
Regular Description of Context-Free

Graph Languages

Joost Engelfriet

?

and Vincent van Oostrom

??

Department of Computer Science, Leiden University

P.O.Box 9512, 2300 RA Leiden, The Netherlands

email: engelfri@wi.leidenuniv.nl

Abstract. A set of (labeled) graphs can be de�ned by a regular tree

language and one regular string language for each possible edge label, as

follows. For each tree t from the regular tree language the graph gr(t)

has the same nodes as t (with the same labels), and there is an edge

with label 
 from node x to node y if the string of labels of the nodes on

the shortest path from x to y in t belongs to the regular string language

for 
. Slightly generalizing this de�nition scheme, we allow gr(t) to have

only those nodes of t that have certain labels, and we allow a relabeling

of these nodes. It is shown that in this way exactly the class of C-edNCE

graph languages (generated by C-edNCE graph grammars) is obtained,

one of the largest known classes of context-free graph languages.

1 Introduction

There are many kinds of context-free graph grammars (see, e.g., [ENRR, EKR]).

Some are node rewriting and others are edge rewriting. In both cases a produc-

tion of the grammar is of the form X ! (D;C). Application of such a production

to a labeled graph H consists of removing a node (or edge) labeled X from H ,

replacing it by the graph D, and connecting D to the remainder of H accord-

ing to the embedding procedure C. Since these grammars are context-free in

the sense that one node (or edge) is replaced, their derivations can be mod-

eled by derivation trees, as in the case of context-free grammars for strings.

However (in particular for certain types of node rewriting grammars), the gram-

mar may still be context-sensitive in the sense that the (edges of the) graph

generated according to the derivation tree may depend on the order in which

the productions are applied. A graph grammar that does not su�er from this

(quite disastrous) context-sensitivity, is said to be con
uent (or to have the �-

nite Church-Rosser property), see [Cou1] for a uniform treatment. Thus, for a

con
uent graph grammar G, each derivation tree of G yields a unique graph

?

The �rst author was supported by ESPRIT BRWG No.7183 COMPUGRAPH II.

??

The present address of the second author is: Faculty of Mathematics and Computer

Science, Vrije Universiteit, de Boelelaan 1081a, 1081 HV Amsterdam, The Nether-

lands, email: oostrom@cs.vu.nl

1



in the graph language generated by G. Due to this close relationship to deriva-

tion trees, the generated graph language can be described in terms of a reg-

ular tree language (the set of derivation trees) and a �nite number of regular

string languages (to simulate the embedding procedure). We will show this for

the particular case of the (node rewriting) edNCE graph grammars, studied in

[Kau, Bra1, Bra2, ELR1, ELR2, Schu, ELW, EL1, EL2, ER1, CER]. Thus, we

de�ne the notion of a regular path description of a graph language (mainly deter-

mined by a regular tree language and a �nite number of regular string languages)

and prove that regular path descriptions have the same power as the con
uent

edNCE grammars (or C-edNCE grammars). The idea of using regular (tree and

string) languages for the description of graphs was introduced in [Wel] and in-

vestigated in [ELW], for special cases of the C-edNCE grammar.

The structure of this paper is as follows. In Section 2 we de�ne the edNCE

grammar, and in particular the con
uent edNCE grammar. In Section 3 we in-

troduce the notion of a regular path description of a graph language, generalizing

the regular path descriptions of [Wel, ELW]. In Sections 2 and 3 also some ex-

amples and some easy lemmas can be found. Section 4 contains the proof of the

main result: the characterization of the C-edNCE graph languages by regular

path descriptions. We use this result to show that the boundary edNCE gram-

mars (or B-edNCE grammars, cf., e.g., [RW, ELW]) have less generating power

than the C-edNCE grammars. In Section 5 we consider a number of special cases

of the main result. In particular we de�ne special types of regular path descrip-

tions that characterize the boundary, apex, and linear edNCE graph languages.

In Section 6 we investigate the string generating power of C-edNCE grammars:

we view a graph grammar as a generator of all the strings that label directed

paths in the generated graphs. We use the main result to show that the class of

string languages generated by C-edNCE grammars in this way, equals the class

of output languages of nondeterministic tree-walking transducers. This implies

that this string generating method is more powerful than the one of [EH1] (that

gives the output languages of deterministic tree-walking transducers).

The main result of this paper strengthens our belief that the class of C-edNCE

graph languages (which seems to be the largest known class of graph languages

that can be generated by context-free graph grammars, where `context-free' is

taken in the sense of [Cou1]) is a robust class of context-free graph languages:

it can be characterized in several di�erent ways. Other characterizations can be

found in [CER] (by handle rewriting hypergraph grammars) and in [Oos, Eng2]

(by monadic second order logic).

The results of this paper were established in 1988, and presented in [Oos]

and in [Eng1]. The only added result is the characterization of apex edNCE

languages (Theorem 26), which uses [EHL]. More recent work on the class of

C-edNCE graph languages (or its subclasses) can be found in, e.g., [Bra3, Cou2,

Cou3, Eng2, Eng4, SW1, SW2, KL]. For a survey, see [ER2].

The reader is assumed to be familiar with the basic concepts of formal lan-

guage theory (see, e.g. [HU]), and of regular tree languages (see, e.g., [GS]).

2



2 Con
uent edNCE Graph Grammars

In this subsection we give formal de�nitions for the edNCE graph grammars,

and in particular for the con
uent edNCE (C-edNCE) graph grammars. These

grammars generate directed graphs with labeled nodes and labeled edges.

Let � be an alphabet of node labels and � an alphabet of edge labels. A

graph over � and � is a tuple H = (V;E; �), where V is the �nite set of nodes,

E � f(v; 
; w) j v; w 2 V; v 6= w; 
 2 �g is the set of edges, and � : V ! � is

the node labeling function. The components of H are also denoted as V

H

, E

H

,

and �

H

, respectively. Thus, we consider directed graphs without loops; multiple

edges between the same pair of nodes are allowed, but they must have di�erent

labels. A graph is undirected if for every (v; 
; w) 2 E, also (w; 
; v) 2 E. Graphs

with unlabeled nodes and/or edges can be modeled by taking � and/or � to be

a singleton, respectively.

The set of all graphs over � and � is denoted GR

�;�

. A subset of GR

�;�

is

called a graph language.

As usual, two graphs H and K are disjoint if V

H

\ V

K

= ;. Also as usual,

H and K are isomorphic if there is a bijection f : V

H

! V

K

such that E

K

=

f(f(v); 
; f(w)) j (v; 
; w) 2 E

H

g and, for all v 2 V

H

, �

K

(f(v)) = �

H

(v). The

reader is assumed to be familiar with the way in which concrete graphs are used

as representatives of abstract graphs, which are equivalence classes of concrete

graphs with respect to isomorphism.We are usually interested in abstract graphs,

but mostly discuss concrete ones. For instance, whereas a graph language is

de�ned to be a set of concrete graphs, we usually view it as a set of abstract

graphs.

After these preliminaries, we turn to the de�nition of edNCE graph gram-

mar. The name of these grammars can be explained as follows. NCE stands for

neighbourhood controlled embedding, the d stands for \directed graphs", and the

e means that not only the nodes but also the edges of the graphs are labeled; in

particular, the e stresses the fact that the edNCE grammar allows for dynamic

edge relabeling. Thus, edNCE grammars are graph grammars with neighbour-

hood controlled embedding and dynamic edge relabeling. They were introduced in

[Nag1, Nag2, Nag3] (as depth-1 context-free graph grammars), and studied in,

e.g., [Kau, Bra1, Bra2, Schu]. They were also investigated as generalizations of

NLC graph grammars in, e.g., [EL1, EL2, ELW].

De�nition 1. An edNCE grammar is a tuple G = (�;�; �;
; P; S) where �

is the alphabet of node labels, � � � is the alphabet of terminal node labels,

� is the alphabet of edge labels, 
 � � is the alphabet of �nal edge labels,

P is the �nite set of productions, and S 2 � � � is the initial nonterminal.

A production is of the form X ! (D;C) with X 2 � � �, D 2 GR

�;�

, and

C � � � � � � � V

D

� fin; outg. ut

Elements of � � � are called nonterminal node labels, and elements of � �


 non�nal edge labels. A node with a terminal or nonterminal label is said

to be a terminal or nonterminal node, respectively, and similarly for �nal and

non�nal edges. For a production p : X ! (D;C), X is the left-hand side of

3



p, D is the right-hand side of p, and C is its connection relation. We write

lhs(p) = X , rhs(p) = D, and con(p) = C. Each element (�; �; 
; x; d) of C (with

� 2 �, �; 
 2 � , x 2 V

H

, and d 2 fin; outg) is a connection instruction of

p. To improve readability, a connection instruction (�; �; 
; x; d) will always be

written as (�; �=
; x; d). In the literature the elements of a connection instruction

are often listed in another order. Two productions X

1

! (D

1

; C

1

) and X

2

!

(D

2

; C

2

) are called isomorphic if X

1

= X

2

and there is an isomorphism f from

D

1

to D

2

such that C

2

= f(�; �=
; f(x); d) j (�; �=
; x; d) 2 C

1

g. We will assume

that P does not contain distinct isomorphic productions. By copy(P ) we denote

the (in�nite) set of all productions that are isomorphic to a production in P ; an

element of copy(P ) will be called a production copy of G.

The process of rewriting in an edNCE grammar is de�ned through the appli-

cation of productions (or rather, production copies), in the usual way. Informally,

a rewriting step according to a production p : X ! (D;C) consists of removing

a node v labeled X (the \mother node") from the given \host"-graph H , substi-

tuting D (the \daughter graph") in its place, and connecting D to the remainder

of H in a way speci�ed by the connection instructions in C. Together with v, all

edges incident with v are removed too. A connection instruction (�; �=
; x; out)

of C means that if there was a �-labeled edge from the mother node v to a node

w with label � in H , then the connecting process will establish a 
-labeled edge

from x to w. And similarly for `in' instead of `out', where `in' refers to incoming

edges of v and `out' to outgoing edges of v. Note in particular that the edge

label is changed from � into 
 (which explains the notation �=
). The formal

de�nition is as follows.

De�nition 2. Let G = (�;�; �;
; P; S) be an edNCE grammar. Let H and

H

0

be graphs in GR

�;�

, let v 2 V

H

, and let p = X ! (D;C) be a production

copy of G such that D and H are disjoint. Then we write H )

v;p

H

0

, or just

H )

p

H

0

or H ) H

0

, if �

H

(v) = X and H

0

is the graph (V;E; �) in GR

�;�

such that

V = (V

H

� fvg) [ V

D

;

E = f(x; 
; y) 2 E

H

j x 6= v; y 6= vg [ E

D

[ f(w; 
; x) j 9� 2 � : (w; �; v) 2 E

H

; (�

H

(w); �=
; x; in) 2 Cg

[ f(x; 
; w) j 9� 2 � : (v; �; w) 2 E

H

; (�

H

(w); �=
; x; out) 2 Cg;

�(x) = �

H

(x) if x 2 V

H

� fvg; and �(x) = �

D

(x) if x 2 V

D

:

H )

v;p

H

0

is called a derivation step, and a sequence of such derivation steps is

called a derivation. A derivation

H

0

)

v

1

;p

1

H

1

)

v

2

;p

2

� � � )

v

n

;p

n

H

n

;

n � 0, is creative if the graphs H

0

and rhs(p

i

), 1 � i � n, are mutually disjoint.

We will restrict ourselves to creative derivations. Thus, we write H )

�

H

0

if

there is a creative derivation as above, with H

0

= H and H

n

= H

0

. Let sn(S; z)

denote the graph with a single S-labeled node z, and no edges. A sentential form

4



of G is a graph H such that sn(S; z))

�

H for some z. The set of all sentential

forms of G is denoted SF (G). The graph language generated by G is

L(G) = fH 2 GR

�;


j sn(S; z))

�

H for some zg:

ut

It is not di�cult to show that if H and H

0

are isomorphic and sn(S; z) )

�

H ,

then sn(S; z

0

))

�

H

0

for some z

0

. Thus, L(G) is closed under taking isomorphic

copies.

An edNCE grammar is nonblocking if L(G) = fH 2 GR

�;�

j sn(S; z) )

�

H for some zg. This means that if a sentential form H has terminal nodes only

(i.e., cannot be rewritten any more), then all its edges are �nal. Note that we do

not assume that edNCE grammars are nonblocking (as opposed to [Eng1, Eng2]).

Example 1. To draw a production X ! (D;C) of an edNCE grammar, we draw

the graph D in the usual fashion, with nodes represented by dots and edges

by arrows, and we add C to D in the following way: a connection instruction

(�; �=
; x; in) 2 C is represented by a dashed arrow from a symbol � to (the dot

representing) x, with label �=
; for the connection instruction (�; �=
; x; out)

the direction of the arrow is reversed.

(1) As a �rst example consider the edNCE grammar G

1

= (�;�; �;
; P; S)

with � = fS;X; i; n; fg, � = fi; n; fg, � = f
; �; �; �; �g, 
 = f�; �; �; �g,

and P consists of the three productions drawn in Fig. 1. Thus, production p

3

is

X ! (D;C) with V

D

= fx; yg, E

D

= f(x; �; y)g, �

D

(x) = n, �

D

(y) = f , and

C = f(n; 
=�; x; in); (n; 
=�; y; out)g. L(G

1

) consists of all \ladders" of the form

shown in Fig. 2 (with at least six nodes). Note that �, �, �, � intuitively stand

for `right', `left', `down', and `up', respectively.

(2) As another example, consider the edNCE grammarG

2

= (�;�; �;
; P; S)

with � = fS;X; ng, � = fng, � = 
 = f�; �; �g, and P consists of the three

productions p

a

, p

b

, p

c

shown in Fig. 3. A dashed arrow from or to `X;n' repre-

sents two connection instructions, one for X and one for n, in the obvious way.

G

2

generates all rooted binary trees with �-labeled edges from each parent to

its children, with additional �-labeled edges from each leaf to the root, and with

additional �-labeled edges that chain the leaves of the tree. An example of such

a \tree-like" graph is given in Fig. 4, except that the labels a; b

l

; b

r

; c

l

; c

r

of all

nodes should be replaced by n. Note that, in a derivation of G

2

, the �-labeled

edges to the root are created by production p

a

, are \passed" from nonterminal

node to nonterminal node by production p

b

, and are �nally attached to the leaves

by production p

c

.

Let G

0

2

be the edNCE grammar that is obtained from G

2

by erasing all edges

and connection instructions that involve �. It should be clear that L(G

0

2

) consists

of all rooted binary trees with additional edges from the leaves to the root (i.e.,

all graphs of L(G

2

) without their �-labeled edges).

(3) As a third, and �nal example, consider the edNCE grammar G

3

=

(�;�; �;
; P; S) with � = fS; ng, � = fng, � = 
 = f
g, and P consists

of the three productions p

a

, p

b

, p

n

shown in Fig. 5. An undirected edge between

5



�

S !

n

�

�




X




n

�

i

n

p

1

=

X !p

2

=

n

�





=�




n

n


=�

X

X !p

3

=

n


=�

n


=�

�

n

n

f

Fig. 1. Productions of G

1

.

� �

�

�

n n �

�

n �

�

f

� �

n n ni

Fig. 2. A \ladder" generated by G

1

.

x and y stands for two directed edges, one from x to y and one from y to x

(and similarly for connection instructions). L(G

3

) is the set of all cographs (see

[CLS]). It is the smallest set of (unlabeled, undirected) graphs that contains the

one-node graph and is closed under the operations of join and disjoint union.

The one-node graph corresponds to production p

n

, the join operation (i.e., tak-

ing the disjoint union of two graphs, and joining every node of the one graph

with every node of the other graph) corresponds to production p

a

, and the op-

eration of disjoint union corresponds to production p

b

. An example of a cograph

is the square: it is the join of two discrete graphs, each of which is the disjoint

6



�=�

p

b

= X !

p

c

= X !

X;n

�=�

n

X

�

�

�=�

n

X; n

X; n

�=�

�=�

n

X; n

p

a

= S !

X

�

�

�

X

n

n

n

X

�

�=�

�=�

n n

� �

�=� �=�

Fig. 3. Productions of G

2

.

�

�

�

�

�

b

r

b

l

c

r

c

l

�

c

l

�

�

c

r

�

�

a

� �

�

Fig. 4. A \tree-like" graph generated by G

2

(where all node labels should be n).

7



p

a

= S !

p

b

= S !

p

n

= S !

S


=
 
=


S; n S; n

S




S

S; nS; n

S


=

=


S; n

n


=


Fig. 5. Productions of G

3

.

union of two one-node graphs. ut

The edNCE grammar has certain undesirable non-context-free properties. This

is caused by the fact that it need not be con
uent, i.e., that the result of a

derivation may depend on the order in which the productions are applied. This

problem turns up in sentential forms that have edges between two nonterminal

nodes, as in the following example.

Example 2. Consider an edNCE grammar G = (�;�; �;
; P; S) with � =

fS;A;B; a; bg, � = fa; bg, � = f�; �; 
; 


0

g, 
 = f
; 


0

g, and the following

three productions X ! (D;C):

p

S

: X = S; V

D

= fu; vg; E

D

= f(u; �; v)g; �

D

(u) = A; �

D

(v) = B; and C = ;;

p

A

: X = A; V

D

= fxg; E

D

= ;; �

D

(x) = a; and

C = f(B;�=�; x; out); (b; �=


0

; x; out)g;

p

B

: X = B; V

D

= fyg; E

D

= ;; �

D

(y) = b; and

C = f(A;�=�; y; in); (a; �=
; y; in)g:

The application of productions p

S

, p

A

, p

B

(in that order), gives a derivation

sn(S; z) )

z;p

S

H )

u;p

A

H

1

)

v;p

B

H

12

, where H is rhs(p

S

), and H

12

is the

graph with two nodes x and y, labeled a and b, respectively, and one edge

(x; 
; y). However, interchanging the application of p

A

and p

B

to nodes u and v,

respectively, gives a derivation sn(S; z) )

z;p

S

H )

v;p

B

H

2

)

u;p

A

H

21

, where

8



H

21

is the same as H

12

except that its edge is (x; 


0

; y). Since the order of appli-

cation of productions results in two di�erent graphs H

12

and H

21

, the grammar

is not con
uent. ut

In the literature it is customary to give a dynamic de�nition of con
uence (see,

e.g., [Kau, Schu, Bra2, Cou1, Eng1, Eng2, CER]. Here we propose a static one

that can easily be checked on the embedding relations of the productions of the

grammar (cf. De�nition 5.1 of [EJKR] and Lemma 3.11 of [Cou1]).

De�nition 3. An edNCE grammar G = (�;�; �;
; P; S) is con
uent, or a

C-edNCE grammar, if for all productions X

1

! (D

1

; C

1

) and X

2

! (D

2

; C

2

) in

P , all nodes x

1

2 V

D

1

and x

2

2 V

D

2

, and all edge labels �; 
 2 � , the following

equivalence holds:

9� 2 � : (X

2

; �=�; x

1

; out) 2 C

1

and (�

D

1

(x

1

); �=
; x

2

; in) 2 C

2

()

9� 2 � : (X

1

; �=�; x

2

; in) 2 C

2

and (�

D

2

(x

2

); �=
; x

1

; out) 2 C

1

. ut

By C-edNCE we denote the class of graph languages generated by C-edNCE

grammars.

All grammars discussed in Example 1 are C-edNCE grammars. Many other

sets of graphs with \tree-like" graph theoretic properties can be de�ned by C-

edNCE grammars. For example series-parallel graphs, transitive VSP graphs,

complete bipartite graphs, (maximal) outerplanar graphs, edge complements of

trees, and for �xed k, k-trees, graphs of treewidth � k, pathwidth � k, cutwidth

� k, bandwidth � k, cyclic bandwidth � k, and topological bandwidth � k (see,

e.g., [RW, EL1]).

A symbolic picture of De�nition 3 is given in Fig. 6. Intuitively the de�nition

means that if the two productions are applied to a graph with a single edge

(v

1

; �; v

2

), where v

i

is labeled X

i

, then the same edges (x

1

; 
; x

2

) are established

between nodes of their right-hand sides, independent of the order in which the

productions are applied. From this intuition the following characterization of

con
uence easily follows: the result of a derivation does not depend on the order

in which the productions are applied.

�

X

1

x

1

X

2

x

2

�




�

0

Fig. 6. Con
uence.

9



Proposition4. An edNCE grammar G = (�;�; �;
; P; S) is con
uent if and

only if the following holds for every graph H 2 GR

�;�

:

if H )

v

1

;p

1

H

1

)

v

2

;p

2

H

12

and H )

v

2

;p

2

H

2

)

v

1

;p

1

H

21

are (creative) deriva-

tions of G with v

1

; v

2

2 V

H

and v

1

6= v

2

, then H

12

= H

21

.

The de�nition of con
uence from the literature (where it is also called the �nite

Church-Rosser, or fCR, property) is exactly the same as the previous proposition,

except that H is restricted to be a sentential form of G; let us call this \dynamic

con
uence". Although there are more dynamically con
uent than con
uent ed-

NCE grammars, it can be shown that they generate the same class C-edNCE of

graph languages (see [ER2]). Although dynamic con
uence is a decidable prop-

erty of edNCE grammars (see [Kau]), the advantage of our notion of con
uence

is that it is completely static.

It is shown in [SW1] that for every C-edNCE grammar an equivalent non-

blocking C-edNCE grammar can be constructed. This fact will not be used, but

will be a consequence of our proofs (cf. the discussion after Theorem 21).

Several natural subclasses of the C-edNCE grammars have been investigated

in the literature. We will consider three of them. Whenever we de�ne an X-

edNCE grammar for some X, X-edNCE will denote the class of graph languages

generated by X-edNCE grammars.

An edNCE grammarG = (�;�; �;
; P; S) is boundary, or a B-edNCE gram-

mar, if, for every production X ! (D;C), D does not contain edges between

nonterminal nodes, and C does not contain connection instructions (�; �=
; x; d)

where � is nonterminal. Obviously, the second condition implies that bound-

ary grammars are con
uent. A B-edNCE grammar G = (�;�; �;
; P; S) is

apex, or an A-edNCE grammar, if for every production X ! (D;C) and every

connection instruction (�; �=
; x; d) 2 C, x and � are terminal. The bound-

ary restriction on graph grammars was introduced in [RW]; the apex restriction

was �rst considered in [ELR1]. An edNCE grammar G = (�;�; �;
; P; S) is

linear, or a LIN-edNCE grammar, if for every production X ! (D;C), D has at

most one nonterminal node. It is easy to see that LIN-edNCE � B-edNCE. It is

shown in [EL1] that A-edNCE and LIN-edNCE are incomparable subclasses of

B-edNCE. The class B-edNCE also contains the B-NLC languages of [RW], and

(as shown, e.g., in [ER1]) the hyperedge replacement (HR) graph languages of

[BC, HK, Hab].

GrammarG

1

from Example 1 is both linear and apex. GrammarG

0

2

is bound-

ary, but not linear or apex. Grammars G

2

and G

3

are not boundary.

The class A-edNCE can be characterized within the class C-edNCE: there

is a simple condition on a graph language L 2 C-edNCE that expresses mem-

bership of L in A-edNCE, viz. that L is of bounded degree (i.e., that there is a

number k such that all nodes in all graphs of L have degree at most k). This

characterization was shown in [EHL] (see also [Eng3]).

Proposition5. For every graph language L 2 C-edNCE,

L 2 A-edNCE if and only if L is of bounded degree.

The class C-edNCE of graph languages generated by C-edNCE grammars has a

10



large number of nice closure properties. Here we need a very simple one: closure

under edge relabeling. Let � be an edge relabeling, i.e., a mapping � : 
 ! 


0

,

where 
 and 


0

are edge label alphabets. For a graph H 2 GR

�;


we de�ne

�(H) 2 GR

�;


0

to be the graph (V

H

; E; �

H

) with E = f(v; �(
); w) j (v; 
; w) 2

E

H

g.

Proposition 6. C-edNCE is closed under edge relabelings, i.e., if � is an edge

relabeling and L 2 C-edNCE, then �(L) 2 C-edNCE. The classes B-edNCE,

A-edNCE, and LIN-edNCE are also closed under edge relabelings.

Proof. Let G = (�;�; �;
; P; S) be a C-edNCE grammar, and let � : 
 ! 


0

be an edge relabeling. It can be assumed that � \


0

= ;.

For a graph D 2 GR

�;�

, �(D) 2 GR

�;�[


0

is de�ned to be the graph

(V

D

; E; �

D

) such that

E = f(v; �(
); w) j (v; 
; w) 2 E

D

; �

D

(v) 2 �; and 
 2 
; and �

D

(w) 2 �g

[ f(v; 
; w) 2 E

D

j �

D

(v) 2 � ��; or 
 2 � �
; or �

D

(w) 2 � ��g:

Thus, only the �nal edges between terminal nodes are relabeled. Similarly, for a

connection relation C � � � � � � � V

D

� fin; outg, we de�ne the connection

relation �(C) to be

f(�; �=�(
); x; d) j (�; �=
; x; d) 2 C; �

D

(x) 2 �; and 
 2 
; and � 2 �g

[ f(�; �=
; x; d) 2 C j �

D

(x) 2 � ��; or 
 2 � �
; or � 2 � ��g:

We now construct the edNCE grammar G

0

= (�;�; � [ 


0

; 


0

; P

0

; S) with

P

0

= fX ! (�(D); �(C)) j X ! (D;C) is in Pg. Using the con
uence of G, it

is easy to verify that G

0

is still con
uent (in De�nition 3, �rst consider the case

that x

1

and x

2

are terminal and 
 is �nal, and then the remaining case). Clearly,

the boundary, apex, and linear properties are preserved. It is also easy to see that

the derivations of G

0

starting with sn(S; z) are of the form sn(S; z)) �(H

1

))

� � � ) �(H

n

) where sn(S; z) ) H

1

) � � � ) H

n

is a derivation of G. Formally

this can be proved by induction on n. It shows that L(G

0

) = �(L(G)). ut

3 Regular Path Descriptions

As observed before, all graphs generated by a C-edNCE grammar are \tree-

like". An alternative, grammar independent, way of describing a set of \tree-like"

graphsH is by taking a tree t from some regular tree language, de�ning the nodes

of H as a subset of the vertices of t, and de�ning an edge between nodes u and

v of H if the string of vertex labels on the shortest (undirected) path between u

and v in t belongs to some regular string language. Such a description of a graph

language will be called a regular path description. This idea was introduced in

[Wel], for linear graph grammars, and investigated for LIN-eNCE and B-eNCE

grammars in [ELW] (where the missing d means that the generated graphs are

undirected). Note that the nodes of trees will also be called `vertices', in order

not to confuse them with the nodes of the graphs involved.

11



Let us �rst de�ne the regular tree languages. The following de�nition of a

regular tree grammar as a special type of edNCE grammar, is equivalent (in

generating power) with the usual one in tree language theory (see [GS]). The

rooted, ordered trees from tree language theory will be viewed here (as usual)

as a special type of graph: each vertex of the tree has a directed edge to each

of its k children, k � 0, and the order of the children is indicated by using the

numbers 1; : : : ; k to label these edges.

As usual, a ranked alphabet is an alphabet � together with a mapping rank :

�! f0; 1; 2; : : :g. By m

�

we denote the maximal number rank(�), � 2 �.

De�nition 7. An edNCE grammarG = (�;�; �;
; P; S) is a regular tree gram-

mar, or a REGT grammar, if � is a ranked alphabet, � = 
 = f1; : : : ;m

�

g,

and for every production X ! (D;C) in P :

V

D

= fx

0

; x

1

; : : : ; x

k

g for some k � 0,

�

D

(x

0

) is in � and has rank k, and, for every 1 � i � k,

either �

D

(x

i

) is in � �� or �

D

(x

i

) is in � and has rank 0,

E

D

= f(x

0

; i; x

i

) j 1 � i � kg, and

C = f(�; i=i; x

0

; in) j i 2 �; � 2 �g.

G is in normal form if �

D

(x

i

) 2 � �� for all 1 � i � k. ut

Since � and 
 are uniquely determined by �, we will specify a REGT grammar

as (�;�; P; S).

Thus, for a production p of a regular tree grammar G, rhs(p) consists of a

(terminal) parent x

0

, and k (terminal or nonterminal) children x

1

; : : : ; x

k

. Edges

lead from the parent to each child, and the children are ordered by numbering

their edges from 1 to k. Such a production X ! (D;C) can (modulo isomor-

phism) be denoted uniquely as X ! ��

1

� � � �

k

with � = �

D

(x

0

) and �

i

= �

D

(x

i

)

for 1 � i � k. Every sentential form of G is a tree, of which all internal ver-

tices are terminal; thus, only leaves are rewritten (into an internal vertex with

k children).

A graph language generated by a REGT grammar is a regular tree language.

It is easy to see (and well known), that every regular tree language can be

generated by a regular tree grammar in normal form. For a ranked alphabet

�, we denote by T

�

the set of all trees over �, i.e., the regular tree language

generated by the REGT grammar with one nonterminal S and all productions

S ! �S

k

for every � 2 �, where k = rank(�).

It is obvious that every REGT grammar is a con
uent edNCE grammar,

because it is even an A-edNCE grammar. Hence every regular tree language is

an A-edNCE graph language.

We now turn to the regular path description of graph languages. An essential

concept to be used is the string of labels on the shortest (undirected) path from

one vertex u of a tree to another vertex v. Clearly, such a path �rst ascends from

u to the least common ancestor of u and v, and then descends to v. In the string

we indicate this change of direction by barring the label of the least common

ancestor.

12



De�nition 8. Let � be a ranked alphabet, and let � = f� j � 2 �g. For t 2 T

�

and u; v 2 V

t

, we de�ne path

t

(u; v) 2 �

�

��

�

as follows. Let z 2 V

t

be the least

common ancestor of u and v in t. Let u

1

; : : : ; u

m

(m � 1) and v

1

; : : : ; v

n

(n � 1)

be the vertices on the directed paths in t from z to u and from z to v, respectively

(thus, z = u

1

= v

1

, u = u

m

, and v = v

n

). Then

path

t

(u; v) = �

t

(u

m

) � � ��

t

(u

2

)�

t

(z)�

t

(v

2

) � � ��

t

(v

n

):

ut

We are now ready for the de�nition of a regular path description.

De�nition 9. A regular path description is a tuple R = (�;�;
; T; h;W ),

where � is a ranked alphabet, � and 
 are alphabets (of node and edge labels,

respectively), T � T

�

is a regular tree language, h is a partial function from �

to �, and W is a mapping from 
 to the class of regular string languages, such

that, for every 
 2 
, W (
) � �

�

��

�

.

The graph language described by R is L(R) = fgr

R

(t) j t 2 Tg, where gr

R

(t)

is the graph H 2 GR

�;


such that

V

H

is the set of vertices v of t for which �

t

(v) is in the domain of h,

�

H

(v) = h(�

t

(v)) for v 2 V

H

, and

E

H

is the set of all edges (u; 
; v) with path

t

(u; v) 2W (
). ut

Note that L(R) � GR

�;


. Note that h is used both to determine which vertices

of the tree t are nodes of the graph gr

R

(t), and to de�ne their labels in that

graph (on the basis of their labels in the tree). Note that for each edge label 
,

W (
) is the regular string language that de�nes the graph edges with label 
.

Note �nally that L(R) is closed under taking isomorphic copies (because T is).

Let RPD denote the class of graph languages that are described by regular

path descriptions. The main result of this paper is that C-edNCE = RPD.

We now de�ne some natural subclasses X-RPD of RPD, by restricting the

regular path descriptions to be of type X.

Let B-RPD be the subclass of RPD obtained by restricting every W (
) to

be a subset of �

�

�[��

�

. This means, for a regular path description of type B,

that graph edges are only established between tree vertices of which one is a

descendant of the other. We will show that B-edNCE = B-RPD (essentially the

same result is shown in Theorem 31 of [ELW] for undirected graphs).

Let A-RPD be the subclass of RPD obtained by restricting every W (
) to

be �nite. Thus, for a regular path description of type A, graph edges can only

be established between tree vertices that are at a bounded distance from each

other. We will show that A-edNCE = A-RPD.

Let LIN-RPD be the subclass of RPD obtained by restricting the symbols

of the ranked alphabet � to have rank 1 or 0. This means that the trees in

the regular tree language are in fact strings. Thus, a regular path description of

type LIN uses regular string languages only. Note that, obviously, LIN-RPD �

B-RPD. We will show that LIN-edNCE = LIN-RPD (as for B, essentially the

same result for undirected graphs is shown in Theorem 32 of [ELW]).

13



Example 3. We will give regular path descriptions of the graph languages gener-

ated by the C-edNCE grammars of Example 1.

(1) The language L(G

1

) of all \ladders" can be described by the regular

path description R

1

= (�;�;
; T; h;W ) of type LIN, with � = fi; n; a; fg,

rank(i) = rank(n) = rank(a) = 1, rank(f) = 0, � = fi; n; fg, 
 = f�; �; �; �g,

T = iana(na)

�

nf (where we have written the trees as strings in pre�x notation),

h is the total function with h(i) = i, h(n) = h(a) = n, and h(f) = f , and W

is given by W (�) = fian; nang, W (�) = fna; nfg, W (�) = ffna; anag, and

W (�) = faig.

�

� � �

fi

�

a a a

� � �

n n n

� �

Fig. 7. Regular path description of a \ladder".

Note that R

1

is not only of type LIN, but also of type B and of type A. To

see how R

1

works, see Fig. 7. Assuming that a = n, this �gure represents the

graph gr

R

1

(t) of the tree t = ianananf , which is in fact the \ladder" of Fig. 2.

The tree t itself is not drawn, but is suggested as a horizontal chain (with the

root at the left, and the leaf at the right).

(2) The graph language L(G

2

) of all binary trees with additional edges is

described by the regular path description R

2

= (�;�;
; T; h;W ) with � =

fa; b

l

; b

r

; c

l

; c

r

g, rank(a) = rank(b

l

) = rank(b

r

) = 2, rank(c

l

) = rank(c

r

) = 0,

� = fng, 
 = f�; �; �g, T = L(G), where G is the regular tree grammar with

productions S ! aLR, L ! b

l

LR, R ! b

r

LR, L ! c

l

, and R ! c

r

(with

nonterminals S;L;R of which S is the initial one), h is the total function with

h(�) = n for all � 2 �, and W is de�ned by W (�) = (a[ b

l

[ b

r

)(b

l

[ b

r

[ c

l

[ c

r

),

W (�) = (c

l

[ c

r

)(b

l

[ b

r

)

�

a, and W (�) = (c

r

b

�

r

b

l

[ c

l

)(a [ b

l

[ b

r

)(b

r

b

�

l

c

l

[ c

r

).

To see how R

2

works, see Fig. 4. Taking all node labels to be n, the �gure

represents the graph gr

R

2

(t) of the tree t = ab

l

c

l

b

r

c

l

c

r

c

r

(in pre�x notation).

The tree t itself is not drawn, but equals the tree spanned by the �-labeled edges

(apart from the edge labels, which should be 1 or 2).

Note that R

2

is not of type B, A, or LIN. Removing � from 
 (and W (�)

from W ), a regular path description R

0

2

of L(G

0

2

) is obtained that is of type B

(but not of type A or LIN).

(3) The graph language L(G

3

) of all cographs is described by the regular path

description R

3

= (�;�;
; T; h;W ) with � = fa; b; ng, rank(a) = rank(b) = 2

and rank(n) = 0, � = fng, 
 = f
g, T = T

�

, h(n) = n, h(a) and h(b) are

unde�ned, and W (
) = n(a [ b)

�

a(a [ b)

�

n.

To see how R

3

works, see Fig. 8. Disregarding the dotted lines, the �gure

represents the tree t = abnnbnn (in pre�x notation), generated by G. The nodes

14



b

n

1 2

n nn




1 2 1 2

a





 


b

Fig. 8. Regular path description of a cograph.

with label n, together with the dotted (undirected) edges, form the cograph

gr

R

3

(t) (which is the square). By the de�nition of W (
), two leaves of t are

connected by an edge in gr(t) if their least common ancestor is labeled a. This

means that R

3

formalizes the usual cotree representation of cographs (see [CLS]).

In fact, the (co)trees in L(G) can be viewed as expressions, with a representing

the join operation, b disjoint union, and n the one-node graph. ut

We need the following easy closure property of RPD.

Lemma10. Let L be a graph language in RPD with L � GR

�;


.

Then L \GR

�

0

;


0

is in RPD for all �

0

� � and 


0

� 
.

A similar statement holds for B-RPD, A-RPD, and LIN-RPD.

Proof. Let L = L(R) for the regular path description R = (�;�;
; T; h;W ).

De�ne T

0

= ft 2 T

�

j gr

R

(t) 2 GR

�

0

;


0

g. Obviously, L\GR

�

0

;


0

= L(R

0

) where

R

0

= (�;�;
; T \ T

0

; h;W ). Since the regular tree languages are closed under

intersection, it su�ces to show that T

0

is regular. Now T

0

= T

1

\ T

2

where T

1

=

ft 2 T

�

j gr

R

(t) 2 GR

�

0

;


g and T

2

= ft 2 T

�

j gr

R

(t) 2 GR

�;


0

g. Clearly, T

1

is

the regular tree language T

�

0

where �

0

= f� 2 � j h(�) is unde�ned or h(�) 2

�

0

g. Also, T

2

= T

�

�

S


2
�


0

T




where T




is the set of all t 2 T

�

such that

gr

R

(t) has at least one edge with label 
. Since the regular tree languages are

closed under union and complement, it su�ces to show that T




is regular for

every 
. Clearly, T




is the set of all t 2 T

�

such that there exist u; v 2 V

t

with path

t

(u; v) 2 W (
). Since W (
) is a regular string language, there is a

�nite automaton A that accepts W (
). It is not di�cult to write a regular

tree grammar G that generates T




. G decides nondeterministically that it is

generating the least common ancestor z of some u and v, guesses a state of A,

and then simulates the behaviour of A on the path from z to v (where it should

arrive in a �nal state of A) and simulates the behaviour of A backwards on the

path from z to u (where it should arrive in an initial state of A). We leave the

details of G as an exercise to the reader. ut

15



4 The Main Result

In this section we prove the main result: RPD = C-edNCE. We start with the

inclusion of RPD in C-edNCE. We �rst consider a di�erent, but strongly related,

kind of graph description. The edge labels of the graphs are restricted to be pairs

of states of a �nite automaton.

It is convenient to consider �nite automata that are deterministic, except that

they have an arbitrary number of initial states. A �nite automaton is a tuple

A = (Q;�; �; I; F ) where Q is the �nite set of states, � is the input alphabet,

� : Q � � ! Q is the transition function, I � Q is the set of initial states,

and F � Q is the set of �nal states. The transition function is extended in the

usual way to a mapping � : Q� �

�

! Q, and the language recognized by A is

L(A) = fw 2 �

�

j 9i 2 I : �(i; w) 2 Fg.

De�nition 11. An automaton path description is a tuple R = (�;�; T; h;A)

where � is a ranked alphabet, � is an alphabet, T is a regular tree language

in T

�

, h is a partial function from � to �, and A = (Q;� [ �; �; I; F ) is a

�nite automaton with L(A) � �

�

��

�

. The graph language described by R is

L(R) = fgr

R

(t) j t 2 Tg, where gr

R

(t) is the graph H 2 GR

�;I�F

such that

V

H

is the set of vertices v of t for which �

t

(v) is in the domain of h,

�

H

(v) = h(�

t

(v)) for v 2 V

H

, and

E

H

is the set of all edges (u; hq

1

; q

2

i; v) such that �(q

1

; path

t

(u; v)) = q

2

, q

1

2 I ,

and q

2

2 F . ut

Lemma12. If R is an automaton path description, then L(R) 2 C-edNCE.

Proof. Let R = (�;�; T; h;A) and A = (Q;� [ �; �; I; F ). Moreover, let G =

(N [�;�; P; S) be a regular tree grammar in normal form generating T (where

N , disjoint with �, is the set of nonterminals of G). We construct a C-edNCE

grammar G

0

= (N [�;�;Q�Q; I�F; P

0

; S) such that L(G

0

) = L(R). The idea

is that G

0

simulates G, generating the appropriate vertices of the tree t generated

by G. To generate the edges of gr

R

(t), G

0

simulates the behaviour of A in its

edge labels (through the use of the dynamic edge relabeling feature of edNCE

grammars). To this aim, G

0

also keeps edges between nonterminal vertices u

and v of a sentential form s generated by G, viz. all edges (u; hq

1

; q

2

i; v) such

that �(q

1

; path

0

s

(u; v)) = q

2

, where path

0

s

(u; v) is obtained from path

s

(u; v) by

erasing the labels of u and v (note that all nonterminal vertices are leaves of s).

Similarly, G

0

keeps edges from each nonterminal vertex u to each terminal vertex

v (with q

2

2 F , and only the label of u erased) and from each terminal vertex u

to each nonterminal vertex v (with q

1

2 I , and only the label of v erased).

The set of productions P

0

is de�ned as follows. Let p = X ! �X

1

� � �X

k

be a production of G, with V

rhs(p)

= fx

0

; x

1

; : : : ; x

k

g, �

rhs(p)

(x

0

) = � 2 �, and

�

rhs(p)

(x

i

) = X

i

2 N for 1 � i � k. With this production p 2 P we associate

one production p

0

2 P

0

. We �rst consider the case that h(�) is de�ned. Then

p

0

= X ! (D;C), where

V

D

= fx

0

; x

1

; : : : ; x

k

g;

16



E

D

= f(x

i

; hq

1

; q

2

i; x

j

) j i; j 6= 0; �(q

1

; �) = q

2

g

[ f(x

0

; hq

1

; q

2

i; x

i

) j i 6= 0; q

1

2 I; �(q

1

; �) = q

2

g

[ f(x

i

; hq

1

; q

2

i; x

0

) j i 6= 0; q

2

2 F; �(q

1

; �) = q

2

g

�

D

(x

0

) = h(�); and �

D

(x

i

) = X

i

for 1 � i � k;

C = f(�; hq

1

; q

2

i=hq

0

1

; q

2

i; x

i

; out) j �(q

0

1

; �) = q

1

; i 6= 0g

[ f(�; hq

1

; q

2

i=hq

0

1

; q

2

i; x

0

; out) j �(q

0

1

; �) = q

1

; q

0

1

2 Ig

[ f(�; hq

1

; q

2

i=hq

1

; q

0

2

i; x

i

; in) j �(q

2

; �) = q

0

2

; i 6= 0g

[ f(�; hq

1

; q

2

i=hq

1

; q

0

2

i; x

0

; in) j �(q

2

; �) = q

0

; q

0

2

2 Fg;

where we have used � to denote an arbitrary element of N [�. In the case that

h(�) is unde�ned, the above de�nition of p

0

should be changed in the obvious

way by dropping x

0

from V

D

, and restricting all other components accordingly

(such that only the �rst part of E

D

, the second part of �

D

, and the �rst and

third parts of C remain).

This ends the de�nition of G

0

. It is straightforward to verify that G

0

is con-


uent. Intuitively, the reason is that every edge in a sentential form s of G

0

is of

the form (u; hq

1

; q

2

i; v). Moreover, if u is rewritten, then the edge label changes

into hq

0

1

; q

2

i for some q

0

1

, and the connection instructions do not inspect q

2

or

�

s

(v). Similarly, if v is rewritten, it changes into hq

1

; q

0

2

i for some q

0

2

, and q

1

and

�

s

(u) are not inspected. As a consequence, if both u and v are rewritten, the

edge label will be hq

0

1

; q

0

2

i independent of the order of rewriting. In fact, this idea

is formalized in Lemma 10 of [ER2].

To show the correctness of the construction, we extend the de�nition of gr

R

to sentential forms of G. Let s be a sentential form of G. Note that s is a

tree (with the nonterminals having rank 0). We de�ne gr

R

(s) to be the graph

H 2 GR

N[�;Q�Q

such that

V

H

is the union of the set of nonterminal vertices of s and the set of terminal

vertices v of s for which �

s

(v) is in the domain of h,

�

H

(v) = �

s

(v) for a nonterminal vertex v, �

H

(v) = h(�

s

(v)) for a terminal

vertex v, and

E

H

is the set of all edges (u; hq

1

; q

2

i; v) such that �(q

1

; path

0

s

(u; v)) = q

2

and: if

u is terminal then q

1

2 I , and if v is terminal then q

2

2 F (where path

0

s

(u; v) is

obtained from path

s

(u; v) by erasing all elements of N).

It can now be shown (by induction on the length of the derivations) that

for every graph H 2 GR

N[�;Q�Q

, sn(S; z) )

�

G

0

H if and only if there exists

s 2 T

N[�

such that sn(S; z) )

�

G

s and H = gr

R

(s). Since gr

R

(s) 2 GR

�;I�F

i� s 2 T

�

, this implies that L(G

0

) = L(R). This proves the lemma.

Note that if gr

R

(s) 2 GR

�;Q�Q

, then s 2 T

�

and hence gr

R

(s) 2 GR

�;I�F

.

This shows that G

0

is nonblocking (cf. the de�nition of the nonblocking property,

just after De�nition 2). ut

Having done most of the work, we now show that RPD is included in C-edNCE.

Lemma13. RPD � C-edNCE.

17



Proof. Let R = (�;�;
; T; h;W ) be a regular path description. Since, for every


 2 
, W (
) is regular, there is a �nite automaton with one initial state that

recognizes W (
). By putting all these automata (disjointly) together, it should

be clear that there exists a �nite automaton A = (Q;� [ �; �; I; F ) such that

I = 
 and, for every 
 2 
,W (
) = fw 2 (�[�)

�

j �(
; w) 2 Fg. Now consider

the automaton path description R

0

= (�;�; T; h;A), and let � : I � F ! 
 be

the edge relabeling such that �(q

1

; q

2

) = q

1

. Obviously, L(R) = �(L(R

0

)). Hence,

by Lemma 12 and Proposition 6, L(R) is in C-edNCE. This proves the lemma.

It is easy to see that the construction in the proof of Proposition 6 preserves

the nonblocking property of the edNCE grammars. Together with the remark at

the end of the proof of Lemma 12, this shows that L(R) can be generated by a

nonblocking C-edNCE grammar. ut

To prove that C-edNCE � RPD, we will �rst develop a few technical tools. First

of all, in order to �nd a regular path description for a given C-edNCE grammar,

it is convenient to assume that all nodes of a right-hand side of a production have

distinct labels. It is easy to do this for the nonterminal nodes; for the terminal

nodes a node relabeling is needed to re-establish the original labels. Let � be

a node relabeling, i.e., a mapping � ! �

0

, where � and �

0

are node label

alphabets. For a graph H 2 GR

�;


we de�ne �(H) 2 GR

�

0

;


to be the graph

(V

H

; E

H

; �) where �(v) = �(�

H

(v)) for every v 2 V

H

. Let us say that a graph

D is uniquely labeled if for all u; v 2 V

D

, if u 6= v then �

D

(u) 6= �

D

(v). And let

us say that a C-edNCE grammar is uniquely labeled if all right-hand sides of its

productions are uniquely labeled.

Lemma14. For every C-edNCE grammar G one can construct a uniquely la-

beled C-edNCE grammar G

0

and a node relabeling � such that L(G) = �(L(G

0

)).

The same is true for B-edNCE, A-edNCE, and LIN-edNCE grammars.

Proof. Let G = (�;�; �;
; P; S), and let m be an upper bound on the number

of nodes with the same label in the right-hand sides of the productions in P .

Let �

0

be any alphabet and let � be any surjective mapping �

0

! � such that

#�

�1

(�) = m for every � 2 � (where #A is the cardinality of a �nite set A).

Then we construct G

0

= (�

0

; �

0

; �;
; P

0

; S

0

) where �

0

= �

�1

(�), S

0

is any

element of �

�1

(S), and P

0

is de�ned as follows. Let p = X ! (D;C) be in P .

Construct a uniquely labeled graph D

0

2 GR

�

0

;�

such that �(D

0

) = D. De�ne

C

0

= f(�

0

; �=
; x; d) j �

0

2 �

0

; (�(�

0

); �=
; x; d) 2 Cg. Then, corresponding to p,

P

0

contains the productions X

0

! (D

0

; C

0

) for every X

0

2 �

�1

(X).

It can easily be veri�ed that G

0

is con
uent, and that the construction pre-

serves the boundary, apex, and linear properties. It should also be clear that

�

0

(L(G

0

)) = L(G) (where �

0

is the restriction of � to �

0

). ut

In the above lemma, the node relabeling is not really needed for the case of

arbitrary C-edNCE grammars. In fact, the grammar can �rst be transformed

into an equivalent one in which each right-hand side of a production contains at

most one terminal node (see, e.g., [Oos, ER2]).

The following lemma is obvious: it su�ces to compose the function h of the

regular path description with the node relabeling �.

18



Lemma15. RPD is closed under node relabelings. The same holds for B-RPD,

A-RPD, and LIN-RPD.

Thus, in the remainder of this section it su�ces to consider uniquely labeled

C-edNCE grammars.

The main idea in the construction of a regular path description R for a

C-edNCE grammar G is to use the set of derivation trees of G as the regular

tree language of R. In our case it is convenient to de�ne derivation trees in

such a way that the internal vertices are labeled by productions of G, whereas

the leaves are labeled by the node labels of G. Intuitively, if H is generated

by G according to a derivation tree t, the productions that are used in the

generation are on the labels of the internal vertices of t, whereas the leaves of t

represent the nodes of H . The edges between two nodes u and v of H can then be

determined by verifying that path

t

(u; v) belongs to a certain regular language.

Note that path

t

(u; v) consists of the two sequences of productions that are used

to generate u and v, and of the labels of u and v (which determine u and v in

the right-hand sides of the productions that are applied last). It su�ces to know

this information in order to simulate the connection instructions that build the

edges between u and v (and this simulation can be done by a �nite automaton).

We �rst de�ne a regular tree grammar that generates the derivation trees of

a C-edNCE grammar.

De�nition 16. LetG = (�;�; �;
; P; S) be a uniquely labeled C-edNCE gram-

mar. We will view the elements of P and � also as symbols of a ranked alphabet,

where the rank of a production p is the number of nodes of rhs(p), and the rank of

every � 2 � is 0. The derivation tree grammar of G is the regular tree grammar

G

0

= (�

0

; �

0

; P

0

; S

0

), where �

0

= P [ �, �

0

= P [�, S

0

= S, and P

0

consists

of all productions X ! p�

1

� � ��

k

with p 2 P , X = lhs(p), k = #V

rhs(p)

, and

f�

1

; : : : ; �

k

g = f�

rhs(p)

(v) j v 2 V

rhs(p)

g. The order of the node labels of rhs(p)

in this production of P

0

is arbitrary (but �xed). Note that all �

i

are distinct,

because rhs(p) is uniquely labeled. ut

We now de�ne the set of all possible labels of paths from a vertex to a leaf in a

derivation tree of G.

De�nition 17. LetG = (�;�; �;
; P; S) be a uniquely labeled C-edNCE gram-

mar. The set PS(G) of path strings of G is de�ned to be the set of all strings

p

1

� � � p

n

� 2 P

�

� such that n � 0, p

i

2 P for 1 � i � n, � 2 �, for every

1 � i � n � 1 there is a (unique) node in rhs(p

i

) with label lhs(p

i+1

), and (if

n � 1) there is a (unique) node in rhs(p

n

) with label �.

Let p

1

� � � p

n

� 2 PS(G). Let y

1

; : : : ; y

n

be the unique nodes described above,

with y

i

2 rhs(p

i

). Then we de�ne �rst(p

1

� � � p

n

�) = y

1

(where we assume that

n � 1). We also de�ne conn(p

1

� � � p

n

�) = f(�; �=
; d) j 9�

0

; �

1

; : : : ; �

n

2 � :

�

0

= �; �

n

= 
; and (�; �

i�1

=�

i

; y

i

; d) 2 con(p

i

) for all 1 � i � ng. And we

de�ne lhs(p

1

� � � p

n

�) = lhs(p

1

) if n � 1, and � if n = 0. ut

Recall that con(p

i

) is the connection relation of the production p

i

. Intuitively,

p

1

� � � p

n

� 2 PS(G) is the sequence of labels of the vertices on a path from a

19



vertex to a leaf, in a sentential form of the derivation tree grammar G

0

of G; the

internal vertices are labeled by productions p

1

; : : : ; p

n

and the leaf is labeled by �.

The set conn(p

1

� � � p

n

�) formalizes the total e�ect of the connection instructions

that are used when the productions are applied and produce the leaf y

n

. Note

that, for n = 0, conn(�) = f(�; �=�; d) j � 2 �; � 2 �; d 2 fin; outgg. Note also

that conn(p

1

�) = f(�; �=
; d) j (�; �=
; y

1

; d) 2 con(p

1

)g (where y

1

is the unique

node of rhs(p

1

) with label �).

It should be clear that PS(G) is regular: it is easy to de�ne a �nite automaton

that checks the requirements in its de�nition. The following fact is obvious from

the de�nition of `conn'.

Lemma18. Let w

1

w

2

� 2 PS(G), with w

i

2 P

�

and � 2 �. Then (�; �=
; d) 2

conn(w

1

w

2

�) if and only if there exists � 2 � such that (�; �=�; d) 2 conn(w

1

�

1

)

and (�; �=
; d) 2 conn(w

2

�), where �

1

= lhs(w

2

�).

In the next lemma we show that the property of con
uence can be generalized

to two arbitrary sequences of productions, rather than just two productions.

Although this is a well-known fact, we need it here in the following technical

form.

Lemma19. Let G = (�;�; �;
; P; S) be a uniquely labeled C-edNCE gram-

mar. For all path strings w

1

�

1

; w

2

�

2

2 PS(G) (with w

i

2 P

�

and �

i

2 �), and

all edge labels �; 
 2 � , the following equivalence holds, where X

i

= lhs(w

i

�

i

):

9� 2 � : (X

2

; �=�; out) 2 conn(w

1

�

1

) and (�

1

; �=
; in) 2 conn(w

2

�

2

)

()

9� 2 � : (X

1

; �=�; in) 2 conn(w

2

�

2

) and (�

2

; �=
; out) 2 conn(w

1

�

1

).

Proof. For w

1

; w

2

2 P the above equivalence is exactly the one in the de�nition

of con
uence (De�nition 3). For w

1

= � (i.e., the empty string), both conditions

say that (�

1

; �=
; in) 2 conn(w

2

�

2

), and similarly for w

2

= �.

For the remaining cases we use induction on the sum of the lengths of w

1

and w

2

. The basis of the induction has already been treated. In the induction

step we may assume that w

1

and w

2

are nonempty. Or, viewed in another way,

consider p

1

w

1

�

1

and p

2

w

2

�

2

in PS(G), with p

i

2 P , w

i

2 P

�

, and �

i

2 �. Let

�

i

= lhs(w

i

�

i

). Intuitively, it should now be possible to change the sequence of

productions p

1

w

1

p

2

w

2

into the sequence p

1

p

2

w

1

w

2

by interchanging w

1

and p

2

,

then changing it into p

2

p

1

w

2

w

1

by interchanging both p

1

; p

2

and w

1

; w

2

, and

�nally changing it into p

2

w

2

p

1

w

1

by interchanging p

1

and w

2

. Formally this is

proved as follows.

9� 2 � : (X

2

; �=�; out) 2 conn(p

1

w

1

�

1

) and (�

1

; �=
; in) 2 conn(p

2

w

2

�

2

)

() (by Lemma 18 twice)

9�; �; �

0

2 � :

(X

2

; �=�; out) 2 conn(p

1

�

1

),

(X

2

; �=�; out) 2 conn(w

1

�

1

),

(�

1

; �=�

0

; in) 2 conn(p

2

�

2

), and

(�

1

; �

0

=
; in) 2 conn(w

2

�

2

)

20



() (by induction for the second and third line)

9�; �; �

0

2 � :

(X

2

; �=�; out) 2 conn(p

1

�

1

),

(�

1

; �=�; in) 2 conn(p

2

�

2

),

(�

2

; �=�

0

; out) 2 conn(w

1

�

1

), and

(�

1

; �

0

=
; in) 2 conn(w

2

�

2

)

() (by con
uence for the �rst two lines, and by induction for the last two lines)

9�; �; �

0

2 � :

(X

1

; �=�; in) 2 conn(p

2

�

2

),

(�

2

; �=�; out) 2 conn(p

1

�

1

),

(�

1

; �=�

0

; in) 2 conn(w

2

�

2

), and

(�

2

; �

0

=
; out) 2 conn(w

1

�

1

)

() (by induction for the second and third line)

9�; �; �

0

2 � :

(X

1

; �=�; in) 2 conn(p

2

�

2

),

(X

1

; �=�; in) 2 conn(w

2

�

2

),

(�

2

; �=�

0

; out) 2 conn(p

1

�

1

), and

(�

2

; �

0

=
; out) 2 conn(w

1

�

1

)

() (by Lemma 18 twice)

9� 2 � : (X

1

; �=�; in) 2 conn(p

2

w

2

�

2

) and (�

2

; �=
; out) 2 conn(p

1

w

1

�

1

). ut

We are now ready to show the inclusion of C-edNCE in RPD.

Lemma20. C-edNCE � RPD.

Proof. By Lemma's 14 and 15 it su�ces to consider a uniquely labeled C-edNCE

grammar G = (�;�; �;
; P; S). Instead of constructing a regular path descrip-

tion of L(G), we will construct one of SF (G) � GR

�;�

, the set of sentential

forms of G. This is su�cient, by Lemma 10, because L(G) = SF (G) \ GR

�;


.

We de�ne the regular path description R = (P [ �;�; �; SF (G

0

); h;W ), where

G

0

= (P [ �;P [ �;P

0

; S) is the derivation tree grammar of G, and h is the

identity mapping on �. It remains to de�ne W .

Thus, we use the set of sentential forms of G

0

as the regular tree language

of R (and it should be clear that it is indeed regular). By the de�nition of h,

the nodes of gr

R

(t) are exactly the leaves of the sentential form t of G

0

(to be

honest, this is not entirely true: if the right-hand side of a production p is the

empty graph, then p is of rank 0 and hence may be the label of a leaf of t).

For a string w 2 P

�

we denote by ew the reverse of w, i.e., if w = p

1

p

2

� � � p

n

,

then ew = p

n

� � � p

2

p

1

. For 
 2 � we de�ne

W (
) = f�

1

fw

1

pw

2

�

2

j p 2 P;w

1

; w

2

2 P

�

; �

1

; �

2

2 �;

pw

1

�

1

; pw

2

�

2

2 PS(G); and; for x

i

= �rst(pw

i

�

i

);

9�; � 2 � : (x

1

; �; x

2

) 2 E

rhs(p)

;

(�

rhs(p)

(x

2

); �=�; out) 2 conn(w

1

�

1

); and

(�

1

; �=
; in) 2 conn(w

2

�

2

)g:

21



It is straightforward to show that W (
) is regular. The main point is that

conn(w) can be computed by a �nite automaton.

This ends the de�nition of the regular path description R. To prove that

L(R) = SF (G), it can be shown by induction on the length of the derivations

that, for every H 2 GR

�;�

, sn(S; z))

�

G

H if and only if there exists t 2 T

P[�

such that sn(S; z) )

�

G

0

t and gr

R

(t) = H . For the induction step it su�ces to

show the following statement, for every t 2 T

P[�

:

if gr

R

(t) = H , H )

v;p

H

0

in G, and t)

v;p

0

t

0

in G

0

, then gr

R

(t

0

) = H

0

where p

0

is the production of G

0

of the form X ! p�

1

� � ��

k

. Note that since

gr

R

(t) = H , every node of H , and in particular v, is also a vertex of t. Let

us sketch the proof of the above statement. To be more precise, p and p

0

are

production copies, and we (may) assume that the right-hand side of p

0

has ver-

tices x

0

; x

1

; : : : ; x

k

with labels p; �

1

; : : : ; �

k

, respectively, where x

1

; : : : ; x

k

are

the nodes of rhs(p), with the same labels. Thus, t

0

is obtained from t by replac-

: : :

t =

u

1

�

v X

t

0

=

u

1

�

k

�

1

x

i

x

1

�

x

0

p

�

i

x

k

: : :

Fig. 9. A derivation step.

ing the leaf v by the internal vertex x

0

with children x

1

; : : : ; x

k

(cf. Fig. 9), and

H

0

is obtained from H by replacing the node v by the nodes x

1

; : : : ; x

k

(and, of

course, executing the connection instructions). From this, and the de�nition of

h, it should be clear that gr

R

(t

0

) and H

0

have the same nodes, with the same

labels. It remains to show that they have the same edges. Note that since G is

uniquely labeled, the labels �

1

; : : : ; �

k

of x

1

; : : : ; x

k

are all distinct. Let u

1

and u

2

be two leaves of t

0

. It should be clear that if u

1

and u

2

are both leaves of t, then

path

t

0

(u

1

; u

2

) = path

t

(u

1

; u

2

), and hence they have the same edges in gr

R

(t

0

)

and gr

R

(t); since they also have the same edges in H and H

0

(by De�nition 2),

they have the same edges in gr

R

(t

0

) and H

0

. If u

1

= x

i

and u

2

= x

j

for some

1 � i; j � k, then path

t

0

(u

1

; u

2

) = �

i

p�

j

. Since, clearly, �

i

p�

j

2 W (
) if and

only if (x

i

; 
; x

j

) 2 E

rhs(p)

, u

1

and u

2

have the same edges in gr

R

(t

0

) and H

0

.

22



The last, and most important case to consider is that u

1

is a leaf of t and u

2

= x

i

for some 1 � i � k, see Fig. 9. Let us �rst show that gr

R

(t

0

) and H

0

have the

same edges (u

1

; 
; x

i

) from u

1

to u

2

. Clearly, path

t

0

(u

1

; x

i

) = �fw

1

p

0

w

2

p�

i

with

path

t

(u

1

; v) = �fw

1

p

0

w

2

X (recall that X is the label of v). Now

(u

1

; 
; x

i

) 2 E

gr(t

0

)

() (de�nition of W (
))

9�; � 2 � :

(x

1

; �; x

2

) 2 E

rhs(p

0

)

,

(�

rhs(p

0

)

(x

2

); �=�; out) 2 conn(w

1

�), and

(�; �=
; in) 2 conn(w

2

p�

i

)

(where x

1

= �rst(p

0

w

1

�) and x

2

= �rst(p

0

w

2

p�

i

))

() (Lemma 18)

9�; �; � 2 � :

(x

1

; �; x

2

) 2 E

rhs(p

0

)

,

(�

rhs(p

0

)

(x

2

); �=�; out) 2 conn(w

1

�),

(�; �=�; in) 2 conn(w

2

X), and

(�; �=
; in) 2 conn(p�

i

)

() (de�nition of W (�) and de�nition of `conn')

9� 2 � : (u

1

; �; v) 2 E

gr(t)

and (�; �=
; x

i

; in) 2 con(p)

() (gr(t) = H)

9� 2 � : (u

1

; �; v) 2 E

H

and (�; �=
; x

i

; in) 2 con(p)

() (De�nition 2)

(u

1

; 
; x

i

) 2 E

H

0

.

Finally, it has to be shown that gr

R

(t

0

) and H

0

have the same edges (x

i

; 
; u

1

)

from u

2

to u

1

. In this case we have path

t

0

(x

i

; u

1

) = �

i

pfw

2

p

0

w

1

� and path

t

(v; u

1

) =

Xfw

2

p

0

w

1

�. Trying the same proof as above would not work, because the de�ni-

tion of W (
) forces the execution of w

2

p before the execution of w

1

, which does

not allow the reduction to the case of w

2

and w

1

. However, Lemma 19 allows us

to interchange the order of these executions. To be more precise, by Lemma 19,

the last two lines of the de�nition of W (
) can be changed into

(�

rhs(p)

(x

1

); �=�; in) 2 conn(w

2

�

2

); and

(�

2

; �=
; out) 2 conn(w

1

�

1

):

Using this \alternative de�nition" of W (
), the proof is completely analogous

to the one above (syntactically, change (u

1

; 
; x

i

) into (x

i

; 
; u

1

), (x

1

; �; x

2

) into

(x

2

; �; x

1

), (u

1

; �; v) into (v; �; u

1

), and interchange `in' and `out').

This shows that gr

R

(t

0

) = H

0

, and ends the proof. ut

Lemma's 13 and 20 give the main result.

Theorem21. C-edNCE = RPD.

As can be seen from the remarks at the end of the proofs of Lemma 12 and

Lemma 13, we have also shown that for every C-edNCE grammar there is an

equivalent nonblocking C-edNCE grammar. The essence of this fact is contained

in the proof of Lemma 10.

23



As an application of Theorem 21 we show that B-edNCE is a proper sub-

class of C-edNCE. For a graph H , its edge complement is the graph com(H) =

(V

H

; E; �

H

) where E is the set of all (v; 
; w), v 6= w, that are not in E

H

. It is

easy to see that RPD is closed under edge complement (i.e., if L 2 RPD then

fcom(H) j H 2 Lg 2 RPD). In fact, it su�ces to change each W (
) into the

regular string language �

�

��

�

� W (
). Hence, by Theorem 21, C-edNCE is

closed under edge complement. The class of B-edNCE languages is not closed

under edge complement (see Theorem 35 of [ELW]). This proves that B-edNCE

is a proper subclass of C-edNCE. A concrete example of a graph language in

C-edNCE that is not in B-edNCE is the set of edge complements of binary trees.

Theorem22. B-edNCE is a proper subclass of C-edNCE.

5 Special Cases

In this section we consider a number of variations of the main result.

It follows from the proof of Theorem 21 (and in particular from the proof of

Lemma 20) that, for a regular path description R = (�;�;
; T; h;W ), we may

always assume that h is only de�ned for symbols in � of rank 0. This means

that, for every tree t 2 T

�

, all the nodes of gr

R

(t) are leaves of t. In fact, if

L(R) does not contain the empty graph, then we may even assume that the

domain of h is exactly the set of symbols in � of rank 0 (because it is easy to

show that a C-edNCE language without the empty graph can be generated by a

C-edNCE grammar of which all right-hand sides of productions are non-empty).

That means that the nodes of gr

R

(t) are exactly the leaves of t. It is an open

problem whether it may always be assumed that h is a total function, i.e., that

the nodes of gr

R

(t) are exactly all vertices of t (again assuming that the empty

graph is not in L(R)). In the following proposition we treat a special case.

Proposition23. Let G be a C-edNCE grammar such that every right-hand side

of a production has exactly one terminal node. Then there is a regular path

description R of L(G) such that h of R is a total function.

Proof. Note �rst that the two properties are preserved by Lemmas 14 and 15,

respectively. Now consider the construction in the proof of Lemma 20, followed

by the one in the proof of Lemma 10. This shows that L(G) has a regular path

description R

1

which can be obtained from R (in the proof of Lemma 20) by

changing the regular tree language of R into some regular tree language T �

L(G

0

). Thus, R

1

= (P [ �;�;
; T; h;W ) where h is the identity on �, and

W (
) is de�ned as in the proof of Lemma 20 (for every 
 2 
). Clearly, we

may assume that for every internal vertex v of every tree t 2 T , the last child

of v is a leaf, whereas the other children are not leaves. The nodes of gr

R

(t)

are exactly the leaves of t. The idea is now to prune all leaves from t, and to

let each (former) internal vertex v take over the role of its (former) last child.

Formally, we de�ne the regular path description R

2

= (P;�;
; T

0

; h

0

;W

0

) such

that the rank of a production p of G is the number of nonterminal nodes of rhs(p),

24



T

0

= fpr(t) j t 2 Tg where pr(t) is obtained from t by removing all its leaves, h

0

is the total function from P to � such that for every p 2 P , h

0

(p) = �

rhs(p)

(x

p

)

where x

p

is the unique terminal node of rhs(p), andW

0

(
) is the set of all strings

fw

1

pw

2

(with w

i

2 P

�

and p 2 P ) such that �

1

fw

1

pw

2

�

2

2 W (
) where �

i

is the

label of the terminal node of the right-hand side of the last production of pw

i

.

Using the regularity of T and W (
), it is easy to show that T

0

and W

0

(
) are

regular. It should be clear that L(R

2

) = L(G). This proves the proposition.

As an example, we observe that the regular path description R

2

of Exam-

ple 3 is obtained from the C-edNCE grammar G

2

of Example 1 by the above

construction. Note that G

2

satis�es the assumption of this proposition. The reg-

ular tree grammar G that generates the regular tree language of R

2

is obtained

from G

2

as follows: apply the construction of Lemma 14 to G

2

in order to make

it uniquely labeled (replacing X by L and R), take the derivation tree grammar

of the resulting C-edNCE grammar, and prune the terminal leaves from the pro-

ductions of the resulting regular tree grammar. Note that a; b

l

; b

r

; c

l

; c

r

are the

productions of the uniquely labeled C-edNCE grammar. ut

Let us now consider the class B-edNCE of graph languages generated by bound-

ary edNCE grammars (see Section 2 for the de�nition). Recall from Section 3

the de�nition of the class B-RPD of regular path descriptions of type B: every

W (
) is a subset of �

�

� [��

�

.

Theorem24. B-edNCE = B-RPD.

Proof. First the inclusion B-RPD � B-edNCE. Let us say that an automaton

path description R = (�;�; T; h;A) is of type B if L(A) � �

�

� [ ��

�

. Now

consider the proof of Lemma 12 for R of type B. It should be clear that the gram-

mar G

0

need not keep edges between nonterminal vertices any more. Hence, in

the de�nition of the production p

0

= X ! (D;C) ofG

0

, the edges (x

i

; hq

1

; q

2

i; x

j

)

can be dropped from E

D

. Then the � in the connection instructions of C can be

restricted to �. This turns G

0

into a B-edNCE grammar. It should be clear that

the construction in the proof of Lemma 13 changes a regular path description of

type B into an automaton path description of type B.

We now turn to the second inclusion: B-edNCE � B-RPD. It is shown in

Theorem 24 of [ELW] that every B-edNCE language (not containing the empty

graph) can be generated by a B-edNCE grammar of which the right-hand side of

every production contains exactly one terminal node (the proof is for undirected

graphs, but can be adapted in a straightforward way to directed graphs). This

allows us to use the construction in the proof of Proposition 23. To this aim,

we �rst have to check the construction in the proof of Lemma 20. Consider the

de�nition of W (
) in that proof. We claim that if �

1

fw

1

pw

2

�

2

is in W (
), then

either w

1

= � or w

2

= � (where � is the empty string). In fact, if x

2

is a

nonterminal node, then w

1

= � because (�

rhs(p)

(x

2

); �=�; out) 2 conn(w

1

�

1

)

and G is a B-edNCE grammar; if, on the other hand, x

2

is a terminal node, then

w

2

= � because x

2

= lhs(w

2

�

2

). This shows that W (
) � �P

�

P� [ �PP

�

�.

Hence, for the regular path description R

2

in the proof of Proposition 23, we

obtain that W

0

(
) � P

�

P [ PP

�

, which shows that R

2

is of type B. ut

25



Next we consider the class LIN-edNCE of graph languages generated by linear

edNCE grammars (see again Section 2 for the de�nition). Recall again from

Section 3 the de�nition of the class LIN-RPD of regular path descriptions of

type LIN: the symbols of � have rank 0 or 1.

Theorem25. LIN-edNCE = LIN-RPD.

Proof. It is easy to check the proofs to see that they preserve linearity. The

inclusion LIN-edNCE � LIN-RPD is based on the fact (shown in Theorem 24 of

[ELW] for undirected graphs) that every LIN-edNCE language can be generated

by a LIN-edNCE grammar of which the right-hand side of every production

contains exactly one terminal node. Then all elements of the ranked alphabet P

of R

2

in the proof of Proposition 23 have rank 0 or 1. ut

We �nally consider the class A-edNCE of graph languages generated by apex

edNCE grammars (see again Section 2). Recall again from Section 3 the de�n-

ition of the class A-RPD of regular path descriptions of type A: every W (
) is

�nite. The next result solves a conjecture on p.339 of [ELW].

Theorem26. A-edNCE = A-RPD.

Proof. To show that A-RPD � A-edNCE, we use Proposition 5. By this proposi-

tion and the inclusion of RPD in C-edNCE (Theorem 21), it su�ces to show that

every graph language in A-RPD is of bounded degree. Let R = (�;�;
; T; h;W )

be a regular path description such that W (
) is �nite for every 
 2 
. Let k

be the maximal length of the strings in the W (
)'s. Consider some t 2 T and

u 2 V

t

. In gr

R

(t), if there is an edge between u and v then either path

t

(u; v)

or path

t

(v; u) is in W (
) for some 
 2 � . Hence the distance between u and all

such vertices v is at most k. Let m be the maximal rank of the elements of �.

Then there are at most (m + 1)

k

vertices within distance k from u. Hence u is

of degree at most 2 �#
 � (m+ 1)

k

in gr

R

(t).

To show that A-edNCE � A-RPD, consider the proof of Lemma 20. If G is

an A-edNCE grammar, then W (
) is �nite, for every 
 2 � . In fact, it is easy

to see from De�nition 17 that, in that case, if n > 1 then conn(p

1

� � � p

n

�) = ;

(because all y

i

must be terminal). This implies that all path strings in W (
)

have length at most 5 (and even 4, because at least one of the strings w

i

in the

de�nition of W (
) is empty, cf. the proof of Theorem 24). ut

It can be shown, using a slightly more complicated construction than the one

in the proof of Proposition 23, that every regular path description of type A is

equivalent to one for which every W (
) is a �nite subset of �

�

� [ ��

�

. The

basic idea is to remove all children of an internal vertex v that are leaves, and

replace them by a sequence of unary vertices above v.

6 String Languages

It is well known that an edge labeled graph can be used to de�ne a regular string

language, consisting of the strings of edge labels along all directed paths in H ,

26



from certain initial nodes of H to certain �nal nodes of H . In fact, this is just

another way of saying that the graph H is viewed as a nondeterministic �nite

automaton. To de�ne nonregular string languages one might use a set of graphs

rather than just one graph. Clearly, allowing arbitrary sets of graphs would give

arbitrary string languages. Thus, it would be more natural to use only graph lan-

guages that can be generated by certain graph grammars. Here we investigate

the string generating power (in the above sense) of C-edNCE graph grammars.

We will show that in this way they generate the class of output languages of non-

deterministic tree-walking transducers (cf. [ERS]). The LIN-edNCE grammars

generate the class of checking stack languages (cf. [Gre1]). To simplify the proofs,

we will allow the edges of the graphs to be labeled by arbitrary strings (including

the empty string). This corresponds to �nite automata that can read an arbi-

trary (possibly empty) string in one step. It is formalized by applying a string

homomorphism to the language recognized by an ordinary �nite automaton.

De�nition 27. Let H 2 GR

�;


, and let i; f 2 �. Then path

i;f

(H) is de�ned

to be the set of all 


1

� � � 


n

2 


�

such that there is a directed path with nodes

v

0

; v

1

; : : : ; v

n

, n � 1, in H with �

H

(v

0

) = i, �

H

(v

n

) = f , and (v

j�1

; 


j

; v

j

) 2 E

H

for all 1 � j � n.

Let K be a class of graph languages. Then Path(K) is the class of all string

languages path

i;f

(L) = fpath

i;f

(H) j H 2 Lg, where L 2 K, and i; f are

arbitrary node labels. And HPath(K) is the class of string languages �(L), where

L 2 Path(K) and � is an arbitrary string homomorphism. ut

As an example, for the graph language L(G

1

) of \ladders" from Example 1,

path

i;f

(L(G

1

)) is the set of all strings �

n

1

��

n

1

� � � � �

n

k

��

n

k

��

m

� with k � 0,

m � 2, and 1 � n

j

� m for all 1 � j � k. Clearly this language is not regular

(not even context-free), but it is a checking stack language (guess the number

m on the checking stack, walk up and down part of the stack, k times, and walk

up the whole stack).

We now describe the tree-walking transducer in an informal way (detailed

de�nitions can be found in, e.g., [ERS]). A tree-walking transducer, abbreviated

twt, is a nondeterministic automaton with a �nite control, an input tree, and an

output tape. The input trees are taken from a given regular tree language (over

some ranked alphabet). At any moment of time the automaton is at a certain

vertex of the input tree. Depending on the state of its �nite control and the

label of the vertex, it changes state, outputs a string to the output tape, and

either moves to the parent or to a speci�c child of the vertex. The automaton

starts in its initial state at the root of the input tree, and halts whenever it

reaches a �nal state. In this way it nondeterministically translates the input tree

into an output string. The output language of the automaton is the set of all

output strings that are translations of input trees from the given regular tree

language. By OUT(TWT) we denote the class of all output languages of tree-

walking transducers. From a slightly di�erent point of view, one could view a

twt as computing a relation between trees and strings; OUT(TWT) is the class

of images of regular tree languages under such twt relations. In the case that

the labels of the input tree all have rank 1 or 0, the input tree can be viewed

27



as a two-way input tape, and the twt as a nondeterministic two-way gsm (i.e., a

�nite state transducer with a two-way input tape; `gsm' abbreviates generalized

sequential machine, see, e.g., [HU]). By OUT(2GSM) we denote the class of all

output languages of two-way gsm's. It is well known that OUT(2GSM) equals

the class of (one-way) checking stack languages; in fact, the input tape and

output tape of the two-way gsm can be viewed as the checking stack and the

one-way input tape of the checking stack automaton, respectively. For more

details on the above, see [ERS] (where the twt is called checking tree transducer

or ct-transducer, and the two-way gsm is called checking string transducer or

cs-transducer).

We now use our main result (Theorem 21) to show that C-edNCE grammars

have the same string generating power as tree-walking transducers. For LIN-

edNCE grammars we use Theorem 25 to show that they have the same string

generating power as two-way gsm's (or checking stack automata). The proof will

be as informal as the description of the twt above.

Theorem28. HPath(C-edNCE) = OUT(TWT) and

HPath(LIN-edNCE) = OUT(2GSM).

Proof. In this proof, whenever we consider a regular tree language T � T

�

(either of a regular path description or of a twt), we will assume that there is a

mapping num : � ! f0; 1; 2; : : :g such that for every vertex x of a tree t 2 T , if

num(�

t

(x)) = j, then either x is not the root and j is the label of the incoming

edge of x (i.e., x is the jth child of its parent), or x is the root of t and j = 0.

Clearly, this assumption can be made without loss of generality.

We �rst show that HPath(RPD) � OUT(TWT) and HPath(LIN-RPD) �

OUT(2GSM). Let R = (�;�;
; T; h;W ) be a regular path description, let

i; f 2 �, and let � be a string homomorphism with domain �

�

. It is not di�cult

to construct a twt M with input tree language T and with output language

�(path

i;f

(L(R))). For a given input tree t 2 T , M �rst nondeterministically

walks to a vertex x of t such that h(�

t

(x)) = i. Then, repeatedly, M chooses a

symbol 
 2 
, outputs �(
), and nondeterministically walks to another vertex

y for which h(�

t

(y)) is de�ned, walking along the shortest undirected path from

x to y, and using its �nite control to check that path

t

(x; y) is in W (
). Finally,

M halts after checking that h(�

t

(x)) = f for the current vertex x. Note that,

when walking from x to y along the shortest path from x to y, M �rst ascends

to the least common ancestor z of x, and then (in general) descends to y; to do

this, M has to store the number num(�

t

(x

1

)) of the child x

1

of z of which x is a

descendant, in its �nite control, in order to be able to descend to another child

y

1

of z, of which y will be a descendant.

Next we show that OUT(TWT) � HPath(RPD). LetM be a twt with input

tree language T � T

�

and output alphabet 
. Since a string homomorphism

is incorporated into the de�nition of HPath(RPD), it clearly su�ces to assume

that M outputs exactly one symbol from 
 at each move, and to prove that

the output language of M is in Path(RPD). Also, we may assume that M never

re-enters its initial state, and that it has exactly one �nal state. Let Q be the

28



set of states of M , and let i; f 2 Q (i 6= f) be its initial and �nal state, respec-

tively. We construct a regular path description R = (�

0

; �;
; T

0

; h;W ) such

that path

i;f

(L(R)) is the output language of M . The trees of T

0

are obtained

from those of T as follows: for a tree t 2 T we construct the tree t

0

2 T

0

by adding

(#Q) � 1 new children to every vertex x of t, labeled (distinctly) with the ele-

ments of Q�fig, and adding one more new child, with label i, if x is the root of

t. Such a new child, with label q 2 Q, intuitively represents the fact thatM is at

vertex x of t in state q. Thus, �

0

= � [Q, where rank

0

(�) = rank(�) +#Q� 1

for every � 2 � with num(�) 6= 0, rank

0

(�) = rank(�) + #Q for every � 2 �

with num(�) = 0, and rank(q) = 0 for every q 2 Q. Clearly, T

0

is a regular tree

language. We take � = �

0

, and we take h to be the identity on �

0

. Finally,

for every 
 2 
, W (
) is a �nite language obtained from the �nite control of

M as follows. If M , in state q and reading vertex label �, may go into state

p, output 
, and move to the parent, then W (
) contains the string q��p for

every � 2 �. If M , in state q and reading vertex label �, may go into state p,

output 
, and move to the jth child, then W (
) contains the string q��p for

every � 2 � such that num(�) = j. From this construction of R it should be

clear that path

i;f

(L(R)) is the output language of M . Intuitively, for a tree t, a

directed path in the graph gr

R

(t

0

) represents a walk of M on t.

Note that we have even shown that OUT(TWT) � HPath(A-RPD).

To prove that OUT(2GSM) � HPath(LIN-edNCE) we �rst construct R as

above. It is not di�cult to see that the regular tree language T

0

of R can be

generated by a linear REGT grammar. Consider the proof of Lemma 12. It

is left to the reader to show that it can be adapted easily for an arbitrary

regular tree grammar G (not necessarily in normal form); the only thing that

changes is the de�nition of E

D

for the production p

0

= X ! (D;C). Since the

proofs of Lemma 12 and Proposition 6 both preserve linearity (cf. the proof of

Theorem 25), this shows that L(R) can be generated by a LIN-edNCE grammar.

ut

It can be shown that HPath(C-edNCE) = Path(C-edNCE), i.e., that the class

Path(C-edNCE) is closed under homomorphisms, but with the tools we have

now, the proof is not easy to present, and thus will not be given here.

Another way of generating string languages by graph grammars was investi-

gated in [EH1]. Every string �

1

� � ��

n

can be viewed as a graph with n+1 nodes,

that are connected into a directed chain by n edges, labelled �

1

; : : : ; �

n

. In this

way, every string language can be viewed as a (special type of) graph language.

For a class of graph languages K, we denote by STR(K) the class of all string

languages in K. The string languages generated by graph grammars in this way

were investigated in [EH1] for another type of context-free graph grammars:

the hyperedge replacement grammars of [Hab]. However, it is known that these

grammars have the same string generating power (in this sense) as the C-edNCE

grammars (see, e.g., [Bra3, EH2]). From this we �nd that STR(C-edNCE) =

OUT(DTWT), the output languages of deterministic tree-walking transducers,

and STR(LIN-edNCE) = OUT(2DGSM), the output languages of deterministic

two-way gsm's. Hence, this string generation method is weaker than the one

29



discussed in this section. For instance, the language f(a

m

)

n

j m;n � 2g is in

OUT(2GSM): guess m on the checking stack, and then walk up and down the

whole stack n times (or: there is a LIN-edNCE grammar that generates the set

of all directed cycles). This language is however not in OUT(DTWT), because it

is not Parikh (see [ERS]). Note that, in the other direction, OUT(DTWT) con-

tains all context-free languages, but OUT(2GSM) does not (see Theorem 4.26

of [Gre2]).

References

[BC] M.Bauderon, B.Courcelle; Graph expressions and graph rewritings, Math. Sys-

tems Theory 20 (1987), 83-127

[Bra1] F.J.Brandenburg; On partially ordered graph grammars, in [ENRR], 99-111

[Bra2] F.J.Brandenburg; On polynomial time graph grammars, Proc. STACS 88, Lec-

ture Notes in Computer Science 294, Springer-Verlag, Berlin, 1988, pp.227-236

[Bra3] F.J.Brandenburg; The equivalence of boundary and con
uent graph grammars

on graph languages of bounded degree, in Rewriting Technniques and Appli-

cations (R.V.Book, ed.), Lecture Notes in Computer Science 488, Springer-

Verlag, Berlin, 1991, pp.312-322

[CER] B.Courcelle, J.Engelfriet, G.Rozenberg; Handle-rewriting hypergraph gram-

mars, J. of Comp. Syst. Sci. 46 (1993), 218-270

[CLS] D.G.Corneil, H.Lerchs, L.Stewart Burlingham; Complement reducible graphs,

Discr. Appl. Math. 3 (1981), 163-174

[Cou1] B.Courcelle; An axiomatic de�nition of context-free rewriting and its applica-

tion to NLC graph grammars, Theor. Comput. Sci. 55 (1987), 141-181

[Cou2] B.Courcelle; The monadic second-order logic of graphs VII: Graphs as rela-

tional structures, Theor. Comput. Sci. 101 (1992), 3-33

[Cou3] B.Courcelle; Structural properties of context-free sets of graphs generated by

vertex replacement, Inform. and Comput. 116 (1995), 275-293

[EH1] J.Engelfriet, L.M.Heyker; The string generating power of context-free hyper-

graph grammars, J. of Comp. Syst. Sci. 43 (1991), 328-360

[EH2] J.Engelfriet, L.M.Heyker; Hypergraph languages of bounded degree, J. of

Comp. Syst. Sci. 48 (1994), 58-89

[EHL] J.Engelfriet, L.M.Heyker, G.Leih; Context-free graph languages of bounded

degree are generated by apex graph grammars, Acta Informatica 31 (1994),

341-378

[EJKR] H.Ehrig, D.Janssens, H.-J.Kreowski, G.Rozenberg; Concurrency of node-label

controlled graph transformations, Report 82-38, University of Antwerp, U.I.A.,

1982

[EKR] H.Ehrig, H.-J.Kreowski, G.Rozenberg (eds.); Graph-Grammars and their Ap-

plication to Computer Science, Lecture Notes in Computer Science 532,

Springer-Verlag, Berlin, 1991

[EL1] J.Engelfriet, G.Leih; Linear graph grammars: power and complexity, Inform.

and Comput. 81 (1989), 88-121

[EL2] J.Engelfriet, G.Leih; Complexity of boundary graph languages, RAIRO The-

oretical Informatics and Applications 24 (1990), 267-274

[ELR1] J.Engelfriet, G.Leih, G.Rozenberg; Apex graph grammars, in [ENRR], 167-185

30



[ELR2] J.Engelfriet, G.Leih, G.Rozenberg; Nonterminal separation in graph gram-

mars, Theor. Comput. Sci. 82 (1991), 95-111

[ELW] J.Engelfriet, G.Leih, E.Welzl; Boundary graph grammars with dynamic edge

relabeling, J. of Comp. Syst. Sci. 40 (1990), 307-345

[Eng1] J.Engelfriet; Context-free NCE graph grammars, Proc. FCT '89, Lecture Notes

in Computer Science 380, Springer-Verlag, Berlin, 1989, pp.148-161

[Eng2] J.Engelfriet; A characterization of context-free NCE graph languages by

monadic second-order logic on trees, in [EKR], 311-327

[Eng3] J.Engelfriet; A Greibach normal form for context-free graph grammars, Proc.

ICALP'92 (W.Kuich, ed.), Lecture Notes in Computer Science 623, Springer-

Verlag, Berlin, 1992, pp.138-149

[Eng4] J.Engelfriet; Graph grammars and tree transducers, Proc. CAAP'94 (S.Tison,

ed.), Lecture Notes in Computer Science 787, Springer-Verlag, Berlin, 1994,

pp.15-36

[ENRR] H.Ehrig, M.Nagl, G.Rozenberg, A.Rosenfeld (eds.); Graph-Grammars and

their Application to Computer Science, Lecture Notes in Computer Science

291, Springer-Verlag, Berlin, 1987

[ER1] J.Engelfriet, G.Rozenberg; A comparison of boundary graph grammars and

context-free hypergraph grammars, Inform. and Comput. 84 (1990), 163-206

[ER2] J.Engelfriet, G.Rozenberg; Node replacement graph grammars, Chap-

ter for the Handbook of Graph Transformations, Volume I: Foundations

(G.Rozenberg, ed.), World Scienti�c, to appear

[ERS] J.Engelfriet, G.Rozenberg, G.Slutzki; Tree transducers, L systems, and two-

way machines, J. of Comp. Syst. Sci. 20 (1980), 150-202

[Gre1] S.A.Greibach; Checking automata and one-way stack languages, J. of Comp.

Syst. Sci. 3 (1969), 196-217

[Gre2] S.A.Greibach; One way �nite visit automata, Theor. Comput. Sci 6 (1978),

175-221

[GS] F.G�ecseg, M.Steinby; Tree automata, Akad�emiai Kiad�o, Budapest, 1984

[Hab] A.Habel; Hyperedge Replacement: Grammars and Languages, Lecture Notes in

Computer Science 643, Springer-Verlag, 1992

[HK] A.Habel, H.-J.Kreowski; May we introduce to you: hyperedge replacement, in

[ENRR], pp.15-26

[HU] J.E.Hopcroft, J.D.Ullman; Introduction to Automata Theory, Languages, and

Computation, Addison-Wesley, Reading, Mass., 1979

[Kau] M.Kaul; Syntaxanalyse von Graphen bei Pr�azedenz-Graph-Grammatiken, Dis-

sertation, Universit�at Osnabr�uck, 1985

[KL] C.Kim, D.H.Lee; Separating k-separated eNCE graph languages, Theor. Com-

put. Sci. 120 (1993), 247-259

[Nag1] M.Nagl; Formal languages of labelled graphs, Computing 16 (1976), 113-137

[Nag2] M.Nagl; A tutorial and bibliographical survey of graph grammars, in Graph

Grammars (V.Claus, H.Ehrig, G.Rozenberg, eds.); Lecture Notes in Computer

Science 73, Springer-Verlag, Berlin, 1980, pp.70-126

[Nag3] M.Nagl; Graph-Grammatiken, Vieweg, Braunschweig, 1979

[Oos] V.van Oostrom; Graph grammars and 2nd order logic (in Dutch), M. Sc. The-

sis, Leiden University, January 1989

[RW] G.Rozenberg, E.Welzl; Boundary NLC graph grammars - basic de�nitions,

normal forms, and complexity, Inform. and Control 69 (1986), 136-167

[Schu] R.Schuster; Graphgrammatiken und Grapheinbettungen: Algorithmen und

Komplexit�at, Technical Report MIP-8711, Universit�at Passau, 1987

31



[SW1] K.Skodinis, E.Wanke; Exponential time analysis of con
uent and boundary

eNCE graph languages, in Graph-Theoretic Concepts in Computer Science,

WG'94 (E.W.Mayr, G.Schmidt, G.Tinhofer, eds.), Lecture Notes in Computer

Science 903, Springer-Verlag, Berlin, 1995, pp.180-192

[SW2] K.Skodinis, E.Wanke; The bounded degree problem for eNCE graph gram-

mars, 5th International Workshop on Graph-Grammars and their Application

to Computer Science, Williamsburg, Virginia, USA, November 1994

[Wel] E.Welzl; Boundary NLC and partition controlled graph grammars, in [ENRR],

593-609

This article was processed using the L

A

T

E

X macro package with LLNCS style

32


