
Functional Programming in a Basic Database Course (FPLE'95) 1

Functional Programming in a Basic Database Course1

Pieter Koopman, Vincent Zweije

Computer Science, Leiden University,

Niels Bohrweg 1, 2333 CA, Leiden, The Netherlands

email: pieter@wi.leidenuniv.nl

Abstract

This paper describes why and how a functional programming language was
used in an introductory database course. The purpose of the programming
exercises in this course is to give students a better understanding of the in-
ternal structure and use of databases and database management systems.
We used a functional language for its high level of abstraction and the au-
tomatic memory management which make writing a simple database man-
agement system considerably easier.
Although the students had no previous knowledge of functional program-
ming, they were capable to obtain useful experience in the database field. In
order to enable students to concentrate on the database aspects of the exer-
cises and to make rather elaborated systems in a limited amount of time, we
supplied skeletons of the programs to make. Only the parts that are the core
of the exercise had to be written by the students.
The exercises appear to serve their purpose very well. The corresponding
parts of the exams are made considerably better since the introduction of
these exercises in the course. After some initial hesitation, the students indi-
cate that they prefer a functional language for these exercises above the im-
perative languages they know.

1. Introduction

This paper describes how functional programming is used in an elementary database
course and the experiences with this use. The database course is situated in the second
year of the computer science curriculum of four years for university students. The goal
of the course is to make students aware of the reasons of existence for database man-
agement systems and to give a firm introduction to relational databases. We treat the
design of relational schemas including normal forms and the query languages rela-
tional calculus, relational algebra and SQL. Also the more old-fashioned hierarchical

1This paper occurs also as: P. Koopman and V. Zweije: Functional programming in a
basic database course. In: P. H. Hartel and M. J. Plasmeijer (editors): Functional
programming languages in education FPLE, Nijmegen, The Netherlands, Dec 1995,
LNCS 1022, Springer-Verlag, Heidelberg, pp 215-230.

Functional Programming in a Basic Database Course (FPLE'95) 2

and network model are discussed briefly. See also appendix A for additional course
description.

Programming exercises are used to make students familiar with the construction and
use of ad hoc databases and simple database management systems. The reason for hav-
ing programming exercises instead of using existing database systems is that it is an
important goal of this course to given students a clear view of the background and in-
ternals of database management systems, this is explained in detail in section 2.

The students have one year experience in imperative programming (using Pascal
and C) and no experience with functional programming. The high level of abstraction
and the automatic memory management are the reasons to use a functional language in
this course. Especially the excellent abilities to manipulate lists can be used extremely
well for a simple implementation of relations. See also section 3. Details of the organ-
isation and exercises are given in section 4 and 5. Section 6 gives some reactions of
the students. Finally, there is a discussion in section 7.

2. Role of Programming in the Course

In previous instances of this basic database course the students did practical work
with an existing relational database management system (INGRES). The exercises
consisted of writing some queries on an existing database and changing the contents
and structure of this database using SQL-commands.

Although these exercises taught the students to work in SQL, we were not satisfied
with the skills and insight of the students. In particular the understanding of what is
happening when an SQL-statement is executed was low. As a consequence they could
not predict the cost of a given manipulation. Also the rationale behind many design
decisions remained misty. Using a database system teaches students about the inter-
nals of the systems what the students of a Pascal course learn about compiler con-
struction: basically nothing. These exercises also did not teach the students anything
about writing queries in relational calculus or relational algebra. Neither is writing
SQL-statements helpful for understanding the other data models treated in the
database course.

To solve these problems we replaced the practical work with an existing relational
database management system by exercises in which the students build a simple
database management system (DBMS) themselves and use this system to manipulate
some data. Other programming exercises broaden the field of topics covered by the
practical work. The total amount of practical work for the students is increased by this
change.

Although many important topics of the database course are covered by the pro-
gramming exercises, there are also additional exercises for the student about the other
issues of the course. Later on in the curriculum, the students can learn how a state of
the art relational DBMS should be used.

Functional Programming in a Basic Database Course (FPLE'95) 3

3. Why Functional Programming

Once we had decided to replace the exercises with the relational DBMS with the im-
plementation of some DBMSes we had to select a suitable programming language.
The two obvious candidates are the imperative languages familiar to the students:
Turbo Pascal and C.

Especially the relational DBMS to construct requires the extensive use and dy-
namic creation of tables (relations). We want to prevent that the memory management
involved attracts too much attention from the students. One option is to supply a
package to store and manipulate relations in one of the imperative programming lan-
guages.

The lists which are standard available in functional programming languages are an
excellent implementation of the relations used in our DBMS. In fact the list compre-
hensions in functional languages and the relational calculus share the same mathemati-
cal basis: Zermelo-Fraenkel set theory [Fraenkel 1922, Zermelo 1908]. No matter how
sophisticated the relational package supplied with an imperative language is, it will be
less usable and its syntax will always be inferior to the possibilities in a functional
language. Together with the well known advantages of functional programming lan-
guages (they enable the construction of compact and understandable programs at a
high level of abstraction that can be written fast) this is the reason to use a functional
programming language in this course.

The Chosen Functional Language

After the decision to use a functional language we had to choose which language we
were going to use. As indicated before, the students have no previous knowledge of
functional programming. This means that we had free choice. However, since this is
not a course in functional programming, a very simple and easy to explain yet power-
ful language is required. This makes an interpreter more suited than a compiler. Due to
the extensive list manipulations that will be necessary the availability of list compre-
hensions (ZF-expressions) is a prerequisite. Speed is not considered to be of prime
importance. Fancy type systems and other extensions are not required, nor wanted
(they attract unnecessary attention).

Based on these requirements and the availability at our institute we have chosen
Miranda2.[Turner 85] Another good candidate was Gofer [Jones 94]. This language
has a more powerful and hence more complex type system. An advantage of Gofer was
its better availability, especially for students working at home on a PC. The reasons
to select Miranda are the straightforward type system and simple, but sufficiently
powerful, IO mechanism. Although we are satisfied with this choice, other functional
languages can be used as an alternative.

2Miranda is a trade mark of Research Software Ltd.

Functional Programming in a Basic Database Course (FPLE'95) 4

4. Organisation of the Practical Work

The students are supposed to work in total four weeks full-time (about 160 hours) on
this course. This time is spread over the semester of thirteen weeks. Each week there
are two lecture hours. These lectures cover parts I, II, III and IV of the textbook of
Elmasri and Navathe [Elmasri 94]. In addition there is a session of two hours were
students can work on all exercises of this course (both the programming exercises and
the pen and paper exercises) under supervision and with direct support. The remaining
time should be spent on studying the topics covered in the lectures, implementation of
the exercises and making the other exercises. Students are expected to spend about 40
hours in total to each of these three parts. As documentation for functional program-
ming we supply copies of overhead sheets and a copy of the paper [Turner 85]. The
Miranda system has an on-line manual.

The primary goal of the practical work is not to teach students how functional pro-
grams must be constructed, but to teach them database topics. In order to enable the
novice functional programmers to construct useful database programs without spend-
ing much time on problems with functional programming, we give them much support.
This support consists of relevant examples and a partial solution of each exercise. The
partial solution of an exercise is a program that contains all parts that are not consid-
ered as the crux of that exercise. The students are asked to make complete programs of
these partial solutions. In order to enable the students to concentrate on database top-
ics, we keep the program style simple and consistent over all exercises. We also sup-
ply data that can be used to test the constructed databases.

5. Contents of the Practical Work

The practical work is organised in five exercises. Some of these exercises are divided
in a number of distinct parts. The main purpose of the first exercise is to get ac-
quainted with functional programming. The next exercise is the construction of an ad
hoc database. Due to the embedding of this exercise a relational model-like storage
structure will be used by the students. The queries will be similar to relational calcu-
lus expressions. The third exercise is the construction of a relational DBMS with
queries in relational algebra. In the fourth exercise this data model will be manipulated
entirely by a subset of SQL. In the last exercise an existing interpreter for an impera-
tive language is extended by commands to control a hierarchical database.

For each of these exercises we discuss the goal, the question, the given support and
the structure of the solution in detail. We made the structure of all programs as consis-
tent as possible. We also used similar applications of the developed DBMSes when-
ever possible.

Functional Programming in a Basic Database Course (FPLE'95) 5

Exercise 1: Introduction to Functional Programming

The main purpose of this exercise is to make students sufficiently acquainted with
functional programming to make the database programs. We emphasis on IO, the mean-
ing of list comprehensions and working with a program state.
After a large number of examples and simple programs constructed in interaction with
the teacher we ask the students to write three small programs.
Part a: Interactive Palindrome Checker
The goal of this part is to make students familiar with simple list manipulations and
IO, both as list of characters ($-) and as list of values ($+). The students should
write two programs that check whether lines entered as input are palindromes. One of
these programs accepts one list of characters as input. The other takes a list of lines,
list of list of characters, as input.
Part b: Pythagorean Triangles.
This part is meant to make students aware of the meaning of ZF-expressions and the
advantages of using them. The exercise consists of writing functions that yield the
same list of Pythagorean triangles as the given list comprehension.

Students are encouraged to use list comprehensions as much as possible during this
course. As an introduction many examples are developed together with the students on
the blackboard.
Part c: Reverse Polish Notation Calculator.
The purpose of this part is to teach students to work with a program state, algebraic
data types and formatted input ($+ in Miranda). In order to do this, the students have
to write an interpreter for a list of statements in reverse polish notation. We help the
students by giving them appropriate data types and a description and the type of the
functions to implement.

Exercise 2: Ad hoc Database

The topic of this exercise is the construction of a small ad hoc database to store in-
formation about books and their authors. The students have to define the state and a
number of manipulation functions. We omit details of the attributes to store and ma-
nipulations to implement.

The database can be constructed along the same lines as a telephone database as
specified in [Diller 94] shown as example. This guides students towards a tailor made
relational model. We supply the types of the functions to implement, the command
“loop” and data to fill and test the constructed database.

command == db -> (output, db)

bibl :: output

bibl = fst (interpret $+ emptydb)

interpret :: [command] -> command

interpret (c: cs) db

Functional Programming in a Basic Database Course (FPLE'95) 6

 = (out ++ outs, db2)

 where (out, db1) = c db

 (outs, db2) = interpret cs db1

Using structuring primitives like Monads [Wadler 92, Jones 93] it is possible to de-
fine the function interpret a little more compact. We use the definition as shown to
keep the function as simple as possible for the students.

The state can be defined as:

db == ([author], [wrote], [book])

author == (ssn, name)

wrote == (ssn, isbn)

book == (isbn, title, sold)

ssn == num

isbn == num

sold == num

name == [char]

title == [char]

We show two examples of database manipulations. First the function to add an author.
This function checks the consistence of the SSN number as key. The second example
is the query to find the authors of the book(s) with the given title.

addAuthor :: ssn -> name -> command

addAuthor ssn name db

 = ("Error: author exists", db), if member ssns ssn

 = ("" , db'), otherwise

 where (as, ws, bs) = db

 db' = ((ssn, name): as, ws, bs)

 ssns = [ssn | (ssn, name) <- as]

findAuthors :: title -> command

findAuthors title db

 = (showAuthors as', db)

 where (as, ws, bs) = db

 as' = [(ssn, name)| (bisbn, btitle, bsold) <- bs;

btitle = title;

(wssn, wisbn) <- ws;

wisbn = bisbn;

(ssn, name) <- as;

ssn = wssn]

Note that the list comprehensions have many similarities with expressions in rela-
tional calculus. An important difference between relational calculus and ZF-expres-
sions in Miranda is that calculus just gives a tuple definition and a predicate, while
the list comprehensions are an algorithm to compute the tuples. All other manipula-
tion functions have the same structure.

Functional Programming in a Basic Database Course (FPLE'95) 7

Exercise 3: Relational Algebra

In this exercise the students construct their first relational database management sys-
tem. Instead of a fixed set of relations of known types, as in exercise 2, an arbitrary
number of relations is used containing attributes not determined at compile-time. This
requires an other approach to define the state. We supply the following definitions.

database == [(tablename, table)]

tablename == [char]

table == (schema,[tuple])

schema == [attributename]

attributename == [char]

tuple == [attribute]

attribute ::= String [char] | Num num | Bool bool | Null

Queries to this DBMS are written in relational algebra. The basic operators in algebra
are the union, difference, cross product, selection of tuples and projection of attributes.
In addition we define operators for the natural join, renaming of attributes, unique (to
remove duplicates from the multi-set) and some aggregate functions. Queries are repre-
sented by an algebraic data type and contain the abstract syntax tree.

query ::= Table tablename |

Union query query |

Difference query query |

Cross query query |

Project schema query |

Select condition query |

Join query query |

Rename [attributename] query|

Unique query |

Aggregate schema [(attributename, aggregate)] query

aggregate ::= Sum attributename |

Product attributename |

Average attributename |

Min attributename |

Max attributename |

Count

Conditions come in a number of obvious forms.

condition ::= NOT condition |

AND condition condition |

OR condition condition |

LT expression expression |

…

Functional Programming in a Basic Database Course (FPLE'95) 8

For example, the query πa,b σa=42 (R * T) is represented as the following data struc-
ture.

Project ["a", "b"] (Select (EQ (Attr "a") (Const (Num 42)))

 (Join (Table "R") (Table "T")))

A query is interpreted by the function retrieve . This function recursively descends
the data structure and calls the appropriate function.

retrieve :: query -> db -> table

retrieve query db =

 ret query

 where ret (Union q1 q2) = union (ret q1)(ret q2)

 …

 ret (Unique q) = unique (ret q)

 ret (Table t) = lookup emptytable db t

 ret (Aggregate as f q) = groupby as f (ret q)

Students should implement the functions which define the semantics of the relational
algebra operators:

cross :: table -> table -> table

difference :: table -> table -> table

join :: table -> table -> table

project :: schema -> table -> table

rename :: schema -> table -> table

union :: table -> table -> table

unique :: table -> table

select :: (schema- > tuple -> bool) -> table -> table

The implementation of these operators using list comprehensions is straightforward
and very similar to the definition of the semantics of the operators in set theory. We
show some examples (remember that each table consists of a Miranda tuple containing
the list of attribute names and a list of database tuples):

cross (atts1, tuples1) (atts2, tuples2)

 = (atts1 ++ atts2, [t1 ++ t2 | t1 <- tuples1; t2 <- tuples2])

difference (atts1, tuples1) (atts2, tuples2)

 = (atts1, tuples1 -- tuples2)

select pred (atts, tuples)

 = (atts, [t | t <- tuples; pred atts t])

union (atts1, tuples1) (atts2, tuples2)

 = (atts1, tuples1 ++ tuples2)

To practice writing queries in relational algebra the students should formulate a num-
ber of expressions. Since the students are familiar with the data structure to represent
queries, a parser for relational algebra is omitted. The queries are written as Miranda

Functional Programming in a Basic Database Course (FPLE'95) 9

data structure. This has as advantage that the database implementation remains simpler
and the Miranda mechanisms for abstraction can be used. As example we show the
query that yields a table containing the SSN-numbers and names of authors that wrote
a book titled t . This title is supplied as argument to the command.

findAuthor :: title -> query

findAuthor t

 = (Proj ["ssn", "name"] (Sel c universal))

 where c = EQ (Attr "title") (Const (String t))

 universal = Join (Table "author")

 (Join (Table "wrote") (Table "book"))

Exercise 4: Mini-SQL

The purpose of this exercise is to teach the semantics of SQL statements and to prac-
tise in writing these statements. To achieve this goal the algebra interface of the pre-
vious exercise is replaced by an SQL-interface. We supply the data types involved and
the manipulations of the relations. The students should write a query interpreter and a
number of SQL-statements.

Since SQL is an enormous large language (only the syntax definition of the core
part of SQL2 in BNF takes 47 pages [Melton 93]), it is clear that we must impose
severe restrictions here. It is possible to define a small sub-set of SQL, called mini-
SQL, that introduces a large part of the features of SQL. We decided to include many
possibilities to express queries and to omit the automatic constraint checking and
many fancy attribute types.

The SQL based DBMS is constructed on the very same basis as the relational
DBMS of the previous exercise. The entire DBMS state remains unchanged. The ma-
nipulation of this state will now be done by the following mini-SQL commands.

print :: query -> command

createtable :: tablename -> schema -> command

droptable :: tablename -> command

insertinto :: tablename -> query -> command

inserttuple :: tablename -> tuple -> command

deletefrom :: alias -> condition -> command

updatetable :: alias -> [(attributename, expression)]

 -> condition -> command

The data structure to represent the syntax tree of SQL-queries is defined as:

query ::=

Union query query |

Except query query |

Select distinct [field] [alias] condition |

SelectGrouped distinct [(field, yield)] [alias] condition [field]

yield ::= Copy | Collect bool aggregate

Functional Programming in a Basic Database Course (FPLE'95) 10

aggregate ::= Sum | Product | Average | Min | Max | Count

distinct == bool

alias == (tablename, tablename)

field == (tablename, attributename)

condition ::= Not condition |

 And condition condition |

 Or condition condition |

 Exists query |

 In [expression] query |

 Some expression relation query |

 All expression relation query |

 Compare expression relation expression

relation ::= Lt | Le | Eq | Ge | Gt | Ne

expression ::= Plus expression expression |

 Times expression expression |

 Minus expression expression |

 Attr field |

 Const attribute

As example we show the command to remove all authors form the relation author

that has not written any book. In SQL this can be written as:

DELETE FROM author a

 WHERE NOT (EXISTS (SELECT *

FROM wrote w

WHERE a.ssn = w.ssn))

This is represented by the following command:

deletefrom ("author","a")

 (Not (Exists (Select False []

 [("wrote","w")]

 (Compare (Attr ("a","ssn")) Eq (Attr ("w","ssn"))

We supply the implementation of the SQL-commands apart from the evaluation of
queries. Students should write an interpretation function for the data type query . This
can be done by a recursive descent of the data type query similar to the function re-
trieve in the previous exercise. We suggest to use a rather naive implementation of the
queries. First all tables involved are combined to one table by making the cross prod-
uct. From this table the tuples obeying the condition in the WHERE part are selected.
Finally, the attributes listed after the keyword SELECT must be projected out.

The existence of sub-queries makes this exercise interesting. Students must be
aware of the scope of variables and the semantics of the sub-queries in order to make a
correct implementation.

Functional Programming in a Basic Database Course (FPLE'95) 11

Exercise 5: A Hierarchical DBMS

The topic of the final exercise is the hierarchical data model. This is a somewhat old-
fashioned data model that is always manipulated with commands that are embedded in
an imperative programming language. The data is logically structured in a strictly hi-
erarchical tree. Physically the data is stored in the list by traversing this tree in pre-
order. Via the database commands the user is aware of this physical organisation of the
data. The hierarchical DBMS and the imperative program communicate by a number of
shared variables. The imperative program controls the actions of the DBMS by execut-
ing the appropriate commands.

The purpose of this exercise is to teach the students how the data is organised and
how it can be manipulated by embedded commands. This goal is achieved by a similar
approach as the previous two exercises: we supply a storage structure for the data and
an interpreter for a simple imperative language. The students have to extend this im-
perative language by retrieval commands for the database management system. This
means that they define how the pointers in this linear list of records must be moved.

There are two commands that are used to retrieve information from the database:
GET and GETPATH. Only the GETPATH command has to be implemented since the
GET command can be treated as a special case of the GETPATH command. The nasty de-
tails of this exercise are omitted since they are not relevant for this paper. We show
only the structure of program which is similar to the previous exercises.

state == (database, memory)

command == state -> (output, state)

memory == [(identifier, value)]

identifier == [char]

database == (schema, [record])

schema ::= Recordtype recordtype [identifier] [schema]

recordtype == [char]

record == (recordtype, [value])

cond :: expression -> [command] -> [command] -> command

cond e then else (database, memory)

 = exec then (database, memory), if result = Bool True

 = exec else (database, memory), if result = Bool False

 = (nobool, (database, memory)), otherwise

 where result = evaluate memory e

 nobool = "cond: " ++ show e ++ "not a boolean.\n"

while :: expression -> [command] -> command

while expr body (db, mem)

 = ("", (db, mem)) , if result = Bool False

 = exec (body++[while expr body]) (db, mem), if result = Bool True

 = (nobool,(db, mem)) , otherwise

 where result = evaluate mem expr

Functional Programming in a Basic Database Course (FPLE'95) 12

 nobool = "while: " ++ show result ++ "is not a boolean.\n"

As a next step the students write some imperative programs to obtain the some infor-
mation from a database given as example. These programs can be interpreted by the
Miranda program of the first part of this exercise.

6. Reactions of the Students

At the start of the course the students are rather sceptical about functional program-
ming. A typical quote: “In Pascal I write an equivalent program in 10% of the time”.
During the course this attitude to functional programming changes completely. At the
end of the course only a small minority (less than 10%) of the students indicates that
they still prefer an imperative programming language for the kind of exercises in this
course.

At the end of the course there is a wide spectrum of opinions on functional pro-
gramming among the students. Some quotes are used to illustrate this:
• “Functional programming is too difficult for me. Too much is happening in one

line.”
• “After you have written some useful function it turns out to be in the standard en-

vironment.”
• “Contrary to Pascal I have to think before I start programming.”
• “Functional programming gives the practical part of this course additional value.”
• “Why haven't you told this a long time ago?”
There opinion about Miranda is a bit ambivalent. On one hand they agree that it is a
simple language with a nice and rather intuitive syntax. On the other hand they com-
plain about the error messages (especially concerning type errors) and that it is slow.
Another drawback is that they cannot run it on their PC at home.

7. Discussion

This paper shows how functional programming is used in an introductory database
course. After writing a preliminary program in a functional language the students make
four exercises related to databases: an ad-hoc database, an interpreter for relational al-
gebra, an implementation of a sub-set of SQL and a hierarchical database. Some
queries have to be written using each of these query languages.

The described approach is successful. The results on the topics of the programming
exercises are much better in the exams. Especially the students' ability to write queries
and the understanding of query evaluation is considerably improved. This is clearly
visible in the parts of the written examination that test the students' ability to write
queries in various languages. It is also clear that the students have a better understand-
ing of the internal organisation of a DBMS.

Even for students who had no experience with functional programming it was pos-
sible to gain useful training in the database field by writing functional programs. As a

Functional Programming in a Basic Database Course (FPLE'95) 13

matter of fact most of the students prefer the functional language in favour of the im-
perative languages they know.

A number of students have recorded the time spent on the exercises on a day by day
basis. At an average they spent 40 hours to complete all implementation exercises.
Considering that these are all newcomers in functional programming this shows that
the students were able to do some useful work for a database course in a limited
amount of time. It is important to mention that the students do not become full
fledged functional programmers by making these exercises. We expect that the stu-
dents will learn more about the database topics when they had some previous training
in functional programming.

The given set of exercises has many possibilities for extensions. For example we
can add query optimisation, automatic constraint control, efficient table access or a
larger part of the SQL-language. Experienced functional programmers can implement a
larger part of the programs themselves.

The given data types to represent queries serve as a clear definition of the border
between the database system and the applications made with this system. The intro-
duction of syntax and associated parser for the implemented query languages appears
to be unnecessary and unwanted.

References

Diller, A.: Z, An Introduction to Formal Methods, Second edition, Wiley, ISBN
0-471-92973-0, 1994.

Elmasri, Navathe: Fundamentals of database systems, second edition, Benjamin
Cummings, ISBN 0-8053-1748-1, 1994.

Fraenkel, A.A.: Zu den Grundlagen der Cantor-Zermeloschen Mengelehre. Mathe-
matische annalen, 86, pp 230-237, 1922.

Jones, M.P.: Gofer. 2.30 release notes, 1994.
Jones, M.P.: A system of constructor classes: overloading and implicit higher-order

polymorphism. in: Proceedings FPCA 93, 1993.
Melton, J., Simon, A.R.: Understanding the new SQL: a complete guide. Morgan

Kaufmann Publishers, ISBN 1-55860-245-3, 1993
Turner, D.A.: Miranda: a non-strict functional language with polymorphic types.

LNCS 201, pp 1-16, 1985.
Wadler, P.: The essence of functional programming. In: Proceedings of the 19th an-

nual symposium on Principles of Programming Languages, pp 1-14, 1992.
Zermelo, E.: Untersuchungnen über die Grundlagen der Mengelehre. International

Bibliography, Information and Documentation, 65, pp 261-281, 1908.

Functional Programming in a Basic Database Course (FPLE'95) 14

Appendix A: Course Description

In order to ease the comparison of the courses discussed in this proceedings, we sup-
ply a course description in the format proposed by the program committee.

Title of the Course

Databases and File organisation.

Aims of the Course

The goal of the course is to make students aware of the reasons of existence for
database management systems and to give a firm introduction to relational databases.
We cover the range from high level modelling (ER, EER, OO) to file organisation.
The design of relational schemas and the query languages algebra, calculus and SQL
are treated. Also the hierarchical and network model are discussed briefly.

Intended kind of students.

The course is intended for second year computer science students. Usually there is
also a small number of students from mathematics or physics visiting the course.

Prerequisites for the course

Students are expected to have some knowledge of imperative programming, data struc-
tures like B-trees and hash-functions. None of these topics are very heavily used.
Imperative programming is used to show how embedded query languages look. We
indicate that it might be very useful to use some tree or hash-function to find a spe-
cific record in a relation.

Text book used

For the database part of the course we use Fundamentals of database systems by
Elmasri and Navathe [Elmasri 94]. As introduction in functional programming we use
Miranda: a non-strict functional language with polymorphic types [Turner 85] and
the Miranda on-line manual. We supply copies of the overhead sheets used as hand-
out. These sheets contain many examples of the use of functional programming lan-
guages in a database context. In the current iteration of the course we supplied addi-
tional material about functional programming.

Duration of the course

The duration of this course is 12 weeks. The average student is expected to spend 160
hours in total on this course. In the current version of the curriculum this is increased
to 200 hours.

Functional Programming in a Basic Database Course (FPLE'95) 15

There are two lecture hours and two hours of tutorial per week. The maximal time
that can be spent on preparation for the examination is about 40 hours. This leaves at
least six hours to be spent on home work. In the new curriculum this is nine hours.

Assessment of the students

Students are assessed by a written examination. In previous versions of this course a
satisfactory mark of the programming exercises was a prerequisite. In the current ver-
sion the lab assignments (programming exercises and ER-design etc.) determine 33%
of the total assessment.

