,))

oE ' :
aw = Vi (Roof" (Wog) +Rogf" (Woy + W) + (3.5)
01

Riof " (Wog +Wyg) + Rypf" (Wop +Wypg +W,))



oE

oWy, = Vp (Ryof " (W +Wyg) + Ry (Woy + Wy +W,)) (3.6)

SVE\,—Zl = Vp (Rygf" (Woq +Wpg) + Ryyf" (W + Wy +wy)) (3.7)

gEToz =V, (Ryof " (W) + Rysf" (W +W,,) + Ry of " (Wp, +Wy,) (3.8)
+ Rygf" (Wop + Wip +Ws5))

SETQ = Vo (Rygf" (W +Wyp) + Ry f" (W + Wyp +w,)) ) (3.9)

35\,—22 = Vo (Rogf" (Wop + Wop) + Rysf " (Wop + Wyp +W,5)) (3.10)

We will distinguish two kinds of stationary points:
« Stationary points with the property that the gradient of the error is zero for
all patterns separately. These points we will si@ble stationary points

» The other stationary points we will calhstable stationary poinig=or
these stationary points the total gradient of the error is zero, but the
gradient of the error for at least one pattern is unequal to zero.
This distinction is useful both for the analysis of the error surface and for
considering gradient based learning algorithms, since it explains why on-line
learning can escape from some stationary points (unstable ones), while batch
learning does not.
Stable stationary points are obtained when the gradient of the error is zero
for each of the four patterns separately, thus if

Rio=Ryy =Rp=R;; =0 (3.12)
For finite weights (3.11) only holds if

f(Ay) = 0.1
f(Ay) = 0.9
f(Ay) = 0.9
f(A;) = 0.1

and thus all patterns are learned exactly and the error (2.3) is zero. So the
stable stationary points with finite weights are absolute minima with error
zero. In [6] we will prove that a 5-dimensional region exists with error zero.
In the next section the instable stationary points are investigated.



4 Instable stationary points with finite weights

Using equations (3.2) up to (3.10)[E = 0  results in 9 equationR fpr ,
Ry.» R and R, . ClearlyR,, = R,; = R, = R;; =0 is a solution,
resulting in the stable stationary points with error zero for finite weights. In
this section we are investigating solutions with at least one of the Ryms
unequal to zero. I, and/or, is equal to zero, then the number of equa-
tions is reduced by at least three. So let us first consider the stationary points
wherev, and/ow, is equal to zero.

4.1 Stationary points withv, and/or v, equal to zero

Analogously to the case for the simplest XOR network where the weight
from the hidden node to the output unit is equal to zero, we can prove the
following theorem:

Theorem 4.11f in a stationary pointy, = 0 ow, = 0 or both, then this
point is a saddle point and not an extreme.

Proof Supposev, = 0 . Then cleary *IE/dwi, 0wy, = 0 if+j>0
since all these derivatives contain at least one fagtor  (see (3.6) and (3.7)).
If R, # 0, then at least one of the following inequalities is true:

3

a E — n

W, ,0W, 0, = Ry f" (Wg, +wy; +w,,) 20
v; =0

or

64E

——— = Ry f"" (Wt Wy +W,,) #0

OWZ,0W,,,0V, 1l (Woy + Wyg +Wyy)
v, =0

Thus if R;; # 0, it follows from the theorems 2.2 and 2.3 that a stationary
point withv, = 0 is a saddle point.

Supposev, = 0 and,#0 . For these points we find from (3.8), (3.9)
and (3.10) that if at least one of the terR)s is unequal to zero, then all
terms R, are unequal to zero. If both = 0 and = 0 we find
Ay = Ay = Ap=A;, =u.SoR,, = R, andR,, = R, . From (3.2) it
follows thatR,, = —R,; andthusi = 0 has to hold (see [5]). Thus also for
these stationary points all terRs  are unequal to zero. So, espe&gially is
unequal to zero and no local minimum will be attained,if= 0 and all
weights are finite. The casg = 0 is proved completely analogausly.

Figure 2 shows that the point in weight space witk 0.0 v, = 0.0 ,
v, = 0.0, wy, = 1.5093], w;; = 0.0, w,, = 0.4834¢, w,, = —0.89611,



Figure 2. The error surface in the neighbourhood of the point with weight
= Vq =V =Wypq = Woo = 0,wg1 = 1.50931 w5, = 0.48349w, = -0.89611,
wq, = -0.57221. This saddle point view is obtained by varying from —
0.0005 to 0.0005 anfiwg, = Awy; = Awy; from —0.5 to 0.5.

w,, = =0.57221 andw,, = 0.0, which is classified by Lisboa and Peran-
tonis in [2] as a local minimum, really is a saddle point.

4.2 Stationary points with bothv; and v, unequal to zero

From equations (3.5) till (3.10) it follows that:
Roof ' (Wop) = —Rpsf' (W, +W,,) = 4.1)
—Ryof " (Woy +Wag) = Rygf’ (Wop +wyy +wy)

and
Roof' (WOZ) = —ROlf' (W02 + W22) = (4.2)
—Rypof " (Woa +Wip) = Rypf" (Wop + Wiy +W,))

implying:



£ (wpy) _ £ (Wpyp)

R =7 (Woy +Wpp) 00— 17 (Wpp+ Wyp) 00
£ (wpy) _ £ (Wpyp)
R0 = (Woy +Wyg) 00— 7 (Wop + wyp) 0 “3
— f' (W01) f! (Woz)
Ryp =

f' (Wop +Wyp +Wy) 00 F" (Wop+ Wy +W,yp) 0

Thus either allR; = 0 oralR;#0 . So let us suppose thatRjl 0
Substitution of the first parts of the equalities (4.3) in equation (3.3) results
in:

fwo)  F(wWop+wy)  Fwy +wyy)

! T Y 44
f'(wop) ' (Wop+Wy) ' (wp +wyy) (44)
F(Wog +Wyy +Wpy) _ 0
f' (Woy +Wyp +Wsy)
Usingf(x) /f' (X) = 1+ eX, this equation is equivalent to:
eW01_eW01+W21_ W01+W11+ eW01+W11+W21 — (4.5)

e (1-e"™)(1—e"*) = 0
and thus we havev,;, = 0 aw,, = 0 in an instable stationary point with
v, #0 andv, # 0 and finite weights. Similarly we find from the substitution
of the second parts of (4.3) in (3.4)thgt, =0 wor =0 .

So we have to consider the following four cases for instable stationary
points withv, #0 andv,# 0 and finite weights:

* Casel: w, =0 andv,, =0 ,

* Casell: w,, =0 andv,, =0 ,
» Caselll: w, =0 andv,, = 0 ,
» Case IV: w, = 0 andv,, = 0 .

Remark that case | and case IV are essentially the same because of the
symmetry in the network obtained from interchangkg 2yd . Case |l
and case lll are equivalent as well.

Let us consider cases | and Il carefully, taking into account that equations
(4.3) have to hold withlR,, R,, R,, ang;, given by (3.1).



4.2.1 Case lwy; = 0 andw,,=0

In this case equation (4.3) becomes:

Rp; = —Rog
o 1wy _ (g
0 (wpp twyy) 0 (Wt wyp) 0
f' (W01) f' (WOZ)
Ry = = Roo = Ry

' (Wop +wyg) 00 7 (Wpy+ W)

while equation (2.2) results iA,, = A,;, amd, = A, . Combining this
with R, = -R,, andR,, = -R,, leads to (using the results from [5])

Ay = u+vif(wy,) +vof(wg,) =0 (4.6)
and
A = u+vf(wy, +wyy) +vf(wg,+wy,) =0 4.7)

So alsoR,, = R;; and the error for case | is 0.32 (all patterns give output
0.5). Further, Ry, = R;; implies f'(w,) = f"(w, +w,,) and
f'(wy,) = f'(wy,+w,,) . Sincef'(a) = f'(b) ifandonlyifa = b or

= —b, we find that v, =0 orw;, = -2w, ) andw;, =0 or
w,, = —2W,,). So we can split case | into the four cases 1.1 to 1.4:

» Casel.lw,, =0 w,, =0 w, =0 anav,, =0 ,
» Casel.2w,, =0 w,, =0 w;; =0 anav,, = -2w,, ,
» Casel.3w, =0 w,, =0 w,, = 2w, antv, =0 ,

» Case l.4w, =0 w,, =0 w,;, = -2w,, anav,, = -2w,, ,

and will investigate these cases further.

Case I.1:wy1 = 0,wy, = 0,w;; = 0 andw,,=0
Equations (4.6) and (4.7) become both equal to

u+ v, f(wg,) +vof(wy,) =0
In this case we can choose the weighis w,,, v, #0)(@ndv, €0). Then
the value ofu can be determined such that the former equation hold. So
these stationary points form a 4-dimensional region in the weight space with
error 0.32.

We will prove that these points are saddle points. In order to do so we
consider the second order part of the Taylor expansion of the error:

10



AE = £'(0) FAEAU + f(Wo ) AV, + W)V, +v, ' (Wo)Aw,,  (4.8)

1 ., 1 ., '
+ —vlf (WOl)AW11 + —vlf (WOl)AW21 + v2f (WOZ)AW02

2 2
1 ¢ 1, ¢ [
* 5Vaf " (Wop) AWy, + 5VoT ' (W) AW, 5

1 1 2
+ (v (Wo) Aw, ; + Vof (W) Aw, )

, , 2
+ (v f (W) AW, + Vof ' (W) Aw,)) E
+2v, (F(0)— 0.1) ' (O)F " (W) AW, , AW,y

+2v; (F(0) — 0.2) ' (0)F " (W) AW, AW,

We will study variations of the weights such that

v, (Wop) Awy + Vo' (Wy,) Aw,, = 0 (4.9)

v f' (Wop) Aw,, + Vo' (Wy,) Aw,, = 0 (4.10)
and

Au+ f(wyy) Av, +1(wy,) Av, +v, ' (W) Awy, (4.12)

+V,f" (W) Awy, = 0

If we chooseAw;; such that equations (4.9), (4.10) and (4.11) are satisfied it
is easily seen from the nonquadratic terms in equation (4.8) that a saddle
point is attained in those points where

azvlf " (Wop) +Vof" (W) 20 (4.12)
with
- Vol (Wop) (4.13)
vlf’ (w01)

Consider the stationary points of case 1.1 with
a2v,f" (Woy) +Vf" (Wy,) = 0 (4.14)

Since this is a thin set of the 4-dimensional region of stationary points with
W, = W, =W, =W, =u+vfw,)+v,f(w,) =0, these points also
have to be saddle points (see [1]).

In the following we will give a proof that these points are saddle points by
showing that certain partial derivatives are unequal to zero. We can choose 6
variablesw, x,, X;, X,, y andz for the variations of the weights in the
hyperplane given by the equations (4.9), (4.10) and (4.11) in order to investi-
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gate the neighbourhood of points on the error surface in case .1 more
precisely:

Aw,, = Xq, AWy, = 0%y

AW,, = Xy, AW, = OX,

Awy, = X5+ 2z AWy, = aX,—0z (4.15)
Av, = y+w,Av; = By—Bw

Au = f(wyy) BW—TF(Wy,) W+ av,f' (wy,) z—Wf" (wy,) z

whereaq is given in (4.13) anf@ is given by:

_ flwyy)
B= f(Wpq)

If (4.14) holds then all first and second order derivatives of the Error  with
respect to the six variables x, X, X, y, amd are zero. Calculation of
some third order derivatives in the stationary points of case I.1 in the direc-
tions given by (4.15) results in the following formulas, whére stands for
W restrictedtov = X, = X, =X, =y =z2=0 :

(4.16)

3
OE— = (f(0) 0.9 1" (0) (av,f""" (Wpy) +V,f""" (Wpp)) (4.17)
0X;0X, o

03E

9%, 0%,9y ) = (f(0) —0.1)f' (0) (a2Bf" (wyy) + 1" (W) (4.18)
asE

oxaxgz| = (1O Z0DTO) Catuil™ (Woy) + (4.19)

Vo' (Wgo) )

63E

0%, 0%,0W | = (f(0) —0.0)f" (0) (—a?Bf" (wpy) +1" (Wgp)) (4.20)

Thus a saddlepoint is found if inequality (4.12) or one of the following
inequalities hold:

adv, " (Woy) +V,f """ (W) %0 (4.21)
or
a2Bf" (Wyy) +f" (Woy) 20 (4.22)

12



or

—aBv,f " (Wp) + Vof """ (Wyp) 20 (4.23)
or

—a2Bf" (W) +F" (W) 0 (4.24)

At least one of these inequalities has to be fulfilled, since the set of equa-
tions:

a2v, " (woy) +V,of" (wy,) =

a3v,f (Wop) +V,f"" (Wg,) O
a2Bf" (W) + 1" (W)
—a3v " (W) +Vof"" (Wpy) =

—a2Bf" (Wop) + " (W)

(4.25)

I
o O ©O o o

has no solutions in the considered case with all weights finite and v,and
unequal to zero: From the second and the fourth equation of (4.25) it follows
that f'"" (wy;) = 0, while from the third and fifth equation it has to be
concluded that” (w,,) = 0 . Since the last equality implies thigt = 0

and sincg''' (0) #0 these equalities are contradictory.

Conclusion 4.1All points of case I.1 are saddle points.

In figures 3 and 4 it is visualized that the point with weights -1 ,
Vi =V, =1, Wy, =Wy =W, = W, = W, =W,, =0, which is an
example of this case, is indeed a saddle point.
Case 1.2:wy1 = 0,Wy, = 0,wy7 = 0 andwy, = —2wp,
Equations (4.6) and (4.7) result in

u+ v f(wy) +vof(wy,) =0
and

u+vf(wy) +vof(-wy,) =0
implying that v, (2f (w,,) —=1) = 0, thusw,, = 0 , and thus/,, = 0
Thus Case 1.2 is a special case of Case I.1.
Case |.3:W21 = 0,W22 = O’Wll = —2W01a.nd W1io= 0

Analogously to the previous case, this case is also a special case of Case I.1.

13



-0.1

Figure 3. The neighbourhood of the weights—1,v; =V, = 1,Wg; =Wqq
= Wpq = Wpp = Wypp = Wyy = 0. This picture is obtained by varyiryw,; =
—AW21 = AW]_Z = AWZZ from-0.5to 0.5 and-2Au = AWOl = AWOZ from-0.1

Case 1.4:wy1 = 0,Wy, = 0,Wq1 = —2Wq; and wyp = —2Wgo
Equations (4.6) and (4.7) result in

u+vyf(wo) +vof(wpy) =0
and

U+ vyf (—Wo) +Vof (-Wgp) =0

implying thatv, (2f (w,,) —1) +v, (f(wy,) —1) = 0. So choosingvy, #
0, wp, # 0 andv; (# 0) determines andv,. Thus these stationary points form
a 3-dimensional region in the weight space.
To prove that these points are saddle points we introduce the vaxables
andy such that:

I l I
Awy; = X, Aw,; =y, Au = —v,f (W01)X_§V1f (W) Y

Thus we find for the inputs of the output unit for the 4 patterns, see equation
(2.2):

I 1 I
Apy = U=V, f' (wy) X— §V1f (Wop) Y + Vi (wgp +X) +Vof (wg,)

14



0. 320075
0. 32005

0. 320025
0.32

0. 319975
-0.1

Figure 4. The neighbourhood of the same point in weight space as figurt
This picture is obtained by varyin@Au = Awg; = —Awy = =AW, = AWgp
= Awy, = Aw,, from -0.1 to 0.1 andwv; = —Av, from —0.5 to 0.5.

I 1 I
Ay = u—vf'(wy) X— §V1f (Wop) Y+ Vif (Wop + Wy +X+Y) +
Vof (W, +W,,)

] 1 !
Agg = U=Vyf" (Wop) X= V" (Woy) Y+ Vyf (Woy + Wy +) +

vzf (W02 + w12)

I 1 I
A = u=vf'(wy) X— §V1f (Wop) Y+ Vyf(Woy + Wy + Wy +X+Y) +

vzf (W02 + Wy, + W22)

For the second order derivatives of the eE@ith respect tx andy we find
(using w,;, = W,, =0, w;; = =2wW,, , W;, = =2W,, , f'(X) = ' (=X)
andf” (x) = —f"(=x) ):

2
0 E

2
ox 0

15



and

2
gx_%y . (£(0) —0.1) f' (0) (=2v,f" (wyy))

Thus using theorem 2.1 it follows that the stationary points of case 1.4 are
saddle points iff" (w,) #0 . The case that, = 0 (and thus also
w,, = 0) is already considered in case I.1.

Conclusion 4.2All points of case 1.4 are saddle points.

4.2.2 Case ll:.wy; = 0 andwy,=0

Equations (4.3) become in this case:

_ _ ' (Wp,)

Ro1 = —Rgo = f' (Wgy + W,o) 00
_ f' (woy) _

Rio = Fwww gy Roo = oo (4.26)
o (wyy) )

Ry =

F (Woy +Wyp) 00 7 (Woy + Wypp) 00
resulting inR,, = -R,; = -R,=R;; , W,, = 0 orw,, = -2w,, ) and
(w, = 0orwy; = -2w,, ).

Thus analogously to case | we can split this case into the four cases:
- Casell.lw,, =0 andv,, =0 and,, =0 amw,K =0 |,
» Case ll.2w,, = 0 andv,, =0 and,, =0 aml, =-2w, ,
» Case ll.3w,; = 0 andv,, =0 and,, = -2w,, amnd, =0
» Case ll.4w,; = 0 andv,, = 0 and,, = -2w,, and, = 2w,
Case Il.1 is equal to case I.1; Case II.2 is equal to Case 1.3 and thus a special
case of Case I.1; Case 1.3 is also a special case of Case I.1. So these cases
result in saddle points. Let us consider Case 11.4:

Case I1.4:w,1 = 0 andwy, = 0 andwy, = 2w, and Wy 1 = —2Wgq

Equation (3.1) results in this case in:

Rog = (F(u+ v f(wg,) +Vv,f(wy,)) —0.1) O
fr(u+vyf(wyy) +vof(wg,))

Ros = (F(u+vyf(wy,) +v,f(-wy,)) —0.9) O
f'((u+ v, f(wy) +Vv,f(-wy)))

Rio = (F(u+vyf(=wg,) +v,f(wy,)) —0.9 O

£ (u+vf(=wgyy) +Vof(wgy,))
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Rip = (f(u+vf(=wy) +v,f(-wy,)) —0.1) O
fr(u+ vy f(=wyy) +Vof (—wy,))

Combining this withR,, = -R,, = -R;; = R,; and applying theorem 2.4
(using f(x) = 1-f(—x) ) with a = u+ vf(w,,) +v,f(w,,) ,
b=v,(1-2f(wy,)) andc = v, (1-2f(w,)) shows that there exist
exactly 9 different solutions fofa, b, ¢ . For each of the eight solution
points not equal to(0, 0, 0) we can chosg,# 0 amgd #0  , and then
v, v, andu are determined by this choice. Thus these stationary points
form 2-dimensional regions in the weight space. The corresponding error
values are 0.786045 and 0.805872 (see [5]). The solatisnb = ¢ = 0
results inw,, = wy,, = 0 and thua,, = w;;, = 0 andis part of case I.1.

The proof that all stationary points of case 1.4 are saddle points is
completely equivalent to that of case 1.4. The only difference is that in the
second order derivatives of the error with respeck @ndy, the factor
(f(0) —=0.1) f' (0) has to be replaced by the more general faRgr

Conclusion 4.3We have shown that all instable stationary points with
v, #20 andv,# 0 form regions of dimension at least 2 in the weight space.
This implies that the Hessian matrix of the second order derivatives has at
least two eigenvalues equal to zero. The Hessian can not be positive definite
for these points. We have proved that all instable stationary points are saddle
points.

5 Conclusions

In this paper we investigated the error surface of the XOR network with two
hidden nodes (see figure 1). We proved that stationary points of this error
surface with finite weights are either absolute minima with error zero or
saddle points. So no local minima exist for finite weights.

In this paper we used the quadratic error function

_1
E = ZZ (O, —ty)?
a
All proofs hold also for the “cross-entropy” error function, used in [1, 2]:
= -y INB(0y) ' (L-0y) *~tF
a

which can be seen immediately by replacing the téRms (see (3.1)) for the
quadratic error function by the (simpler) terRs' = O, —t, . Since all
stationary points fol. are stationary points or it is clear that also the
error surface folL  will not result in local minima for finite values of the
weights.
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The stationary points from case 1l.4 for the error funciton  do not occur
for the errorL . However, the proof that these points are saddle points can be
almost copied from other cases.

In a forthcoming paper [6] we will publish our results on stationary points
for infinite values of the weights. We found that this network has regions
with local minima for some weights from the inputs to the hidden nodes
having infinite values. However, since boundary points of these regions are
saddle points, a strictly decreasing path exists from each finite point in
weight space to a point with error zero. In the neighbourhood of the found
local minima learning algorithms can be trapped, as is the case for the point
given by Rumelhart and McClelland [3] and four of the five points given by
Lisboa and Perantonis [2].
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